
A SOA Approach to Counter DDoS Attacks

Xinfeng Ye Santokh Singh
Department of Computer Science, Auckland University, New Zealand

xinfeng@cs.auckland.ac.nz santokh@cs.auckland.ac.nz

Abstract

Distributed denial-of-service (DDoS) attacks are

increasingly mounted by cyber-criminal gangs to
extort money from online businesses. This kind of
attacks is normally targeted at a particular service
provider to exhaust the network and system resources
of the provider. Since the scale of the attack is limited,
the ISP operators normally cannot observe this type of
attacks. As a result, the victim of the attack is left to
deal with the attack on its own accord. This paper
proposes a SOA approach to build a system against
DDoS attacks targeting online businesses. The system
is built on web services. It can be constructed and
reconfigured easily by an attack victim. Experiments
were also carried out to measure the overheads and
the effectiveness of the proposed approach.

1. Introduction

A denial-of-service (DoS) attack is an attempt to

make a computer resource (e.g. the network
bandwidth, CPU time, etc.) unavailable to its intended
users. To obtain the necessary network and CPU
resources, attackers tend to use a large number of
machines to launch Distributed DoS (DDoS) attacks.
DDoS attacks can be devastating to the victims. Cyber-
criminals are increasingly using DDoS attacks to extort
money from online businesses [18, 24] or obtain
commercial advantages [19]. To avoid detection,
instead of using the traditional bandwidth flooding
attacks, e.g. SYN flood, more and more attackers
launch their attacks by mimicking legitimate Web
access behavior of a large number of clients, e.g.
running a large number of queries against the victim’s
site, downloading large image files from the victim’s
server. This type of attacks is called CyberSlam [11].

According to the scale of the attacks, DDoS attacks
can be classified into large-scale and medium-scale
attacks [13]. A large-scale attack causes widespread
damage and affects a large portion of the network. The
effect of a large-scale attack can be observed by the

ISP operators. In a medium-scale attack, only a few
servers or data centers are affected. As a result, the ISP
operators might not be able to observe such an attack.
[13] pointed out that the ISP operators care less about
the medium-scale attacks as the effects of such attacks
are not obvious to the ISP operators. As a result, the
victims have to undertake the task of defending their
servers against DDoS attacks.

Many solutions have been developed to prevent and
trace DDoS attacks [3, 10, 22]. Many of these
measures require wide-spread adoption to be
successful. Unfortunately, there is a lack of incentive
for the ISP operators to deploy these measures [2]. Due
to the acuteness of the problems caused by DDoS
attacks, some commercial tools, e.g. [15], are available
for monitoring and analysing the network traffic.
However, small or medium-sized businesses might not
have the expertise to interpret and utilise the data
generated by the tools. In this paper, a scheme for
countering DDoS attacks is proposed. The scheme is
based-on the SOA approach. It intends to help the
small and medium-sized web services providers to
cope with medium-scale CyberSlam attacks that are
not observed by the ISP operators.

The paper is organised as follow. §2 presents our
DDoS defense system. The performance evaluations of
the system are given in §3. §4 discusses some features
and possible extensions to the system. Related work is
described in §5.Conclusions are given in §6.

2. A Scheme against DDoS Attacks

2.1. An Overview of the Scheme

A DDoS attack normally intends to exhaust the

victim’s network bandwidth and system resources (e.g.
CPU, memory, etc.). An attacker can exhaust the
network bandwidth of a victim by generating a large
volume of traffic directed to the victim’s site. The
victim’s system resources can be exhausted by
processing the requests sent in by the attacker. The
scheme in this paper avoids the network bandwidth of

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

the web services providers being exhausted by hiding
the locations of the web services providers’ sites from
the public. To avoid system resources being exhausted
by the attackers, authentication is used to verify the
incoming requests before the requests are processed by
the web services providers. In the following
discussion, a web services provider is called an
operations provider.

The scheme has two working modes, i.e. the normal
mode and the under-attack mode. An operations
provider decides which mode the system works in.
When an operations provider does not detect any attack
activity, i.e. the operations provider’s system resources
can cope with the service requests, the system works in
the normal mode. Otherwise, the system works in the
under-attack mode 1 . To minimise the delay in
responding to users’ requests, a service request is only
authenticated when the system works in the under-
attack mode. It is assumed that, in the service
negotiation phase, an operations provider and its users
have exchanged the necessary information that will be
used in authenticating the requests.

It is assumed that a service provider with the
expertise to handle security issues provides a service
that forwards the requests from the clients to the
operations providers that subscribe to the service. The
site hosting the service is called the ServiceHub. It is
assumed that the ServiceHub has sufficient network
bandwidth to cope with medium-scale DDoS attacks2.
Since the ServiceHub’s provider has the security
expertise, the provider is able to use various techniques
to trace and confine large-scale DDoS attacks. The
WSDL file describing the operations (i.e. services)
provided by the operations provider binds the
operations to the ServiceHub. Thus, the public perceive
the operations as being hosted by the ServiceHub. As a
result, all service requests are first sent to the
ServiceHub. Since an operations provider’s address is
unknown to the attackers, the attackers cannot send
service requests directly to the operations provider.
Thus, the attackers cannot easily exhaust the network
bandwidth of the operations provider.

When working in the normal mode, the ServiceHub
forwards the service requests to the operations provider
directly. In the under-attack mode, the service requests
need to be authenticated before being processed. The
authentication verifies the identity of the sender of a

1 It is impossible to distinguish between DDoS attacks and
legitimate peak time traffic. As can be seen later, the scheme
does not discard any legitimate requests.
2 As the ServiceHub provides the service to a large number
of operations providers, the network bandwidth subscribed
by the ServiceHub is likely to be much higher than the
bandwidth subscribed by any individual operations provider.

service request. The operations provider will only
process a service request if the identity of the client can
be verified. In other words, the requests sent in by the
attackers will be dropped. Therefore, the service
provider does not waste system resources to process
the attackers’ requests. However, the authentication
mechanism also uses system resources. An attacker can
still deplete the victim’s system resources by sending
in a large amount of requests that force the victim to
authenticate. To counter this kind of attack, an
operations provider, say op, subscribes the services
provided by other service providers to delegate the
authentication task to the other service providers. The
service providers that provide the authentication
service are called authenticators. The authenticators
only forward the requests that are successfully
authenticated to op. Since the authentication is carried
out by the other service providers, the attacker will not
be able to exhaust op’s system resources.

1. request

3. result4. forward
result

client ServiceHub operations
provider

2. forward
 request

(a) Normal Mode

client

ServiceHub

authenticator

operations
provider

authenticator

authenticator

ServiceHub

(b) Under-attack Mode
Figure 1 A DDoS Defense System

Figure 1(a) shows how the system works in the

normal mode. Service requests are first sent to the
ServiceHub (step 1). The ServiceHub forwards the
requests to the operations provider (step 2). The
operations provider sends the results back to the client
through the ServiceHub (step 3 and 4).

Figure 1(b) shows how the system works in the
under-attack mode. The authenticators offer their
services through their own ServiceHubs. A shaded area
covers a ServiceHub and the service providers i.e. the
operations provider and the authenticators, that
subscribe to the ServiceHub’s service. As shown in the
figure, it is possible that the authenticators and the
operations provider use the same ServiceHub. The
operations provider and the authenticators provide their
services through their ServiceHubs. They send and
receive messages through their ServiceHubs. Only their
ServiceHubs know their locations. Thus, they cannot

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

exchange messages directly. In the under-attack mode,
the operations provider informs its ServiceHub of the
authentication services that it subscribes to. The
ServiceHub will forward the service requests to the
ServiceHubs of the respective authenticators. In turn,
the authenticators’ ServiceHubs will forward these
messages to the corresponding authenticators to
authenticate the requests. During the authentication
process, the authenticators might need to exchange
further messages relating to authentication information
with the clients. If a service request is authenticated
successfully, the authenticator sends the request to the
operations provider through their respective
ServiceHubs. After processing the request, the
operations provider sends the result back to the client
through its ServiceHub.

2.2. Assumptions about the System

It is assumed that the attacker may control an

arbitrary number of machines that are widely
distributed across the Internet. An attacker can sniff the
packets sent out by the clients. The operations
providers, the authenticators and the clients can
exchange the keys for encrypting the authentication
information using secured channels (e.g. using PKI
[9]). An attacker does not know the encryption keys.
An attacker cannot correlate the traffic going in and
coming out from a ServiceHub. That is, an attacker
cannot infer how the SerivceHub forwards an incoming
service request3. It is assumed that a group of service
providers have established trust with each other. They
host the authentication services that can be used by
each other to collectively defend against DDoS attacks.
It is assumed that the clients interact with the system
using the asynchronous callback pattern [4]. That is, a
client sends a service request with a return address to
the web service. The web service returns the result to
the address specified by the client.

2.3. The ServiceHub

A ServiceHub might host many operations of

different service providers. A ServiceHub does not
distinguish between the operations providers and the
authenticators. The authentication service provided by
the authenticators are also regarded as operations
provided by service providers. A ServiceHub maps the
received service requests to their corresponding

3 This assumption is reasonable, since many service
providers might subscribe to the service of the ServiceHub.
As a result, many requests might arrive at the ServiceHub
simultaneously. Thus, the order in which these requests are
forwarded can be non-deterministic.

services providers. For each operations provider, the
ServiceHub keeps an authenticators table. The table
records the authentication services subscribed by the
corresponding operations provider. In the table, an
authenticator is identified by the service that it
provides, e.g. servicehub1.com/AuthenticationServ-
ice.asmx.

When an operations provider, say op, changes to the
under-attack mode, it informs its ServiceHub by calling
a web method of the ServiceHub. In the call to the web
method, op passes a list of authentication services that
will help op to authenticate the incoming requests. The
ServiceHub creates an authenticators table for op and
adds the authenticators to the table.

When a service request arrives, according to the
operation to be invoked by the request, the ServiceHub
finds the corresponding operations provider. If the
operations provider does not have an authenticators
table, it means that the operations provider is working
in the normal mode. In this case, the ServiceHub
forwards the request to the corresponding operations
provider. Otherwise, the operations provider is
working in the under-attack mode. In this case, the
ServiceHub checks to see whether the request comes
from an authenticator. If the request comes from an
authenticator, the request must have been
authenticated. Thus, it is forwarded to the
corresponding operations provider. Otherwise, the
ServiceHub randomly selects an authentication service
from the table and forwards the request to the selected
authentication service.

2.4. The Authentication Mechanism

The authentication mechanism relies on the

symmetric key encryption algorithm [21]. At the
service negotiation stage, a client and an operations
provider have agreed on a shared key, KEYclient-provider,
to encrypt the authentication information. A client can
only encrypt the information that can be correctly
decrypted by the authenticators if the client has the
appropriate shared key. Thus, the possession of the
shared key is the proof of the identity of the client.

When a request is authenticated, if no authentication
information is attached to the request, a challenge
string will be sent from the authenticator to the client.
A challenge string consists of the id of the
authenticator that created the string (ID), a sequence
number (SEQ_NUM), the creation time of the string
(C_TIME), and, the digital signature of the
authenticator (SIGauthenticator). One-way hash function
SHA1 [20] is used to calculate the digest of the
concatenation of ID, SEQ_NUM and C_TIME.
SIGauthenticator is obtained by encrypting the digest with

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

key KEYprovider. KEYprovider is only known to the
operations provider and the authenticators. The
authenticators are ordinary service providers. They
might not have the expertise to cope with medium-
scale CyberSlam attacks. Thus, it is important that the
IP address of an authenticator is not known by the
attacker. The ID of an authenticator in the challenge
string is an integer assigned to the authenticator by the
operations provider. The ID cannot be used to infer the
IP address of the authenticator. Thus, the attacker
cannot find out the location of the authenticator
according to the ID. The operations provider informs
the authenticator of its ID and KEYprovider when the
operations provider switches to the under-attack mode.
When a client receives a challenge string, the client
calculates the digest of the concatenation of ID,
SEQ_NUM and C_TIME in the challenge string. The
digest is encrypted using key KEYclient-provider to form
SIGclient. The challenge string and SIGclient form an
authentication token. As the challenge string causes the
creation of the token, the sender of the challenge string
is called the originator of the authentication token. The
sequence number (SEQ_NUM) in the challenge string
is also called the sequence number of the token. Then,
the client re-sends the original service request with the
authentication token attached. The token is stored in
the header element of the SOAP message that
encapsulates the service request.

When changing to the under-attack mode, the
operations provider informs the authenticators (a) the
key used to sign the digest of the challenge string, i.e.
KEYprovider, (b) a service list indicating the IDs assigned
to the authenticators, (c) the secrete key KEYclient-provider
used by the client to generate SIGclient, and, (d) some
other information that will be explained later. This
information is passed to the authenticators through the
web operations of the authenticators.

When a request is received by an authenticator, the
authenticator first checks to see whether the request
has an authentication token attached. If the request
does not contain an authentication token, the
authenticator sends a challenge string back to the
sender of the request. If the authentication token exists
in the request, the authenticator (a) uses KEYprovider to
decrypt SIGauthenticator to obtain

1}{ −
providerKEYtorauthenticaSIG (1}{ −

KEYM means message M is

decrypted using key KEY), and, (b) uses KEYclient-provider
to decrypt SIGclient to obtain 1}{ −

− providerclientKEYclientSIG .

The authenticator computes the digest of the
concatenation of ID, SEQ_NUM and C_TIME. If (a)
the digest is not equal to 1}{ −

providerKEYtorauthenticaSIG or (b)
1}{ −

− providerclientKEYclientSIG is not equal to

1}{ −
providerKEYtorauthenticaSIG , the request fails the

authentication check. Comparing the digest with
1}{ −

providerKEYtorauthenticaSIG is to ensure that ID, SEQ_NUM

and C_TIME in the token have not been tampered with,
since they will also be used to check the validity of the
token. Since ID, SEQ_NUM, and, C_TIME are sent in
clear text in the challenge string, the attacker can easily
compute the digest. However, the attacker does not
know KEYclient-provider. Hence, the attacker cannot
generate SIGclient correctly. As a result, the request sent
in by the attacker will fail the authentication check.
The authenticator drops the messages that fail the
validation check.

A client might send multiple service requests to the
same operations provider. In this case, the
authentication token created for the first service request
can be used in the subsequent requests. This avoids the
need for the authenticators to send challenge strings in
the subsequent requests. Since the subsequent requests
can be authenticated immediately without the need of
exchanging the challenge string and the authentication
token, the response time to the subsequent requests can
be shortened.

An attacker might intercept a service request with a
valid authentication token and replay the intercepted
message from multiple attacking sites. To counter this
kind of attack, two measures are taken. The first
measure is that an authentication token is only valid for
a limited period of time. The length of the period is
determined by the operations provider. The
authenticators are made aware of the length of the
period by the operations provider. This measure avoids
a token being used by an attacker for an un-limited
amount of time. If an authentication token attached to a
request has expired, the authenticators will send a new
challenge string to the client. Thus, if a client sends
multiple service requests to an operations provider over
a long period of time, the client might receive several
challenge strings and needs to generate several
authentication tokens accordingly. To check whether
an authentication token has expired, an authenticator
checks whether C_TIME in the token is within a
certain time interval. C_TIME is the time that the
originator of the token generates the challenge string.
Since a ServiceHub forwards a service request to a
randomly selected authenticator, an authentication
token might not be authenticated by its originator. In
order to check whether a token has expired, C_TIME
should be normalised (e.g. using the Greenwich Mean
Time). This is because the authenticators might locate
in different time zones.

The other measure is to limit the number of times
that an authentication token can be used for validating

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

requests. This measure ensures that, even if an attacker
uses a token that has not expired, only a limited
number of the attacker’s requests can pass the
authentication check. The originator of the token is
responsible for maintaining the count on the number of
times that the token has been used to validate the
service requests. Each authenticator has an
authentication token usage table (ATU table). After
sending out a challenge string, the authenticator stores
the sequence number (SEQ_NUM) of the string in the
ATU table. The table also has a usage count column for
recording the number of times that a token with the
given sequence number has been used to authenticate
service requests (i.e. the number of times that the token
is attached to service requests). When an authenticator
is asked to check the usage of an authentication token,
the originator of the token increments the token’s
usage count in ATU. When the usage count of an entry
reaches the usage limit, the entry is removed from the
table. As a result, any subsequent request for checking
the usage of the token will get a “not found” response.

After the authenticator verified that an
authentication token has not expired, the authenticator
checks with the originator of the token to see whether
the token has reached its usage limit. The ID of the
originator can be retrieved from the token. From the
ID, the authenticator can find out the service provided
by the originator according to the service list received
from the operations provider. The authenticator will
call the service to carry out the check. If the token has
reached its usage limit, the authenticator will not
forward the request to the operations provider. Instead,
the authenticator sends a new challenge string to the
client asking the client to provide a new authentication
token. If the token has not exceeded its usage limit, the
authenticator forwards the request to the operations
provider’s ServiceHub to allow the request to be
delivered to the operations provider4. The authenticator
includes its service address in the header of the SOAP
message encapsulating the service request. This is to
allow the ServiceHub of the operations provider to
know that the request has been authenticated. Thus, the
request will be forwarded to the operations provider
instead of being forwarded to an authenticator.

2.5. Accessing an Operations Provider

The client program that calls the services of the

operations provider needs to handle the interactions
with the authenticators to provide the necessary

4 It is possible that some of the requests replayed by an
attacker will reach the operations provider. This problem can
be addressed by setting the usage limit to 1. That is, each
request needs to provide its own authentication token.

authentication information. A C# assembly that
includes classes for handling the interactions is
provided. With these classes, the programmers do not
need to write the code for handling the interactions
with the authenticator. The most frequently used class
is ClientProxy. The following example shows how a
client program uses the ClientProxy class to call the
service provided by the operations provider.
1 ClientProxy clientProxy =

new ClientProxy(ws_address, op, parameter, handler,
handler_method, port, key_file);

2 clientProxy.SendRequest();

In line 1, ws_address is the address of the service to
be called. op is the name of the operation. parameter is
the value to be passed to the web service. handler is
the class for handling the response from the call.
handler_method is the method that contains the code
for processing the result returned from the web service.
port is the location where the response from the web
service is returned. key_file is the file in which key
KEYclient-provider is stored. When the SendRequest
method is called (line 2), clientProxy calls the service
at ws_address. It also creates a thread that waits for
response arriving at port port. When a response is
received, the thread checks to see whether the response
is the result returned from the operations provider or a
challenge string sent by an authenticator. If the
response is the result from the operations provider, the
thread activates handler_method and passes the result
to handler_method. Otherwise, the thread will generate
the authentication token as discussed in §2.4 and
resends the request attached with the authentication
token to the service at address ws_address. The
authentication token will be stored in an instance
variable of the clientProxy object. If the SendRequest
method of the clientProxy object is called repeatedly,
the same authentication token will be used in the
request being sent to the operations provider until a
new challenge string is received. Class ClientProxy has
a method SetParameter for setting the value to be
passed to the web service.

Calls to web services are made by client programs.
Thus, key KEYclient-provider has to be made accessible to
the client program. Since users might run the program
as a background task, the user might not be available
for entering the password protecting the encryption key
when the authentication token needs to be generated.
Hence, the key is stored in clear text in file key_file.
Storing the key in clear text poses a security risk as the
attacker might obtain the key by compromising the
client’s machine. However, since the key is only valid
for the period during which the client wants to use the
services of the provider, the risk is confined to this

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

period. Thus, if the shared key is compromised, the
compromised key will not cause any security problem
after the given period.

3. Evaluation

Experiments were carried out to evaluate the

performance of the system. The experiments were
carried out on a group of PCs connected by a 100Mbps
Ethernet. Each PC is a HP workstation xw4200 with a
3.4GHz Pentium 4 processor and 2GB memory. All the
programs are implemented using C#. The experiments
assume that the ServiceHub, the operations provider,
and, the authenticators are connected through a WAN.
It is assumed that the one-way transmission delay over
the WAN between a client and the other entities in the
system is 60ms. It is also assumed that the service
providers subscribe to the service of their local
ServiceHub. As the ServiceHub, the authenticators and
the operations provider are close to each other, the
transmission delay amongst them is set to 15ms. To
simulate the transmission delay, a program sleeps for
60ms or 15ms before it sends out a message.

In the following discussion, arrival interval means
the interval between the clients’ requests are sent to the
system while processing time is the duration to process
a client’s request by the operations provider. In the
experiment, it is assumed that the system has sufficient
processing capacity to handle the legitimate clients’
requests. Thus, the arrival interval of the legitimate
clients’ requests is set equal to the processing time of
the operations provider.

0
5

10
15
20
25
30
35

10 20 30 40 50 60 70 80 90 100

Processing Time (ms)

O
ve

rh
ea

d
(%

)

Figure 2 The Overheads of the ServiceHub

The first experiment measures the overhead of the

system when the operations provider is working in the
normal mode. The overhead is defined as

directdirectforward ttt /)(− where directt is the service
response time when the client’s request is sent directly
from the client to the operations provider (i.e. the
ServiceHub is not used), and, forwardt is the service
response time when the client’s request is forwarded to
the operations provider by the ServiceHub. Figure 2
shows the results of the experiments. It can be seen

that, as the processing time increases, the overhead of
the system decreases. This is because, as the
processing time increases, the forwarding cost for per
unit of computation decreases. It can be seen that,
when the processing time is longer than 40ms, the
overheads is about 15%. Thus, the forwarding
overhead of the system working in the normal mode is
relatively low.

The second experiment measures the effectiveness
of the system in countering DDoS attack. In this
experiment, the system consists of one ServiceHub,
one operations provider, and, two authenticators. The
operations provider and the authenticators use the same
ServiceHub. It is assumed that, (a) the operations
provider and the authenticators use the same
ServiceHub, (b) each authentication token can only be
used to validate one service request, and, (c) the
attacker sends requests to the operations provider at the
rate of 1000 requests per second. The response time of
the operations provider when the DDoS defense system
is used (denoted as with-defense) and the response time
of the system when the DDoS defense system is not
used5 (denoted as no-defense) are compared. Figure 3
shows the results of the experiments. From the figure,
it can be seen that the responses time of the no-defense
system increases as the processing time increases. This
is because the operations provider processes each of
the received requests (including the ones sent in by the
attacker). Thus, as the processing time increases, the
response time also increases. It also can be seen that, as
the processing time increases, the response time of the
with-defense system gradually decreases and becomes
stable at around 1200ms. This is because, in our
implementation, a thread is created to handle each of
the received messages. When the arrival interval is
short, too many messages arrive at the ServiceHub at
the same time. The operating system of the ServiceHub
only allows a limited number of threads to be created
by a process at a time. Thus, sometimes the programs
have to try multiple times in order to connect to the
ServiceHub successfully to send the messages. The re-
tries cause extra delay in processing legitimate users
requests. When the arrival interval increases, the
number of re-tries decreases. Since (a) the operations
provider only processes the legitimate users’ requests,
(b) the legitimate users’ requests arrive at the same rate
as the operations provider’s processing rate, and, (c)
the time for exchanging the messages relating to
authenticating a service request dominates the response
time, the response time of the with-defense system
becomes stable when the processing time is greater
than 60ms. From Figure 3, it can be seen that,

5 That is, the legitimate users and the attacker send requests
directly to the operations provider.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

compared to an un-protected system (i.e. the no-
defense system), a system using the DDoS defense
scheme proposed in this paper can significantly reduce
the response time when the system is under attack.

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90 100

Processing Time/ Arrival Interval (ms)

R
es

po
ns

e
Ti

m
e

(m
s)

with-defense no-defense
Figure 3 The Effectiveness of the DDoS Defense System

4. Discussions

Some operations providers might have some
authentication mechanisms built-in to their services.
That is, in order to invoke a service, a client needs to
include some authentication information in the service
request. The authentication mechanism used in this
paper is orthogonal to the authentication mechanisms
built-in to the operations providers’ services. The
reason for separating the two authentication
mechanisms is due to flexibility concern. If the two
authentication mechanisms are the same, then the
authenticators must know how the operations provider
implements its authentication mechanism. This means
an authenticator needs to know the authentication
mechanisms of all its potential. Obviously, this
requirement is not practical.

Although the scheme in this paper focuses on
CyberSlam attack, the architecture of the scheme can
be used to cope with XML Denial of Service (XDoS)
attacks discussed in [8]. In XDoS attacks, the attackers
crash servers with incorrect data. To counter this kind
of attacks, the authenticators can be used to validate
the data being sent to the operations providers. Thus, it
can be guaranteed that the data conform to the required
format when they reach the operations providers.

Normally, an operations provider needs to pay the
authenticators for using their services. To minimise the
cost to the operations provider, depending on the scale
of the attack, the operations provider can
increase/decrease the number of the authenticators that
are used to authenticate the incoming requests. The
authenticators periodically report to the operations
provider the number of requests being processed.
According to the reported number, the operations
provider can decide whether more or fewer
authenticators will be used. The operations provider

can start/stop using an authenticator by asking the
ServiceHub to add/remove the authenticator from the
operations provider’s authenticators table.

The scheme in this paper assumes that an attacker
cannot correlate the incoming and outgoing messages
of the ServiceHubs. This assumption prevents the
attackers from discovering the locations of the
operations providers and the authenticators easily.
However, this assumption is only reasonable if the
traffic volume around a ServiceHub is high. To make
this assumption hold when the traffic volumn around a
ServiceHub is low, the scheme in [6] can be used. This
means the ServiceHubs in the system form an
anonymous overlay system. Encrypted forwarding
tunnels are used to pass messages in the overlay. Fake
traffic between the ServiceHubs are added to make it
difficult to determine where traffic is actually
originating and going.

The authentication mechanism can be extended to
use PKI authentication to authenticate the users. This
would allow users who have not completed service
negotiation with the operations provider (i.e. the users
and the operations provider have not agreed on key
KEYclient-provider) to be validated when the system is
working in the under-attack mode.

5. Related Work

Andersen et al. [2] and Keromytis et al. [12] discuss
using a secure overlay to filter and route the messages
being sent to a destination. In [2] and [12], the location
of the destination of a message is unknown to the
sender of the message. The sender of the message
sends the message to an overlay. The nodes in the
overlay verify the validity of the message and forward
the message toward the destination of the message. The
scheme in this paper uses similar idea as [2] and [12] in
terms of hiding the locations of the service providers
from the public. However, the schemes in [2] and [12]
need cooperation from the ISP operators to modify the
DNS entries when an attack occurs. The overlay
network in [2] and [12] cannot be reconfigured easily
by the message receivers at run time. In contrast, the
scheme in this paper does not require the ISP operators
to be involved when the system switches to the under-
attack mode. Also, the operations providers can
dynamically decrease or increase the number of
authenticators in the system. Thus, the system in this
paper is more flexible and easy to use.

Padmanabhuni et al. [17] proposed a framework for
detecting and preventing DoS attacks against web
services. The scheme focused on validating XML
messages efficiently. In [17], users need to authenticate
with the system. Since their scheme handles the

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

validation at one site, unlike our scheme, [17] is not
suitable for countering the CyberSlam type attacks.

Some schemes [7, 11, 16] require human attention
when authenticating the users. For example, [11]
provides an operating system kernel extension to
protect Web servers against DDoS attacks. It uses a
reverse Turing test [23] to authenticate users. Web
Services are normally accessed through programs. The
reverse Turing test cannot be carried out by the
programs easily. Thus, the scheme proposed in [23]
cannot be directly applied in a SOA environment.

There are schemes using computational puzzles that
require the client to carry out heavy computation
before accessing the services [1, 5, 14]. The
computation would slow down the attacker. However,
this kind of scheme is not effective against DDoS
attacks. This is because the attacker can utilise a large
number of machines. Thus, it is unlikely that the
attacker will be short of computing power.

6. Conclusion

This paper proposes a scheme for forming a DDoS
attacks defense system in a SOA environment. A
service provider can construct such a system by
subscribing the services provided by other providers.
With this system, a service provider does not need to
rely on the ISP operators to provide solutions for
countering medium-scale CyberSlam type attacks.
Since the system is constructed from web services, it
can be formed and reconfigured easily. The empirical
data shows that, when there is no DDoS attacks (i.e.
when the system is working in the normal mode), the
overheads of the system seems to be acceptable. The
experiments also show that, when the system is under
attack, the response time to the legitimate users is
much shorter than the system that is not protected by
the scheme proposed in this paper. Thus, the proposed
system is effective in countering DDoS attacks.
Acknowledgment. We would like to thank the
anonymous reviewers for their useful comments.

References

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber.
Moderately hard, memory-bound functions. ACM Trans. on
Internet Technology, Vol. 5, Issue 2, 2005, pp. 299 - 327
[2] D. Andersen. Mayday: Distributed Filtering for Internet
services. Proc. of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS), 2003
[3] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
Internet denial-of-service with capabilities. In Proc. of
Hotnets-II, Cambridge, MA, Nov. 2003
[4] M. Brambilla, S. Ceri, M. Passamani, A. Riccio:
Managing Asynchronous Web Services Interactions, Proc. of
the IEEE Intl Conf on Web Services, 2004

[5] C. Dwork, A. Goldberg, and M. Naor. On memory-bound
functions for fighting spam. In Advances in Cryptology -
CRYPTO 2003. LNCS 2729, pp.426-444
[6] M.J. Freedman & R. Morris, Tarzan: A peer-to-peer
anonymizing network layer, Proc. of the 9th ACM Conf. on
Computer and Communications Security, 2002
[7] V. D. Gligor. Guaranteeing access in spite of distributed
service-flooding attacks, in Proceedings of the Security
Protocols Workshop, April 2003
[8] B. Hartman, Securing your Enterprise Web Services in a
Suspicious world, SOA Web Services Journal, March 2004,
Available at http://webservices.sys-con.com/read/43958.htm
[9] R. Housley, W. Polk, W. Ford, and D. Solo, Internet
X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, IETF RFC3280
[10] J. Ioannidis and S. M. Bellovin, Implementing
pushback: Router-based defense against DDoS attacks, Proc.
of Network and Dist. System Security Symposium, 2002
[11] S. Kandula, D. Katabi M. Jacob and A. Berger,
Botz4Sale: Surviving Organized DDoS Attacks That Mimic
Flash Crowds, Proceedings of the 2nd Symposium on
Networked Systems Design and Implementation, 2005
[12] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: An
architecture for mitigating DDoS attacks. Journal on Selected
Areas in Communications, 21(1):176–188, 2004
[13] E. Kohler, Denial of Service Defense in Practice and
Theory, USENIX’05, http://www.usenix.org/event/usenix05-
/tech/slides/kohler.pdf
[14] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M.
Frentz. Mitigating distributed denial of service attacks with
dynamic resource pricing. Proc. IEEE Annual Computer
Security Applications Conference, Dec. 2001.
[15] Mazu Network, Mazu Profiler, http://www.mazunet-
works.com/solutions/
[16] W. Morein and A. Stavrou and D. Cook and A.
Keromytis and V. Misra and D. Rubenstein, Using Graphic
Turing Tests to Counter Automated DDoS Attacks Against
Web Servers, Proc. of the 10th ACM Intl. Conf. on
Computer and Comm. Security (CCS), pp. 8-19, 2003
[17] S. Padmanabhuni, V. Singh, K. M. S. Kumar, and A.
Chatterjee, Preventing Service Oriented Denial of Service
(PreSODoS): A Proposed Approach, Proc. of the IEEE Intl.
Conference on Web Services (ICWS'06), pp577 – 584, 2006
[18] D. Pappalardo and E. Messmer, Extortion via DDoS on
the rise, NetworkWorld, May 2005. http://www.network-
world.com/news/2005/051605-ddos-extortion.html
[19] K. Poulsen. FBI Busts Alleged DDoS Mafia, 2004.
http://www.securityfocus.com/news/9411.
[20] RFC 3174, US Secure Hash Algorithm 1 (SHA-1),
http://tools.ietf.org/html/rfc3174
[21] B. Schneier, Applied Cryptography,Second Edition,
John Wiley & Sons, 1996
[22] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, B.Schwartz, S. T. Kent and W. T. Strayer,
Single-packet IP traceback, IEEE/ACM Transactions on
Networking (TON) Volume 10 , Issue 6, 2002, pp. 721 - 734
[23] L. von Ahn, M. Blum, and J. Langford. Telling humans
and computers apart automatically. CACM, 47(2), Feb. 2004.
[24] M. Ward, Caught in the net,
http://news.bbc.co.uk/2/hi/technology/5407508.stm

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

