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Abstract 

 
Distributed denial-of-service (DDoS) attacks are 

increasingly mounted by cyber-criminal gangs to 
extort money from online businesses. This kind of 
attacks is normally targeted at a particular service 
provider to exhaust the network and system resources 
of the provider. Since the scale of the attack is limited, 
the ISP operators normally cannot observe this type of 
attacks. As a result, the victim of the attack is left to 
deal with the attack on its own accord. This paper 
proposes a SOA approach to build a system against 
DDoS attacks targeting online businesses. The system 
is built on web services. It can be constructed and 
reconfigured easily by an attack victim. Experiments 
were also carried out to measure the overheads and 
the effectiveness of the proposed approach. 
 
1. Introduction 

 
A denial-of-service (DoS) attack is an attempt to 

make a computer resource (e.g. the network 
bandwidth, CPU time, etc.) unavailable to its intended 
users. To obtain the necessary network and CPU 
resources, attackers tend to use a large number of 
machines to launch Distributed DoS (DDoS) attacks. 
DDoS attacks can be devastating to the victims. Cyber-
criminals are increasingly using DDoS attacks to extort 
money from online businesses [18, 24] or obtain 
commercial advantages [19]. To avoid detection, 
instead of using the traditional bandwidth flooding 
attacks, e.g. SYN flood, more and more attackers 
launch their attacks by mimicking legitimate Web 
access behavior of a large number of clients, e.g. 
running a large number of queries against the victim’s 
site, downloading large image files from the victim’s 
server. This type of attacks is called CyberSlam [11].  

According to the scale of the attacks, DDoS attacks 
can be classified into large-scale and medium-scale 
attacks [13]. A large-scale attack causes widespread 
damage and affects a large portion of the network. The 
effect of a large-scale attack can be observed by the 

ISP operators. In a medium-scale attack, only a few 
servers or data centers are affected. As a result, the ISP 
operators might not be able to observe such an attack. 
[13] pointed out that the ISP operators care less about 
the medium-scale attacks as the effects of such attacks 
are not obvious to the ISP operators. As a result, the 
victims have to undertake the task of defending their 
servers against DDoS attacks.  

Many solutions have been developed to prevent and 
trace DDoS attacks [3, 10, 22]. Many of these 
measures require wide-spread adoption to be 
successful. Unfortunately, there is a lack of incentive 
for the ISP operators to deploy these measures [2]. Due 
to the acuteness of the problems caused by DDoS 
attacks, some commercial tools, e.g. [15], are available 
for monitoring and analysing the network traffic. 
However, small or medium-sized businesses might not 
have the expertise to interpret and utilise the data 
generated by the tools. In this paper, a scheme for 
countering DDoS attacks is proposed. The scheme is 
based-on the SOA approach. It intends to help the 
small and medium-sized web services providers to 
cope with medium-scale CyberSlam attacks that are 
not observed by the ISP operators. 

The paper is organised as follow. §2 presents our 
DDoS defense system. The performance evaluations of 
the system are given in §3. §4 discusses some features 
and possible extensions to the system. Related work is 
described in §5.Conclusions are given in §6. 
 
2. A Scheme against DDoS Attacks 

 
2.1. An Overview of the Scheme 

 
A DDoS attack normally intends to exhaust the 

victim’s network bandwidth and system resources (e.g. 
CPU, memory, etc.). An attacker can exhaust the 
network bandwidth of a victim by generating a large 
volume of traffic directed to the victim’s site. The 
victim’s system resources can be exhausted by 
processing the requests sent in by the attacker. The 
scheme in this paper avoids the network bandwidth of 
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the web services providers being exhausted by hiding 
the locations of the web services providers’ sites from 
the public. To avoid system resources being exhausted 
by the attackers, authentication is used to verify the 
incoming requests before the requests are processed by 
the web services providers. In the following 
discussion, a web services provider is called an 
operations provider. 

The scheme has two working modes, i.e. the normal 
mode and the under-attack mode. An operations 
provider decides which mode the system works in. 
When an operations provider does not detect any attack 
activity, i.e. the operations provider’s system resources 
can cope with the service requests, the system works in 
the normal mode. Otherwise, the system works in the 
under-attack mode 1 . To minimise the delay in 
responding to users’ requests, a service request is only 
authenticated when the system works in the under-
attack mode. It is assumed that, in the service 
negotiation phase, an operations provider and its users 
have exchanged the necessary information that will be 
used in authenticating the requests.  

It is assumed that a service provider with the 
expertise to handle security issues provides a service 
that forwards the requests from the clients to the 
operations providers that subscribe to the service. The 
site hosting the service is called the ServiceHub. It is 
assumed that the ServiceHub has sufficient network 
bandwidth to cope with medium-scale DDoS attacks2. 
Since the ServiceHub’s provider has the security 
expertise, the provider is able to use various techniques 
to trace and confine large-scale DDoS attacks. The 
WSDL file describing the operations (i.e. services) 
provided by the operations provider binds the 
operations to the ServiceHub. Thus, the public perceive 
the operations as being hosted by the ServiceHub. As a 
result, all service requests are first sent to the 
ServiceHub. Since an operations provider’s address is 
unknown to the attackers, the attackers cannot send 
service requests directly to the operations provider. 
Thus, the attackers cannot easily exhaust the network 
bandwidth of the operations provider. 

When working in the normal mode, the ServiceHub 
forwards the service requests to the operations provider 
directly. In the under-attack mode, the service requests 
need to be authenticated before being processed. The 
authentication verifies the identity of the sender of a 

                                                        
1 It is impossible to distinguish between DDoS attacks and 
legitimate peak time traffic. As can be seen later, the scheme 
does not discard any legitimate requests. 
2 As the ServiceHub provides the service to a large number 
of operations providers, the network bandwidth subscribed 
by the ServiceHub is likely to be much higher than the 
bandwidth subscribed by any individual operations provider. 

service request. The operations provider will only 
process a service request if the identity of the client can 
be verified. In other words, the requests sent in by the 
attackers will be dropped. Therefore, the service 
provider does not waste system resources to process 
the attackers’ requests. However, the authentication 
mechanism also uses system resources. An attacker can 
still deplete the victim’s system resources by sending 
in a large amount of requests that force the victim to 
authenticate. To counter this kind of attack, an 
operations provider, say op, subscribes the services 
provided by other service providers to delegate the 
authentication task to the other service providers. The 
service providers that provide the authentication 
service are called authenticators. The authenticators 
only forward the requests that are successfully 
authenticated to op. Since the authentication is carried 
out by the other service providers, the attacker will not 
be able to exhaust op’s system resources.  

1. request

3. result4. forward
result

client ServiceHub operations
provider

2. forward
    request

(a) Normal Mode

client

ServiceHub

authenticator

operations
provider

authenticator

authenticator

ServiceHub

(b) Under-attack Mode
Figure 1  A DDoS Defense System

 
Figure 1(a) shows how the system works in the 

normal mode. Service requests are first sent to the 
ServiceHub (step 1). The ServiceHub forwards the 
requests to the operations provider (step 2). The 
operations provider sends the results back to the client 
through the ServiceHub (step 3 and 4).  

Figure 1(b) shows how the system works in the 
under-attack mode. The authenticators offer their 
services through their own ServiceHubs. A shaded area 
covers a ServiceHub and the service providers i.e. the 
operations provider and the authenticators, that 
subscribe to the ServiceHub’s service. As shown in the 
figure, it is possible that the authenticators and the 
operations provider use the same ServiceHub. The 
operations provider and the authenticators provide their 
services through their ServiceHubs. They send and 
receive messages through their ServiceHubs. Only their 
ServiceHubs know their locations. Thus, they cannot 
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exchange messages directly. In the under-attack mode, 
the operations provider informs its ServiceHub of the 
authentication services that it subscribes to. The 
ServiceHub will forward the service requests to the 
ServiceHubs of the respective authenticators. In turn, 
the authenticators’ ServiceHubs will forward these 
messages to the corresponding authenticators to 
authenticate the requests. During the authentication 
process, the authenticators might need to exchange 
further messages relating to authentication information 
with the clients. If a service request is authenticated 
successfully, the authenticator sends the request to the 
operations provider through their respective 
ServiceHubs. After processing the request, the 
operations provider sends the result back to the client 
through its ServiceHub. 

 
2.2. Assumptions about the System 

 
It is assumed that the attacker may control an 

arbitrary number of machines that are widely 
distributed across the Internet. An attacker can sniff the 
packets sent out by the clients. The operations 
providers, the authenticators and the clients can 
exchange the keys for encrypting the authentication 
information using secured channels (e.g. using PKI 
[9]). An attacker does not know the encryption keys. 
An attacker cannot correlate the traffic going in and 
coming out from a ServiceHub. That is, an attacker 
cannot infer how the SerivceHub forwards an incoming 
service request3. It is assumed that a group of service 
providers have established trust with each other. They 
host the authentication services that can be used by 
each other to collectively defend against DDoS attacks. 
It is assumed that the clients interact with the system 
using the asynchronous callback pattern [4]. That is, a 
client sends a service request with a return address to 
the web service. The web service returns the result to 
the address specified by the client. 
 
2.3. The ServiceHub 

 
A ServiceHub might host many operations of 

different service providers. A ServiceHub does not 
distinguish between the operations providers and the 
authenticators. The authentication service provided by 
the authenticators are also regarded as operations 
provided by service providers. A ServiceHub maps the 
received service requests to their corresponding 
                                                        
3  This assumption is reasonable, since many service 
providers might subscribe to the service of the ServiceHub. 
As a result, many requests might arrive at the ServiceHub 
simultaneously. Thus, the order in which these requests are 
forwarded can be non-deterministic. 

services providers. For each operations provider, the 
ServiceHub keeps an authenticators table. The table 
records the authentication services subscribed by the 
corresponding operations provider. In the table, an 
authenticator is identified by the service that it 
provides, e.g. servicehub1.com/AuthenticationServ-
ice.asmx.  

When an operations provider, say op, changes to the 
under-attack mode, it informs its ServiceHub by calling 
a web method of the ServiceHub. In the call to the web 
method, op passes a list of authentication services that 
will help op to authenticate the incoming requests. The 
ServiceHub creates an authenticators table for op and 
adds the authenticators to the table.  

When a service request arrives, according to the 
operation to be invoked by the request, the ServiceHub 
finds the corresponding operations provider. If the 
operations provider does not have an authenticators 
table, it means that the operations provider is working 
in the normal mode. In this case, the ServiceHub 
forwards the request to the corresponding operations 
provider. Otherwise, the operations provider is 
working in the under-attack mode. In this case, the 
ServiceHub checks to see whether the request comes 
from an authenticator. If the request comes from an 
authenticator, the request must have been 
authenticated. Thus, it is forwarded to the 
corresponding operations provider. Otherwise, the 
ServiceHub randomly selects an authentication service 
from the table and forwards the request to the selected 
authentication service.  
 
2.4. The Authentication Mechanism 

 
The authentication mechanism relies on the 

symmetric key encryption algorithm [21]. At the 
service negotiation stage, a client and an operations 
provider have agreed on a shared key, KEYclient-provider, 
to encrypt the authentication information. A client can 
only encrypt the information that can be correctly 
decrypted by the authenticators if the client has the 
appropriate shared key. Thus, the possession of the 
shared key is the proof of the identity of the client.  

When a request is authenticated, if no authentication 
information is attached to the request, a challenge 
string will be sent from the authenticator to the client. 
A challenge string consists of the id of the 
authenticator that created the string (ID), a sequence 
number (SEQ_NUM), the creation time of the string 
(C_TIME), and, the digital signature of the 
authenticator (SIGauthenticator). One-way hash function 
SHA1 [20] is used to calculate the digest of the 
concatenation of ID, SEQ_NUM and C_TIME. 
SIGauthenticator is obtained by encrypting the digest with 
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key KEYprovider. KEYprovider is only known to the 
operations provider and the authenticators. The 
authenticators are ordinary service providers. They 
might not have the expertise to cope with medium-
scale CyberSlam attacks. Thus, it is important that the 
IP address of an authenticator is not known by the 
attacker. The ID of an authenticator in the challenge 
string is an integer assigned to the authenticator by the 
operations provider. The ID cannot be used to infer the 
IP address of the authenticator. Thus, the attacker 
cannot find out the location of the authenticator 
according to the ID. The operations provider informs 
the authenticator of its ID and KEYprovider when the 
operations provider switches to the under-attack mode. 
When a client receives a challenge string, the client 
calculates the digest of the concatenation of ID, 
SEQ_NUM and C_TIME in the challenge string. The 
digest is encrypted using key KEYclient-provider to form 
SIGclient. The challenge string and SIGclient form an 
authentication token. As the challenge string causes the 
creation of the token, the sender of the challenge string 
is called the originator of the authentication token. The 
sequence number (SEQ_NUM) in the challenge string 
is also called the sequence number of the token. Then, 
the client re-sends the original service request with the 
authentication token attached. The token is stored in 
the header element of the SOAP message that 
encapsulates the service request. 

When changing to the under-attack mode, the 
operations provider informs the authenticators (a) the 
key used to sign the digest of the challenge string, i.e. 
KEYprovider, (b) a service list indicating the IDs assigned 
to the authenticators, (c) the secrete key KEYclient-provider 
used by the client to generate SIGclient, and, (d) some 
other information that will be explained later. This 
information is passed to the authenticators through the 
web operations of the authenticators.  

When a request is received by an authenticator, the 
authenticator first checks to see whether the request 
has an authentication token attached. If the request 
does not contain an authentication token, the 
authenticator sends a challenge string back to the 
sender of the request. If the authentication token exists 
in the request, the authenticator (a) uses KEYprovider to 
decrypt SIGauthenticator to obtain 

1}{ −
providerKEYtorauthenticaSIG ( 1}{ −

KEYM means message M is 

decrypted using key KEY), and, (b) uses KEYclient-provider 
to decrypt SIGclient to obtain 1}{ −

− providerclientKEYclientSIG . 

The authenticator computes the digest of the 
concatenation of ID, SEQ_NUM and C_TIME. If (a) 
the digest is not equal to 1}{ −

providerKEYtorauthenticaSIG  or (b) 
1}{ −

− providerclientKEYclientSIG  is not equal to 

1}{ −
providerKEYtorauthenticaSIG , the request fails the 

authentication check. Comparing the digest with 
1}{ −

providerKEYtorauthenticaSIG is to ensure that ID, SEQ_NUM 

and C_TIME in the token have not been tampered with, 
since they will also be used to check the validity of the 
token. Since ID, SEQ_NUM, and, C_TIME are sent in 
clear text in the challenge string, the attacker can easily 
compute the digest. However, the attacker does not 
know KEYclient-provider. Hence, the attacker cannot 
generate SIGclient correctly. As a result, the request sent 
in by the attacker will fail the authentication check. 
The authenticator drops the messages that fail the 
validation check.  

A client might send multiple service requests to the 
same operations provider. In this case, the 
authentication token created for the first service request 
can be used in the subsequent requests. This avoids the 
need for the authenticators to send challenge strings in 
the subsequent requests. Since the subsequent requests 
can be authenticated immediately without the need of 
exchanging the challenge string and the authentication 
token, the response time to the subsequent requests can 
be shortened.  

An attacker might intercept a service request with a 
valid authentication token and replay the intercepted 
message from multiple attacking sites. To counter this 
kind of attack, two measures are taken. The first 
measure is that an authentication token is only valid for 
a limited period of time. The length of the period is 
determined by the operations provider. The 
authenticators are made aware of the length of the 
period by the operations provider. This measure avoids 
a token being used by an attacker for an un-limited 
amount of time. If an authentication token attached to a 
request has expired, the authenticators will send a new 
challenge string to the client. Thus, if a client sends 
multiple service requests to an operations provider over 
a long period of time, the client might receive several 
challenge strings and needs to generate several 
authentication tokens accordingly. To check whether 
an authentication token has expired, an authenticator 
checks whether C_TIME in the token is within a 
certain time interval. C_TIME is the time that the 
originator of the token generates the challenge string. 
Since a ServiceHub forwards a service request to a 
randomly selected authenticator, an authentication 
token might not be authenticated by its originator. In 
order to check whether a token has expired, C_TIME 
should be normalised (e.g. using the Greenwich Mean 
Time). This is because the authenticators might locate 
in different time zones. 

The other measure is to limit the number of times 
that an authentication token can be used for validating 
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requests. This measure ensures that, even if an attacker 
uses a token that has not expired, only a limited 
number of the attacker’s requests can pass the 
authentication check. The originator of the token is 
responsible for maintaining the count on the number of 
times that the token has been used to validate the 
service requests. Each authenticator has an 
authentication token usage table (ATU table). After 
sending out a challenge string, the authenticator stores 
the sequence number (SEQ_NUM) of the string in the 
ATU table. The table also has a usage count column for 
recording the number of times that a token with the 
given sequence number has been used to authenticate 
service requests (i.e. the number of times that the token 
is attached to service requests). When an authenticator 
is asked to check the usage of an authentication token, 
the originator of the token increments the token’s 
usage count in ATU. When the usage count of an entry 
reaches the usage limit, the entry is removed from the 
table. As a result, any subsequent request for checking 
the usage of the token will get a “not found” response.  

After the authenticator verified that an 
authentication token has not expired, the authenticator 
checks with the originator of the token to see whether 
the token has reached its usage limit. The ID of the 
originator can be retrieved from the token. From the 
ID, the authenticator can find out the service provided 
by the originator according to the service list received 
from the operations provider. The authenticator will 
call the service to carry out the check. If the token has 
reached its usage limit, the authenticator will not 
forward the request to the operations provider. Instead, 
the authenticator sends a new challenge string to the 
client asking the client to provide a new authentication 
token. If the token has not exceeded its usage limit, the 
authenticator forwards the request to the operations 
provider’s ServiceHub to allow the request to be 
delivered to the operations provider4. The authenticator 
includes its service address in the header of the SOAP 
message encapsulating the service request. This is to 
allow the ServiceHub of the operations provider to 
know that the request has been authenticated. Thus, the 
request will be forwarded to the operations provider 
instead of being forwarded to an authenticator.  
 
2.5. Accessing an Operations Provider 

 
The client program that calls the services of the 

operations provider needs to handle the interactions 
with the authenticators to provide the necessary 
                                                        
4  It is possible that some of the requests replayed by an 
attacker will reach the operations provider. This problem can 
be addressed by setting the usage limit to 1. That is, each 
request needs to provide its own authentication token.   

authentication information. A C# assembly that 
includes classes for handling the interactions is 
provided. With these classes, the programmers do not 
need to write the code for handling the interactions 
with the authenticator. The most frequently used class 
is ClientProxy. The following example shows how a 
client program uses the ClientProxy class to call the 
service provided by the operations provider. 
1 ClientProxy clientProxy =  

new ClientProxy(ws_address, op, parameter, handler, 
handler_method, port, key_file); 

2 clientProxy.SendRequest(); 
 

In line 1, ws_address is the address of the service to 
be called. op is the name of the operation. parameter is 
the value to be passed to the web service. handler is 
the class for handling the response from the call. 
handler_method is the method that contains the code 
for processing the result returned from the web service. 
port is the location where the response from the web 
service is returned. key_file is the file in which key 
KEYclient-provider is stored. When the SendRequest 
method is called (line 2), clientProxy calls the service 
at ws_address. It also creates a thread that waits for 
response arriving at port port. When a response is 
received, the thread checks to see whether the response 
is the result returned from the operations provider or a 
challenge string sent by an authenticator. If the 
response is the result from the operations provider, the 
thread activates handler_method and passes the result 
to handler_method. Otherwise, the thread will generate 
the authentication token as discussed in §2.4 and 
resends the request attached with the authentication 
token to the service at address ws_address. The 
authentication token will be stored in an instance 
variable of the clientProxy object. If the SendRequest 
method of the clientProxy object is called repeatedly, 
the same authentication token will be used in the 
request being sent to the operations provider until a 
new challenge string is received. Class ClientProxy has 
a method SetParameter for setting the value to be 
passed to the web service.  

Calls to web services are made by client programs. 
Thus, key KEYclient-provider has to be made accessible to 
the client program. Since users might run the program 
as a background task, the user might not be available 
for entering the password protecting the encryption key 
when the authentication token needs to be generated. 
Hence, the key is stored in clear text in file key_file. 
Storing the key in clear text poses a security risk as the 
attacker might obtain the key by compromising the 
client’s machine. However, since the key is only valid 
for the period during which the client wants to use the 
services of the provider, the risk is confined to this 
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period. Thus, if the shared key is compromised, the 
compromised key will not cause any security problem 
after the given period. 
 
3. Evaluation 

 
Experiments were carried out to evaluate the 

performance of the system. The experiments were 
carried out on a group of PCs connected by a 100Mbps 
Ethernet. Each PC is a HP workstation xw4200 with a 
3.4GHz Pentium 4 processor and 2GB memory. All the 
programs are implemented using C#. The experiments 
assume that the ServiceHub, the operations provider, 
and, the authenticators are connected through a WAN. 
It is assumed that the one-way transmission delay over 
the WAN between a client and the other entities in the 
system is 60ms. It is also assumed that the service 
providers subscribe to the service of their local 
ServiceHub. As the ServiceHub, the authenticators and 
the operations provider are close to each other, the 
transmission delay amongst them is set to 15ms. To 
simulate the transmission delay, a program sleeps for 
60ms or 15ms before it sends out a message. 

In the following discussion, arrival interval means 
the interval between the clients’ requests are sent to the 
system while processing time is the duration to process 
a client’s request by the operations provider. In the 
experiment, it is assumed that the system has sufficient 
processing capacity to handle the legitimate clients’ 
requests. Thus, the arrival interval of the legitimate 
clients’ requests is set equal to the processing time of 
the operations provider. 
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Figure 2  The Overheads of the ServiceHub 

 
The first experiment measures the overhead of the 

system when the operations provider is working in the 
normal mode. The overhead is defined as 

directdirectforward ttt /)( − where directt  is the service 
response time when the client’s request is sent directly 
from the client to the operations provider (i.e. the 
ServiceHub is not used), and, forwardt is the service 
response time when the client’s request is forwarded to 
the operations provider by the ServiceHub. Figure 2 
shows the results of the experiments. It can be seen 

that, as the processing time increases, the overhead of 
the system decreases. This is because, as the 
processing time increases, the forwarding cost for per 
unit of computation decreases. It can be seen that, 
when the processing time is longer than 40ms, the 
overheads is about 15%. Thus, the forwarding 
overhead of the system working in the normal mode is 
relatively low. 

The second experiment measures the effectiveness 
of the system in countering DDoS attack. In this 
experiment, the system consists of one ServiceHub, 
one operations provider, and, two authenticators. The 
operations provider and the authenticators use the same 
ServiceHub. It is assumed that, (a) the operations 
provider and the authenticators use the same 
ServiceHub, (b) each authentication token can only be 
used to validate one service request, and, (c) the 
attacker sends requests to the operations provider at the 
rate of 1000 requests per second. The response time of 
the operations provider when the DDoS defense system 
is used (denoted as with-defense) and the response time 
of the system when the DDoS defense system is not 
used5 (denoted as no-defense) are compared. Figure 3 
shows the results of the experiments. From the figure, 
it can be seen that the responses time of the no-defense 
system increases as the processing time increases. This 
is because the operations provider processes each of 
the received requests (including the ones sent in by the 
attacker). Thus, as the processing time increases, the 
response time also increases. It also can be seen that, as 
the processing time increases, the response time of the 
with-defense system gradually decreases and becomes 
stable at around 1200ms. This is because, in our 
implementation, a thread is created to handle each of 
the received messages. When the arrival interval is 
short, too many messages arrive at the ServiceHub at 
the same time. The operating system of the ServiceHub 
only allows a limited number of threads to be created 
by a process at a time. Thus, sometimes the programs 
have to try multiple times in order to connect to the 
ServiceHub successfully to send the messages. The re-
tries cause extra delay in processing legitimate users 
requests. When the arrival interval increases, the 
number of re-tries decreases. Since (a) the operations 
provider only processes the legitimate users’ requests, 
(b) the legitimate users’ requests arrive at the same rate 
as the operations provider’s processing rate, and, (c) 
the time for exchanging the messages relating to 
authenticating a service request dominates the response 
time, the response time of the with-defense system 
becomes stable when the processing time is greater 
than 60ms. From Figure 3, it can be seen that, 
                                                        
5 That is, the legitimate users and the attacker send requests 
directly to the operations provider. 
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compared to an un-protected system (i.e. the no-
defense system), a system using the DDoS defense 
scheme proposed in this paper can significantly reduce 
the response time when the system is under attack. 
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Figure 3 The Effectiveness of the DDoS Defense System 
 
4. Discussions 
 

Some operations providers might have some 
authentication mechanisms built-in to their services. 
That is, in order to invoke a service, a client needs to 
include some authentication information in the service 
request. The authentication mechanism used in this 
paper is orthogonal to the authentication mechanisms 
built-in to the operations providers’ services. The 
reason for separating the two authentication 
mechanisms is due to flexibility concern. If the two 
authentication mechanisms are the same, then the 
authenticators must know how the operations provider 
implements its authentication mechanism. This means 
an authenticator needs to know the authentication 
mechanisms of all its potential. Obviously, this 
requirement is not practical.  

Although the scheme in this paper focuses on 
CyberSlam attack, the architecture of the scheme can 
be used to cope with XML Denial of Service (XDoS) 
attacks discussed in [8]. In XDoS attacks, the attackers 
crash servers with incorrect data. To counter this kind 
of attacks, the authenticators can be used to validate 
the data being sent to the operations providers. Thus, it 
can be guaranteed that the data conform to the required 
format when they reach the operations providers. 

Normally, an operations provider needs to pay the 
authenticators for using their services. To minimise the 
cost to the operations provider, depending on the scale 
of the attack, the operations provider can 
increase/decrease the number of the authenticators that 
are used to authenticate the incoming requests. The 
authenticators periodically report to the operations 
provider the number of requests being processed. 
According to the reported number, the operations 
provider can decide whether more or fewer 
authenticators will be used. The operations provider 

can start/stop using an authenticator by asking the 
ServiceHub to add/remove the authenticator from the 
operations provider’s authenticators table. 

The scheme in this paper assumes that an attacker 
cannot correlate the incoming and outgoing messages 
of the ServiceHubs. This assumption prevents the 
attackers from discovering the locations of the 
operations providers and the authenticators easily. 
However, this assumption is only reasonable if the 
traffic volume around a ServiceHub is high. To make 
this assumption hold when the traffic volumn around a 
ServiceHub is low, the scheme in [6] can be used. This 
means the ServiceHubs in the system form an 
anonymous overlay system. Encrypted forwarding 
tunnels are used to pass messages in the overlay. Fake 
traffic between the ServiceHubs are added to make it 
difficult to determine where traffic is actually 
originating and going. 

The authentication mechanism can be extended to 
use PKI authentication to authenticate the users. This 
would allow users who have not completed service 
negotiation with the operations provider (i.e. the users 
and the operations provider have not agreed on key 
KEYclient-provider) to be validated when the system is 
working in the under-attack mode. 
 
5. Related Work 
 

Andersen et al. [2] and Keromytis et al. [12] discuss 
using a secure overlay to filter and route the messages 
being sent to a destination. In [2] and [12], the location 
of the destination of a message is unknown to the 
sender of the message. The sender of the message 
sends the message to an overlay. The nodes in the 
overlay verify the validity of the message and forward 
the message toward the destination of the message. The 
scheme in this paper uses similar idea as [2] and [12] in 
terms of hiding the locations of the service providers 
from the public. However, the schemes in [2] and [12] 
need cooperation from the ISP operators to modify the 
DNS entries when an attack occurs. The overlay 
network in [2] and [12] cannot be reconfigured easily 
by the message receivers at run time. In contrast, the 
scheme in this paper does not require the ISP operators 
to be involved when the system switches to the under-
attack mode. Also, the operations providers can 
dynamically decrease or increase the number of 
authenticators in the system. Thus, the system in this 
paper is more flexible and easy to use.  

Padmanabhuni et al. [17] proposed a framework for 
detecting and preventing DoS attacks against web 
services. The scheme focused on validating XML 
messages efficiently. In [17], users need to authenticate 
with the system. Since their scheme handles the 
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validation at one site, unlike our scheme, [17] is not 
suitable for countering the CyberSlam type attacks. 

Some schemes [7, 11, 16] require human attention 
when authenticating the users. For example, [11] 
provides an operating system kernel extension to 
protect Web servers against DDoS attacks. It uses a 
reverse Turing test [23] to authenticate users. Web 
Services are normally accessed through programs. The 
reverse Turing test cannot be carried out by the 
programs easily. Thus, the scheme proposed in [23] 
cannot be directly applied in a SOA environment. 

There are schemes using computational puzzles that 
require the client to carry out heavy computation 
before accessing the services [1, 5, 14]. The 
computation would slow down the attacker. However, 
this kind of scheme is not effective against DDoS 
attacks. This is because the attacker can utilise a large 
number of machines. Thus, it is unlikely that the 
attacker will be short of computing power. 
  
6. Conclusion 
 

This paper proposes a scheme for forming a DDoS 
attacks defense system in a SOA environment. A 
service provider can construct such a system by 
subscribing the services provided by other providers. 
With this system, a service provider does not need to 
rely on the ISP operators to provide solutions for 
countering medium-scale CyberSlam type attacks. 
Since the system is constructed from web services, it 
can be formed and reconfigured easily. The empirical 
data shows that, when there is no DDoS attacks (i.e. 
when the system is working in the normal mode), the 
overheads of the system seems to be acceptable. The 
experiments also show that, when the system is under 
attack, the response time to the legitimate users is 
much shorter than the system that is not protected by 
the scheme proposed in this paper. Thus, the proposed 
system is effective in countering DDoS attacks. 
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