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A COMPUTABLE ℵ0-CATEGORICAL STRUCTURE WHOSE THEORY

COMPUTES TRUE ARITHMETIC

BAKHADYR KHOUSSAINOV AND ANTONIO MONTALBÁN

Abstract. We construct a computable ℵ0-categorical structure whose first order theory is computably

equivalent to the true first order theory of arithmetic.

§1. Introduction. The goal of this paper is to construct a computable ℵ0-
categorical structure whose first order theory is computably equivalent to the
true first order theory of arithmetic. Recall that a structure is computable if its
atomic open diagram, that is the set of all atomic statements and their negations
true in the structure, is a computable set. Computability of an infinite structure
A = (A;Pn00 , P

n1
1 , . . . ) is equivalent to saying that the domain A is either finite or ù

and that there exists an algorithm that given an i ∈ ù and elements x1, . . . , xni of
the domain decides whether Pnii (x1, . . . , xni ) is true. If a structureB is isomorphic
to a computable structure A then A is called a computable presentation of B . We
often identify computable and computably presentable structures. If there exists an
algorithm that decides the full diagram of a structure A then A is called a decid-
able structure. Clearly, decidable structures are computable but the opposite is not
always true. Each computable structure is countable. Therefore, in this paper we
restrict ourselves to countable structures.
One of the major themes in computable model theory investigates computable
models of theories. LetT be a deductively closed consistent theory. IfT is decidable
then the Henkin’s construction can be carried out effectively for T . Therefore, a
complete theoryT has a decidable model if and only if T is decidable. For complete
decidable theoriesT the class of all decidablemodels ofT has beenwell studied start-
ing in the 1970s. See for example the results by Goncharov [GN73, Gon78], Millar
[Mil78, Mil81], Morley [Mor76], Harrington [Har74], and Peretyatkin [Per78].
These results investigate decidability of specific models of T such as prime mod-
els, saturated models, and homogeneous models. Roughly, prime models are the
smallest models since they can be embedded into all models of T , and saturated
models are the largest models since all (countable) models of T can be embedded
into saturated models. Prime and saturated models are unique up to isomorphism,
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and homogeneous models are characterized by the types they realize. Goncharov,
Millar, and Morely found characterizations for these models to be decidable. For
instance, the primemodel ofT is decidable if and only if the set of all principle types
of T is uniformly computable [Har74, GN73]. Similarly, the saturated model of T
is decidable if and only if the set of all types of T is uniformly computable [Mor76].
If T is undecidable then one would like to study the class of computable models
of T . One simple observation is that if a complete theory T has a computable

model then 0(ù) the ù-jump of the computable degree computes T . This bound
is sharp given by the model of arithmetic (ù; 0, S,+,×). However, it is perhaps
quite an ambitious goal to hope for results of general character that say something
reasonable and deep about computable models of T . Therefore, one would like to
study computable models of theories that satisfy certain natural (model-theoretic
and algebraic) conditions.
Ershov proves that all computably enumerable extensions of the theory of trees
have computable models [Ers73]. Lerman and Schmerl prove that all ∆02-extensions
of the theory of linear orders have computablemodels [LS79]. Khisamiev in [Khi98]
studies computablemodels of the theory ofAbelian groups. A series of results inves-
tigate computable models of ℵ1-categorical theories [GHL+03, KLLS07, KNS97,
Kud80]. For example, all models of a trivial strongly minimal theory with a com-
putable model are decidable in 0′′ [GHL+03]. The current paper contributes to
this line of research by considering computable models of ℵ0-categorical theories.
Below we give a brief background to known results about computable models of
ℵ0-categorical theories.
A complete theoryT is ℵ0-categorical if all countable models ofT are isomorphic
to each other. A structure A is ℵ0-categorical if its theory is ℵ0-categorical. It
is well-known that T is ℵ0-categorical if and only if for each n the number of
complete n-types of T is finite (e.g., see [Hod93]). If T is ℵ0-categorical then T is
decidable if and only if all of its models (and hence exactly one model of T ) are
decidable. Schmerl in [Sch78] proves that for every computably enumerable degree
X there exists a decidable ℵ0-categorical theory T such that the type function of
T is Turing equivalent to X . In [LS79] Lerman and Schmerl show that if T is an
arithmetical ℵ0-categorical theory such that the set of all ∃n+2-sentences of T is a
Σ0n+1-set for each n < ù, then T has a computable model. Knight extends this
result in [Kni94] to include non-arithmetical ℵ0-categorical theories. These results,
however, do not provide examples of computable ℵ0-categorical structures of high
arithmetical complexity. In [GK04] Khoussainov and Goncharov, for every n ≥ 0
build ℵ0-categorical computable structures whose theories are equivalent to 0(n),
the n-jump of the computable degree. It has been a long standing open question
whether there exists a computable ℵ0-categorical structure whose first order theory
is not arithmetical. In this paper we solve this problem by proving the following
theorem:

Theorem 1.1. There exists a computable ℵ0-categorical structure whose first order
theory is 1-equivalent to true first order arithmetic Th(ù; 0, S,+,×).

The rest of this paper is devoted to proving this theorem. We would also like to
thank the referees for useful comments.
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§2. General idea. We start by roughly describing the idea of the proof. Suppose
we want to code one bit of Σn information, say given by a Σn sentence ϕ of arith-
metic. We will define two n-graphs GΣ,n andGΠ,n which are ℵ0-categorical and not
elementary equivalent. By an n-graph we mean a structure (V,E) where E is an
n-ary relation on V such that, for all tuples (x1, . . . , xn), if (x1, . . . , xn) ∈ E then
all x1, . . . , xn are pairwise distinct. Furthermore, for an n-graph G = (V,E) we
often write G(x̄) instead of E(x̄). Later, we will define a computable procedure
that, given a Σn-sentence ϕ of arithmetic, produces a computable n-graph Gϕ such
that

Gϕ ∼=

{

GΣ,n if ϕ,

GΠ,n if ¬ϕ.

We define the n-graphsGΣ,n andGΠ,n inductively. For n = 1, 2, 3 these graphs are
defined as follows. The 1-graphGΠ,1 is a unary relation that holds of every element,
and GΣ,1 is a unary relation that holds on an infinite and co-infinite set of elements.
For example, GΣ,1 can be defined by flipping a coin randomly. The 2-graph GΠ,2

is the usual random directed graph. In this random graph for each pair (a1, a2)
we flip a coin to decide whether GΠ,2(a1, a2) holds. The directed graph GΣ,2 has
two types of elements. The first type of elements are connected (via the edge of
the graph) to all other elements of the graph. The second type of elements are
connected to an infinite co-infinite set of elements in a random way. The same idea
is applied in defining the 3-graphs GΠ,3 and GΣ,3. In GΠ,3, for every element b we
have that the graph obtained by Gb(a1, a2) = G

Π,3(b, a1, a2) is isomorphic to G
Σ,2.

Moreover, these 2-graphs Gb for the different b’s are, in a certain sense, randomly
independent. In the 3-graph GΣ,3, there is an infinite set of elements b such that
Gb is isomorphic to G

Σ,2 and there is an infinite set of elements b such that Gb is
isomorphic to GΠ,2. Precise definitions of n-graphs GΠ,n and GΣ,n for n > 3 are
given in Section 4.
In order to ensure that these graphs are ℵ0-categorical, we will define them inside
of a random structure that we know is ℵ0-categorical (as we will specify later). To
be able to decode the bit of information ϕ we will have that the sentence

øn ≡ (∃x1)¬(∃x2 6= x1)¬ . . .¬(∃xn 6= x1, . . . , xn−1)¬G(x1, . . . , xn).

holds in GΣ,n but not in GΠ,n. Decoding information will work in a nice way. Let
our sentence ϕ be ∃x1¬∃x2¬ . . .¬∃xn¬R(x1, . . . , xn), a Σ0n-sentence of arithmetic,
written in a certain standard form that will be explained later. Let q be a computable
‘random’ projection from n-tuples to n-tuples that we will also define later, and let
Gϕ be the computable n-graph defined by Gϕ(x̄) = R(q(x̄)). The surprising fact
is that the isomorphism type of the n-graph (ù,Gϕ) does not depend on what ϕ is,
but only on whether ϕ holds. Moreover, Gϕ is isomorphic to either GΣ,n or GΠ,n

depending on whether ϕ holds. Moreover, the connection between ϕ and øn will
be such that ϕ is true in the arithmetic if and only if øn is true in Gϕ .
Suppose now we want to code another bit of Σn information. We will now
consider the graphs GΣ,n(x1, . . . , xn) or GΠ,n(x1, . . . , xn) again, but now, we will
think of x1 as a member of ù

n+1. The definitions of these new graphs will be
random enough, that all the m-tuples of elements for m ≤ n will have the same
m-type, as they will be part of (n+1)-tuples satisfying all the possible (n+1)-types.
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Furthermore, these new graphs will be randomly independent from the n-graphs
defined previously, and hence will not add any new m-type for m ≤ n. This will
allow as to define infinitely many such graphs keeping the number ofm-types finite,
and hence preserving ℵ0-categoricity.

§3. Random string maps. We want to work with finite strings all whose entries
are different. So we need to develop a bit of notation to work with these objects.
Recall that by an n-graph we mean a structure (V,E) where E is an n-ary relation
on V such that, for all tuples (x1, . . . , xn), if (x1, . . . , xn) ∈ E then all x1, . . . , xn are
pairwise distinct.
We will use the following notation. We let V 〈n〉 be the set of n-tuples from V all
whose entries are different. So, an n-graph is nothing more than a subset r ⊆ V 〈n〉.
We also set

V≤〈n〉 =
n

⋃

i=1

V 〈i〉 and V <〈ù〉 =
ù
⋃

i=1

V 〈i〉.

We call any pair of the form (V,p) where p : V <〈ù〉 → ù a string ù-map. Also, we
call pairs (V, r) where r : V <〈ù〉 → {0, 1} string 2-map.
We identify each string 2-map (V, r) with the relational structure with infinitely
many predicates (V ;P1, P2, . . . ), where Pn(x1, . . . , xn) if and only if
r(x1, . . . , xn) = 1. Similarly, we identify each stringù-map (V,p) with the following
structure (V ;Pin)i,n∈ù , where P

i
n(x1, . . . , xn) if and only if p(x1, . . . , xn) = i .

Now we introduce the notions of random string maps and random string sets.
They are just the Fraı̈ssé limits of the class of finite sting maps and of the class of
finite string sets. Recall that a structure is ultra-homogeneous if every pair of tuples
satisfying the same quantifier free types are automorphic.

Theorem 3.1. Let α be either 2 or ù. Let (V, r) be a string α-map. The following
properties are equivalent:

(1) (V, r) is ultra-homogeneous and every finite string α-map is isomorphic to a
substructure of (V, r).

(2) For each finite set V0 ⊆ V and function r0 : (V0 ∪ x)<〈ù〉 → α that extends

r ↾ V
<〈ù〉
0 there exists a ∈ V \V0 such that for every ó in the set (V0∪{x})<〈ù〉

we have

r0(ó) = r(óx 7→a),

where r(óx 7→a) is obtained by replacing x with a in the domain of r.

Furthermore, there is a structure unique up to isomorphism satisfying any of these
properties. For α = 2, this structure is ℵ0-categorical.

Proof. The proof of this theorem is standard. For instance, it is done in a more
general form in [Hod93, 6.1.2]. ⊣

Wesingle out the structures that are specified in the theoremabove in the following
definition.

Definition 3.2. We call any structure that satisfies any of the conditions of the
theorem the random string α-map.
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The next lemma says that each random string α-map is a computable structure
unique up to computable isomorphism.

Lemma 3.3. Let α be either 2 or ù. There exists a computable random string
α-map. Moreover, any two computable random string α-maps are isomorphic via a
computable map.

Proof. For the first part, one builds the α-map r by stages, finitely much at a
time, satisfying the requirements for (2) of the theorem above stage by stage:
Let V = ù. At stage s build rs : {0, . . . , s}<〈ù〉 → α extending rs−1. Enumerate
all the pairs (pi , Vi), where Vi is a finite subset of ù and pi : (Vi ∪ x)<〈ù〉 → α. Do
it in a way that Vi ⊆ {0, . . . , i − 1}. At stage s , if ps ⊆ rs−1, define rs extending
rs−1 so that s ∈ V is the witness for x in (2) of the theorem above applied to
(ps , Vs). Define r to be the union of all the rs . It is not hard to check that r is as
wanted.
The second part is a typical back and forth argument that can be carried out
effectively: Suppose p, r : ù<〈ù〉 → α are random string α-maps. Define a permu-
tation f of ù by stages. At stage s , we define a finite one-to-one partial function
fs : ù → ù such that r ◦ fs coincides with p on the domain of fs . For s = 2e
we define f2e so that e is in the domain of f2e . If it is already in, we do not do
anything. Otherwise define f2e(e) extending f2e−1 using that r satisfies (2) of the
theorem above to make sure that r ◦ fs coincides with p on the domain of fs .
For s = 2e + 1 we define f2e+1 so that e is in the image of f2e in an analogous
way. ⊣

We will see now how to use random string ù-maps to transform subsets of ù<ù

into random string 2-maps. We need a couple definitions.

Definition 3.4. For a string ù-map p, we set p̄ : V <〈ù〉 → ù<ù as follows:

p̄(a1a2 . . . ak) = (p(a1), p(a1a2), . . . , p(a1a2 . . . ak)).

We may abuse notation and write p̄(a1a2 . . . ak) as p(a1)p(a1a2) . . . p(a1a2 . . . ak).

By Lemma 3.3, if (V,p) is a randomù-string map then we can assume that (V,p)
is a computable structure, and hence we identify V withù. With this identification,
the following observation is easy to check.

Observation 3.5. If (V,p) is a random string ù-map then p̄ satisfies the following
properties:

(1) For every ó, |p̄(ó)| = |ó|;
(2) If ó ⊆ ô, then p̄(ó) ⊆ p̄(ô);
(3) Given ó0, ó1 ∈ V <〈ù〉 and ô1 ∈ ù<ù such that n = |ó0|+ |ô1| = |ó0|+1+ |ó1|,
and ó0 and ó1 do not share any entry, there exist infinitely many a ∈ V such
that p̄(ó0aó1) = p̄(ó0)ô1.

(4) Given {(ó i0, ó
i
1, ô
i
1) : i = 1, . . . , s} such that ó

i
0 and ó

i
1 do not share any entry

and n = |ó i0|+ |ôi1| = |ó i0|+ 1 + |ó i1| for all i = 1, . . . , s , there exist infinitely
many a ∈ V such that for each i = 1, . . . , s we have p̄(ó i0aó

i
1) = p̄(ó

i
0)ô
i
1.

Here we naturally assume the compatibility condition that if ó i0 = ó
j
0 , then

ôi and ôj have to start with the same value.

The last two parts are just applications of condition (2) of Theorem 3.1.
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Definition 3.6. A map q : V <ù → {0, 1} is diverse if for every ó ∈ V <ù there
exist k0 and k1 such that q(ók0) = 0 and q(ók1) = 1.

Diverse maps are not necessarily random string 2-maps. However, for a diverse
map q and random stringù-map p, the composition q ◦ p̄ is a random string 2-map.

Lemma 3.7. If (V,p) is a random string ù-map and q is a diverse map, then q ◦ p̄
is a random string 2-map.

Proof. Let r = q ◦ p̄. We show that Condition (2) of Theorem 3.1 is satisfied.
Let V0 ⊂ ù be a finite set and let r0 : (V0 ∪x)<〈ù〉 → {0, 1} be a function extending

r ↾ V
<〈ù〉
0 . We need to show that there exists an element a ∈ V \ V0 such that for

every ó ∈ (V0 ∪ x)<〈ù〉 we have

r0(ó) = r(óx 7→a).

For each ó ∈ (V0 ∪ {x})<〈ù〉, write ó as ó0xó1. Since q is diverse, for the given ó
there exists ôó of length |ó1| + 1 such that q(p(ó0)ôó) = r0(ó). Note that the set
(V0 ∪ {x})<〈ù〉 is finite. Now, Observation 3.5, we have that there exist infinitely
many a such that p(óx 7→a) = p(ó0)ôó . Hence, Condition (2) of Theorem 3.1 is
satisfied. ⊣

§4. The coding structures. In this section we turn our interest to defining the
n-graphs GΣ,n and GΠ,n as suggested in Section 2. Our definition will proceed by
induction using the random string 2-map.

Definition 4.1. Let (ù, r) be the random string 2-map. For each m ≤ n with
1 ≤ m, and each b̄ ∈ ù〈n−m〉 we define two m-graphs GΣ,m

b̄
and GΠ,m

b̄
: ù〈m〉 →

{0, 1} inductively as follows. When m = 1, |b̄| = n − 1, and |a| = 1, we let

GΣ,1
b̄
(a) = r(b̄a) and GΠ,1

b̄
(a) = 1.

Let

GΣ,m
b̄
(a1, . . . , am) =

{

GΣ,m−1
b̄a1

(a2, . . . , am) if r(b̄a1) = 1,

GΠ,m−1
b̄a1

(a2, . . . , am) if r(b̄a1) = 0,

GΠ,m
b̄
(a1, . . . , am) = G

Σ,m−1

b̄a1
(a2, . . . , am).

We use standard abuse of notation and we identify subsets R ⊆ ù〈m〉, with
functions R : ù〈m〉 → {0, 1}. Also, given an object R of this kind, we use the same
letter R to name the graph (ù,R).
The following lemma shows that the isomorphism types of the graphs GΣ,n

b̄
and

GΠ,n
b̄
do not depend on the parameter b̄.

Lemma 4.2. For every b̄ ∈ ù〈n−m〉, the graphs (ù \ b̄, GΣ,n
b̄
) and (ù \ b̄, GΠ,n

b̄
)

are isomorphic to (ù,GΣ,n〈〉 ) and (ù,G
Π,n
〈〉 ) respectively, where 〈〉 is the empty tuple.

Also, up to isomorphism, the graphs (ù,GΣ,n
b̄
) and (ù,GΠ,n

b̄
) do not depend on the

presentation of r.

Proof. LetV = ù \ b̄; the domain ofGΣ,n
b̄
) andGΠ,n

b̄
. Define p : V 〈<ù〉 → {0, 1}

by p(ā) = r(b̄ā). It is not hard to see that (V,p) is also a random string 2-map,



734 BAKHADYR KHOUSSAINOV AND ANTONIO MONTALBÁN

and hence isomorphic to (ù, r). This isomorphism is also an isomorphism between
the structures (V,GΣ,n

b̄
) and (ù,GΣ,n〈〉 ), and between (V,G

Π,n
b̄
) and (ù,GΠ,n〈〉 ). ⊣

However, the particular presentations of GΣ,n
b̄
and GΠ,n

b̄
do depend on the par-

ticular presentation of r. Note that the n-graphs GΣ,n = GΣ,n〈〉 and G
Π,n = GΠ,n〈〉

obtained for the cases when n = 1, 2, 3 are exactly as in Section 2. We now prove
the following theorem.

Theorem 4.3. The n-graphsGΣ,n and GΠ,n have the following properties:

(1) The n-graphsGΣ,n and GΠ,n are ℵ0-categorical.
(2) There is a ∃n sentence øn in the language of n-graphs which is true in GΣ,n but
false in GΠ,n.

(3) There is a uniform computable procedure that given a Σ0n sentence ϕ in the
language of arithmetic, builds an n graphGϕ such that

Gϕ ∼=

{

GΣ,n if ϕ holds,

GΠ,n if ¬ϕ holds.

(For a formula ϕ of arithmetic, when we say “ϕ holds”, we always mean in true
arithmetic.)

Proof. For Part 1 note that both relations GΣ,n and GΠ,n are definable in the
structure (ù, r) which is ℵ0-categorical. This implies that (ù,GΣ,n) and (ù,GΠ,n)
are also ℵ0-categorical because the number of k-types in each of these structures
is at most the number of k-types in (ù, r). Then we use the fact that a structure
is ℵ0-categorical if and only if for each k, the number of k-types is finite [Hod93,
Theorem 6.3.1(e)].
For Part 2, the sentence distinguishing GΣ,n and GΠ,n is the following:

øn ≡ (∃x1)¬(∃x2 6= x1)¬ . . .¬(∃xn 6= x1, . . . , xn−1)¬G(x1, . . . , xn).

When n = 1 the sentence says that there is an element outside of the unary relationG .
This is satisfied byGΣ,1 and falsified byGΠ,1. When n = 2, the statements says there
is an element that is connected to all other elements of the structure. This is satisfied
by GΣ,2 and falsified by GΠ,2. The rest is proved by induction on n. Suppose R
is isomorphic to either GΣ,n or GΠ,n. Then we have that R ∼= GΣ,n if and only if
there exists x such that the graph Rx defined by Rx(ā) = R(x, ā) is isomorphic to
GΠ,n−1. So, R ∼= GΣ,n if and only if there exists x such that Rx does not satisfy
øn−1, which is equivalent to saying that R satisfies øn.
The last part of the theorem can be proved in several ways. One way of proving
this would be to show that GΣ,n is n-back-and-forth below GΠ,n and that these
structures are n-friendly, and then use Ash and Knight’s theorem [AK00] (see
Thm 18.6). This would require some combinatorial work and notation needed to
apply Ash and Knight’s theorem. Instead, we give a direct construction of Gϕ

which is interesting in its own right.
Consider a Σ0n formula ϕ. Write ϕ as ∃x1¬∃x2¬ . . .¬∃xn¬R

ϕ(x1, . . . , xn), where
Rϕ is quantifier free.

Definition 4.4. Let ϕi (x1, . . . , xn−i ) be ∃xn−i+1¬ . . .¬∃xn¬R
ϕ(x1, . . . , xn). We

say that ϕ is in semi-diverse form if for each i and each ā of length n − i − 1 there
exists some b such that ϕi(ā, b) holds.
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Thus, for the Σ0n formula ϕ, the definition above states that ϕi (x1, . . . , xn−i) is a
Σ0i sub-formula of ϕ obtained by removing the first (n − i) quantifiers, and hence
it has (n − i) free variables. Furthermore, we have that ϕ ≡ ϕn, ϕi+1 ≡ ∃xn−i¬ϕi
and ϕ0 ≡ R(x1, . . . , xn).

Lemma 4.5. Every Σn formula ϕ is equivalent to a formula ÷ in semi-diverse form.
Moreover, given ϕ, ÷ can be found computably.

Proof. We define ÷ by steps starting with i = n and going down to i = 0. We
start defining ÷n = ϕ. At step i , we we define a Σi formula ÷i , with free variables
x1, . . . , xn−i−1, so that ÷i+1(x1, . . . , xn−i−1) is equivalent to ∃xn−i¬÷i(x1, . . . , xn−i)
and also such that for each ā ∈ ùn−i−1, there exists some b ∈ ù such that ÷i (ā, b)
holds. To define ÷i start by writing ÷i+1 as ∃xn−i¬Θ(x1, . . . , xn−i), where Θ is Σi .
Let

÷i (x1, . . . , xn−i) ≡ (xn−i = 0) ∨
(

xn−i > 0 ∧Θ(x1, . . . , xn−i − 1)) .

So we have that for each ā of length n − i − 1, ÷i(ā, 0) holds, and that

∃xn−i¬Θ(x1, . . . , xn−i)

if and only if

∃xn−i¬÷(x1, . . . , xn−i).

Finally, let R÷ = ÷0 and ÷ = ∃x1¬∃x2¬ . . .¬∃xn¬R
ϕ(x1, . . . , xn). It is not hard

to show that each ÷i is equivalent to ∃xn−i+1¬ . . .¬∃xn¬R÷(x1, . . . , xn), and that
in particular that ϕ is equivalent to ÷. ⊣

An intuition for why we need formulas in semi-diverse form is the following. In
the graphs GΣ,m, there are two types of elements, the ones for which the rest of
the graph is GΠ,(m−1), and the ones for which the rest of the graph is GΣ,(m−1).
Therefore we would like similar things to happen with the formulas ϕi . Namely,
if this existential formula is true, then we want it to have some witnesses, but at
the same time we also want to have some elements which are not witnesses. This
intuition is made precise in the reasoning below that constitutes the proof of Part (3)
of the theorem.

Definition 4.6. Let p be a random string ù-map. Given a Σn formula ϕ, written
in semi-diverse form as ∃x1¬∃x2¬ . . .¬∃xn¬Rϕ(x1, . . . , xn), we define

Gϕ = Rϕ ◦ p̄,

where p̄ is defined in Definition 3.4.

Clearly Gϕ is a computable n-graph and the definition is computably uniform
on ϕ by Lemma 4.5.
It is not hard to prove that Gϕ |= øn if and only if ϕ is a true sentence of
arithmetic. To prove this one uses an induction on i to show that the statement
ϕi (p̄(b̄)) is true if and only if

Gϕ |= (∃xn−i+1 6= b1, . . . , bn−i)¬ . . .¬(∃xn 6= b1, . . . , bn−i , xn−i+1, . . . , xn−1)

¬G(b̄, xn−i+1, . . . , xn).
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Indeed, when i = 0 then the statement is simply the definition of Gϕ . For the
inductive case one uses the fact that p is random and hence it is onto on every
coordinate. What is left to prove is that Gϕ satisfies Part (3) of the theorem.
Let Qϕ : ù<ù → {0, 1} be defined as follows. For a non-empty tuple b̄a ∈ ù≤n

with |b̄a| = i , let

Qϕ(b̄a) =

{

ϕi(b̄a) whenever a 6= 0 or ∃x¬ϕi (b̄x),

0 if a = 0 and ∀xϕi(b̄x).

For b̄a ∈ ù>n , define Qϕ(b̄a) in any way so that Qϕ is diverse. Also, note that this
makes Qϕ diverse because ϕ is chosen to be in a semi-diverse form. Now we apply
Lemma 3.7, and have the following statement:

Lemma 4.7. The mapping Qϕ ◦ p is a random string 2-map.

Let r = Q ◦ p and consider GΣ,m
b̄
and GΠ,m

b̄
as in Definition 4.1.

The next lemma establishes the connection between GΣ,m
b̄
, GΠ,m
b̄
, and Gϕ . For

the lemma, we need another bit of notation. For every b̄ of length n − i and ā of
length i , we set Gϕ

b̄
(ā) = Gϕ(b̄ā).

Lemma 4.8. For every b̄ of length n − i and ā of length i , we have:

Gϕ
b̄
(ā) =

{

GΣ,i
b̄
(ā) if ϕi(p̄(b̄)),

GΠ,i
b̄
(ā) if ¬ϕi(p̄(b̄)).

So, in particular when i = n, Part (3) of the Theorem is satisfied.

The proof is by induction on i . Suppose i = 1. If ϕi(p̄(b̄)) ≡ ∃xn¬R(p̄(b̄)xn)
holds, then Gϕ

b̄
(a) = r(b̄a) because Qϕ(b̄a) = R(b̄a). Therefore, Gϕ

b̄
= GΣ,1

b̄
.

Otherwise, if ¬ϕi (p̄(b̄)) ≡ ∀xnR(p̄(b̄)xn) holds, then Gb̄ is the whole universe and
hence it is isomorphic to GΠ,1. For the induction step we proceed as follows. If
ϕi+1(p̄(b̄)) ≡ ∃xn−i¬ϕi (p̄(b̄)xn−i) holds, then for every a, Qϕ(b̄a) = 1 if and only
if ϕi (b̄a), and hence

Gϕ
b̄
(aā) = Gϕ

b̄a
(ā)

=

{

GΣ,i
b̄a
(ā) if ϕi(p̄(b̄a)),

GΠ,i
b̄a
(ā) if ¬ϕi (p̄(b̄a))

by induction hypothesis

=

{

GΣ,i
b̄a
(ā) if r(b̄a) = 1,

GΠ,i
b̄a
(ā) if r(b̄a) = 0

because Qϕ(b̄a) = ϕi(b̄a)

= GΣ,i+1
b̄
(aā) by definition of GΣ,i+1

b̄
.

When ϕi+1(p̄(b̄)) ≡ ∃xn−i¬ϕi (p̄(b̄)xn−i) does not hold, we have that for every a,
ϕi (p̄(b̄a)) holds, and hence
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Gb̄(aā) = Gb̄a(ā)

=

{

GΣ,i
b̄a
(ā) if ϕi(p̄(b̄a)),

GΠ,i
b̄a
(ā) if ¬ϕi (p̄(b̄a))

by induction hypothesis

= GΣ,i
b̄a
(ā) because ∀aϕi(p̄(b̄a))

= GΠ,i+1
b̄

(aā) by definition of GΠ,i+1
b̄

.

This concludes the proof of the lemma, and hence of the theorem. ⊣

§5. Codingmany bits. Nowwewant to encode infinitelymany bits of information
into our structures, each bit being a Σn-sentence of the arithmetic for various n. So
we will use infinitely many graphs. Since we do not want the different graphs to have
any interaction between each other we will use a variation of the graphs defined in
the previous section.

Definition 5.1. Let (ù, r) be a random string 2-map and l, n,m ∈ ù with 1 ≤
m ≤ n. For each b̄ ∈ ùl+n−m we define twom-graphs GΣ,l,m

b̄
and GΠ,l,m

b̄
inductively

as follows. When m = 1, |b̄| = l + n − 1, and |ā| = 1, set:

GΣ,l,1
b̄
(a) = r(b̄a) and GΠ,l,1

b̄
(a) = 1.

When 1 < m < n, |b̄| = l + n −m, and |ā| = m, we let

GΣ,l,m
b̄
(a1, . . . , am) =

{

GΣ,l,m−1
b̄a1

(a2, . . . , am) if r(b̄a1) = 1,

GΠ,l,m−1
b̄a1

(a2, . . . , am) if r(b̄a1) = 0,

GΠ,l,m
b̄
(a1, . . . , am) = G

Σ,l,m−1

b̄a1
(a2, . . . , am).

Finally, we define (l + n)-graphs:

GΣ,l,n(a1, . . . , al+n) =

{

GΣ,l,n−1a1 ...al+1
(al+2, . . . , al+n) if r(a1 . . . al+1) = 1,

GΠ,l,n−1a1 ...al+1
(al+2, . . . , al+n) if r(a1 . . . al+1) = 0,

GΠ,l,n(a1, . . . , al+n) = G
Σ,l,n−1
a1 ...al+1

(al+2, . . . , al+n).

Note that the definition ofGΣ,l,n(a1, . . . , al+n) is essentially the same as the one for
GΣ,n(a1, . . . , an) if we treat the first l + 1 coordinates as a single one. In particular,
the structure GΣ,0,n(a1, . . . , an) is the same as GΣ,n(a1, . . . , an). We now outline the
proof of the following theorem that simply extends Theorem 4.3.

Theorem 5.2. The (l+n)-graphsGΣ,l,n(a1, . . . , al+n) andG
Π,l,n(a1, . . . , al+n) have

the following properties:

(1) The structures (ù,GΣ,l,n) and (ù,GΠ,l,n) are ℵ0-categorical.
(2) There is a ∃n formula øl,n in the language of (l + n)-graphs which is true in
(ù,GΣ,l,n) but false in (ù,GΠ,l,n). These formulas are:

øl,n ≡ (∃x1, . . . , xl+1 all different)

¬(∃xl+2 6= x1, . . . , xl+1)¬ . . .¬(∃xl+n 6= x1, . . . , xn+l−1)¬G(x1, . . . , xn+l ).
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(3) There is a uniform computable procedure that given a Σ0n sentence ϕ in the
language of arithmetic, builds an n graphGϕ,l such that

Gϕ,l ∼=

{

GΣ,l,n if ϕ holds,

GΠ,l,n if ¬ϕ holds.

Proof. The first two parts of the theorem are proved almost in exactly the same
way as the first two parts of Theorem 4.3 in the previous section.
For Part (3) we need to define Gϕ,l with a slight modification of Gϕ . Suppose ϕ
is written in semi-diverse form as ∃x1¬∃x2¬ . . .¬∃xn¬Rϕ(x1, . . . , xn). Let

Rϕ,l (x1, . . . , xl+n) = R
ϕ(〈x1, . . . , xl+1〉, xl+2, . . . , xl+n)

where 〈·, . . . , ·〉 is a computable bijection ùl+1 → ù. We now define:

Gϕ,l = Rϕ,l ◦ p̄.

To show thatGϕ,l is the desired structure that satisfies Part (3) of the theorem we
proceed as follows. First, we consider the mapping Qϕ as in the previous section.
Second, we modify Qϕ in the following way. For c̄ ∈ ù<ù with l < |c̄| ≤ l + n,
write c̄ as b̄ā where b̄ ∈ ùl+1, and ā ∈ ù<n and define Qϕ,l(b̄ā) = Qϕ(〈b̄〉ā). For
c̄ ∈ ù<ù with either l ≥ |c̄| or l + n > |c̄| define Qϕ,l in any way that makes it
diverse.
As in the previous section the mapQ ◦ p̄ is a random string 2-map. An analogous
version of Lemma 4.8 is now proved in a similar matter. ⊣

§6. Putting the n-graphs together. This is the last step of the proof of our main
theorem. The main idea is to put the n-graphs built in the previous sections into
one computable structure which is defined using the random 2-map.
Let S ⊆ ù be a set which is one-to-one equivalent with 0(ù). Suppose that we
have a list of sentences of the arithmetic , where each ϕi is Σi -sentence, such that
for all i ≥ 1 we have i ∈ S if and only if ϕi holds. For instance, let S = 0

(ù) and
for i = 〈m, n〉, let ϕi be the sentence Σm-sentence “n ∈ 0(om)”, noticing that since
m ≤ i , ϕi is Σi too.

Definition 6.1. Let (ù, r) be a random string 2-map. Define the following struc-
ture

AS = (ù,H1,H2 . . . ),

where for each i ,Hi is the (1 + 2 + · · ·+ i)-ary relation

Hi =

{

GΣ,li ,i if i ∈ S,

GΠ,li ,i if i /∈ S.

where li = 1 + 2 + · · ·+ (i − 1).

Theorem 6.2. The structureAS satisfies the following properties:

(1) The structure is ℵ0-categorical.
(2) S is one-to-one reducible to the theory of the structure.
(3) The structure is computable.
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The first part of the lemma follows from the fact that all the relations in AS
are being defined in the structure (ù, r) which is ℵ0-categorical by Theorem 3.1.
Therefore, for each n, the number of n-types is finite, and henceAS is ℵ0-categorical
by [Hod93, Theorem 6.3.1(e)].
The second part follows from the use of the formulas øl,n defined in the previous
section (Theorem 5.2). Indeed, one can see that S is one-to-one reducible to the
first order theory of the structure AS since i ∈ S if and only if (ù,Hi ) |= øli ,i .
For the last part, one notices that given i, l the structuresGϕi ,l can be constructed
effectively. Therefore the structure

(ù,Gϕ1 ,0, Gϕ2,1, Gϕ3 ,3, Gϕ4,6, . . . )

must be computable. This structure is isomorphic to AS . More explicitly, the
structure AS can be constructed as follows. Define Q : ù<ù → {0, 1} by letting
Q(c̄) = Qϕi ,li (c̄) where i is such that li < |c̄| ≤ li + i . (Here is where we use
li = 1 + 2 + · · · + (i − 1), as otherwise these definitions won’t be independent
of i .) The mapping Q is diverse. Hence, the mapping r = Q ◦ p̄ is a random string
2-map. Consider the graphsGΣ,li ,i andGΠ,li ,i using this r. The structureAS is then
(ù,Gϕ1 ,0, Gϕ2,1, Gϕ3 ,3, Gϕ4,6, . . . ).
This finishes the proof of Theorem 1.1.
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