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APPLICATIONS OF KOLMOGOROV COMPLEXITY

TO COMPUTABLE MODEL THEORY

BAKHADYR KHOUSSAINOV, PAVEL SEMUKHIN, AND FRANK STEPHAN

Abstract. In this paper we answer the following well-known open question in computable model theory.

Does there exist a computable not ℵ0-categorical saturated structure with a unique computable isomor-

phism type? Our answer is affirmative and uses a construction based on Kolmogorov complexity. With

a variation of this construction, we also provide an example of an ℵ1-categorical but not ℵ0-categorical

saturated Σ01-structure with a unique computable isomorphism type. In addition, using the construction

we give an example of an ℵ1-categorical but not ℵ0-categorical theory whose only non-computable model

is the prime one.

§1. Introduction. Ourmain interest in this paper concerns the existence of a com-
putable not ℵ0-categorical saturated structure with a unique computable isomor-
phism type. Structures with exactly one computable isomorphism type are called
computably categorical. All the known standard examples of computably categori-
cal structures are usually prime models (of their own theories) or become prime in
expansions by finitely many constants. For example, finitely generated computable
algebras, the rational numbers under the natural ordering, finite dimensional vector
spaces over computable fields and the ring of integers are computably categorical.
There are also pathological examples of computably categorical structures that fail
to satisfy certain natural properties (for example, existence of Scott families) ex-
hibited by most computably categorical structures [2, 7, 8]. One notes that these
specifically constructed computably categorical structures fail to be prime models
in expansions by finitely many constants. In fact, the theories of these specifically
constructed structures do not have saturatedmodels due to the fact that the theories
have uncountably many types.
We need some of the main definitions from computable model theory. The
languages and structures we consider are all countable unless we tell otherwise. We
also assume thatwe are working in a recursive language, that is, that the arity of each
relation and function symbol in the language is uniformly recursive. A structure
is said to be computable if it has universe ù and the open diagram of the structure
forms a recursive set of formulas. A structure is computably presentable if it has
a computable isomorphic copy; such a copy is called a computable presentation of
the structure.
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Two isomorphic computable structures are called computably isomorphic if there
is a computable isomorphism between these two structures. A computable struc-
ture is said to be computably categorical if any two computable presentations of
the structure are computably isomorphic. As mentioned above, finitely generated
computable algebras, the rational numbers under the natural ordering, finite di-
mensional vector spaces over computable fields are computably categorical. In this
paper we are mostly interested in computably categorical structures.
The concepts of computable structure and computable categoricity can naturally
be extended as follows. A structure is said to be a Σ01-structure if it has universeù and
theopenpositive diagramof the structure, that is the set of all open formulaswithout
negations true in the structure, forms a recursively enumerable set of formulas.
A structure is Σ01-presentable if it is isomorphic to a Σ

0
1-structure. We stress that

in the definition of a Σ01-structure it is explicit that the domain of the structure
is ù. A Σ01-structure is computably categorical if any two Σ

0
1-presentations of the

structure are computably isomorphic. Clearly, every computable structure is also
a Σ01-structure. Therefore if a computable structure is computably categorical when
one considers Σ01-presentations, then all Σ

0
1-presentations of the structure must be

computable. Similarly, if a non-computable Σ01-structure is computably categorical
then the structure does not have a computable presentation. We note, however, that
we deal with computably categorical Σ01-structures in Section 4 only.
We briefly recall some basic notions and facts from model theory. Let T be
a complete theory. A countable model of T is said to be prime if every tuple of
the model realizes a principal type. It is well-known that every prime model is
elementarily embedded into all models of T . A countable model of T is said to be
saturated if the model realizes all the types of the theory in all possible expansions
of T by finitely many constants. It is well known that T has a saturated model
if and only if T has at most countably many countable models. Moreover, every
other countable model of T is elementarily embedded into the saturatedmodel (see
Hodges’ or Marker’s textbooks on model theory [4, 5, 10]). An important model-
theoretic property of prime and saturated models of a given theory T , in case they
exist, is that they are unique up to isomorphisms. We address this uniqueness
property of the saturated models from a computability-theoretic point. Finally, we
call a structure saturated (prime) if it is the saturated model (the prime model) of
its own theory.
Above we have already provided examples of computably categorical prime mod-
els. It is also not hard to have natural examples of prime but not computably cate-
gorical models. For instance, the natural numbers with their order is the prime and
non-computably categoricalmodel. However, in spite the fact that saturatedmodels
(of a given theory) form one isomorphism type, all the known computable satu-
rated models are not computably categorical. Roughly, the main reason for them
not being computably categorical hides in using the following model-theoretic fact.
There exists an infinite sequence p(x0) ⊂ p(x0, x1) ⊂ · · · ⊂ p(x0, x1, . . . , xn) ⊂ · · ·
of non-principal types such that each type in the sequence is realized by infinitely
many elements of the model. A simple example here is the theory of vector spaces
over the field of rational numbers. The non-saturatedmodels of the theory are all fi-
nite dimensional vector spaces. They are all computably categorical. The saturated
model is the infinite dimensional vector space. The saturated model is, however,
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not computably categorical. This is because there are two computable copies of the
infinite dimensional vector space such that in one copy the dependency problem is
computable and in the other is not. Similarly, all the non-saturated models of the
theory of one successor are computably categorical while the saturatedmodel of the
theory is not. The reason for this is that the saturated model has two computable
presentations such that in one the algebraic dependency relation is computable and
in the other is not.
Here is the outline of the paper. In the next section we construct a specific
uniformly recursively enumerable family {Bx}x∈ù of subsets of natural numbers.
The family is defined based on the notion of Kolmogorov complexity. We also
prove that some special enumerations of the family are equivalent to each other via
computable permutations.
In Section 3, we provide an example of a saturated not ℵ0-categorical struc-
ture with exactly one computable isomorphism type. The idea is to code the family
{Bx}x∈ù from the previous section into a saturated structure so that the computable
copies of the structure induce the special enumerations of the family. The construc-
tion of the structure is based on the well-known model theoretic construction of
Fraı̈ssé limits.
In Section 4 of the paper we also address a question of Goncharov that asks
if there exists an ℵ1-categorical but not ℵ0-categorical saturated model that has
unique computable isomorphism type. Recall that a first order theory T is called
κ-categorical (for an infinite cardinal κ) ifA ∼= B wheneverA ,B |= T and |A | =
|B | = κ. Morley [11] proved that ifT is categorical in someuncountably cardinality,
then it is categorical in all uncountable cardinalities. Therefore, any ℵ1-categorical
theory has a unique model of each uncountable cardinality. We partially answer
the question of Goncharov positively by providing a saturated ℵ1-categorical but
not ℵ0-categorical saturated Σ01-structure that has unique computable isomorphism
type. Unfortunately, the structure is not computable. Our constructions codes the
family {Bx}x∈ù.
In Section 4, we provide an alternative proof of the main result in [6]. There an

ℵ1-categorical but not ℵ0-categorical theory T is constructed such that all models
of T but the prime one are computable. Our construction is again based on coding
the family {Bx}x∈ù into an ℵ1-categorical but not ℵ0-categorical theory.

§2. The Role of Kolmogorov Complexity. The first result is the construction of
an auxiliary family of recursively enumerable sets B0, B1, . . . with the following
properties:

• the finite members of this family occur only once each;
• all infinite members are equal and occur infinitely often in every recursive
enumeration of the family.

The construction goes as follows. Let U be a universal partial-recursive function
in the sense that for every further partial-recursive function ø there is a constant c,
such that for all x in the domain of ø there is a y 6 c(x + 1) with U (y) = ø(x).
Then the Kolmogorov complexity C (based on U ) of any number z is defined as

C (z) = min{log(x) : U (x)↓= z}
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where in this paper the logarithm log(x) is defined as the smallest natural number
y with 2y ≥ x. The rationale behind this definition is that it should roughly
invert exponentiation, have the base 2 and avoid undefined places, proper fractions
and irrational numbers. Note that C (z) ≥ log(z) for infinitely many z. The
reader should consult standard textbooks [1, 9, 12, 13] for more information on
Kolmogorov Complexity and Recursion Theory. The family in question is now
defined as follows.

Definition 2.1. Let A = {x : C (x) < log(x)} be the set of compressible or
non-random numbers. Define

Bx =

{

{x} ∪ {y ∈ A : y < log(x)} if x /∈ A;

A if x ∈ A.

The family B0, B1, . . . is uniformly recursively enumerable as {x} ∪ {y ∈ A :
y < log(x)} ⊆ Bx for all x and the set A is recursively enumerable. So a uniform
enumeration of the Bx starts with an enumeration of {x} ∪ {y ∈ A : y < log(x)}
and later adds all other elements of A in the case that x turns out to be an element
of A.

Theorem 2.2. If E0, E1, . . . is a recursive enumeration of r.e. sets such that for
every x there is y with Ex = By , and for every y /∈ A there is a unique x with
By = Ex , then there is a computable permutation f with By = Ef(y) for all y.

Proof. For every y /∈ A there is a unique x with y ∈ Ex . As every y ∈ A satisfies
y ∈ Ex for almost all x, one has that there are infinitely many x with y ∈ Ex . Thus
there is a computable function g such that y ∈ Eg(y) for all y, this function can be
obtained by searching in parallel in all E0, E1, . . . until an x with y ∈ Ex is found.
If y /∈ A then Eg(y) = By as By is the unique set in the enumeration B0, B1, . . .
containing y. Thus Eg(y) has to be equal to By . If y ∈ A and Eg(y) = A then
By = Eg(y). If y ∈ A but Eg(y) = Bx for some x /∈ A then y < log(x) and x is
the unique element of Eg(y), which is larger than log(x). Thus one can compute x
from y and log(x). As Cantor’s pairing function is invertible, one can compute x
also from (y + log(x))(y + log(x) + 1)/2 + log(x). As y < log(x), the logarithm
of this expression is roughly 2 log log(x). So, on one hand, there is a constant c1
with C (x) 6 2 log log(x) + c1. On the other hand, log(x) 6 C (x). Therefore,
log(x) 6 2 log log(x) + c1 and hence there are only finitely many such x. Thus it
follows that g, for all but finitely many y, satisfiesEg(y) = By . Since the errors occur
on finitely many y ∈ A, the other elements ofA are mapped to an Ex with Ex = A.
By modifying g at finitely many places, one even obtains ∀y (Eg(y) = By). Note
that A occurs in the enumeration E0, E1, . . . infinitely often as A is not computable
and cannot be of the form g−1(D) for any finite set D.
Now let I be an infinite computable subset ofAwhich includes all y satisfying the
condition g(y) ∈ {g(z) : z < y}. Furthermore, let x be any index. If Ex = By for
an y /∈ A, then one can compute y from x by inverting g and thusC (y) 6 C (x)+c2
for some constant c2. As y is incompressible, log(y) 6 C (x) + c2 6 log(x) + c3
for some constant c3. Thus one knows that whenever x 6= g(y) for all y with
log(y) 6 log(x) + c3 then Ex = A. So the set of all x with Ex = A is recursively
enumerable: Ex = A iff either g(y) = x for some y ∈ A or g(y) 6= x for the finitely
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many y with log(y) 6 log(x) + c3. In particular there is an infinite computable set
J such that Ex = A for all x ∈ J and J ∪ g(N) = N.
Now define f(y) to be the n-th element of J whenever y is the n-th element of
the computable set I ∪ g−1(J ) and let f(y) = g(y) otherwise. Again Ef(y) = By
for all y asf coincides with g on those y where By is finite while f is modified from
one index of A to another one in the case that y ∈ I ∪ g−1(J ). Furthermore, by
construction, f is a permutation. It is also easy to see that f is computable. ⊣

§3. The first application. Ourmain result in this section is the following theorem.

Theorem 3.1. There exists a saturated not ℵ0-categorical model that has a unique
computable isomorphism type.

We need to recall the construction of Fraı̈ssé limits. Let K be a class of finite
structures closed under isomorphisms. Weassume the languageof structures is finite
and contains only relational symbols. Assume that the class K has the following
properties:

1. Hereditary property (HP): for all A ∈ K , if B is a substructure of A then
B ∈K .

2. Joint embedding property (JEP): for all A,B ∈K there exists a C ∈K , such
that A and B can be embedded into C .

3. Amalgamation property (AP): for all A,B,C ∈ K , if f : A→ C and
g : A → B are embeddings then there exists a structure D ∈ K and em-
beddings h : B → D and k : C → D such that hf = kg on A.

A structureD is called weakly homogeneous if it has the property

if A, B are finite substructures of D, A ⊆ B and f : A → D is an
embedding, then there is an embedding g : B → D which extends f.

A structure is called ultrahomogeneous if any finite partial isomorphism of the struc-
ture into itself can be extended to an automorphism. A finite or countable structure
is ultrahomogeneous if and only if it is weakly homogeneous (see Lemma 7.1.4(b)
in [4]).
The age of a structure D is the class of all finite structures embeddable in D.
There is a well known result in model theory that connects the ultrahomogeneous
structures with classes K that possess properties HP, JEP and AP. It is stated in
the following theorem:

Theorem 3.2. For any class K that has HP, JEP and AP there exists a unique

at most countable ultrahomogeneous structure lim(K ) whose age coincides with K .
Moreover, the structure lim(K ) is ℵ0-categorical.

The structure lim(K ) is called the Fraı̈ssé limit of the class K . We restate this
theorem with an eye towards computable categoricity:

Theorem 3.3. LetK be a class finite structures with the following properties.

1. K has propertiesHP, JEP and AP.
2. There exists a sequenceH0,H1, . . . such that

• {Hn : n ∈ ù} ⊆ K and each A ∈ K is isomorphic to someHn;
• the domain and the atomic diagram ofHn is computable uniformly in n;
• the function n 7→ |Hn | is computable.

Then the Fraı̈ssé limit ofK is a computably categorical structure.
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Proof. First, show that the Fraı̈ssé limit ofK is computable. Let {(Ai , Bi)}i∈ù
be a recursive enumeration of pairs of structures fromK such thatAi ⊆ Bi , and for
every pair A,B ∈K such thatA ⊆ B there exist i and an isomorphism f : B → Bi
such that f(A) = Ai . We now construct a computable structure D as follows. Let
D0 = H0. Suppose that Dk has been constructed. Applying the AP property the
required number of times one can show that there is an isomorphic copyH ′

n of some
Hn ∈ K such that Dk ⊆ H ′

n and for all i 6 k, if Ai can be embedded in Dk then
for every embedding f : Ai → Dk , there is an embedding g : Bi → H

′
n extending f.

For every n, we can effectively check whether there is a copy of Hn satisfying the
condition above. So let Dk+1 be an isomorphic copy of Hn with minimal index n
satisfying that condition.
Now consider a computable structure D =

⋃

k<ù Dk . Since each Dk is in K
andK possesses HP property, the age of D is included in K . Suppose A is in K ;
then by JEP there are B ∈ K , such that D0 ⊆ B, and an embedding h : A → B.
Now let a pair (Ai , Bi) be such that there is an isomorphism f : Bi → B with
f(Ai) = D0. By construction, the embedding f ↾Ai : Ai → D0 extends to an
embedding g : Bi → D. Hence both B and A are in the age of D. Therefore, the
age of D is exactlyK .
Let A ⊆ B be finite substructures of D and h : A → D be an embedding.
Since A,B ∈ K , there are a pair (Ai , Bi) and an isomorphism f : Bi → B with
f(Ai) = A. Furthermore, there is k ≥ i such that hf ↾Ai is an embedding of Ai
into Dk . By construction, hf ↾Ai extends to an embedding g : Bi → Dk+1. Now
gf−1 : B → D is an embedding that extends h. This proves that D is weakly
homogeneous and, therefore, ultrahomogeneous. ThusD is the Fraı̈ssé limit of the
classK .
We now show thatD is computably categorical. LetD′ be a computable structure
isomorphic toD; then there is a computable chain {D′

k}k<ù of finite structures such
that D′ =

⋃

k<ù D
′
k . We construct a computable isomorphism from D to D

′ as
follows. Let f0 be an embedding of D0 into D′. Suppose that a finite partial
embedding fn has been constructed. If n = 2m then look for the smallest k ≥ m,
such that Dom(fn) ⊆ Dk . SinceD

′ is weakly homogeneous, there is an embedding
g : Dk → D

′ that extends fn and that can be found effectively. So let fn+1 = g. If
n = 2m + 1 then look for the smallest k ≥ m, such that Im(fn) ⊆ D′

k . Since D is
weakly homogeneous, there is an embedding g : D′

k → D that extends f
−1
n . So let

fn+1 = g−1. Thus f =
⋃

n<ù
fn : D → D′ is a computable isomorphism. ⊣

Now we define special classes of finite structures that have properties HP, JEP
and AP. A cycle of length n ≥ 3 is the graph Cn = ({1, . . . , n}, E) with E = {(1, 2),
(2, 1), (2, 3), (3, 2), . . . , (n − 1, n), (n, n − 1),(n, 1), (1, n)}. We say that a graph
contains a cycle of length n if there exists an embedding from Cn into the graph.
Let Y be a non-empty subset of natural numbers. Consider the following class
of finite directed graphs:

K (Y ) = {(V,E) : If (V,E) contains a cycle of length n + 3 then n ∈ Y}.

Lemma 3.4. The classK (Y ) possesses propertiesHP, JEP and AP.

Proof. It is easy to see that K (Y ) satisfies properties HP and JEP. We prove
thatK (Y ) satisfies AP. Let A,B,C be graphs in K (Y ) such that A is a subgraph
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of B and C and the domain of A is the intersection of the domains of B and C .
Define the graph D as follows. The domain of D is the union of domains of B
and C . The graph D contains all the edges of the graphs B and C . In addition,
D contains all the edges of the form (b, c), where b ∈ B \ A and c ∈ C \ A. It is
not hard to see that the graph D built in this way belongs toK (Y ). ⊣

Now we construct the desired structure Cù as follows. To do this we use the
family {Bx}x∈ù from the previous section. For each Bx consider the limit structure
limK (Bx). One can construct a sequence

limK (B0), limK (B1), limK (B2), . . .

of these structures so that the following properties hold:

1. the graphs in this sequence are all pairwise disjoint;
2. the union of domains of these graphs is ù;
3. the sequence is uniformly computable meaning that the set

{(n,m) : m ∈ limK (Bn)}

is computable.

The signature of Cù consists of two binary relational symbols R and S. The
domain ofCù is ù. The relationR is the union of all edges of graphs that appear in
the sequence above. The relation S consists of all pairs (n,m) such that n,m belong
to the same graph limK (Bx) for some x. Clearly S is a computable equivalence
relation. Thus, the structure Cù constructed is computable. Our goal now is to
show that Cù satisfies the theorem stated in the beginning of this section.

Lemma 3.5. The structure Cù is computably categorical.

Proof. Let D be any computable structure isomorphic to Cù . Since the equiva-
lence relation S in D is computable, there is a computable sequence {xi}i∈ù , which
consists of exactly one representative for each S-equivalence-class. Let Ei be a set
such that the substructure ofD with domain [xi ]S , S-equivalence-class of xi , is iso-
morphic to limK (Ei). Using the fact thatD is computable, one can show that the
sequence {Ei}i∈ù is uniformly recursively enumerable. Furthermore, for every x
there isy withEx = By , and for everyy /∈ A there is a uniquex withBy = Ex . Thus,
by Theorem 2.2, there is a computable permutationf such that Bi = Ef(i) for all i .
By Theorem 3.3, limK (Bi) is a computably categorical structure. Note that the
construction of the computable isomorphism between limK (Bi) and limK (Ef(i))
can be done uniformly in i . Therefore, D is computably isomorphic to Cù. ⊣

Let T = Th(Cù) be the first-order theory of Cù . Our goal is to show that Cù
is the saturated model of T . This is proved in the Lemma 3.6 below that also
characterizes the isomorphism types of the models of T . Call an S-equivalence-
class non-standard if the restriction of R to this class is isomorphic to the Fraı̈ssé
limit limK (A). Consider a subsequence

limK (Bn0), limK (Bn1), limK (Bn2), . . .

of the sequence

limK (B0), limK (B1), limK (B2), . . . ,

where n1, n2, . . . is the list of all numbers outside of A in the increasing order.
Consider the substructure of Cù restricted to the subsequence above and denote
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it by C0. Let Cn be the structure obtained by adjoining to C0 exactly n copies of
non-standard S-equivalence-classes.

Lemma 3.6. The theory T satisfies the following properties.

1. C0 is the prime model of T .
2. The class of all countable models of T is {C0, C1, C2, . . . , Cù}.
3. Cù is the saturated model of T .

Proof. Let us write down the axioms for T . First, note that the fact that x
and y lie in the same component limK (Bn) of Cù can be expressed by a first-
order formula. Indeed, let x, y ∈ limK (Bn) for some n. Suppose that there is no
edge from x to y and from y to x. Let B be the substructure of limK (Bn) with
domain {x, y}. LetD be a graph with domain {x, y, z} that extendsB and contains
additional edges (x, z), (z, y). Note that D is in K (Bn) since it does not contain
any cycle. By the weakly homogeneity of limK (Bn), there is an embedding of D
into limK (Bn) that extends the identity map on B. Therefore, we can express the
fact that x, y belong to the same limK (Bn) by the formula

ϕ(x, y) = R(x, y) ∨R(y, x) ∨ ∃z(R(x, z) ∧R(z, y)).

We use the notation {c̄} for the set consisting of elements of the tuple c̄. Let
øn(x0, . . . , xn−1) be a formula such that for any graph B

B |= øn(b̄) if and only if {b̄} is a cycle of length n in B.

For any graph B and n-tuple of distinct elements b̄ such that B = {b̄} let
øB,b̄(x0, . . . , xn−1) be a conjunction of formulas R(xi , xj) or ¬R(xi , xj) satisfied

by b̄ in B. Thus for any graph D and a tuple d̄ ∈ D of the same length as b̄,

D |= øB,b̄(d̄ ) iff there is an isomorphism from B to {d̄} which takes b̄ to d̄ .

Let Sn(x) be a formula that says the S-equivalence-class of x contains a cycle of
length n + 3, that is

Sn(x) = ∃ȳ
(

øn+3(ȳ) ∧
∧

i6n−1

S(x, yi )
)

.

We also use an abbreviation x̄ ∈ Sn for a formula
∧

i6n−1

Sn(xi) and x̄ ∈ [z] for

a formula
∧

i6n−1
S(xi , z), where x̄ = x0, . . . , xn−1. Let U be the following list of

axioms.

(Ax0) S is an equivalence relation.
(Ax1) S(x, y)→ R(x, y) ∨R(y, x) ∨ ∃z(R(x, z) ∧R(z, y)).

For every n:

(Ax2n) ¬S(x, y)→ ¬∃x0, . . . , xn+1

(

x0 = x ∧ xn+1 = y ∧
∧

i6n(R(xi , xi+1) ∨R(xi+1, xi))
)

.

For every n /∈ A:

(Ax3n) ∃x (Sn(x) ∧ ∀y (Sn(y)→ S(x, y))).

For every n /∈ A, every B,D ∈ K (Bn) and every tuple b̄d of distinct elements
such that B = {b̄} and D = {b̄d}:
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(Ax4
n,B,D,b̄d

) (∀x̄ ∈ Sn) (øB,b̄(x̄)→ (∃y ∈ Sn) øD,b̄d (x̄, y)).

If b̄ is empty then this sentence reduces to (∃y ∈ Sn) øD,d (y).
For every n /∈ A:

(Ax5n) (∀x̄ ∈ Sn)
∨

B,b̄

øB,b̄(x̄),

where the disjunction ranges over all pairsB, b̄ such thatB ∈ K (Bn) and b̄ is a tuple
of the same length as x̄ with B = {b̄}. Note that this disjunction is finite.
For everyB,D ∈ K (A) and every tuple b̄d of distinct elements such thatB = {b̄}

and D = {b̄d}:

(Ax6
B,D,b̄d

) ∀z
((

∧

i6k−1 ¬Sni (z)
)

→ (∀x̄ ∈ [z]) (øB,b̄(x̄)→

(∃y ∈ [z]) øD,b̄d (x̄, y))
)

,

where n0, . . . , nk−1 are the indices of all components limK (Bn) of Cù into which
D can not be embedded. Note that ni /∈ A for all i 6 k − 1. If b̄ is empty then this
sentence reduces to

∀z
((

∧

i6k−1

¬Sni (z)
)

→ (∃y ∈ [z]) øD,d (y)
)

.

Now letM be a countable model ofU . Axioms Ax0, Ax1 andAx2n imply thatS is an
equivalence relation and that every S-equivalence-class is a connected component
ofM . For every n /∈ A, Ax3n states that there is a unique component that contains
a cycle of length n. Denote this component byMn .
When b̄ is empty, Ax4n says that every one-element structure inK (Bn) is embed-
dable inMn. In general, Ax

4
n says that

if B, D are finite structures in K (Bn), D comes from B by adding
one more element and f : B → Mn is an embedding, then there is an
embedding g : D →Mn which extends f.

Now, using induction on the number of elements, it is not hard to see that every
structure inK (Bn) is embeddable inMn. On the other hand, Ax

5
n implies that any

finite substructure ofMn is inK (Bn). Thus, the age ofMn is exactlyK (Bn).
Using Ax4n again and an induction on the size of D \ B, we can show that

if B,D ∈ K (Bn), B ⊆ D and f : B → Mn is an embedding, then there
is an embedding g : D →Mn which extends f.

ThusMn is a weakly homogeneous (hence ultrahomogeneous)model of ageK (Bn).
Therefore,Mn is isomorphic to limK (Bn). Note that, in particular, it means that
Mn 6=Mk whenever n 6= k.
LetM∗ be a connected component ofM that is different from allMn ’s. As shown
above, any cycle of length n, for n /∈ A, can appear only inMn. So the age ofM∗ is
included inK (A). Let D be one-element structure inK (A); then Ax6 implies that
D is embeddable in M∗. Now let B,D ∈ K (A), D comes from B by adding one
more element andf : B →M∗ is an embedding. Suppose thatD is not embeddable
in limK (Bn0), . . . , limK (Bnk−1), where ni /∈ A for all i 6 k − 1. In this case Ax6

states that the embedding ofB into any component ofM other thanMn0 , . . . ,Mnk−1
can be extended to an embedding of D into the same component. In particular,
f can be extended to an embedding g : D →M∗. Now, using induction on the size
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of D, it is not hard to show that every D ∈ K (A) is embeddable inM∗. Thus the
age ofM∗ is exactlyK (A).
Again, an induction on the size of D \ B tells us that if B,D ∈ K (A), B ⊆ D
and f : B →M∗ is an embedding, then there is an embedding g : D → M∗ which
extends f. Thus M∗ is a weakly homogeneous structure of the age K (A) and,
therefore, is isomorphic to limK (A).
So any countable model of U consists of exactly one component isomorphic
to limK (Bn), for n /∈ A, and finite or infinite number of components isomor-
phic to limK (A). In other words, the class of all countable models of U is
{C0, C1, C2, . . . , Cù}.
We now show that, for every i ∈ ù, Ci is elementary equivalent to Cù . To do
this, we will use the method of Ehrenfeucht–Fraı̈ssé games.

Definition 3.7. Let A, B be the structures of the same language L and let ã be
an ordinal. Then EFã [A,B], the unnested Ehrenfeucht–Fraı̈ssé game of length ã on
A and B, is defined as follows. There are two players ∀ and ∃. The game is played
in ã steps. At the ith step of the play, player ∀ takes one of the structures A, B and
chooses an element of this structure; then player ∃ chooses an element of the other
structure. Each player is allowed to see and remember all previousmoves in the play.
At the end of the play, sequences ā = (ai : i < ã) ∈ A and b̄ = (bi : i < ã) ∈ B
have been chosen. The pair (ā, b̄) is known as the play. We say that player ∃ wins
the play (ā, b̄) iff

for every unnested atomic formula ϕ of L, A |= ϕ(ā)⇔ B |= ϕ(b̄).

Note that if the language L contains no function symbols or constants, as in our
case, then every formula of L is unnested. We write A ≈ã B to mean that player ∃
has a winning strategy for the game EFã [A,B].

Theorem 3.8. Let L be a finite first-order language. Then for any twoL-structures
A and B the following are equivalent.

(I) A ≡ B.
(II) For every k < ù, A ≈k B.

For the proof and more details, see chapters 3.2 and 3.3 in Hodges [4]. So let us fix
any i and k and show that player ∃ has a winning strategy for the game EFk[Ci , Cù].
The strategy for player ∃ that is described below has the following property.
In the beginning of every step s , the sequences ās−1 = (a0, . . . , as−1), b̄s−1 =
(b0, . . . , bs−1) havebeen chosen by players∀ and∃ such that the substructures {ās−1}
and {b̄s−1} of Ci and Cù respectively are isomorphic via isomorphism that maps
ās−1 to b̄s−1. Moreover, for every t < s , if at ∈ limK (Bn) and bt ∈ limK (Bm),
then either

(a) n /∈ A, log(n) 6 k − 3 and n = m, or
(b) n /∈ A⇒ k − 3 < log(n) andm /∈ A⇒ k − 3 < log(m).

In both cases, we have that Bn ∩ [0, k − 3] = Bm ∩ [0, k − 3] and, therefore, any
substructure of limK (Bn) with at most k elements is embeddable in limK (Bm)
and vice versa.
Now suppose that at step s player ∀ has chosen as ∈ Ci . Then player ∃ chooses
bs ∈ Cù such that the substructures {ās} and {b̄s} are isomorphic via isomorphism
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that maps ās to b̄s . Also, if as lies in the same component as at for some t < s ,
then bs has to be in the same component as bt . The fact that |ās | 6 k ensures that
player ∃ can always find such bs . If the component of as does not contain any at
for t < s , then player ∃ chooses bs such that bs is not in any component containing
any bt for t < s and that property (a) or (b) given above holds for the pair as , bs .
Obviously, player ∃ can always find such a component, because there are infinitely
many components in both Ci and Cù that are isomorphic either to limK (A) or to
limK (Bn) for n /∈ A and k < log(n).
The case when player ∀ has chosen bs ∈ Cù is similar to the above.
Now it is not hard to see that this strategy is indeed a winning strategy for
player ∃. Thus all the structures C0, C1, . . . , Cù are elementary equivalent to each
other and U is the set of axioms for T = Th(Cù). Since T has countably many
countable models, T has countable saturated model and a prime model (see e.g.
Corollary 4.3.8 in Marker [10]). None of {Ci : i < ù} can be a saturated model,
because Cù is not embeddable in any Ci . So we can conclude that Cù is in fact the
saturated model of T . ⊣

§4. The second application. Here we partially answer the question of Goncharov
about the existence of an ℵ1-categorical but not ℵ0-categorical structure with
a unique computable isomorphism type. Here our answer is affirmative if one
considers Σ01-structures rather than computable structures. Here is the result.

Theorem 4.1. There is a ℵ1-categorical but not ℵ0-categorical theory whose satu-
rated model is a computably categorical Σ01-structure.

Proof. We use the family {Bx}x∈ù constructed in Section 2. The language of the
desired structure is given by the family P0, P1, . . . of unary predicates. Define the
following structureM . The domain of the structure is the set of natural numbers.
For each x, Py(x) holds iff y ∈ Bx . Obviously, the structure is Σ01.
Let T be the first-order theory ofM . It can be described by the following set of
axioms.
For every i /∈ A:
(Ax1i ) There is a unique z such that Pi (z).
For i /∈ A, let ci be a new constant interpreted as an element on which Pi holds.
The axioms Ax1i imply that these constants are definable in the original language.
For every i ∈ A:

(Ax2i )
∧

{j: i /∈Bj}

¬Pi (cj) ∧ ∀z
((

∧

{j: i /∈Bj}

z 6= cj
)

→ Pi(z)
)

,

that is Pi holds almost everywhere and does not hold only on constants cj for
i /∈ Bj . Note that if i ∈ A, then the set {j : i /∈ Bj} is finite; thus the conjunctions

in Ax2i are finite, and this is the first order formula.
The theoryT is not ℵ0-categorical since the prime model is given by the substruc-
ture ofM with domain N − A. The theory T is ℵ1-categorical since any model of
cardinality κ > ℵ0 consists of the following elements:

• one element x with B = {n : Pn(x)}, for every finite set B in the enumeration
{By}y∈ù;

• κ many elements x with A = {n : Pn(x)}.
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The statement about Σ01-categoricity can be derived by considering any further
Σ01-modelM

′ with domain N that is isomorphic toM ; such a model defines a com-
putable enumeration E0, E1, . . . with n ∈ Ey ⇔ Pn(y). It is easy to see that every
Bx with x /∈ A appears in this enumeration only once and that every Ey equals
some Bx . By Theorem 2.2, there exists a computable permutation f such that
Ef(x) = Bx for all x. This computable permutation clearly induces a computable

isomorphism between two Σ01-structuresM andM
′. ⊣

§5. The third application. Khoussainov, Nies and Shore [6] give an example of
ℵ1-categorical but not ℵ0-categorical theory such that all models of the theory but
the prime model are computable. In this section we provide an alternative proof of
this result using the family {Bx} constructed in the second section.
To code this type of family, we generalize the notion of “cubes” introduced by
Khoussainov, Nies and Shore [6]. Fix a language L consisting of binary relation
symbols Fn (for n ∈ ù), all of which we will assume to be symmetric and irreflexive
relation coding the edges of a hypercube. These cubes are constructed from given
r.e. parameters sets X and have dimension |X |; for each element n of the set X , the
edges along one dimension are realized by the relation Fn. More formally, this is
done as follows.
For any subset X of ù, let the domain of the default presentation of an X -cube
be a set {

∑

m∈Y 2
m : Y ⊆ X ∧ Y is finite} with

∑

m∈∅ 2
m = 0. On this domain,

define the relation Fn(x, y) to be true iff there is a finite subset Y ⊆ X − {n} such
that

{x, y} = {
∑

m∈Y 2
m,

∑

m∈Y∪{n}2
m}.

An X -cube is then a structure isomorphic to the default presentation that we have
just defined. Note that every default presentation of an X -cube is uniformly Σ01
in X .
For example, a {0, 1, 3}-cube is an isomorphic copy of {0, 1, 2, 3, 8, 9, 10, 11}
together with the relations F0(0, 1), F0(2, 3), F0(8, 9), F0(10, 11), F1(0, 2), F1(1, 3),
F1(8, 10), F1(9, 11), F3(0, 8), F3(1, 9), F3(2, 10), F3(3, 11). Other relations than
these do not hold between the members of the {0, 1, 3}-cube.
Alternatively, anX -cube can be defined as follows (for example, see [3]). Consider

A = Z
|X |
2 as a vector space overZ2, with basis {a0, a1, . . . , a|X |−1}. Letf : X → |X |

be a bijection. If, for every n ∈ X and every x, y ∈ A, we define

Fn(x, y)⇔ x + af(n) = y,

then every structure isomorphic to A will be an X -cube.

Definition 5.1. Let the set A and the sequence B0, B1, . . . of sets as in Defini-
tion 2.1. Let C0 be the disjoint union of all those Bx -cubes with x /∈ A. Further-
more, letCn be the disjoint union ofC0 and nmanyA-cubes for n ∈ {1, 2, 3, . . . , ù}.

Note that Cù is isomorphic to the disjoint union over all Bx -cubes for x ∈ ù.

Proposition 5.2. The structures C0, C1, C2, . . . , Cù have all the same theory T ;
this theory is ℵ1-categorical, C0 is its prime model and Cù is its saturated model. The
models C0, C1, C2, . . . , Cù are the only countable models of T up to isomorphism.
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To prove this proposition we can consider the theory T = Th(Cù) and formulate
the list U of its axioms. One group of axioms should say that the models of T
consist of cubes. Furthermore, for every x ∈ A, we need an axiom saying that Fx
is adjacent to all but nx nodes, where nx is the number of nodes in Cù that are not
adjacent to Fx. Similarly, for every x /∈ A, we need an axiom saying that Fx is
adjacent only to nx many nodes, where nx is the number of nodes in Cù that are
adjacent to Fx. Now one can show thatC0, C1, C2, . . . , Cù are all countable models
ofU and all models ofU of the same uncountable cardinality are isomorphic. This
implies that the theory determined by U is complete and U is indeed the set of
axioms for T . More details can be found in the proof of Theorem 4.1 in [3].

Theorem 5.3. The models C1, C2, . . . , Cù have all computable presentations but
C0 does not have a computable presentation.

Proof. This is clear for Cù as there is a recursive one-one enumeration (a0, b0),
(a1, b1), . . . of pairs such that for each x the set {a : ∃s [as = a ∧ bs = x]} is the
domain of the default presentation of the Bx-cube from above. Then one defines
for the given presentation that Fn(s, t) holds iff bs = bt and Fn(as , at) in the default
presentation of the Bbs -cube. It is easy to see that the given model is computable
and isomorphic to Cù .
We now describe how to construct a computable presentation for C1. Fix some
x0 ∈ A and start the construction by enumerating all Bx -cubes in some effective
way. Also we start enumerating the set A. When at some stage s a number x is
enumerated into As , we expand the finite part of Bx0-cube constructed so far and
merge the finite part of Bx-cube into it. To do this we might need to use new edges
Ft with t ∈ A such that up to stage s it has not been decided for any two nodes a, b
whether Ft(a, b) holds or not. So we keep on enumerating A until we have enough
of such edges. To build a computable presentation for Cn with 2 6 n < ù one need
to add n− 1 computable copies of anA-cube to the computable presentation of C1.
Now assume by contradiction that the prime model C0 also has a computable
presentation. Then there is a computable function mapping every n to a triple
(a(n), b(n), y(n)) such that 2n < y(n) ∧ Fy(n)(a(n), b(n)). This function is total as
there are infinitely many x > 2n such thatx /∈ A and a copy ofBx is merged intoC0.
Let x(n) denote the index of the Bx(n)-cube to which a(n) belongs. Note that Bx(n)
is finite as C0 is the prime model. Note that x(n) /∈ A, x(n) ≥ y(n) and C (x(n)) ≥
log(x(n)). Now x(n) can be computed from n and log(x(n)) as x(n) is the only
number z larger than log(x(n)) such that there is an d with Fz(a(n), d ); so x(n) can
be found by exhausting search once log(x(n)) and n are given. As n 6 log(x(n)),
C (x(n)) 6 C (log(x(n)), n) + c 6 2 log log(x(n)) + c′ for constants c, c′ and all n.
Combining the two conditions, one has log(x(n)) 6 2 log log(x(n)) + c′ for all n.
But this is impossible as x(n) > 2n for all n. Thus C0 cannot have a computable
presentation. ⊣
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