

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

STUDIES ON CHEMICALLY MODIFIED CYTOCHROMES <u>c</u>

by

Antony James Mathews

A dissertation submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of the University of Auckland

December 1985.

ACKNOWLEDGEMENTS

<

My thanks are due to my friends and colleagues in the Department of Biochemistry at the University of Auckland for making my time here interesting and enjoyable.

Thanks are due to Mrs R. Hill for her help with the HPLC work, and for cheerfully performing amino acid analyses for me. I would like to thank Ms Bronwyn Trevenen for her kind help over the past year.

I would especially like to thank Dr David L. Christie for introducing me to several techniques I have used in the course of my work, and for his help in general.

I am grateful to several members of the Department of Chemistry for access to equipment and advice. I would like to acknowledge the kind help given to me by Dr Peter Boyd and Dr Judy Brittain in the past five years.

Above all, I would like to thank my supervisor, Dr Thomas Brittain for his tolerance and unstinting help during the course of my studies. My thanks are also due for his appraisal of the manuscript.

I am indebted to Jackie for her support and tolerance during the preparation of this thesis.

The financial assistance given to me by the University Grants Committee and the Department of Biochemistry is gratefully acknowledged.

Finally, my thanks are due to Tania Cornwall, a thorough professional who worked extremely hard preparing the typescript.

ABSTRACT

Tuna and Horse cytochromes \underline{c} were purified and chemically modified with the water soluble carboxyl group modifying reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), using the method of Timkovich (1980). The timecourse of modification was followed by visible spectroscopy and by functional measurements. Both methods indicated that disruption of the haem crevice regions of the proteins was largely complete within 10-15 minutes exposure to EDC.

The EDC modified Tuna and Horse proteins $(TH\underline{c}^* \text{ and } HH\underline{c}^* \text{ respectively})$ showed essentially identical functional properties to those described by Timkovich (1980) for $TH\underline{c}^*$. These include a typical methionine coordination to the haem iron, as shown by the absence of the 697nm visible absorption band from the spectra of the oxidized derivatives, and a pH dependent high spin – low spin transition for the derivatives in this oxidation state. In the reduced forms, $TH\underline{c}^*$ and $HH\underline{c}^*$ show reactivity with carbon monoxide and oxygen indicating the haem crevice regions of these proteins is disrupted compared to those of the native proteins.

The tryptic peptides of native Tuna and Horse cytochromes <u>c</u> were mapped by HPLC and identified by amino acid analysis. Examination of the tryptic digests of $TH\underline{c}^*$ and $HH\underline{c}^*$ by gel filtration and HPLC revealed the presence of trypsin indigestible material indicating the presence of EDC promoted intramolecular cross-links within the modified proteins. Failure to extract the haem groups from $TH\underline{c}^*$ and $HH\underline{c}^*$ after cleavage of the protein-haem thioether bonds, indicates cross-linking of the exposed haem propionate groups to the proteins. Labelling of the native and EDC modified proteins with glycine methyl ester showed that $TH\underline{c}^*$ and $HH\underline{c}^*$ contain several covalently modified carboxyl groups. The results of Timkovich (1980) for $TH\underline{c}^*$ are discussed with respect to these findings.

The reduction of THc^{*3+} and HHc^{*3+} by L-ascorbic acid and by the strong inorganic reducing agent sodium dithionite, was studied using stopped flow spectrophotometry. The kinetics of reduction of the modified proteins by these reagents could be accounted for by mechanisms similar to those proposed for the reduction of the native proteins by these reagents (Myer et al, 1980; Lambeth and Palmer, 1973). The effect on the reactions, of chemical modification of the proteins, is discussed.

The reaction of the reduced derivatives with carbon monoxide was studied by stopped flow spectrophotometry, flash photolysis, and by equilibrium binding measurements. The reduced derivatives have a high affinity for carbon monoxide. Flash photolytic studies indicated very low quantum yields for photodissociation of the reduced protein CO complexes.

The reduced derivatives formed complexes with oxygen which were unstable, decaying to form the oxidized protein. The rate of conversion to the oxidized protein was dependent on the solution pH. It was found that in the presence of excess reducing agent, THc^{*2+} and HHc^{*2+} could catalytically reduce oxygen. Steady state kinetic measurements were carried out to determine the dependence of the rate of oxygen reduction on various parameters. Similarities to the reactions of reduced carboxymethylated cytochrome <u>c</u> with oxygen are discussed.

CONTENTS

CHAPTER 1

Introduction

History	1
Occurrence	1
General Properties	2
Biosynthesis	3
Amino Acid Sequence	4
Structure	5
Dynamic Structure	7
Physiological Redox Reactions	8
Non-physiological Redox Reactions	10
Chemical Modification	11

CHAPTER 2

Materials and Methods

Chemicals and Suppliers	14
Preparation of Materials and Apparatus	16
Ion Exchange and Gel Filtration Chromatography Materials	17
Dialysis Tubing	17
UV-Visible Spectroscopy	18
Infrared Spectroscopy	18
Atomic Absorption Spectrophotometry	18
Liquid Scintillation Counting	19
Purification of Tuna Cytochrome <u>c</u>	20

Purification of Horse Cytochrome <u>c</u>	
Preparation of 1-ethyl-3-(3-dimethylaminopropyl)	
Carbodiimide Modified Cytochromes <u>c</u>	23
Modification of Tuna and Horse Cytochrome <u>c</u> using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide in the presence of Glycine Methyl Ester	24
Determination of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide	24
Synthesis of [¹⁴ C]-1-1ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride	26
Isoelectric Focusing	30
Non-dissociating Discontinuous Polyacrylamide	
Gel Electrophoresis	31
Hydrolysis of Native and Modified Proteins	
by Trypsin	33
Hydrolysis of the Native and Modified Proteins	
by Endoproteinase Glu-C from	
Staphylococcus aureus, strain V8	33
Peptide Mapping by High Performance	
Liquid Chromatography	34
Constant Boiling Point Hydrochloric Acid	35
Acid Hydrolysis Tubes	36
Acid Hydrolysis of Peptides	36
Amino Acid Analysis	37
Cleavage of Protein-haem Thioether Bonds	37
Alkylation of Cysteine Thiol Groups with	
Iodo[2- ³ H] acetic acid	38

Measurement of Dissolved Oxygen Concentrations	39
Preparation of Oxygen Free Solutions	39
Preparation of Oxygen Free L-Ascorbic Acid Solutions	40
Preparation of Dithionite Solutions and Determination of Dithionite Concentrations	40
Transfer and Handling of Oxygen Free Solutions	42
Preparation of Carbon Monoxide Equilibrated Solutions	42
Stopped Flow Apparatus	43
Flash Photolysis Apparatus	44
Calculation of Absorbance Changes in Flash Photolysis Experiments	44
Calculation and Rate Constants from Stopped Flow and Flash Photolysis Experiments	47
Measurement of the Quantum Yield for the Photodissociation of $THc^{*2+}_{-}CO$ and $HHc^{*2+}_{-}CO$	52

Preparation and general properties of EDC Modified Tuna and Horse Cytochromes c

Introduction	57
Chemical Modification of Cytochromes <u>c</u> by	
1-Ethyl-3-(3-dimethylaminopropyl)	
carbodiimide	58
Preparation of the Modified Proteins	60
Timecourse of Modification	60

Timecourse of EDC Hydrolysis	62
Detection of Carbon Monoxide Binding Properties	62
Separation of Monomeric Species from Oligomeric By-products	64
General Properties	65
Soret Extinction Coefficient of THc ^{*3+}	67
Acid/Base Titrations	67
Reduction Potential of THc* and HHc*	69
Reactivity with Oxygen	69
Reaction with Cytochrome <u>c</u> Oxidase	69
General Conclusions	70

Characterization of EDC Modified Tuna and Horse Cytochromes c

Introduction	71
Ion Exchange Chromatography	74
Isoelectric Focusing	74
Non-dissociating Discontinuous Polyacrylamide Gel Electrophoresis	75
Peptide Mapping of Tryptic Digests of Native and EDC Modified Tuna and Horse Cytochromes <u>c</u>	76
Digestion of the Native and EDC Modified Proteins with S.aureus V8 Protease	78

Cleavage of Native and EDC Modified Proteins	
with Cyanogen Bromide	78
The Timecourse of Chemical Modification as studied	
by Peptide Mapping	79
Extraction of Haem from Native and EDC Modified	
Tuna and Horse Cytochromes c	80
Detection of Free Cysteine Thiol Groups by	
Alkylation with Iodo[2- ³ H] acetic acid	81
Incorporation of [¹⁴ C]-EDC into Tuna Cytochrome <u>c</u>	82
Estimation of the Number of Covalently	
Modified Carboxyl Groups in THc and HHc	83
Discussion	84
Conclusions	97

Reduction of EDC Modified Cytochromes c by L-Ascorbic Acid

Introduction	99
L-Ascorbate Reduction of EDC Modified Tuna and Horse Cytochromes <u>c</u>	
Method	101
Optical Density Change	103
Difference Spectra	104
The Effect of pH	104
Effect of Temperature	105
Reduction of Native Horse Cytochrome <u>c</u>	
by L-Ascorbate	106

Discussion	**************	108
Conclusion		120

Reduction of Native Tuna Cytochrome c and EDC Modified Tuna and Horse Cytochromes c by Dithionite

Introduction	121
Concentration Dependence	126
Difference Spectra	127
Effect of Ionic Strength	127
Discussion	129
Conclusions	135

CHAPTER 7

Carbon Monoxide Binding to Reduced EDC Modified Tuna and Horse Cytochromes c

Introduction	136
Visible Spectra of THc^{*2+} -CO and HHc^{*2+} -CO	137
Titration of THc^{*2+} and HHc^{*2+} with CO	137
Stopped Flow Kinetic Studies of CO Binding to THc ^{*2+} and HHc ^{*2+}	138
Difference Spectra	139
Effect of pH	140

Flash Photolysis Kinetic Studies of CO Binding to THc^{*2+} and HHc^{*2+}	140
Difference Spectra	142
Relative Quantum Yield for Photodissociation of TH <u>c</u> ^{*2+} -CO and HH <u>c</u> ^{*2+} -CO	142
Effect of pH	144
Discussion	145
Conclusions	149

Reactivity of Reduced EDC modified Tuna and Horse Cytochromes c with Oxygen

Introduction	151
Visible Spectra of $THc^{*2+}-O_2$ and $HHc^{*2+}-O_2$	153
Replacement of Oxygen with Carbon Monoxide	154
Dependence of the Stability of $THc^{*2+}-O_2$ and HHc^{*2+}-O_2 on pH	154
Effect of H_2O_2 on $TH_{\underline{C}}^{*3+}$	155
Catalytic Reduction of O_2 by TH <u>c</u> ^{*2+} and HH <u>c</u> ^{*2+}	156
Dependence of Rate on Oxygen Concentration	157
Dependence of Rate on Protein Concentration	157

Dependence Rate on Ascorbate Concentration	157
Dependence Rate of Oxygen Reduction on pH	158
The Effect of Catalase and Superoxide Dismutase on the Reaction Rate	158
Intermolecular Electron Transfer between the Native and Modified Proteins	159
Titration of THc^{*2+} and HHc^{*2+} with Oxygen	159
Photolysis of the $HHc^{*2+}-O_2$ Complex	159
Stopped Flow Kinetic Studies of the Reaction between TH <u>c</u> *2+ and Oxygen	160
Discussion	160
Conclusions	162

General	Discussion	 •	•	•	•	•		٠	•		•	•	•	•	•	•	•	e	•	•			1	61	4
				-		-			-									-	-						-

REFERENCES