Economics Department

Economics Working Papers

The University of Auckland Year 1999

Forecasting Volatility in the New Zealand
Stock Market

Jun Yu
University of Auckland, yujun@smu.edu.sg

This paper is posted at ResearchSpace@Auckland.
http://researchspace.auckland.ac.nz/ecwp/202



Forecasting Volatility in the New Zealand Stock
Market*

Jun Yuf

November 10, 1999

Abstract

This paper evaluates the performance of nine alternative models for predicting
stock price volatility using daily New Zealand data. The competing models
contain both simple models such as the random walk and smoothing models and
complex models such as ARCH-type models and a stochastic volatility model.
Four different measures are used to cvaluate the forecasting accuracy. The main
results are the following: 1) the stochastic volatility model provides the best
performance among all the candidates. 2) ARCH-type models can perform well or
badly depending on the form chosen; the performance of the GARCH(3,2) model,
the best model within the ARCH family, is sensitive to the choice of assessment
measures. 3) the regression and exponentially weighted moving average models
do not perform well according to any assessment measure, in contrast to the
results found in various markets.

keywords: Forecasting; Volatility; ARCH; Stochastic Volatility Model

1 Introduction

Volatility in financial markets has attracted growing attention by academics, policy
makers and practitioners during the last two decades. Firstly, volatility receives a
great deal of concern from policy makers and financial market participants because it

can be used as a measurement of risk. Secondly, greater volatility in the stock, bond
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and foreign exchange markets raises important public policy issues about the stability
of financial markets and the impact of volatility on the economy. For example, Garner
(1990) finds that the stock market crash in 1987 reduced consumer spending in the
US. Maskus (1990) finds that the volatility in foreign exchange markets has an impact
on trade. Thirdly, from a theoretical perspective, volatility plays a central role in the
pricing of derivative securitics. According to the Black-Scholes formula, for instance,
the pricing of an European call option is a function of volatility. Therefore, option
markets can be regarded as a place where people trade volatility. Finally, for the
purpose of forecasting return series, forecast confidence intervals may be time-varying,
so that more accurate intervals can be obtained by modelling volatility of returns.

There is a large litcrature on forecasting volatility. Many econometric models have
been used, however, no single model is superior. Using US stock data, for example,
Akgiray (1989), Pagan and Schwert (1989) and Brooks (1998) finds the GARCH models
outperforms most competitors. Brailsford and Faff (1996) (hereafter BF) find that
the GARCH models slightly superior to most simple models for forecasting Australian
monthly stock index volatility. Using data sets from Japanese and Singaporean markets
respectively, however, Tse (1991) and Tse and Tung (1992) find that the exponentially
weighted moving average models provide more accurate forecasts than the GARCH
model. Dimson and Marsh (1990) find in the UK equity market more parsimonious
models such as the smoothing and simple regression models perform better than less
parsimonious models, although the GARCH models are not among the set of competing
models considered.!

The purpose of this paper is to compare the performance of nine models for pre-
dicting volatility in the New Zealand stock market. Our paper contributes to this
literature in three aspects. First, we use a data set from a country not previously con-
sidered in the literature. Although New Zealand does not have a big and liquid stock

market, New Zealand economy is onc of the least regulated economies and the New

'Knight and Satchell (1998) give more details on volatility forecasting in financial markets.



Zealand stock market is one of the freest sharemarkets in the world. Liberalisation
of New Zealand financial markets makes them unparalleled internationally. On the
other hand, however, little work has been reported specific to New Zealand’s financial
markets including the New Zealand stock market. Second, we include a stochastic
volatility (SV) model into the competing candidates. Unlike the ARCH-type model
which has only one error term, the SV model involves two noise processes and hence is
supposed to describe financial time series better than the ARCH-type model. However,
to our knowledge, no comparison of its performance of volatility forecasts has yet been
made for any financial time series. Third, in additional to the assessment measures
used in the literature such as the RMSE and MAE, another two measures, the Theil-U
statistic and the LINEX loss function, are employed to evaluate the forecast accuracy.?
U-statistic is a desirable measure to evaluate a forecasting method since it is invariant
to any linear transformation (see Armstrong and Fildes, 1996). The LINEX loss func-
tion 18 asymmetric and hence can evaluate positive errors more (or less) than negative
errors (see Christoffersen and Diebold, 1997).

The paper is organized as following. In Section 2, we review the unique features
of the New Zealand stock market and describe the data set. Section 3 outlines the
nine competing models used in this paper for volatility forecasts. We then present the
measures used to assess the performance of the candidate models in Section 4. Section

5 describes the empirical results and Section 6 concludes.

2 The New Zealand Stock Market and NZSE40

The New Zealand stock market is one of the least regulated market. In Asia, the Stock
Exchanges are primarily arms of government, controlled by government appointees. In
the United States, the government acts as an overall market regulator of competitive

exchanges. Australia has developed a closely monitored infrastructure with well-defined

2Although the Theil-U statistic is a standard measure used to evaluate a forecasting method in
macroeconomics, it is used much less frequently in the literature of volatility forecasting.



linkages between the market and outside regulators. Since 1984 New Zealand has
conducted a program to deregulate the economy including its financial markets. The
reform has established minimal government intervention, under which the NZSE has
developed a self-regulatory model that is unparalleled internationally. For example,
New Zealand does not impose statutory controls on the Stock Exchange’s listing rules,
in contrast to most other countries. Also, in the NZSE regulation and oversight of the
market rely on contractual principles and New Zealand’s take over code, organized by
the Exchange and largely self-regulated. Moreover, different from many other markets,
insider trading in the NZSE is a civil, not a criminal offense.

Several indices are available for New Zealand. The data set we use is the NZSE40
capital index, which cover 40 largest and most liquid stocks listed and quoted on the
New Zealand Stock Market Exchange (NZSE), weighted by the market capitalisation
without dividends reinvested. The sample consists of 4741 daily returns over the period
from 1 January 1980 to 31 December 1998. Returns are defined as the natural logarithm
of price relatives; that is, r; = log %, where X, is the daily capital index.

The data set is used to forecast monthly stock market volatility using various mod-
els. In the literature there are a number of ways to obtain monthly volatility series. The
first one is proposed by Merton (1980) and Perry (1982) who calculate the volatility in

a month simply as the sum of squared daily returns in that month; that is,
o=y 7 (2.1)

where r; is the daily return on day ¢ and N, is the number of trading days in month
T. Akgiray (1989), however, uses a different formula
N Nr—-1—j3
o =Y (re— )’ [1 +01 Y W], (2.2)
t=1 j=1
where 7; is the mean and ¢ is the first-lag autocorrelation. Of note is that expressions
(2.1) and (2.2) share the same spirit; that is, the squared daily return is used as the

proxy of the daily volatility. Ding, Granger and Engle (1993) advocate the third way
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to measure the volatility series where the absolute values of daily stock returns is
used. Another possibility is to use the difference between the highest and lowest daily
prices (Parkinson, 1980). Although the last method provides a more efficient, volatility
estimator in terms of approximating the diffusion term in small sample, it is subject
to more biases (for example, due to the closure of the stock exchange over night; see
Garman and Klass, 1980). The third method is interesting since it gencrates a series
which may have different long memory properties and consequently have a bearing
on forecastability. However, it is used less frequently since the long memory models
receive little attention in the literature of volatility forecasting. The second method
typically provides very similar results as the first method. Hence, we only present the
results based on expression (2.1).

In total we have 228 monthly volatilities. Figure 1 plots the series. From this graph,
we can easily identify two particularly volatile periods. The first one corresponds
to the 1987 crash while the second one occurred on October 1997, the period for
the Asian financial crisis. Table 1 shows the mean, median, maximum, kurtosis and
part of the first seven autocorrelations of the entire sample. The sample maximum is
0.052157 which happened on October 1987. The sample kurtosis is 77.94 and suggests
that the unconditional distribution of volatility is not a normal distribution. The
autocorrelations in the volatilities are not very small and consistently positive for the
first six orders. This is the evidence of volatility clustering and suggests that the
volatility is predictable. To test for possible unit roots we calculate the augmented
Dickey-Fuller (ADF) statistic and the results are also presented in Table 1. The ADF
statistic for the entire sample is -5.06, which is smaller than -2.57, the critical value
at a 10% significance level. Hence, we have to reject the hypothesis that the monthly
volatility in the NZSE40 index over the period from 1980 to 1998 has a unit root. Due
to the two obvious outliers in the entire sample we need to be concerned with the role

of these two possible breaks. In Table 1 we further presents the results of the unit root



test for three sub-samples where the entire sample are split by the two crashes. The
ADF statistics are -3.32, -9.63 and -11.00 respectively. Hence, no sub-sample involves
a unit root. Furthermore, we can identify an October effect in the serics. This is
not surprising since both crashes occurred on October. However, therc is no significant
January seasonal as in the US market or July and August scasonals as in the Australian
market (see Brown et. al., 1983).

After obtaining the monthly volatility series, we have to choose the forecasting
horizon. In this paper we perform 1-month ahead forecasts. Furthermore, we have to
choose a period for estimating parameters and a period for predicting volatility. The
first 15 years of data are used to fit the models. Thus the first month for which an
out-of-sample forecast is obtained is January 1994. As we roll over the sample, we
reestimate the models and make sequential 1-month ahead forecasts. Hence, in total
we forecast 48 monthly volatilities. With this setup, we require the candidate models
to predict volatility in a pericd when volatility was very large using the sample with

an extremely volatile period.?

3 Competing Models
In this section we summarize all nine candidate models used in the paper.

3.1 Random Walk

The random walk model is the simplest possible model and is defined as 62 4 =

oz, T = 180,...,227. Hence it assumes that the best forecast of next month’s volatility

is this month’s volatility.

By examining the volatility series of Dow Jones composite over the period from 1978-1988, Brooks
(1998) claims that the 1987 crash was exception and has not been repeated at such magnitude since.
Consequently, he finds the performance of the competing models is quite different for the sample with
the 1987 crash and the sample without. In this paper, however, we do not exclude the 1987 crash
since the 1997 crash can be regarded, more or less, as a recurring event of the 1987 crash. By the
manner we hope the competing models can predict volatility in a volatile period.



3.2 Historical Average

If we assume the conditional expectation of volatility is constant, the optimal forecast
of future volatility would be a historical average; that is, &%, = %3] o? T =
180, ..., 227. This is the model used most often in the past to predict volatility. However,
more recent evidence suggests that the conditional expectation of volatility is time-
varying (Bollerslev, Chou and Kroner, 1992) and hence challenges the validity of the

historical average model.

3.3 Moving Average

According to the historical average model, all past observations receive equal weight.
In the moving average model, however, more recent observations receive more weight.
In the paper, we use two moving average models: a five-year and a ten-year moving

average. The five-year model is defined as 6%, = 220:1 oty T =180,...,227.

3.4 Simple Regression

This is a one-step ahead forecast based on the simple linear regression of the volatility

at period T'+ 1 on the volatility at period T'. The expression is given by
62, = By + Bod, T =180, ..., 227. (3.3)

There are two methods to obtain parameter estimates. In the first method, when the
new data arrives, we keep the sample size fixed at 180 and hence discard the least
recent data. In the second method, however, we use all the observations available to
us and thus the sample size gets larger and larger as new data becomes available. We
find the results from these two methods are very close to each other. Consequently, we

only report the results for the fixed sample size.



3.5 Exponential Smoothing

Exponential smoothing is a simple method of adaptive forecasting. Unlike forecasts
from regression models which use fixed coefficients, forecasts from exponential smooth-
ing methods adjust based upon past forecast errors. Single exponential smoothing
forecast is given by 67,, = (1 — a)é% + ao?, where 0 < a < 1 is the damping
(or smoothing) factor. By repeated substitution, we can rewrite the recursion as
O, = azz;l(l — a)tof,,_,, T =180,...,227. This shows why this method is called
exponential smoothing — the forecast of 0%, is a weighted average of the past values
of 67.,,_,, where the weights decline exponentially with time. The value of & is chosen
to produce the best fit by minimizing the sum of the squared in-sample forecast errors.
Dimson and Marsh (1990) and BF select the optimal a annually. In this paper we

choose the optimal « in every month so as to provide better forecasts.

3.6 Exponentially Weighted Moving Average (EWMA)

If we combine the exponential smoothing and moving average models, we have the
EWMA model. According to the EWMA model, the forecast is obtained by &2 1=
(1—a)é% + ar 231;1 0 41_4 T = 180,...,227. In this paper, we choose L = 60,120
respectively. The value of & is chosen to produce the best fit by minimizing the sum of
the squared in-sample forecast errors. BF select the optimal v annually. In this paper

we update the optimal ¢ in every month, again so as to provide better forecasts.

3.7 ARCH

The ARCH(q) model is proposed by Engle (1982) and defined by

Te = + o4&
t k &t , (3.4)
af = Atoa(rer —p) e Fog(re, — p)?
where &, ~ #7dN(0,1). Hence the volatility o7 ; can be represented by
E((ren = )’ [1) = op = A an(re — )P + -+ ag(rega—g — p)?, (3.5)



where I, is the information set at the end of period ¢. This is an AR(g) model in terms
of (ry — u)®. Therefore, the optimal 1-day ahead forecast of period ¢ + 1 volatility can
be obtained based on the returns on the most recent ¢ days. In general, an h-day ahead

step forecast can be formed as follows:
Gopn = A+ o (Frpnot — )2 + -+ (T g — )%, (3.6)

where Tyip—j = 7iqn—; f 1 < h < 7 and (Frp_j — p)? = &§+h_j if h > j. The selection
of ¢ is an important empirical question. In this paper we choose q using the LM test
proposed by Engle (1982). As in the regression model, we keep the sample size fixed
for the ARCH model. For NZSE40 the LM test picks up an ARCH(9) specification.
After we obtain the daily volatility forecasts across all trading days in each month, we
can calculate monthly volatility forecasts using the expression

Nri1

G =3 67, T =180,..,227. (3.7)
t=1

3.8 GARCH

For the ARCH(g) model, in most empirical studies, q has to be large. This motivates
Bollerslev (1986) to use the GARCH(p, q) specification which is defined as

Ty = [+ O

(3.8)
o = A+ Z?zl a;j(r—j — )’ + E;’:l ﬁj"tz—j-

Define s, = r, — p,m = max{p, ¢}, o; = 0 for i > g and §; = 0 for i > p. Following
Baillie and Bollerslev (1992), the optimal h-day ahead forecast of the volatility can be

calculated by iterating on

m
(}3+h = A+ Z(Qi + ﬁi)6t2+h,i — Bpty — oo — BnWoyp—m, for h=1,..p
=1
m
= At Z(ai + ﬁi)&?—i-h—ia forh=p+1,..,

i=1



62 = &, for0 <7<t

T
62 = ssz‘lg s2, for 7 <0,
i=1

@, = s2— E(s%|I,_)), for 0 <7 < ¢,
w, = 0, forT <0.

With the daily volatility forecasts across all trading days in each month, we can calcu-
late monthly volatility forecasts using expression (3.7).

Again, the selection of p and ¢ is an important empirical question. As in the ARCH
model, the LM test is used to choose p and ¢. The GARCH(1,1) model has been found
to be adequate in many applications and hence is used as a candidate model. However,
for NZSE40 we found a GARCH(3,2) specification is preferred to the GARCH(1,1)
model. Consequently, we also assess the prediction performance of the GARCH(3,2)

model.

3.9 SV Model

The SV model used in this paper is defined by

ri = 0, = exp(0.5h;)e; (3.9)
he= Atahi+o

where &; ~ #idN(0,1),v; ~ #dN(0,02), and corr(s;,v;) = 0. Like the ARCH-type
models, the SV model also models conditional mean and conditional variance by two
different cquations. As an alternative setup to the ARCH-type models, however, the SV
model is supposed to describe financial time series better than the ARCH-type models,
since it essentially involves two noise processes (e; and v;). This added dimension makes
the model more flexible (for further discussion, see Ghysels, Harvey and Renault, 1996).
Unfortunately, the density function for the SV model has no closed form and hence
neither does the likelihood function. This is true even for the simplest version of

the SV model such as the one defined by equation (3.9). It is a consequence of this
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that direct maximum-likelihood estimation is infeasible. Probably due to this reason,
despite its intuitive appeal, the SV model has received little attention in the literature
on forecasting volatility.

Recently several methods have been proposed to estimate the SV model. Such
methods include quasi-maximum likelihood (QML) proposed by Ruiz (1994), simulated
maximum likelihood (SML) by Danielsson (1994), GMM by Andersen and Sorensen
(1996), Markov Chain Monte Carlo (MCMC) by Jacquier, Polson and Rossi (1994), and
the empirical characteristic function (ECF) method by Knight, Satchell and Yu (1998).
Some of these methods, such as QML and MCMC, not only obtain the estimates of
the model, but also produce forecasts of volatility as by-products. MCMC provides
the exact optimal predictors of volatility, however, it is computationally more difficult
to implement. The QML method approximates a logarithmic chi-square process by a
(Gaussian process and hence uses the quasi-likelihood to approximate the full likelihood.
Despite its inefficiency, the QML method is consistent and very easy to implement
numerically. In this paper, we use QML to estimate parameters in the SV model and
obtain h-day ahead volatility forecasts. The algorithm employs a Kalman filter and
the formulas are given in the Appendix. As in the ARCH-type model, with the daily
volatility forecasts across all trading days in each month, we can calculate monthly

volatility forecasts using expression (3.7).

4 Evaluating Measures

We use four measures to evaluate the forecast accuracy, namely, the root mean square
error (RMSE), the mean absolute error (MAE), the Theil-U statistic and the LINEX
loss function. They are defined by

I
1 A2 2
RMSE = ,| - > (62— ad), (4.10)

=1
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I
1 § : -2 2

I (-2 2\2
Theil-U = 2z (0) = o) : (4.12)

I
LINEX = %Z[exp(—a(&? ~ o)) +a(6? — o) 1], (4.13)

i=1
where a in the LINEX loss function is a given parameter.

The RMSE and MAE are two of the most popular measures to test forecasting
power of a model. Despite their mathematical simplicity, however, both of them are
not invariant to scale transformations. Also, they are symmetric, a property which is
not very realistic and inconceivable under some circumstances (see BF).

In the Theil-U statistic, the error of prediction is standardized by the error from
the random walk forecast. For the random walk model, which can be treated as the
benchmark model, the Theil-U statistic equals 1. Of course, the random walk is not
necessarily a naive competitor, particularly for many economic and financial variables,
so that the value of the Theil-U statistic close to 1 is not necessarily an indication of
bad forecasting performance. Several authors, such as Armstrong and Fildes (1995),
have advocated using U-statistic and close relatives to evaluate the accuracy of various
forecasting methods. One advantage of using U-statistic is that it is invariant to scalar
transformation. The Theil-U statistic is symmetric, however.

In the LINEX loss function, positive errors are weighed differently from the nega-
tive errors. If a > 0, for example, the LINEX loss function is approximately linear for
67 — o} > 0 (‘over-predictions’) and exponential for 67 — 07 < 0 (‘under-predictions’).
Thus, negative errors receive more weight than positive errors. In the context of volatil-
ity forecasts, this implies that an under-prediction of volatility needs to be taken into
consideration more seriously. Similarly, negative errors receive less weight than posi-

tive errors when a < 0. BF argue an under-estimate of the call option price, which
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corresponds an under-prediction of stock price volatility, is more likely to be of greater
concern to a seller than a buyer and the reverse should be true of the over-predictions.
Christoffersen and Diebold (1997) provide the analytical expression for the optimal
LINEX prediction under assumption that the process is conditional normal. Using a
series of annual volatilities in the UK stock market, Hwang, Knight and Satchell (1999)
show that the LINEX forecasts outperform the conventional forecasts with an appro-
priate LINEX parameter, a. In this paper, four values for a are used, namely, 20, 10,
—10 and —20. Obviously, a = —10, —20 penalise over-predictions more heavily while
a = 10,20 penalisc nunder-predictions more heavily. BF also adopt asymmetric loss
functions to evaluate forecasting performance. An important reason why the LINEX
function is more popular in the literature is it provides the analytical solution for the
optimal prediction under conditional normality, while the same argument can not be

applied to the loss funetions used by BF.

5 Results

The main results of the paper are presented in Tables 2 and 3. In Table 2 we report the
value and ranking of all nine competing models under the RMSE, MAE and Theil-U
while Table 3 presents the value and ranking under the four LINEX loss functions.
From the examination of Table 2 we note that the RMSE statistic indicates that
the SV model provides the most accurate forecasts while the GARCH(3,2) model ranks
seconds. Despite its simplicity, the random walk model could sometimes offer very
good forecasts within the univariate family. For example, Stock and Watson (1998)
find that for the US macroeconomic series the random walk model performs the best
among many candidate models. However, the random walk model is not a very good
method to forecast volatility of the NZSE40 index according to the RMSE. It ranks
eleventh and is 26.9% less accurate than the SV model. This finding is consistent with

that findings from some other stock markets (see, for example, Brooks (1998) for the
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US market and BF for the Australian market). Another salient feature of the results is
that the marginal difference in the RMSE between the first and tenth position is very
small (3.3%).

The MAE statistic fovours the exponential smoothing model while the SV model
1s now second best. The EWMA models does not perform very well although Tse
(1991) and Tse and Tung (1992) show that the EWMA model is superior in Japanese
and Singaporean markets respectively under the RMSE and MAE. For example, the
EWMA(10) ranks the last and is 40.3% and 38.7% less accurate than the exponential
smoothing and SV models respectively. Unlike the RMSE, the MAE ranks the GARCH
models rather poorly. In particular, the GARCH(3,2) model, which has been ranked
second by the RMSE, is now ranked eighth. It is 31.8% and 30.0% less accurate than
the exponential smoothing and SV models respectively.

Under the Theil-U statistic, only one model performs worse than the random walk
model. This model is the ARCH model and it is evidenced by the Theil-U statistic of
1.1065 which is larger than 1. All the other models have the Theil-U statistic less than
1. The best performer is again the SV model, followed by the GARCH(3,2) model.

The common feature of the above three error statistics is that they assume the
underlying loss function is symmetric. In Table 3 the same models are evaluated under
asymmetric loss functions, where four LINEX loss functions are used (a = 20, 10, —10
and —20).

LINEX with a = 20 identifies the GARCH(3,2) model as the best performer while
the ARCH model and the random walk model provides the worst forecasts. The SV
model ranks a close second. Also note that some models which had reasonably good
performance according to symmetric loss functions, perform poorly according to the
asymmetric loss functions. For example, the exponential smoothing model which was
ranked first by the MAE, is now ranked ninth according to LINEX with ¢ = 20.
It is 5.5% and 4.6% less accurate than the GARCH(3,2) model and the SV model

14



respectively.

When a smaller positive number, 10, is assigned to a in the LINEX function, LINEX
picks up the SV model as the most accurate model while the GARCH(3,2) model
now ranks second. The results suggest that the GARCH (3,2) model tends to over-
predict the volatility. The reason relates to the fact that when a is a smaller positive
number, although the under-predictions are still penalised more heavily than the over-
predictions, the penalty attached to the under-predictions is smaller.

As we mentioned in the previous section, when a is a negative number, the over-
predictions are penalised more heavily than the under-predictions. LINEX with a =
—10 ranks the SV model first. Together with the findings from the positive values of
a, the SV model can be viewed as the most “unbiased” forecast model. This argument
is reinforced by LINEX with a = —20. According to this statistic, the SV model
ranks first once again while the GARCH(3,2) model now ranks fourth. Furthermore,
the marginal differences between the SV model and most competing models increase
as a decreases. For example, the SV model is 0.2%, 2.4% and 3.3% more accurate
than the closest competitor when a = 10, —10, —20 respectively. Moreover, the SV
model is 0.2%, 2.4% and 3.5% more accurate than the GARCH(3,2) model when o =
10, —10, —20 respectively.

In summary, although the SV model has been estimated inefficiently it is the best
model overall. It ranks first by the RMSE, Theil-U statistic and three LINEX functions
and second by the MAE and the other LINEX function. The performance of the SV
model is robust under both symmetric and asymmetric loss functions. Furthermore, the
performance of the ARCH-type models is quite variable. In general, the GARCH(3,2)
model provides more accurate forecasts than both the GARCH(1,1) and ARCH models.
Being a less parsimonious model, the ARCH model is the least accurate model overall.
The performance of the GARCH model, the favorite model in BF, Pagan and Schwert
(1990), Akgiray (1989), and Franses and van Dijk (1996), is sensitive to the choice of



error statistic. For instance, the GARCH(3,2) model ranks second, first, second and
second under the RMSE and LINEX with a = 20,10 and —10 respectively, but ranks
eighth and fourth under the MAE and LINEX with ¢ = —20. The rankings of the
GARCH(3,2) model under the four LINEX functions suggest that the GARCH(3,2)
model tends to over predict the actual volatilities. A seller of a call option who shows
a great deal of concern with under-prediction, would favour the GARCH(3,2) model.
However, the GARCH(3,2) model is dominated by the SV model in all other cases.
Moreover, both EWMA models do not perform well under any statistic, although Tse
(1991) and Tse and Tung (1992) show that the EWMA models are superior in Japanese
and Singaporean markets respectively according to the RMSE and MAE. Finally, no
statistic identifies the simple regression model as a good candidate and it ranks tenth,
fifth, tenth, tenth, tenth, eighth and eighth under the RMSE, MAE, Theil-U, and four
LINEX functions respectively. This finding is in contrast to the Australian results
reached by BF and the UK results reached by Dimson and Marsh (1990), where the

regression model is found superior under the RMSE.

6 Conclusion

This paper examined nine univariate models to forecast stock market volatility of the
NZSE40 index. One of the important models considered here is the SV model. Despite
its intuitive appeal, the SV model has received no attention in this literature. After
comparing the forecasting performance of all nine models, we find that the SV model
is superior according to the RMSE, Theil-U and three asymmetric loss functions.

To use the asymmetric loss function, the selection of an appropriate LINEX param-
eter a is an important empirical question. Unfortunately, to our knowledge, nothing
has been reported about the choice of a sensible range of a. An empirical study in this
regard would be interesting.

All the models examined in this paper belong to the univariate time series family.
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In more recent literature, some multivariate models have been considered to forecast
volatility. For example, Brooks (1998) uses the lagged market trading volume to fore-
cast volatility. However, he finds that the added information cannot improve the out-
of-sample forecasting performance. Whether or not there are some other variables that
are useful to forecast volatility, such as inflation rates or numbers of listed companies,
is another interesting question to answer.

How the size and the liquidity of a market can affect the quality of volatility fore-
casts, we belicve, is also an interesting and yet open question. One would think the
smaller the size of the market the harder the forecast. An international comparison

would be interesting in this regard.

Appendix
The SV model given by (3.9) can be represented by a linearised version without losing

any information,

= In(r}) =h+In(2) = -1.27+ by + 14 (A1)
hi = A+ ahi 1+ ’ |

with E(p) = 0,Var(y,) = 72 /2. If we approximate the distribution of p, by a normal
distribution with mean 0 and variance 7%/2, the linearised SV model can be represented

by a State-Space model. We follow the standard notations of Hamilton (1994).

= Az, +HE 4w
Yi : & : ’ (A.Z)
Ei+1 = F&+ v

with A' = 127+ 2 oy =1, H =1, & =h— 2, F=0a,Q = 0%, R =n?/2

1-a’

Based on the State-Space representation, the Kalman filter can be applied as,

e Initialisation:

S
o , (A.3)
Sie= o;/(1 -0
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e Sequential updating:

étlt = étlt-l + X1 (Bgye—1 + w2 /2) " (y + 1.27 — ﬁ - étlt—l)

, (A4
Thr = D1 — Bye-1(Ege-1 + 7T2/2)_12t|t—1
¢ In-sample sequential prediction:
Evip = a1 + a1 + 223?-1)71(% +1.27- A — ét\tfl) (A5)
X1y = OlQZtn +a?
Grarp = —127+ 2+ ét+1|t (A.6)
El(yer1 ~ P11 (Wer1 — Pe1pe)’] = Seape + 72/2
e Out-of-sample forecasting:
£T+h\T = E(&|lr) = théT\T (A7)
Jranr = —1.2T+ 2 + aflpr
e Smoothing:
étlT = étlt + Jt[gt+1|T - éz+1|z]
Bepyr = Sae + Sy (—Zepar + g ) J] (A.8)
Jo = Tyally,

witht=T-1,T-2,---,1.

The quasi-likelihood is computed by

_ 12 (ye +1.27 — l—fg - ét\t—l)Z

1
In L{a, A, 02) = —3 ZIOB(Em-l +7%/2) 5 Sgr_1 + 72/2

The h-day ahead forecast is computed by (A.7) with the QML estimates plugged in.
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Table 1: Summary statistics of the series and test for nonstationarity

Summary statistics of the entire sample

mean median | maximum | kurtosis

P1

o3

Ps o7

0.002341 | 0.001417 | 0.052157 | 77.94

0.281

0.060

0.146 | —0.025

ADF Test for Unit Root

entire sample sample before 87

sample for 87-97

sample after 97

—a.06 -3.32

-9.63

—11.00

Note: The entire sample is for the monthly volatility of the NZSE40 index
over the period from 1980 through 1998. p; denotes the autocorrelation co-
efficient of order j. The augmented Dickey-Fuller test statistic is computed
as 7 = B/ase(ﬁ) in the model AX; = o+ X, ; + 21;:1 Vi AX_; + e,
where X, represents the monthly volatility of the NZSE40 index (see, e.g.,
Hamilton, 1994). The value of p is chosen by AIC. The 10% critical value
is —2.57. The 5% critical value is —2.86. The justification for using the
Dickey-Fuller table when the residuals arc heteroskedastic and possibly se-

rially dependent is provided by Phillips (1987).

22



Table 2: Forecasting performance of competing models under symmetric loss

RMSE MAE Theil-U

value  rank | value rank | value rank

Random Walk | 0.0059588 11 |0.0018413 6 | 1.000 11
Hist. Average {0.0043990 3 |0.0019505 7 |0.5450 3
MA(5) 0.0044382 5 |0.0016957 3 |0.5547 5
MA(10) 0.0044926 8 |0.0023627 11 |0.5684 8
Regression 0.0045047 10 |0.0018014 5 |0.5715 10
EWMA(5) 0.0044382 6 |0.0016957 4 |0.5547 6
EWMA(10) 0.0044926 9 |0.0023627 12 |0.5684 9
Exp. Smooth |0.0044475 7 |0.0014108 1 |0.5571 7
ARCH 0.0062680 12 |0.0023521 10 |1.1065 12
GARCH(1,1) |0.0044088 4 [0.0020836 9 |0.5474 4
GARCH(3,2) |0.0043870 2 |0.0020676 & |0.5420 2
SV 0.0043576 1 |[0.0014481 2 |0.5348 1

Note: This table lists the value and the ranking of the nine competing
models under three measures. The RMSE is defined by (4.10); the MAE is
defined by (4.11); the Theil-U statistic is defined by (4.12).
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Table 3: Forecasting performance of competing models under asymmetric loss

LINEX LINEX LINEX LINEX
a=20 a=10 a=—10 a=-20
value rank| value rank| value rank! wvalue rank

Random Walk | 7.500179 11 |1.812296 11 |1.762778 11 |7.095735 1
Hist. Average | 4.628158 4 |1.055301 3 [0.891530 3 |3.301720 2
MA(5) 4.766143 7 |[1.080396 5 |0.902394 6 |3.323553 5
MA(10) 4743673 5 |1.091101 8 [0.938119 9 |3.505071 9
Regression 4.830648 10 |1.103775 10 |0.937853 8 |3.486059 8
EWMA(3) 4.766157 8 |[1.080399 6 |0.902397 7 |3.323568 6
EWMA(10) 4743676 6 |1.091102 9 |0.938119 10 |3.505074 10
Exp. Smooth |4.829692 9 [1.080807 7 |0.902277 5 |3.309108 3
ARCH 7.915040 12 | 1.957517 12 |1.999728 12 |8.260344 12
GARCH(1,1) |4.616085 3 |1.056266 4 |0.898714 4 |3.340270 7
GARCH(3,2) [4.5653881 1 |1.045357 2 |0.890249 2 |3.310029 4
SV 4.607941 2 [1.043129 1 |0.868484 1 |3.192824 1

Note: This table lists the value and the ranking of the nine competing
models under the four LINEX loss functions where the LINEX loss function
is defined by (4.13) x 1000.
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