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Abstract

This thesis describes the Operational Harvest Scheduling (OHS) problem and develops an algo-

rithm that solves instances of the problem. The solution to anOHSproblem is an Operational

Harvest Schedule (OHS).

An OHS:

• assigns forest harvesting crews to locations within a forest in the short-term (4-8 weeks);

• instructs crews to harvest specific log-types and allocates these log-types to customers;

• maximises profitability while meeting customer demand.

TheOHSproblem is modelled as a Mixed Integer Linear Program (MILP). The formulation

given in this thesis differs significantly from previous literature, especially with regard to the

construction of the problem variables. With this novel formulation, the problem can be solved

using techniques developed in previous work on aircraft crew scheduling optimisation (Ryan

1992). These techniques include constraint branching and column generation.

The concept of relaxed integer solutions is introduced. A traditional integer solution to the

OHSproblem will require harvesting crews to move between harvesting locations at the end of

a week. However, a relaxed integer solution allows crews to move at any time during a week.

This concept allows myOHSmodel to more effectively model the practical problem.

The OHS model is formulated for New Zealand and Australian commercial forestry op-

erations, though the model could be applied to other intensively managed production forests.

Three case studies are developed for two companies. These case studies show improvements

in profitability over manual solution methods and a significant improvement in the ability to

meet demand restrictions. The optimised solutions increased profit (revenue less harvesting and

transportation costs) by between 3-7%, while decreasing the total value of excess or shortfall

logs by between 15-86%.
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Chapter 1

Introduction

In Xanadu did Kubla Khan

A stately pleasure dome decree:

(Coleridge 1798)

Forestry science is the study of how to harvest trees, use forest resources, and plan the

harvest of the forests to satisfy long-term goals. Modern forestry seeks to provide sustain-

able constant high-quality production, while preserving ecological values. The importance of

forestry can only grow with the increase in worldwide interest in sustainable resources and

climate change.

This thesis is concerned with the planning of short-term forest harvesting operations. This

planning is called Operational Harvest Scheduling (OHS). The Operational Harvest Schedule

OHS assigns forest harvesting crews to locations in a forest in the short-term (4-8 weeks).

These crews are also given instructions detailing which logs to harvest and which customers to

supply. The allocation of logs should satisfy customer orders while maximising profitability.

The next section looks at the motivations to produce betterOHSs .

1.1 Motivation

Harvesting a large forest is a complex operation. There may be a number of harvesting crews

to schedule, and each tree in the forest can be used to make several different types of log.

The types and volumes of logs produced from any location within a forest are governed by
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the size and quality of the trees found in that location. The harvested logs are used to satisfy

various orders from customers, located in a variety of distant places. A good operational harvest

schedule will satisfy the customers’ orders from areas of forest while minimising transportation

costs. Also, areas of the forest with high quality trees will be used to provide high quality (high-

value) logs while lower quality areas will fulfill low quality (low-value) demands, minimising

the conversion of high quality trees into low-value logs.

Operational harvest scheduling can be very difficult. A poor harvest schedule may have

some or all of the characteristics listed below.

• The crews move more often than necessary.
• Large stockpiles of unsold logs are created.
• High quality trees are harvested to make low-value logs.
• There are large transportation costs; because logs are delivered to customers that are lo-

cated far from the area where the trees are harvested.
• Customers are unhappy; because they do not receive the volume of logs that they have

ordered.

Good operational harvest scheduling is an activity where large immediate financial gains can

be found. This is in contrast to tactical planning where gains will be seen in two to three years,

or strategic planning with gains realised thirty or more years in the future (Chapter 2 describes

the hierarchy of plans). The immediate gains of a good harvest schedule are listed below.

• Harvesting costs are reduced.
• Harvesting productivity is increased.
• Larger volumes of high quality logs are produced.
• Transport costs are lowered.
• There is a decreased need to purchase volume from other sources to supply customers.
• The crew movement costs are reduced.

These potential gains have generated considerable interest inOHS optimisation from the

forestry industry. Other gains from good operational harvest scheduling derive from the ability

to accurately predict future harvesting volumes. This implies that sales people can accurately

predict if there is enough volume to meet current orders, or analyse the effects of selling large

volumes of low-value logs versus smaller volumes of high-value logs. Harvest schedulers can

also anticipate, in advance, the resources (harvesting crews, logging trucks, etc) needed to har-

vest the forest and meet customer demands.
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1.2 Chapter description

The details discussed within each chapter are described below.

Chapter 2 discusses the forestry background necessary to understand the OHS problem. This

includes a history of New Zealand forestry practice; silvicultural practices; methods of resource

assessment; forest harvesting techniques; the nature and usage of the logs produced; and the

place of theOHS plan within the forestry planning hierarchy. This background will give the

reader an understanding of both forestry terminology, and techniques used in the thesis.

Chapter 3 expands upon the background given in Chapter 2 and describes the processes and

terminology that must be understood before aOHS model can be formulated. This chapter

describes the decisions that are found within anOHS plan; the nature of the harvest units

considered; the challenges and opportunities presented by generating new yield predictions;

various considerations that stem from the physical harvesting of trees; and the nature of the

market which buys logs.

Chapter 4 reviews the literature in the forestry-planning field. The different time horizons

in forestry planning are discussed along with the interrelationship between the different plans

within the planning hierarchy. This chapter examines a number of different optimisation tech-

niques used to solve forestry planning problems in the literature. OtherOHS solution algo-

rithms given in the literature are examined in detail, including both formulations, and solution

methods used.

Chapter 5 discusses the Linear Program (LP), Mixed Integer Linear Program (MILP), and

Set Partitioning Problem (SPP) frameworks that are used in this thesis to construct the mathe-

matical programming formulation of theOHS planning problem. Following the discussion of

these frameworks, this chapter briefly describes the algorithms used to find the solutions. These

algorithms include the Simplex algorithm, Column generation, and Branch and Bound. Though

full discussions of these algorithms can be found elsewhere (for example Bazzaraa et al. (1990)),

this chapter will prepare the reader for the concepts used later in this thesis in the discussions of

the problem formulation and solution strategy.

Chapter 6 shows the specific formulation of the model used in this thesis to solve theOHS

problem. This chapter evaluates a number of different ways that the model may be formulated,

discussing in depth the formulation traditionally used in literature, and contrasting it with the

formulation found in this thesis. This chapter describes the various constraints in the formu-
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lation and divides them into two sections, namely the Crew Allocation (CA) and Production/

Transportation (PT) sub-models. The similarity between the Crew Allocation (CA) sub-model

and a Generalised Set Partitioning Problem (GSPP) is discussed. The constraints are detailed

and the construction of the variables and the objective function is given.

Chapter 7 describes the extensions to the traditionalMILP formulation used in this thesis.

The discussion focuses on the relaxation of the integer requirements for a solution. The solu-

tion to theOHS plan does not require any variables to be strictly integer, but rather requires

that groups of variables that represent a single crew must be compatible and provide an unam-

biguous interpretation of the crew’s location through time. This chapter also details the extra

requirements placed on the construction of variables that represent a sequence of work for a

crew. These restrictions ensure that the difference between the Relaxed Linear Program (RLP)

solution and the eventual solution is reduced.

Chapter 8 details the specific implementation of the techniques shown in Chapter 5 used

to solve the formulation of the model. Chapter 8 describes: the use ofZIP (Ryan 1980); the

solution of theRLP problem; the details of the specific column generation algorithm used to

generate the crew schedules variables; the branch and bound process that finds integer solutions

that fit the specific definition of the integer solutions; the integer allocation heuristics that are

used to quickly find solutions to theOHS; the generation of new yield predictions for harvest

units as the solution algorithm progresses; and the cause and resolution of end-effects in the

OHS.

Chapter 9 describes the three case studies that were considered in this thesis. The case

studies involve an Australian and a New Zealand company. These case studies were used to

successfully validate the formulation and solution strategies in the thesis; the results were found

in short time and reasonableOHS solutions were obtained. In two of the case studies, a com-

parison of the manual solution to the OHS solution is provided.

Chapter 10, discusses the outcome of the research contained in this thesis. It looks at the

issues of problem formulation; yield prediction generation; the concept of relaxed integer so-

lutions; the solution strategies needed to find these types of solution and the results of the case

studies.
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Forestry Background

Where Alph the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

(Coleridge 1798)

This chapter provides some background to the Operational Harvest Scheduling (OHS) problem.

A brief background of plantation forestry in New Zealand is presented detailing its history and

current practice. The techniques used in forestry planning are then discussed.

2.1 History

Purey-Cust & Hammond (1995) states that the history of New Zealand forestry is divided into

three major planting events:

• the first circa 1920-1935;

• the second from 1960-1984

• the third from 1991 to the present day1.

This paper identifies that the causes of the firstplanting boomwere public concern for the

wasteful forestry practices of the day, and recognition of the inability of native timbers to supply

a sustainable resource for New Zealand’s future needs.
1Planting has dropped from its 1995 peak but it is still relatively high (M.A.F. 2002).
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During the first boom,Pinus radiatawas gradually accepted as the best exotic species to

grow for New Zealand’s general timber needs. Most forests planted at this time were located

on the pumice plateau in the central North Island. The trees planted in this era are commonly

known as theOld crop. There are still a few stands of this era that have been preserved for

historical purposes.

The second planting boom in the 1960s was a response to the identification of forestry

as an important export industry for New Zealand, and a realisation that more planting was

needed to support it. This planting, by both the government and private interests, was distributed

throughout New Zealand and not concentrated in the central North Island as before. In contrast

to the Old crop, improved silvicultural practices were used, such as pruning and thinning, along

with the gradual phase-in of tree stocks improved by selective breeding.

From 1991 onwards, forestry has been a growth industry in New Zealand with new plantings

throughout the country. Small private investors wishing to provide for their superannuation and

recognising the potential of forestry as a future industry drive this new planting.

The conversion of new land to forestry is attributed to the very competitive comparative re-

turns of forestry versus traditional pastoral land uses, such as drystock or dairy farming. Forestry

has become widely recognised as a suitable use for otherwise marginal farming land.

2.1.1 Current situation

Production forests in New Zealand are mostly plantations of exotic species. The primary fo-

cus of silvicultural and forestry practices is to increase profitability. This is in contrast to New

Zealand’s treatment of its indigenous forests, which are managed for conservation and recre-

ational uses. Wood production from indigenous forests in New Zealand is currently very small.

It was limited to 100,000m3 a year as at 2000 (M.A.F. 2002), compared with 18 millionm3

from plantation forests. The volume harvested from indigenous forests (especially on govern-

ment owned land) continues to decrease due to sustainability requirements in New Zealand law

and current strongly opposed public opinion.

Current New Zealand forestry practices are described below.
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2.2 Silviculture

There are a large number of possible combinations of silvicultural practices used to obtain a

final crop. The silvicultural treatments used on a tree throughout its life are known as aregime.

Differences between regimes include the type of seedlings planted, the initial stocking, thinning

choices and pruning practices. Each regime will produce different volumes and products when

the trees are clearfelled. The choice between regimes is determined by the required outcome,

the initial investment of the forest owner, the site where the trees are located, and personal

preferences.

The management practices of plantation forestry in New Zealand are based on the intensive,

even-age, monoculture ofPinus radiata. When harvesting, a section of forest containing 20-30

year old trees (determined by the regime) is clearfelled and then replanted with new seedlings

that are genetically improved through selective breeding. The silvicultural regime of the forest

is commonly targeted to grow high-value timber products for export, so the trees are:

• planted in medium to low stockings;

• pruned to produce high-value butt logs;

• sometimes production thinned.

These practices are detailed in Maclaren (1993), which is a comprehensive manual on current

New Zealand forestry practices.

2.2.1 Planting

The number of seedlings planted per hectare is dependent on the type of regime chosen, and

is known as theinitial stocking. Common initial stockings are between 400-2000 trees/ha

(Maclaren 1993). The ground is cleared before planting by burning or by the use of herbicides.

Seedlings are commonly planted in an approximately square grid of rows and columns.

2.2.2 Thinning

Thinningis the removal of trees before the final harvesting. Often the initial stocking is greater

than thefinal stocking(the stocking at harvest time). The difference between the two is achieved
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through natural losses and thinning. Trees that are chosen for thinning are usually inferior:

either small or malformed.

Thinning can occur at any age. If the trees are removed early (first third of the rotation)

and no logs are harvested, it is called thinning to waste.Production thinningoccurs later in

the rotation when the trees are of a marketable size, and the stems may be sold to customers.

Production thinning is discussed in more detail in Section 2.5.1.3.

2.2.3 Pruning

Pruningis the removal of the lower branches from young trees to increase the quality and value

of the logs produced. The removal of young branches producesclearwood(knot free wood),

in the pruned buttlog (the bottom-most log produced). Clearwood is suitable for appearance

grade uses as it is free of knots.

Pruning usually occurs in several stages (lifts), from about three to ten years after planting.

These stages are timed so that the branches are trimmed early enough to maximise clearwood

while still allowing the tree to grow well.

In NZ, nearly 70% of the final harvest has been pruned (M.A.F. 2002).

2.3 Area description

In order for forest planning to be successful, there must be a way of describing the existing

forest. The first step in this process is to segregate specific areas of forest that share common

properties.

Three ways to classify areas of forest are by:

• crop-types;
• stands;
• harvest units.

The classification used depends on the needs of the application.

Crop-typesare groups of areas that share the same management regime. These smaller areas

are distributed throughout the forest. Therefore, a crop-type is not a single contiguous piece of
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forest. Crop-types are used in strategic planning (see Section 2.7.1).Age-classesresult when a

crop-type is divided based on age.

Stands, or alternatively compartments, are areas of forest that are homogenous with respect

to future management. Unlike crop-types, stands do have a single physical location. Often

stands are used in tactical planning (see Section 2.7.1) and when inventory measurements are

planned (see Section 2.4).

Harvest unitsare defined in this thesis as a specific area of forest that can be harvested

in a single operation. The boundaries of each harvest unit are defined in the harvest planning

process. Harvest planning determines the harvesting operations (see Section 3.4) needed in that

area. A harvest unit is also known as a setting or block (especially in steeper areas). In flat

areas, a harvest unit will be almost identical to a stand or compartment. A harvesting crew is

able to complete a harvest unit without movement or set-up penalties (discussed in Section 3.4).

Harvest units are derived from the stands used in tactical planning. Thus, a harvest unit

should be homogeneous throughout its area and the yields in any part of the harvest unit should

approximate the harvest unit average. In addition, each part of the harvest unit is able to be

harvested using the equipment and harvesting crews specified for the whole harvest unit.

Once these areas are identified, the next step in the planning process is to find an estimate

of the future production of these areas.

2.4 Yield prediction

2.4.1 Some definitions

This section discusses various processes that are used to estimate the future production of a

forest. To describe these processes it is useful to define some concepts and terms.

• Tree: A tree within a forest before it is felled.

• Stem: The section of the tree above ground without branches, also refers to a fallen tree

with its branches removed.

• Stem-description: A physical description of the dimensions and quality of a stem.

• Logs: Sections of stem. Usually cut to sell to customers.
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• Log-type: A specific type of log with quality and dimensional specifications, for a partic-

ular customer and/or use.

• Timber: Boards, fittings etc., that are the products of sawmills.

• Yield prediction: A specific estimate of the volume by log-type that will result when a

harvest unit is clearfelled.

• Standing Inventory: Or simplyinventory, is the trees within a forest before they are felled.

• Cruising: The collection of physical data from the trees within an area, typically by skilled

forestry workers who walk through the forest and measure trees.

2.4.2 Inventory

Some method of predicting future yields from the forest is needed for successful planning.

The accuracy required from these predictions depends on their usage. For instance, estimated

yield predictions for aggregated log groups are used in long-term planning. These long-term

aggregate estimates could be based solely on the management regime. In the shorter-term other,

more accurate, methods need to be used. Methods used to find pre-harvest inventory used in the

OHSproblem and tactical planning are described below.

A forestry company will use a specialist inventory software package to collate, calculate and

present standing inventory estimates. The base data for these estimates are found by cruising an

area of forest. Statistical functions in the inventory package, along with the sampling techniques

used while cruising, allow a sample of trees to be cruised to obtain an estimate of the yield of

the whole harvest unit. This practice reduces the expense of collecting inventory measurements.

Inventory packages can also include models that simulate tree growth. These growth func-

tions can be used to extend the usefulness of inventory measurement, as accurate current yield

predictions can be based on inventory measurements made in the past. The inventory package

will also contain some method to calculate the volume of log-types from the cruised informa-

tion.

2.4.3 Sampling techniques

In most commercial forests, there are too many trees to allow the cruising of every tree consid-

ered in the inventory. Therefore, sampling techniques are applied so that the entire inventory

can be approximated from the data recorded from a smaller number of cruised trees. The sam-
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pling method recommended is to pick sample plots separated spatially and measure only trees

within the plots.

Inventory plotselection can be random, systematic or stratified. Random plot selection con-

sists of locations taken totally at random; systematic schemes place the plots on a regular grid;

while stratified schemes use available information to break the region into homogeneous areas.

These regions could be homogeneous because of the silvicultural technique or site-specific fac-

tors such as slope. The actual trees sampled in the plot can then be chosen by a number of

different methods. These methods determine whether all the trees in the plot or a subset are

sampled.

2.4.4 Growth and other models

Growth models are used to predict the current standing inventory when inventory measurements

were taken some time in the past. These models account for the growth of the trees in the time

between inventory measurement and the eventual harvesting.

Other models that can be used to generate more accurate yield predictions listed below.

• Taper equations estimate the shape of the stem.
• Bark equations estimate the thickness of the bark.
• Breakage equations estimate if and where a stem will break when it is felled.

2.4.5 Yield estimation

Yield estimates for a harvest unit can be generated from three different types of data collected

within the forest.

• Past yield information for similar harvest units is applied to the current harvest units.
• An estimate of log-type volumes is found directly from observation, before harvest, of

sampled stems in the harvest unit.
• Inventory software simulates the bucking process to determine yield predictions from

stem descriptions.

Past information and log-type volume predictions provide log volume data directly and give

fixed estimates of yield. These estimates are based on decisions made at the time of the in-
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ventory measurements. It is possible to include some flexibility in these estimates by allowing

conversion between log-types.

A stem description must be converted into log volumes. ABucking algorithmallows this by

simulating the log making process (see Section 2.5.1.4) on each stem. The bucking algorithm

is applied to each sampled stem in the inventory. It allocates feasible log-types along the length

of the stem. The total estimated yield of the harvest unit is then found by aggregating the log

volumes produced from each of the sampled stems.

A bucking algorithm provides flexibility as several possible yields can be generated for a

single harvest unit. Each yield prediction will represent a different utilization of the resource.

The literature on Bucking Optimisation (Section 4.2.1) discusses in depth the use of this ability

to change yields.

There are three main types of yield prediction algorithm.

• Fixed yield estimates may be altered by log conversions.

• A bucker can optimise value with a Dynamic Program (DP) recursion.

• A bucker can use a priority list heuristic.

2.4.5.1 Log conversions

Past yields and direct estimation of log volumes give fixed estimates of yield. Log conversion

rules and factors can introduce flexibility into these yield predictions. It is assumed that some

logs or groups of logs are interchangeable, thus some or all of the volume allocated to one log

can be converted into volume of another. Typically, the conversion rules allow volume from

high quality logs to be downgraded into lower quality products. This flexibility allows new

yield predictions to be created from the fixed estimates.

2.4.5.2 Dynamic programming bucker

A Dynamic Program (DP) bucker (see Section 5.2.2.1) finds the optimal value of each stem

given a stem description and a description and price for each log product. Common implemen-

tations of these buckers divide the stem into stages along its length. A DP recursion then solves

a longest path problem, to maximise the value of the stem. This is equivalent to a shortest path

problem with the objective multiplied by−1 (note there is no possibility of a negative length
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cycle). The solution to this shortest path problem will allocate logs along the stem. Figure 2.1

shows one possible way to buck a stem into three different logs. See Deadman & Goulding

(1979) for a complete reference.

First Log

End
Large
End Low quality Pulp log

Third Log
Medium quality Sawlog

Second Log
High quality Prunned butt

Small

Figure 2.1: A bucked stem

2.4.5.3 Priority list bucker

A priority list is a common implementation of a non-optimal bucking heuristic. For a detailed

description, see Laroze & Greber (1997). Instead of optimising value over the entire stem, logs

are allocated to each section of the stem using a priority list (an ordered list of possible logs),

without looking ahead. From the base of the stem the bucker attempts to fit logs from the highest

priority log to the lowest. The bucker then repeats the process from the end of the first log, to

find the second log until the end of the stem is reached. There can be various slight alterations

of this process to give a better solution especially in the allocation of the last two logs. These

alterations can involve looking ahead so that the wastage at the end of the log is minimised.

2.5 Harvesting

After the planning process is completed, the forest is harvested (hopefully according to the plan).

The extraction of logs from a harvest unit is accomplished byharvesting crews(or gangs). The

operations, composition, and size of a harvesting crew can vary greatly. Crews canclearfell

a harvest unit, where they harvest all the stems in the unit and leave bare land for replanting.

Alternatively, the crews can doproduction thinning, where only certain trees are selected for

extraction, while the rest are left for future harvesting. Small crews, in thinning operations,

can have a production rate of 50m3 of logs per day, while larger highly mechanized crews, in

clearfelling operations, can produce up to 1000m3 per day.
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2.5.1 Crew operations

In New Zealand crews can be characterised by their type of extraction operation:

• Ground-based crewsuseforwarders, skiddersor bulldozersto move the stems once they

have been felled. These machines move the stems along the ground either by dragging

them with chains or by picking up the stems.

• Cable crewsuse cables and towers to extract stems by attaching them to long winch ropes.

Ground-based operations tend to be cheaper and more productive. However, they are not able

to handle steeper2 harvest units. On the steeper slopes more expensive and less efficient cable

logging operations are used. These operations also have less impact on the soil in the harvest

unit than ground-based operations. The harvest unit topology and soil characteristics determine

which harvest units a particular crew may harvest and its production capacity and cost.

The operation of the crews can be separated into felling, stem extraction and landing oper-

ations. The landing operations are similar in both ground-based and cable logging operations.

Felling and stem extraction operations distinguish the two.

2.5.1.1 Ground-based operations

In ground-based operations, the crews can be highly mechanized and production volumes can

be very high. The large degree of mechanization is possible because the harvest units are on

relatively flat country, so large wheeled or tracked machines can be used, as opposed to steeper

slopes where the ground and soil will not allow these machines to operate.

Figure 2.2 is a schematic diagram of the operational layout for a ground-based operation.

Trees are felled and delimbed (branches are removed) at the felling faces, possibly by large

mechanical fellers(machines that cut down trees). Then they are dragged to the landings by the

skidders. These large rubber wheeled vehicles move the stems with chains and winch ropes or

by hydraulic grippers.

2Slopes consistently over 25◦ are considered steep in New Zealand.
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1. Felling faces
2. Landings
3. Road

Figure 2.2: The basic layout of a ground-based harvest unit

2.5.1.2 Cable logging

Cable-loggingoperations are used when the ground slope is too steep for ground-based opera-

tions. On steeper ground skidder operations cannot be used to extract the stems from the felling

face. Either it will be too dangerous to use a skidder, as it will be in danger of rolling, or the

damage to the soil in the harvest area will be too great if enough earth is moved to make skidder

operations safe.

Fallers (forestry workers that cut down trees manually) on the ground usually carry out

felling in a cable logging operation. Mechanized fellers are not used because they would cause

too much damage to steep slopes. A tower and cable set-up is then used to extract the logs above

the ground to the landing. A bird’s-eye view of the operation is shown in Figure 2.3.

2.5.1.3 Production thinning

In production thinningoperations, a small crew enters a harvest unit perhaps several years before

it is due to be clearfelled, and removes selected trees. The stems are usually chosen to improve

the overall value and condition of the residual trees in the harvest unit. Due to the quality and

size of the stems removed most of the volume in production thinning goes into pulp logs, though

some sawlogs can be recovered.

Almost all production thinning takes place in harvest units that are suitable for ground-
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1. Opposite Ridge 4. New felling face
2. Hauler 5. Landing
3. Fallen stems

Figure 2.3: Cable logging layout

based harvesting, as the entry costs to a cable harvest unit are too expensive to make production

thinning economical. Production thinning is similar to the ground based operations described

in Section 2.5.1.1, using smaller versions of the machines used for clearfelling.

2.5.1.4 Landing operations

The landing is an area of flat cleared land where bucking occurs and logs are stacked before

they are loaded onto trucks.

The size and number of landings in a harvest unit determine the number of crews able to

operate simultaneously in the harvest unit. In most harvest units, only a single crew is able to

operate at any one time. However, in larger harvest units suitable for ground based harvesting,

two or more crews can operate simultaneously. The harvest planning process (Section 3.2.1)

will determine how many crews can work in each harvest unit.

After stems are moved to the landing, alog-makerdecides how each stem should be bucked

to create the logs required. The log-maker measures the physical dimensions of the stem and

assesses its quality characteristics (see Section 2.6.2). These physical and quality characteristics

are checked against the allowable characteristics of the various logs to be made from the stem.

The value recovered from each stem is heavily dependent on the talents of the log maker. A

good log-maker is able to make decisions that maximise the value obtained from each stem. A

poor log-maker will fall short of this ideal.

Parker et al. (1995) has found the efficiency of log-makers also decreases as the number
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of log-types considered increases. As the number of log-types considered increases above ten

significantly more errors are made classifying the stem sections.

Because of the variability of log-makers’ skills, various products exist that can assist the log-

maker. A system of particular interest is theIFRLoggerTM(IFR Logger2002) system (shown

in Figure 2.4). This system consists of electronic callipers that can measure the diameter of the

stem at several positions along its length, together with a system to enter log quality information

into the callipers. A dynamic programming algorithm then determines the sequence of cuts

required to obtain optimal value from the stem. The log-maker marks on the stem the positions

of the cuts that are to be made by skid workers and labels the resultant logs with their grade.

Figure 2.4: The use of IFRLogger in log making

The skid workers use chainsaws to buck the stems into the logs at the points indicated by

the log-maker.

The jobs of the feller, log-maker and the skid worker can be combined in a single mecha-

nized harvesting machine (for example, the Waratah harvesting heads3). These machines scan

the characteristics of the log and use the results of a computer heuristic to determine how to

buck it. Unfortunately, due to high stem variability in New Zealand and Australia, mechanized

harvesting machines can deliver unsatisfactory value recovery if there are many log-type with

tight specifications. However, this may change with improvements in stem scanning technology,

3http://www.waratah.net
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and better predictive algorithms to inform the bucker.

After the logs are made, loaders pick up the logs and stack each type of log into a different

pile. The number and size of these piles limit the number of log-types that can be harvested

at one time. If too many different log-types are made at a single landing, it will become too

crowded as the log piles will take up all the available space. As trucks come during the day,

logs are placed on the trucks by the loaders and taken to the customer. Figure 2.5 shows a loader

stacking logs.

Figure 2.5: A loader operating

2.5.1.5 Super-skids and central processing yards

Alternatives to the landings described above includesuper-skidsandcentral processing yards.

Both of these options remove the landing operations from each individual harvest unit and

transport whole stems from harvest unit to a central location, where they are bucked. A super-

skid can be significantly larger then a normal landing, perhaps up to ten kilometres away from

the harvest units, and able to service several harvest units.

Central processing yards are used by FCF (Fletcher Challenge Forests) in Kaingaroa forest

in the central North Island of New Zealand. In this forest, stems from a large part of the forest

are transported to one of two central processing yards, where the logs are made, then transported
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to customers. One of these yards, the highly mechanized KPP (Kaiangaroa processing plant)

processes 2,000 stems a day, one third of the total production of Kaiangaroa forest. The other

yard is located near the railhead in Murupara. At this yard, stems are bucked manually.

The double handling cost of this method is justified by several advantages. A greater effi-

ciency is achieved because the landing operations are concentrated in one place. An increase in

value recovery is possible when all the stems are bucked centrally. Large numbers of log-types

can be produced simultaneously from stems obtained throughout the forest.

In order for this approach to be viable, vehicles that are capable of moving whole stems are

needed. These vehicles are very long as the stems can be in excess of thirty metres. In New

Zealand, these trucks are able to operate only on private forestry roads.

The logs bucked from the stems are destined for different customers. These customers have

various uses for the logs and require them to meet different specifications. The usages and

specifications are discussed below.

2.6 Log usage and specifications

The aim of a commercial forestry operation is to sell the logs it extracts from the forest to

maximise revenue and profit. There are many different types of logs made, due to the variety

of end uses of wood. The number of different uses is matched by the variation in wood quality

and dimension that is a result of the natural process of tree growth.

2.6.1 Log usage

Logs can be grouped by their end usage. These groupings are:

• Sawlogs;

• Peeler logs;

• Pulp (or Chips);

• Poles.

Sawlogs are used to supply local sawmills or are exported to sawmills overseas. Sawlogs

usually need to meet strict quality and size requirements. These requirements exist because of
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the type of timber products that are made from the logs. There are several different grades of

sawlog and the larger, straighter and most defect free logs attract the highest values.

Peeler logs are required to be straight and long. Other quality requirements are similar to

saw logs. When processed, peelers are rotary peeled on a lathe. A thin layer of wood is cut

from the surface, as a paper towel is pulled from a roll. These logs are used to make veneer and

plywood. The end use of peeler logs varies from high quality defect free veneer to industrial

plywood, which may have defects.

Pulpwood satisfies the paper industry requirements for wood fibre used to manufacture paper

products. As the wood is made into pulp, the logs are of a lower quality than sawlogs. The

physical characteristics of pulp logs are based on ease of handling and the ability of the pulp

mill to process the logs provided. Pulp mills are volume orientated and pulp is the largest single

log-type, at around 24% (M.A.F. 2002) of the total volume extracted from New Zealand forests.

Pulp logs are both the lowest quality log grade and the lowest priced logs. Forestry companies

are often locked into long-term supply contracts to the pulp customers. Unfortunately, if the

forestry company is currently harvesting areas with good quality timber the need to meet these

long-term commitments can require high-value resource to be degraded and sold as low quality

pulp logs.

Poles are a specialised end use and are used to make products including telephone poles and

fence posts. Pole logs are usually extracted from thinning operations and are required to be tall,

narrow and straight.

2.6.2 Log specifications

The specification of logs depends on the particular methods used in the company. Any one

log-type can be classified by a combination of any of these properties:

• quality or grade;

• length and diameters;

• end usage;

• intended customers.
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2.6.2.1 Log quality

Log quality affects the suitability of timber for its end uses. Log quality can be roughly classified

into these groups:

• pruned butt;

• internodal;

• long straight logs, with small branches;

• short straight logs, with small branches;

• swept logs, large branches, out of round etc..

The pruned butt is found at the base of the stem and is the largest log. Pruned trees (see

Section 2.2.3) have had the branches removed up to six meters in height. This results in no

branches on the logs and very few defects in the timber. The pruned butt is suitable for high-

value logs. The demand for clear wood (without defects) sawlogs is driven by requirements for

appearance grade products. Appearance grade products are used for mouldings or other uses.

Knots and defects caused by branches will give an unattractive final product.

Internodal logs contain long sections of clear wood between clusters of branches. These

sections of clear wood are suitable for high-value products.

Straight logs with small branches are suitable for medium value products and can increase

their value with the use of finger-jointing or other technologies in the sawmill. These logs can

be used for timber framing or other structural uses.

Sweep, large branches, severe ovality or other defects cause a log to be unsuitable for all but

low-value products, boxwood for example. These logs are often sold as pulp, or depending on

the degree of defects they may be left as waste.

2.6.2.2 Length and diameters

The length of a log is simply the distance from one end to the other. The two important diameter

measurements are the small and large end diameters (SED, LED) of the log. Figure 2.6 shows

the measurements of an example log and some quality features that are present.
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Figure 2.6: Various measurements used in a log description

2.6.2.3 Intended customer

The intended customer of a log is often an important factor as the specifications for logs can

vary between customers. This has the unfortunate effect that often very similar logs are not

interchangeable because of a specific requirements differing between customers.

2.6.3 Aggregate requirements

Often, as well as specifying the permissible range of values for the log measurements, the

customer may specify that the total order has some aggregate average measurement. This spec-

ification method is often used when there is a wide range of allowable dimensions in the log

specification. The average requirement ensures that the customer does not receive a shipment of

logs that meet minimum requirements with no logs in the middle or higher part of the acceptable

range. In particular, it is common to specify an average SED requirement for an order of logs.

Some customers may require a total volume of a specific grade (with minimum and maxi-

mum lengths) but allow the lengths supplied to vary. The proportion of different lengths within

the order can be given as a range. For instance, an order of export logs may contain both export

long logs and export short logs. The total volume for both these logs together may be fixed

while the export longs may be constrained to make up at least 25% of the final volume, and not

more then 75%. Table 2.1 shows some of the common log grades in New Zealand.
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Table 2.1: Common New Zealand log grades4

Destination Log-type Grade Min SED Max Branch Length Percentage
(cm) (cm) (m) Allowed

Domestic Pruned Sawlogs P1 40 None 3 to 6
P2 30 None 3 to 6

Domestic Sawlog 1 S1,S2 25 7 3 to 6
Domestic Sawlog 2 L1,L2,L3 16 14 3 to 6

Chip logs (pulp) R 8 3 to 8
Export Japanese ‘A’ AL 30 10 12.1 Min 70%

AM 30 10 8.1 Max 30%
Japanese ‘J’ J 20 16 As for ‘A’
Korean ‘K’ KL 20 20 11.1 Min 60%

KM 20 20 7.4
KS 20 20 5.5 Max 15%

China ‘C’ C 18 20 10,8,6,4

Notes:

• The percentages relate to the proportion of the grades in an export consignment of logs. Meeting the high
percentage of long logs is the main difficulty, and therefore longer logs have a premium value.

• Lengths for Japanese A (or N) can include 6 metre or 4 metre with appropriate overcut of trim allowance.

• Korean KM can be down to 15cm SED for specific shipments, while lengths for K can also cover 7.4m or
3.7m.

• US grades usually approximate K grades.

2.6.4 Log price

In the forest industry there are, unfortunately, a large number of different pricing arrangements.

These arrangements depend on the business relationship between the customer and the sup-

plier. The number and variety of these arrangements makes comparing the relative value of logs

very difficult, and can lead to contracts to supply logs that actually lose money for the forestry

company. In general the pricing arrangements are $/m3 or $/tonne. They differ in which costs

of harvesting and transportation are borne by the supplier, and which costs are borne by the

customer. Different possible arrangements are listed below.

• Stumpage (or Royalty) sales- The rights to harvest the trees are sold. Harvesting and

transport costs are paid for separately by the customer. Sometimes customers perform

the harvesting and transport themselves. This situation can lead to complexBuy back

arrangements where the customer only requires pulpwood and not saw logs or vice versa.

4Table and notes taken in full from Hipkins (1995).
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• Roadside sales- The harvesting costs are paid by the supplier and the customer pays the

transportation costs.

• Forest gate sales- The transport costs are split between the supplier and customer. The

supplier pays the portion to the edge of the forest while the customer covers the rest of

the transportation cost separately.

• Delivered sales- The customer receives the logs and pays a single price while the supplier

pays all of the harvesting and transportation costs.

2.7 Forestry planning

We have now briefly discussed New Zealand forestry practices from planting a tree to delivering

logs to customers. Forestry planning overviews and directs these practices. Forestry is a large

primary production industry that requires large amounts of capital investment and a long-term

outlook. Large capital investments are needed for timber harvesting machinery, timber process-

ing plants and the transportation of products. The investments in tree planting, silviculture, and

the opportunity cost of the land used are not recouped until the trees reach maturity5. At harvest,

a wide variety of logs are produced because of natural variability in tree growth. These logs un-

dergo a range of processing, by a large number of different customers (who can be located far

from the forest itself). The customers will have constraints on the volume they can accept and

will be willing to pay a range of prices. The combination of all the above factors has given the

discipline of Operations Research (OR) much to offer the forestry industry.

Modern forestry has now come to depend on quantitative analysis in all long-term forest

planning exercises. An invited review of challenges forOR practitioners, Martell et al. (1998)

comments that “OR has unquestionably influenced forest management”. Martell et al. (1998)

also mentions that certainOR models have been included in California legislation regulating

the long-term management of forest estates. Martell et al. (1998) listsOR approaches that have

been applied to forest operations, fire management, sawmill optimisations, distribution of the

forest products to market and, in the area of particular relevance to this thesis, forest planning.

5Pinus radiatarequires 20-30 years to reach maturity in New Zealand.
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2.7.1 Forest planning hierarchy

Forestry planning operations have traditionally been divided into a hierarchy of plans. This

hierarchy is shown in Figure 2.7, and discussed in detail in Section 4.1.

Marketing

Tactical

Strategic

Harvest

Planning

Operational

Harvest

Scheduling

Operational Harvesting Decisions

Time

60-120

Years

Daily

Detail

Total

Volume

Customers

& Logs

Croptypes

Harvest

Units

Figure 2.7: The forest planning hierarchy

TheStrategic planis the longest term planning model in the hierarchy. With a time horizon

of two to four rotations, the strategic plan considers the long-term sustainability of the forest,

along with questions of land use and silvicultural regime analysis. The results of the strategic

plan indicate aggregate volumes that can be obtained from a forest in the next 1-5 years and the

age-classes that should be harvested, without indicating precisely which stands and compart-

ments will contribute to this volume.

TheTactical plan has a two to five year planning horizon. The tactical plan uses the results

of the strategic plan to determine which actual stands and compartments should be harvested in

the next three to six months. The tactical plan can include environmental constraints and the

cost of road building when it decides on the actual stands and compartments. Tactical planning

is based on aggregate log groupings, and not on the individual log-types for the customers.

TheMarketing plandirects the sale of the available production of the forest. The marketers

should identify the volumes required by the customers in the coming weeks, as well as the sales

price, and any flexibility that the customer has. For instance, customers may be willing to accept
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volume from higher value log-types than they require (downgrades), or perhaps the customers

will be satisfied with less volume than agreed.

Harvest planningoccurs after the tactical plan has identified the stands and compartments

and before they are harvested. As well as determining what kind of operation is required, harvest

planning will determine the details of that operation, the required road building and clearing

operations and the landing sites within the harvest unit. For a ground-based unit the plan of

harvesting will be proposed and for a cable-logging unit the locations and type of machinery

are determined. The harvest plan will also decide on the exact boundaries of the harvest units

(see Section 3.2) which may be different from the stands or compartments found in the tactical

plan.

TheOperational Harvest Scheduling (OHS) plan is the subject of this thesis and is described

in depth in Section 3.1.OHSis the last planning operation to take place in production forestry. It

occurs weekly and decides the schedule for the next week. TheOHSplan is based on decisions

that occur in longer time scales in the strategic and tactical plans. Input information is also

sourced from marketing and harvest planning decisions. Once theOHSplan for a week has been

found, day-to-day operational decisions are based on its results. This is shown diagrammatically

in Figure 2.7.

Literature relevant to the strategic, tactical plans and the OHS is discussed in Chapter 4.



Chapter 3

Problem Description

So twice five miles of fertile ground

With walls and towers were girdled round:

(Coleridge 1798)

This chapter describes the physical characteristics of the Operational Harvest Scheduling

(OHS) Problem. The problem description is specific to forestry operations in plantation forests

in New Zealand and Australia described in Chapter 2, though the general principles can be

extended to other countries’ industries.

This chapter is divided into five parts. Section 3.1 is the overview of the problem where the

decisions made in an OHS are discussed.

Section 3.2 covers the creation of the harvest units, how the choice of harvest units available

to the OHS is derived from other forest plans and how the location of the harvest units affects

other aspects of the problem.

Section 3.3 describes how yield predictions used in the OHS are not fixed but can be itera-

tively modified. The ability to create a better OHS by iteratively changing the yield is discussed,

as well as how different methods of generating yield predictions can affect this process. There

is a discussion of the effects of uncertainty in the yield predictions. The possible interpretation

of prices generated by iterative yield generation is also discussed.

Section 3.4 details the effects of harvesting operations on the OHS problem. It discusses

the productivity and cost of crews. The costs and penalties associated with moving crews are

considered. Once an OHS is created, the crews are instructed to harvest according to that
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schedule. How the results are translated into instructions is described. These instructions should

be easy for the crews to implement in the forest.

Section 3.5 discusses the market forces and demands that drive theOHS. How the cus-

tomers’ demands are communicated to the forestry company is described. The ability to hold

logs in inventory to meet future demand and the transportation of logs to the customers is de-

tailed.

3.1 Operational Harvest Scheduling

Other plans in the planning hierarchy (see Section 2.7.1) give a operational harvest scheduler

information about harvest units and market demands. The scheduler requires information that

details the capacities and costs of the crews and also the yield predictions for the harvest units.

The scheduler uses all this information to produce anOHSfor the coming week.

TheOHS is used in practice to give daily instructions to the forestry crews and to allocate

the production from the forest. Any adjustments to the schedule within the week are reported

and used to adjust the schedules generated for the following weeks.

3.1.1 Decisions made in the OHS

TheOHSdetermines week by week how the forest will be harvested. The physical description

of the harvesting problem is detailed in Sections 3.2–3.5. AnOHS solution will have three

attributes.

• The location of harvesting crews throughout the time horizon is given, i.e., which harvest

units a crew will harvest in each week. The movements and idle periods for the crews are

included in this information.

• The crews are instructed to harvest particular log-types and volumes. This production is

determined by yield predictions for the harvest units.

• The crews’ production is allocated to specific customers. Any shortfall in production to

customers is determined. If necessary instructions are given to purchase logs from outside

the forest to meet customer demand.
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3.1.1.1 Current practice

The OHS problem is currently solved manually in a large number of New Zealand forestry

companies. Typically, a general-purpose tool such as a spreadsheet is used along with trial and

error by an experienced harvest scheduler. The schedules generated by this method are usually

based on the schedule of the preceding week, with changes made only when necessary or when

they give obvious benefits.

Often a schedule that meets the various constraints is difficult to find manually. Customers’

demands may not be met and significant log-stocks could be accumulated through mismatches

of production with demand. More restrictions, or larger schedules, quickly make the problem

impossible to solve.

A computational method that solves theOHSproblem should produce better quality sched-

ules than those produced manually. Promising results are found in literature. Epstein et al.

(1999b) reports a 5-8% increase in net revenues for Chilean forest companies that have imple-

mented an OHS system. In New Zealand, Fletcher Challenge Forestry (FCF) has moved towards

an automated method of generating Operational Harvest Schedules for the Central North Island

forestry estate (personal communication R. Mills, 2001). The use of this system has led FCF

to better regulate the production and allocation of their resources. This system has also allowed

FCF to meet the strict requirements necessary for FSC1 certification. forest researchis also

actively involved in the development of an automatedOHSsystem.

3.2 Harvest units

The OHS chooses harvest units from a set of harvest units that are available in the short-term.

This set of harvest units is derived from the results of longer-term planning processes, the Strate-

gic and Tactical plans. The relationship between these plans is discussed in detail in Section 4.1.

These plans ensure that all of the harvest units considered by theOHScan be harvested within

theOHSplanning horizon.

Inventory information is typically collected within stands not within harvest units. This

is because harvest planning does not define the boundaries of harvest units before inventory

assessment takes place. Therefore, inventory information may need to be adjusted to the bound-

1Forest Stewardship Council.
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aries of harvest units before it is used in the OHS. In many cases, especially in areas suitable

for ground-based operations, stands are identical to the harvest units, but occasionally actual

harvest units may be very different from stands.

Clearfelling a harvest unit fulfills two purposes: to harvest the trees in the unit; and to ensure

the unit is ready for replanting. Though production and market factors are important in theOHS

the operational need to complete a harvest unit must also be considered. A harvest unit must

be completely clearfelled before planting takes place. AnOHSwill ensure that all the harvest

units which have been selected for replanting have been clearfelled by the date required in the

replanting schedule. A good OHS will tend to clearfell most harvest units in a single operation

so that the movement costs for the crews will be minimised. It should not leave a large number

of harvest units partly finished because crews move out of the units before they are completed.

Any movement of this sort will incur additional costs when the crew returns to finish these

harvest units.

Sometimes the order in which harvest units are harvested can become an operational matter.

The vegetation in one harvest unit may restrict the access to another. The second harvest unit

may therefore be harvested only after the first is completed. Another situation that can occur

is when two harvest units are required to be harvested simultaneously, perhaps because the two

units are cable-logging units and the set-up costs can be shared between the two units if they are

harvested simultaneously.

In general, there are three types of possible restrictions in theOHS

• That harvest areaB cannot be harvested before harvest areaA is clearfelled.

• That harvest areaB cannot be harvested while a crew is harvesting harvest areaA.

• That harvest areaA andB must be harvested at the same time.

Although it is not explicitly included in theOHS another common and problematic (for

mathematical programmers) type of harvest unit sequence constraint areGreen-up constraints.

These constraints state that a harvest unit cannot be harvested if it is adjacent to a recently har-

vested unit. These type of constraints have been widely studied in the literature (Section 4.1.2).

McNaughton (1998) in particular is very thorough in investigating these issues.

A green-up constraint can be effective for up to five years, or possibly longer. Decisions on

this timescale are typically considered in the tactical plan (Section 4.1.2), or perhaps in even

longer term plans. In the treatment of the OHS problem in this thesis, it is assumed that some
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longer-term plan will have accounted for green-up constraints. The green-up constraints are

implicitly included in the list of candidate harvest units, so the OHS cannot generate a solution

that will violate these constraints.

3.2.1 Location of the harvest units

A harvest unit is a unique patch of land within the forest that is determined from the harvest

planning process. When harvest planning is complete and the boundaries of the harvest units

are defined, the spatial location of the harvest units and their areas can be calculated accurately.

Yield predictions can be based on these precise areas.

Once harvested, logs are transported to the customers that require them. Transporting incurs

a cost that depends on the distance that the logs are moved. This distance can be calculated

from the road distance that trucks will travel between the harvest unit and the customer. These

distances can be estimated or found from a map or GIS system. Obviously, the cost of trans-

portation will have an impact on the overall profitability of the operations. A good OHS will try

to meet customer demand from the closest harvest unit to minimise transportation costs.

The distances between harvest units can be important when crews move between them. This

issue is discussed in detail in Section 3.4.2.

3.3 Yield generation

The yields of a harvest unit are not fixed. This is an important property of the OHS problem.

The proportions and types of logs made in any particular harvest unit can change. It is therefore

appropriate to find the yield predictions that will give the best solution to the OHS problem.

The accuracy of the solution to an OHS problem depends on the quality of the input infor-

mation. The accuracy of the yield predictions needs to be considered, if the yield predictions

are inaccurate theOHSsolution may allocate logs that are impossible to harvest from a harvest

unit. In contrast to the usage of yield predictions in longer term planning problems, in the OHS

problem only a fraction of each harvest unit is harvested in each period. Therefore, estimates of

variation based on the entire area of the harvest unit need to be altered.
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3.3.1 Changing yield predictions

The quality of the yield predictions greatly affects the solutions to the OHS problem. The

literature on bucking optimisation (Section 4.2.1) and full OHS formulations (Section 4.2.2),

tackles this property in two ways. Either by pre-generating a selection of yields, or by iteratively

generating yields as the solution strategy progresses. A comparison of these two methods in the

literature is found in Section 4.3.

In the discussion below, it is assumed that the yield predictions are generated by a DP bucker

using stem descriptions (see Section 2.4.5.2). This method of yield generation is chosen as it

will give theoretically optimum results if used in an iterative OHS algorithm (see Section 8.5.4

and Cossens (1996)) .

A distinction must be made between the input prices to the bucker and themarket prices

for logs. While theDP prices can be easily altered, the market prices are fixed at the price a

customer is willing to pay. The market price is used when calculating the total profit of anOHS

and does not need to be equal to any of the prices used to obtain yield predictions.

3.3.1.1 Dynamic programming

A yield prediction from a DP bucker can be thought of as a single choice or ‘snapshot’ from all

the possible yields that can be obtained from the harvest unit. If a different set of prices is used

for the log-types in a DP bucker, a different snapshot will be returned.

To further describe this solution feature, imagine the yield predictions are located in a space

where each axis represents the volume of a log-type. Yield predictions form the extreme points

on the boundary of a frontier that indicates the best possible (efficient) uses of the harvest unit.

The yield predictions represent single solutions from the DP bucker. These solutions are discrete

points in this space and do not change continuously with a changing price vector.

Firstly, consider two input price vectors (p1,p2) representing the prices for each log-type.

If one vector is the scalar multiple of the otherp2 = cp1. The yield predictions obtained from

these vectors (the optimal solution to the dynamic program) will be identical. As an optimal

solution(x∗) in theDP for the first price vector

x∗ ∈ arg max
x∈Rn

{z1 = p1x} z∗1 = max
x∈Rn

{z1 = p1x}
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is also optimal for the second

x∗ ∈ arg max
x∈Rn

{z2 = p2x} z∗2 = max
x∈Rn

{z2 = p2x} .

However, the optimal objective value for each price vector will be scaled so thatz∗2 = cz∗1 .

Therefore, the decisions made in the DP are based on the comparison of the relative prices

between competing log-types.

In recognition of this feature, input prices to aDP bucker are known asrelative prices

because the relativity between the log-types is important. If the relativity between log prices is

changed, the yield prediction will change in discrete steps. These changes in the yield prediction

will only occur when the prices change to make alternative decisions viable within the DP. To

illustrate this, consider a yield prediction with two logs-types: a single length of sawlog; and a

single length of pulp. A diagram of a possible frontier is illustrated in Figure 3.1.

Pulp Production /

Hectare

Sawlog Production/

Hectare

Yield Prediction

Frontier

Production

Possibilities

Figure 3.1: The theoretical yield prediction frontier

There is a point on each axis that represents the solution for a relative price vector where one

log-type is at zero value and the other is at a positive value. Therefore, the solution is one log-

type at zero volume and the other at its maximum obtainable volume. If we follow the frontier

from the bottom right to the top left, we observe discrete shifts in the volume by log-type of

the yield prediction. When the price vector is changed so that both log-types have a value, but

sawlogs are favoured over pulp, the yield prediction abruptly changes. The yield prediction
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then shows the maximum volume of sawlogs possible with the left over volume converted to

pulp if possible. The yield prediction will remain at this point, as the price vector changes, until

some new relativity is reached between pulp and sawlog prices. At this stage, another solution

becomes optimal. Eventually when the price vector has a zero value for sawlogs and pulp at a

positive value the solution maximises pulp volume with no sawlogs produced.

This yield prediction frontier is directly equivalent to the convex hull extreme points pro-

duced by a parametric analysis of changing objective function coefficients in an Linear Pro-

gram (LP). This equivalence can be established by reformulating the bucking problem as a

shortest path Network Flow Problem (NFP). The solution to theNFPwill be naturally integer

and therefore equivalent to the solutions from theDP recursion.

An example of this behaviour taken from Ogweno (1995) is shown in Figure 3.2. The non-

linear change in log volumes as a function of price is clearly shown in this example. Note how

as the value of log-type 4 is increased from 75 to 155 no change in the solution occurs. When

the value is increased over 155, the volume of log-type four increases, while the other log-types

begin to decrease in volume.
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Figure 3.2: Effects of changing the value of one log-type on a yield prediction (Ogweno 1995,
pg. 52)

For practical reasons, it can be assumed that the extreme point solutions of the DP can be

linked by a piecewise linear convex curve (the lines in Figure 3.1). Though the DP itself cannot
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find solutions that are continuous, the yields can be assumed continuous in a practical sense.

In practice, if harvest units are assumed homogeneous, a harvesting crew could buck using one

price vector, then change over to another price vector, giving a linear combination of the outputs

from both vectors. The ability to find continuous solutions is required because of the constraints

on log volume in theOHSproblem.

The complete curve is a frontier that encloses all possible solutions to the bucking problem

and all solutions along the curve are efficient. As the DP is guaranteed to produce optimal

solutions, all other feasible solutions will lie within the frontier. All yields must lie within

this frontier including yields generated by priority lists, log volume conversions or stem-class

techniques, such as those found in Eng et al. (1986). These other methods may produce solutions

that are on the frontier but since they are not optimal heuristics, they cannot be used to produce

extreme points.

3.3.1.2 Priority list

The solutions given by a priority list bucker, as priorities are changed, behave similarly to the

solutions to the DP bucker, when prices are changed. That is, the solutions do not vary con-

tinuously and instead form a frontier of points in the solution space. The frontier created by a

priority list bucker is not necessarily convex as the list can be manipulated in ways that give a

lower objective value than a linear combination of two other solutions.

The solution points from the priority bucker also necessarily lie inside or on the frontier

given by the solutions from the DP bucker as solutions given by the priority list bucker are

feasible solutions considered by the DP bucker. As the DP bucker gives the optimal value

solution for any particular set of prices, the solutions given by the priority list bucker must have

objective values less than or equal to the DP bucker solutions.

3.3.1.3 Log conversions

Log conversions also provide solutions that lie within the frontier from the DP bucker. However,

unlike the DP and priority list methods, the conversions may give continuous solutions.



36 PROBLEM DESCRIPTION

3.3.2 Uncertainty in yield predictions

As yield predictions are based on sampled information, they are inherently uncertain. If a well-

designed inventory system does not have a bias, the precision of predictions can be quantified

using statistical analysis. The statistical functions in an inventory system usually report the

uncertainty of the estimates by placing confidence intervals around the predictions2. As the

predictions are typically per hectare estimates of log volume the confidence intervals expressed

as per hectare values as well.

Estimates of total standing volume for a stand tend to be very precise. However, individual

log-type estimates can be imprecise as certain log-types can be very rare and not represented

well in the sample. In addition, as the log volumes are derived from a stem optimisation, the

variability between trees and plots can be large. The optimisation will give extreme point so-

lutions based on specific features of a stem. Therefore, stems that are very similar physically

(perhaps differing only by location of a defect) may have very different bucking solutions.

The confidence intervals on the estimates, are calculated from the standard deviation (ss) of

the per hectare volume estimate over the entire stand. In the OHS, only a fraction of the stand is

harvested in a period. To calculate the precision of the estimate for this smaller fraction of the

stand, the standard deviation over the smaller area (sf ) is found by Equation (3.1).

sf = ss

√
as

af

(3.1)

where:

sf is the standard deviation of per hectare estimates of the fraction

ss standard deviation of per hectare estimates of the stand

as area of the stand

af area of the fraction.

The derivation of this equation is found in Appendix B. It should be noted that the standard

deviation of the per hectare estimates increases as the area harvested decreases.

The variability of the yield predictions though important is not addressed any further in this

2In New Zealand, Probable Limits of Error (PLE) is reported which is the confidence interval expressed as a
percentage of the mean (Fisher 1995).
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thesis.

3.3.3 Analysis of relative prices

Yield generation as discussed above (Section 3.3.1) will also generate a set of prices or priorities

for logs. Though the core outputs of the Operational Harvest Scheduling Algorithm (OHSA)

are the projected production targets from each harvest unit, the prices or priorities used to gen-

erate these targets give important information. Theserelative pricesare distinct from market

prices used to calculate revenues. The following discussion refers to relative prices from aDP

bucker but is also relevant to priority lists.

Relative prices can show the true value of each log-type. Though they are not the true

marginal prices, the relative prices show importance of log-types in the current solution, based

on the demand. For instance, if the market price of pulp is $5 per cubic metre and an offer of

$7 is made for more pulp; is an increase in pulp production economical? If the relative price

for pulp is $11 this indicates that the new price is not high enough to justify extra volume, even

though there is a market price increase.

Relative prices can alter between harvest units. The differences between harvest units can

indicate the changing costs of meeting customer’s demand caused by transportation costs. They

also indicate geographically where theOHSA would prefer to source logs to meet specific

customers.

3.4 Harvesting considerations

The harvesting factors that are directly related to the OHS problem are the capability of crews to

operate in different harvest units and their varying productivity in the units they do harvest. The

type of crew also affects how the crew moves between harvest units and the associated costs.

The output from an OHS will determine the instructions given to crews. How these instructions

are presented is also discussed in this section.
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3.4.1 Crews’ productivity and cost

The productivity of harvesting crews is measured in cubic metres per day (or week). The pro-

ductivity of the crew can depend on several factors:

• the type of crew;

• the size of the crew;

• the crew composition;

• the harvest unit in which they are operating;

• the time of year.

The most important factors are the type, size and composition of the crew itself. As mentioned

previously, cable crews are significantly less productive than ground based crews. Highly mech-

anized crews are more productive than those that are less mechanized and larger crews tend to

have greater productivity than smaller crews. The productivity for cable operations can range

from 50m3 a day for a small crew on thinning to 250m3 per day for an efficient crew. Ground

based operations can range from 50-1000m3 per day depending on the crew and operation type.

The type of harvest unit that the crew is operating in can influence the productivity. This

influence is comprised of several factors.

• The average size of the stems in a harvest unit: larger stems increase productivity.

• The pruning of the trees: lower branches of an unpruned harvest unit can impede crews

especially when production thinning.

• The final stockings of the harvest unit: in lower stockings crews can operate more effi-

ciently as the unit is less crowded.

• The slope of the harvest unit: the weather when harvesting and the soil type in the harvest

unit all affect the productivity.

The effects of some, or all, of these factors are found in work-study information collected by

the individual forestry companies. The method of calculating the productivity of the harvesting

crews is heavily dependent on the type of information that the forestry company has at its

disposal. A forestry company might be limited to predicting its crews’ productivity based on

past performance information. Another may use complex formulae, or computer programs

considering all the factors mentioned.
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Similar to the productivity, the cost of harvesting is determined by the crew and the terrain.

The harvesting crew will usually contract to harvest an area on a $/m3 basis. There have been

some initiatives to provide payment incentives based on value recovered, but the most common

arrangement is to simply pay by volume.

3.4.2 Movement and set-up

When a crew finishes a harvest unit, it will need to move to another harvest unit. When moving,

a crew will stop harvesting, clear its equipment from the old site and set up the equipment in

another harvest unit. This process takes time and may incur costs if trucks or other methods

of transport need to be brought in to move the crew and machinery. The time taken and cost

incurred obviously depend on the type and composition of the crew. A ground-based crew will

be able to move faster with less cost then a cable logging operation. In fact, the costs of moving

a cable logging operation and the time lost make it prohibitively expensive to move a cable crew

before a harvest unit is completed.

Finishing the harvest unit is also advisable for a ground based harvesting crew however,

these crews can be moved early if there is an urgent demand elsewhere. If the crew does leave

a harvest unit unfinished, at some point a new crew will have to re-enter the harvest unit and

finish harvesting so that the area can be replanted. Leaving unfinished harvest units can therefore

affect the long-term profitability of operational harvesting.

The costs and time loss of movement have a fixed component that reflects the costs men-

tioned above. There also is variable component that reflects the distance moved. If the distance

moved is large, the time component of actually travelling can become significant; also the costs

per kilometre to transport the machinery can become important. In many cases the variable

costs and time penalty for the transportation will be small compared to the fixed costs of mov-

ing. Often these distances only need to be taken into account if they are large e.g., when a crew

moves between two forests.

Some types of crews (particularly ground-based) are able to move at any time during the

week. Cable logging operations however, may prefer to move and set up in a new harvest unit

during the weekend. Moving during the weekend is preferable as the entire crew is not idle

while the equipment is moved. Instead, only the members of the crew necessary for the moving

operations will work.
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3.4.3 Instructions to crews

Instructions are given to the harvesting crews that determine, both where the crews will oper-

ate and what they should produce in the coming week. These instructions are interpreted by

log makers when they decide how the stems are bucked into the logs. Typically, these instruc-

tions are a priority list that gives a clear indication to the log maker on how to decide which

log-types are made from the stem. If the crews are using a system similar to IFRLogger (see

Section 2.5.1.4) then each log-type on the list is associated with a relative price (often different

from market prices). The log making system attempts to optimise the value of each stem that is

examined, based on the relative prices. Another alternative is to instruct the crew to produce the

volumes required, and to allow them to adjust the prices and priorities to achieve these targets.

3.5 Market considerations

This section discusses the market considerations that affect the OHS problem. This includes the

representation of demand requirements, transportation of logs, the accumulation of log-stocks

and the ability to transfer volume from one log-type to another by downgrading.

3.5.1 Demands

In the short-term, there are two different demand analyses.

• Capacity planning and marketing analysis occurs when the customers’ orders are con-

firmed and the target volumes are set.

• Operational allocation of the actual production to the customers occurs during production.

Recurring demand (over several periods) could be in several different forms, depending on

the customers’ requirements. A pulp mill may require a constant volume of pulpwood every

week to keep it running at its optimal efficiency. If the pulp mill keeps a large stockpile of logs,

the actual volume delivered each week becomes less important as inventory at the pulp mill will

handle any fluctuations. If the pulp mill wishes to reduce the cost of holding inventory however,

the weekly target volume becomes more important.



3.5 MARKET CONSIDERATIONS 41

Sawlog customers may require changing volumes of different log-types depending on the

timber products the sawmill is producing in the week. Again, if the sawmill keeps inventory,

the target amounts could be flexible.

Export logs are delivered to a port and placed on ships for export. These ships require a

large volume of wood to fill them. As the ships are very expensive to keep in port, the logs are

loaded onto the ship as quickly as possible. In order to quickly load logs onto the ship, logs are

harvested in advance and stockpiled at or near the port before the ship arrives. Therefore, this

volume of sawlogs has to be ready and waiting, before the ship arrives at port. Weekly targets

are not essential, only the total volume required before the ship docks.

Demands may also be expressed as the sum of the delivered volumes of several log-types.

Individual log-types within this sum may be restricted by volume, fraction of total volume,

or log properties such as SED. Examples of these aggregate requirements are given in Sec-

tion 2.6.3.

Ideally, the planned demand targets are achievable and met by the production in each period.

However, if the demand targets cannot be met by production, there must be some way to allocate

the log-types available to the required customers. The demand and production may not match up

for several reasons. The log marketers may have over sold log-types and the forest and crews are

not capable of achieving the volumes necessary in the log-types required. The forest resource

may significantly differ from the estimates used (i.e., the forest cannot produce the volume of

higher quality log-types required). Alternatively, an unforeseen event may have reduced the

production in that period.

Regardless of the reason for the shortfall, the customer demands must be taken into account

and logs can be supplied from external sources, or some customers may go unsatisfied. The de-

cisions made will take into account the relationships with the customers, any financial penalties

for not meeting contracted volumes and the cost of buying logs from a third party.

3.5.2 Log-stocks

Once stems have been bucked, the logs are placed in piles on the landing until they are delivered.

These stockpiles are often referred to as log-stocks. They are usually not called inventory as this

can cause confusion with the usage of inventory to refer tostanding inventory(see Section 2.4).

The total volume of the stockpiled logs across the forest estate can be quite significant and
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therefore represents a large capital expense to the company. Logs placed in log-stocks can

degrade significantly if left for long periods. A common form of log degradation is caused by

sap stain, a fungal infection of the wood that discolours the logs and renders them unsuitable

for appearance grade products.

The financial cost of keeping log-stocks and the associated degradation in the quality of

the log-types are important motives for reducing the volume of the stocks. Log-stocks tend

to accumulate when logs are made at the landing and then not sold to customers. These logs

will then remain at the landing until a customer is found or the logs are degraded into some

other log-type that a customer demands. Cutting logs that precisely fit the customer demand

can achieve reduction in the volume of the log-stocks as the logs are delivered to the customers

quickly and not left to degrade on the landing.

As the landing sites only have a limited area to store logs, it is not possible to store large

amounts of logs at a single landing.

3.5.3 Transportation of logs

Logs are delivered to the customers, who can be quite distant from the forest itself. To minimise

double handling costs, the logs are commonly taken directly from the landings (or super skids, or

central processing yard) where they have been bucked. As the landings in the forest are likely

to be scattered geographically and the price of transporting logs can be large (approximately

$15-$20 per 100km perm3 (M.A.F. 2002)) it is sensible to meet customers’ demands from the

closest site possible. In some cases, this may not be practical because the closest harvest unit

does not contain resource of sufficient quality, or the total volume required by the customer

must come from several harvest units.

In some forestry companies, logs are sold on a stumpage basis (see Section 2.6.4) and the

price of transportation is passed on to the customer. The company may even place a margin on

the transportation cost and thus actually profit if the logs are sourced from harvest units that are

distant from the customer. Though an accounting perspective would indicate the desirability of

supplying customers from these distant units, customers would not be pleased with this solution

and if the company were operating in a competitive environment the customer would soon

change supplier.
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3.5.4 Downgrading

A downgraded log meets the specifications of a high quality log-type, but is instead sold as a

lower quality log-type. There are two ways to downgrade logs in the harvest units.

• A high quality region of the stem could be selected by the log maker to make low quality

log-types

• The already bucked logs on the landing can be substituted for lower quality log-types.

The degrading of stems by the log maker can be simulated by the inventory package (see

Section 2.4). The inventory system can allocate lower quality logs in preference to the higher

quality logs with the manipulation of the relative prices given to the inventory system.

Downgrading of already bucked logs can be achieved either by selling the higher quality logs

as the other log-types directly or, perhaps, trimming old logs to meet the specifications of other

products. For instance, if the required log-types have a lower large end diameter specification

then the logs on the landing, the logs will need to have their large ends removed so that they are

suitable for the new log-type. In this case, the volume of logs degraded will not be equal to the

final volume of the logs sold, as the residual parts of the log will be wasted.

Downgrading of logs, after they are bucked, can be undesirable. Re-grading by generat-

ing new yield predictions can more accurately model the processes that occur operationally.

However, if a large volume of log-stocks is available at the beginning of the planning horizon,

downgrading may be necessary to eliminate these large stockpiles. This was the case in one of

the case studies (see Section 9.5). In this case study, it was beneficial to limit downgrading to

these initial log-stocks. Newly harvested logs were only re-graded through the yield generation

process.
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Chapter 4

Literature Review

And there were gardens bright with sinuous rills,

Where blossomed many an incense-bearing tree;

(Coleridge 1798)

This chapter reviews hierarchical planning systems applied to forestry, and describes the

purpose and benefits of hierarchical planning found in forestry literature. The purpose and place

of strategic and tactical forest planning systems are discussed and examples of these systems

from literature are given.

The literature on Operational Harvest Scheduling (OHS) is reviewed in detail. This litera-

ture includes work onBucking optimisationtechniques that solve a restricted form of the OHS

problem. The problems solved in the literature, the techniques used to solve them and any

results and conclusions are discussed.

4.1 Hierarchical forest planning

It is common practice to divide forest-planning operations into a hierarchy of strategic, tactical

and operational plans. The levels inhierarchical planningare described in Martell et al. (1998,

sections 3.1-3.3), though the authors use the termintermediate range planningto describe what

is referred to as the tactical plan in this thesis.

An earlier paper, Gunn (1991), describes the hierarchical planning paradigm in depth. The

author includes a table of definitions for these plans which is shown in Table 4.1.
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Table 4.1: Characteristics of decision problems in hierarchy (Gunn 1991)

Strategic Tactical Operational
Characteristics Planning Planning Control

Objective Resource Resource Execution
acquisition utilization

Time Horizon Long Middle Short

Level of Top Middle Low
Management
Scope Broad Medium Narrow

Source of External External Internal
Information & Internal & Internal
Level of Highly Moderately Very
Detail Aggregate Aggregate Detailed
Degree of High Moderate Low
Uncertainty
Degree of High Moderate Low
Risk

An interesting feature of hierarchical planning is that all plans include a single common

starting point, the current period. The plans differ in resolution and accuracy of this first period

and the number and length of the other periods in the planning horizon.

While describing hierarchical planning, Martell et al. (1998) comments on the difficulty of

dealing with such a large amount of data and the long time horizons of the plans.

Foresters and their OR counterparts have therefore been forced to a greater de-

gree than those working in many other areas, to address questions concerning the

appropriate level of detail in individual models and decision making processes at

various levels in the hierarchy.

Later the authors include this comment.

Clearly, there is enough here to push hierarchical planning methodologies to their

limits.

The question of transferring decisions and constraints between models within the hierarchy

is discussed in Laroze & Greber (1991) and in Ogweno (1995). In both, the authors describe
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integrated hierarchical planning systems, which encompass strategic, tactical and operational

components. The strategic and tactical plans are formed as linear programming models that

differ in the level of detail considered and also in the time horizon.

Ogweno (1995) presents a hierarchical planning system that includes strategic, tactical, op-

erational and yield prediction components. The strategic planning tool used isFOLPI (Garćıa

1984). The tactical planning tool used is also FOLPI, although the data and constraints are

altered from the strategic plan. TheOHSsystem and the stem bucking optimiser (XCut) were

developed by the author.

In Epstein et al. (1999a), severalOR systems that have been developed by researchers at the

University of Chile are described. The systems are listed below.

• ASICAM: a truck scheduling tool.

• OPTICORT: an operational harvest scheduling system.

• PLANEX: a machine-location and road design system.

• OPTIMED: a tactical planning tool.

• MEDFOR: a strategic planning tool.

The implementation of these systems was supported by both the Chilean forestry industry and

also a government funding body (Fondef). Epstein et al. (1999a) stresses the benefit of these

tools to industry.

. . . , due to the use of three OR systems, Bosques Arauco reports total savings of

(US)$8 million a year over a total annual timber production worth$140 million.

The firm considers its use of these systems a strategic competitive advantage.

Table 4.2 summarises the general characteristics of each problem in the forestry planning

hierarchy.

4.1.1 Strategic planning

It must be noted here that according to Gunn (1991) strategic decisions define the role and nature

of the organisation and the resources that the organisation will have available. These decisions

are made by top-level management of an organisation using a combination of experience, sim-

ulation, and guesswork. In forestry, however, it is common to use the termstrategic planning
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Table 4.2: Characteristics of forestry planning problems

Strategic Tactical Operational
Characteristics Planning Planning Control

Time Horizon 2-3 rotations 5-10 years 2-6 months
Time Periods Years Years /Months Weeks
Decisions Silviculture Harvesting Harvesting

Harvesting Road Building Product Allocation
Land use Environmental

Product usage
Area unit Croptype Stand /Compartment Harvest Unit
Yields Predicted Predicted Cruised

Cruised
Number of One One Many
Yields

(or estate modelling) to refer to the simulation or optimisation of long-term (2-3 rotation) forest

management decisions. These models, according to strict nomenclature, actually make tactical

decisions according to the definition in Gunn (1991). They are used to simulate the effects of

strategic decisions (i.e., resource allocation and capacity expansion) on the profitability of a

well-run forest.

The usual formulation of a strategic plan is to determine the management regime and the

times of harvest of areas within the forest. The areas used in strategic planning areCrop-types.

Crop-types are aggregate areas of the forest of similar silviculture and yield, each crop-type

being further divided intoAge-classes, which are used to determine the maturity of the crop. The

results from the strategic plan determine the area, by crop-type and age class that is harvested

in each planning period.

The strategic planning problem is commonly formulated as anLP, though Martell et al.

(1998) does mention there is still some debate.

. . . despite the prominence of linear programming based models, debate continues

in the forestry community comparing them to detailed simulation models with oper-

ations researchers often coming down on the side of linear programming and forest

mensuration specialists preferring simulation approaches.

Other optimisation approaches apart fromLP have been attempted and a good list is found

in Barros & Weintraub (1982, and references within) but the authors do draw this conclusion.
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However, none of these (approaches) has been implemented regularly. This is be-

cause of the excessive simplification of the real life situation required by the models,

or due to difficulties in implementation.

The standard formulations of strategicLP formulations are described in Johnson & Scheur-

man (1977). Following the nomenclature of Johnson & Scheurman (1977), it has been common

for subsequent authors to describe their models as either a Model 1 or Model 2 formulation.

These models differ in the relationship between decisions on management and harvesting, and

particular crop-types and age classes. Where a Model 1 formulation preserves the identity of

a particular crop-type and age class throughout the time horizon, a Model 2 formulation can

aggregate them at the time of harvest. Garcı́a (1990) presents arevised classificationof the

models presented in Johnson & Scheurman (1977), by describing three different classifications

(A, B and C) that use and clarify the concepts of model formulation.

Examples of stand-alone strategic planning tools are listed below.

• FORPLAN: described in Johnson et al. (1986).

• Spectrum: described in USDA Forest Service (1995).

• MEDFOR: described in Epstein et al. (1999a).

• FOLPI: described in Garćıa (1984).

Manley & Threadgill (1991) presents a case study of the use of strategic planning to give

a valuation of a large proportion of the New Zealand forestry estate that was owned by the

government (and since privatised). The use of a strategic planning tool is described by the

authors as necessary to determine a value for the forests based on discounted expected net cash

flows. This paper quotes from a senior government bureaucrat at the time of the asset sales.

No attempt has been made to determine the monetary benefit of the FOLPI system

in the work reported. . . . It would have been difficult, if not impossible, to complete

the investigations without such an analytical tool.

Within this paper, the authors describe an extension to the traditional strategic planning model

that includes log allocation constraints.
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4.1.1.1 Long-term log allocation

Log allocationconstraints model the market for forestry products. Traditionally the market

model has not been part of the strategic plan, as it is assumed that the market capacity can be

altered on smaller time scales (3-5 years) than the productive capacity of a forest (30+ years).

These constraints are often modelled implicitly in strategic formulations with non-declining

yield or other constraints. Garcı́a (1990) provides a detailed description of these constraints

named “The Utilisation Submodel” and their various uses. The author contends that it is some-

times more appropriate to use these implicit constraints instead of explicit market models.

. . . the development effort and the information requirements can be considerable.

In addition, often the problem details are not sufficiently well defined, as in many

indicative planning studies.

Sometimes it is necessary to include market constraints within a model especially for the first

few periods. The inclusion of a log allocation model in FOLPI is described by Manley &

Threadgill (1987). An integrated approach to strategic planning is described in Barros & Wein-

traub (1982), where decisions on the usage of timber (pulp, sawlogs or export logs) are included

in the strategic planning model.

McGuigan (1984) is an interesting case study of LOGRAM-1 a log allocation model used

to determine the allocation of logs within a conglomerate New Zealand company. This model

did not include the forestry decisions found in strategic plans, as the forest data came from a

simulation model IFS (also described in Garcı́a (1990)). The log allocation model consists of

a simple transportation model that would meet demand while minimising cost. This approach

is similar to Goulding (1974) a very early paper, where a simple log allocation transportation

problem is formulated on an ICL 1904 computer. This report includes an interesting quote that

is applicable to all optimisation models.

Finally, the discipline of having to determine all the factors and constraints that

affect the distribution problem and arrange them in a logical order may be of as

much benefit to the forest manager as the solution to the problem.
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4.1.2 Tactical planning

Tactical planningdeals with medium-term (5-10 years) and resolves the spatial location of the

harvest areas. While in strategic plans the land unit is a crop-type, in tactical plansstandsare

used. A stand has a unique spatial location.

One approach to solving tactical problems is to simply dis-aggregate the large crop-types

in the strategic plan into many individual stands then solve the problem accordingly. Examples

of this approach are found in Papps & Manley (1992) , Laroze & Greber (1991) and Ogweno

(1995). In Papps & Manley (1992) a change in the FOLPI Model (Garcı́a 1984) to include

variable period and age class lengths is discussed as is the ability to aggregate the stands to be

harvested in the short term into crop-types when they are replanted.

An important aspect of tactical planning is the inclusion of spatial constraints. These con-

straints model physical constraints of harvesting or environmental issues. The nature of these

constraints will force a stand or compartment to be harvested or left unharvested depending on

whether other stands in its neighbourhood have been harvested previously.

Spatial constraints based on harvesting requirements can be due to road building consider-

ations or cable harvesting requirements. These constraints are inclusive, forcing a stand to be

harvested when the stands close to it have been harvested. Road building constraints consider

that roads are built to access stands before they are harvested. Once a road has been built to

access an area, it is economical to harvest other stands accessible by the road at the same time.

This issue is addressed in detail in McNaughton (1998, section 3.8).

Literature has focused on the environmental constraints contained in tactical planning. These

constraints are very important in North American forestry in particular and are known asGreen-

up constraints. A Green-up constraint limits the maximum sized clear-cut area permissible in a

forest. One form of a green-up constraint restricts harvesting in stands adjacent to a harvested

stand. A common example of a green-up constraint is the Forest Stewardship Council (FSC)

North American ‘3.1’ standard, where a stand cannot be harvested until its neighbours have

reached a height of 3.1 metres. There are many methods of formulating this constraint, as the

definition of adjacency, area, and regrowth can be altered.

A description of the different types of adjacency constraints can be found in Murray (1999).

Green-up constraints are exclusive adjacency constraints that will work against the inclusive

adjacency constraints, concerning road building and cable harvesting, mentioned previously.
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Adjacency constraints significantly increase the difficulty of finding a solution to the tactical

plan. Unlike the strategic plan, McNaughton (1998, section 2.3) comments that there is no one

method that has been generally accepted for solving tactical plans.

What is curious though, is the wide diversity of methods being advocated even

within established research groups.

From this wide range of methods, the author draws the following conclusion.

. . . not one of the many and varied solution methods has won any degree of widespread

acceptance. This is a strong indicator that FHP (Forest Harvest Problem1) is at

present a challenging unsolved problem. It is certainly true that FHP is at present

unsolved in an optimisation sense.

McNaughton (1998) contains a thorough review of work relevant to tactical planning and

divides the literature into three streams depending on the solution methods used.

• Literature that uses aLP/MILP solution process.

• Literature that uses heuristic (non-optimal) solution processes.

• Literature with multi-stage solution processes, which use more than one solution tech-

nique at different stages.

Table 4.3 is a summary of the classifications found in McNaughton (1998, pg. 24-30).

Table 4.3: The different solution processes for tactical planning problems

LP/MILP Heuristic Multi-Stage
Weintraub & Navon (1976) Nelson et al. (1988) Weintraub & Cholaky (1991)

Kirby et al. (1980) O’Hara et al. (1989) Weintraub et al. (1994)
Nelson & Brodie (1990) Yoshimoto et al. (1994) Borges et al. (1999)
Papps & Manley (1992) Murray & Church (1995b)

Murray & Church (1995a) Weintraub et al. (1995)
McNaughton (1998) Van Deusen (1999)

McDill & Braze (2001) Boston & Bettinger (1999)
Bettinger et al. (1999)

1This is the tactical planning problem.
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Unfortunately, adjacency constraints, though formed as a means of protecting the environ-

ment or recognising opinions of good landscape design, are often considered as an end to them-

selves in the literature. Thus, the literature devotes much effort to find solutions to tactical plans

that do not violate these adjacency constraints, without regard to the actual outcomes. This

situation is commented on in Martell et al. (1998).

OR specialists then focussed on the computational aspects of adjacency constraints

but the extent to which the solutions to their mixed integer programming prob-

lem that include such constraints actually contribute to the preservation of natural

ecosystem processes is not clear.

Martell et al. (1998) continues by reviewing literature which to some extent deals with this

issue either by looking beyond the adjacency constraints in Bevers et al. (1997), or by using

Geographical Information System (GIS) to model these issues in Davis & Barrett (1993).

4.2 Operational Harvest Scheduling

The Operational Harvest Schedulingproblem is concerned with decisions made in the very

short-term (6 weeks to 1 year) within a forest. The decisions detail:

• when harvest units are harvested;

• who harvests them;

• what log-types are made;

• which customers are supplied.

A detailed description of the problem has been given in Chapters 2 and 3. Cossens (1992)

presents a good overview of the issues involved in short-term planning in New Zealand.

There is not a wide range of literature (only 13 papers are included here) discussing the

OHS problem and there appears to be no common set of concepts in the relevant literature.

For this reason, many authors e.g., Weintraub et al. (1993), Murphy (1998) and Ogweno (1995)

describe the problem in detail before they describe their solution strategy.

Most literature surveyed describes the basic unit of a forest as a ‘stand’. In the following

discussion stand is also used to avoid confusion. However, in the body of this thesis stand is
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replaced byharvest unitas in my opinion this is a more precise term. The difference between

these two definitions is discussed in Section 2.3.

The formulations given in the following section will have maximise objective functions

unless otherwise stated

4.2.1 Bucking optimisation

Bucking optimisationis a special case of theOHS problem that is discussed in the literature.

Bucking is the process of cutting a tree stem into merchantable logs. Therefore, the bucking

optimisation problem selects (or generates) yield predictions (Section 2.4) for stands to meet

market restrictions. This problem is a simplification of the fullOHS problem as it does not

consider crew constraints and restrictions.

The need for bucking optimisation work was driven by the realisation that earlier methods

for bucking stems optimised the value of each stem and did not consider the overall demand for

logs. In Eng et al. (1986), the following comment is made.

A stem by stem optimization may thus result in a serious mismatch of volumes of

logs supplied and end-use product requirements, thereby reducing the value derived

from harvesting the forest resource.

Two definitions used in this section need to be clarified.

• Bucking pattern: Is the specific sequence of cuts that make logs out of a stem.

• Cutting strategy: A method of determining bucking patterns when applied to a specific

stem. A list of log-types, a set of relative prices and aDP bucker is an example of a valid

cutting strategy.

4.2.1.1 Early work, Mendoza & Bare, Eng et al.

Mendoza & Bare (1986) and Eng et al. (1986) contributed early work. In both these papers,

the authors independently implement similar iterative methods that use anLP with a yield pre-

diction subproblem. In an iteration, theLP attempts to satisfy the demand constraints with the



4.2 OPERATIONAL HARVEST SCHEDULING 55

existing yield predictions. The dual variables from theLP are then used to direct the subprob-

lem to generate new yield predictions. The subproblem is solved by aDP in Eng et al. (1986),

or modified knapsack algorithm in Mendoza & Bare (1986).

In Mendoza & Bare (1986) and Eng et al. (1986), the yield predictions areStem-classbased.

A stem class is a grouping of identical stems that are not necessarily found in the same stand.

Thus, a specific bucking pattern is developed for each stem-class in the input data. The useful-

ness of a stem-class based result is questionable, as it requires the harvesting crews to classify

each of the stems harvested then use a specific bucking pattern on each. However, the iterative

method described in these papers is used in other papers, (Laroze & Greber (1993) and Laroze

(1999)) as a comparison. This is because the stem class based method provides an optimal

solution to the bucking optimisation problem.

A major difference between Eng et al. (1986) and Mendoza & Bare (1986) is the construc-

tion of the market model. Eng et al. (1986) models the log market in theLP and requires log

prices and demands. The relevant demand constraint is shown in Equation (4.1),

∑
i

∑
j

aijkxij (≤, =,≥) bk . . . ∀k (4.1)

where:

i indexes bucking patterns;

j indexes stem classes;

k indexes log-types;

xij is the number of stems of classj bucked by patterni;

aijk is the associated volume of log-typek;

bk is the required demand of log-typek.

Other literature in this area including Sessions et al. (1989), Cossens (1996), and Laroze

(1999) has taken a similar approach, and the market model is similar to the one described in

Section 3.5.

Mendoza & Bare (1986) on the other hand models the demand for wood products. This

market constraint is shown in Equation (4.2).
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∑
i

∑
j

aijkxij −
∑

p

ykp = 0 . . . ∀k (4.2)

where:

p indexes processing plants;

ykp is the volume of log-typek allocated to processing plantp.

In this formulation wood processing plants are modelled, the products made at these plants

(not shown in Equation (4.2)) appear in the objective function of theLP while the individual

logs (ykp) do not.

4.2.1.2 Sessions et al.

Sessions et al. (1989) describes a system that iteratively adjusts the relative prices of logs until a

cutting strategy is found that produces the required target volumes from a single stand. Sessions

et al. (1989) solves the yield prediction sub problem by a shortest path algorithm. The use of the

same algorithm in the field is also discussed to ensure actual production will meet the projected

targets.

In Sessions et al. (1989), stems are not stratified into stem-classes before the solution process

begins. Therefore, the entire stand uses a single cutting strategy, instead of stem-class based

bucking patterns. The authors justify this change in concepts as follows.

We seek a solution that can be readily implemented in the field regardless of stand

complexity.

Specifically, the paper uses a binary search to find a price multiplier, for longer (over 24 foot)

logs, that ensures the production of long logs. In an unrestricted solution, short logs are favoured

because the Scribner scaling rule (Dilworth & Bell 1984) is used.Log-scalingis the method

used to measure log volume, and therefore price. The Scribner rule calculates log volume based

on a cylinder with the log’s small end diameter. Therefore, the total volume (and revenue) from

two short logs exceeds the volume of a single log cut from the same stem.

To obtain 80% of the harvested volume in longer lengths, the price of the long logs is in-

creased in the sub-problem. The answer found by the heuristic presented compares favourably



4.2 OPERATIONAL HARVEST SCHEDULING 57

with the optimal solution from an integer programming formulation ($715 in the heuristic, $716

in the IP).

However, Sessions et al. (1989) does not address the possible failure of the system if the

demand restriction could not be met with a single cutting strategy. The behaviour ofDP yield

predictions under relative price changes is discussed in detail in Section 2.4.5 and in various

literature (Ogweno (1995),Cossens (1996)). This discussion shows that the yield of any single

log will change discontinuously as the relative price changes. Therefore, it may be impossible

to find a single price that produces a result near to the required figure. This discontinuity is not

a problem in the example given in Sessions et al. (1989) as the alternate logs differ in length,

and no two logs can be substituted exactly for each other.

4.2.1.3 Laroze and Gerber

Laroze & Greber (1993) describes a method that generates priority list bucking instructions (see

Section 2.4.5.3) for a stand, instead of bucking patterns for a stem class as in Eng et al. (1986),

or prices as in Sessions et al. (1989). Laroze & Greber (1993) contends that the bucking patterns

given in Eng et al. (1986) are not practical.

Another drawback of this method is its lack of a pre-specified action when the stem’s

actual taper, grade or breakage does not allow the realisation of the expected log-

type.

The authors also comment that a priority list method will work better in practice because the

cutting strategy approach in Sessions et al. (1989), based on an optimal bucker, requires detailed

measurements of each tree.

. . . when applied to smaller trees in an intensive production framework the gains in

revenue may not compensate for the increase in production costs implied by this

method.

In Laroze & Greber (1993), a method that usesMonte-Carlo simulation(Rubinstein 1981)

is applied to a bucking optimisation problem. The problem includes 23 stands ofPinus radiata

in Chile, and 8 different sets of market constraints (relating to the proportions and specifications

of export logs) for 6 log-types (long, intermediate and short export logs, two domestic sawlogs
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and domestic pulp logs). The method described individually maximises profit foreachstand

while requiring thateachstand meets export requirements. These export requirements included

minimum SED for the stand and restrictions on length proportions.

Laroze & Greber (1993) describes three different Monte-Carlo simulation methods that as-

sign priority lists to the stands. Priority lists generated in the simulation alter the following

specifications for export logs:

• minimum end-diameter;
• maximum number of logs from a single stem;
• quality classes allowed.

Domestic log specifications were not altered, nor were the position of log-types in the priority

list.

The results from the simulation compared favourably (within 3.5% on average) with the

solution of an integer programming shortest path formulation similar to Eng et al. (1986). An

integer programming formulation (wherexij is integer (Equation (4.1)) was used as Laroze &

Greber (1993) reasons that a single bucking pattern for each stem class will

. . . represent the likely outcome to be obtained from a mechanized harvester en-

hanced with optimal bucking features, or from optimal-bucking machinery imple-

mented with a scanner in a sort-yard.

Laroze & Greber (1993) compares the reduction in profit between theLP and the IP formulation

and finds a difference of 1.07% or less in all cases. The similarity of theLP and IP solution

values is attributed to the structure of the problem. The authors also note that the column

generation procedure used does not necessarily generate all the bucking patterns needed for an

optimal IP solution.

The IP solution is compared to the simulation and the following statement is made.

The MC (Monte-Carlo) bucking pattern is characterized by its consistency across

diameter and quality classes: in fact, it is possible to derive the underlying rules

from the pattern. The IP bucking pattern can be characterized by its irregular

behaviour but also by its ability to take advantage of the JAS (Japanese Agricultural

Standards) cubic-volume log scale and its sensitivity to profit differentials due to

quality.
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In conclusion, Laroze & Greber (1993) describes the success of the system and states that it

has been implemented, but also note that the Monte-Carlo simulation may not be sophisticated

enough to handle more complicated market constraints. This paper however, fails to mention

that the position of the log-types on the priority list could become increasingly important with

an increasing number of log-types, as seen in Epstein et al. (1999b). The system described does

not change these priorities. As Laroze & Greber (1993) presents a stand-based solution, there

is also no ability for the shortfalls of a particular stand to balance excesses of another.

In Laroze & Greber (1997), the authors revisit their earlier case study (though with slight

differences in the figures). This time aTabu search(Glover & Laguna 1993) is used to alter the

priority list for each stand. The properties altered are the same as in Laroze & Greber (1993).

The performance of the Tabu search is an improvement on the Monte-Carlo simulation. The

average difference in solution value between the IP and the Tabu search is 2.4% compared with

a 3.5% difference described in Laroze & Greber (1993). Laroze & Greber (1997) makes similar

comments to Laroze & Greber (1993) when the bucking patterns generated by the Tabu search

and the IP solution are contrasted. The similarity may indicate that the differences are caused by

the use of the priority list bucking process rather than the method used to generate these priority

lists. However, the Tabu search still optimises each stand independently.

In Laroze (1999), a model is developed that solves the forest level bucking optimisation

problem. In contrast to the author’s previous work (Laroze & Greber 1993, Laroze & Greber

1997) this paper considers the total production of all the stands in the problem to meet the mar-

ket constraints. The Tabu search method in Laroze & Greber (1997) is used to generate the

priority lists that give the yield predictions. In the introduction to Laroze (1999) the author

acknowledges that operational limitations (to do with crew allocation), that limit the area har-

vested at any one time are not considered. If these limitations were considered, fewer stands

would be available for harvesting at any one time.

The example problem is the same one found in Laroze & Greber (1993) and Laroze &

Greber (1997). Again, a method based on Eng et al. (1986) is used for comparison. However, a

linear programming approach is used, rather than the integer program seen in Laroze & Greber

(1993) or Laroze & Greber (1997). The formulation is altered to include multiple stands, which

requires the additional constraint shown in Equation (4.3) (note, the indices have been changed

to remain consistent).

∑
j

xsij ≤ Nsj . . . ∀sj (4.3)
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where:

s indexes stands;

Nsi is the number of stems in stands, classi;

xij is the number of stems of classj bucked by patterni.

TheLP in the Linear Programming/ Tabu Search (LP/TS) method in Laroze (1999) is sim-

ilar to theLP derived from Eng et al. (1986) but is area based instead of stem based.

∑
sp

υsp(m)yip ≥ Vm . . . ∀m

∑
p

ysp ≤ Ss . . . ∀s (4.4)

where:

p indexes bucking rules;

m indexes markets;

ysp is the area of stands bucked with rulep;

υsp(m) is the volume produced for marketm in stands using bucking rulep

per unit area;

Vm is the total volume required for marketm;

Ss is the area of stands.

In contrast with the method in Eng et al. (1986), the Linear Programming/ Tabu Search

(LP/TS) method presented in Laroze (1999) is not an iterative algorithm. Instead, 11 different

demand scenarios (including domestic only and pulp only) are presented to the Tabu search

algorithm given in Laroze & Greber (1997), which generates 11 different yield predictions for

each stand. From these pre-generated yield predictions, theLP selects the best combinations

to satisfy overall market demand. Laroze (1999) presents a number of different tests for the

solution method.

• The number of alternative yield predictions is altered.
• The demand restrictions are altered.
• The relative areas of the stands are altered.
• The prices of the logs are altered.

The results of these tests are straightforward and are explained in detail. An increase in the

number of yield predictions considered increases the value of the solutions given by theLP, to
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within 2% of the optimal solution from theLP/SP method. The increase from 3 yield predictions

to 11 only improves the objective from 1-1.5% in the examples given.

Laroze (1999) states that there is a tendency to select only a single yield prediction per stand.

. . . as a direct consequence of the problem’s nature that does not permit the LP

solution to present a larger fragmentation: the number of basic activities cannot

exceed the number of constraints.

The author defines fragmentation as the number of yield predictions used in the solution com-

pared to the number of stands. It is interesting to note, that when the paper analyses the frag-

mentation of the solutions to the problem, in 10 out of the 13 scenarios considered there were

exactly 27 yield predictions in the optimal solution, while 24 yield predictions were used in

the case with no specific demand constraints. Though not discussed in Laroze (1999), it can

be speculated that the three extra yield predictions are needed for the three constraints in the

demand restrictions. The shipment requirements may not require any extra yield predictions

possibly because of the nature of the generated yield predictions.

With more complex demand restrictions the number of required yield predictions, and there-

fore fragmentation, may increase dramatically, especially when the number of available stands

is reduced because of crew capacity requirements. Laroze (1999) draws the following conclu-

sion.

Consequently, there would not be a significant loss in global profit if a reduced

number of bucking alternatives were considered in the LP model, as long as the

activities included are stand-level efficient instead of general purpose bucking rules

not designed for specific stand conditions.

This conclusion may only be valid for simple demand restrictions. For more complex demand

constraints, the number of yield predictions used in the solution may increase substantially An

example of this behaviour is found in Epstein et al. (1999b) where in one solution 51 yield

predictions are used for a single stand.

4.2.1.4 Cossens

Cossens (1996) presents a forest wide, multi-period, bucking optimisation model that uses a

decomposition method similar to Eng et al. (1986). However, unlike Eng et al. (1986), the yield



62 L ITERATURE REVIEW

predictions are not stem based. The yield predictions are generated by Method of Assessment

of Recoverable Volume by Log-type (MARVL ) (Deadman & Goulding 1979), a New Zealand

inventory system that uses aDP bucking algorithm.

The method and model presented in Cossens (1996) is similar to that in Laroze (1999) with

two important differences; the method is iterative, and aDP yield prediction is used. Impor-

tantly, Cossens (1996) also presents a method for calculating the upper limit on the solution

value.

The formulation described in Cossens (1996) is very general and does not give the exact

constraints that are implemented. The problem is formulated as aDantzig-Wolfe decomposi-

tion (Dantzig & Wolfe 1960). The restricted master problem (RMP) models the resource and

demand constraints, and the sub-problems are the generation of the yield predictions for each

stand.

The yield predictions generated byMARVL are obtained from a cutting strategy with a set

of transfer prices (or relative prices) generated from the dual variables of the Restricted Master

Problem (RMP). If the RMP has includes the volume of each log-type asxstmp with a cost

coefficient ofcstmp and demand constraints of the following form.

∑
smtp

aismtpxstmp = bi . . . ∀i

where:

xstmp is the volume of log-typep sent to millm in periodt from stands;

aismtp are the coefficients of each demand constraint;

bi is the RHS coefficient for constrainti.

The relative prices for the sub problemcstmp, are then found with Equation (4.5).

ĉstmp = cstmp −
∑

i

πiaismtp (4.5)
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where:

cstmp is the revenue for log-typep to mill m in periodt from stands;

ĉstmp is the relative price used inMARVL ;

πi are the dual variables for each demand constrainti.

The yield predictions are added to the RMP as a new proposal, and the problem re-solved.

There are two test cases reported in Cossens (1996). In the larger of the two there were 4

stands, 7 log-types and 4 mills. Minimum demand constraints were considered along with trans-

portation cost from stand to mill. The solution process was terminated within 3 to 4 iterations

when the objective was within 0.24% of the upper bound. Ninety-nine percent of solution time

was spent in the yield generation subproblem. The size of the example problems was probably

limited because the author needed to manually generate the input matrices to theLP solver, and

transfer the data to MARVL.

4.2.2 Full OHS formulations

The full formulation of theOHS problem adds crew allocations to the bucking optimisation

problem discussed previously. The addition of crew allocations adds complexity to the deci-

sions, as only a limited number of stands can be harvested at any particular time. Harvesting

crews are indivisible units, therefore anLP solution is unrealistic as the crew’s location at

any one time is ambiguous. When crews are considered, multi-period formulations track crew

movements through time. The movement costs and penalties for crews affect profitability and

production. In the discussions of the literature below, the particular details that are included in

the various formulations are described. Further explanations of these details can be found in

Chapter 3.

4.2.2.1 Ogweno

Ogweno (1995) presents in his PhD thesis a hierarchical planning system that includes strategic,

tactical, operational, and yield prediction components.

Within the presented planning hierarchy, theOHS system (termed the operational log al-

location model) contains 13 periods of a week each. The stands considered in the quarter are

generated by the most recent period in the tactical plan (short term tactical plan).
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Ogweno (1995) formulates theOHSmodel as an integer-programming problem. The prob-

lem is constructed by a PROLOG program (Clocksin & Mellish 1994) and then solved using

LINDO (Schrage 1991). The integer programming formulation allocates crews to stands in each

period, and movement costs are included when a crew moves from one stand to another. The

harvesting capacity of the crew is included, as are the areas of the individual stands. Inventory

can be carried between periods, but there is no provision for transportation costs for logs be-

tween the stands and the markets. A goal programming formulation is also presented that can

help in the resolution of infeasibility.

The major difference between the Ogweno (1995) formulation and others in the literature

(Weintraub et al. (1993),Murphy (1998)) is the calculation of yield predictions. It is common,

in other systems in this literature survey, to generate yields based on the simulated bucking of

sampled stems. In Ogweno (1995), the predicted volume of the stand is divided intoquality

classes. The quality classes are then allocated to specific log-types in the optimisation.

Quality classes represent aggregations of actual log-types, which are chosen to represent

mutually exclusive subsets of log-types. Ogweno (1995) determines the volumes in these qual-

ity classes in the following manner.

• Log-types are grouped into quality classes, based on quality requirements and dimensions.

• The quality class itself is created as a log-type that is inclusive of its component log-

types. Thus, a log of the quality class can be converted into a log of each of its component

log-types.

• These quality classes are then ranked by their quality requirements i.e., the most stringent

quality class is the highest.

• A heuristic, that sets prices, and the author’s bucking simulator (Xcut) are used to deter-

mine the maximum volume of each class, effectively using a priority list bucking method.

This process and the final allocation to the log-types are shown in Figure 4.1. Note, this diagram

was not included in Ogweno (1995) but was created by myself.

Actual log-type volumes are determined by constraints in the model formulation. The in-

dividual log-type volumes can be met either from volume within the log’s quality class or by

volume downgraded from higher quality classes, as shown in Equation (4.6)

qnit + gnit − lnit −
∑
j∈Jn

xijt = 0 ∀int (4.6)
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Figure 4.1: Yield calculation in Ogweno (1995)

where:

i indexes stands;

j indexes log-types;

n indexes quality classes;

t indexes periods;

Jn is the set of logs in quality classn;

qnit is the yield of quality classn in standi, periodt;

gnit is the volume of material down graded from quality classn− 1 to n;

lnit is the volume of material down graded to quality classn + 1 from n;

xijt is the volume of log-typej produced from standi, periodt.

In Ogweno (1995) the projected log-type volumes from theOHS system determines an

appropriate cutting strategy to be operationally implemented. The method presented in his thesis

uses stand volumes and generates a single cutting strategy that produces required volumes by

altering the acceptable features and min SED requirements. This is known asoutturn control.

Interestingly, the prices are not altered.

The determination of a single cutting strategy after theOHShas been optimised is an inter-

esting approach that is not mentioned in other literature. In otherOHS systems (Epstein et al.

(1999b) or Laroze (1999)), the required production from a harvest unit can be an aggregate
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of several different yield predictions. When operationally implementing a solution it may be

difficult for harvesting crews to reconcile the varied cutting instructions.

Ogweno (1995) presents a case study using the hierarchical planning system. The case study

for theOHScomponent is very limited, possibly because of the computational requirements to

solve the integer program. The case study only includes 2 stands and 3 crews (one of which

is forced to be idle). Eight log-types are considered and these form 4 quality classes. The 13

periods considered is however reasonably realistic. Because of the small size of the problem,

the claim that the IP formulation is ‘tight’ because the IP solution is within 0.1% of the optimal

LP solution is not convincing. The results of the outturn control method are also presented

as successful with most volumes being within 5% of those projected, though again the small

number of log-types considered does cast doubt on this conclusion.

The log-types considered in Ogweno (1995) do not include any fixed length requirements.

Once fixed lengths, and more complicated log-types are added, some of the assumptions in

Ogweno (1995) that underlie the quality class model of stand yields become problematic. The

extra complications will make the creation of the quality classes themselves difficult.

In Ogweno (1995) there is an implicit assumption that a single downgrade path through all

the quality classes exists (i.e., the volume from each quality class can be downgraded to all

classes below it). For large numbers of more complex log-types this assumption is not valid.

Xcut in some cases is encased in a price generation heuristic to guarantee yields similar to

a priority list. Therefore, the inclusion of a priority list bucking simulator similar to those in

Laroze (1999) and Epstein et al. (1999b) would also be interesting in this system.

4.2.2.2 Murphy and Boston

Murphy (1998) describes a single periodOHSmodel that uses Tabu search (Glover & Laguna

1993) as the solution methodology. The Tabu search heuristic allocates crews to stands with

some associated yield predictions. Certain stand and crew combinations are banned, as crews

can only operate in the stands where they have suitable equipment. In addition, Murphy (1998)

usespreferred standsto indicate the present position of the crew at the beginning of the model,

if a crew is not allocated to its preferred stand movement costs and penalties are applied.

Murphy (1998) details tests of the model on problems ranging from 10-60 stands, 5-10

crews (with some ability to change the maximum crews per stand), 5-8 cutting strategies and 5-
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29 log-types. The solution process compared favourably with the IP solution of small problems,

reaching a solution within 0.8% of the optimal IP value. This solution process was tested with

variations on the Tabu value and the initial starting solution process.

Interestingly, Murphy (1998) comments about the accuracy of the data used to generate this

solution and notes

. . . the errors associated with the data inputs are at best of the same order and at

worst one or two orders of magnitude greater than the difference between the best

Tabu search optimum and the theoretical optimum.

This treatment of the errors in the input data is rare in other literature, though in my opinion

particularly important for this problem.

Murphy (1998) mentions the effect of constraint ‘tightness’ on problem complexity. When

the heuristic was tested on a real world data-set of 29 log-types with maximum and minimum

demand constraints on all, it was unable to find a feasible solution. Perhaps the example problem

was in fact infeasible using only the 5 cutting strategies considered, though it might have been

feasible if a larger set of cutting strategies were used. It seems the type of feasibility problem

illustrated in Murphy (1998), has led to the complicated column generation procedures found

in Epstein et al. (1999b) and various bucking optimisation literature.

In Boston & Bettinger (1999), a forestry system is described that includes spatial inventory,

logging activity (real-time harvest information system), and operational harvest scheduling. The

OHSsystem seems very similar to the system in Murphy (1998). Additions to the formulation

include the addition of multiple periods, log-stocks, and the ability to procure logs from out-

side sources. Boston & Bettinger (1999) uses Tabu search, but includes a genetic algorithm as

a meta-heuristic to find better solutions following a procedure found in Glover et al. (1995).

Boston & Bettinger (1999) reports that the procedure finds solutions between 96-99% of the

optimal solution value, this is 2% improvement over a Tabu search only approach.

The formulations found in both Murphy (1998) and Boston & Bettinger (1999) are very

similar to the formulation used in this thesis and discussed in Chapter 6.
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4.2.2.3 Weintraub and Epstein

Work on theOHSproblem has also been contributed by a group in the University of Chile. In

Weintraub & Cholaky (1991) an integer-programming problem is described that decides:

• when to enter (begin harvesting) stands;
• the type of logs harvested from a stand;
• the allocation of these log-types to customers.

The integer variables control only the entry and preparation costs of the stands, though the

authors mention that this requirement often leads to an integer solution for the crew locations.

The problem typically covers 3 months (4 one week periods, and two month-long periods).

Harvesting capacity is constrained and total log transportation is limited by the number of

trucks available. The demand for log-types is modelled in detail including transportation costs,

demand levels and product specification instructions. Weintraub & Cholaky (1991) states that

there are typically over 100 log-types defined. Yield predictions are produced by a product

simulator that is company specific. The product simulators simulate the application of a priority

list (Section 2.4.5.3) bucking pattern to the stand. This approach to yield prediction is common

to all later Chilean work.

Weintraub & Cholaky (1991) solves theLP relaxation and then uses heuristics to find an

integer solution. Difficulty is reported with the size of the model (386 PCs are used), and the

generation of appropriate yield predictions. No case study results are published.

In Weintraub et al. (1993), an alternative method to the integer programming formulation

in Weintraub & Cholaky (1991) is described. Here, expert systems (Harmon et al. 1988) are

used in the solution process. Two different systems are described. One uses expert systems to

determine crew and log-type allocations and to generate the necessary yield predictions. The

other system uses anLP to make the allocation decisions and an expert system to generate yield

predictions based on theLP dual variables.

The LP/ Expert system is similar to the iterative process described in Eng et al. (1986),

where theLP solution to the crew/log-type allocation problem is used to direct the expert system

to produce new yield predictions. As the yield predictions in Weintraub et al. (1993) are based

on priority list bucking simulations, the dual variables from theLP cannot be used directly to

generate yields as in Eng et al. (1986). The number of log-types considered in Weintraub et al.

(1993) is much greater then that considered in Laroze (1999) and therefore the expert system
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determines both the inclusion and position of log-types on the priority list. However, Weintraub

et al. (1993) does not change the log-type requirements (minimum SED, and quality required)

in the priority list, so some of the flexibility of the approach in Laroze (1999) is lost.

The most impressiveOHS system described in the literature is OPTICORT which is de-

scribed in Epstein et al. (1999b). This system uses anLP to allocate production capacity to

stands. Cutting strategies and yield predictions are generated in an iterative fashion. While the

full OPTICORT model (not detailed in the paper) does allow the inclusion of different types of

machinery to harvest particular groups of stands (e.g., cable crews on steep country) it does not

appear to unambiguously locate the crews in each period as it remains anLP solution unlike the

IP solution in Weintraub et al. (1993).

In Epstein et al. (1999b) there is a detailed discussion of the generation of yield predictions

within the LP solution process. A column generation process alters priority lists based on the

dual variables of theLP problem. The column generator then returns yield predictions that will

improve the current solution of theLP.

Similar cost coefficients to those in Cossens (1996) are calculated from the dual variables.

As the product simulators use a priority list bucking pattern, the number and order of the log-

types on the list are changed (unlike models with aDP bucker that change relative values).

To find the priority lists, Epstein et al. (1999b) describes a novel branch and bound procedure.

This procedure iteratively determines each log-type in the priority list from the first to the last.

The branch and bound procedure uses a property of priority list bucking procedures where the

volumevk of a log that is in thekth position on the bucking list is independent of the logs lower

down the list. This property is not true when aDP bucker is used. Again, only the inclusion and

position of the logs on the priority list are changed not the log specifications, as seen in Laroze

(1999).

Epstein et al. (1999b) describes and contrasts a number of different methods to navigate the

branch and bound tree and shows the solution of an example problem. Two different methods

of solving the column generation sub-problem are investigated. One method solves the column

generation to optimality in each iteration, the other only returns the first three yield predictions

that improve the solution. Epstein et al. (1999b) shows that the column generation improves the

solution value by about 7% from an initialLP solution with pre-generated bucking patterns. A

graph of the progress of the algorithm is shown in Figure 4.2. The number of bucking patterns

considered in the example problems in this paper is very large compared to Cossens (1996) or

Laroze (1999): one example has 51 bucking strategies per stand.
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Figure 4.2: Increment in objective through time, (Epstein et al. 1999b)

The results given in Epstein et al. (1999b) are impressive because they deal with a real

world sized example problem with 132 stands, 35 log-types, and initially 10 bucking patterns

per stand. Unfortunately, the paper does not specify the number of periods or the size of the

harvesting capacity considered. When used in Chilean forestry companies, the OPTICORT

system (without the column generation) has given a 5-8% increase in net revenues compared to

previous approaches. It would have been enlightening to read a comparison of a solution that

uses a priority list yield predictions, with a solution that uses aDP bucker. This would quantify

any loss in optimality (as anLP/DP iteration will give the optimal solution) due to the use of

priority list based methods.

4.3 Conclusions

From this literature survey, conclusions can be drawn about the nature and features of a complete

operational harvest scheduling model. In brief, a full model will include:

• unambiguous location of harvesting crews in each time period;

• consideration of the harvesting crews’ capacities;

• multiple periods to model crew movements;

• the full forest level problem;

• iterative generation of yield predictions;
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• a detailed market description, including detailed log-types, and demand restrictions;
• transportation costs from harvest unit to customer;
• some indication of the uncertainty in yield data.

Table 4.4 compares the literature using some of the above criteria. The table also shows the

type of yield prediction generation used and the type of solution method.

Table 4.4: A comparison ofOHSmodels

Model Unambigous Crew Mult- Forest Iterative Yield Prediction Solution
Location Capacity Period Level Yields Method Method

Mendoza & Bare
(1986)

X X
Stem-based
Knapsack LP

Eng et al. (1986) X X Stem-based DP LP
Sessions et al.
(1989)

X Shortest Path Binary Search

Weintraub et al.
(1991)

X X X Priority List Integer Program
(LP+heuristics)

Laroze & Greber
(1993)

X Priority List Monte-Carlo
Simulation

Weintraub et al.
(1993)

X X X X X Priority List Expert system

Ogweno (1995) X X X X Quality Classes IP
Cossens (1996) X X X MARVL LP
Murphy (1998) X X X MARVL Tabu Search
Laroze & Greber
(1997)

X Priority List Tabu Search

Laroze (1999) X X Priority List LP, Tabu Search
Boston & Kiser
(1999)

X X X X MARVL? Tabu Search
Genetic Algorithm

Epstein et al.
(1999b)

X X X X Priority List LP
Branch and Bound

Unambiguous location of crews ensures that any schedules produced can be implemented

in practice. In the literature this is accomplished by using an integer programming formulation

and either solving with third partyMILP solver in Ogweno (1995), or by using some sort of

non-optimal heuristic Weintraub & Cholaky (1991),Weintraub et al. (1993),Murphy (1998) or

Boston & Bettinger (1999). None of these references discusses allowing a crew to move within

a period. This movement is an interesting aspect of theOHSproblem as it is possible and even

desirable (see Section 3.4.2) in a solution. Standard integer programming formulations do not

however allow this type of movement to be modelled.
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The bucking optimisation literature focuses on the generation of a set of stand-level cutting

strategies that allow the maximum value to be recovered from a forest. When market restrictions

do not allow the unrestricted optimisation of individual stands, the difficulty of the problem

increases. There are two methods that deal with this problem discussed in the literature:a-

priori (before optimisation) generation of a list of suitable strategies used in Murphy (1998),

Boston & Bettinger (1999), and Laroze (1999); or iterative generation within a forest level

optimisation used in Eng et al. (1986), Mendoza & Bare (1986), Cossens (1996) and Epstein

et al. (1999b).

The examples in the literature (Murphy (1998) and Epstein et al. (1999b)) suggest that pre-

generation is ineffective for problems that contain a large number of log-types with tight market

restrictions. Epstein et al. (1999b) reports a 7% increase in objective value with an iterative

method. The enthusiasm for an iterative method should, however, be tempered by the realisation

that these methods can easily produce solutions that can be difficult to implement operationally

(Eng et al. 1986, Mendoza & Bare 1986). Pre-generation of strategies could be used to reduce

computation time and to generate good initial solutions for iterative methods.

The difficulties caused by iterative methods may be overcome by a two-stage method us-

ing outturn optimisation, as recommended in Ogweno (1995). This method may provide the

best mixture of the properties of iterative and a-priori methods and give solutions that can be

implemented in practice.

A full market description will allow the results of the optimisation to be directly imple-

mented in the forest. If aggregated or simplified log-types are used, or market restrictions are

not modelled, the solutions will need to undergo a process of disaggregation or manual alter-

ation in order to be operationally implemented. These processes could easily destroy any value

gain from the optimisation.

Only a few references Murphy (1998),Boston & Bettinger (1999) and Epstein et al. (1999b)

use more then 10 log-types in total, the rest deal with much simpler problems. In a New Zealand

context a large number of log-types is required for reasons outlined in Cossens (1992).

New Zealand logging operations are typified by the greater numbers of log-types

produced compared to other countries. This is the result of silvicultural regimes

that have increased the variability of wood properties within a tree; and emphasis

by marketing managers who promote niche marketing, and the manufacturing of

log-types to order.
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Transportation costs can significantly affect the solution value due to the distances and the

volumes involved. TheOHS problem allocates supply from stands to customers and all the

full OHSformulations (Murphy (1998), Boston & Bettinger (1999) and Epstein et al. (1999b))

consider transportation cost with the sole exception of Ogweno (1995). This omission may be

due to the small size of the problem and the assumption that all the customers are located in the

same area.

Uncertainty in yield predictions is never discussed in detail in the literature surveyed. When

mentioned, it is only used as a justification for not finding truly optimal solutions as in Murphy

(1998). In the description of operational planning in Gunn (1991) (see Table 4.1) the uncertainty

in data is low. However, if yield predictions are solely based on inventory data there can be un-

certainty around the predicted volumes, and for some particularly rare log-types, this uncertainty

may be very high (this issue is discussed in Section 3.3.2). None of the literature addresses this

question. In addition, none of the results discussed is compared to actual production.

The literature is divided by the use of two different algorithms for yield prediction.DP op-

timisation is used in Eng et al. (1986), Mendoza & Bare (1986), Sessions et al. (1989), Cossens

(1996), Murphy (1998) and Boston & Bettinger (1999). Priority list simulation is found in

Weintraub & Cholaky (1991), Laroze & Greber (1993), Weintraub et al. (1993), Laroze & Gre-

ber (1997), Laroze (1999) and Epstein et al. (1999b). This difference seems to be based on

the country of origin of the researchers, with Chilean researchers preferring to use priority list

based methods. The use ofDP yield prediction methods by the New Zealand researchers in

Ogweno (1995), Cossens (1996), Murphy (1998) and Boston & Bettinger (1999) would be due

to the predominance of MARVL (Deadman & Goulding 1979) as the inventory tool in New

Zealand industry. The use of priority list simulation by Chilean researchers may be attributed to

the company specific models employed there, that are based on a priority list method. A com-

parison of actual production versus the prediction would be useful to justify the type of yield

prediction that should be used.
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Chapter 5

Optimisation Models

And here were forests ancient as the hills,

Enfolding sunny spots of greenery.

(Coleridge 1798)

In this chapter, various optimisation models that have been applied to the Operational Har-

vest Scheduling (OHS) problem are discussed. The differences between them are highlighted

and the solution methods that are used to solve these problems are described. This chapter is

intended for readers without extensive knowledge of operations research and will provide the

background needed for the remainder of the thesis.

5.1 Models

This section presents some of the optimisation models used in this thesis. These include the Lin-

ear Program (LP) model, together with extensions the Mixed Integer Linear Program (MILP)

and the Set Partitioning Problem (SPP). This section will describe theLP, MILP and Set Par-

titioning Problem (SPP) models and their solution processes.

5.1.1 Linear Programming

In the following, familiarity with Linear Program (LP) models is assumed. Background on this

problem can be found in most introductory books onOR, for example Bazzaraa et al. (1990). An
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LP problem is commonly solved with some form of theSimplex algorithmwhich is described

in Section 5.2.1

An LP problem is represented by Equation (5.1)

Minimise z = cT x

subject to Ax T b (5.1)

and x ≥ 0

where:

x is the vector of decision variables;

z is the objective value of the problem;

c is the vector of cost information;

b is the vector of limits on the constraints;

A is the matrix that represents the constraints.

The important features of theLP problem are:

• all of the relationships are linear;

• there are more variables than possible equality constraints;

• the elements ofx can take any real value allowed by the constraints;

• the coefficients ofA are real numbers.

5.1.2 Mixed Integer Linear Programming

A Mixed Integer Linear Program (MILP) is similar to anLP but can contain integer variables.

Integer variables are elements of thex vector that are restricted to integer values in a feasible

solution. The inclusion of integer variables changes the nature of the feasible region in theLP

problem. As the feasible region is discretized, the optimal solution may no longer be found at

an extreme point. The simplex algorithm by itself is not suitable to solve the MILP problems.

The most common integer variables in a MILP problem arebinary integer variables. These

variables are restricted to a value of zero or one (hence the alternative name zero-one integer

variable). These variables are frequently used to model yes-no or logical decisions. In the OHS,
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problem binary integer variables are used to determine whether a crew is in a harvest unit or is

not.

The important features of the MILP problem are:

• all of the relationships are linear;
• there are more variables than possible equality constraints;
• some elements ofx are restricted to integer values;
• the coefficients ofA are real numbers.

A common method of solvingMILP problems is to first solve theLP relaxation of the

problem, then find integer solutions (see branch and bound method Section 5.2.3). A binary

integer variable in the MILP may have fractional values in the solution to theRLP. For example,

in the OHS problem, a RLP solution often indicates that a crew operates in several parts of the

forest simultaneously.

5.1.3 Set Partitioning Problems

A SPPis a special type of integer problem. A set partitioning problem can be represented in

the form below.

z = cT x

subject to Ax = e (5.2)

x ∈ {0, 1}n

A ∈ {0, 1}m×n

where:

x is the vector of integer decision variables;

z is the objective value of the problem;

c is the vector of cost information;

e is a vector of ones;

A is the matrix that contains only zeros and ones.

The formulation is named set partitioning because the column vectors ofA are associated

with an element in thex variable. Thex vector can therefore represent a method of partitioning

then elements of a set.
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The important features of theSPPproblem are:

• all of the relationships are linear;

• there are more variables then possible equality constraints;

• all of the elements ofx are binary integer variables;

• the coefficients ofA are restricted to zero or one.

A set-covering problemis formed if the equality constraints are replaced with≥ constraints.

Similarly, if the problem contains≤ constraints it is known as aset-packing problem.

5.1.4 Scheduling

The application of set-partitioning problems has been especially important in the solution of

scheduling problems. Scheduling problems can use a Generalised Set Partitioning Problem

(GSPP) formulation which extends theSPPformulation by allowing:

• the constraints to have a mixture of equalities and inequalities;

• the RHS vector to contain non-negative integers.

A scheduling problem assigns subsets of jobs to entities that can complete them. To model

a scheduling problem as aGSPP, Generalised Upper Bound (GUB) constraints are used as

shown in Equation (5.3)

∑
i

xi,j = 1 . . . ∀j. (5.3)

These constraints ensure that single entity (e.g., a person) can only be allocated once. Each

variable in this formulation represents an assignment of an entity to a particular schedule. Thus,

every column in theA matrix contributes to one and only one GUB row. Other constraints in

the formulation represent the assignment of the entities to activities in the schedule.

The Crew Allocation (CA) sub-model of the Model II (see Section 6.2.2) formulation used

in this thesis is an example of aGSPP. In the OHS problem, the Generalised Upper Bound

(GUB) constraints force a harvesting crew to only be allocated once. Other constraints control

the allocation of crews to harvest units.
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A feature of a scheduling formulation is that a column represents an assignment to a com-

plete series of activities (aschedule). Complicated constraints that govern the structure sched-

ules are included implicitly by the construction of columns. These conditions could be a restric-

tion on the total number of activities, or completion of one activity excluding performance of

another. However, the number of columns in the problem can be very large, as the number of

possible schedules grows in a combinatorial fashion as the number of activities increases.

In real-world problems formulated in this manner, the solution strategy cannot use an ex-

plicit A matrix that contains all possible columns. In order to solve these problems a decompo-

sition algorithm is used calledColumn generation. Column generation (Section 5.2.2) allows

the optimal solution to the problem to be found by generating columns only when they are

required. A relatively small number of columns is required to guarantee optimality.

5.2 Solution methods

This section will consider three solution algorithms that are used to find the solution to theOHS

problem in this thesis.

• The simplex algorithm is used to find the solution toLP problems.

• Column generation is used to generate new schedules to be considered in theOHSprob-

lem.

• Branch and bound finds integer solutions to aMILP given the solution to itsRLP.

5.2.1 Simplex

The Simplex algorithmwas first described by Dantzig in 1947 (Dantzig 1963). The simplex

algorithm solves anLP problem by searching the extreme points of the feasible region (or

simplex). An outline of the general simplex algorithm is given in Algorithm 5.1. Briefly, the

simplex algorithm begins with an initialbasic feasible solution. It then determines which vari-

able not in thebasis(theentering variable) is pivoted into the solution to improve the objective

value. A variable must leave the basis in the pivot, this variable is determined from theleaving

variablecriteria. The simplex algorithm continues until one of following three results.

1. No initial feasible solution is found therefore the problem is infeasible.
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2. No leaving variable can be found therefore the problem is unbounded.

3. No entering variable is found therefore the current solution is optimal.

Algorithm 5.1 Simplex algorithm
Find theA matrix andb vector from the problem formulation
PartitionA = (B|N) andx = (xB,xN)

Require: B andxB represent an initial feasible solution
while Problem is neither optimal or unboundeddo

Find an entering variable fromxN

if no ev is foundthen
Problem is optimal

else
Find the leaving variable fromxB

if no lv is foundthen
Problem is unbounded

else
Replace lv with ev inB

end if
end if

end while

5.2.1.1 Initial basis

To begin the simplex algorithm an initial basic feasible solution is required. Constructing a

feasible basis can be difficult when the problem has many constraints. One effective method to

find an initial feasible basis is a phase-one phase-two method. In this methodartificial variables

are introduced into the problem. These artificial variables are columns of the identity matrix and

allow the initial basis to be formed as the identity matrix.

To remove the artificial variables, the objective is changed in phase one. The artificial vari-

ables have a cost of one, and the original variables cost nothing. The simplex algorithm is then

used to remove the artificial variables. When the objective value in phase one becomes zero all

artificial variables have left the basis, or are at zero value. At this point the solution method

switches to phase two and the costs are returned to their normal values. The simplex algorithm

proceeds from this point as a feasible basis has been found.
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5.2.1.2 Choice of entering variable

The entering variable in the simplex algorithm is chosen to improve the objective value of the

problem. A measure of the improvement caused by the inclusion of a variable in the basis is the

reduced cost(RC) of the variable.

To find the reduced cost we define the vectorcB
T B−1 as theπ (pi) vector or the dual

variables of the LP

πT = cB
T B−1 (5.4)

where:

cB is the vector of costs of variables in the basis;

B is the basis matrix.
The reduced cost of a variablexs is

RC = cs − πT as (5.5)

where:

as is the vector inA associated withxs;

cs is the cost of variablexs.

This calculation of the reduced cost and the dual variables is important in the column gen-

eration algorithm.

The standard simplex algorithm finds the entering variablexs from Equation (5.6)

s ∈ arg min
i∈N

(ci − πT ai : ci − πT ai < 0). (5.6)

5.2.1.3 Calculation of leaving variable

Once an entering variable is selected by the reduced cost criterion, the variable that will leave

the basis (leaving variable) in the pivot is found. The variable that leaves the basis is the first

variable to become negative as the entering variable increases. The change in the basic variables

for a unit increase of the entering variable is found from the vectorB−1as.

The leaving variable is found from variables inxB that correspond to negative elements of
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B−1as. The leaving variable has the minimum ratio calculated in the leaving variable criterion

p ∈ arg min
i∈B

(
ei

T B−1b

ei
T B−1as

: ei
T B−1as > 0

)
(5.7)

5.2.1.4 Stopping conditions

The simplex method continues iterating until one of three conditions occurs.

• No new entering variables are found.

• No leaving variables are found.

• The basis is degenerate and the simplex algorithm is stalling.

If no new entering variable can be found, the current solution is declared optimal. The

simplex method stops and reports the optimal solution.

If no leaving variable is found the problem is then unbounded. In an unbounded problem a

single variable can increase infinitely while the objective value improves, therefore, the feasible

region is unbounded. In real world problems, an unbounded solution usually indicates that the

model formulation is incorrect.

If the problem is degenerate, the simplex method can cycle through many iterations without

improving the objective value. Unfortunately,GSPPproblems are susceptible to degeneracy be-

cause of the large number of variables at zero in a basic feasible solution. Therefore, techniques

to resolve degeneracy are implemented in software that solvesGSPPproblems. An example of

an algorithm that deals with stalling is Wolfe’s method (Wolfe 1963, Ryan & Osborne 1988).

5.2.2 Column generation

The formulation of aGSPPnecessitates a large number of variables in an explicit formula-

tion. For example, the Model II formulation (Section 6.2.2) of theOHS problem could have

as many as1.68 × 1022 possible crew schedule variables in a realistic problem1. Clearly, this

is an excessive number of variables to consider in the simplex algorithm. However, a column

generation algorithm can be used to generate a sub-set of variables that are sufficient for the

optimal solution of theGSPPproblem.

1These figures are based on 10 crews, 30 harvest units with 15 cutting strategies each and 8 periods.
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Column generation is an example of a decomposition algorithm. It was first used to solve the

cutting stock problem in Gilmore & Gomery (1965). Figure 5.1 shows the column generation

process.

Optimal Solution

LP Optimisation

Initial Variables

Column Generator

Figure 5.1: The column generation process

Specifically theGSPPproblem can be broken in two, the Restricted Master Problem (RMP),

and the Column Generation Algorithm (CGA). The RMP only considers a small subset of the

possible variables. These initial variables are chosena priori at the beginning of the algorithm.

The selection and construction of the initial variables could be very simple, or may take into

account the complexities of the specific problem and attempt to provide a ‘good’ initial solution

to the problem.

Given the set of initial variablesP the RMP is

Minimise z = cT xP (5.8)

Such that PxP = b

xP ≥ 0.

The optimal solution of this RMP is not the optimal solution to entire problem as it does not

consider all of the possible variables. However, the reduced cost of an entering variable is

defined asca − πT xa from Equation (5.5).
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The sub problem in the column generation is defined as

Minimise rc = ca − πT a (5.9)

Such that a is a feasible variable to be introduced

into the master problem, with costca.

The solution to Problem (5.9) is used to find an entering variable to the restricted master

problem. If the optimal value ofrc (rc∗) in Problem (5.9) is a negative value (rc∗ < 0) then

a enters the basis of the RMP and the simplex algorithm continues. However, ifrc∗ is non-

negative (rc∗ ≥ 0) then the variablea is not an entering variable to the RMP. The column

generation sub-problem should be able to consider all legal variables in the master problem, if

no feasible columns are found with a negative reduced cost, the master problem can then be

declared optimal.

The column generation algorithm can be more efficient if it returns more than one variable in

each iteration. If it does, the number of times the column generation algorithm is called should

be reduced. In addition, it can be more efficient to return a variable with negative reduced cost

but not necessarily find the optimal solution to Problem (5.9). Any technique can be used in the

column generation as long as a negative reduced column is returned, if one exists.

Problem (5.9) is itself an optimisation problem. The sub problem can be solved by a variety

of methods depending on the type of problem. Linear Programming, dynamic programming,

assignment and travelling salesman type formulations are possible.

5.2.2.1 Dynamic programming

The columns of the Model II formulation of the OHS problem represent the sequence of harvest

units visited and the cutting instructions for each period. Variable construction is discussed at

length in Chapter 6. The column generation sub-problem (Problem (5.9)) is formulated as a

shortest path problem and a dynamic programming recursion is used to find its solution.

Dynamic programmingis particularly suited to finding solutions to problems with some

linear ranking, as this can preclude cycles. In the OHS problem, that ranking is given by the

time dimension of the problem. A cycle is not possible as a crew cannot return to a previous

time period. Other problems where dynamic programming has proven useful involve shortest

path problems (i.e., the Bellman-Ford algorithm), an example is stem bucking problems (Sec-
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tion 2.5.1.4).

Dynamic programming can be used to solve linear and non-linear problems and is com-

monly applied to problems with integer features. A stage in a DP is defined as the progress

through the ranking, e.g., the stages in the OHS problem are the periods. A state is defined as a

resource or quantity that is affected by the decisions made in a DP model. In addition to stages

and states, the DP formulation requires an objective function so the quality of solutions can be

compared.

The requirement for a problem that allows DP as a solution approach, is that the problem

obeys the DPprinciple of optimality

DP: 1 (Principle of optimality) The decision made at each state and stage is not affected by

decisions in previous stages

Consider aDP recursion that solves a shortest path problem. If the best paths to each state

in staget-1 are found, aDP recursion can use this principle to find the best path to stateX in

staget. The cost of moving from each state int-1 to stateX is evaluated. The minimum cost

path to stateX and staget is then recorded. As the past decisions do not affect future decisions,

only the state, stage and objective value of previous stage’s paths are considered.

For example, a problem has four stages and three states (A, B, C) in each stage. The total

number of possible candidate solutions is34 = 81. A dynamic program will only evaluate

9 candidates (3 states in the previous stage× 3 states in the current) at three stages. The total

number of evaluations is32×3 = 27. There are also additional savings in time as the evaluation

in the early stages will involve less computation.

A number of techniques can improve performance of a typical DP recursion. The cost

evaluation is performed often in the recursion so improvements in this part of the algorithm

significantly increase performance. An effective way to improve performance is to pre-calculate

as many of the cost factors as possible before the DP recursion. Pre-calculation can significantly

improve performance when the same calculation is required many times in the recursion.

5.2.3 Branch and Bound

To find a solution to an integer programming problem, a Branch and Bound (B&B) algorithm

is applied to the linear programming relaxation of the MILP problem. The Relaxed Linear Pro-
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Algorithm 5.2 Dynamic programing recursion
fi,j the value of statej at stagei
pi,j the predecessor of statej at stagei
ci(k, j) cost of moving from statek to statej at stagei

Require: f0,j = c0(j)
Require: p0,j = θ

for i = 0 → imax − 1 do
for j = 0 → jmax do

fi+1,j = max
k

(f = fi,k + ci(k, j))

pi+1,j ∈ arg max
k

(f = fi,k + ci(k, j))

end for
end for

gram (RLP) is formed by removing integrality requirements from a MILP formulation. Branch

and Bound is a structured way of exploring the feasible region of an integer program. At each

stage of theB&B tree, a decision is applied that divides the feasible region (normally into 2

parts), based on some property of the integer solution that is not present in the linear relaxation.

In a variable branch, a single variable from the problem is taken and (if it is a zero-one

variable) forced to zero on one side of the branch and one on the other. This approach exploits

the binary integer property of the variable.

In a constraint branch, a decision is made that affects a large set of binary variables. A

constraint branch is either a one-branch, where the decision is enforced and all variables that do

not comply are removed; or a zero-branch which precludes the branch decision.

When a feasible integer solution is found for some node in theB&B tree, other nodes in

the tree may be bounded or removed from further consideration. When a branch is applied to

a node the objective value of any child nodes cannot be better then the parent node’s objective.

Therefore, if the objective of any node is worse than the best integer solution found the node

will not be considered further.

5.2.3.1 Node choice within Branch and Bound

Thenode choicewhile traversing a branch and bound tree affects the efficiency and effectiveness

of the solution strategy. Many alternative strategies can be applied, two main strategies are

depth-first branchingandbreadth-first branching. Depth first branching evaluates a node in the

tree and in the next stage evaluates one of its children. This strategy tends to find an integer
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solution quickly or forces the nodes to be infeasible. If an integer solution is quickly found, the

bound applied helps reduce the effort in traversing the rest of the tree.

Breadth first branching chooses the node with the lowest objective value at each stage and

will tend to explore a B&B tree one level at a time. The first integer solution found by this

method may have a good objective value, near the optimal integer value. However, breadth first

branching may take a long time to find an integer solution.

5.2.3.2 Bound tolerance and integer allocation

Another technique that finds solutions quickly within branch and bound, is the use of abound

tolerance. With this technique, a tolerance (for example≤ 5%) is applied to the objective

values used to bound nodes. A node is bounded if its objective is worse than the best integer

solution plus the bound tolerance. If an integer solution is found with an objective within the

bound tolerance of the RLP objective, the algorithm reports this solution is the optimal integer

solution.

The objective values used to bound the nodes are not necessarily produced by branching.

Any objective from a feasible integer solution can be used to produce a bound on the active

nodes in the tree. Thus, any heuristic solution can be used to bound the tree search. A simple

heuristic that finds a good quality integer solution from an example nodal solution aids the

branch and bound process enormously. This technique is known asinteger allocation.

5.2.3.3 Constraint branching

Constraint branchingis a method of branching that compensates for some of the deficiencies

of variable branches applied to set partitioning problems. In Ryan (1992), the concept is ex-

plained with reference to problems in airline crew scheduling formulated asSPP. Constraint

branching in this application is designed to reduce the sequence depth of the problem (Ryan &

Falkner 1988) and thus give the problem desirable properties (uni-modular, perfect, balanced)

that produce naturally integer solutions. In this case, a constraint branch is defined in Algo-

rithm 5.3.

A one-branch forces a single variable to satisfy both constraints while a zero-branch forces

the constraints to be satisfied by two separate variables. Note, neither branch affects variables

that are inactive in both constraints.
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Algorithm 5.3 Constraint branching algorithm
an,m is an element of theA matrix
Find two constraints on rowsi, j in the SPP
i ∈ J ⇐⇒ ai,j = ai,k = 1 {i is active in both constraints}
i ∈ J̄ ⇐⇒ ai,j 6= ai,k {i is only active in one constraint}∑

i∈J xi = 1 {One-branch}∑
i∈J̄ xi = 0 {Zero-branch}

In work published after Ryan & Falkner (1988) constraint branches have been generalised.

In general, a constraint branch divides the problem variables into two sets based on the com-

ponent decisions within the variables. Literature has used various branching decisions that are

based on the specific problem formulations. In McNaughton (1998)2, the branches are defined

as decisions to harvest sections of forests accessed by specific roads.

The generalised properties of a constraint branch are described below.

• Constraint branching if applied repeatedly will eventually force an integer solution or

create an infeasible problem.

• All feasible integer solutions can be found by the application of a series of constraint

branches.

• A constraint branch forces groups of variables out of the solution on either side of the

branch, making it more ‘balanced’ than a variable branch.

• A constraint branch forces integer properties onto the constraint matrix.

The criteria used to constraint branch in this problem are discussed in Section 8.3.2.

2A Phd. thesis that describes the solution of forestry tactical planning problems.



Chapter 6

Problem Formulation

But oh! that deep romantic chasm which slanted

Down the green hill athwart a cedarn cover!

(Coleridge 1798)

In this chapter the mathematical formulation of the Operational Harvest Scheduling (OHS)

model is discussed. This model is derived from the OHS problem described in Chapter 3.

The assumptions and simplifications in this model are detailed. Several different methods of

formulating the decision variables, including the formulation most often used in literature, are

described and contrasted with the formulation used in this thesis.

6.1 Model definitions

In this chapter, some terms are used to describe the following concepts.

• Crew allocation: The decision to place a particular crew in a harvest unit in a period.

• Crew schedule: A sequence of crew allocations that controls a crew’s movements from

the beginning to the end of the planning horizon.

• Schedule: A sequence of harvest units and periods, that is defined independently of any

crew.
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The OHS problem is described in Section 3.1.1. A general statement of the OHS optimisa-

tion problem is:

Maximise Profits (revenue-costs)

While Meeting volume constraints

By allocating Crews to harvest units

with cutting strategies;

and allocating

production to customers;

throughout the time horizon.

6.1.1 Division into sub-models

In this thesis, a distinction is made between theCrew Allocation (CA) sub-modeland thePro-

duction/ Transportation (PT) sub-model. TheCA sub-model governs the crew allocations and

consists of the following constraints:

• crew assignment (Section 6.4.1);
• harvest unit capacity (Section 6.4.2.3);
• harvest unit area (Section 6.4.2.4).

TheCA sub-model also contains the variables that control crew allocations. The constraints of

theCA sub-model form aGSPPsubmatrix (see Section 5.1.3) with the addition of the harvest

unit area constraints. A crew cannot exist in two separate locations simultaneously. Therefore,

decisions on crew allocations are usually modelled as binary integer decision variables.

The allocation of production and other decisions discussed in Section 6.5 are modelled in

the PT sub-model. ThePT sub-model comprises the other constraints and variables given in

the formulation (see Section 6.5). Within this sub-model is a transportation problem and the

decisions are modelled as continuous (i.e., not binary) decision variables.

The linkages between the two sub-models are the volume allocation constraints (see Sec-

tion 6.5.1). The combination of binary integer and continuous variables in the two sub-models,

make the mathematical model of the combined problem a type of Mixed Integer Linear Pro-

gram (MILP) (see Section 5.1.2).

The following section describes in detail the overall structure of the model particularly fo-

cusing on the form of theCA sub-model.
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6.2 Possible structures

TheOHS problem may be modelled in at least five ways (see Sections 6.2.1–6.2.3.3). Two of

these models are discussed in detail, while the other three are included for completeness. The

crucial difference between the models is the form of theCA sub-model. A single binary integer

variable can represent a single crew allocation (in a Model I formulation), or a composite of

several crew allocations (in Models II-V).

In the following discussion, only theCA sub-model will be detailed. However, the form of

thePT sub-model will be subtly affected by the choice of model formulation. This is discussed

in detail in Section 6.5.

To simplify the model comparison, the choice of cutting strategy is not discussed. In each of

the models, the cutting strategy decision will be combined together with the harvest unit choice.

This assumption is valid however, as the yield predictions (see Section 2.4.5) are dependant on

a combination of cutting strategy and harvest unit. Therefore, these two decisions should be

made together. Five possible models are listed below.

• Model I: Each crew, harvest unit (/cutting strategy) and period combination is modelled

as a separate binary integer variable. There are no composite decisions. In the integer

solution, one variable is positive for each crew in each period.
• Model II: The binary integer variables allocate a crew to a sequence of harvest units. The

sequence of harvest units throughout the time horizon becomes a composite decision. In

the integer solution, a single variable is positive for each crew.
• Alternative Formulations

– Model III: The binary integer variables represent all crew harvest unit assignments

in each period. The crew harvest unit allocation is a composite decision. In the

integer solution, there is a single positive variable for each period.
– Model IV: The binary integer variables represent a harvest unit allocated a sequence

of crew visits. The crew visits over time are collapsed into a single decision. The

integer solution will have a positive variable for each harvest unit.
– Model V: All the crew harvest unit and period decisions are modelled as a single

binary integer variable. Different variables represent a different set of decisions.

Thus, all the integer decisions become a single composite decision. In the integer

solution, only a single binary variable will be positive. However, the decisions in

thePT sub-model will remain separate.
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These formulations are described in detail below. Reference is also made to the crew as-

signment constraint (Section 6.4.1) and the harvest unit capacity constraint (Section 6.4.2.1).

The motivation for the constraints is discussed in detail in the relevant sections but they are

presented here so that the differences between the models can be clearly explained.

In the following discussion, the number of variables in each formulation is compared. Ref-

erence is made to an explicit formulation where each possible variable in a formulation is ex-

plicitly represented. Examples of this representation are data formats such as a.MPSfile. In

this thesis however, the chosen formulation is never explicitly represented since a column gen-

eration algorithm (Section 5.2.2) is used. Only a subset of possible variables is ever represented.

Another comparison made between formulations is the number of binary integer variables that

are positive in an integer solution. This number is largely controlled by the nature of the Gener-

alised Upper Bound (GUB) constraints in each formulation.

In the following discussion, only the binary integer variables in the formulations are con-

sidered. The continuous variables form part of thePT problem and are therefore disregarded

within this section.

6.2.1 Model I: Crew, harvest unit, period

A Model I formulation has a single binary variable for each crew allocation.

A decision variablexcht is associated with crewc allocated to harvest unith (and therefore

a cutting strategy) in periodt (periods are typically one week long),
where:

c indexes the crews;

h indexes the harvest units;

t indexes periods.
Thusx1,A,1 represents the allocation of crew 1 to harvest unitA in period one.

The crew constraint is modelled as

∑

h

xcht = 1 . . . ∀c, t

Note, in this thesis∀c indicates that the constraint is repeated once for each crew in the problem

and is equivalent to∀{c ∈ C}
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where:

C is the set of crews.
The harvest unit constraint is ∑

c

xcht ≤ Gh . . . ∀h, t

where:

Gh is the maximum number of crews allowed in harvest unith.

Model I formulations have previously been used to formulateOHSproblems in the forestry

literature. It is the model used in Ogweno (1995), CONDOR in Murphy (1998), Boston &

Bettinger (1999) as well as the OPTICORT system in Epstein et al. (1999b) (see Section 4.2.2

for details). An advantage of this formulation is that the number of integer variables created in

an explicit formulation is limited to|C||H||S||T |
where:

|C| is the total number of crews in the problem;

|H| is the total number of harvest units in the problem;

|S| is the total number of cutting strategies in the problem;

|T | is the total number of periods in the problem.

This modelling form contains the least number of variables in the explicit formulation but has

the greatest number of positive variables in the integer solution. A difficulty for this formulation

is the lack of an explicit link between any of the decisions. The crew allocation in one period is

difficult to link to the crew allocation in the next period.

An example problem can be used to compare the different model formulations. This prob-

lem has 10 crews, 30 harvest units with 15 cutting strategies each and 8 periods. A Model I

formulation will have a total of36, 000 possible variables for this example problem.

This figure is well within the limits of current computing capacity for LP problems. There-

fore, it is not necessary to use column generation in this formulation. Without column gen-

eration, standard mathematical programming languages and solvers can be used, for instance,

AMPL(Fourer et al. 1993), GAMS(Brooke et al. 1992) or LINGO(Scharge 1993).
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6.2.2 Model II: Crew to harvest unit sequence

In aModel II formulation, each variable represents acrew schedule. A crew schedule determines

a crew’s location and what logs it harvests in every period of the problem. The combination of

activities for each crew in the time horizon is similar to set partitioning formulations that have

been used to solve scheduling problems as outlined in Section 5.1.3.

A decision variablexci, is associated with crewc allocated to schedulei
where:

i indexes possible schedules.
For instancex1,123, is crew one following schedule123. Schedule123 is an example of one

of the possible crew schedules. Crew schedulex1,123 could represent the decisions shown in

Table 6.1.

Table 6.1: Example of a variable for a Model II formulation
Crew 1

Period 1 A
Period 2 A
Period 3 A
Period 4 B

This represents crew 1 visiting harvest unitA in periods one to three and then moving to

harvest unitB in period four. Note, again the allocations of cutting strategy have been omitted

for simplicity.

The crew constraint is modelled as

∑
i

xci = 1 . . . ∀c

where:

c indexes the crews;

i indexes possible schedules.

The harvest unit constraint is

∑
c,i

H i
htxci ≤ Gh . . .∀h, t
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where:

H i
ht = 1 when schedulei contains harvest unith in period t and zero

otherwise.

In this model, a single variable represents a crew’s activities throughout the planning hori-

zon. Therefore, movement costs can be easily included in the variable’s cost. The effect of

movement on productivity can also be calculated. Crew schedules can be removed from the

problem if they represent solutions that could not exist in an integer solution (discussed in detail

in Section 7.2). TheRLP (see Section 5.2.3) solution will therefore be closer to the integer

solution than is possible in a Model I formulation.

The number of variables in an explicit formulation of this problem is very large because

of the combination of the harvest units, cutting strategies and periods in each crew schedule

variable. The total number of possible variables is|C|(|H||S|)|T |. In the example problem

mentioned previously with 10 crews, 30 harvest units, 15 cutting strategies and 8 periods there

will be 1.68×1022 variables .

Because of the large number of variables, an explicit formulation is not possible for anything

but very small problems. To solve reasonably sized problems with this formulation, column

generation techniques (Section 5.2.2) are used.

The column generation subproblem can be posed as a shortest path problem. Each node

represents a harvest unit allocation in a period, and arcs connect the nodes to those in the previ-

ous period. The paths described represent the sequence of harvest units visited by a crew. This

network can consider the penalties and costs of moving the crew between the harvest units, as

well as any other factors that rely on the history of the crew’s previous position.

The Model I and II formulations form the basis of further discussion in this thesis. A de-

tailed comparison of these two formulations can be found in Section 6.2.4. The additional

model formulations Models III through V are presented here for completeness and theoretical

consideration only, and are not discussed further in this thesis.
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6.2.3 Alternative formulations

6.2.3.1 Model III: Period to crew assignment

In theModel III formulation crew harvest unit allocations are grouped together and assigned to

a period.

So a variable will bextk, which represents the crew to harvest unit allocationk in periodt

where:

k indexes possible crew harvest unit allocations.

For example, an instance of this variablex1,123 is the decision shown in Table 6.2.

Table 6.2: Example of a variable for a Model III formulation
Period 1

Crew 1 A
Crew 2 B
Crew 3 D
Crew 4 G
Crew 5 C

This represents in period one: crew one will operate in harvest unitA; crew two inB; crew

three inD; crew four inG; and crew five inC.

A period constraint ensures there is an allocation for each period in the problem

∑

k

xtk = 1 . . . ∀t.

In this formulation, the crew constraint is implicit in the construction of the columns, as each

legal variable will allocate a crew to a harvest unit. The above period constraint will therefore

guarantee a valid crew assignment.

The harvest unit constraint is also contained in the column construction as the number of

crews allocated to single harvest unit will not exceedGh in each valid crew harvest unit alloca-

tion k.

The movement costs and penalties will be difficult to implement.
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The total number of integer variables is|T |(|H||S|)|C|. In total there will be 2.72×1027

variables in the example problem. However, this total number will be reduced by the constraints

on valid variables mentioned above.

As in Model II, an explicit representation of this formulation will be impractical, so column

generation must be used to solve the problem. In contrast to Model II, each column repre-

sents the assignment of crews to the harvest units in a single period. The column generation

subproblem can be posed as an assignment problem (not a shortest path as in Model II). This

formulation will be useful when considering factors that relate to the allocation of crews in a

single period e.g., if crews need to work in harvest units adjacent to other crews, or if crews

cannot work near each other.

6.2.3.2 Model IV: Harvest unit to crew sequence

TheModel IV formulation is similar to Models II and III. For each harvest unit a schedule of

the crews that occupy it in each period is a binary integer decision variable.

The variable isxh,q

where:

q indexes the crew sequences available for a harvest unit.
For example, variablexB,123 represents the decision in Table 6.3.

Table 6.3: Example of a variable for a Model IV formulation
Harvest unit B

Period 1 Crew 2
Period 2 Crew 2
Period 3 Crew 2
Period 4 Crew 1

Table 6.3 indicates harvest unitB is harvested by crew 2 for the first three periods, then crew

1 for the fourth period.

The harvest unit constraint is

∑
q

xhq ≤ Gh . . . ∀h.
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The crew constraint becomes ∑

h,q

Cq
ctxhq = 1 . . . ∀c

where:

Cq
ct = 1 if scheduleq contains crewc in periodt.

Note, in this model the cutting strategy decision is grouped with the crew decision and not

included with the harvest unit decision as in the other models.

As in Model II, the column generation subproblem will again be posed as a shortest path

problem. A path will represent the sequence of crews that will harvest a particular harvest unit.

The number of integer variables required will be|H|(|C||S|)|T |. Therefore, there are 7.69×1018

variables in a realistic problem.

Many of the harvest unit variables will have no crews allocated to them for the entire time

horizon in the shorter-term planning problem. While not well suited to the stated OHS problem,

if several crews were required to visit a harvest unit in sequence this formulation would work

well.

6.2.3.3 Model V: Combined decisions

In Model V, the decisions are removed entirely from the integer-programming problem, and

placed in a single composite variable. In fact, the master problem serves only as a method of

costing and choosing between the full schedules and satisfying thePT constraints.

A binary decision variable isxr

where:

r indexes possible complete solutions to theCA problem.

An instance of the variablex123 could represent the solution (note the dots indicate decisions

omitted for brevity) in Table 6.4. This variable details the location of all the crews for each

period in the planning horizon.

The onlyCA constraint needed in this formulation is

∑
r

xr = 1
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Table 6.4: Example of a variable for a Model V formulation
Crew 1 Period 1 A
Crew 1 Period 2 A
Crew 1 Period 3 A
Crew 1 Period 4 B
Crew 2 Period 1 B
. . . . . . . . . . . . . . .
Crew 2 Period 4 D
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
Crew 5 Period 4 F

All the other integer constraints can be included implicitly in the generation of valid columns.

This formulation effectively solves theCA problem within the column generation subprob-

lem, with the master problem providing dual variables and refining the previous solutions from

the column generation.

The number of integer variables required is(|H||S|)|T ||C|. Therefore, there are 1.81×10212

variables in a realistic problem, a truly staggering number.

This formulation contains the largest number of binary integer variables and has the least

number of positive variables in the integer solution (one).

A significant disadvantage of this problem formulation is that an additional optimisation

heuristic will have to find the suitable columns. As a single column contains all of theCA

decisions only thePT decisions are made in theLP .

6.2.4 Model comparison

Of these models, Models I and II are the most important. Model I describes the formulation that

is found in the literature, while Model II describes the novel method used in this thesis.

Simple one-period problems, stated in both Model I and II formulations are identical. How-

ever, in multi-period formulations Model II formulations are preferable as the movement costs

are included in the variable construction. In a Model I formulation movement costs can be

considered but need to be implemented with extra constraints and variables. In addition, the

techniques have been developed for the Model II formulation in my research allows crews to
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change harvest units mid-period (Section 7.1) and allows a tighter statement of the RLP than is

possible in Model I (Section 7.2).

An advantage of Model II solutions is evident in schedules that contain longer time horizons

where the crews move more often. In these problems, all the crews will need to move at least

once and perhaps several times. A Model I formulation becomes increasingly difficult to solve

in these situations while the complexity of a Model II formulation increases at a lesser rate.

Interestingly, constraint branching (Section 5.2.3.3) in the Model II formulation (see Sec-

tion 8.3) makes identical operational decisions1 to variable branches in a Model I formulation.

A constraint branch in Model II chooses a set of crew schedule variables that share a common

crew allocation and bans crew schedules without this allocation. A crew allocation is repre-

sented by a single variable in Model I, therefore a variable branch keeps or removes this crew

allocation. The use of constraint branching allows both the advantages of a Model II problem

formulation and the limited branch and bound tree generated in a Model I formulation.

A Model III formulation will be useful in situations where the relative locations of crews in

each period are important. For example, if crews need to remain near each other, or they need

to remain separated.

A Model IV formulation will be advantageous when there are relatively few harvest units

that must be visited numerous times by different crews in some specific order. Perhaps silvicul-

tural operations (for instance, planting and pruning) could be scheduled in this manner.

A Model V formulation could be appropriate if there are significant restrictions on possible

schedules that limit the size of the column generation problem. However, for this formulation

to be effective the column generation will have to be efficient. A useful application of this for-

mulation will be to embed a non-optimal heuristic (perhaps the tabu search in Murphy (1998))

to generate candidate columns. The LP formulation will then determine volume allocations.

The next section discusses the construction of a Model II formulation.

6.3 Construction of constraint matrix

A simplified overview of the matrix is shown in Figure 6.1. An additional large format copy

of this matrix is found in Appendix A. The matrix shown represents a problem that includes

1However, these approaches are significantly different in terms of solution strategy implementation.
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three crews, two log-types, two customers and two periods. Note, that only four example crew

schedules are shown, as there are too many possible schedules to list them all. The illustration

also only includes the minimum market constraints. For instance, the minimum demand is

shown and the maximum demand is omitted.

The various constraints and variables in this matrix will be discussed in detail in the follow-

ing sections. Figure 6.1 can be used to see the overall structure of the matrix while the detail is

discussed.

In Figure 6.1, theCA sub-model can clearly be seen as it consists of the first three sets of

constraints. ThePT sub-model completes the matrix. The linkages between the two models are

the contributions to the volume allocation constraints (see Section 6.5.1).

TheCA sub-model essentially defines anOHSproblem. ThePT constraints however, can

often vary depending on the practices of the particular forestry company. In this thesis, the prop-

erties of theCA sub-model are used to define the constraint branching and column generation.

ThePT sub-model provides input to these algorithms (e.g., the input prices to the column gen-

eration), and does not affect the solution process. This separation allows thePT sub-model to

vary in different forestry companies, while the solution strategy outlined in this thesis remains

valid.

A crew schedule is a combination of a crewc with a schedule. The schedulei is a sequence

of harvest units and cutting strategies. To extract information from a schedule two coefficients

are defined.

H i
ht = 1 when schedulei contains harvest unith in period t and zero

otherwise;

Si
st = 1 when schedulei includes strategys in periodt and zero other-

wise.

Note, that these are not decision variables themselves but represent component decisions

within the composite decision variablexci in a Model II formulation.

In addition, these coefficients may be referenced as functions.

H(i, t) is the harvest unit harvested in periodt by schedulei;

S(i, t) is the strategy used in periodt by schedulei.
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6.4 Crew Allocation constraints

These constraints represent the part of theOHS problem that is similar to aGSPP, with the

addition of the harvest unit area constraints. These constraints govern crew allocation and state:

• a crew can only be allocated once;

• the number of crews operating in a harvest unit is restricted;

• the area harvested in a single harvest unit is restricted.

There is no need for a constraint on the cutting strategies as they represent instructions to the

crews. Therefore, many crews are able to use identical cutting strategies.

6.4.1 Crew assignment

This constraint guarantees that each crew can appear only once in the solution. Without this

constraint, the same crew could be placed in two or more different harvest units producing at

full capacity. The form of this constraint is similar to GUB constraints found in the formulation

of many scheduling problems (Section 5.1.4).

∑
i

xci = 1 . . . ∀c (6.1)

where:

xci is the allocation of crewc to schedulei;

c indexes the crews;

i indexes possible schedules.

This constraint is shown in Figure 6.2
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Crew Schedules
x_ci

Crew: Crew1 Crew1 Crew2 Crew3
HU/CS Period 1 A/1 A/1 A/2 B/2

Period 2 A/1 B/1 A/1 B/2
Crew

Crew Crew1 1 1 = 1
Assignment Crew2 1 = 1

Crew3 1 = 1

Figure 6.2: The crew assignment constraint

6.4.2 Harvest unit constraints

6.4.2.1 Harvest unit integrality

As crews can only harvest in a single location at a time, crew location is governed by binary

integer variables (xci). The integer requirement is forced on a solution through the branch and

bound process (Section 5.2.3). However, in some cases the enforcement of a strict integer

solution will give undesirable effects, especially when crew movement is considered. This

aspect of the problem is discussed in detail in Section 7.1

6.4.2.2 Harvest unit compatibility

For the reasons given in Section 2.5.1, crews are not able to harvest all available harvest units.

Instead, they can only harvest those units for which they are equipped. This compatibility

information is provided as input data and is used to determine valid crew schedules. Therefore,

a crew schedule that allocates a crew to an incompatible harvest unit will not appear in the

problem, and will not be generated by column generation.

6.4.2.3 Harvest unit capacity

The parameterGh limits the number of crews that can operate safely in harvest unith. This

figure is affected by a number of factors including the size of the landing, the accessibility of

the harvest unit and the type of operations possible (see Section 2.5.1.4). Generally, only harvest

units suitable for ground-based logging are able to support more than a single crew.
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∑
c,i

H i
htxci ≤ Gh . . . ∀h, t (6.2)

where:

Gh is the maximum number of crews allowed in harvest unith;

h indexes the harvest units;

t indexes periods.

This constraint can be simplified if

Gh = 1 . . . ∀h.

However, some of the case studies discussed in Chapter 9 allowed multiple crews to operate in

a single harvest unit. Therefore, this simplification was not included.

Figure 6.3 shows this constraint. In the figure the first crew schedule places crew one in

harvest unitA for both periods, the second crew schedule shows crew one inA in period one

andB in period 2.

Crew Schedules
x_ci

Crew: Crew1 Crew1 Crew2 Crew3
HU/CS Period 1 A/1 A/1 A/2 B/2

Period 2 A/1 B/1 A/1 B/2
HU Period

Harvest Unit A 1 1 1 1 <= G_h
Capacity 2 1 1 <= G_h

B 1 1 <= G_h
2 1 1 <= G_h

Figure 6.3: The harvest unit capacity constraint

6.4.2.4 Harvest unit area,aht

When a crew has harvested all the area of a harvest unit, it must move into another (see Sec-

tion 6.4.2.1). The area of each harvest unit isAh, and the area that a crew harvests within that

harvest unit is determined by the crew productivity and the cutting strategy that the crew is us-

ing. The variableaht tracks the total cumulative area of harvest unith that has been harvested
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up to periodt.

∑
c,i

Aci
htxci + ah(t−1) − aht = 0 . . . ∀h, t < |T |. (6.3)

where:

Aci
ht is the area of harvest unith harvested by crewc following schedule

i;

aht is the cumulative area harvested in harvest unith by periodt;

Ah is the total area in harvest unith.

Equation (6.3) states that the area of harvest unith harvested in periodt (
∑

c,i A
ci
htxci), plus

the area ofh harvested up to the end oft-1 (ah(t−1)), is equal to the total area ofh harvested up

to the end oft (aht).

In the final period|T | the area of the harvest unitAh is included

∑
c,i

Aci
htxci + ah(t−1) ≤ Ah . . . ∀h, t = |T | (6.4)

Equation (6.4) states that the area of harvest unith harvested in the final period (
∑

c,i A
ci
htxci),

plus the area ofh harvested up to the endt-1 (ah(t−1)), is less than or equal to the total area ofh

(Ah).

Note, that constraint Equation (6.3) is formulated on a period-by-period basis. By formulat-

ing the constraint in this manner, the period where Equation (6.4) is active may be changed to

force a harvest unit to be finished by a chosen period within the time horizon.

In Figure 6.4, the area constraints are shown for two periods giving a single area linking

variable (aht) for each harvest unit.
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Crew Schedules Area Transfer
x_ci a_ht

Crew: Crew1 Crew1 Crew2 Crew3
HU/CS Period 1 A/1 A/1 A/2 B/2

Period 2 A/1 B/1 A/1 B/2
HU Period

Harvest Unit A 1 10 10 6 -1 = 0
Area 2 10 6 1 <= A_h

B 1 5 -1 = 0
2 8 5 1 <= A_h

Figure 6.4: The harvest unit area constraint

6.4.2.5 Harvest unit completion

A crew may be forced to complete a harvest unit once it has entered the unit. The following

equation indicates thataht will either equal zero orAh in a feasible solution.

aht = {0, Ah} . . . ∀h, t = T (6.5)

where:

aht is the cumulative area harvested in harvest unith by periodt;

Ah is the total area in harvest unith.

For harvest units with high entry costs, e.g., hauler units, it is too expensive to have a crew

complete the unit in two separate operations (see Section 3.4.2). Unfortunately, when the time

horizon is short the cost of returning to the harvest unit is not considered, a short term solution

may move a crew out of a harvest unit and not consider the cost of moving the crew back.

Therefore, Equation (6.5) may be required for some harvest units.

Equation (6.5) restricts the movement of crews away from a harvest unit before it is com-

pleted. It is enforced in the branch and bound algorithm. However, since the harvest units with

this constraint usually only allow a single crew to harvest at a time (Gh = 1), valid variables in

the integer solution will have additional structure (see Section 7.2.2). If only variables with this

structure are generated theRLP solution will approximate the integer solution better.

Similarly, for reasons discussed in Section 3.4.2 a goodOHSsolution will not allow crews

to leave small areas unharvested. In the branch and bound algorithm (see Section 8.3.2.2) a crew

is not allowed to move if it would leave behind a small unharvested area. The crew is forced to

remain and finish the harvest unit.
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6.4.3 Cutting strategies

A Cutting strategyis a subset of log-types together with bucking instructions (i.e., the relative

prices for a DP bucker2). Cutting strategies, together with harvest unit information (inventory

assessments) are used to generate yield predictions.

The total number of log-types harvested at any one time by a crew is limited for reasons

discussed in Section 2.5.1.4. This restriction is included implicitly when cutting strategies limit

the number of log-types produced. As the number of log-types in a single strategy is limited,

restricting a crew to a single strategy in a period will limit the number of log-types harvested.

A feasibleOHSsolution will limit the number and type of cutting strategies used in a period.

These restrictions are similar to the harvest unit integrality constraints (Section 6.4.2.1), and are

enforced in the branch and bound algorithm (see Section 8.3.1.2).

Cutting strategies contain a subset of logs. Two cutting strategies can share the same subset

of log-types, but contain different bucking instructions. Combining these two strategies on a

skid site will be less difficult than using completely different sets of log-types. Cutting strategies

that share the same log-types are known asComplementary strategies. The setQk contains the

complementary strategies indexed byk.

One of the following three statements can be used to control the number of cutting strategies

used by a crew at any one time.

• Allow a crew to use any number of cutting strategies within a period.

• Only allow a single strategy per period (however, two strategies are allowed if the crew

moves between harvest units).

∑
i

Si
stxci = {0, 1} . . . ∀c, s, t

• Allow multiple complementary strategies per period.

∑
i,s∈Qk

Si
stxci = {0, 1} . . .∀c, t, k

2Priority list buckers would need a list of priorities, while some systems may alter log specifications slightly to
change volumes (Laroze 1999).
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where:

Si
st = 1 when schedulei includes strategys in periodt and zero other-

wise;

Qk is the set of complementary strategies;

k indexes the sets of complementary cutting strategies.

6.5 Production/Transportation constraints

TheProduction/ Transportation (PT) constraints(see Section 6.1.1) can make theOHSprob-

lem difficult to solve, as they tend to produce fractional solutions. This push towards fractional

solutions occurs whenPT constraints form extreme points away from integer solutions to the

CA sub-model. If for instance a crew does not supply the correct mix of log-types to the market,

thePT constraints may try to divide the crew among several harvest units. This division causes

fractions to appear in the solution, forcing it away from integer solutions to theCA sub-model.

The inclusion of elastic constraints in the modelling of Demand, Product properties and Product

Groups constraints (Sections 6.5.2–6.5.4) may mitigate this effect.

The allocation of volume from the harvest units to the customers (with log-stocks and down-

grading) is decided within thePT sub-model. This sub-model is essentially a resource con-

strained transportation problem that depends on:

• the production of the crews;
• the demands of the customers;
• the transportation cost from harvest unit to customer.

There is mutual interaction between the sub-models. The crews’ production depends on the

crew allocation. In addition, the costs within the transportation problem are important factors

in the crew allocations because crews should be placed near customers.

6.5.1 Volume allocation,vhmlt

The volume allocation constraint forms the basis of a transportation problem. Volume produced

by the crews (P ci
hlt) is allocated to the customers by thevhsmlt variables. Some complications to

this relationship are:
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• the ability to maintain log-stocks between the periods;

• the ability to downgrade production from other log-types to satisfy a customer;

• the requirements to maintain average log properties and log group fractions.

The following volume allocation and market constraints are likely to change between differ-

ent forestry companies. Possible restrictions that may be used by any company are discussed in

Section 3.5. Therefore, the constraints given here are only an example of possible constraints.

Where applicable, some possibilities for other formulations are mentioned.

The volume allocation constraint Equation (6.6) controls the volume produced, held in log-

stocks and sold.

∑
c,i

P ci
hltxci −

∑

l′ 6=l,m

(whmll′t)

+(yhl(t−1) − yhlt)−
∑
m

vhmlt = 0 . . .∀h, l /∈ Ξ, t (6.6)

where:

m indexes the customers;

vhmlt is the volume allocation of log-typel in harvest unith to customer

m;

whmll′t is the volume of log-typel in harvest unith downgraded to log-type

l′ for customerm in periodt;

yhlt is the log-stocks of log-typel in harvest unith at the end of periodt;

Ξ is the set of logs with SED requirements.

Equation (6.6) states that the total production of log-typel in harvest unith in period t

(
∑

c,i P
ci
hltxci), minus the volume removed from this log-type by downgrading(

∑
l′ 6=l,m (whmll′t)),

plus the inventory from the previous period minus the inventory left at the end of the current

period(yhl(t−1) − yhlt), is equal to the volume transferred to customers(
∑

m vhmlt).

When log-types have active log property constraints, (see Section 6.5.3) they must be treated

differently. The log-types with these constraints are elements of theΞ set. For log-typel andl ∈
Ξ the form of Equation (6.6) must be changed because the cutting-strategy (s) must be recorded

against the volume. Therefore, the variablevhsmlt is substituted forvhmlt in Equation (6.7).
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Similarly, the inventory is recorded by strategyyhslt and downgradeswhsml′l,t, whsmll′t. These

modifications significantly increase the number of constraints in the formulation. Therefore,

they are only implemented when necessary.

∑
c,i

P ci
hsltxci −

∑

l′ 6=l,m

(whsmll′t)

+(yhsl(t−1) − yhslt)−
∑
m

vhsmlt = 0 . . .∀h, s, l ∈ Ξ, t. (6.7)

For the logs inΞ, we then make the appropriate summations for ease of reference

vhmlt =
∑

s

vhsmlt . . . ∀h, l ∈ Ξ, t

yhlt =
∑

s

yhslt . . . ∀h, l ∈ Ξ, t

whmll′t =
∑

s

whsmll′t . . . ∀h, l ∈ Ξ,m, l′ 6= l, t

Crew Schedules Volume transfer Downgrade Inventory
x_ci v_hmlt w_hl'mlt I_hlt
Crew1 Crew1 Crew2 Crew3

Period 1 A/1 A/1 A/2 B/2
Period 2 A/1 B/1 A/1 B/2

HU Strategy Log-Type Period
Volume A Log1 1 50 50 20 -1 -1 -1 -1 1 -1 = 0
Allocation 2 50 30 -1 -1 -1 -1 1 -1 = 0

CS1 Log2 1 50 50 -1 -1 1 -1 = 0
2 50 30 -1 -1 1 -1 = 0

CS2 Log2 1 40 -1 -1 1 -1 = 0
2 -1 -1 1 -1 = 0

B Log1 1 10 -1 -1 -1 -1 1 -1 = 0
2 40 10 -1 -1 -1 -1 1 -1 = 0

CS1 Log2 1 -1 -1 1 -1 = 0
2 40 -1 -1 1 -1 = 0

CS2 Log2 1 40 -1 -1 1 -1 = 0
2 40 -1 -1 1 -1 = 0

Figure 6.5: The volume allocation constraint

The volume allocation constraint is shown in Figure 6.5. Only log-type two will have active

SED constraints and is inΞ. Therefore, the constraints for log-type two are repeated for each of

the two cutting strategies.

In this example, the log volumes differ depending on the harvest unit and cutting strat-

egy. There are two volume transfer variables (vhmlt) for each log-type because there are two

customers. The downgrade variables (whml′lt) allow only downgrades from log-type one to

log-type two.

The volume transfer and downgrade variables will link into the demand constraints (Sec-

tion 6.5.2) while the inventory variables (yhlt) transfer volume between periods.
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6.5.2 Demands,Dmax
mlt ,Dmin

mlt

A discussion of the possible demand restrictions is found in Section 3.5.1. Equations (6.8)

and (6.9) constrain the log volume delivered to the customers to lie betweenDmax
mlt andDmin

mlt in

each period.

Other possible demand constraints could include:

• a cumulative constraint on volume;
• an average constraint over several periods or the time horizon;
• a constraint restricting the difference in production from one period to the next.

The downgradewhmll′t is considered in Equations (6.8) and (6.9) as logs can be downgraded

from one log-type to another for delivery to a customer.

∑

h

vhmlt +
∑

h,l′ 6=l

Wl′lwhml′lt − qDmax
mlt ≤ Dmax

mlt . . . ∀m, l, t (6.8)

∑

h

vhmlt +
∑

h,l′ 6=l

Wl′lwhml′lt + qDmin
mlt ≥ Dmin

mlt . . . ∀m, l, t (6.9)

where:

Wl′l is the loss in volume when log-typel′ is downgraded tol;

Dmax
mlt is the maximum demand for log-typel in periodt by customerm;

Dmin
mlt is the minimum demand for log-typel in periodt by customerm;

qDmax
mlt is the volume of log-typel in period t in excess of the demand of

customerm;

qDmin
mlt is the volume of log-typel in periodt in shortfall of the demand of

customerm.

Equation (6.8) states that the total volume of log-typel delivered to customerm in period

t (
∑

h vhmlt), plus the volume downgraded intol from other log-types(
∑

h,l′ 6=l Wl′lwhml′lt),

minus the excess(qDmin
mlt ), is less than the maximum demand of the customer(Dmin

mlt ).

The shortfall and excess volumes (qDmin
mlt ,qDmax

mlt ) make these violations of the constraints

possible. This property is useful because in practice it is often impossible to find a feasible

OHS that meets all of the customers’ demands. Therefore, a solution must be found that has
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excesses and/or shortfalls (see Section 3.5.1). The magnitude and choice of logs in shortfall

or excess is controlled by the objective function contribution (CDmin
mlt ,CDmax

mlt ) of theqDmin
mlt and

qDmax
mlt variables. The costsCDmin

mlt andCDmax
mlt may be altered by the harvest scheduler until a

suitable solution is found. In the case studies, these penalties were set to be a multiple of the

market price of the log-type. The penalties should be high enough to force the optimisation

to deliver lower priced log-types. If the penalties are too high the optimisation may generate

expensive solutions that only insignificantly decrease demand violation.

Figure 6.6 shows the influence of the volume transfer, downgrade and penalty variables on

the demand constraint. This example only includes a minimum demand constraint, for logs that

are not inΞ. A section of the volume allocation constraint is included to indicate how volume

is transferred from this constraint.

Volume transfer Downgrade Demand
v_hmlt w_hl'mlt q_Dmax,mlt

HU Strategy Log-Type Cust Period
Volume A Log1 1 -1 -1 -1 -1 = 0
Allocation 2 -1 -1 -1 -1 = 0

CS1 Log2 1 -1 -1 = 0
2 -1 -1 = 0

CS2 Log2 1 -1 -1 = 0
2 -1 -1 = 0

B Log1 1 -1 -1 -1 -1 = 0
2 -1 -1 -1 -1 = 0

CS1 Log2 1 -1 -1 = 0
2 -1 -1 = 0

CS2 Log2 1 -1 -1 = 0
2 -1 -1 = 0

Minimum Log1 Cust1 1 1 1 1 >= D_mlt
Demand 2 1 1 1 >= D_mlt

Cust2 1 1 1 1 >= D_mlt
2 1 1 1 >= D_mlt

Log2 Cust1 1 1 1 1 1 1 1 1 >= D_mlt
2 1 1 1 1 1 1 1 >= D_mlt

Cust2 1 1 1 1 1 1 1 1 >= D_mlt
2 1 1 1 1 1 1 1 >= D_mlt

Figure 6.6: The minimum demand constraint

In Figure 6.6, volume is transferred from the volume allocation constraints into the demand

constraints by the volume allocation variablesvhmlt and downgrade linking variableswhmll′t.

Volume was supplied to the volume allocation constraints by the crew schedule variablesxci

(see Section 6.7) that are not shown.

6.5.3 Product properties,SEDmax
ml ,SEDmin

ml

In Section 2.6.3, several aggregate restrictions on log demands are discussed. In particular these

restrictions are:

• average SED requirements for an order;
• specific proportions of log-types in a single order.
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The average SED (SEDhsl) of a log-type is obtained from the yield predictions. The average

SED changes depending on the cutting strategy. Similar constraints could be applied to other

log properties such as density or stiffness.

The SED restriction is an average applied over a group logs. The grouping could be deter-

mined in a number of ways that depend on specific customer requirements. The grouping could

be:

• effective over the entire planning horizon;

• effective over each period;

• effective on specific orders/customers.

In the formulation used in this thesis, the first option is chosen. Therefore, only one constraint

is needed per customer, log-type combination.

∑

h,s,t

(SEDhsl − SEDmax
ml )vhsmlt

+
∑

h,s,l′ 6=l,t

(W SED
hsl′l − SEDmax

ml )Wl′lwhsml′l,t − qSEDmax
ml ≤ 0 . . .∀m, l ∈ Ξ (6.10)

∑

h,s,t

(SEDhsl − SEDmin
ml )vhsmlt

+
∑

h,s,l′ 6=l,t

(W SED
hsl′l − SEDmin

ml )Wl′lwhsml′l,t + qSEDmin
ml ≥ 0 . . .∀m, l ∈ Ξ (6.11)
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where:

SEDhsl is the SED of log-typel harvested from harvest unith with strategy

s;

W SED
hsl′l is the SED of log-typel′ harvested with strategys in harvest unith

downgraded to log-typel;

SEDmin
ml is the minimum average SED for log-typel allowed by customerm;

SEDmax
ml is the maximum average SED for log-typel allowed by customerm;

qSEDmin
ml is the value less than the maximum required SED for customerm

and log-typel;

qSEDmax
ml is the value more than the maximum required SED for customerm

and log-typel;

Equation (6.10) constrains the average SED. It uses the sum of the volume-weighted3 dif-

ferences of the actual SED and the required average(
∑

h,s,t (SEDhsl − SEDmax
ml )vhsmlt). The

downgraded volumewhml′lt is accounted for separately(
∑

h,s,l′ 6=l,t(W
SED
hsl′l −SEDmin

ml )Wl′lwhsml′l,t).

The parameterW SED
hsl′l is the expected SED of the downgraded logs. The SED of downgraded

logs W SED
hsl′l will be different toSEDhsl because the logs were originally made to a different

specification.

Figure 6.7 shows the operation of the minimum average SED constraint. The example

shown is simplified as the SED does not change depending on the cutting strategy used. The

more complex constraints detailed above will have additional variables for each different cutting

strategy used.

Volume transfer Downgrade SED
v_hmlt w_hl'mlt q_SEDmax,ml

HU Strategy Log-Type Cust Period
Volume A Log1 1 -1 -1 -1 -1 = 0
Allocation 2 -1 -1 -1 -1 = 0

CS1 Log2 1 -1 -1 = 0
2 -1 -1 = 0

CS2 Log2 1 -1 -1 = 0
2 -1 -1 = 0

B Log1 1 -1 -1 -1 -1 = 0
2 -1 -1 -1 -1 = 0

CS1 Log2 1 -1 -1 = 0
2 -1 -1 = 0

CS2 Log2 1 -1 -1 = 0
2 -1 -1 = 0

Minimum Log1 Cust1 20 20 -2 -2 1 >= 0
SED Cust2 20 20 -2 -2 1 >= 0

CS1 Log2 Cust1 -4 -4 8 8 1 >= 0
Cust2 -4 -4 8 8 1 >= 0

CS2 Log2 Cust1 -5 -5 10 10 30 30 5 5 1 >= 0
Cust2 -5 -5 10 10 30 30 5 5 1 >= 0

Figure 6.7: The SED constraint

The SED constraint operates in a similar manner to the demand constraint. Note that the

same variables that transfer volume to the demand constraint also transfer volume to the SED

constraint.

3Normal practice is to use volume weighting to find Small End Diameter (SED) rather than number of logs.
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6.5.4 Product fractions,Fmax
ml ,Fmin

ml

Product fraction restrictions are used for export log groups in particular (see Section 2.6.2).

These constraints limit the volume of a particular log-type to a fraction of the total volume of

a group of log-types. For instance, Japanese JM logs are restricted to be only 30% of the total

volume of an order of JL and JM logs (from Table 2.1 in Section 2.6.3).

As with average SED restrictions, the product fraction constraints apply over a number of

logs. In contrast to the average SED constraint, the product fraction constraints in this spe-

cific formulation apply in each period. Therefore, there is a constraint for each log group and

customer in each period.

∑

h

vhmlt +
∑

h,l′ 6=l

Wl′lwhml′lt − Fmin
ml

∑

h,l∈Gk

vhmlt

−Fmin
ml

∑

h,l∈Gk,l′ 6=l

Wl′lwhml′lt + qFmin
mlt ≥ 0 . . .∀k, m, l ∈ Gk, t (6.12)

∑

h

vhmlt +
∑

h,l′ 6=l

Wl′lwhml′lt − Fmax
ml

∑

h,l∈Gk

vhmlt

−Fmax
ml

∑

h,l∈Gk,l′ 6=l

Wl′lwhml′lt − qFmax
mlt ≤ 0 . . .∀k, m, l ∈ Gk, t (6.13)

where:

Fmax
ml is the maximum fraction for log-typel for customerm;

Fmin
ml is the minimum fraction for log-typel for customerm;

qFmax
mlt is the fraction of log-typel exceeding the maximum fraction for cus-

tomerm in periodt;

qFmin
mlt is the fraction of log-typel less than the minimum fraction for cus-

tomerm in periodt.

Equation (6.12) states that the volume of log-typel delivered to customerm in period t

(
∑

h vhmlt), plus the volume of downgraded logs(
∑

h,l′ 6=l Wl′lwhml′lt), plus the violation of

this constraint(qFmin
mlt ), must be greater than the total volume of delivered logs in the log
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group Gk multiplied by the required minimum fraction(Fmin
ml

∑
h,l∈Gk

vhmlt), plus the total

volume of downgraded logs in the log groupGk multiplied by the required minimum fraction

(Fmin
ml

∑
h,l∈Gk,l′ 6=l Wl′lwhml′lt).

Volume transfer Downgrade Fraction
v_hmlt w_hl'mlt q_Fmax,mlt

HU Strategy Log Group Log-Type Cust Period
Volume A Log1 1 -1 -1 -1 -1 = 0
Allocation 2 -1 -1 -1 -1 = 0

CS1 Log2 1 -1 -1 = 0
2 -1 -1 = 0

CS2 Log2 1 -1 -1 = 0
2 -1 -1 = 0

B Log1 1 -1 -1 -1 -1 = 0
2 -1 -1 -1 -1 = 0

CS1 Log2 1 -1 -1 = 0
2 -1 -1 = 0

CS2 Log2 1 -1 -1 = 0
2 -1 -1 = 0

Minimum LG1 Log1 Cust1 1 0.7 -0.3 -0.3 0.7 -0.3 -0.3 -0.2 -0.2 1 >= 0
Fraction 2 0.7 -0.3 -0.3 0.7 -0.3 -0.3 -0.2 -0.2 1 >= 0

Cust2 1 0.7 -0.3 -0.3 0.7 -0.3 -0.3 -0.2 -0.2 1 >= 0
2 0.7 -0.3 -0.3 0.7 -0.3 -0.3 -0.2 -0.2 1 >= 0

Log2 Cust1 1 -0.3 0.7 0.7 -0.3 0.7 0.7 0.56 0.49 1 >= 0
2 -0.3 0.7 0.7 -0.3 0.7 0.7 0.56 0.49 1 >= 0

Cust2 1 -0.3 0.7 0.7 -0.3 0.7 0.7 0.56 0.49 1 >= 0
2 -0.3 0.7 0.7 -0.3 0.7 0.7 0.56 0.49 1 >= 0

Figure 6.8: The log fraction constraint

The operation of the product fraction constraints is similar to the demand and SED con-

straints. In Figure 6.8, both logs in the example belong to a single group. Thus, the volume

transfer and downgrade variables for each log appear in all fraction constraints. It should be

noted that in the example the minimum fraction for both logs is 30%

6.5.5 Inventory,yhlt

This constraint restricts the log-stocks within the model (see Section 3.5.2). The volume in the

log-stocks (yhlt) is transferred across the periods, so past production can meet future demands.

A number of possible restrictions can be placed on the levels on inventory:

• the total volume is restricted at the harvest units;

• the total volume is restricted across the harvest units;

• the time logs spend in log-stocks is limited (because of sap stain);

• the number of different log-types that can be stored at a landing is restricted.

The Equation (6.15) handles the first item, while the fourth is implicitly handled by restrict-

ing the number of log-types in the cutting strategies (Section 6.4.3). The second and third items

are not treated in this thesis. The second item may be modelled trivially by another constraint

while the third item is slightly more difficult to model.

Equation (6.14) sets the initial inventory for harvest units to the parameterIhl.
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yhlt = Ihl . . . ∀h, l, t = 0 (6.14)

yhlt ≤ Imax
hl . . . ∀h, l, t (6.15)

where:

yhlt is the log-stocks of log-typel in harvest unith at the end of periodt;

Imax
hl is the maximum log-stocks of log-typel held in harvest unith;

Ihl is the initial log-stocks of log-typel in harvest unith.

Downgrade Inventory
w_hl'mlt I_hlt

HU Strategy Log-Type Period
Volume A Log1 1 -1 -1 1 -1 = 0
Allocation 2 -1 -1 1 -1 = 0

CS1 Log2 1 1 -1 = 0
2 1 -1 = 0

CS2 Log2 1 1 -1 = 0
2 1 -1 = 0

B Log1 1 -1 -1 1 -1 = 0
2 -1 -1 1 -1 = 0

CS1 Log2 1 1 -1 = 0
2 1 -1 = 0

CS2 Log2 1 1 -1 = 0
2 1 -1 = 0

Inventory A Log1 0 1 = I_hl
1 1 <= I_max_hl
2 1 <= I_max_hl

Log2 0 1 1 = I_hl
1 1 1 <= I_max_hl
2 1 1 <= I_max_hl

B Log1 0 1 = I_hl
1 1 <= I_max_hl
2 1 <= I_max_hl

Log2 0 1 1 = I_hl
1 1 1 <= I_max_hl
2 1 1 <= I_max_hl

Downgrade A Log1 1 1 1 1 <= I_hl
Log2 <= I_hl

B Log1 1 1 1 1 <= I_hl
Log2 <= I_hl

Figure 6.9: The inventory and downgrade constraints

Figure 6.9 shows the operation of the inventory constraint.

6.5.6 Downgrading control,whml′lt

Downgrading occurs when the volume produced in one log-type is sold as another log-type

(see Section 3.5.4). This downgrading is complementary to the re-grading that occurs when the

relative values are adjusted to generate the yield predictions (see Section 3.3.1). The dimen-

sionless conversion factorWl′l is used to calculate the volume lost downgrading. Volume may
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be lost because sections of the log may be removed at the landing to make it suitable for the

new log-type.

The volume of downgrade from a harvest unith and log-typel to a customerm and log-type

l′ is tracked by the variablewhmll′t. This level of detail allows control over which customers are

willing to accept downgrades for their logs. Calculation of the log property requirements also

tracks customer and harvest unit.

To limit downgrading to volumes that already exist in stockpiles (as discussed in Sec-

tion 3.5.4) the optional constraint Equation (6.16) may be used.

∑

l′ 6=l,t

whmll′t ≤ Ihl . . . ∀h, l (6.16)

where:

whmll′t is the volume of log-typel in harvest unith downgraded to log-type

l′ for customerm in periodt

Ihl is the initial log-stocks of log-typel in harvest unith.

This is an optional constraint. Its operation is shown in Figure 6.9. Note, the constraint

limits the volume that is downgraded, not the volume produced from downgrades (which would

be multiplied byWl′l).

6.6 Objective

The objective in this formulation is to maximise the net value of the logs sold. This value is the

revenue from delivered logs, minus the harvesting and transportation costs. The transportation

costs are specific to the harvest unit, as the distances travelled from the harvest unit to the

customer can be significant. However, in this formulation, a minimise objective function is

used. The value minimised is simply the profit multiplied by−1.



120 PROBLEM FORMULATION

6.6.1 Log revenue,cP,ml

Revenue from logs is only accrued when they are sold. There are a number of different methods

used to price logs, from stumpage sales through to delivered sales (see Section 2.6.4). These

methods allocate the costs of production and harvesting between the customer and supplier

in different ways. The optimisation model must, however, use a common reference point to

evaluate the total profit. All log sales are therefore priced using the delivered price (cP,ml, $/m3).

Because the delivered price is used, logs sourced from different parts of the forest and delivered

to the same customer all generate the same revenue. The transport cost can be considered

separately and the most efficient allocation of the logs to customers that minimises the cost of

transportation may be found.

If stumpage prices were used, the customer will pay more for logs (they pay transportation)

if they are harvested farther from the customer’s location. If the forestry company makes a profit

on selling transportation, the transportation problem would be distorted and the optimisation

would attempt tomaximisetransportation costs. The optimisation will therefore give inefficient

solutions to theOHSproblem.

6.6.2 Transportation costs,cT,hml

Transportation costs reflect the cost of transporting logs from the landing to a customer. These

costs can be based on distance, type of truck used, and the length of the logs. An individual cost

(cT,hml, $/m3) is applied to each harvest unit, log-type, and customer combination.

6.6.3 Penalty costs,CDmax
mlt ,CSEDmax

ml ,CFmax
mlt

These costs control the variables (qDmax
mlt ,qSEDmax

ml ,qFmax
mlt ) that make the market constraints

‘soft’. The cost will reduce the violation of the

• Demand constraints (CDmax
mlt ,CDmin

mlt );

• SED constraints (CSEDmax
ml ,CSEDmin

ml );

• Product fraction constraints (CFmax
mlt ,CFmin

mlt );

Higher penalties should result in lower violations if feasible. In practice, these costs should

be related to the actual costs of not meeting the restrictions. For example, the cost (CDmin
mlt ) of
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shortfall in the demand restriction should be set to the cost of obtaining the logs from an outside

supplier to meet demand.

The following two sections Sections 6.6.4 and 6.6.5 discuss objective value coefficients that

are used to control some end effects of the model. A detailed discussion of end-effects is found

in Section 8.6.1.

6.6.4 Residual harvest unit value,cR,h

Downgrading on the landing and re-grading while logmaking make it possible for high-value

harvest units to be felled in order to satisfy demand for low-value logs. While satisfying this

low-value demand may be the best decision in the short-term, the use of these harvest units will

reduce the ability to meet high quality demand in periods beyond the end of the time horizon.

To counter this tendency for short-term gain at the expense of long-term production, a residual

cost (cR,h, $/h) of the harvest units is included.

The residual cost reflects the value to a long-term solution of having the area available at the

end of the short-term planning horizon. To calculate this cost accurately the dual information

from a tactical planning solution can be used. However, if information from the tactical plan is

unavailable, the value of the timber in the harvest unit if it was sold in an unrestricted market

can be used. This value will be multiplied by a factor that represents the expected loss in value

when the market is restricted by actual customer demands.

6.6.5 Residual inventory value,cIR,hl

Any revenue from sales of log-stocks remaining at the end of the time horizon will not be

considered in this model. If logs are downgraded to lower value log-types and sold within the

time horizon the revenue is available to the model. however, the long-term consequences for

revenue is worse, as these high-value logs are wasted. To prevent this behaviour, a residual

value (cIR,hl, $/m3) is placed on the volume of log-stocks so that log-stocks are kept past the

end of the time horizon.
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6.6.6 Objective equation

The complete formulation of the objective function to be minimised is,

z =
∑
c,i

ccixci

−
∑

h,m,l,t

(cP,ml − cT,hml)vhmlt

−
∑

h,m,l,t

(cP,ml − cT,hml)whml′lt

+
∑

m,l,t

CDmax
mlt qDmax

mlt +
∑

m,l,t

CDmin
mlt qDmin

mlt

+
∑

m,l

CSEDmax
ml qSEDmax

ml +
∑

m,l

CSEDmin
ml qSEDmin

ml

+
∑

m,l,t

CFmax
mlt qFmax

mlt +
∑

m,l,t

CFmin
mlt qFmin

mlt

+
∑

h,t=T

cR,h(Ah − aht) +
∑

h,l,t=T

cIR,hlyhlt

(6.17)

where:

cci is the cost of crewc following schedulei;

cP,ml is the revenue from log-typel delivered to customerm;

cT,hml is the transportation cost to move logl from harvest unith to cus-

tomerm;

cR,h is the value of the residual area of harvest unith;

cIR,hl is the value of the residual log-stocks of log-typel left in harvest unit

h at the end of the time horizon.
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CDmin
mlt is the cost associated with shortfall volume of log-typel in periodt

for customerm;

CDmax
mlt is the cost associated with excess volume of log-typel in periodt for

customerm ;

CSEDmin
ml is the cost of violating the SED minimum for customerm and log-

typel;

CSEDmax
ml is the cost of violating the SED maximum for customerm and log-

typel;

CFmin
mlt is the cost of the penalty variables on the minimum log fraction con-

straints;

CFmax
mlt is the cost of the penalty variables on the maximum log fraction con-

straints;

6.7 Crew schedule variables,xci

The previous discussion focused on the constraints of the model. However, in theOHSA the

construction of the crew-schedules is very important.

A xci variable is internally represented by the combination of a crew with a schedule. The

information in the resulting crew schedule is used directly in the crew constraints and in the

harvest unit capacity constraints.

Thexci variables control crew allocations and the area harvested, however, thexci variables

affect thePT constraints of the problem. These effects stem from the volume of logs produced

by a crew following the schedule.

The area (Aci
ht) harvested in harvest unith in periodt is calculated. In addition the production

(P ci
hlt) of log-type l in harvest unith and periodt is found. These figures are placed in the

appropriate rows in the column that represents the crew schedule. The derivation of these two

figures is described in Sections 6.7.2 and 6.7.3

The crew schedule variables influence the behaviour of thePT sub-model. The schedule

determines where the crew harvests and the cutting strategies used throughout the planning

horizon. The volume and properties of logs harvested can be calculated from the crew schedule

along with the area of each harvest unit felled, and the total cost of harvesting.
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In contrast with a Model I formulation, this Model II formulation can easily include infor-

mation from previous periods when calculating the values above. Thus, production volume and

the cost of production in a period can directly refer to the previous location of the crew.

6.7.1 Movement penalties,M $
h′h,MP

h′h

In a Model II formulation the movement costs and penalties do not appear in the formulation

explicitly, instead they are used to calculate the coefficients of thexci variables.

When a crew moves from one harvest unith′ to anotherh there can be a monetary cost and

a loss of production associated with this move (Section 3.4.2). The movement cost (M$
h′h) is the

cost in dollars to move fromh to h′. This cost must be added to the overall costs of operating

the crew. If the crew does not move

H i
h(t−1) = H i

ht = 1

=⇒ H(i, t− 1) = H(i, t) = h′ = h

=⇒ M$
h′h = 0.

The production penalty (MP
h′h) is the reduced productivity of any crew when they move

betweenh′ andh. The factorMP
h′h lies between zero and one (0 ≤ MP

h′h ≤ 1) and multiplies

the crew production (Pch) when a crew moves. Therefore, if a crew will lose one day out of five

when it moves between the harvest units the production penalty isMP
h′h = 0.8. If a crew does

not move

H i
h(t−1) = H i

ht = 1

=⇒ H(i, t− 1) = H(i, t) = h′ = h

=⇒ MP
h′h = 1.

As, the cost and the loss of productivity can vary based on the distance between the harvest

units and on other factors,M$
h′h andMP

h′h are allowed to vary based on the origin harvest unith′

and the destinationh. The costs and penalties of movement are input parameters for the model.
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6.7.2 Crew area,Aci
ht

Yield predictions give the predicted total volume per hectare. The reciprocal of this figure is

AY,hs (hectares/m3). The area coefficient (Aci
ht) for the crew schedule is derived as shown below.

Aci
ht = H i

htPchM
P
h′hAY,hs h′ = H(i, t− 1), s = S(i, t) . . . ∀c, i, h, t (6.18)

where:

Aci
ht is the area of harvest unith harvested by crewc following schedule

i;

AY,hs is the hectares ofh cleared perm3 harvested using strategys.

6.7.3 Crew production,P ci
hlt

The yield prediction information for each harvest unit is obtained from the inventory system

(Section 2.4.5). The data are converted to a fraction (PF,hsl) of each log-type that is produced

by the cutting strategy in this harvest unit. This fraction is converted to a volume production

rate when multiplied by the crew’s productivity (Pch).

The productivity of a given crew is determined by the crew’s size, equipment and the con-

ditions under which they operate (Section 3.4.1). The crew productivity (Pch) in m3 per day

depends on the crew and the harvest unit they harvest.

P ci
hlt = H i

htPchM
P
h′hPF,hsl h′ = H(i, t− 1), s = S(i, t) . . .∀c, i, h, l /∈ Ξ, t (6.19)

where:

P ci
hlt is the production of log-typel by crewc following schedulei;

Ξ is the set of logs with SED requirements.

The production coefficient (P ci
hlt), does not track which strategy was used. For log properties

(for instance SED) that are dependent on the strategy, the strategy used becomes important. For

logs that require constraints on these log properties,l ∈ Ξ, (see Section 6.5.3) the coefficient

P ci
hslt is given by
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P ci
hslt = H i

htPchPF,hslM
P
h′hS

i
st h′ = H(i, t− 1) . . . ∀c, i, h, s, l ∈ Ξ, t. (6.20)

6.7.4 Crew schedule cost,cci

The cost (cci $/m3) of a crew schedule variable (xci) is the sum of the harvesting and movement

costs of crewc carrying out the schedulei. Each crew is allocated a production cost (Cch) to

harvest harvest unith. This cost depends on the crew’s equipment and the type of harvest unit

(Section 3.4.1). Multiplying this figure by the productivity gives the crew cost for that harvest

unit. Any movement costs of the schedule are then added.

cci =
∑

t
h=H(i,t)

h′=H(i,t−1)

PchM
P
h′hCch +

∑
t

h=H(i,t)
h′=H(i,t−1)

M$
h′h . . . ∀c, i (6.21)

where:

cci is the cost of crewc following schedulei.

6.7.5 Crew schedule variable structure

Once the various coefficients (H i
ht,A

ci
ht,P

ci
hlt) are defined, the column that represents a particular

crew schedule in the constraint matrix (aci) can be constructed as follows.

This column can be partitioned into five parts:

• the crew assignment constraints denotedaC
ci;

• the harvest unit capacity constraints denotedaH
ci ;

• the harvest unit area constraints denotedaA
ci;

• the volume allocation constraints denotedaP
ci;

• the rest of the constraints denotedaN
ci .
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aci =




aC
ci

aH
ci

aA
ci

aP
ci

aN
ci




(6.22)

where:

aci is the column of theA matrix that corresponds to axci variable.

It is easy to see that

aC
ci = ec

where:

ei is theith column of the identity matrix.

The other partitions are obtained by simply placing the correct parameter values into the

appropriate rows.
aH

ci =[H i
1,1 . . . H i

1,|T |, H
i
2,1 . . . H i

2,|T |, . . . H
i
|H|,|T |]

T

aA
ci =[Aci

1,1 . . . Aci
1,|T |, A

ci
2,1 . . . Aci

2,|T |, . . . A
ci
|H|,|T |]

T

aP
ci =[P ci

1,1,1 . . . P ci
1,1,|T | . . . P

ci
1,|L|,|T | . . . P

ci
|H|,|L|,|T |]

T

aN
ci =0

(6.23)

where:

H i
ht = 1 when schedulei contains harvest unith in period t and zero

otherwise;

Aci
ht is the area of harvest unith harvested by crewc following schedule

i;

P ci
hlt is the production of log-typel by crewc following schedulei.

Figure 6.10 shows four example crew schedules. In this figure, the area and the volumes

produced change as the crews change harvest area and cutting strategy.
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Crew Schedules
x_ci

Crew: Crew1 Crew1 Crew2 Crew3
HU/CS Period 1 A/1 A/1 A/2 B/2

Period 2 A/1 B/1 A/1 B/2
Crew HU Strategy Log-Type Period

Crew Crew1 1 1 = 1
Assignment Crew2 1 = 1

Crew3 1 = 1
Harvest Unit A 1 1 1 1 <= G_h
Capacity 2 1 1 <= G_h

B 1 1 <= G_h
2 1 1 <= G_h

Harvest Unit A 1 10 10 6 = 0
Area 2 10 6 <= A_h

B 1 5 = 0
2 8 5 <= A_h

Volume A Log1 1 50 50 20 = 0
Allocation 2 50 30 = 0

CS1 Log2 1 50 50 = 0
2 50 30 = 0

CS2 Log2 1 40 = 0
2 = 0

B Log1 1 10 = 0
2 40 10 = 0

CS1 Log2 1 = 0
2 40 = 0

CS2 Log2 1 40 = 0
2 40 = 0

Figure 6.10: Crew schedule variables in the constraint matrix

6.8 Concise formulation

Minimise
xci, vhmlt

z =
∑
c,i

ccixci

−
∑

h,m,l,t

(cP,ml − cT,hml)vhmlt

−
∑

h,m,l,t

(cP,ml − cT,hml)whml′lt

+
∑

m,l,t

CDmax
mlt qDmax

mlt +
∑

m,l,t

CDmin
mlt qDmin

mlt

+
∑

m,l

CSEDmax
ml qSEDmax

ml +
∑

m,l

CSEDmin
ml qSEDmin

ml

+
∑

m,l,t

CFmax
mlt qFmax

mlt +
∑

m,l,t

CFmin
mlt qFmin

mlt

+
∑

h,t=T

cR,h(Ah − aht) +
∑

h,l,t=T

cIR,hlyhlt
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subject to:

Crew Allocation

∑
i

xci = 1 . . .∀c

Harvest Unit Capacity

∑
c,i

H i
htxci ≤ Gh . . .∀h, t

Harvest Unit Area

∑
c,i

Aci
htxci + ah(t−1) − aht = 0 . . .∀h, t < |T |
∑
c,i

Aci
htxci + ah(t−1) ≤ Ah . . .∀h, t = |T |

Volume Allocation

∑
c,i

P ci
hltxci −

∑

l′ 6=l,m

(whmll′t)

+(yhl(t−1) − yhlt)−
∑
m

vhmlt = 0 . . .∀h, l /∈ Ξ, t

Demand

∑

h

vhmlt +
∑

h,l′ 6=l

Wl′lwhml′lt − qDmax
mlt ≤ Dmax

mlt . . .∀m, l, t

∑

h

vhmlt +
∑

h,l′ 6=l

Wl′lwhml′lt + qDmin
mlt ≥ Dmin

mlt . . .∀m, l, t
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SED

∑

h,s,t

(SEDhsl − SEDmax
ml )vhsmlt

+
∑

h,s,l′ 6=l,t

(W SED
hsl′l − SEDmax

ml )Wl′lwhsml′l,t − qSEDmax
ml ≤ 0 . . .∀m, l ∈ Ξ

∑

h,s,t

(SEDhsl − SEDmin
ml )vhsmlt

+
∑

h,s,l′ 6=l,t

(W SED
hsl′l − SEDmin

ml )Wl′lwhsml′l,t + qSEDmin
ml ≥ 0 . . .∀m, l ∈ Ξ

Fraction

∑

h

vhmlt +
∑

h,l′ 6=l

Wl′lwhml′lt − Fmin
ml

∑

h,l∈Gk

vhmlt

−Fmin
ml

∑

h,l∈Gk,l′ 6=l

Wl′lwhml′lt + qFmin
mlt ≥ 0 . . .∀k,m, l ∈ Gk, t

∑

h

vhmlt +
∑

h,l′ 6=l

Wl′lwhml′lt − Fmax
ml

∑

h,l∈Gk

vhmlt

−Fmax
ml

∑

h,l∈Gk,l′ 6=l

Wl′lwhml′lt − qFmax
mlt ≤ 0 . . .∀k,m, l ∈ Gk, t

Inventory

yhlt = Ihl . . .∀h, l, t = 0

yhlt ≤ Imax
hl . . .∀h, l, t

Downgrade

∑

l′ 6=l,t

whmll′t ≤ Ihl . . .∀h, l
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and

xci ∈ {0, 1} . . .∀c, i
vhmlt ≥ 0 . . .∀h,m, l, t

yhlt ≥ 0 . . .∀h, l, t

whml′lt ≥ 0 . . .∀h, l′, l, t

where:

c indexes the crews;

i indexes possible schedules;

h indexes the harvest units;

s indexes the possible cutting strategies;

m indexes the customers;

l indexes the log-types;

k indexes the log-groups;

t indexes periods;

H i
ht = 1 when schedulei contains harvest unith in period t and zero

otherwise;

Si
st = 1 when schedulei includes strategys in periodt and zero other-

wise;

xci is the allocation of crewc to schedulei;

Gh is the maximum number of crews allowed in harvest unith;

aht is the cumulative area harvested in harvest unith by periodt;

Ah is the total area in harvest unith;

P ci
hlt is the production of log-typel by crewc following schedulei;

Aci
ht is the area of harvest unith harvested by crewc following schedule

i;

vhmlt is the volume allocation of log-typel in harvest unith to customer

m;

yhlt is the log-stocks of log-typel in harvest unith at the end of periodt;

Imax
hl is the maximum log-stocks of log-typel held in harvest unith;

Ihl is the initial log-stocks of log-typel in harvest unith;
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whml′lt is the volume of log-typel′ in harvest unith downgraded to log-type

l for customerm in periodt;

whmll′t is the volume of log-typel in harvest unith downgraded to log-type

l′ for customerm in periodt;

Wl′l is the loss in volume when log-typel′ is downgraded tol;

W SED
hsl′l is the SED of log-typel′ harvested with strategys in harvest unith

downgraded to log-typel;

Dmax
mlt is the maximum demand for log-typel in periodt by customerm;

Dmin
mlt is the minimum demand for log-typel in periodt by customerm;

qDmax
mlt is the volume of log-typel in period t in excess of the demand of

customerm;

qDmin
mlt is the volume of log-typel in periodt in shortfall of the demand of

customerm;

SEDhsl is the SED of log-typel harvested from harvest unith with strategy

s;

SEDmin
ml is the minimum average SED for log-typel allowed by customerm;

SEDmax
ml is the maximum average SED for log-typel allowed by customerm;

qSEDmin
ml is the value less than the maximum required SED for customerm

and log-typel;

qSEDmax
ml is the value more than the maximum required SED for customerm

and log-typel;

Ξ is the set of logs with SED requirements;

gmkt is the total volume in log-groupk for customerm in periodt;

Gk is the set of log-types in log-groupk;

Fmax
ml is the maximum fraction for log-typel for customerm;

Fmin
ml is the minimum fraction for log-typel for customerm;

qFmax
mlt is the fraction of log-typel exceeding the maximum fraction for cus-

tomerm in periodt;

qFmin
mlt is the fraction of log-typel less than the minimum fraction for cus-

tomerm in periodt;
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cci is the cost of crewc following schedulei;

cP,ml is the revenue from log-typel delivered to customerm;

cT,hml is the transportation cost to move logl from harvest unith to cus-

tomerm;

cR,h is the value of the residual area of harvest unith;

cIR,hl is the value of the residual log-stocks of log-typel left in harvest unit

h at the end of the time horizon;

CDmin
mlt is the cost associated with shortfall volume of log-typel in periodt

for customerm;

CDmax
mlt is the cost associated with excess volume of log-typel in periodt for

customerm ;

CSEDmin
ml is the cost of violating the SED minimum for customerm and log-

typel;

CSEDmax
ml is the cost of violating the SED maximum for customerm and log-

typel;

CFmin
mlt is the cost of the penalty variables on the minimum log fraction con-

straints;

CFmax
mlt is the cost of the penalty variables on the maximum log fraction con-

straints.
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Chapter 7

Additional Formulation Features

A savage place! as holy and enchanted

As e’er beneath a waning moon was haunted

By woman wailing for her demon-lover!

(Coleridge 1798)

In this chapter, two additional features of the formulation are discussed in detail. They are

the relaxation of the integer requirements of a feasible solution and the restrictions on gener-

ated crew schedules. Because both these formulation features require some description of the

solution process, they do not easily fit with the model formulation discussed in the Chapter 6.

Section 7.1 describes the modification of the integer requirements of a feasible solution. In

other integer formulations in the literature, the crew schedule variables (xcht) are binary integer

(xcht ∈ {0, 1}). In this thesis, this requirement is relaxed to allow crews to move between

harvest unitswithin a period. The techniques of constraint branching (Section 5.2.3.3) are used

to describe a set of mutually compatible crew schedules (Jc) for each crew. This set can be

interpreted to allow the crew to move at any time within the planning horizon and not only at

the period boundaries.

In Section 7.2, the restrictions on the structure of valid crew schedule variables are ex-

plained. These restrictions were discussed briefly in Section 6.2.2 and lead to a more efficient

solution process. An example of this type of structure is, a crew schedule must not indicate that

a crew will remain in a harvest unit longer than it would need to completely harvest the unit.

Imposing this structure tightens the bound on the integer solution given by the optimal objective

value of the Relaxed Linear Program (RLP) .
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7.1 Integer relaxation

In anOHSsolution, each crew must beunambiguouslylocated throughout the planning horizon.

In this context, unambiguous means that a crew is located in a single harvest unit at every single

instant. If this requirement is not enforced, a crew could be spread between several harvest units

throughout the forest.

A simple LP formulation of theOHS problem often produces solutions that ambiguously

locate crews. To avoid this, the problem is posed as a type of integer programming problem. In

theMILP formulations used previously in the literature, theB&B process forces each crew into

a singleharvest unit ineach periodwithin the planning horizon. Therefore, crews are not able

to move between harvest unitswithin periods. Some types of crews (for example, hauler crews

that only move in weekends, see Section 3.4.2), may be restricted in this manner if a period is a

single week. However, if crews are free to move at any time, or periods are longer then a week,

this restriction is unnecessary.

In a Model I formulation (see Section 6.2), a crew allocation (see Section 6.1) is determined

by a single binary integer variable (xcht). When this variable is at value one, the crew is located

in a single harvest unit for that period. Similarly, in a typical Model II formulation, an integer

feasible solution will only contain a single non-zero crew schedule (xci) for each crew. As a

crew schedule is a combination of crew allocations, both typical Model I and II formulations

suffer from the problems discussed above.

7.1.1 Types of OHS solution

From a forestry perspective, the crew locations of anOHSsolution can be interpreted in three

ways. Each of these interpretations is in turn related to the structure of the solution from an

optimisation viewpoint.

It should be noted that the terms below do not refer to the type of model formulation. The

terms relate to solution sets of theOHSmodel.

In the definitions below a Model II formulation is assumed.

• Ambiguous location solutions: Crews’ locations are not restricted in any way, a single

crew can harvest in many harvest units simultaneously. This is the general classification
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of all feasibleOHSsolutions. This solution set is equivalent to the feasible region of the

Relaxed Linear Program (RLP).

• Restricted movement solutions: Crews are unambiguously located in a single harvest unit

in each period. They are only allowed to move between harvest unitsbetweenperiods.

This is the most restrictive of the three solution sets and a strict subset of the others. This

solution set is equivalent to the set of strictly integer solutions (xci ∈ {0, 1}).
• Unrestricted movement solutions: Crews are unambiguously located in a single harvest

unit at any time within the time horizon. However, the crews may also move between

harvest unitswithin a period. This type of solution lies in between ambiguous location

and restricted movement solutions. This set is a subset of the ambiguous location solution

set and ensures the location of the crews is determined at every instant. A relaxed integer

solution (see Section 7.1.2) will give solutions within this set.

In summary,

Ambiguous location solutions⊃ Unrestricted movement solutions⊃ Restricted movement solutions.

A Model II formulation is necessary to generate the relaxed integer solutions required to

find unrestricted movement solutions.

7.1.1.1 Comparison of solution types

Because a crew cannot work in more than one harvest unit at a time, strictly ambiguous location

solutions cannot be used in practice. Therefore, the only operationally feasible solutions are the

unrestricted and restricted movement solutions.

The harvest unit area constraints (Section 6.4.2.1) in the formulation require that when a

crew has harvested all the trees in a harvest unit it must move or stop harvesting. In a restricted

movement solution, a crew can only move between periods. If a crew finishes a harvest unit

within a period, the crew is idle until the end of the period. Alternatively, the crew can move

at the end of the previous period and create an unfinished harvest unit which will never be

completed. An unrestricted movement solution does not suffer from these problems as crews

will simply move when they finish the harvest unit.

The restricted movement solution set is also the most restrictive of the three. As restricted
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movement solutions are more constrained, the objective value of the optimal restricted move-

ment solution cannot be better than the optimal objective of the other two solution sets.

7.1.1.2 Construction of unrestricted solutions

An unrestricted movement solution allows crews to move between harvest unitswithin a period.

To move within a period the crew must be located in two harvest units in the same period (i.e.

in harvest unitA in the beginning of the period and inB at the end). The unrestricted movement

solutions in this thesis do not allow a crew to move more than once per period. If it is desirable

for a crew to move more often the period length should be reduced.

In a Model I formulation (where a variable represents a crew allocation), it is difficult to

model a solution that allows the crews to move, while retaining the ability to locate crews

unambiguously. The difficultly arises because of the inability to use historical crew location

information in this kind of formulation, without cumbersome linking constraints.

However, an unrestricted movement solution can be obtained by two separate methods in a

Model II formulation.

• Allow the column generation algorithm to generate schedules where movements can oc-

cur mid-period.

• Interpret linear combinations of crew schedules to indicate that a crew moves between

harvest units within a period.

The first option will accurately model movement costs and penalties. Each of the columns

generated in this option will precisely indicate when, within the period, the crew will move.

However, if a crew moves momentarily earlier or later a new crew schedule is necessary. This

small change in movement timing may be caused by changing the cutting strategy used or by

other subtle changes. If a column generation algorithm is used it would need to produce a range

of very similar crew schedules. As the crew schedules vary continuously, a-priori generation all

the columns, even for small problems, will be impossible.

The second method, which is the preferred method in this thesis, is discussed in Sec-

tion 7.1.2.
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7.1.2 Relaxed integer solutions

In an unrestricted movement solution, more than one crew schedule for each crew is allowed

to be non-zero in a solution. The combination of these active schedules is interpreted to define

a mid-period crew movement. A solution that contains several active crew schedules for each

crew, while unambiguously locating them, is known as arelaxed integer solution. In a relaxed

integer solution, the crew schedule variables are no longer truly integer. This approach reduces

the number of variables necessary, while introducing flexibility into the integer decisions that

allow schedules to be found that meet the harvest unit area constraints.

7.1.2.1 Generation of relaxed integer solutions

Several crew schedules can combine to form a relaxed integer solution. A set of rules governs

which combinations can be interpreted as an unambiguous placement of the crew. Combinations

that are allowed in a relaxed integer solution are calledComplementary columns. Two crew

schedules are complementary if they both follow the same sequence of crew movements. In

addition, the crew movements in the individual crew schedules can only differ from the sequence

by a single period.

For example, in a five period problem crew Skyline harvests two unitsA andB. If Skyline

finished unitA 0.6 of the way through period 3, then the crew schedules needed are shown in

Table 7.1.

Table 7.1: Two crew schedules with an unambiguous interpretation.
Crew Skyline x=0.4 y=0.6

Period 1 A A
Period 2 A A
Period 3 B A
Period 4 B B
Period 5 B B

The interpretation of this combination of these variables states that the crew moves from

harvest unitA to harvest unitB 0.6 of the way through period 3.

The crew schedule compatibility requirement is stated precisely below.
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Requirement 1 (Crew schedule compatibility) If a crew schedule indicates that a crew is in

harvest units in period p, another crew schedule can co-exist in a relaxed integer solution if

any of these three conditions are met:

1. the second crew schedule indicates harvest units in periodp;

2. the second crew schedule indicates harvest unitt in periodp, if the first variable indicates

harvest unitt in periodp + 1 (first schedule lags);

3. the second crew schedule indicates harvest unitr in periodp, if the first variable indicates

harvest unitr in periodp− 1 (second schedule lags).

In the example in Table 7.2, from Requirement 1 crew scheduley is compatible with bothx

andz. However, crew schedulesx andz are not compatible with each other, because movement

penalties are not incurred in the same period.

Table 7.2: Three crew schedules with two different interpretations.
Crew Skyline x y z

Period 1 A A A
Period 2 A A A
Period 3 B A A
Period 4 B B A
Period 5 B B B

In effect, the pairs(x,y) or (y,z) define a specific sequence of harvest units. The sequences

given by both these pairs are not compatible with each other as(x,y) indicates the crew moves

in period 3 while(y,z) indicates the movement is in period 4. To interpret the solution given by

the compatible columns correctly, thecrew movement sequencemust be found. This sequence

is similar to a crew schedule but specifically defines which period the crew moves. For example,

the crew movement sequences for the pairs of variables are shown in Table 7.3.

The movement sequence determines which harvest units the crew is in at the beginning and

the end of each period. The fractionΓcht of the periodt that crewc remains in harvest unith

will be the sum of the values of the crew schedulesxci that allocate the crewc to harvest unith

in periodt. This relationship is shown in Equation (7.1).
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Table 7.3: Movement sequences for pairs of crew schedules
Crew Skyline Pair x, y Pair y, z

Period 1 A A
Period 2 A A
Period 3 A→B A
Period 4 B A→B
Period 5 B B

∑
i

xciH
i
ht = Γcht . . . ∀c, h, t (7.1)

where:

xci is the allocation of crewc to schedulei;

H i
ht = 1 when schedulei contains harvest unith in period t and zero

otherwise;

i indexes possible schedules;

c indexes the crews;

h indexes the harvest units;

t indexes periods.

It is evident that a single crew schedule may be interpreted in two ways. For example,

scheduley represents the crew moving at the end of period 3 in movement sequence(x,y). In

movement sequence(y,z), scheduley represents the crew moving at the beginning of period 4.

In the current formulation the crew schedule construction is identical if the crew moves at the

beginning of periodt or at the end oft− 1. Therefore, the exact same variable can occur in two

different movement sequences.

Not all combinations of crew schedules can be interpreted as an unambiguous location for

the crews. For instance, the group of variables shown in Table 7.4 is ambiguous. Though the

crew is limited to only two harvest unitsA andB, in each period the variablesx andy cannot

be interpreted to give an unambiguous location to the crew.

The relaxed integer solution is constructed during theB&B process (see Sections 8.3.1.1

and 8.3.2 for details). In theB&B, the crew movement sequences for all crews are built se-

quentially period by period. Each branch in theB&B process removes crew schedules that do
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Table 7.4: Two crew schedules without an unambiguous interpretation.
Crew Skyline x y

Period 1 A B
Period 2 A B
Period 3 A B
Period 4 A B
Period 5 A B
Period 6 A B

not comply with the current incremental crew movement sequence. An unrestricted movement

solution is found when a complete crew movement sequence is constructed for all crews.

7.2 Valid crew schedules

In common with other SPP formulations of rostering problems, a major benefit of a Model

II formulation is that the construction of the columns (in this formulation columns represent

crew schedules) can reflect implicit constraints that are not found in the LP formulation. These

implicit constraints guarantee that the only columns available to solve the problem conform to

the required structure. A column that obeys all implicit constraints isvalid while those that

don’t areinvalid.

In a Model II formulation, the most useful information available to the column generation

algorithm is the history of the crew’s location. This information is useful in several ways.

• Only integer feasible crew schedules are generated, thus the RLP solution becomes closer

to the best integer solution.

• Crew schedules can be used to force crews to finish harvest units before they move.

• Crew schedules must meet the requirements of any active constraint branches.

7.2.1 Integer feasible columns

When comparing the RLP solutions to the eventual integer feasible solution, it is common to

get situations similar to the one illustrated in Table 7.5.

In this example, each harvest unit is completely harvested in both the RLP and the integer
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Table 7.5: Contrast of RLP solution variables to eventual integer solution
RLP variables Integer solution

Crew Skyline x=1
3

y=1
3

z=1
3

Initial A A A A

Period 1 A B C A
Period 2 A B C A
Period 3 A B C B
Period 4 A B C B
Period 5 A B C C
Period 6 A B C C

solutions. There is a major difference between the structure of the crew schedules in the RLP

solution and the eventual integer solution. In the integer solution, the crew is forced to move

twice. In the RLP solution the number of crew movements is1
3
× 0 + 1

3
× 1 + 1

3
× 1 = 2

3
of

the single movement cost. Because the first crew schedule has no movements, and the second

and third crew schedules only move in the initial period. The RLP solution economises on crew

movement costs in a way that is not possible in the integer solution.

The reason the RLP solution is so different from the integer solution is that a crew schedule

can allow a crew to remain in a single harvest unit for the entire planning horizon. In practice, a

crew would finish harvesting this harvest unit before the end of the planning horizon, as shown

in Table 7.5. Unstructured crew schedules give a RLP solution significantly different to the

integer feasible solution, because the harvest unit area constraints combined with the integer

requirements can change the solution significantly during theB&B process.

B&B will eventually find an integer solution to the problem. However, as the bound gap will

be large theB&B is likely to be inefficient. The lower bound on the solution value determined

by the optimal objective value of theRLP solution with unrestricted crew schedules is not a

good indication of the best possible integer solution.

To resolve this issue and obtain a tighter bound from theRLP solutions an implicit con-

straint was added to the crew schedule structure. The constraint ensures that any crew schedule

generated must not violate the harvest area constraints when the crew schedule is at value one.

Requirement 2 (Integer feasible columns)If crewc will complete harvest unith in t periods,
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the number of periodsh appears in a crew schedule forc may not exceedt + 1.

For example, if a crew would complete a harvest unit in 3.2 periods no crew schedules will

be generated with the crew remaining in the harvest unit for more than 4 periods. The addition

of the extra period allows relaxed integer solutions to be generated.

The effect of this constraint is to force the structure of the RLP solution to be similar to

an integer solution to the problem. The statement above will force crew schedules in the RLP

to have a similar structure to the crew schedules in the integer solution and thus give a better

bound.

7.2.2 Forcing harvest unit completion

As mentioned in Section 6.4.2.1 in some cases crews may be required to finish a harvest unit

once they have entered. This constraint can be enforced in theB&B. However, as in Sec-

tion 7.2.1 it is desirable that the RLP solutions approximate the eventual integer solutions to the

problem. In this case, a similar restriction to Requirement 2 can be enforced to guarantee that

crews remain in the harvest units for the minimum time needed to completely harvest them.

Requirement 3 (Force HU completion) Harvest unith must be harvested in a single opera-

tion. Crewc will take t periods to completeh. The number of periods thath appears in any

crew schedule forc may be either 0 or greater or equal tot− 1.

This requirement can only be enforced on harvest units where only a single crew can harvest

at any one time. If two crews or more are in a harvest unit simultaneously, the harvest unit will

be completed sooner than can be predicted for a single crew. Thus, no variables can be generated

with this requirement that allow multiple crews to harvest together.

7.2.3 Enforcing constraint branches

Because the column generation algorithm is called within theB&B tree, all newly generated

crew schedules need to comply with constraint branches that have been implemented.
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Requirement 4 (Compliance with constraint branches)All crew schedules generated dur-

ing the Branch and Bound (B&B ) process must comply with all constraint branches in effect

for the current node.
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Chapter 8

Solution Strategy

And from this chasm, with ceaseless turmoil seething,

As if this earth in fast thick pants were breathing,

A mighty fountain momently was forced:

(Coleridge 1798)

This chapter describes the implementation of the techniques discussed in Chapter 5 that

are used to solve the Operational Harvest Scheduling (OHS) problem. These techniques have

been implemented in an Operational Harvest Scheduling Algorithm (OHSA) that was used to

generate the results presented in this thesis.

The specific techniques discussed in this chapter are:

• Relaxed Linear Program (RLP) solution techniques;
• column generation;
• Branch and Bound (B&B) process;
• integer allocation heuristics.

This chapter also includes a description of theZIP programming environment (Ryan 1980).

8.1 RLP solution strategy

The first stage in theOHSA solves theRLP of the formulation given in Chapter 6. TheLP

methods used in this thesis are provided by ZIP4.0 (Ryan 1980) that also provides the framework
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for the Branch and Bound (B&B) algorithm.

8.1.1 ZIP solver

ZIP is the optimisation environment used in this thesis. ZIP provides the backbone of the

optimisation algorithm providing an implementation of the simplex algorithm and a branch

and bound framework. ZIP allows the user to customise various steps in the solution process. It

is written in theFORTRANprogramming language.

ZIP is used in preference to commercial packages for example, CPLEX (described in CPLEX

(1994)), because of the flexibility provided by the ZIP environment. ZIP is flexible because the

core routines of ZIP only use the current basis and do not include any problem specific infor-

mation. This flexibility allows easy implementation of:

• constraint branching (see Section 8.3);

• column generation (see Section 8.2) in theB&B.

The structure of ZIP is divided into three parts as shown in Figure 8.1:

• core routines that remain unchanged between different problems;

• user routines that interface with the core and provide the information needed to solve the

problem;

• problem specific routines and data structures that define the optimisation model.

The core routines were unchanged in this thesis.

• PRIMAL: applies the simplex algorithm to the problem.

• BANDB: appliesB&B to theRLP solution.

The user routines are problem specific functions that interface ZIP with the problem. These

functions were extensively modified in this thesis.

• PEVAR: chooses the entering variable in each iteration of the simplex algorithm.

• UNPACK: constructs the matrix column that represents the entering variable.

• ALLOC: implements a heuristic method to find an integer solution from a nodal solution

in theB&B tree.
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Figure 8.1: The ZIP solution environment

• BRANCH: identifies and implements the constraint branches in theB&B tree.

• NODE: chooses the active node to be examined inB&B.

The problem specific routines read and display the problem parameters, generate the neces-

sary data structures and interface with the user routines.

• Read Data: reads and pre-processes theOHSparameter information;

• AGEN: generates the initial matrix;

• Column Generator: generates new columns with negative reduced costs;

• Output Solution: outputs the solution information.

Within the ZIP solution framework theOHSA :

• provides pre-solve functions;

• controls the calculation of entering variables;

• generates new columns;

• guides theB&B process.

Details of these functions are discussed in the remainder of this chapter.
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8.1.2 Problem pre-solve

Specific functions within theOHSA pre-solve process control:

• the scaling of columns and rows of the constraint matrix;
• generation of crew - harvest unit compatibility based on harvest unit size;
• generation of an initial basis.

All of these functions require data for a specific instance of theOHSproblem.

8.1.2.1 Scaling

Scaling alters the numerical value of constraint matrix coefficients (see Section 5.1.1) to im-

prove the numerical stability and performance of the LP solution methods. As ZIP was designed

primarily to solve scheduling problems that contain matrix coefficients of zero or one, there is

no internal scaling mechanism. The formulation of theOHShowever, contains a large number

of constraints that contain real number coefficients, so scaling of the problem is necessary. Both

rows and columns in the constraint matrix are scaled.

Traditional scaling techniques calculate scale factors based on the components of the con-

straint matrix. However, in theOHSA, the column generation algorithm adds new variables

to the problem as the solution algorithm progresses. Therefore, the scaling algorithm cannot

examine all the matrix coefficients a-priori and scale factors must be based on parameter infor-

mation available before column generation. These parameters are used to calculate the likely

magnitude of matrix coefficients. If the scale factors are computed in this manner, they need not

be recomputed every time a new column is added to the matrix.

Many of the scaling functions in theOHSA occur before the initial matrix is generated for

the simplex algorithm.

With scaling removed from the problem, none of the case studies in Chapter 9 would solve

due to numerical instability.

8.1.2.2 Crew harvest unit compatibility modification

A relaxed integer solution (Section 7.1) to theOHS problem requires that crews remain in a

harvest unit for a minimum of one period once they enter and begin harvesting. If an integer
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solution is required for a period, a crew’s productivity in the period (Section 6.7.3) cannot

exceed the initial area of any compatible harvest unit. This restriction will be imposed during

theB&B process, if not otherwise modelled.

To ensure theRLPsolution is a strong lower bound for theB&B algorithm, the crew harvest

unit compatibility data (Section 6.4.2.2) are altered. The changes prevent crews entering harvest

units that do not have sufficient initial area for the crew and the period length. The compatibility

data are changed before the initial basis is constructed.

The period length is typically a single week in the first few periods of the planning horizon.

As the period length is short not many crews will be excluded and the compatibility requirement

should not significantly alter theOHS solution. Even without the requirement, if a crew did

enter a harvest unit only to leave less then a week later the movement costs for that crew will be

very high compared to its productivity. Because of the increase in cost, this behaviour will be

unlikely to occur in an optimalOHSsolution and less productive crews will be allocated to the

smaller harvest units.

The compatibility modification does not apply to the initial harvest units allocated to crews.

A relaxed integer solution does allow initial units to be harvested for less than a single period.

This behaviour allows a harvest unit to be completely clear-felled when only a small residual

area is left at the beginning of the time horizon.

8.1.3 Initial basis selection

To create an initial non-singular basis matrix in AGEN slack and surplus1 variables from the

problem are selected. Together with artificial variables added where necessary, a non-singular

matrix with columns of the positive or negative identity (B = [±Ir . . .]) is formed. Phase-one

simplex removes the artificial variables from the basis if possible, to give a feasible solution that

phase-two continues to solve (see Section 5.2.1.1).

TheOHSAonly ‘cold starts’ (initiates the simplex method without a previous feasible basis)

once so, the phase-one, phase-two method is adequate. However, some small improvement in

solution time may result if more sophisticated methods where used to find an initial basis.

1Surplus variables are only used where the RHS vector is zero.
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8.1.4 Entering variable pricing

The entering variable is found by PEVAR in each iteration of the simplex method (Section 5.2.1).

Therefore, efficient methods that find an entering variable quickly will decrease the overall so-

lution time of the OHS problem.

There are two main types of variables in theOHS problem. The crew schedule variables

(see Section 6.7.5) are generated by the column generator. All other variables are generated

a-priori in AGEN. These variables include the:

• volume allocation variables;

• downgrade linking variables;

• inventory linking variables;

• and slack and surplus variables.

Within the OHSA all variables are stored in a compressed format, the coefficients of the

column that represents the variable are not calculated until the variable enters the basis and

UNPACK is called.

The search for the entering variable has three stages, the algorithm only proceeds to a suc-

cessive stage if no entering variables are found in the previous stages.

1. Crew schedules that are already included in the LP matrix are partially priced by crew

partition. The various slack, surplus, or linking variables generated a-priori are priced as

a separate partition.

2. The column generation algorithm generates new crew schedules based on new combina-

tions of crew allocations.

3. The current solution is declared optimal. New yield predictions may be generated exter-

nally and the problem re-solved. When the problem is re-solved the algorithm returns to

stages 1 and 2. New crew schedules may be generated from a combination of existing and

new yield predictions.

8.1.4.1 Reduced cost componentsζhst

To reduce the computational effort required to find the entering variable, the reduced cost calcu-

lation is made more efficient by the use of reduced cost components (ζhst). Though the technique
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described does speed the computation of the reduced cost for crew schedules that have already

been added to theLP matrix, the real savings from usingζhst are found in the column generation

algorithm (see Section 8.2).

The reduced cost of a crew schedule variable (xci), with the associated columnaci, is defined

from Equation (5.5),

rcci = cci + πT aci . . . ∀c, i.

If we partition theπT vector in the same way as we partition theaci vector in Equation (6.23)

we get

πT =
[
(πC)T , (πH)T , (πA)T , (πP )T , (πN)T

]
.

Therefore,

rcci =cci − (πC)T aC
ci − (πH)T aH

ci − (πA)T aA
ci − (πP )T aP

ci . . . ∀c, i. (8.1)

The value ofrcci is calculated every time a crew schedule (xci) is priced in PEVAR. If a large

number of crew schedules share crew allocations, many calculations will be repeated if the full

form of Equation (8.1) was used to calculatercci. The repeated calculations occur because

crew schedules that share crew allocations will have many identical coefficients in their matrix

columns.

We can take the components of theπT vector and transform them into subscripted variables.

The subscripts are based on the significance of the appropriate rows of the constraint matrix.

(πC)T =[πC
1 . . . πC

|C|]

(πH)T =[πH
1,1 . . . πH

1,|T |, π
H
2,1 . . . πH

|H|,|T |]

(πA)T =[πA
1,1 . . . πA

1,|T |, π
A
2,1 . . . πA

|H|,|T |]

(πP )T =[πP
1,1,1 . . . πP

1,1,|T |, π
P
1,2,1 . . . πP

|H|,|L|,|T |]

(8.2)

We can then findrcci by the appropriate summation and multiplication of the column coef-

ficientsH i
ht, Aci

ht andP ci
hlt (see Section 6.7) with the components ofπT .
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rcci = cci − πC
c −

∑
t

h=H(i,t)

(
πH

ht + πA
htA

ci
ht +

∑

l

πP
hltP

ci
hlt

)
. . . ∀c, i.

If we expand the column coefficients by using Equations (6.19)–(6.21)

rcci =
∑

t
h=H(i,t)

h′=H(i,t−1)

PchM
P
h′hCch +

∑
t

h=H(i,t)
h′=H(i,t−1)

M$
h′h − πC

c

−
∑

t
h=H(i,t)

h′=H(i,t−1)
s=S(i,t)

(
πH

ht + πA
htH

i
htPchM

P
h′hAY,hs +

∑

l

πP
hltH

i
htPchM

P
h′hPF,hsl

)

. . . ∀c, i.

Rearranging,

rcci = −πC
c +

∑
t

h=H(i,t)
h′=H(i,t−1)

s=S(i,t)

[
M$

h′h − πH
ht + PchM

P
h′h

(
Cch −

[
πA

htAY,hs +
∑

l

πP
hltPF,hsl

])]

. . . ∀c, i.

The reduced cost can then be calculated by

rcci = −πC
c +

∑
t

h=H(i,t)
h′=H(i,t−1)

s=S(i,t)

[
M$

h′h − πH
ht + PchM

P
h′h (Cch − [ζhst])

]
. . . ∀c, i (8.3)

where:

ζhst is the contribution to the reduced cost given by placing a crew, using

cutting strategys, into harvest unith in periodt.
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ζhst = πA
htAY,hs +

∑

l

πP
hltPF,hsl . . . ∀h, s, t (8.4)

Equation (8.4) shows the contributions (ζhst) are the dual variables for the area constraint

times the area harvested (AY,hs), plus the sum of the dual variables for the production constraint

times the log productionPF,hsl for all logs.

Note, thatζhst is independent of both the crew and previous harvest unit. Theζhst values

must be multiplied by the crew productivity (Pch) and movement penalties (MP
h′h) to find the

actual contribution to these constraints.

Equation (8.3) calculates the reduced cost by multiplyingζhst by Pch, then adding crew costs

(Pch Cch), multiplying by the movement penalty (MP
h′h) then adding movement costs (M$

h′h).

The contribution (-πH
ht) to the harvest unit capacity is added. The value is summed over all the

crew allocations in the time horizon, and the contribution (-πC
c ) to the crew allocation constraint

is included.

The values ofζhst are calculated once before entering variables are priced. These values

are used to price existing variables as well as within the column generation strategy. Whenζhst

is pre-calculated there is a saving of1 + 2|L| floating point operations for each harvest unit,

strategy, period allocation that is shared between two crew schedules.

8.2 Column generation

Chapter 5.2.2 discusses how column generation allows a set-partitioning problem with many

variables to be solved in reasonable time. Column generation achieves this by efficiently pricing

variables that have not previously been included in the problem.

8.2.1 Problem description

The column generation sub-problem in theOHSA finds crew schedules that have a negative re-

duced cost. It is formulated as the shortest path problem shown diagrammatically in Figure 8.2.

Each node represents a possible harvest unit allocation for a crew. The arcs represent the tran-

sition between periods where a crew moves between harvest units or remains in place. The

cost of each arc is the incremental contribution of the transition to the reduced cost of the crew
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schedule. This contribution is the value generated from the new allocation plus any penalties

and costs of movement. Most arc costs will be negative.

Period 1
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Figure 8.2: The shortest path formulation of the column generation

In the shortest path formulation, arcs join nodes in successive periods. The existence of an

arc implies that it is feasible to move the crew from harvest unith′ to harvest unith in the period

(Section 6.4.2.2). Removal of arcs that do not comply with active branches (Section 8.3) ensures

that the column generation process does not generate variables that been banned by constraint

branches. Otherimplicit (see Section 7.2) constraints on crew schedule structure are applied in

a similar way within the column generation rather than within the LP formulation.

8.2.2 Dynamic programming algorithm

In the shortest path formulation, the incremental costs on the arcs in periodt are independent of

the nodes that have been visited earlier then(t−2). ThePrinciple of Optimality(Section 5.2.2.1)

is valid and aDP recursion can be used to find the entering variable.

The DP recursion uses periods as the stages and the harvest unit, cutting strategy allocation

as the state. Note, the selection of cutting strategy for a harvest unit is not affected by previous

decisions, so the cutting strategy can be determined for each harvest unit independently of the

DP.

The DP algorithm for the column generator in theOHSA is given in Algorithm 8.1. The
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initial DP formulation does not include the integer feasible crew schedule considerations (Sec-

tion 7.2.1) that will make the problem a resource constrained shortest path problem. These

issues are discussed in Section 8.2.4.

The values ofζhst are used to calculate the arc costslch′ht. These values can be pre-calculated

and are the incremental contribution for each allocation (see Section 8.1.4.1). The cost of each

arc is therefore

lch′ht = M$
h′h − πH

ht + (Cch − ζhst)PchM
P
h′h (8.5)

where:

s is the optimal cutting strategy for harvest unith in periodt;

lch′ht is the arc cost for crewc to move fromh′ to h and using the optimal

strategy in periodt.

Note, that Equation (8.5) is simply the summand of Equation (8.3).

Valid harvest units are determined by the data on legitimate harvest units for the crew in

each period and by any applied branches.

Algorithm 8.1 Column generation DP recursion
Require: Reduced cost componentsζhst

Require: Minimum cost cutting strategys for all stands and periodss (h,t). { Calculated from
πT .}
for Each crew,c do

dht = −πC
c . . .∀h, t {distances on shortest path}

pht = 0 . . . ∀h, t {predecessors}
for Each period,t do

for Each valid harvest unit,h do
Use the minimum cost strategys =s (h,t)
Use LIMITSTANDS to reduce the number of candidate predecessorsH ′ (Sec-
tion 8.2.3).
Find (h′)∗ ∈ arg min

h′∈H′

{
dht = dh′(t−1) + lch′ht

}

pht = (h′)∗

dht = d(h′)∗(t−1) + lc(h′)∗ht

end for
end for
Create similar crew schedules (Section 8.2.5).
Add all generated crew schedules with negative reduced cost to theLP matrix.

end for
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8.2.3 Reduction of candidate predecessors

As the DP recursion works forward through the time horizon, at each period a unique prede-

cessor harvest unit((h′)∗) must be found for each harvest unit. The LIMITSTANDS function

reduces the set of eligible predecessor harvest units (H ′) that are evaluated at each stage of the

DP recursion. The place of LIMITSTANDS within the column generation algorithm is shown

in Algorithm 8.1.

In a conventional DP iteration, the path from each state in the previous stage to the current

state and stage is considered to find the best-cost path. Examining every possible state could be

time consuming if the cost calculation is expensive, the number of stages or states is large or

the DP is called repetitively. In theOHSA, the column generation is called repeatedly and the

number of states is related to the number of harvest units. Therefore, a reduction in the number

of predecessors considered at each state and stage in the dynamic program is a useful method

of decreasing the column generation time within the problem.

Table 8.1: Comparison of scenarios with and without predecessor reduction

NZCop Base NZCop NotPR NZC FC NZC NotPR AC Base AC NotPR
RLP Objective 605,331 605,331 18,292,376 18,292,398 1,598,726 1,598,726
Objective 583,776 583,776 18,180,609 18,167,752 1,554,879 1,554,879
Objective without
penalty ($)

1,475,780 1,475,780 18,681,075 18,672,975 1,906,526 1,906,504

Value of demand
violation ($)

446,002 446,002 250,233 252,611 110,277 110,271

Bound gap (%) 3.56 3.56 0.61 0.68 2.74 2.74
Solve time (secs) 8.47 8.56 159.64 189.17 154.2 148.45
Column Genera-
tion time (secs)

0.08 0.14 49.27 65.67 2.83 3.67

CG time per vari-
able (msecs)

0.08 0.17 1.58 1.86 0.85 1.11

Table 8.1 summarises the solutions of several scenarios generated by theOHSA the row

columns for the data are:

• RLP Objective: The objective value of theRLP solution multiplied by -1 to give the

solution profit minus any applied penalties;

• Objective: The objective value of the integer solution multiplied by -1 to give the solution

profit minus any applied penalties;
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• Objective without penalty: The objective value of the integer solution without subtraction

of penalty values. This represents the dollar value of the solution;

• Value of demand violation: The volume of shortfall or excess for each log-type times its

price.

• Bound gap: The percentage difference between objective values of the best integer solu-

tion and theRLP solution.

• Solve time: The time taken in seconds for the algorithm to finish.

• Column Generation time: The time taken in seconds for the column generation algorithm.

• CG time per variable: The Column Generation Time divided by the number of variables

generated in milliseconds.

The three case studies (NZCop, NZC, AC) used in Table 8.1 are explained in detail in

Chapter 9. Each case study scenario is solved twice, the solutions found without predecessor

reduction are labelled ‘NotPR’. Table 8.1 shows that this method reduces the column generation

time moderately but unfortunately does not reduce the overall solution time by very much. The

RLP objective values with and without predecessor reduction are equal showing that there is no

loss in optimality.

The LIMITSTANDS function reduces the number of predecessors (h′) considered at each

stage by using known relationships between the predecessors. LIMITSTANDS does not use

any forestry specific information to limit the predecessors but relies on the properties of the cost

calculation shown in Equation (8.5). LIMITSTANDS does not result in any loss in optimality

for theDP recursion.

LIMITSTANDS uses two properties of the state cost calculation

dht = dh′(t−1) + lh′h.

These properties are:

• As the cost of the previous state(dh′(t−1)) increases the cost of the current state increases.

So if lch′ht is held constant, we can state that ifdA(t−1) < dB(t−1) the calculated cost to

reach the current state from harvest unitA must be less than the cost fromB;

• The same argument holds for the arc costlch′ht so if the costs of the previous states are

identical, we can state that iflcAht < lcBht the calculated cost to reach the current state

from harvest unitA must be less than the cost fromB.
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Distance is a suitable proxy forlch′ht as the movement costs increase as distance increases,

and the movement costs are the only component oflch′ht that depends onh′,

DAh < DBh =⇒ lcAht > lcBht . . . ∀c, h, t, (A,B) ∈ H.

The input data to LIMITSTANDS are:

• the current harvest unith (state);
• the current periodt (stage);
• a ranking of the predecessor harvest unitsh′ ordered bydh′(t−1);
• a ranking of harvest unitsh′ ordered by distance (Dh′h) into h,

where:

h is the current harvest unit;

h′ is a candidate predecessor harvest unit;

dh′(t−1) is the cost to get to the predecessor in the previous period;

Dh′h is the distance between the current harvest unit and the predecessor.

LIMITSTANDS will output the reduced set of eligible predecessor harvest units (H ′). Note

that

H ′ ⊂ H.

The rankings are efficient to calculate in the recursion, asDh′h is constant and the same

values ofdh′(t−1) will be used in every harvest unit calculation for the current period.

The operation of LIMITSTANDS can be illustrated by considering the three examples given

in Figure 8.3, which consists of three possible cross sections from Figure 8.2. In this illustration,

the shaded circles represent possible predecessor harvest units (h′). The circles that are not filled

represent the current harvest unit (h) that is examined in the current period. The lightest shaded

circles represent harvest units that need not be considered when finding(h′)∗ i.e.,h′ /∈ H ′.

Consider the simplest scenario where there is no penalty to move between harvest units.

This is equivalent to

Dh′h = 0 . . . ∀h′h.

In this case, only the minimum cost legal predecessor

h∗ ∈ : arg min
h′∈H

(
dh′(t−1)

)
,
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Figure 8.3: Three illustrative cases for the Limit Stands Algorithm

in the previous stage is considered, as all other choices will give a worsedht for the current

harvest unit and period.

In the second scenario, the penalty applied for a movement between harvest units is constant.

This is equivalent to

Dh′h =





0 ⇐⇒ h′ = h

C otherwise
. . . ∀h′, h.

Therefore, only two predecessors are considered. The first is the current harvest unit in the

previous periodh′ = h with no movement penalty. The other predecessor ish∗, which will

incur a movement penalty.

The third scenario is the most appropriate to the formulation of theOHS problem detailed

in Section 6.7.1. The movement penalty increases with the distance between harvest units. This

is equivalent to

Dh′h =

{
0 ⇐⇒ h′ = h

0 < Dh′h < ∞ otherwise
. . . ∀h′, h.

Therefore, predecessors (h′) with a worse value than the best-cost predecessor (dh′(t−1) <

dh∗(t−1)) may eventually give a better overall cost (dht) for the current harvest unit and pe-

riod. This occurs only if the distance between the harvest units is less than the distance be-

tween the current and best cost harvest units. However, predecessors with a greater distance
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(Dh′h > Dh∗h) than the best-cost predecessor need not be considered, as these predecessors

would be dominated byh∗. Similarly, predecessors with a worse cost than the current harvest

unit in the previous perioddh′(t−1) > dh(t−1) are also disregarded, these would be dominated

by h. Therefore, the only stands (h′ ∈ H ′) that need to be considered are those that are closer

thanh∗and with a better cost then the current stand in the previous period. The setH ′ is defined

below.

H ′ = {h′ : (Dh′h ≤ Dh∗h anddh′(t−1) ≤ dh(t−1))}

where:

H ′ is the set of predecessor harvest units considered by the column gen-

eration.

If restrictions are placed on harvest units that can be legally chosen (either from the branch

and bound process, or by the input data to the problem) these must be considered. These legality

considerations affect the choice of the minimum cost and minimum penalty predecessors.

Algorithm 8.2 LIMITSTANDS function
Require: h is the current harvest unit.
Require: C(i) The list of valid harvest units (h′) ordered by increasing cost in previous period

(dh′(t−1)).
Require: M(i) The list of valid harvest units (h′) ordered by increasing distance (Dh′h) from

harvest unith.
Find ic : C(ic) = M(1)
Find im : M(im) = C(1) = h∗

if {ic ≤ im} then
H ′ = C(1 : ic)

else{ic > im}
H ′ = M(1 : im)

end if

8.2.4 Integer feasible columns

In Section 7.2.1, the concept of integer feasible columns was discussed. Integer feasible columns

are crew schedules that do not violate the harvest unit area constraints. Therefore, if a crew will

finish a harvest unit in three periods an integer feasible column will not allocate the crew to the

harvest unit for six periods. The column generation algorithm given in Algorithm 8.1 however,

will generate integer infeasible columns, because harvest unit area is not considered. In fact,
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the column generator will tend to produce integer infeasible columns until theB&B process

gradually forces integer feasibility on the problem.

As discussed in Section 7.2.1, while the optimal solution can be found when integer infeasi-

ble columns are generated, it is more efficient to only generate integer feasible columns. Adding

the implicit constraint detailed in Requirement 2 (see Section 7.2.1) in the column generation

will ensure only integer feasible crew schedules are generated. To include this constraint the

area of the harvest units must be included in theDP. A new condition must be added to deter-

mine the legality of an arc, so a crew can only remain in a harvest unit if there is area left to

harvest. Therefore, each state in each stage must have an associated vector of the areas harvested

in each harvest unit, to reach the stage.

In addition, two new steps were also added at the end of the period iteration of theDP.

• Transfer the areas harvested from the predecessor state, to the current state.

• Reduce the area of the current harvest unit by the area harvested in the current period.

Table 8.2: Comparison of scenarios with and without using integer feasible columns

NZCop Base NZCop NotIF NZC Base NZC NotIF AC Base AC NotIF
RLP Objective 605,331 611,005 19,175,130 19,204,749 1,598,726 1,598,726
Objective 583,776 583,776 19,156,934 19,103,259 1,554,879 1,554,879
Objective without
penalty ($)

1,475,780 1,475,780 19,623,611 19,570,312 1,906,526 1,906,665

Value of demand
violation ($)

446,002 446,002 233,338 233,526 110,277 110,308

Bound gap (%) 3.56 4.46 0.09 0.53 2.74 2.74
Solve time (secs) 8.47 8.53 77.95 109.75 154.2 145.53

In Table 8.2, the solutions generated without using integer feasible columns are labelled

‘NotIF’. Table 8.2 shows the effects of removing the integer feasibility requirement from the

case studies discussed in Chapter 9. TheRLP solution value for each case is lower or equal

when integer feasible columns are required. The integer objective is however the same or larger

for these cases. Therefore, the bound gaps are lower when integer feasibility is required, and

theB&B should be more efficient.

Considering the area of the harvest units in the simple manner described above unfortu-

nately, results in a non-optimalDPrecursion. To restore the guarantee of optimality the remain-
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ing area of each harvest unit will have to be included as a resource in a resource constrained

DP.

If the residual area of each harvest unit is considered as a resource, the number of states

considered in eachDP recursion quickly becomes unmanageable. The number of states in each

stage can be described in terms of the lattice path problem (see Appendix C). A full formulation

that includes the residual harvest unit area is therefore impractical to use when solving realistic

problems. However, the use of near optimal techniques such as merging, may be appropriate.

In some special cases, the simple inclusion of area described above will cause the problem

to become infeasible after a crew-harvest unit branch. The infeasibility is caused by the column

generation not generating the required feasible crew schedules. As discussion of this situation

requires an understanding of crew-harvest unit branches (see Section 8.3.1.1), it is examined in

detail in Section 8.3.4. In general, failure occurs when a crew schedule must delay entering a

harvest unit so that the harvest unit can be harvested in later periods.

8.2.5 Generation of new columns based on results from the Column Gen-

eration

To counter the specific problems mentioned above and discussed in detail in Section 8.3.4, the

OHSA generates additional columns based on the columns produced by the column generator,

then adds these columns into theLP matrix. We defineN(xci) as the set of crew schedules that

are similar toxci. The exact definition ofN(xci) in my algorithm is given below.

As the crew schedules inN(xci) are similar toxci, they are likely to have negative reduced

costs as well. In this thesis only complementary columns are generated inN(xci) (see Sec-

tion 7.1), as these columns are likely to co-exist in the relaxed integer solution to the problem.

Therefore,N(xci) is a subset of the complementary columns ofxci.

In the specific example in Section 8.3.4 the failure to generate the required crew schedule

leads to infeasibility after a crew-harvest unit branch is imposed. The required crew schedule

must delay entering the harvest unit by one period. However, if the required crew schedule has

already been added because it is similar to one previously generated, it will already be in the

LP matrix and feasibility will be maintained after the branch.

One simple implementation is forN(xci) to contain two crew schedules, one in which all

the movements occur a period earlier then the original schedule (xci) and another where all
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the movements occur a period later thanxci. The new columns are tested to determine if they

comply with imposed branches and other constraints, those that are valid are added to theLP.

Other schemes could generate an even wider selection of variables. For instance,N(xci) could

include all the complementary columns ofxci. Generating a wide selection of columns will

ultimately have the additional advantage of reducing calls to the column generation process.

8.3 Branch and Bound

A general discussion of the Branch and Bound (B&B) algorithm is given by Section 5.2.3. In

the OHSA, constraint branching is used (see Section 5.2.3.3). It is also pertinent to note the

discussion in Section 6.2.4 that states that constraint branches in a Model II formulation can be

interpreted in the same way as variable branches in a Model I formulation.

8.3.1 Definition of branch

In theOHSA there are two types of constraint branch.

• Crew-harvest unit branch: allocates a harvest unit to a crew.

• Crew-strategy branch: allocates a cutting strategy to a crew and harvest unit.

The allocation of a crew to a cutting strategy without a harvest unit is not considered, because

a cutting strategy is meaningless unless applied to a harvest unit. The one-branch of each type

will enforce the allocation. The zero-branch will remove any variables with the allocation.

8.3.1.1 Crew-harvest unit branch

A crew-harvest unit one-branch allocates the crew unambiguously to a harvest unit in a par-

ticular period. When crew-harvest unit branches are used to find a relaxed integer solution

(see Section 7.1) the definition is complicated. For this reason the crew harvest branch is first

introduced by considering a simple branch that will find strictly integer solutions.

A crew harvest unit branch creates subsets of crew schedules for a particular crew.

• JH
1 (cht) contains the set of legal crew schedules for a crew after a one-branch.
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• JH
1 (cht) contains the crew schedules that are removed by a one-branch.

• JH
0 (cht) contains the set of legal crew schedules for a crew after a zero-branch.

• JH
0 (cht) contains the crew schedules that are removed by a zero-branch.

If a strictly integer solution is required the one branch (JH
1 (cht)) on crewc, harvest unit

h, in periodt, would simply only allow crew schedules where crewc was harvesting harvest

unit h in periodt. The zero-branch (JH
0 (cht)) allows only crew schedules where crewc was

harvesting elsewhere in periodt. The implementation of the branches is discussed in detail in

Section 8.3.3.

A simplistic crew-harvest unit branch definition for crewc, harvest unith in period t is

shown below.

Simple crew-harvest unit branch:

One) JH
1 (cht) = {xci : H(i, t) = h . . . ∀i}

Zero) JH
0 (cht) = {xci : H(i, t) 6= h . . . ∀i}

With this simple branch definition,JH
1 (cht) andJH

0 (cht) are equal, as areJH
0 (cht) and

JH
1 (cht).

This simple branch is unsuitable when a relaxed integer solution is required. TheOHSA

finds a relaxed integer solution by allowing only complementary columns (see Section 7.1) to

co-exist in a solution. The crew-harvest unit branch is the mechanism that forces this structure

on the solution.

A crew-harvest unit branch can be used to build a movement sequence as defined in Sec-

tion 7.1.2.1. In fact, as the branches are usually applied sequentially this interpretation is the

most logical. The two types of movement sequencesa andb allowed by a crew-harvest unit

one-branch on harvest unit B in period 3 are shown in Table 8.3 (note that X represents any

harvest unit or movement). Whilec, d ande represent types of movement sequences that are

allowed in a crew-harvest unit zero-branch on harvest unit B in period 3 (note !B represents any

harvest unit that is not B).

The crew-harvest unit branch definition used in theOHSA is shown below for crewc,

harvest unith in periodt.

Crew-harvest unit branch:
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Table 8.3: An example of the movement sequences allowed by a branch on B in period 3

period a b c d e
1 X X X X X
2 X X !B B → !B X
3 B X → B !B !B !B
4 X X !B X !B → B
5 X X X X X
6 X X X X X
7 X X X X X
8 X X X X X

One) JH
1 (cht) = {xci : H(i, t) = h or (H(i, t) = h′ andH(i, t + 1) = h) . . . ∀i}

JH
1 (cht) = {xci : H(i, t) 6= h and(H(i, t) 6= h′ or H(i, t + 1) 6= h) . . . ∀i}

Zero) JH
0 (cht) = {xci : H(i, t) 6= h or (H(i, t) = h andH(i, t + 1) 6= h) . . . ∀i}

JH
0 (cht) = {xci : H(i, t) = h and(H(i, t) 6= h or H(i, t + 1) = h) . . . ∀i}

where:

H(i, t) is the harvest unit harvested in periodt by schedulei;

h′ is the harvest unit branched on in period (t− 1).

Note, there are some crew schedules that remain in the problem after both a one and a

zero-branch. Therefore,JH
1 (cht) ∩ JH

0 (cht) is not empty. In fact,

JH
1 (cht) ∩ JH

0 (cht) = {xci : (H(i, t) = h andH(i, t + 1) 6= h)

or (H(i, t) = h′ andH(i, t + 1) = h) . . . ∀i}. (8.6)

Crew schedules within this intersection can either haveH(i, t) = h or H(i, t) = h′. When

H(i, t) = h the schedule can be interpreted as eithera or d types of movement sequence shown

in Table 8.3. WhenH(i, t) = h′ the schedule can be interpreted as eitherb or e and the crew

schedules are not removed by either side of the branch. However, subsequent branches will

remove crew schedules until only single movement sequence interpretation remains for each

crew.

Table 8.4 shows a set of variables for a crew that remain in the problem after a crew-harvest

unit branch on harvest unit A in period one (A1) followed by another crew-harvest unit branch

on harvest unit A in period two (A2). The table examines the effects of a crew-harvest unit
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Table 8.4: Crew schedules in an example crew-harvest unit branch, B3

period V1 V2* V3* V4* V5* V6

1 A A A A A A
2 A A A A A A
3 A B A B A A
4 A B B C B A
5 A B B C B B
6 A B B C C B
7 A B B C C C
8 A B B C C C

branch on the crew in harvest unit B in period three (B3). The crew schedules indicated by stars

are inJH
1 (cB3) = {V2, V3, V4, V5} and will remain in the problem while,JH

1 (cB3) = {V1, V6}
will be removed. If a zero-branch was applied (B3), JH

0 (cB3) = {V1, V4, V5, V6}. In this

example,JH
1 (cB3) ∩ JH

0 (cB3) = {V4, V5}.

8.3.1.2 Crew-strategy branch

If the crew must limit the use of different cutting strategies in a period, crew-strategy branches

are employed. A crew-strategy branch allocates a cutting strategy to a crew, harvest unit and

period, not just to a crew and a period. There are a number of reasons why the branch is defined

in this manner:

• A cutting strategy should always be applied to a harvest unit;
• Multiple crews may work in a harvest unit and not share a cutting strategy;
• A crew may shift harvest units within a period and should not be forced to use the same

cutting strategy in both.

The crew-strategy branch can be defined in two ways depending on whether only a sin-

gle cutting strategy is allowed or multiple complementary strategies are permitted (see Sec-

tion 6.4.3).

If only a single strategy is allowed. The crew-strategy branch for a single strategy for crewc,

harvest unith, strategys in periodt will create two sets of crew schedules for the crewJS
1 (chst)

andJS
0 (chst).

Crew-strategy branch:
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One) JS
1 (chst) = {xci : S(i, t) = s andH(i, t) = h . . . ∀i}

Zero) JS
0 (chst) = {xci : S(i, t) 6= s or H(i, t) 6= h . . . ∀i}

For this branch, like the simple crew-harvest unit branchJS
1 (chst) andJS

0 (chst) are comple-

ments.

When multiple compatible strategies are allowed, the crew-strategy branch allocates a set of

complementary strategiesQk, for crewc, harvest unith, strategy groupk in periodt.

Complementary Crew-strategy branch:

One) JSc
1 (chst) = {xci : (S(i, t) ∈ Qk) andH(i, t) = h . . . ∀i}

Zero) JSc
0 (chst) = {xci : (S(i, t) /∈ Qk) or H(i, t) = h . . . ∀i}

where:

k indexes the sets of complementary cutting strategies;

Qk is the set of complementary strategies;

S(i, t) is the strategy used in periodt by schedulei.

Again, the setsJSc
1 (chst) andJSc

0 (chst) are complements.

8.3.2 Choice of branch

Section 5.2.3 discusses how each unexplored node in theB&B tree must have an appropriate

branch and direction. The branch and direction are identified within BRANCH. The motivation

for branch choices in theOHSA is to quickly find good integer solutions, and therefore, a depth

first search is suitable.

To aid the following discussion some terms need to be defined.

• Harvest unit integer feasible: A property of a period that complies with a relaxed integer

solution (see Section 7.1).
• Strategy integer feasible: A property of a period that satisfies the integer requirements for

cutting strategies (see Section 6.4.3).
• Integer period: A period that is required to be harvest unit integer feasible and strategy

integer feasible. Normally, only the last periods of theOHSare not integer periods.
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The choice of branch at each node is outlined in Algorithm 8.3.

Algorithm 8.3 Branch choice decision algorithm
for t =1 to number of integer periodsdo

if Nodal solution is not harvest unit integer feasible in periodt then
Find the most appropriate crew-harvest unit branch

else
if Nodal solution is not strategy integer feasible in periodt then

Find the most appropriate crew-strategy branch
end if

end if
end for

The heuristic for finding branches scans through the nodal solution period by period, from

the first period to the last integer period. Branching in this manner is advantageous as the initial

periods of theOHSare the most important. The branching heuristic is essentially ‘greedy’ as it

makes decisions for the earlier (more important) periods before it moves to subsequent periods.

An added bonus of this approach is that if theB&B is halted before it has successfully termi-

nated the earlier periods of theOHSshould be integer. This will enable the user to implement

some of the current solution.

The crew-harvest unit branches are chosen before crew-strategy branches are examined be-

cause, crew-strategy branches include harvest unit information. If a crew-strategy branch was

implemented before a crew-harvest unit branch, the crew may move to harvest other harvest

units, and render the crew-strategy branch ineffective.

8.3.2.1 Choice of crew-harvest unit branch

When the nodal solution is analysed to determine if it is harvest unit integer feasible, a table

with the current crew-harvest unit allocations is recorded (σch) for the first non-integer period

(t = tL). Collecting the data for this table is not straightforward, as a restricted movement

solution will allow a crew schedule to contribute to more then one allocation in a single period.

σch =
∑

i : H(i,t)=h

xci +
∑

i : H(i,t+1)=h,
H(i,t−1)=H(i,t)

xci . . . ∀c, h, t = tL

The value ofσch is the sum of crew schedules that have movement sequences (see Section 8.3.1.1)

that indicate the crew is in harvest unith in periodtL. The tableσch is used to decide which
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crew and harvest unit to allocate in a crew-harvest unit branch.

A desirableOHSwill try to minimise the movement of the crews between harvest units, this

will reduce the penalties applied, and be easier to implement in the forest. To encourage this

behaviour in a solution a user adjustable parameter, epsilon, was introduced where0 < ε < 1.

This parameter is input to theOHSA and is added to the crew allocations to bias branching to

favour branches that allow a crew to continue harvesting without moving. Soσ′ch = σch + ε for

the harvest unit that was branched on in the previous period (t-1), otherwiseσ′ch = σch.

One-branches are preferred because theOHSA uses a depth-first search. Therefore, at a

nodal solution a crew-harvest unit branch is applied to the highest fractional crew, harvest unit

allocation in the period. Therefore, in periodtL choose

(c, h) ∈ arg max{σ′ch : σch < 1}.

8.3.2.2 Harvest unit areas

The harvest unit area constraint (see Section 6.4.2.4) can cause some difficulties when choosing

the appropriate crew-harvest unit branch. As the area constraint limits the total area of a harvest

unit that can be harvested, it also limits the number of allocated periods that a crew may remain

in one place.

The harvest unit area constraint affects the branching decision when a harvest unit is near

completion. Because of the definition of the crew-harvest unit branch (see Section 8.3.1.1), if

a one-branch is imposed on a harvest unit that was occupied in the previous period the crew is

forced to remain in that harvest unit until the end of the period. If there is not enough area left

in the harvest unit to sustain the crew’s operations for an entire period, the problem becomes

infeasible. Therefore, the branch choice algorithm must identify which harvest units are com-

pleted in the current period, and branch so that crews will move from these harvest unit. The

algorithm must determine which harvest unit the crew will move to in the period and impose a

branch to force this movement.

TheOHSA must also ensure that a harvest unit branched in the manner above is completed

before the crew leaves. If theOHSAdoes not impose this restriction, it is likely that small areas

will remain in harvest units that crews have left. The small areas will be left because the exact

determination of the crew movement within a period is controlled by theLP solution process.

To guarantee the completion of these units, the harvest area constraint (see Section 6.4.2.4) is
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modified so that the residual area left in the harvest unit after the current period is forced to

zero.

8.3.2.3 Choice of crew-strategy branch

Like the crew-harvest unit branches, a strong one-branch is preferred for an effective crew-

strategy branch. A table of strategy allocations is found (ςchs). Finding the values of this table

is simpler than theσch table if only a single strategy is required,

ςchs =
∑

i : H(i,t)=h,
S(i,t)=s

xci . . . ∀c, h, s, t = tL.

If multiple compatible strategies are required, the formula becomes

ςchk =
∑

i : H(i,t)=h,
S(i,t)∈Qk

xci . . . ∀c, h, k, t = tL.

Therefore, for a simple crew strategy branch in periodtL choose

(c, h, s) ∈ arg max
c,h,s

{ςchs : ςchs < 1}.

For a complementary crew strategy branch in periodtL choose

(c, h, k) ∈ arg max
c,h,k

{ςchk : ςchk < 1}.

If the crew-harvest unit branch has not been applied to crewc and harvest unith, first crew-

harvest unit branch onc, h in periodtL. A complication does occur when the crew will move

between harvest units within the period. In this case, a separate crew-strategy branch is required

for each harvest unit.

8.3.3 Implementation of branches

To implement a constraint branch, crew schedules that do not comply with the branch are re-

moved from the problem. Firstly, all the crew schedules that are already in the problem are

scanned and those that do not comply with the branch are removed. The banned crew schedules
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have their status changed to become artificial variables and ZIP removes them with a phase one

phase two iteration (Section 5.2.1).

As column generation is employed within theB&B process, the column generator must

not generate variables that are banned by the constraint branches at the current node. Here a

real strength of the constraint branching methodology is seen. If variable branching was used

(see Section 5.2.3) the column generation will continue to generate banned crew schedules.

However, the structure of the constraint branches in theOHS (Sections 8.3.1.1 and 8.3.1.2) is

equivalent to removing arcs in the shortest path formulation in the column generator. Therefore,

the column generator can avoid generating banned crew schedules.

The crew-strategy branches are easily included in the column generation algorithm as the

banned cutting strategies for a crew, harvest unit, period combinations are simply not considered

in theDP.

Crew-harvest unit branches are more difficult to implement as they need to consider the

location of the crew in the previous period, to determine whether a crew, harvest unit, period

combination is banned. To determine whether an arc is legal with respect to applied crew-

harvest unit branches, an arrayψcht is used. Before any branches are applied,ψcht is initialised

to

ψcht =





1 ⇐⇒ combination is legal

0 ⇐⇒ combination is illegal.

The illegal combinations occur for various reasons. Perhaps the crew is unavailable in the

period, therefore, all harvest unit combinations for that crew and period are illegal. When a

branchJH
1 (cht) is appliedψcĥt 6= 1 for ĥ 6= h. WhenJH

0 (cht) is appliedψcht 6= 1 for the

harvest unith. In practice, the value ofψcht is changed to the branch identifier.

To determine if an arclch′ht is legal with respect to applied branches three cases are consid-

ered.

• ψch′(t−1) = 1 andψcht = 1, both the current and previous harvest units (h,h′) are legal in

their respective periods.

• ψch′(t−1) 6= 1 and ψch(t−1) = 1, the previous harvest unit is illegal in periodt-1 but the

current harvest unit is legal in that period.

• ψcht 6= 1 andh′ = h, the current harvest unit is illegal but it is the same as the previous

harvest unit.
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The last two cases allow the crew schedules to create a relaxed integer solution. When an

arc (lch′ht) does not fall under any of these cases it is illegal and is not considered in theDP

recursion.

8.3.4 Motivation for additional column generation

In Section 8.2.4, we mention some special cases where infeasibility is created after a crew-

harvest unit branch. The solution to this problem is to generate additional columns as described

in Section 8.2.5. As the infeasibility results from a combination of crew-harvest unit branching

and the special treatment of harvest unit area discussed in Section 8.3.2.2, the detailed discussion

of the special cases was postponed until this section.

In general, the column generation algorithm in the thesis cannot always generate the required

integer feasible columns if area must be conserved in previous periods. To illustrate this an

example is given below.

In this example, theOHSAhas partially completed theB&B process (Section 8.3), and first

non-integer period (tL) is period six. The initial harvest unit for the crew isA. The sequence of

previously applied one-branches is A1, B2, B3, B4 and B5 where the letter indicates the harvest

unit chosen and the number is the period. Three non-zero variables for a single crew in the

current solution are shown in Table 8.5, along with their value in the current solution (xci). From

these values, the allocation for the crew to harvest unitB may be calculated. This allocation may

be interpreted as the fraction of the period the crew spends inB in an unrestricted movement

solution. The residual area for harvest unitB at the end of the period is also displayed.

Table 8.5: Failing of column generation

Existing Variables Harvest unitB Required Variable
Period V1 V2 V3 Allocation Residual Area V ∗

xci 0.79 0.06 0.15
1 A A A 0.00 10.7000 A
2 A B A 0.06 10.5158 A
3 B B B 1.00 7.2187 B
4 B B B 1.00 3.8581 B
5 B B B 1.00 0.4975 B
6 C C B 0.15 0.0000 B
7 C C D 0.00 0.0000 C
8 C C D 0.00 0.0000 C



8.4 INTEGER ALLOCATION 175

In period six, the branch choice algorithm given in Section 8.3.2 will determine that the crew

will finish harvest unitB in the current period. It will then force the residual area ofB to zero

in period six, and impose a one crew-harvest unit branch on harvest unitC as this harvest unit

will have the highest value ofσch = 0.85. This branch will make crew scheduleV3 infeasible.

The crew schedule required to give a feasible solution after this branch isV ∗ at value 0.15.

Unfortunately, if the dual variables indicate that enteringB in period two will give a lower

cost to theDP recursion (dht) in period two. The column generation will not generateV ∗ as

this crew schedule does not enterB until period 3. The solution to this problem is discussed in

Section 8.2.5 and ifV ∗ ∈ N(V2) the crew scheduleV ∗ will already be available to PEVAR and

will not need to be generated.

8.4 Integer allocation

In Section 5.2.3.2, integer allocation algorithms are discussed. The integer allocation in ALLOC

quickly and efficiently finds good quality solutions to theOHS problem. TheB&B can use

the objective value of the integer allocation solution as an upper bound for the minimisation

problem.

8.4.1 Description

In the integer allocation, the nodal solution is examined period by period as in theB&B. In each

period however, crew-harvest unit branches on all of the crews are made simultaneously, then

the problem is resolved. Crew-strategy branches are then imposed on all of the crews and the

problem is resolved. This process is repeated until all the required periods are integer feasible

or branches force the problem to become infeasible.

The integer allocation described above uses the simplex algorithm. This requires significant

computational time, however, the quality of the solutions produced does justify this approach.

In addition, the large number of linear constraints would make other approaches difficult.
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8.4.2 Detailed process

The detailed integer allocation algorithm is given in Algorithm 8.4. Some notes on specific

aspects of this algorithm follow.

Algorithm 8.4 Integer allocation algorithm
Save all candidate node information
for each periodt do

Rank the crews by the maximum harvest unit allocations int R(ic)
for eachic in R(ic) do {Find stand allocations}

Find a suitable crew-harvest unit branch
end for
Implement a crew-harvest unit branch for each crew
Resolve the problem
Regenerate yield predictions
Resolve the problem
for each crewdo {Find the strategy allocations}

Find crew-strategy branch to implement{Note, two are needed if the crew moves}
end for
Implement the crew-strategy branches
Resolve the problem
Regenerate yield predictions
Resolve the problem

end for
if a relaxed integer feasible solution is foundthen

Report the new upper bound and save the solution
else

Discard the solution
end if
Restore the original nodal solution and continue branch and bound

As all of the crews are allocated simultaneously there is a possibility that several crews

could be allocated into the same harvest unit. In the problem formulation, the number of crews

harvesting in a single harvest unit may be restricted. If too many crews are allocated to a

harvest unit, the problem becomes infeasible. The crews are allocated to a harvest unit based

on the values ofσch (see Section 8.3.2.1). The highest values ofσch are allocated first. The

number of crews allocated to each harvest unit is tracked. If the harvest unit capacity constraint

is exceeded for a particular harvest unit, successive crews indicated for that harvest unit will be

allocated to the second highestσch value.

When each of the branches are found and implemented, the problem is re-solved and then
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yield predictions are re-generated as discussed in Section 8.5. This regeneration allows yields

to be generated that specifically fit the integer solution of theOHSproblem.

8.4.3 Selective use of integer allocation

The integer allocation process yields good quality solutions, this must be balanced against the

computational expense of finding these solutions. The integer allocation process in some re-

spects will make similar decisions to theB&B and successive integer allocations for several

nodes of theB&B tree can be identical, if theB&B algorithm makes the same decisions as the

integer allocation did. To prevent this wasted effort the integer allocation is only attempted in

nodes that are expected to generate a new integer solution. This can be achieved if the integer

allocation is attempted only on the root node of theB&B tree and subsequently, only after a

zero-branch has been made.

8.5 Yield generation

If the OHS problem is solved using a single set of yield predictions the ability to generate new

yield predictions as discussed in Section 3.3.1 is ignored.

In any particular harvest unit, yield predictions can be altered to produce better solutions to

theOHS. Epstein et al. (1999b) shows significant gains in solution value if an iterative process is

used. The literature discusses a number of methods that alter the yield predictions of individual

harvest units in a forest level problem (see Section 4.2.1), notably Epstein et al. (1999b), Laroze

(1999) and Cossens (1996). Because of the large number of possible alternative yields from a

harvest unit, only simple problems can be solved close to true optimality with a limited number

of static yields. In the research described in this thesis, a yield generation procedure similar to

that found in Cossens (1996) is used.

8.5.1 Purpose and use of yield prediction

Yield generation allows harvesting crews to produce different proportions of log-types from a

single harvest unit. As yield generation increases the number of possible crew schedules, the

process can only improve the value of the optimal solution compared to static yield optimisation.
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The increase in value of a solution that uses yield generation over a solution that does not can

vary depending on the initial choice of yields. In theAC case study (see Section 9.5), yield

generation was required to find a solution within a reasonable time.

The data in Figure 8.4 and Tables 8.6–8.8 were prepared using theAC case study data. Only

the initial log-stocks were downgraded.
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Figure 8.4: A comparison of the two different yield iteration strategies

Figure 8.4 shows the improvement in solution value and the decrease in demand violation

when yield generation is used. It must be noted that the major improvement is found in the first

iteration of yield generation. This graph is very similar to the graph in Epstein et al. (1999b)

that is shown in Figure 4.2.

8.5.2 Implementation issues

The generation of the yield predictions is accomplished outside theOHSA by a commercial

software product,MARVL 3.5 (Deadman & Goulding 1979).MARVL is used in command line

mode to generate the yield predictions. If yield predictions were produced internally, they would

be produced within the column generation algorithm. However, the overhead and difficulties

involved with calling an external program place theMARVL call outside of PRIMAL. The
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total number of yield generation iterations is reduced and can be limited by the user.

8.5.3 Initial generation of yield predictions

The initial yield predictions are generated at the beginning of theOHSA. These yield predic-

tions are generated using the roadside sales price for the logs (see Section 2.6.4). These prices

are generated by using the delivered sales price for the logs and then subtracting the appropriate

transportation cost from harvest unit to customer. The roadside price is used so that harvest

units are directed to produce logs for the customers that are located nearby. The approach is

significantly different from Cossens (1996), which used stumpage sales prices. However, the

OHSformulation in this thesis includes harvesting costs where Cossens (1996) did not.

The subset of logs included in the initial cutting strategies (see Section 6.4.3) are generated

using a technique suggested by Glen Murphy (personal communication Murphy, 2001) that

ensures each strategy has a balance of high and low quality logs.

8.5.4 Iterative generation of yield predictions

In an iterative algorithm, the proportions of the logs in the yield predictions alter during the

progress of theOHSA. In the literature (see Section 4.2.1) there are three methods used to

iteratively change the yield predictions.

• Changing the log-types that are included in the cutting strategies. This is described in

Epstein et al. (1999b)

• Changing the specifications of log-types to alter the proportions. This is described in

Laroze (1999)

• Changing the weighting between log-types in the cutting strategy, either by changing

prices in aDP or by changing the priority order in a priority bucker. This is described in

Eng et al. (1986), Cossens (1996) and Epstein et al. (1999b)

The approach taken in theOHSA is a progression from the techniques in Cossens (1996) where

the changes in yield predictions are directed by altering the prices given to aDP bucker.

The price change approach was chosen as it was the most appropriate approach to use with

MARVL . The iterative decomposition of the problem to generate new yield predictions is analo-
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gous to a Dantzig-Wolfe price directed decomposition (Dantzig & Wolfe 1960). In this method-

ology, the master problem uses transfer prices to direct the sub-problems. The transfer prices

are derived from the dual variables of the master problem. The master problem is the formula-

tion described in Chapter 6 and the sub-problems useMARVL to determine the yield for each

of the harvest units.

Unfortunately, asOHS cutting strategies contain a subset of the log-types, a true optimum

solution will not always be found. To find the true optimum the cutting strategy for each harvest

unit could be the complete set of logs, however, harvesting crews will not be able to cut this

many log-types (see Section 2.5.1.4). Alternatively, some method similar to that in Epstein

et al. (1999b) could be used to iteratively generate cutting strategies.

Some alternative methods that can be used to generate transfer prices are discussed below.

8.5.4.1 Dual variables

The transfer prices given to the sub problems in a Dantzig-Wolfe decomposition reflect the

change in objective of the master problem as the resource is increased,

ĉr = cr +
∑

i

πiai,r (8.7)

where:

ĉr is the transfer price of resourcer;

cr is the objective cost ofr in the master problem;

πi shadow price of constrainti;

ai,r activity of r on constrainti.

In the OHS problem, the resources are the volume of logs produced in a harvest unit in a

period. The sub-problems useMARVL to calculate these volumes as a yield prediction. The

yield predictions are then incorporated into crew schedules (see Section 6.7).

As log volumes can be produced from every harvest unit, there should be a transfer price for

every log in every harvest unit in every periodchlt.

In theOHSformulation, the revenue from the log sales is calculated from the volume alloca-

tion variables (vhmlt, see Section 6.5.1) that allocate logs to a customer, not the crew schedules.

The cost of harvesting is constant across all logs harvested by the same crew in a harvest unit
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and therefore does not affect the relative values. Therefore,cr = 0 in all cases.

The volume allocation constraint (see Section 6.5.1) is the only constraint where the log

production from crew schedules is active. The activity of the crew schedules in this constraint

is simply a multiple of their proportion in the yield prediction.

Transfer prices are therefore equal to the dual variables on the production constraint,

chlt = πP
hlt (8.8)

where:

chlt is the transfer price of the logl in standh and periodt;

πP
hlt shadow price of the volume allocation constraint for logl in standh

and periodt.

However, to reduce external calls from theOHSA, yield predictions are only generated from

the first period transfer prices (chl1). The yield predictions generated from these prices tend

to provide good solutions as the demands from later periods can affect the volume allocation

constraint in the first by the action of the inventory variables (see Section 6.5.5)

Table 8.6: Comparison number of calls to the column generator in the RLP solution (RLP1 has
a single call, RLP5 has 5 calls)

RLP1 RLP2 RLP3 RLP4 RLP5
RLP Objective 422,262 1,544,725 1,558,854 1,559,187 1,559,454
Objective 323,882 1,516,860 1,508,330 1,542,670 1,534,520
Objective without
penalty ($)

1,724,833 1,907,475 1,935,243 1,955,216 1,955,558

Value of demand
violation ($)

634,360 118,488 125,331 121,938 123,472

Bound gap (%) 23.3 1.8 3.24 1.06 1.6
Solve time (secs) 420.8 78.08 104.77 90.63 120.03
Yield generation
time (secs)

75.03 158.36 217.85 289.34 360.98

Table 8.6 compares solutions against the number of iterations of yield generation. In these

scenarios, crew-cutting strategy branches were not used. The RLP1 scenario used the at-

roadside prices for all log-types (see Section 2.6.4), the algorithm was terminated early because

no progress was made towards finding a solution within the bound-gap. Note, that theRLP

solution value seems to improve very slowly after the first yield generation RLP2. However, the
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RLP objective value has not converged after 5 iterations.

8.5.4.2 Change by proportion

In the research, it was decided to test an alternative method of transfer price generation. This

method incorporates ideas on stabilisation of column generation schemes that can be found in

du Merle et al. (1999). The principle behind this technique is that the dual variables obtained

early in the optimisation are not good indicators of their values in an optimal solution.

This method prevents large changes in the transfer prices by retaining some sense of the

original prices and subtly incorporating the over and under supply. To achieve this aim, the

original prices were proportionally altered based on the dual variables of the volume allocation

constraints. Define∆ as the proportion change such that0 < ∆ < 1. The transfer prices can

then be found by

ĉhlt =





chlt(1 + ∆) ⇐⇒ πP
hlt < 0

chlt(1−∆) ⇐⇒ πP
hlt > 0

(8.9)

where:

ĉhlt is the new transfer price;

∆ is the proportion change.

Unfortunately, the prices for some log-types that are under-supplied can in fact become

arbitrarily large in this approach. This is because the price will continue to increase if demand

is not met. The prices, though large, are still valid input for theDPbucker but they do not reflect

any real information. It is very difficult to get sensible price information (see Section 3.3.3) if

the prices are unrealistic. The results of this type of pricing are shown in Table 8.7.

If we compare theRLP objective values shown in Table 8.6 with Table 8.7 we see that

changing prices by proportion leads to betterRLP solution values (3.5% improvement between

the RLP5 and RLP5P solutions), though again there is no convergence shown in Table 8.7. The

increase in objective values obtained by this method was also shown in the other case study

scenarios. Therefore, this method is used to generate the case study information in Chapter 9.

Three yield iterations before the branch and bound is used in all cases.
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Table 8.7: Solutions that use yield generation with proportional pricing (RLP1P has a single
call, RLP5P has 5 calls)

RLP1P RLP2P RLP3P RLP4P RLP5P
RLP Objective 422,262 1,573,189 1,610,007 1,613,301 1,614,336
Objective 323,882 1,515,138 1,572,695 1,593,402 1,555,904
Objective without
penalty ($)

1,724,833 1,949,826 1,907,019 1,928,809 1,904,128

Value of demand
violation ($)

634,360 136,638 104,313 104,819 106,480

Bound gap (%) 23.3 3.69 2.32 1.23 3.62
Solve time (secs) 420.8 104.11 151.09 136.73 201.3
Yield generation
time (secs)

75.03 147.59 222.87 289.63 408.15

8.5.4.3 Pulp wood pricing

In practice, ether of the two pricing methods may lead to the removal (chlt = 0) of over supplied

low-grade log-types (i.e., pulp) from yield predictions. In forestry, pulp is the lowest grade of

wood quality. Stem sections that are allocated to any other log product may be downgraded

to pulp. Without pulp in the yield prediction, the level of waste increases as the volume that

should be converted to pulp is wasted. To ensure that the level of wastage is acceptable, pulp is

included in every cutting strategy and its price is never allowed to reduce below its initial levels.

8.5.5 Iterative generation of yield in the Branch and Bound

The generation of yield predictions can continue while the branch and bound process is taking

place. This is especially useful when complementary crew-strategy branches are used that re-

strict the number of log-types harvested by each crew. Once a complementary crew-strategy

branch is implemented new yield predictions can be generated that will improve the solution

value. This approach is not mentioned in any of the literature examined in this thesis.

Table 8.8 compares solutions against the number of iterations of yield generation within the

B&B algorithm, or more specifically within the integer allocation process. In these scenarios,

crew-strategy branches were used, as they illustrate the difference made by yield generation in

B&B process. However, as the problem is more restricted, the objective values are less than

those shown in Tables 8.6 and 8.7.
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Table 8.8: Comparison of solutions with number of calls to the column generator in the Integer
Allocation

RLP5Branch1 RLP5Branch2 RLP5Branch3 RLP5Branch4 Strategy
RLP Objective 1,559,454 1,559,454 1,559,454 1,559,454 1,598,726
Objective 1,490,381 1,494,416 1,494,419 1,491,095 1,385,401
Objective without
penalty ($)

1,902,418 1,896,833 1,896,831 1,905,493 1,882,402

Value of demand
violation ($)

126,835 133,016 133,013 137,049 188,708

Bound gap (%) 4.43 4.17 4.17 4.38 13.34
Solve time (secs) 1,285.78 252.14 267.62 1,096.03 1,206.38
Yield generation
time (secs)

441.07 511.29 576.07 647.4 222.87

The cases RLP5Branch1 to RLP5Branch4 use yield iteration five times in the RLP solution

process and one to four times in theB&B (it also uses proportional yield generation). The case

Strategy (included from Section 9.5.2) uses yield generation three times in the RLP solution and

not at all in theB&B. The advantages of yield generation over not using yield generation can be

clearly seen. The use of yield generation twice or three times in theB&B seems to give the best

performance. However, the behaviour of the RLPBranch4 solution is problematic and perhaps

indicates that the integer allocation process may need fine-tuning. It must be remembered that

all these problems are solved with a bound gap of 5%, except the Strategy case that has a 10%

bound gap.

8.6 Resolution of end-effects

The OHS problem is a continual process. The forest will continue to be harvested into the

future. However, the data available at any one time can only model a finite number of periods.

The OHS shares this trait with other levels of the hierarchical planning process (Section 4.1).

This is because long-term data are unavailable, inaccurate or too expensive to provide. The

OHS problem formulation in this thesis, therefore, only models a small part of the continual

process of Operational Harvest Scheduling.

Harvest schedulers, in practice, use available data to plan the current period’s (one week)

harvest. Then at the beginning of each new week a new plan is found. Any future weeks that

are planned, only forecast future decisions, which may be changed when the actual plan for that
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week is implemented. This type of practical planning process leads torolling horizon models.

In a rolling horizon model, anOHSsolution will schedule the harvest of a forest over several

weeks (or periods). However, a new schedule will be re-solved at the beginning of each week,

with new data. In any weekly plan, only the first week’s solution is implemented. The rolling

horizon is a practical method needed to implement the results of a finite horizon model in a

continual process. However, the truncation of the time horizon can lead to problems that affect

the results given in weekly solutions. These problems are calledend-effects. If not controlled

end-effects may influence the operational decisions.

8.6.1 Nature of end-effects

TheOHSis susceptible to end-effects in three different areas.

• Final period decisions.

• Re-entry costs.

• Shortage of candidate harvest units.

In the final period of theOHS, the decisions in the optimal solution can be very different

to decisions that would be made by a rational harvest planner. The model does not consider

revenue from decisions that will be made in subsequent unmodelled periods. Therefore, in the

last period any options that will generate marginal value will be used. For instance, residual log-

stocks of high-value log-types will be downgraded to pulp and sold. A rational harvest planner

may decide to keep these log-stocks, because, they will be sold without downgrading in future

periods.

If crews leave harvest units before they are clearfelled, a crew will have to return to the unit

to finish harvesting, before it can be replanted. If anOHS solution delays returning a crew to

the harvest unit until after the end the time horizon, the re-entry costs will not be considered.

Therefore, aOHS model may move crews from unfinished harvest units more than a rational

harvest planner.

In a multi-period model, near the end of the time horizon, the number of unharvested candi-

date harvest units may be low. This will reduce the choices available to the model. In practice,

with a rolling time horizon, new harvest units will be added to the problem, from the harvest

planning process, before the week’s solution is implemented. The periods near the end of the
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time horizon will, therefore, eventually have a greater choice of harvest units than they currently

have in the model.

End-effects do not only affect the solution in the final periods, sometimes end-effects can

propagate into earlier periods of a multi-period model. For example, because crew re-entry

costs are not calculated if a crew returns after the end of the time horizon, theOHS solution

will frequently move crews from unfinished harvest units. These movements can occur in any

period.

Another example of the propagation of end-effects occurs when strictly integer solutions

(Section 7.1) are required. In this type of solution, crews need to move between periods. Pro-

ductivity and production will be adjusted in preceding periods so that the crew completes har-

vesting exactly at the end of a period. This implies that constraints on crew movement in a later

period will force changes on crew decisions in earlier periods. In a relaxed integer solution this

effect does not occur.

8.6.2 Methods of resolution

There are several different ways of reducing the influence of end-effects.

• Extending the time horizon.
• Discounting later periods.
• Adding constraints.
• Using residual costs.
• Use of higher-level plans.

Of these five possible techniques, in this thesis the following are used: extending the time

horizon; adding constraints; residual costs.

The first technique commonly used to reduce end-effects, is to extend the time horizon of

the model. In a rolling horizon formulation, only the solution for the first period is used. In

effect, any other periods in a multi-period model are ‘extra periods’. These extra periods are

used to indicate future decisions, but they also serve to reduce the influence of end-effects in

the first period. By adding more periods, this technique reduces the influence of end-effects in

earlier periods. TheOHSA can relax the integer restrictions on the extra weeks and impose

no branches on these periods’ solutions. Therefore, these extra periods will not significantly

increase the solution time.
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In the case studies (see Chapter 9), the results for all the periods given in the case study

data were examined. Therefore, extra period information was generated to reduce the observed

end-effects in the solution for these periods.

If the objective function coefficients of decisions in later periods of a multi-period solution

are discounted, then any end-effects in these periods would have less influence on the total

solution value. This is an extension of the extra periods technique above. Some end-effects will

not propagate into earlier periods when this technique is used, because earlier decisions will

have a greater effect on the objective function. However, constraint driven end-effects, such as

the integer crew movement example above, will not be affected by any discounting.

This technique is commonly used in forestry strategic planning models. In the strategic plan,

discounting has a practical interpretation as it reflects the present value of revenue obtained in

the future. However, since the time horizons in theOHSproblem are so short discounting will

have no practical interpretation.

In order to reduce aberrant decisions in the final period, extra constraints can be added to the

model. These constraints restrict the residual quantities in a solution. If, the minimum residual

log-stock volumes were constrained, the model will not be able to downgrade high-value logs in

the last period. However, setting the levels of these constraints can be problematic. The problem

formulation in this thesis does not constrain final log-stock volumes, however, a constraint can

force the residual area of a harvest unit to zero (see Section 6.4.2.5). This ensures that the

harvest unit is clearfelled within the time horizon. In addition, in this thesis there is the ability

to force a crew to remain in a harvest unit until it is clearfelled. This restriction reduces the re-

entry cost end-effect, because crew movements are reduced. Some of the case study scenarios

implemented this constraint.

Residual prices value residual quantities of log-stocks or high-value harvest unit areas. If

residual prices are used aberrant decisions in the final period are reduced. This technique is

similar to the constraint technique mentioned above, but is more flexible because the volumes

are not constrained. However, setting the prices can be difficult. A price that is too low will

have no influence on behaviour, while a price that is too high, may in fact stop any crews from

harvesting a harvest unit (if residual area prices are used), or any downgrade of log-stocks (if

residual log-stocks prices are used). In the formulation in the thesis, these prices are considered

(Section 6.6.5) but none of the case studies used this ability.
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Residual prices for theOHScan be generated by a tactical planning model (see Section 2.7.1).

Because the tactical plan has a longer time horizon than theOHSit can correctly value the resid-

ual log-stock volumes or harvest unit areas. The tactical plan can be incorporated in two ways.

It can be a separate model, its output forming some of theOHS input. Or, the tactical plan-

ning model and theOHSmodel could be integrated into a single variable resolution model and

solved together. The second approach was used successfully in McNaughton (1998), where

a tactical planning model was linked to a strategic planning model. In this thesis, no explicit

information from a tactical plan was used.

8.7 Concise solution strategy

Figure 8.5 shows in a concise diagram the solution strategies used in this thesis.
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Dashed boxes indicate optional functions that may or may not occur in each iteration
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LP Solution
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Yield Generation

Branch and bound

Solution Algorithm

Figure 8.5: A concise diagram of the solution strategy used
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Chapter 9

Case Studies

Amid whose swift half-intermitted burst

Huge fragments vaulted like rebounding hail,

Or chaffy grain beneath the thresher’s flail:

(Coleridge 1798)

Three case studies for two forestry companies were undertaken during the course of this

research. They were:

• theNZC operational schedule (two weeks) case study;

• theNZC annual schedule (twelve months) case study;

• theAC operational schedule (four weeks) case study.

These case studies investigated whether the formulation of the problem was realistic and tested

the solution algorithms on reasonably sized problems. These case studies also provided example

problems that were used to develop the solution process.

9.1 Introduction

The two companies involved are not named in this thesis because of concerns for commercial

sensitivity. In addition, the crew and harvest unit names have been changed. One of the com-

panies examined is based in the central North Island of New Zealand; this company will be
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referred to as New Zealand Company (NZC). The other company’s operations are in southeast-

ern Australia and will be referred to as Australian Company (AC).

The case studies were undertaken at different times during the research. TheNZC case

studies were undertaken before theAC case study. Thus, theNZC studies do not utilise all

the techniques discussed in this thesis. In particular, yield generation data was not collected for

NZC so fixed yield predictions are used in theNZC operational and annual schedules.

While compiling these three case studies, I found that the problem definition was subtly

different between the two companies. These differences were reflected by the different kinds of

data available to the companies and differences in their operations. For instance,NZC assumed

constant productivity for each crew, while in theAC data the crew productivity was a function

of the type of harvest unit.

These differences changed the input information for the model, and the statement of the

PT sub-model (see Section 6.5). The formulation developed for theNZC model was the base

model, theAC case study extended this model.

Before the case study data were collected, test data from previous studies atforest research

were used in the development of the formulation and algorithm. Most of the data were collected

for a single period only. In some cases, the data were entirely simulated and were not generated

from real forest problems.

The data for these case studies were specifically collected with the requirements and abilities

of the OHS model in mind. For example, the demand targets collected were flexible enough

to allow the optimisation to work effectively. In theAC study the yield generation base data

(inventory assessments) were collected, therefore, yield predictions could be generated within

the algorithm.

These case studies emphasised the importance of several features of the solution process.

TheNZC operational case study, without yield generation, highlighted the importance of yield

generation or downgrading. TheAC study, highlighted the strategies needed to: incorporate

large volumes of log-stocks; include downgrading; calculate the objective.
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9.2 New Zealand Company (NZC)

There were two separate case studies provided byNZC at the end of 2000. The first was an

operational schedule with a two week planning horizon. This case study included:

• 7 crews;
• 22 log-types;
• 18 harvest units;
• 16 cutting strategies for each harvest unit.

The second data-set was the longer-term annual harvest schedule forNZC. In this schedule,

the time horizon was one year, divided into 26 fortnightly periods. The log-types were reduced

from 22 log-types in the operational schedule, into 12 aggregate groups. Thirty-nine harvest

units were considered and an additional crew was included, as a hauler crew was not allocated

in the operational schedule. As the log-types were aggregated, only a single yield prediction

was used for each harvest unit. The yield prediction was identical to yield predictions used in

longer-term forest plans, specifically theNZC strategic plan (see Section 4.1.1).

9.2.1 Data Collection

At an early stage in the research, Paul Cossens and I held discussions with the staff atNZC.

These discussions allowed theOHS formulation to be modified to fitNZC’s particular situa-

tion. A Microsoft ExcelTM workbook was compiled and sent toNZC to collect the necessary

information for both case studies. The workbook information was modified slightly to fit the

existing model and the data were used to formulate both case studies.

9.3 NZC operational schedule

The operational case study was based on data from two weeks in April 2000. To reduce the

influence of end effects (see Section 8.6.1) a third week was added to the problem. The market

data for the extra week was a copy of the second week’s data and no branching was used. Only

one week was added because that was the minimum required to add a non-integer buffer to the

end of the case study. The results for the extra week are not included in any of the following

results.
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This case study used the actual log-types and customer demand for the weeks. Initial log-

stocks information (see Section 3.5.2) was not provided, so the solution could only meet de-

mand from production within the time horizon. Only minimum market demand volumes (see

Section 6.5.2) were supplied, the maximum volumes were left blank. Therefore, maximum

market demand volumes were set at 120% of the minimum volumes.

The yields were pre-generated byNZC using MARVL . Sixteen cutting strategies were

used to generate yield predictions. As no yield assessments were collected byforest research,

the case study was solved with fixed yield predictions, no extra yield generation could take

place. No downgrade information was collected for the log-types. Because of the lack of

information, the only downgrading allowed was the conversion of all log-types into pulp logs.

This downgrade was possible because pulp logs are assumed to have the most inclusive log

specification (see Section 2.6).

Initial results showed that it was difficult to find a solution that met demand constraints. The

high-value log-types were oversupplied while the pulp log volume was under-supplied. There

was also a shortfall in overall volume. Therefore, the scenarios discussed below, were developed

to investigate ways to reduce the violation of the demand constraints. The ability to downgrade

high-value log-type volume to pulp wood was particularly necessary.

9.3.1 Results

Table 9.1:NZC operational schedule results for a number of demand scenarios

Manual ManualDG Unrestricted DemandMin Demand High Pen No DG
RLP Objective -231,226 338,792 1,966,410 804,862 605,331 -2,832,611 98,552
Objective -236,913 326,900 1,960,194 794,127 583,776 -2,933,977 78,045
Objective without
penalty ($)

1,669,946 1,380,674 1,960,194 1,845,193 1,475,780 1,445,304 1,639,343

Value of demand
violation ($)

953,430 526,887 2,032,203 1,023,075 446,002 437,928 780,648

Bound gap (%) 2.46 3.51 0.32 1.33 3.56 3.58 20.81
Solve time (secs) 3.5 3.22 1.48 4.19 8.47 5.75 73.36

The row headings in Table 9.1 are similar to those found in Chapter 8 and are listed below.

• RLP Objective: The objective value of theRLP solution multiplied by -1 to give the
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solution profit minus any applied penalties;

• Objective: The objective value of the integer solution multiplied by -1 to give the solution

profit minus any applied penalties;

• Objective without penalty: The objective value of the integer solution without subtraction

of penalty values. This represents the dollar value of the solution;

• Value of demand violation: The volume of shortfall or excess for each log-type times its

price.

• Bound gap: The percentage difference between objective values of the best integer solu-

tion and theRLP solution.

• Solve time: The time taken in seconds for the algorithm to finish.

The description of the case study scenarios is as follows.

• Manual: The crews remain in the initial harvest units. Maximum and minimum demand

restrictions are used.

• ManualDG: The “Manual” scenario but with the ability to downgrade excess volume to

pulp.

• Unrestricted: An optimised scenario where the crews may move to other harvest units.

Downgrades are allowed and the maximum and minimum constraints on demand are

removed.

• DemandMin: The “Unrestricted” scenario with minimum demand constraints, the penalty

for shortfall was twice the market log price.

• Demand: The “DemandMin” scenario with maximum demands. The penalty for excess

was twice the market log price.

• High Pen: The “Demand” with the demand penalties set at ten times the market log price.

• No DG: The “Demand” scenario with the ability to downgrade removed.

In all these scenarios, the bound tolerance (see Section 5.2.3.2) was set to 5%. The cutting

strategies were not restricted in any of the scenarios. Therefore, crews were able to use a

number of cutting strategies in each period. The implementation of cutting strategy branches is

examined in theAC case study (see Section 9.5).

The manual scenarios are created by forcing crews to continue to harvest in the initial harvest

units selected byNZC. There is enough area for the crews remain in the harvest units for the

entire time horizon and it is assumed that the harvest scheduler would not move the crews

unless they had completed a harvest unit. The crew allocations for the “ManualDG” scenario
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are shown in Table 9.2, only the allocations for the first two periods are shown. It must be

noted, no information on the manual allocation of cutting strategies and volume downgrading

was collected. Therefore, in the two manual scenarios, these decisions are optimised by the

OHSA. In my opinion, atruemanual scenario will have a worse objective value.

Table 9.2:NZC “Manual DG” crew allocations

Crew Harvest Unit Strategy 1 2

C1 HU11 C1 HU11 C1-10 1.00 1.00
C2 HU11 C2 HU11 C2-01 0.23 0.24

HU11 C2-02 0.77 0.76
C3 HU12 C3 HU12 C3-02 0.87 0.20

HU12 C3-10 0.13 0.25
HU26 HU26-05 0.55

C4 HU38 C4 HU38 C4-02 0.19 0.61
HU38 C4-13 0.21
HU38 C4-14 0.60 0.39

C5 HU1 C5 HU1 C5-10 1.00 1.00
C6 HU38 C6 HU38 C6-04 0.82 0.68

HU38 C6-14 0.18 0.32
C7 HU6 HU6-13 0.66 0.48

HU6-14 0.14
HU6-15 0.34 0.38

In Table 9.2, the values in the cells indicate the time, in periods, the crew was in a harvest

unit using the cutting strategy indicated. Note, the values in each period for a crew sum to one,

as they represent the crew allocation. In this table, Crew C3 is the only crew to move harvest

units. C3 moves almost half way though the second period. C3 is forced to move because it

has completed clearfelling harvest unit HU12C3. We see this in Table 9.3, which shows the

residual area of each harvest unit at the end of each period.

Table 9.4 shows the crew allocations for the “Demand” scenario, which optimises crew

allocation.

In the “Demand” scenario solution, only crew C3 moves during the time horizon. C3 moves

at the same time as it does in the “ManualDG” scenario for the same reason. However, C2, C5,

and C1 have all been allocated to harvest units other than their initial placement. This indicates

that these crews should move to the new harvest units before the first period.
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Table 9.3:NZC “Manual” harvest unit areas

Stand 1 2
HU1 C5 9.11 7.61
HU6 17.33 15.16
HU11 C2 12.39 10.37
HU11 C1 11.88 9.46
HU12 C3 1.18 0.00
HU26 23.90 22.36
HU37 31.30 31.30
HU38 C4 3.41 0.41
HU38 C6 15.27 12.04

Table 9.4:NZC “Demand” crew allocations

Crew Harvest Unit Strategy 1 2

C1 HU26 HU26-05 0.74 1.00
HU26-07 0.26

C2 HU27 HU27-02 0.52 0.48
HU27-10 0.48 0.52

C3 HU12 C3 HU12 C3-01 0.59 0.41
HU12 C3-02 0.41 0.04

HU31 HU31-10 0.55
C4 HU38 C4 HU38 C4-06 0.38 0.49

HU38 C4-10 0.62 0.51
C5 HU27 HU27-02 0.27 0.29

HU27-10 0.73 0.71
C6 HU38 C6 HU38 C6-02 0.34

HU38 C6-14 1.00 0.66
C7 HU6 HU6-10 0.51 0.40

HU6-13 0.00
HU6-15 0.49 0.60

9.3.2 Discussion

The most striking result from Table 9.1 is that none of the scenarios can meet the demand con-

straints. The log-type volumes (not shown because of commercial sensitivity), for the scenarios

without downgrading, indicate that high-value log-types are oversupplied while low-value log-

types are under-supplied. The minimum value of the demand violation, found in the HighPen

scenario, is very high, 30% of the objective value without penalties. This result is similar to

those in Murphy (1998) and is caused by:

• a lack of productive capacity in the case study;
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• the inability to change yield predictions to meet the demand constraints.

The lack of capacity indicates that the perhaps the case study data for crew productivity and

demand is incorrect. Alternatively,NZC may have suppliedforest researchwith optimistic

demand figures that are impossible for them to meet operationally.

In Table 9.1, we see the best (minimum) value of demand violation is given by the “HighPen”

scenario. Increasing the penalties for demand violation above 2 times the market log price has

little effect, however, as this figure is only 2% better then the “Demand” scenario.

Optimisation alone can improve (reduce) the amount of demand violation, this is seen when

we compare the scenarios without downgrades. The “NoDG” scenario is 18% better than the

“Manual” scenario.

Downgrading excess volume to pulp dramatically improves the demand violation, “Man-

ual DG” scenario is 44% better than the “Manual” scenario and the “Demand” scenario is 42%

better than the “NoDG” scenario. This effect is due to the downgrade of excess high-value

log-types. These results taken from Table 9.1 are summarised in Table 9.5. Note that there is no

iterative yield generation in these scenarios.

Table 9.5:NZC Comparison of demand violations with crew allocation and downgrades

Crew Allocations
Manual Optimised

No Downgrades 953,430 780,648
Downgrades 526,887 446,002

There is significant difference between the unconstrained maximum value of logs in the

forest and the maximum value of logs that can be sold to the current market. The objective

value without penalties of the “Demand” scenario is 25% worse (less) than the “Unrestricted”

scenario.

The overall improvement from optimisation can be seen by a comparison of the “Demand”

and the “ManualDG” scenarios. The “Demand” scenario has an improvement (increase) of

7% in the objective value without penalties, and a 15% improvement in the value of demand

violation.

The bound gaps are acceptable (except “NoDG” scenario) given the large possible errors

in the underlying yield predictions (see Section 3.3.2).
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The solution times for these scenarios were short. When downgrades are allowed between

the log-types, the solution process is made significantly easier. This is clearly shown by the

solution time increase when downgrades are removed in the “NoDG” scenario. The solution

time for the “Manual” scenario is short, even though downgrades are not allowed, because of

the more restrictive nature of this scenario.

Cutting strategy branches were not imposed in this case study. It was difficult to find so-

lutions that were near the demand constraints. If the cutting strategy choices were restricted,

it would be almost impossible to find solutions. The operation of crew-strategy branches is

examined in theAC case study.

9.4 NZC annual schedule

TheNZC annual schedule ensures continuity of harvesting over the entire year. It is similar in

some respects to a tactical plan (see Section 4.1.2), however, it does not have the extra spatial

restrictions common to tactical plans. In the annual schedule, log-types were aggregated into

the groupings used in theNZC strategic planning models (see Section 4.1.1). Therefore, the

demand constraints were not as restrictive as in the short-term operational schedule. In fact,

only 3 out of the 12 log-types had minimum demand constraints and no log-types had maximum

demand constraints.

As the annual schedule had a much longer time horizon than the operational schedule, the

crews moved between harvest units more often. The techniques developed to solve this problem

are discussed in Chapter 8. In particular, the concept and implementation of integer feasible

columns (see Section 7.2.1) was necessary to reduce the gap between theRLP and integer

objectives.

9.4.1 Results

Table 9.6 shows the results for three scenarios for theNZC annual schedule. The rows of the

table are identical to Table 8.1. No manual solutions were simulated as the manual solution data

for this case study was not collected fromNZC.

• Base: This scenario optimises the annual schedule without downgrading and with penal-

ties of 2 times the market log-price for violation of the demand constraints.
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• High Pen: This scenario applies a higher penalty to the demand constraints.

• ForceCrews: This scenario investigates the effect if theOHSA does not allow a crew to

move before it has completed its current harvest unit.

Table 9.6:NZC annual schedule case study results

Base High Pen ForceCrews
RLP Objective 19,175,130 9,789,744 18,292,376
Objective 19,156,934 9,772,206 18,180,609
Objective without
penalty ($)

19,623,611 18,834,901 18,681,075

Value of demand
violation ($)

233,338 181,253 250,233

Bound gap (%) 0.09 0.18 0.61
Solve time (secs) 77.95 260.11 159.64

The increase in the number of periods in the annual schedule, is reflected by an increase in

the solution times compared to the operational schedule. Fortunately, the use of integer feasible

columns has resulted in bound gaps that are smaller than the bound gaps in the operational

schedule. The crew allocations for the “Base” scenario are shown in Table 9.7 and the residual

areas in Table 9.8.

In Table 9.7, we see that crew C7 moves in and out of harvest unit HU14 during the time

horizon and completes a number of different harvest units before returning to HU14. This

behaviour is very odd for a hauler crew, as hauler crew’s rarely move before they complete a

harvest unit. Therefore, the solution may need to be altered manually to force C7 to remain in a

single harvest unite, or the cost of moving increased to further discourage this movement.

If we restrict movement of the crews, as discussed in Section 8.6.2, we get the allocations

given in Table 9.9. This table shows the allocations for the “ForceCrews” scenario. In this

scenario, once a crew enters a harvest unit the crew must remain until it is completed. Therefore,

crew movement is reduced compared to Table 9.7.
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Table 9.7:NZC annual schedule “Base” crew allocations

Crew Harvest Unit 1 2 3 4 5 6 7 8 9 10 11 12 13

C1 HU22 1.00 1.00 1.00 1.00 1.0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00
HU39

C2 HU27 0.59 1.00 1.00 1.00 1.00 1.00 1.00
HU40 1.00 1.00 1.00 1.00 1.00 1.00 0.41

C3 HU8 0.06
HU36 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HU42

C4 HU26
HU37 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C5 HU23
HU41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C6 HU36 0.96 1.00
HU37
HU39 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.04

C7 HU14 1.00 0.36 0.65 1.00 0.08
HU18 0.92 1.00 1.00 1.00 1.00 1.00
HU21 0.64 1.00 1.00 1.00 0.35
HU25

C1 HL HU30 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Crew Harvest Unit 13 14 15 16 17 18 19 20 21 22 23 24

C1 HU22 1.00 0.62
HU39 0.38 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C2 HU27 1.00 1.00 1.00 1.00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HU40

C3 HU8
HU36 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.57
HU42 0.43

C4 HU26 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HU37 1.00 1.00 1.00 1.00 1.00

C5 HU23 0.28
HU41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.72

C6 HU36 1.00 1.00 1.00 1.00 1. 00 1.00 1.00 1.00 1.00 1.00
HU37 1.00 1.00
HU39

C7 HU14 0.65 1.00 1.00 1.00 1.00 0.56
HU18 1.00 1.00 1.00 1.00 1.00 1.00 0.35
HU21
HU25 0.44

C1 HL HU30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 9.8:NZC annual schedule “Base” harvest unit areas

Stand 1 2 3 4 5 6 7 8 9 10 11 12 13
HU6 47.10 47.10 47.10 47.10 47.10 47. 10 47.10 47.10 47.10 47.10 47.10 47.10 47.10
HU8 22.17 22.17 22.17 22.17 22.17 22 .17 22.17 22.17 22.17 22.17 22.17 22.17 22.17
HU14 29.13 28.07 28.07 28.07 28.07 26. 20 23.27 23.03 23.03 23.03 23.03 23.03 23.03
HU17 42.70 42.70 42.70 42.70 42.70 42. 70 42.70 42.70 42.70 42.70 42.70 42.70 42.70
HU18 33.50 33.50 33.50 33.50 33.50 33. 50 33.50 30.85 27.88 24.90 21.91 18.93 15.95
HU20 62.80 62.80 62.80 62.80 62.80 62. 80 62.80 62.80 62.80 62.80 62.80 62.80 62.80
HU21 9.10 7.67 5.40 3.10 0.80 0. 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HU22 35.49 32.68 29.86 27.05 24.24 21. 43 18.61 15.80 12.99 10.18 7.36 4.55 1.74
HU23 6.30 6.30 6.30 6.30 6.30 6. 30 6.30 6.30 6.30 6.30 6.30 6.30 6.30
HU25 7.10 7.10 7.10 7.10 7.10 7. 10 7.10 7.10 7.10 7.10 7.10 7.10 7.10
HU26 23.90 23.90 23.90 23.90 23.90 23. 90 23.90 23.90 23.90 23.90 23.90 23.90 23.90
HU27 51.80 51.80 51.80 51.80 51.80 51. 80 50.35 47.83 45.25 42.68 40.10 37.53 34.95
HU28 51.70 51.70 51.70 51.70 51.70 51. 70 51.70 51.70 51.70 51.70 51.70 51.70 51.70
HU30 44.00 44.00 44.00 44.00 44.00 44. 00 41.79 39.50 37.21 34.91 32.62 30.32 28.03
HU33 10.40 10.40 10.40 10.40 10.40 10. 40 10.40 10.40 10.40 10.40 10.40 10.40 10.40
HU36 84.11 81.60 79.09 76.58 74.07 71. 56 69.04 66.53 64.02 61.51 59.00 54.16 49.14
HU37 61.87 58.75 55.62 52.50 49.37 46. 24 43.12 39.99 36.87 33.74 30.61 27.49 24.36
HU39 47.16 45.05 42.95 40.84 38.73 36. 62 34.52 32.41 30.30 28.20 26.09 26.01 26.01
HU40 9.09 7.41 5.73 4.05 2.37 0. 69 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HU41 88.49 85.65 82.80 79.95 77.10 74. 25 71.41 68.56 65.71 62.86 60.01 57.17 54.32
HU42 9.30 9.30 9.30 9.30 9.30 9. 30 9.30 9.30 9.30 9.30 9.30 9.30 9.30
HU43 8.50 8.50 8.50 8.50 8.50 8. 50 8.50 8.50 8.50 8.50 8.50 8.50 8.50

Stand 13 14 15 16 17 18 19 20 21 22 23 24
HU6 47.10 47.10 47.10 47.10 47.10 47.1 0 47.10 47.10 47.10 47.10 47.10 47.10
HU8 22.17 22.17 22.17 22.17 22.17 22. 17 22.17 22.17 22.17 22.17 22.17 22.17
HU14 23.03 23.03 23.03 23.03 23.03 23.0 3 21.15 18.22 15.25 12.28 9.32 7.65
HU17 42.70 42.70 42.70 42.70 42.70 42.7 0 42.70 42.70 42.70 42.70 42.70 42.70
HU18 15.95 12.96 9.98 7.00 4.02 1.0 3 0.00 0.00 0.00 0.00 0.00 0.00
HU20 62.80 62.80 62.80 62.80 62.80 62.8 0 62.80 62.80 62.80 62.80 62.80 62.80
HU21 0.00 0.00 0.00 0.00 0.00 0.0 0 0.00 0.00 0.00 0.00 0.00 0.00
HU22 1.74 0.00 0.00 0.00 0.00 0.0 0 0.00 0.00 0.00 0.00 0.00 0.00
HU23 6.30 6.30 6.30 6.30 6.30 6.3 0 6.30 6.30 6.30 6.30 6.30 5.54
HU25 7.10 7.10 7.10 7.10 7.10 7.1 0 7.10 7.10 7.10 7.10 7.10 5.85
HU26 23.90 23.90 23.90 23.90 23.90 21.3 3 18.66 15.99 13.33 10.66 7.99 5.32
HU27 34.95 32.38 29.80 27.23 24.65 22.0 8 19.50 16.93 14.35 11.78 9.20 6.63
HU28 51.70 51.70 51.70 51.70 51.70 51.7 0 51.70 51.70 51.70 51.70 51.70 51.70
HU30 28.03 25.74 23.44 21.15 18.86 16.5 6 14.27 11.98 9.68 7.39 5.10 2.80
HU33 10.40 10.40 10.40 10.40 10.40 10.4 0 10.40 10.40 10.40 10.40 10.40 10.40
HU36 49.14 44.12 39.09 34.07 29.05 24.0 2 19.00 13.98 8.95 3.93 1.42 0.00
HU37 24.36 21.24 18.11 14.99 11.86 11.8 6 11.86 11.86 11.86 11.86 8.85 5.72
HU39 26.01 25.24 23.18 21.07 18.97 16.8 6 14.75 12.64 10.54 8.43 6.32 4.21
HU40 0.00 0.00 0.00 0.00 0.00 0.0 0 0.00 0.00 0.00 0.00 0.00 0.00
HU41 54.32 51.47 48.62 45.77 42.93 40.0 8 37.23 34.38 31.53 28.69 25.84 23.80
HU42 9.30 9.30 9.30 9.30 9.30 9.3 0 9.30 9.30 9.30 9.30 9.30 7.68
HU43 8.50 8.50 8.50 8.50 8.50 8.5 0 8.50 8.50 8.50 8.50 8.50 8.50
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Table 9.9:NZC annual schedule “ForceCrews” crew allocations

Crew Harvest Unit 1 2 3 4 5 6 7 8 9 10 11 12 13

C1 HU22 1.00 1.00 1.00 1.00 1.0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00
HU26
HU42

C2 HU39 0.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HU43 1.00 1.00 1.00 0.89

C3 HU8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75
HU36 0.25 1.00 1.00 1 .00

C4 HU21
HU37 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C5 HU20 1.00 1.00 1.00 1.00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00
C6 HU17 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

HU36
C7 HU6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

HU25
C1 HL HU30 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Crew Harvest Unit 13 14 15 16 17 18 19 20 21 22 23 24

C1 HU22 1.00 0.62
HU26 0.95 1.00 1.00 1.00 1. 00 1.00 1.00 1.00
HU42 0.38 1.00 1.00 0.05

C2 HU39 1.00 1.00 1.00 1.00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HU43

C3 HU8
HU36 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C4 HU21 0.21 1.00 1. 00 1.00
HU37 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.79

C5 HU20 1.00 1.00 1.00 1.00 1.0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C6 HU17 1.00 1.00 1.00 1.00 0. 03

HU36 0.97 1.00 1.00 1.00 1. 00 1.00 1.00 1.00
C7 HU6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73

HU25 0.27 1.00 1.00
C1 HL HU30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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9.4.2 Discussion

The value of the demand violation in this case study is much better (less) than in the operational

schedule. The value of demand violation in the “Base” scenario is only 1% of the objective

value without penalties. The imposition of higher penalties in the “HighPen” scenario does

improve (decrease) the value of demand violation. However, given that the excess is already

low, this decrease is not large in absolute terms.

The “ForceCrews” scenario gives an objective value only 5% worse (higher) than the

“Base” scenario. The “ForceCrews” solution is much more reasonable from an operational

perspective, because the crew movements are reduced.NZC may want to look at the true costs

of moving the crews to decide which of the scenarios to implement.

9.5 Australian Company (AC)

Australian Company (AC) is a large forestry company based in Australia. This case study

models a part of the forests under their control.AC were interested in this case study for several

reasons.

• In the studied region there are 10 different customers and a wide variety of log-types.
• There are two species of trees in the region and a variety of terrain.
• There are production-thinning operations to schedule as well as clearfelling.
• The large number of customers, log-types and pricing points can make it difficult to com-

pare the effects of any production decision.
• The forest estate produces a high percentage of large diameter logs. Unfortunately, their

customers cannot use all of these logs. Often the larger logs are left in log-stocks until

they are downgraded and sold for a lower price.

These factors make the problem quite difficult to solve manually and lead to a marked im-

provement when the solution is found using the optimisation algorithm presented in this thesis.

Different pricing points and methods of payment, make it difficult forAC to identify good

solutions quantitatively.

The period for this case study was October 2000. The case study included:

• 7 crews;
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• 26+10 harvest units (ten harvest units are early thinning);
• 81 log-types;
• 10 different customers;
• clear fell and thinning operations;
• one species.

Only one species was modelled, as the second species comprised only a small portion of the

harvest.

The early (first and second) thinning operations were modelled by removing the crew C7 in

the third period (as it was assigned to thinning) and removing the harvest units with thinning

operations

9.5.1 Data collection

A team of three scientists fromforest researchspent a week collecting data fromAC, by work-

ing closely with various people within the company. They collected the parameter data for

the formulation described in Chapter 6. The parameter data were compiled in several Excel

workbooks and inventory assessment information was compiled in aMARVL database.

Information on other factors that influence the decisions of the harvest scheduler were col-

lected, for example, contractual obligations. Some of these factors were included in theOHS

model as new constraints. These added constraints included complications to the crew cost

calculations and constraints on log-typeSED.

9.5.1.1 Period details

During the period only 30, out of 81, log-types were supplied to 10 customers, unused products

were removed. One crew (C7) spent the third week harvesting first thinning stands. It was

removed from the problem in that week.

AC had previously accumulated harvested logs at the skid sites in log-stocks. A decision

had been made to reduce the amount of log-stocks. Therefore, the crews stopped harvesting in

the fourth week.

The initial harvest unit for each crew was the harvest unit where the crew was harvesting

before the initial week.
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9.5.1.2 Data validation and analysis

Once the data were obtained fromAC, the specific data needed for the HSA were calculated,

including:

• at-roadside prices for logs in every stand - these prices were used to generate initial yields

of the harvest areas;

• crew harvest unit productivity and compatibility matrices - taking into account the differ-

ent harvest unit terrain and crew capabilities;

• market demands - these were altered to give some flexibility in the solution. Demands

were not strictly limited to the number of truckloads given in the parameter data;

• the harvest unit area - this information was updated to consider the area harvested prior

to the case study.MARVL assessment data gave the total area of the harvest areas.

9.5.1.3 Cutting strategy selection

The cutting strategies were created using the random stratified method (personal communication

Murphy, 2001) mentioned in Section 8.5.3.

Seven random strategies were created for each harvest unit. Initial yields were generated

using roadside prices for each harvest unit. Subsequent yield generation used the price change

strategy described in Section 8.5.4.2.

9.5.1.4 Yield iterations

It was impossible to find a solution that met the market demand constraints using only yield

predictions generated using roadside prices. This was also the case with solutions for theNZC

operational case study (see Section 9.3). Once yields were recalculated several times, a near

optimal solution to theRLP was found.

9.5.1.5 Downgrading

This case study included a large volume of high-value log-stocks, thus the ability to downgrade

was an essential part of the solution method. Without this ability, all of the scenarios would

have large excess volumes for logs in log-stocks that were not sold during the time horizon.
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Downgrades were found for most of the log-types. These downgrades allowed logs to be

interchanged between different log-types. This contrasts with theNZC operational case study,

where volume was only downgraded to pulp logs. All scenarios for this case study allow the

initial log-stocks to be downgraded. The two scenarios “ManualDG” and “DG” also allow log

volume harvested in the time horizon to be downgraded. The bound gap used for these scenarios

was 5%, except for the “Strategy” scenario where a 10% bound gap was used so that a solution

was found in reasonable time. When the “Strategy” scenario was solved with a 5% bound gap

the solution had not been found after an overnight run.

9.5.1.6 Additional periods

To reduce the influence of end-effects (see Section 8.6) in the four periods in the study an extra

four periods were added to the end of the time horizon. The demand data in these four periods

was a duplicate of the original periods’ data. The crew allocation tables below, however, do not

show the solution for the extra four periods.

TheNZC operational case study only included one extra week. However, four extra weeks

were needed in theAC case study because of the atypical treatment of log-stocks in this case-

study. The log-stocks are drastically reduced in the fourth period (because there is no crew

production), so the extra periods are needed to ensure the solution is still reasonable.

9.5.2 Results

Table 9.10:AC results for different scenarios

Manual ManualStrat ManualDG Unrestricted DG Base Strategy
RLP Objective -4,113 -4,113 1,399,308 3,414,156 1,771,504 1,598,726 1,598,726
Objective -4,113 -83,376 1,346,491 3,400,996 1,754,963 1,554,879 1,385,401
Objective without
penalty ($)

1,823,237 1,835,176 2,078,422 3,400,996 2,078,718 1,906,526 1,882,402

Value of demand
violation ($)

826,953 851,510 293,490 4,020,109 81,907 110,277 188,708

Bound gap (%) 0 1,927.1 3.77 0.39 0.93 2.74 13.34
Solve time (secs) 11.77 1,187.73 20.73 9.11 75.14 154.2 1,206.38

To find the gains of implementing theOHSA, several different scenarios are contrasted in
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Table 9.10

• Manual: The crews remain in the initial harvest units. Maximum and minimum demand

restrictions are used. No yield generation is used, but the crew can use several cutting

strategies in a period. Downgrading of the initial log-stocks is allowed.
• ManualStrategy: The “Manual” scenario, with only a single cutting strategy used per

period.
• ManualDG: “Manual” scenario, with the ability to downgrade all the available volume.
• Unrestricted: An optimised scenario where there are no demand restrictions. Yield gen-

eration is allowed and log-stocks may be downgraded.
• DG: The “Base” scenario with downgrades allowed for all available volume.
• Base: The “Unrestricted” scenario with the addition of maximum and minimum demands.
• Strategy: The “Base” scenario with only compatible cutting strategies used (see Sec-

tion 6.4.3) by a crew in a single period.

The bound gap for all scenarios except “ManualStrategy” is reasonably small. The ex-

tremely large value for the bound gap in the “ManualStrategy” scenario is caused by the very

small absolute value of the RLP objective ($-4,113). The objective value is so small because the

penalties almost exactly cancelled out the revenue. A percentage calculation of the bound gap,

therefore, gives very misleading results, when contrasted with scenarios with larger absolute

values of the objective.

In Table 9.11, the solutions for four periods of the “Manual” scenario are shown. Note, that

the crews do not move from their initial harvest units, but do use a number of cutting strategies.

In Table 9.12, two crews have shifted from their original harvest units. C5 moves to a

different harvest unit at the beginning of the period, and C4 moves into HU14.

Table 9.13 shows the effect of restricting the cutting strategies used in a period. In the

“Strategy” scenario, only compatible yield predictions (different iterations of the same cutting

strategy) may be used by a crew in a period.

9.5.3 Discussion

The difference between the manual scenarios and the optimised scenarios in this case study

is most apparent when comparing the value of the demand violations. The combination of

yield generation and crew allocation in the optimised scenarios improves (lessens) the value
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Table 9.11:AC crew allocations for the “Manual” scenario

Crew Harvest Unit Strategy 1 2 3 4

C1 HU1 HU1-2 0.52 0.38 0.18
HU1-7 0.48 0.62 0.82

C2 HU8 HU8-2 0.20 0.20
HU8-3 0.18
HU8-4 0.21
HU8-7 1.00 0.80 0.41

C3 HU23 HU23-2 0.23 0.00
HU23-3 0.43 0.66 0.01
HU23-4 0.34 0.34 0.34
HU23-6 0.66

C4 HU11 HU11-2 0.02
HU11-5 0.07
HU11-6 0.28 0.20 0.61
HU11-7 0.72 0.80 0.31

C5 HU22 HU22-4 1.00 1.00 1.00
C6 HU27 HU27-3 1.00 0.99 1.00

HU27-4 0.01
C7 HU29 HU29-3 0.32 0.97

HU29-6 0.68 0.03

Table 9.12:AC crew allocations for the “Base” scenario

Crew Harvest Unit Strategy Iter 1 2 3 4

C1 HU1 HU1-1 1 0.0 1 0.04 0.18
2 0.23 0.24 0.61

HU1-2 1 0.07
2 0.07 0.21

HU1-3 3 0.69 0.61
HU1-7 2 0.05

C2 HU8 HU8-5 2 0 .13 0.13
3 0.09 0.12 0.12

HU8-6 2 0.24 0.13
3 0.68 0.21 0.21

HU8-7 3 0.42 0.55
C3 HU23 HU23-2 1 0.45 0.02 0.02

2 0.00 0.22 0.41
HU23-4 2 0.14 0.27
HU23-5 2 0.08 0.26 0.30
HU23-6 1 0.47 0.36

C4 HU11 HU11-6 2 0.74
HU11-7 1 0.26

HU14 HU14-4 3 1.00 0.67
HU14-6 1 0.33

C5 HU4 HU4-1 2 0.23
HU4-3 1 1.00 0.77 0.78
HU4-4 2 0.22

C6 HU27 HU27-4 1 0.13
HU27-5 3 1.00 0.87 1.00

C7 HU29 HU29-6 2 1.00 1.00

of demand violation noticeably. The value of demand violation in the “Base” scenario is 86%

better than the “Manual” solution.
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Table 9.13:AC Crew Allocations for the “Strategy” Scenario

Crew Harvest Unit Strategy Iter 1 2 3 4

C1 HU1 HU1-1 1 0.18
2 0.82

HU1-2 1 0.02
2 0.98

HU1-3 1 0.31
3 0.69

C2 HU8 HU8-6 2 1.00
HU8-7 2 0.15

3 1.00 0.85
C3 HU23 HU23-4 2 1.00 1. 00

HU23-6 1 0.80
3 0.20

C4 HU14 HU14-1 2 1.00
HU14-4 1 0.08 0.09

3 0.92 0.91
C5 HU4 HU4-1 3 1.00

HU4-3 1 1.00 1.00
C6 HU27 HU27-5 2 1.00 1.00

3 1.00
C7 HU29 HU29-6 2 1.00 1.00

Table 9.14 compares the effects of yield generation, downgrading and crew allocation. The

starred (*) entries have been generated for this table only, while the other entries are extracted

from Table 9.10. This table shows that the effect of crew allocation gives an improvement

in demand violation, that varies between a 23-45%. The improvement from downgrading is

between 65 and 74%, while yield generation gives an improvment of between 76 and 83%.

These methods do not combine linearly, however, and their combined effect is between 84

and 87%. These two methods have very similar effects on the solution and therefore were not

expected to combine together linearly.

Table 9.14:AC Comparison of demand violation with crew allocation, yield generation and
downgrading

Crew Allocations
Manual Optimised

No downgrade or 826,953 (*)634,360
yield generation
Downgrade only 293,490 (*)162,415
Yield Generation Only (*)196,851 110,277
Downgrade and (*)132,840 81,907
yield generation

Even though downgrading combined with yield generation does improve the solution, the
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argument advanced in Section 3.5.4 that downgrading should be limited to initial log-stocks (see

Section 3.5.4) is still valid. Yield generation more accurately models the harvesting process,

lower value logs will be bucked from the stem when they are needed. While downgrading

assumes that the logs will be bucked as high value log-types and then sold as lower value log-

types.

Crew-strategy branches generate solutions that will be acceptable to harvesting crews (see

Section 6.4.3). The two scenarios where Crew-strategy branches are used are “Strategy” and

“Manual Strat”. Restricting the cutting strategies in this way does lead to worse objective val-

ues. The “Strategy” scenario shows that the objective value without penalties (reduced by 1.3%)

and the demand violation (increases by 72%) is worse when compared to the “Base” scenario.

The increase in demand violation is expected purely because the ability to produce the correct

mix of log-types is reduced. Importantly however, the value of the violation in the “Strategy”

scenario is still less than any of the manual solutions. The “Strategy” scenario has a 78% im-

provement in demand violation over the “ManualStrat” scenario. These demand violations are

compared in Table 9.15 with data extracted from Table 9.10.

Table 9.15:AC Comparison of demand violation with crew allocation and strategy branches

Crew Allocations
Manual Optimised

No strategy branches 826,953 110,277
Strategy branches 851,510 188,708

The optimisation improves (increases) the objective value without penalties in this case

study. The “Base” scenario is 5% better than the “Manual” scenario. When cutting strategies

are restricted, the “Strategy” scenario is 3% better than the “ManualStrat” scenario.

9.6 Conclusion

The case studies forNZC andAC show that theOHSA is capable of providing solutions to

realistic problems. TheNZC operational schedule demonstrated the speed and efficiency of the

algorithm on a very small problem. TheNZC annual schedule showed that theOHSA could

be used to solve problems with a longer time horizon than it was initially intended.

TheAC case study shows that theOHSAgives good results for moderately sized problems.
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The use of yield generation was also proven effective. By solving both theNZC and AC

problems, theOHSA was shown to be flexible enough to be implemented in two different

forestry companies.



Chapter 10

Discussion

And ’mid these dancing rocks at once and ever

It flung up momently the sacred river.

(Coleridge 1798)

This thesis has presented significant research that applies optimisation techniques to the field

of Forestry Operational Harvest Scheduling.

This chapter will:

• briefly outline theOHSproblem that has been considered;
• highlight the contributions developed in this thesis;
• demonstrate through case studies that the solution methods solve practical problems;
• discuss some directions for future research.

10.1 Problem description

An OHS:

• assigns forest harvesting crews to locations within a forest in the short-term (4-8 weeks);
• instructs crews to harvest specific log-types and allocates these log-types to customers;
• maximises profitability while meeting customer demand.

A full problem description is given in Chapter 3. In this thesis we solve a problem which

includes:
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• a forest wide scope;

• unambiguous crew locations;

• multiple periods and crew movements;

• the ability to move crews mid-period;

• iterative generation of possible crew production;

• the distribution of logs to customers;

The problem includes all the important aspects that have been included in previous literature

(see Chapter 4) and adds new features discussed later in Section 10.2.

10.2 Contributions

This thesis makes contributions in two areas, the modelling ofOHSproblems and the solution

strategies applied.

10.2.1 Modelling

The problem formulation, in this thesis, is given in Chapter 6. The use of a Model II formulation

(see Section 6.2.2) for theCA sub-model is unique within theOHSliterature. Because of this

novel formulation, methods that have previously been applied toGSPPformulations of roster-

ing problems, may be applied to theOHSproblem. These methods include column generation

and constraint branching.

The Model II formulation follows the crews through time. Therefore, crew movements

are easy to model within a crew schedule’s structure. The implicit constraints discussed in

Section 7.2 including those that force a crew to remain in a harvest unit until completion are

also easily modelled. The ability to allow crews to move mid-period described in Section 7.1.1

can only be implemented in a Model II formulation.

ThePT sub-model presented in this thesis is similar to other models given in the literature,

for instance, Murphy (1998) and Epstein et al. (1999b). It includes all of the common features

found in the literature as well as extensions that modelSED and product fraction restrictions.

However, thePTsub-model will be altered within a particular forestry company, as the company

will have different operating practices.
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10.2.2 Computational techniques

To solve the formulation described in Chapter 6 the techniques described in Chapter 7 and

Chapter 8 are applied. These techniques include several new methods for solving these types of

problem. The techniques include:

• relaxed integer solutions;
• yield prediction generation;
• column generation;
• constraint branching;
• integer allocation.

10.2.2.1 Relaxed integer solutions

The use of relaxed integer solutions (see Section 7.1.2), to give unrestricted movement solutions

(see Section 7.1.1) is an important part of this thesis. By relaxing the definition of an integer

solution, solutions can be found that allow theLP to continue to optimise important elements

of the problem. The careful definition of the type of unrestricted movement solutions, allows

logical consistency and unambiguous interpretation of the solution.

This technique allows:

• crews to move mid-period;
• a number of yield prediction iterations to be used in a single period when complementary

crew-cutting strategy branches are applied;
• multiple cutting strategies to be used, when crew cutting strategy branches are not applied.

A relaxed integer solution that can be interpreted as an unrestricted movement solution, is

only possible when a Model II formulation is used in conjunction with the constraint branches

described in Section 8.3.

10.2.2.2 Yield prediction generation

The bucking optimisation literature (see Section 4.2.1) discusses techniques that meet customer

demands by generating new yield predictions. In my research, these techniques were essential

to reduce violation of the demand constraints. The technique used is similar to that described in
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Cossens (1996) but is applied to a fullOHS model similar in scope to the OPTICORT model

(Epstein et al. 1999b).

The case study results in Chapter 9 suggest that the yield predictions may be altered in two

ways. New yield predictions can be generated by an iterative process, or downgrading can allow

volume to move between different log-types. The case study results suggest the iterative process

has a marginal advantage over downgrading, but either is very effective.

From a modelling perspective the iterative process is preferable because it models the correct

behaviour of the crews. In the iterative process the all logs are bucked to their final log-type

specifications(see Section 2.5.1.4). With downgrading the model assumes that a log is bucked to

one log-type specification and then it is transformed into another log-type before it is transported

to the customer. Iterative generation also ensures production will meet the specifications of the

customer. In addition, only iterative generation can strictly control the number of log-types

produced by a harvesting crew.

However, the limited use of downgrading (initial log-stocks only) was necessary in theAC

case study. This case study was atypical, however, because of the large amount of log-stocks.

The case studies recommend an iterative process in preference to pre-generation of yield

predictions. Pre-generation of yields, naively applied, can have very little effect on demand

violation. TheNZC operational plan case study shows this effectively. A solution that used

16 pre-generated cutting strategies still had very high demand violations. The application of

downgrading however reduced the violation by half.

10.2.2.3 Column generation

The number of possible crew schedules in a Model II formulation is very large. Column genera-

tion is necessary if realistic problems are to be solved. The dynamic creation of crew schedules

has not been previously used in this field.

The column generation algorithm, described in Section 8.2, finds candidate entering columns.

It uses a shortest path formulation to find crew schedules with negative reduced costs. Pre-

generation of some of the values used in the algorithm results in significant reduction in so-

lution time. Properties of the reduced cost calculation can reduce the number of predecessors

considered at each stage and therefore reduce the time taken to generate new crew schedules.

Implementation of the integer feasible column restriction (see Section 8.2.4), also improves the
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performance of theB&B.

10.2.2.4 Constraint branching

The constraint branching strategies described in Section 8.3 were used to find a solution. Con-

straint branches were constructed to give relaxed integer solutions, and to allow column gen-

eration to continue within theB&B process. The repeated application of a typical constraint

branch will force the integer relaxation of a problem to become integer feasible or infeasible.

The constraint branches in this thesis, however, force the relaxation to becomerelaxed integer

feasible (see Section 7.1.2) or infeasible.

10.2.2.5 Integer Allocation

The integer allocation algorithm described in Section 8.4 is very effective. In most cases, integer

solutions are found by the integer allocation, before theB&B tree has found an integer node.

The integer allocation is especially effective when it finds a good solution at the root node of

the B&B tree. The objective value of this solution can be used to bound a large proportion of

theB&B tree.

In contrast to other applications of integer allocation heuristics, the algorithm in this thesis

uses repeated calls to the simplex algorithm and the branching strategies used in the mainB&B

algorithm. This type of approach does take a longer time to find an allocated solution, but it is

necessary because of the use ofLP to find the values of decisions in thePT sub-model. Since

these non-optimal uses of the branch and bound techniques occur in parallel to the mainB&B

algorithm the overall solution process retains the ability to find optimal solutions (if the bound

gap is set to 0).

10.3 Case studies

The results from the three case studies show that the Operational Harvest Scheduling Algorithm

(OHSA) can be applied to realistic problems. All three case studies were derived from forestry

companies. They represent the actualOHSproblem that was solved in the company, in the time

period given.
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The NZC operational schedule (see Section 9.3), showed that theOHSA algorithm could

quickly find the solutions to small problems. The optimisation (“Demand” scenario) is able

to meet the demand constraints better than the manual (“ManualDG” scenario) solution. The

optimisation reduces the value of demand violation by 15% compared to the manual solution.

The impact of downgrading in this case study is especially evident, as there is no iterative yield

generation. A solution without downgrading increases demand violation by 75%.

TheNZC annual schedule (see Section 9.4), showed the operation of theOHSA on a prob-

lem with a time scale longer than the 1 week to 3 month time scale typical of mostOHSs.

Unfortunately, there was no manual solution to compare to the optimised (“Base” scenario) re-

sults. However, the case study problem was solved in reasonable time (77.95 secs). TheOHSA

gave good solutions with very low bound gaps (0.09 %).

The AC case study (see Section 9.5), was the most complex of the three case studies. The

detailed information gathered onAC operations resulted in extensive customisation of thePT

sub-model. The large initial log-stocks made some downgrading essential for all scenarios.

Again, theOHSA performs well on all the scenarios. It solves the “Base” scenario in a reason-

able time (154.2 secs) with small bound gaps (2.74%).

• With no cutting strategy restrictions: the optimisation (“Base” scenario) reduced the value

of demand violation by 86% and improved the objective value without penalties by 5%

over the manual (“Manual” scenario) solution.

• With cutting strategy restrictions: the optimisation (“Strategy” scenario) reduced the

value of demand violation by 78% and improved the objective value without penalties

by 3% over the manual (“ManualStrat” scenario) solution.

These figures show the benefits of optimisation, especially its effect on demand violation. They

are summarised in Table 10.1

10.4 Further work

As a result of the research presented in this thesis there are several issues that could be investi-

gated in further research. These include topics relating to:

• yield prediction generation;
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Table 10.1: Comparison of case study results

NZC NZC AC
operational annual no strategy strategy

restrictions restrictions

Objective value without
penalties improvement (%)

7 n/a 5 3

Value of demand violation
improvement (%)

15 n/a 86 78

Bound gap (%) 3.56 0.09 2.74 13.34
Solution time (secs) 8.47 77.95 154.2 1,206.38

• uncertainty in yield predictions;
• the use of a rolling horizonOHSmodel;
• an investigation of the merits of priority list yield generation and dynamic programming

yield generation.

In this thesis, the yield predictions were generated byMARVL , a software product provided

by forest research(see Section 8.5). Because the algorithms within this software were not under

my direct control, the iterative yield generation was not implemented as efficiently as it might

have been. In particular, the yield generation step was not placed within the column generation

framework (see Section 8.2). It would be interesting to see the effect of placing yield generation

algorithms directly within the column generation.

The properties of a yield prediction frontier are described in Section 3.3. It may be possible

to represent the yield prediction frontier for the harvest unitbeforean OHS problem is con-

structed. The ability to use a yield prediction frontier with the column generation step would

significantly improve the performance of the yield generation iteration.

Section 3.3.2 discusses some concerns about uncertainty of yield predictions. This subject

is also discussed in Section 4.3. How to place uncertainty intoOHS problems is certainly an

open question. Investigation of techniques such as robust optimisation or perhaps stochastic

optimisation would be a basis for good future work

The OHS problem is used as a rolling horizon model (see Section 8.6). In this thesis only

one time horizon for each scenario is ever solved, the periods are never ‘rolled-over’. A de-

tailed examination of the implementation issues found by using the model in this way could

be completed. This examination would look at how the solution of the model changes as it is

‘rolled-over’ and what kinds of constraints are needed to keep the model consistent over several
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weeks. The effect of end-effects on the model could also be quantified.

Section 4.3 describes the division within the literature over the use of priority list generated

yield predictions and dynamic programing generated yield predictions. This thesis only deals

with dynamic programing generated yield predictions. These are more useful as they can gen-

erate a yield prediction frontier because of their proof of optimality (see Section 3.3.1). An

investigation of the accuracy of both methods by comparing them to actual production would

provide an excellent basis to evaluate their differences.
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Large Format Matrix Layout
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Integer Variables Continuous Variables Shortfall/Excess Variables RHS
Crew Schedules Volume transf er Downgrade Inv entory Area Transf erDemand SED Fraction
x_ci v _hmlt w_hl'mlt I_hlt a_ht q_Dmax,mlt q_SEDmax,ml q_Fmax,mlt

Crew: Crew1 Crew1 Crew2 Crew3
HU/CS Period 1 A/1 A/1 A/2 B/2

Period 2 A/1 B/1 A/1 B/2
Crew HU Strategy Log Group Log-Ty pe Cust Period

Crew Crew1 1 1 = 1
Assignment Crew2 1 = 1

Crew3 1 = 1
Harv est Unit A 1 1 1 1 <= G_h
Capacity 2 1 1 <= G_h

B 1 1 <= G_h
2 1 1 <= G_h

Harv est Unit A 1 10 10 6 -1 = 0
Area 2 10 6 1 <= A_h

B 1 5 -1 = 0
2 8 5 1 <= A_h

Volume A Log1 1 50 50 20 -1 -1 -1 -1 1 -1 = 0
Allocation 2 50 30 -1 -1 -1 -1 1 -1 = 0

CS1 Log2 1 50 50 -1 -1 1 -1 = 0
2 50 30 -1 -1 1 -1 = 0

CS2 Log2 1 40 -1 -1 1 -1 = 0
2 -1 -1 1 -1 = 0

B Log1 1 10 -1 -1 -1 -1 1 -1 = 0
2 40 10 -1 -1 -1 -1 1 -1 = 0

CS1 Log2 1 -1 -1 1 -1 = 0
2 40 -1 -1 1 -1 = 0

CS2 Log2 1 40 -1 -1 1 -1 = 0
2 40 -1 -1 1 -1 = 0

Minimum Log1 Cust1 1 1 1 1 >= D_mlt
Demand 2 1 1 1 >= D_mlt

Cust2 1 1 1 1 >= D_mlt
2 1 1 1 >= D_mlt

Log2 Cust1 1 1 1 1 1 0.8 0.8 1 >= D_mlt
2 1 1 1 1 0.8 0.8 1 >= D_mlt

Cust2 1 1 1 1 1 0.8 0.8 1 >= D_mlt
2 1 1 1 1 0.8 0.8 1 >= D_mlt

Minimum Log1 Cust1 20 20 -2 -2 1 >= 0
SED Cust2 20 20 -2 -2 1 >= 0

CS1 Log2 Cust1 -4 -4 8 8 1 >= 0
Cust2 -4 -4 8 8 1 >= 0

CS2 Log2 Cust1 -5 -5 10 10 30 30 5 5 1 >= 0
Cust2 -5 -5 10 10 30 30 5 5 1 >= 0

Minimum LG1 Log1 Cust1 1 0.7 -0.3 -0.3 0.7 -0.3 -0.3 -0.2 -0.2 1 >= 0
Fraction 2 0.7 -0.3 -0.3 0.7 -0.3 -0.3 -0.2 -0.2 1 >= 0

Cust2 1 0.7 -0.3 -0.3 0.7 -0.3 -0.3 -0.2 -0.2 1 >= 0
2 0.7 -0.3 -0.3 0.7 -0.3 -0.3 -0.2 -0.2 1 >= 0

Log2 Cust1 1 -0.3 0.7 0.7 -0.3 0.7 0.7 0.56 0.49 1 >= 0
2 -0.3 0.7 0.7 -0.3 0.7 0.7 0.56 0.49 1 >= 0

Cust2 1 -0.3 0.7 0.7 -0.3 0.7 0.7 0.56 0.49 1 >= 0
2 -0.3 0.7 0.7 -0.3 0.7 0.7 0.56 0.49 1 >= 0

Inv entory A Log1 0 1 = I_hl
1 1 <= I_max_hl
2 1 <= I_max_hl

Log2 0 1 1 = I_hl
1 1 1 <= I_max_hl
2 1 1 <= I_max_hl

B Log1 0 1 = I_hl
1 1 <= I_max_hl
2 1 <= I_max_hl

Log2 0 1 1 = I_hl
1 1 1 <= I_max_hl
2 1 1 <= I_max_hl

Downgrade A Log1 1 1 1 1 <= I_hl
Log2 <= I_hl

B Log1 1 1 1 1 <= I_hl
Log2 <= I_hl

Crew 
Allocation 
sub-model

Crew 
Allocation 
sub-model

Production
Transportation

Figure A.1: Large format matrix layout, excluding maximum demand, fraction and SED con-
straints
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Appendix B

Derivation of Uncertainty in Fractional

Harvest Unit Yields

The confidence intervals supplied from a inventory system likeMARVL (Deadman & Goulding

1979) are calculated from the standard deviation of volume per hectare of the entire stand (ss).

This is equal to the standard deviation of the volume estimate for the stand (Ss) divided by the

area of the stand (as).

ss =
Ss

as

In the OHS only a fraction of the stand is harvested in a period. To calculate the precision of

the per hectare estimate for this smaller fraction of the stand the standard deviation of smaller

area (sf ) is found.

If we model the variation from two sources, the between plot variation and the between tree

variation.

ss =

√
s2

p

nplots

+
s2

t

ntrees

(B.1)

where:

ss standard deviation of the stand volume per hectare estimate;

s2
p variance between plots;

s2
t variance between trees;

nplots number of trees in the stand;

ntrees number of plots in the stand.
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If we assume that the number of plots (nplots) is directly related to area and the same applies

to the number of trees (ntrees).

nplots

nfplots

=
ntrees

nftrees

=
as

af

where:

nfplots number of trees in the fraction;

nftrees number of plots in the fraction;

as area of the stand;

af area of the fraction.

If we also assume that the plot properties are not spatially correlated, i.e., plots close to each

other are not similar and the plot and tree variations are independent1.

sf =

√
s2

p

nplots

as

af

+
s2

t

ntrees

as

af

therefore,

sf = ss

√
as

af

(B.2)

where:

sf is the standard deviation of the fraction per hectare.

Note, Equation (B.2) also holds true if only plot variation is modelled, which is common in

inventory systems.

In order to check this result we can derive the variation of the per hectare stand estimates

(ss). If the standard deviation of the entire stand isSs = ssas, and the total standard deviation

of the fraction isSf = sfaf .

S2
s =

∑
S2

f

1Note, these simplifying assumptions are used because no spatial data are available.
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If we assume that all the fractional variations are equal, because we have no other data available

S2
s =

as

af

S2
f .

Therefore,

Ss =

√
as

af

Sf

and

ssas =

√
as

af

sfaf

and

ss =
af

as

√
as

af

sf

or

ss =

√
af

as

sf .

Therefore, Equation (B.2) is correct.
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Appendix C

Use of Lattice Path Problems to Calculate

Complexity of Shortest Path Formulations

If the harvested area of each harvest unit is considered as a state in the Column generation

subproblem (Section 8.2). This can be approximated by counting the number of equal length

periods a crew has visited each harvest unit. We, however, do not need to know the order that

the crew visited these harvest units.

If a vector is defined that counts the number of times a harvest unit has been visited. The

number of possible vectors for each harvest unit in periodt can be described in terms of the

lattice path problem. This problem can be defined as the number of individual paths from the

origin of a cartesian lattice to the point(n− 1, t) of length(n− 1)+ t only moving horizontally

or vertically from point to point. The number of different vectors at staget in a problem with n

harvest units is
(
(n−1)+t

n−1

)
.

Figure C.1: Diagram of the lattice paths in a 2x2 lattice
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The (n− 1) term comes from the difference between the 0-based counting of periods in the

lattice and the 1-based counting of the harvest units. For example, the 2x2 lattice in Figure C.1

models a problem with three harvest units on the horizontal axis and two periods in the vertical

axis.

This will mean that the total number of states (this includes the previous harvest unit and the

vector of visited harvest units) in the dynamic program at stage t is given by

States = n

(
(n− 1) + t

n− 1

)

For a reasonable size problem with 36 harvest units and 8 periods the number of states will

be 5,220,306,468 which is much to large to generate columns in a reasonable time.

This number is reduced if we take into account that the harvest units will not be available

for harvesting for the entire 8 periods as the harvest unit may be completed in only four periods.
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Kubla Khan

Kubla Khan

Or, a Vision in a Dream. A Fragment.

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

So twice five miles of fertile ground

With walls and towers were girdled round:

And there were gardens bright with sinuous rills,

Where blossomed many an incense-bearing tree;

And here were forests ancient as the hills,

Enfolding sunny spots of greenery.

But oh! that deep romantic chasm which slanted

Down the green hill athwart a cedarn cover!

A savage place! as holy and enchanted

As e’er beneath a waning moon was haunted

By woman wailing for her demon-lover!

And from this chasm, with ceaseless turmoil seething,

As if this earth in fast thick pants were breathing,
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A mighty fountain momently was forced:

Amid whose swift half-intermitted burst

Huge fragments vaulted like rebounding hail,

Or chaffy grain beneath the thresher’s flail:

And ’mid these dancing rocks at once and ever

It flung up momently the sacred river.

Five miles meandering with a mazy motion

Through wood and dale the sacred river ran,

Then reached the caverns measureless to man,

And sank in tumult to a lifeless ocean:

And ’mid this tumult Kubla heard from far

Ancestral voices prophesying war!

The shadow of the dome of pleasure

Floated midway on the waves;

Where was heard the mingled measure

From the fountain and the caves.

It was a miracle of rare device,

A sunny pleasure-dome with caves of ice!

A damsel with a dulcimer

In a vision once I saw:

It was an Abyssinian maid,

And on her dulcimer she played,

Singing of Mount Abora.

Could I revive within me

Her symphony and song,

To such a deep delight ’twould win me,

That with music loud and long,

I would build that dome in air,

That sunny dome! those caves of ice!

And all who heard should see them there,

And all should cry, Beware! Beware!

His flashing eyes, his floating hair!

Weave a circle round him thrice,

And close your eyes with holy dread,
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For he on honey-dew hath fed,

And drunk the milk of Paradise.

Samuel Taylor Coleridge(1798)
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Glossary

.MPS A common file format for expressing a linear programming problem.

AC Australian CompanyOne of the two companies that provided case studies.

Age-classesIn Estate modelling a Crop-type is divided into age classes based on the year it

was planted.

AGEN The subroutine in ZIP that is responsible for the initial generation of the constraint

matrix.

ALLOC The subroutine in ZIP that is responsible for implementing the Integer allocation

within the B&B.

Ambiguous location solutions Solutions to an OHS problem where crews’ locations are not

restricted in anyway and a single crew can harvest in many harvest units simultaneously.

Artificial variables Variables added to a LP problem that allow the initial non-singular Basis

matrix to be formed as an identity matrix.

BANDB The subroutine in ZIP that is responsible for directing the B&B algorithm.

basic feasible solutionA point in the Feasible region that corresponds to the solution of a Basis

matrix.

Basis matrix A square non-singular matrix composed of variables in the LP problem.

B&B Branch and BoundA technique for finding integer solutions from a RLP.

Binary integer variable A variable in an IP or MILP, that may only be zero or one in a feasible

solution.
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Bound gap In B&B the difference between the best integer solution and the Objective value of

the RLP solution.

Bound tolerance In B&B nodes are bounded when they are within the tolerance of the best

integer value.

BRANCH The subroutine in ZIP that is responsible for deciding the appropriate branch and

branch direction in the B&B.

Breadth-first branching Traversing a B&B tree by solving the best value nodes first.

Bucking Cutting a Stem into logs.

Bucking algorithm An algorithm that converts Standing inventory information into a Yield

prediction using a particular Cutting strategy.

Bucking optimisation A similar problem to OHS but only considering allocation of produc-

tion.

Bucking pattern A specific instruction on how to buck a particular Stem.

Bulldozer A heavy machine used to extract Stems.

Buy back When the forest company agrees to purchase back logs not needed by a customer.

CA Crew Allocation The decision to place a particular crew in a harvest unit in a period, also

the constraints that model this decision in the OHS formulation.

Cable crews A Harvesting crew that extracts Stems by using Cable-logging, suitable for steeper

country.

Cable-logging The extraction of logs using aerial cables.

Constraint branching A method used to find integer solutions to SPP problems.

Central processing yard A very large area where whole Stems from the forest are transported

and bucked.

CGA Column Generation AlgorithmThe sub-problem in Column generation.

Column generation A technique used to find the solution to large LP problems by generating

variables ‘on-the-fly’.
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Clearfell A harvesting Operation where all the trees in a Harvest unit are felled

Clearwood Wood without defects, usually the result of a pruning regime.

Compartment A division of a Stand.

Complementary columns A set of Crew schedules which combine to give an unambiguous

placement of a crew.

Complementary strategiesA set of Cutting strategies that share the same log products.

Crew allocation The decision to place a particular crew in a Harvest unit in a period.

Crew movement sequenceThe sequence of movements of a crew throughout the time horizon

in an OHS solution.

Crew schedule A sequence of crew allocations that shows a crew’s movements from the be-

ginning to the end of the planning horizon.

Crew-harvest unit branch A generalised constraint branch that allocates a harvest unit to a

crew.

Crew-strategy branch A generalised constraint branch that allocates a cutting strategy to a

crew and harvest unit.

Crop-type The aggregated land unit used in Estate modelling.

Cruising The collection of physical data from the trees within an area, typically by skilled

forestry workers who walk through the forest and measure trees.

Cutting strategy Rules on how to determine a Bucking pattern given a particular Stem’s fea-

tures. Is used to determine Yield predictions.

Dantzig-Wolfe decomposition A decomposition algorithm for LP problems very similar to

Column generation.

DegeneracyWhen a Basis matrix contains many variables at zero, is associated with cycling

in the simplex iterations.

Delivered salesLog sales where, the customer receives the logs and pays a single price while

the supplier pays all of the harvesting and transportation costs.
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Depth-first branching Traversing a B&B tree by solving the deepest nodes first.

DP Dynamic ProgramA technique used to solve some types of OR problems.

Estate modelling The long-term forest planning problem, also commonly called Strategic plan-

ning.

End-effects Abnormalities in the solution of a model due to the truncation of the number of

periods modelled.

Entering variable The variable that enters the Basis matrix on a pivot in the Simplex algo-

rithm.

Extreme point A vertex of the Feasible region, corresponds to a basic feasible solution.

Faller A forestry worker that cuts down trees.

Feasible region In a LP problem, the solution space where all constraints are met.

Final stocking The number of trees per hectare left at harvest.

FOLPI Forestry Orientated Linear Programming InterpreterEstate modelling tool created at

forest researchand commonly used inNZ.

Forest gate salesLog sales where, transport costs are split between the supplier and customer.

The supplier pays the portion to the edge of the forest.

FORTRAN A programming language.

Forwarder A heavy machine used to extract Stems.

forest researchNew Zealand Forest Research LimitedThe New Zealand Crown Research In-

stitute responsible for research in forestry.

FSC Forest Stewardship CouncilAn organisation that encourages sustainable forestry.

GIS Geographical Information System

Green-up constraints Common in Tactical planning these limit the harvest of neighbouring

Harvest units until a clearfelled Harvest unit has begun to regrow.

Ground-based crewsA Harvesting crew that extracts Stems by using heavy machinery to drag

them along the ground, suitable for flat country.
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GSPP Generalised Set Partitioning ProblemAn extension of the SPP.

GUB Generalised Upper BoundA term used to refer to a type of constraint common in

scheduling problems.

Harvest unit integer feasible A property of a period that complies with a relaxed integer so-

lution.

Harvesting crews A working group (in New Zealand (NZ) usually an independent contractor)

that fells trees, extracts Stems, and makes logs.

Hierarchical planning The practice of dividing planning operations in separate elements that

cover different decisions and time scales, see Strategic planning, Tactical planning and

Operational Planning.

Harvest unit An area within a forest that is to be harvested in a single operation.

IFRLoggerTM A instrument used to aid the Log making process.

Initial stocking The number of trees per hectare planted.

Integer allocation When a simple heuristic finds a good quality integer solution from a nodal

solution, within the B&B.

Integer period A period that is required to be harvest unit integer feasible and strategy integer

feasible.

Inventory plot A sample of a Stand used to determine Standing inventory measurements.

IP Integer ProgramAn extension of an LP which only contains integer variables.

Landing An area of flat cleared land where log making and bucking occur, also known as a

skid site.

Leaving variable The variable that enters the Basis matrix on a pivot in the Simplex algorithm.

LED Large End DiameterThe diameter of the largest end of a log.

LED Small End DiameterThe diameter of the largest end of a log.

Log allocation The process of allocating production within a forest to the market.
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Log making The process that determines how a Stem will be Bucked into logs. Occurs before

Bucking.

Log-scaling The techniques used to measure log volume.

Log-type A specific type of log with quality and dimensional specifications, for a particular

customer and or use.

Logs Sections of Stem. Usually cut to sell to customers.

LP Linear Program A technique used to solve some types of OR problems.

Log-stocks Logs that have been harvested but not yet sold.

Market price The price a customer is willing to pay for a log.

MARVL Method of Assessment of Recoverable Volume by Log-typeStanding inventory tool

created atforest researchand commonly used inNZ.

Mechanical feller A machine that fells trees.

MILP Mixed Integer Linear ProgramAn extension of a LP to include integer variables.

Model I A possible formulation of the OHS problem. Commonly used in literature.

Model II A possible formulation of the OHS problem. Used in this thesis.

Model III A possible formulation of the OHS problem.

Model IV A possible formulation of the OHS problem.

Model V A possible formulation of the OHS problem.

Monte-Carlo simulation A type of optimisation meta-heuristic used for solving difficult com-

binatorial problems, uses random generation of initial conditions.

NFP Network Flow ProblemA special subset of LP problems that will give naturally integer

solutions.

NODE The subroutine in ZIP that is responsible for deciding the node to branch on in the

B&B.

NZ New Zealand
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NZC New Zealand CompanyOne of the two companies that provided case studies.

Objective function In a LP problem, the function that determines values the points in the Fea-

sible region.

Objective value The values of the Objective function at a particular point.

OHS Operational Harvest SchedulingShort term scheduling of forestry crews within a forest

with production allocation.

OHSA Operational Harvest Scheduling AlgorithmThe algorithm that solves the OHS prob-

lem.

Old-crop Term used to refer toPinus radiatathat was planted circa 1920-1935.

Operational Planning Short-term detailed planning of actives to make the operation function.

Optimal solution In a LP problem, the point in the Feasible region where the Objective func-

tion is maximised.

OR Operations ResearchThe science of better.

PEVAR The subroutine in ZIP that is responsible for finding the entering variable within the

Simplex algorithm.

PLE Probable Limits of ErrorThe confidence interval of an estimate expressed as a percentage

of the mean.

PRIMAL The subroutine in ZIP that is responsible for using the primal Simplex algorithm.

Production thinning Thinning where the removed Stems are sold as various products.

Pruned Butt The first valuable log produced from the base of a Stem.

Prunning The removal of branches from the Stem of a tree to improve the wood quality.

PT Production/ TransportationThe constraints that model the linear transportation, and pro-

duction decisions in the OHS formulation.

RC Reduced CostA measure of the improvement caused by the inclusion of a variable in the

basis.
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Regime A Program of silvicultural practices applied over the lifetime of a tree.

Relative prices The prices given to aDP bucker to generate a Yield prediction.

Relaxed integer solution Unrestricted movement solutions achieved by altering the require-

ments of an integer solution to a MILP.

Restricted movement solutionsSolutions to an OHS problem where crews are unambigu-

ously located in a single harvest unit in each period.

RLP Relaxed Linear ProgramThe problem resulting when the integer restrictions on the

MILP are removed, and the MILP solved as a standard LP problem.

RMP Restricted Master ProblemThe master problem in Column generation.

Roadside salesLog sales where, harvesting costs are paid by the supplier and the customer

pays the transportation costs.

Rolling horizon models A model of a continual process, where only the first period is imple-

mented. In the next period the model is resolved with updated data.

Rostering The assignment of subsets of jobs to entities that can complete them. For example,

airline crew rostering.

Schedule A crew schedule without the crew, a sequence of Harvest units and periods.

SED Small End DiameterThe diameter of the smallest end of a log.

Set-covering problem Similar to the SPP but with≥ constraints.

Set-packing problem Similar to the SPP but with≤ constraints.

Simplex algorithm A method used to solve LP problems.

Standing inventory Also simply Inventory. The trees that are in the forest before they are

felled.

Skidder A heavy machine used to extract Stems.

Sparsity A property of a matrix where most of its elements are zero.
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Strategic planning Planning that defines the role and nature of the enterprise. In forestry this

term is commonly used to refer to extremely long term Tactical planning, see also Estate

modelling.

SPP Set Partitioning ProblemA special type of IP.

Stand Separate physical locations within the forest that are internally homogeneous with re-

spect to future management.

Stem A fallen tree without branches.

Stem-classA set of Stems with identical properties.

Stem-description A physical description of the dimensions and quality of a Stem.

Strategy integer feasibleA property of a period that satisfies the integer requirements for cut-

ting strategies.

Stumpage salesLog sales where, logs are sold within the standing tree, harvesting and trans-

port costs are paid for separately by the customer.

Super-skid A large landing that services a number of harvesting operations commonly used in

Cable-logging operations.

Tabu search A type of optimisation meta-heuristic used for solving difficult combinatorial

problems, uses a list of banned (Tabu) movements to move between local optima.

Thinning The removal of trees before the final harvest.

Timber Boards, fittings etc., that are the products of sawmills.

Tactical planning Planning to make the most effective use of the enterprise’s resources in the

medium-term.

Tree A tree within a forest before it is felled.

UNPACK The subroutine in ZIP that constructs the matrix column that represents the entering

variable.

Unrestricted movement solutionsSolutions to an OHS problem where crews are unambigu-

ously located in a single harvest unit at any time within the time horizon. However, the

crews may also move between harvest units within a period.
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Variable branching A commonly used method to find integer solutions to IP, or MILP prob-

lems.

Wofle’s method A technique for overcoming Degeneracy problems in the Simplex algorithm

Yield prediction subproblem The subproblem which generates new yields based on the re-

quirements of the master problem.

Yield prediction The predicted log volumes from a Harvest unit.

ZIP Zero-one Integer ProgrammingA programming framework developed at the University

of Auckland (Ryan 1980), for the solution of large scheduling problems.
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