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Abstract

Explicit asymptotic bias formulae are given for dynamic panel regression estimators as the

cross section sample size N → ∞. The results extend earlier work by Nickell (1981) in several

directions that are relevant for practical work, including models with unit roots, deterministic

trends, predetermined and exogenous regressors, and errors that may be cross sectionally dependent.

The asymptotic bias is found to be so large when incidental linear trends are fitted and the time

series sample size is small that it changes the sign of the autoregressive coefficient. Another finding

of interest is that, when there is cross section error dependence, the probability limit of the dynamic

panel regression estimator is a random variable rather than a constant, which helps to explain the

substantial variability observed in dynamic panel estimates when there is cross section dependence

even in situations where N is very large.

Keywords: Autoregression, Bias, Cross section dependence, Dynamic factors, Dynamic panel esti-

mation, Incidental trends, Panel unit root.

JEL Classification Numbers: C33 Panel Data

First Draft : August, 2000

Completed Version: April, 2003

1 Introduction

In an influential paper, Nickell (1981) showed that in dynamic panel regressions the well known finite
sample autoregressive bias (Orcutt, 1948; Kendall, 1954) in time series models persists asymptotically
in large panels as the cross section sample size dimension N → ∞. Nickell gave analytic formulae for
this bias and found that its magnitude was considerable in many cases relevant to applied research. In
consequence, bias reduction procedures have been proposed for practical implementation with a variety

of dynamic panel estimators (e.g. Kiviet, 1995; Hahn and Kuersteiner, 2000). The literature is reviewed
in Arrelano and Honoré (2000) and Baltagi (2001)
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The present paper extends this work in several directions that are relevant for empirical applications.
The cases studied here include dynamic panel models with a unit root, deterministic linear trends,
exogenous regressors, and errors that may be cross sectionally dependent. Many, and sometimes all, of
these elements appear in applied work with dynamic panels. The main contribution of the paper is to
provide new bias/inconsistency formulae for dynamic panel regressions in these cases, focusing on pooled

least squares regression estimates. It is, of course, well known that instrumental variable and GMM
procedures provide consistent estimates of dynamic coefficients in cases where pooled least squares is
inconsistent (see Baltagi, 2001, and Hsaio, 2003, for recent overviews). However, these procedures
are also known to suffer bias (Hahn, Hausman and Kuersteiner, 2001)) and, more significantly, weak
instrumentation problems (Kruiniger, 2000; Hahn et al., 2001) when the dynamic coefficient is close
to unity, as it often is in practical work. They can therefore be an unsatisfactory alternative in such
cases, even when the time series sample size T is large, because of high variance (Phillips and Sul, 2002)
and slow convergence (Moon and Phillips, 2002) problems. Hahn et al. (2001) have suggested a long
difference estimator to alleviate some of these difficulties, but that estimator is not investigated here.

Two results of particular interest in the present paper are the size of the bias in models where
incidental trends are extracted and the impact of cross section error dependence on the bias. In the
first case, analytic formulae reveal that the inconsistency as the cross section sample size N →∞ can
be huge when the time series sample size (T ) is small and incidental trends are extracted in panel
regression. For instance, our results show that when T < 8, the inconsistency in the estimate of a panel
unit root is large enough to change the sign of the coefficient from positive to negative. Simulations
confirm that this enormous asymptotic bias also manifests in finite (N) samples.
A second result of interest is the impact of heterogeneity and cross section error dependence on the

bias. While mild heterogeneity has no asymptotic effect, cross section dependence has a major impact
on the inconsistency of dynamic panel regression. Under cross section dependence, it is shown that the

probability limit of the dynamic panel regression estimator is a random variable rather than a constant
(as it is in the cross section independent case). The randomness of this limit as N →∞ helps to explain
the substantial variability that is observed in dynamic panel estimates under cross section dependence
even in situations where N is very large (e.g., Phillips and Sul, 2002).
The remainder of the paper is organised as follows. Section 2 describes the panel models that are

studied in the paper. Section 3 provides bias formulae for various cases under cross section independence
and relates these to the existing literature. Section 4 considers the impact of cross section dependence
on dynamic panel regression bias, looking at both stationary and unit root panels. Both sections
report some simulation findings on the adequacy of the asymptotics. Section 5 concludes and offers
some thoughts on bias correction possibilities. The appendix contains derivations of the main results

(Section 6) and a glossary of notation (Section 7).

2 Models

The panel regression models considered here fall into the following categories:

M1: (Fixed Effects)

(
yit = ai + ρyit−1 + εit ρ ∈ (−1, 1)

yit = ai + y0it, y
0
it = ρy0it−1 + εit ρ = 1
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M2: (Incidental Linear Trends)

(
yit = ai + bit+ ρyit−1 + εit ρ ∈ (−1, 1)

yit = ai + bit+ y0it, y
0
it = ρy0it−1 + εit ρ = 1

M3: (Exogenous Regressors) ỹit = ρỹit−1 + Z̃ 0itβ + ε̃it, ρ ∈ (−1, 1].

In each case, the index i (i = 1, ...,N) stands for the i’th cross sectional unit and t (t = 1, .., T ) indexes
time series observations. The variables Zit are exogenous. The affix notation on w̃t signifies that the
series wt has been detrended or demeaned and this will be clear from the context. Models M1 and
M2 allow for both stationary (|ρ| < 1) and nonstationary (ρ = 1) cases. In M3, we allow for unit root
and stationary yit but do not consider here cases where Zit may have nonstationary elements (i.e., the
possibly cointegrated regression case). In the unit root cases, the initialization of y0it is taken to be
y0i0 = Op (1) and uncorrelated with {εit}t≥1.
The cases of cross section independence and cross section dependence for the panel regression errors

will be considered separately in Sections 3 and 4. We take first the case where the errors εit in the above

models are independent across i. The following section derives explicit formulae for the asymptotic bias
of the least squares estimates of ρ and β in that case, giving the inconsistency plimN→∞(ρ̂ − ρ) for
each model where ρ̂ is the panel least squares estimate of ρ. Section 4 studies the inconsistency of these
estimates when there is cross section dependence.

3 Models with Cross Section Independence

This section includes three subsections, one for each model, and deals separately with the stationary and

panel unit root cases. Before proceeding, one important difference in autoregressive bias between the
time series AR(1) and panel AR(1) should be mentioned: there is negligible bias when the fixed effect is
known (or zero) in the panel AR(1) model for large N . It is well known that the bias in an autogression
with known mean arises from the asymmetry of the distribution of the least squares estimator ρ̂ and is
a finite sample (T ) phenomenon. A similar phenomenon occurs in panel autoregressions with finite T
and finite N when the mean is known (or, equivalently, set to zero). However, in panel autogressions
with a known mean, the averaging across section eventually removes the asymmetry of the distribution
as N →∞. Hence, for large N the distribution of ρ̂ is close to symmetric about ρ and bias is negligible.
Only when N is small is the bias important in the known fixed effect case.
On the other hand, when the fixed effect is estimated or when there are incidental trends to be

removed, autoregressive bias can be large and it persists even as N → ∞. As Orcutt (1948) pointed
out, the removal of a mean or trend from the data in an autoregression produces an additional source of
bias arising from the correlation of the error and the lagged dependent variable. In a panel model with
incidental fixed effects and/or trends, this additional source of bias is not diminished as N → ∞, as
is well understood from Neyman and Scott (1948) and Nickell (1981). Interestingly, that inconsistency
persists even as T →∞ when ρ = 1 + c/T and the parameter being estimated is local to unity (Moon
and Phillips, 1999, 2000 & 2003).

3.1 Fixed Effects Model M1

We first consider the stationary case where ρi = ρ, |ρ| < 1, under cross section error independence for
εit and where the initial conditions are in the infinite past. The following explicit error condition is
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convenient.

Assumption A1: (error condition) The εit have zero mean, finite 2+2ν moments for some ν > 0,

are independent over i and t with E(ε2it) = σ2i for all t, and limN→∞ 1
N

PN
i=1 σ

2
i = σ2.

Nickell (1981) assumed iid(0, σ2) errors εit but this is easily relaxed to allow for mild heterogeneity
under regularity conditions of the type given in A1. The bias for the pooled least squares estimate of ρ
in large cross section (N) asymptotics follows in the same way as Nickell (1981) and turns out to have
the same form when there are heterogeneous errors. The calculations are straightforward and are not
repeated here.
To illustrate, for the fixed effects model M1 the pooled least squares estimate of ρ has the form

ρ̂ = ρ+

PT
t=1

PN
i=1 ỹit−1ε̃itPT

t=1

PN
i=1 ỹ

2
it−1

= ρ+
ANT

BNT
= ρ+

1
NANT

1
NBNT

. (1)

Calculations analogous to those in Nickell (1981), but using the Markov strong law

1

N

NX
i=1

¡
ε2it − σ2i

¢→a.s. 0,
1

N

NX
i=1

ε2it →a.s. σ
2 (2)

to accommodate cross section heterogeneity in εit, show that the limits of the numerator and denomi-
nator in (1) as N →∞ with T fixed have the same form as those in Nickell’s case, viz.,

plimN→∞
1

N
ANT = −σ

2

T

1

1− ρ

·
T − 1− ρT

1− ρ

¸
:= −σ2A (ρ, T ) , (3)

and

plimN→∞
1

N
BNT = σ2

T − 1
1− ρ2

½
1− 1

T − 1
2ρ

1− ρ

·
1− 1

T

1− ρT

1− ρ

¸¾
:= σ2B (ρ, T ) . (4)

Combining (3) and (4) we have the following simple extension of Nickell’s (1981) bias result.

Proposition 1 (Fixed Effects with |ρ| < 1) For model M1 with |ρ| < 1 and under Assumption A1, the
inconsistency of the pooled least squares estimate of ρ as N →∞ is given by

plimN→∞(ρ̂− ρ) = − 1 + ρ

T − 1
·
1− 1

T

1− ρT

1− ρ

¸½
1− 1

T − 1
2ρ

1− ρ

·
1− 1

T

1− ρT

1− ρ

¸¾−1
(5)

= G (ρ, T ) . (6)

For large T, the inconsistency has the expansion

G (ρ, T ) = − 1 + ρ

T − 1
£
1 +O(T−1)

¤
. (7)

Formula (5) is the same as that given by Nickell (1981) for the case of homogeneous errors1 . Applying
the third derivative version of l’Hôpital’s rule directly to G (ρ, T ) with respect to ρ we obtain the limit

1For T = 3, there is a typographical error in Nickell (1981), the correct formula being

plimN→∞(ρ̂− ρ) = − (1 + ρ)(2 + ρ)

2(ρ+ 3)
T = 3.
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Figure 1: Asymptotic (N →∞) Bias Function |G(ρ, T )| = −G (ρ, T ) for Model M1.

behavior for the unit root case, viz., limρ→1G (ρ, T ) = − 3
T+1 , and the inconsistency of the pooled least

squares estimate for ρ = 1 follows

plimN→∞(ρ̂− 1) = −
3

T + 1
, (8)

a result that can be confirmed by more tedious direct calculation for the case ρ = 1.
Fig. 1 graphs the modulus of the inconsistency, |G (ρ, T )| = −G (ρ, T ) , against ρ and T. As is clear

from the figure, the magnitude of the asymptotic bias increases with ρ, and of course decreases as T
increases.

3.2 Incidental Linear Trend Model M2

In this case there are heterogenous linear trends and constants as fixed effects. The pooled least squares

estimate of ρ has the form ρ̂ = Cy
NT /DNT , where

Cy
NT =

NX
i=1

"
TX
t=1

(yit − yi·) (yit−1 − yi·−1)−
PT

t=1 [(t− t̄)(yit − yi·)]
PT

t=1 [(t− t̄)(yit−1 − yi·−1)]PT
t=1(t− t̄)2

#
,

and

DNT =
NX
i=1

TX
t=1

"
yit−1 − yi·−1 −

PT
t=1 [(t− t̄)(yit−1 − yi·−1)]PT

t=1(t− t̄)2
(t− t̄)

#2
.

Setting CNT = Cy
NT − ρDNT , the inconsistency as N →∞ with T fixed is

p limN→∞(ρ̂− ρ) =
plimN→∞

1
NCNT

plimN→∞
1
NDNT

,

whose exact form and asymptotic (large T ) representation are given in the following result.
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Proposition 2 (Linear Trend Fixed Effects with |ρ| < 1) As N →∞, for model M2 under Assumption
A1, the inconsistency of the pooled least squares estimate for ρ < 1 is given by

plimN→∞ (ρ̂− ρ) = −2 1 + ρ

T − 2
·
1− 1

T − 1
2

1− ρ
C1

¸ ·
1− 1

T − 2
4ρ

1− ρ
D1

¸−1
(9)

= H(ρ, T ), (10)

where

C1 = 1− 1

T + 1

Ã
1 +

1− ρ3

(1− ρ)
3

1

T

!
+

Ã
1

2
+

1

T + 1

"
1 + 2ρ

1− ρ
+

1− ρ3

(1− ρ)
3

1

T

#!
ρT , (11)

D1 = 1− 1

T + 1

2

1− ρ

(
1 +

1

T − 1

"
1− 1− ρ3

T (1− ρ)3
¡
1− ρT

¢
+

µ
3ρ

1− ρ
+

T + 3

2

¶
ρT

#)
. (12)

For large T, the inconsistency has the following expansion

H(ρ, T ) = −2 1 + ρ

T − 2 [1 +O
¡
T−1

¢
]. (13)

Later calculations will extend these formulae to the case where the errors are cross section dependent.
It is then useful to have explicit formulae for the numerator and denominator limits in the ratio (10) in
order to highlight the differences between the two cases. These are as follows:

plimN→∞
1

N
CNT = − σ2

T − 1
2

1− ρ

·
(T − 1)− 2

1− ρ
C1

¸
:= −σ2C (ρ, T ) , (14)

plimN→∞
1

N
DNT = σ2

T − 2
1− ρ2

·
1− 1

T − 2
4ρ

1− ρ
D1

¸
:= σ2D (ρ, T ) . (15)

From the expansions (13) and (7) for H(ρ, T ) and G(ρ, T ), it is apparent that the bias in the case
of incidental trends is approximately twice that of the simple fixed effects model M1. For small T, the
magnitude of the bias in the trend model M2 is slightly larger than twice that of the fixed effects model
M1. By direct calculation, the exact bias formula for some cases of small T are

H(ρ, T ) =


−12 ρ

2−3ρ−4
ρ−3 for T = 3

−12 ρ
3−6ρ−5
ρ2−5 for T = 4

−12 2ρ
4+2ρ3−5ρ2−17ρ−12
2ρ3+2ρ2−3ρ−15 for T = 5

. (16)

and the bias differential (M2 - 2 × M1) is

|H(ρ, T )|− 2 |G(ρ, T )| =

2G(ρ, T )−H(ρ, T ) =


1
2ρ

1−ρ2
3−ρ2 > 0 for T = 3

1
2ρ

1−ρ4−3ρ3+ρ
(ρ2−5)(ρ2+3ρ+6) > 0 for T = 4

1
2ρ

2ρ6+8ρ5+13ρ4−3ρ2+12ρ+8
(15−2ρ3−2ρ2+3ρ)(ρ3+3ρ2+6ρ+10) > 0 for T = 5

 for 0 ≤ ρ < 1

Fig. 2 graphs the modulus of the inconsistency, |H (ρ, T )| = −H(ρ, T ), against ρ and T. As is
apparent from the figure, the inconsistency increases sharply in magnitude as ρ increases and as T
decreases.
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Figure 2: Asymptotic (N →∞) Bias Function |H(ρ, T )| = −H (ρ, T ) for Model M2.

Applying the fifth derivative version of l’Hôpital’s rule directly to H (ρ, T ) with respect to ρ we
obtain the limit behavior for the unit root case, viz., limρ→1H (ρ, T ) = −7.5/(T +2). Thus, when yit is
a panel unit root process, the inconsistency for the pooled OLS estimator under model M2 is given by

plimN→∞(ρ̂− 1) = −
7.5

T + 2
, (17)

a result that was obtained by direct calculation in Harris and Tzavalis (1999). Comparing (17) with
(8), we see that when ρ = 1 the bias for model M2 is more than twice that in model M1 for all T > 3.
Table 1 shows corroborating results obtained by simulation.
Perhaps the most striking feature of the autoregressive bias in model M2 is that when T is small,

the pooled least squares estimate of ρ is often negative even when the true autoregressive coefficient ρ is
(near) unity. To illustrate the dramatic nature of these bias effects we show the results of detrending on a
short time series panel. Fig. (3) shows a sample plot of data generated by the true panel relation between
yit and yit−1 for which ai = bi = 0 in M2 and with ρ = 0.9 and T = 4. This sample plot shows a clear
positive relationship between yit and yit−1 (the fitted ρ̂ = 0.907). After detrending the data by removing
incidental trends, the sample plot of the new data is shown in Fig. 4, where the relationship between yit
and yit−1 is now seen to be clearly negative (the fitted ρ̂ = −0.529). The autoregressive bias in this case
is so large that it distorts the correlation into the opposite direction: strongly positive autocorrelation
(ρ = 0.9) becomes strong negative autocorrelation (ρ̄ =plimN→∞ρ̂ = 0.9 − 1.402 = −0.502) in the
detrended sample data. The reason for this distortion is clear. When T is small and there is positive

autoregressive behavior in the panel yit, incidental trend extraction (for each i) can have such a powerful
effect on the configuration of the data that the detrended observations ỹit behave as if they were actually
negatively autocorrelated.

7



-10

-5

0

5

10

-10 -5 0 5 10y t-1

y t

Figure 3: Sample Data before Detrending (T = 4,N = 1, 000, ρ = 0.9, ρ̂ = 0.90)

Table 1: Asymptotic Bias in the Estimated Autoregressive Coefficient in the Linear Trend Model M2

Absolute Bias: Model(Simulation)
T ρ =0.1 ρ =0.3 ρ =0.5 ρ =0.7 ρ =0.9 ρ =1.0
3 0.740(0.741) 0.891(0.896) 1.050(1.057) 1.220(1.223) 1.402(1.403) 1.500(1.500)
4 0.561(0.562) 0.690(0.695) 0.829(0.837) 0.982(0.987) 1.154(1.155) 1.250(1.250)
5 0.450(0.450) 0.558(0.562) 0.679(0.687) 0.816(0.822) 0.977(0.978) 1.071(1.072)

6 0.375(0.375) 0.466(0.469) 0.571(0.578) 0.694(0.701) 0.845(0.846) 0.938(0.938)
7 0.321(0.321) 0.400(0.402) 0.490(0.497) 0.601(0.609) 0.743(0.744) 0.833(0.833)
8 0.281(0.281) 0.348(0.350) 0.428(0.435) 0.528(0.537) 0.661(0.663) 0.750(0.750)
9 0.249(0.249) 0.308(0.310) 0.380(0.385) 0.470(0.478) 0.595(0.597) 0.682(0.682)

Note: N = 1, 000, errors are drawn as iid N(0, 1), the number of replications = 5,000, T = sample size
used in the regression, T + 1 = the total number of observations of the dependent variable.

Figs. 5 and 6 show the actual biases (computed by simulation), the exact biases from (5) and (9),
and the approximate biases from (7) and (13) with N = 1, 000 and T = 5, respectively. The exact
formulae are seen to work very well for both cases, while the asymptotic approximations are satisfactory
for small ρ but deteriorate in quality as ρ increases, particularly as it approaches unity.

3.3 Exogenous Regressor Model M3

In many panel model applications, such as the original study by Balestra and Nerlove (1966) on the
demand for natural gas, exogenous variables are included in addition to lagged dependent regressors in
the specification. Another example that is important in ongoing practical work is the panel analysis of
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Figure 4: Sample Data after Detrending (T = 4, N = 1, 000; ρ = 0.9, ρ̄ = plimN→∞ρ̂ = −0.502,
ρ̂ = −0.53).
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Figure 5: Absolute Biases for Fixed Effects Case M1 (T = 5)
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Figure 6: Absolute Biases for Linear Trend Case M2 (T = 5).

growth convergence, where specific covariates contributing to economic growth are included as well as
dynamic effects. The effect of the presence of such variables can be analyzed in the context of models

like M3.
Stacking cross section data first and then time series observations, model M3 can be written as

ỹt = ρỹt−1 + Z̃0tβ + ε̃t, and ỹ = ρỹ−1 + Z̃β + ε̃, say, (18)

where the affix on w̃ signifies that the series has been demeaned or detrended. Setting QZ̃ = I −
Z̃
³
Z̃ 0Z̃

´−1
Z̃ 0, we have

plimN→∞ (ρ̂− ρ) =

½
plimN→∞

1

N
ỹ0−1QZ̃ ỹ−1

¾−1½
plimN→∞

1

N
ỹ0−1QZ̃ ε̃

¾
, (19)

and

plimN→∞
³
β̂ − β

´
= −

½
plimN→∞

³
Z̃0Z̃

´−1 ³
Z̃0ỹ−1

´¾
plimN→∞ (ρ̂− ρ) . (20)

Calculations similar to those in the preceeding section then lead to the following result on the inconsis-
tency of these estimates.

Proposition 3 (Exogenous Variables, Fixed and Trend Effects) As N → ∞, for model M3 under
Assumption A1 and with |ρ| < 1, the inconsistency of the pooled least squares estimate of ρ is given in
the fixed effects case by

plimN→∞ (ρ̂− ρ) = − σ2A (ρ, T )

σ2B (ρ, T ) + β0
h
plimN→∞

1
N Z̃ 0ρ,−1QZ̃Z̃ρ,−1

i
β
, (21)
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and in the incidental trends case by

plimN→∞ (ρ̂− ρ) = − σ2C (ρ, T )

σ2D (ρ, T ) + β0
h
plimN→∞

1
N Z̃ 0ρ,−1QZ̃Z̃ρ,−1

i
β
, (22)

where Z̃ρ,−1 =
³
Z̃0ρ,0, ..., Z̃ 0ρ,T−1

´0
with Z̃ρ,t =

³
Z̃1ρ,t, ..., Z̃

N
ρ,t

´0
and Z̃i

ρ,t =
P∞

j=0 ρ
jZ̃it−j . The inconsis-

tency of the pooled estimate of β is

plimN→∞
³
β̂ − β

´
= −

½
plimN→∞

³
Z̃0Z̃

´−1
Z̃0Z̃ρ,−1β

¾
plimN→∞ (ρ̂− ρ) . (23)

These formulae continue to apply in the unit root case ρ = 1 upon replacement of A (ρ, T ) , B (ρ, T ) ,
C (ρ, T ), and D (ρ, T ) with A (T ) , B (T ) , C (T ), and D (T ) , respectively, which are defined in (50) and

(53), and Z̃ρ,−1 by Z̃1,−1 =
³
Z̃01,0, ..., Z̃

0
1,T−1

´0
where Z̃1,t =

³
Z̃11,t, ..., Z̃

N
t

´0
and Z̃i

t =
Pt

j=0 Z̃it−j .

Note that when β = 0, the inconsistency (21) and (22) is the same as in the case of models M1 and
M2 with no exogenous variables. When β 6= 0, the inconsistency is clearly smaller in absolute value

than when there are no exogenous variables. Note that this is the opposite conclusion to that reached in
Nickell (1981, p.1424). Nickell argued that the denominator in (19) is smaller than it is in the case of no
exogenous variables because of the effect of the projection operator QZ̃ which reduces the magnitude of
the sum of squares in the sense that ỹ0−1QZ̃ ỹ−1 ≤ ỹ0−1ỹ−1.While this is certainly correct, the argument
neglects the fact that when exogenous variables are present in the model they also affect the variability
of the data ỹt. In particular, when |ρ| < 1 we have

ỹit =
∞P
j=0

ρjZ̃it−jβ +
∞P
j=0

ρj ε̃it := Z̃ρitβ + ỹ0it, say (24)

and, using the stacked notation ỹ = Z̃ρβ + ỹ0 and its lagged variant, we find that

plimN→∞
1

N
ỹ0−1QZ̃ ỹ−1 = β0

·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + plimN→∞

1

N
ỹ00−1ỹ

0
−1 (25)

= β0
·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + σ2B (ρ, T ) .

It is clear from (25) that we have the reverse inequality ỹ0−1QZ̃ ỹ−1 ≥ ỹ00−1ỹ0−1, the left side being the
denominator for the case where exogenous variables are present in the model and the right side being
the denominator for the case where there are no exogenous variables. Similar effects apply in the case
of models with incidental trends. In short, the presence of exogenous variables reduces the extent of the
inconsistency of ρ̂ whenever these variables have a material effect on data variability, i.e. when β 6= 0.
An exception occurs in the case where the model has the following components form instead of (24):

ỹit = Z̃itβ + ỹ0it. (26)

In this case, the fitted regression model M3 is replaced by

ỹit = ρỹit−1 + Z̃itβ1 + Z̃it−1β2 + ε̃it, with β1 = β and β2 = ρβ. (27)

and then ỹ = ρỹ−1 + Z̃γ + ε̃ with Z̃ comprising a stacked version of (Z̃it, Z̃it−1). It is apparent that
instead of (25) we now have plimN→∞ 1

N ỹ0−1QZ̃ ỹ−1 = σ2B (ρ, T ) and the Proposition continues to hold
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but without the second term in the denominator in (21) and (22). In this case, the inconsistency of ρ̂
is unchanged by the presence of exogenous variables and the inconsistency of β is given by

plimN→∞

Ã
β̂1 − β1
β̂2 − β2

!
=

Ã
0

−β {plimN→∞ (ρ̂− ρ)}

!
in place of (23).

4 Models with Cross Section Dependence

Bai and Ng (2002), Forni, Hallin, Lippi and Reichlin (2000), Moon and Perron (2002), and Phillips
and Sul (2002) provide some recent investigations of panel models with cross section dependence. In
all these studies, the parametric form of dependence is based on a factor analytic structure. Broadly
speaking, two types of factor models have been employed, the distinction resting on whether a dynamic
structure is explicit or not. Forni, Lippi and Reichlin (1999), Moon and Perron (2002), and Phillips Sul

(2002) all use a factor structure where the dynamics are explicit in the system. The following model is
a prototypical first order panel dynamic system

yit = ai + ρiyit−1 + uit, uit =
KX
s=1

δisθst + εit, (28)

where the errors uit depend onK factors {θst : s = 1, ...,K} with factor loadings {δis : s = 1, ...,K}, and
εit is assumed to be iid(0, σ2i ). In this prototypical system, θst and εit are assumed to be independent
of each other and each is assumed to be iid. Also, θst is taken to be cross sectionally independent of
θqt.While K is fixed and generally taken to be small (typically K = 1 or 2 ) in practical work, we may,
in principle at least, consider cases where K → ∞ as T,N → ∞. The number of factors may also be
varied across i.
The second type of model (e.g., Bai and Ng, 2002) uses a direct factor structure for the data of the

form

yit =
KX
s=1

λisFst +mit. (29)

In (29) there are again K factors and factor loadings {Fst, λis : s = 1, ...,K}, Fst may be correlated with
Fqt and may have its own time series structure, and the residual mit is assumed to be cross sectionally
independent. When the dynamic factor model (28) has a homogeneous autoregressive coefficient (ρi =

ρ), it can be viewed as a restricted version of the direct model (29) in which a common dynamic factor
can be drawn from each of the individual factors and the error.
The analysis that follows is based on dynamic panel models of the type (28), where the time series

structure is built explicitly into the system behavior of yit. This facilitates comparisons with the cross
section independent case of Nickell (1981) and corresponds with many models used in the empirical
literature such as the original study by Balestra and Nerlove (1966). We consider first the case where
there are no exogenous variables.

4.1 Fixed Effects

As in (28), the model extends M1 to accommodate cross section dependent errors as follows.

12



Model M1-CSD: (Fixed Effects)

(
yit = ai + ρyit−1 + uit, ρ ∈ (−1, 1)

yit = a0i + y0it, y
0
it = ρy0it−1 + uit, ρ = 1

We deal first with the stationary case. In the unit root case, the initialization y0i0 is taken to be Op (1).

Assumption A2: (Cross Section Dependence) The uit have the factor component structure

uit =
KX
s=1

δsiθst + εit, (30)

where the εit satisfy A1, the factors θst (s = 1, ...,K) are iid(0, σ2sθ) over t and the factor loadings
δsi are nonrandom parameters satisfying limN→∞ 1

N

PN
i=1 δ

2
si = µ2δs.

Under A2, we can develop an asymptotic theory for the pooled least squares estimate, ρ̂, of the
common dynamic coefficient ρ. It is convenient to use a sequential asymptotic argument with N →∞
followed by T → ∞. This approach produces a result for the bias or inconsistency of ρ̂ as N → ∞
and the expression can conveniently be written in an asymptotic format that is valid as T →∞. This
extends the earlier asymptotic expansion results (7) and (13) to the case of cross section dependence.
The main result follows.

Proposition 4 (Fixed Effects with |ρ| < 1) In model M1-CSD with errors uit having the factor
structure (30) and satisfying assumption A2, the pooled least squares estimate ρ̂ is inconsistent as
N →∞ and

plimN→∞(ρ̂− ρ) = − £σ2A(ρ, T ) + ψAT
¤ £
σ2B(ρ, T ) + ψBT

¤−1
, (31)

where A(ρ, T ) and B(ρ, T ) are defined in (3) and (4),

ψAT =
KP
s=1

µ2δs

"
1√
T

TP
t=1

Zθst
1√
T

TP
p=1

θsp

#
, (32)

ψBT =
KP
s=1

µ2δs
TP
t=1

¡
Zθst − Z̄θ

¢2
, (33)

and Zθst =
P∞

j=0 ρ
jθst−j−1. The inconsistency (31) has the following asymptotic representation as

T →∞
plimN→∞(ρ̂− ρ) = −1 + ρ

T
− 1 + ρ

T

PK
s=1 µ

2
δsσ

2
θs

¡
η2θs − 1

¢
σ2 +

PK
s=1 µ

2
δsσ

2
θs

+ oa.s.

µ
1

T

¶
(34)

where η2θs is iid χ21 over s = 1, ...,K.

Remark 1 It is apparent from the form of (31) and (34) that the inconsistency of the panel estimate
ρ̂ as N → ∞ is random, as distinct from the usual nonrandom expression that we normally get for
bias or inconsistency, such as that given by (7) in the cross section independent case. Note, of course,

that when the factor loadings δsi = 0 for all i and s, we have µ2δs = 0 and then (31) reduces to
G(ρ, T ) = −A(ρ, T )/B(ρ, T ), and the second term on the right side of (34) is zero. So, in this case, the
results reduce to those that apply in the cross section independent case, viz. (5) and (7). When δsi 6= 0
and µ2δs 6= 0, then the components ψAT and ψBT in (31) are non zero random variables with positive
variance. Likewise, the second term of (34) is nonzero. So the immediate contribution of cross section
dependence is to introduce variability into the inconsistency of ρ̂.
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Remark 2 Expression (34) gives the inconsistency to O(T−1) and is the analogue of (7) for the cross
section dependent case. The difference between (34) and (7) is the second term of (34), which involves
the random χ21 elements {η2θs : s = 1, ...,K}. Since E{η2θs− 1} = 0, the mean of this additional term in
(34) is zero. So the mean inconsistency is the same as the inconsistency in the cross section independent
case to order O(T−1). However, the variation that is induced by this second term is substantial even

for moderate time series sample sizes such as T = 20, as is apparent from Fig. 7 below.

Remark 3 In the single factor model (K = 1) the inconsistency expression has the simple form

plimN→∞(ρ̂− ρ) = −1 + ρ

T
− 1 + ρ

T

µ2δσ
2
θ

σ2 + µ2δσ
2
θ

£
η2θ − 1

¤
+ oa.s.

µ
1

T

¶
.

Note that the second term in the inconsistency involves the factor µ2δσ
2
θ/
¡
σ2 + µ2δσ

2
θ

¢
which is less than

unity and whose magnitude decreases as σ2 increases. Hence, as the importance of the error component

εit grows (i.e. as σ2 = limN→∞ 1
N

PN
i=1 σ

2
i increases), then the relative importance of the random

component in the inconsistency (arising from the presence of cross section dependence) diminishes.

Remark 4 For the infinite factor case, define

uit =
∞P
s=1

δisθst + εit, with
∞P
s=1

s |δis| <∞,

let δ2i =
P∞

s=1 δ
2
is, and assume that limN→∞ 1

N

PN
i=1 δ

2
is = µ2δs, uniformly in s, and

P∞
s=1 µ

2
δsσ

2
θs <∞.

Then

plimN→∞(ρ̂pols − ρ) = −1 + ρ

T
− 1 + ρ

T

"P∞
s=1 µ

2
δsσ

2
θs

¡
η2θs − 1

¢
σ2 +

P∞
s=1 µ

2
δsσ

2
θs

#
+ oa.s.

µ
1

T

¶
. (35)

In practical work, of course, only finite values of K are used or estimated by selection criteria (c.f. Bai
and Ng, 2002).

The adequacy of the limit distribution theory for the inconsistency given in Proposition 4 can be
assessed by simulation. The pooled least squares estimate ρ̂ was computed for the model M1-CSD with
ρ = 0.5, ai = 0, N = 5, 000 and for time series sample sizes T = 5, 10, 20, each with 20, 000 replications.
The dashed curves (designated ‘sim’) in Fig. 7 show kernel density estimates of the distribution of
ρ̂ for each value of T. The solid curves (designated ‘asy’) show the distribution of ρ̂ in the limit as
N →∞ that is given by (31) in Proposition 4 for each value of T . The figure also shows the point value
inconsistency (5) that applies in the CSI case for the same parameter value ρ = 0.5. We notice that the
CSI inconsistency is a good approximation to the mean value of the random inconsistency in the cross

section dependent (CSD) case, as asymptotic theory predicts. The magnitude of the inconsistency is
seen to reduce as T increases, but is still large and has substantial variance even for T = 20.
We now turn to the unit root case for model M1-CSD. In the CSI model M1, continuity of the limit

function (5) enabled the unit root case to be extracted by a simple limiting operation as ρ → 1. This
procedure is not possible in the CSD unit root case because the probability limit (31) is random and
involves the stochastic elements (32) and (33) whose definitions depend on ρ, the underlying model and
the initialization. Instead, deriving the limit directly we find the following.
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Figure 7: Simulated (Sim) and Asymptotic (Asy) Distributions of Inconsistency of ρ̂ based onN = 5, 000

and ρ = 0.5. (Legend: CSD — cross section dependent case; CSI — cross section independent case).

Proposition 5 (Fixed Effects with ρ = 1) In model M1-CSD with errors uit having the factor struc-
ture (30) and satisfying assumption A2, the pooled least squares estimate ρ̂ is inconsistent as N →∞
and

plimN→∞(ρ̂− ρ) = − £σ2A(T ) + φAT
¤ £
σ2B(T ) + φBT

¤−1
(36)

where
A (T ) =

1

2
(T − 1), B (T ) =

(T − 1) (T + 1)
6

φAT =
KP
s=1

µ2δs

Ã
1

T

TX
p=1

Sθsp−1
TX
t=1

θst

!
, φBT =

KP
s=1

µ2δs
TP
t=1

¡
Sθst−1 − Sθs·−1

¢2
and Sθst =

Pt
p=1 θsp. The inconsistency (36) has the following asymptotic representation as T →∞

plimN→∞(ρ̂−ρ) = −
3

T + 1
− 1

T + 1

6
PK

s=1 µ
2
δsσ

2
θs

nR 1
0
Ws (r) drWs (1)− 3

R 1
0
W s (r)

2 dr
o

σ2 + 6
PK

s=1 µ
2
δsσ

2
θs

R 1
0
W s (r)

2 dr
+oa.s.

µ
1

T

¶
(37)

where {Ws : s = 1, ...,K} are independent standard Brownian motions and W s (r) =Ws −
R 1
0
Ws (r) is

demeaned Brownian motion.

Remark 5 When there is no cross section dependence µ2δs = 0 for all s, and then (36) reduces to

plimN→∞(ρ̂− ρ) = −A(T )
B(T )

= − 3

T + 1
,
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Figure 8: Simulated (Sim) and Asymptotic (Asy) Distributions of Random Parts of Inconsistency of
ρ̂ based on N = 5, 000 and ρ = 1. (Legend: CSD — cross section dependent case; CSI — cross section
independent case).

as given earlier in (8)

Remark 6 As in the stationary case, the inconsistency (36) is random and depends on the common
time effect processes θst. For large T, (37) shows that the random second term in the probability limit
depends on the Brownian motions to which partial sums of these common time effect processes converge.
One major difference between (37) and the corresponding result (34) in the stationary case is that the
random second term of (37) has a random denominator. Whereas the random second term in (34) has
mean zero, this is not true of the random second term of (37). Only the numerator of the second term

of (37) has mean zero as a simple calculation shows

E

½Z 1

0

Ws (r) drWs (1)− 3
Z 1

0

W s (r)
2
dr

¾
=
1

2
− 3× 1

6
= 0.

The distribution of the term

1

T + 1

6
PK

s=1 µ
2
δσ

2
θs

nR 1
0
Ws (r) drWs (1)− 3

R 1
0
W s (r)

2
dr
o

σ2 + 6
PK

s=1 µ
2
δsσ

2
θs

R 1
0
W s (r)

2
dr

in (37) is shown in Fig. 8 Again, the dispersion in the (random) inconsistency is substantial for small
T and still appreciable for T = 20. As in the stationary case, the limit distribution apparently has a
long left tail.
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4.2 Incidental Trends

We take M2 and allow for errors uit that satisfy Assumption A2:

Model M2-CSD (Incidental Trends)

(
yit = ai + bit+ ρyit−1 + uit ρ ∈ (−1, 1)

yit = ai + bit+ y0it, y
0
it = ρy0it−1 + uit ρ = 1

It will be convenient to define the following notation to represent the residual from linear detrending
the variable wt :

w̃t = wt −
(
2 (2T + 1)

T (T − 1)

Ã
TX
t=1

wt

!
− 6

T (T − 1)
TX
t=1

twt

)

−
(
− 6

T (T − 1)
TX
t=1

wt +
12

T (T 2 − 1)
TX
t=1

twt

)
t

= wt − gwT − hwT t,

where

gwT =
2 (2T + 1)

T (T − 1)

Ã
TX
t=1

wt

!
− 6

T (T − 1)
TX
t=1

twt, hwT =
12

T (T 2 − 1)
TX
t=1

twt − 6

T (T − 1)
TX
t=1

wt.

Derivations similar to those of proposition 4 provide the following analogue of (31) and (34).

Proposition 6 (Incidental Trends with |ρ| < 1) In model M2-CSD with errors uit having the factor
structure (30) and satisfying assumption A2, the pooled least squares estimate ρ̂ is inconsistent as
N →∞ and

plimN→∞(ρ̂− ρ) = − £σ2C(ρ, T ) + ψCT
¤ £
σ2D(ρ, T ) + ψDT

¤−1
, (38)

where C(ρ, T ) and D(ρ, T ) are defined in (14) and (15),

ψCT =
KP
s=1

µ2δs

½
gθsT

µ
TP
t=1

Zθst

¶
+ hθsT

µ
TP
t=1

tZθst

¶¾
, (39)

ψDT =
KP
s=1

µ2δs
TP
t=1

Z̃2θst, (40)

and where Zθst =
P∞

j=0 ρ
jθst−j−1 and Z̃θt = Zθt− gZθT − hZθT t is detrended Zθt. The inconsistency (38)

has the following asymptotic representation as T →∞

plimN→∞(ρ̂− ρ) = −21 + ρ

T
− 1 + ρ

T

PK
s=1 µ

2
sδσ

2
sθ

¡
η2s − 2

¢
σ2 +

PK
s=1 µ

2
sδσ

2
sθ

+ oa.s.

µ
1

T

¶
, (41)

where η2s is iid χ22 over s = 1, ...,K.

As in the fixed effects case, the inconsistency is random and differs from the cross section independent
(CSI) case by a term of O

¡
T−1

¢
involving a linear combination of independent centred χ2 variates,

each of which now have two degrees of freedom (reflecting the presence of both intercept and linear
trend fixed effects in the panel regression). Again, since E

©
η2s − 2

ª
= 0, the mean inconsistency is the

same as it is in the CSI case. Since the random component in (41) involves χ22 variates, the variance of

17



PK
s=1 µ

2
sδσ

2
sθ

¡
η2s − 2

¢
is 4

PK
s=1 µ

4
sδσ

4
sθ, so that the random limit (41) will have greater dispersion than

the limit (34) in the fixed effects case if

4
KP
s=1

µ4sδσ
4
sθ >

KP
s=1

µ2sδσ
2
sθ.

The unit root case for model M2-CSD is handled in a similar way. As in the M1-CSD.model, direct
calculation is needed because it is no longer possible to extract the unit root case by taking the limit
as ρ→ 1, in view of the randomness of the limit functions (39) and (41).

Proposition 7 (Incidental Trends with ρ = 1) In model M1-CSD with errors uit having the factor
structure (30) and satisfying assumption A2, the pooled least squares estimate ρ̂ is inconsistent as
N →∞ and

plimN→∞(ρ̂− ρ) = − σ2C(T ) + φCT
σ2D(T ) + φDT

(42)

where
C (T ) =

1

2
(T − 2), D (T ) =

(T − 2) (T + 2)
15

φCT =
KP
s=1

µ2sδ
TP
t=1

Sθst−1
³
gθsT + hθsT t

´
, φDT =

KP
s=1

µ2sδ
TP
t=1

³
S̃θst−1

´2
,

Sθst =
Pt

p=1 θsp and S̃
θ
st = Sθst− g

Sθs
T − h

Sθs
T t is detrended Sθst. The inconsistency (42) has the following

asymptotic representation as T →∞

plimN→∞(ρ̂−ρ) = −
7.5

T + 2
− 2

T + 2

PK
s=1 µ

2
sδσ

2
θs

hR 1
0
(aθs + bθsr) dWs (r)− 7.5

R 1
0
W̃ 2

s (r) dr
i

σ2 + 15
PK

s=1 µ
2
sδσ

2
θs

R 1
0
W̃ 2

s (r) dr
+oa.s.

µ
1

T

¶
(43)

where {Ws : s = 1, ...,K} are independent standard Brownian motions and W̃s (r) =Ws (r)−aθs − bθsr
is detrended standard Brownian motion with coefficients

aθs = 4

½Z 1

0

Ws − 3
2

Z 1

0

rWs

¾
, bθs = 6

½
2

Z 1

0

rWs −
Z 1

0

Ws

¾
(44)

.

Under cross section independence µ2δs = 0 for all s, and (42) reduces to

plimN→∞(ρ̂− ρ) = −C(T )

D(T )
= − 7.5

T + 2
,

corresponding to the earlier result (8). As in the fixed effects case (37), both the limit result (42) and
the O

¡
T−1

¢
approximant (43) have random second terms involving random denominators. Here, the

stochastic terms involve detrended Brownian motions, consonant with the detrending regression.

4.3 Exogenous Regressors

As in the CSI case, we start by using M3 and allow for errors uit that satisfy Assumption A2:

Model M3-CSD (Exogenous Variables) ỹit = ρỹit−1 + Z̃0itβ + ũit ρ ∈ (−1, 1]
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Stacking observations, we have ỹt = ρỹt−1 + Z̃0tβ + ũt, and ỹ = ρỹ−1 + Z̃β + ũ, say. Calculations
similar to those in the preceeding sections then lead to the following result on the inconsistency of these
estimates. The notation is the same as that used earlier.

Proposition 8 (Exogenous Variables, Fixed and Trend Effects) As N → ∞, for model M3 under

Assumption A1 and with |ρ| < 1, the inconsistency of the pooled least squares estimate of ρ is given in
the fixed effects case by

plimN→∞ (ρ̂− ρ) = − σ2A (ρ, T ) + ψAT

σ2B (ρ, T ) + ψBT + β0
h
plimN→∞

1
N Z̃0ρ,−1QZ̃Z̃ρ,−1

i
β
,

and in the incidental trends case by

plimN→∞ (ρ̂− ρ) = − σ2C (ρ, T ) + ψCT

σ2D (ρ, T ) + ψDT + β0
h
plimN→∞

1
N Z̃0ρ,−1QZ̃Z̃ρ,−1

i
β
,

The inconsistency of the pooled estimate of β is

plimN→∞
³
β̂ − β

´
= −

½
plimN→∞

³
Z̃0Z̃

´−1
Z̃0Z̃ρ,−1β

¾
plimN→∞ (ρ̂− ρ) .

The formulae apply in the unit root case ρ = 1 upon replacement of A (ρ, T ) , B (ρ, T ) , C (ρ, T ) , D (ρ, T )
with A (T ) , B (T ) , C (T ) , D (T ) , and ψAT , ψBT , ψCT , ψDT , with φAT , φBT , φCT , φDT , respectively,
and Z̃ρ,−1 by Z̃1,−1.

Again, the presence of exogenous variables generally reduces the extent of the inconsistency of ρ̂,
exceptions occuring when β = 0 or when the model takes a components form like that of (26).

5 Conclusion and Remarks on Bias Correction

The results of the present paper focus on dynamic bias in pooled panel regression, showing that the
problem is particularly serious when trends are extracted and is pervasive in a range of cases that
are relevant in applications. When cross section error dependence is present, problems of bias are
confounded with increases in dispersion, which manifests itself even in the limit theory as N → ∞
through a random probability limit.

Against this background, bias correction methods or alternative approaches to estimation seem
important considerations for practical work. In the case of cross section error independence, bias can be
dealt with in a fairly straightforward manner by suitably designed correction mechanisms. For example,
simple bias corrected estimates are produced by plugging in first stage estimates into bias formulae such
as (6), (9), (21) or their asymptotic (in T ) approximants. Such methods have been suggested in earlier
work on pooled least squares, instrumental variable and GMM estimators (see e.g., Kiviet, 1995; Hahn
and Kuersteiner, 2002). It is also possible to use the formulae derived here to correct bias by inverting
the mean function directly since in all the cases considered the mean function is monotonically increasing
in ρ. Simulations we have conducted (not reported here) indicate that this method works very well and
is generally much better than the use of plug-in corrections.
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We illustrate the empirical effect of such bias correction in dynamic panel estimation by taking two
applied studies of dynamic panels. First, in their study of the demand for natural gas, Balestra and
Nerlove (1966) used annual panel data from 1950 to 1962 for 36 U.S. states and assuming cross section
error independence, Balestra and Nerlove fitted the following panel regression equation (standard errors
in parentheses)

Git = αi + 0.68Git−1 − 0.203pit − 0.014∆Mit + 0.033Mit−1 + 0.013∆Yit + 0.004Yit−1 + error

(0.063) (0.053) (0.022) (0.005) (0.008) (0.01)

where Git, pit, Mit, and Yit represent quantity demanded for gas, the relative price of gas, population
and per capita income at time t and for the i’th state, respectively. This model fits the framework of
model M3. The coefficients of primary interest are ρ̂ = 0.68, which from the underlying theory equals
1 − r̂g, where r̂g is the estimated depreciation rate of gas appliances, and α̂1 = −0.203, which is the
price elasticity of demand for gas consumption. While the information reported is not sufficient to
implement the exact formulae given earlier for M3, we may compute an approximation to the M3 bias
function (21) using G (ρ, T ) = A (ρ, T ) /B (ρ, T ) , which is an upper bound to the bias and which is a
valid approximation when B (ρ, T ) dominates the denominator of (21). Inverting the mean function2

of the pooled regression estimate gives a new estimate of 0.878 for ρ and the plug-in approximate mean
unbiased estimate3 gives the revised estimate 0.82 = 0.68+1.68/12. Though they are only approximate
in the present case, these corrections to ρ̂ appear substantial and they lead to very different implied
depreciation rates.
As a second illustration, Frankel and Rose (1996) used a panel of 45 annual observations over 150

countries to examine the half life of deviations from purchasing power parity (PPP) by running the
following panel regression equation4

qit = ai + 0.88qit−1 + error

where qit is the logarithm of the real exchange rate. From the point estimate ρ̂ = 0.88, they calculated
the half-life of the PPP deviation to be ln(0.5)/ ln(0.88) = 5.4 years. The plug-in approximate mean
unbiased estimate gives an adjusted estimate of 0.923 = 0.88 + 1.88/44 which gives a half-life estimate
of 8.6 years. Inverting the mean function gives the new estimate 0.934, for which the half life is 10.2
years, almost twice that of the original study. These adjustments indicate that PPP deviations are
eroded much more slowly than the original estimates suggested.
Both the mean inversion and plug-in proposals for bias correction are designed for models with

cross section independent errors. Under cross section dependence, as we have seen, the inconsistency
is complicated by the presence of random elements. The random inconsistency of the autoregressive
estimate cannot be so readily eliminated by mechanical bias correction procedures or by inversion.

Indeed, when the inconsistency is random, issues of bias correction and variance reduction need to be
addressed together. Earlier work by the authors (2002) showed that cross section error dependence can
lead to very large increases in estimator variation. Given the prevalence of cross section dependence in

2Exact mean function tables have been computed for the constant and linear trend cases and are available at the web
address: http://yoda.eco.auckland.ac.nz/~dsul013/mf.htm

3Here we use formula (7) and T = 13.
4 See Frankel and Rose (1996, table 3 p. 219). The same results were also obtained in an equation with time-specific

intercepts.
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economic and financial panels, this matter is likely to be relevant in many practical studies and is an
important issue to pursue in subsequent work.
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6 Appendix

6.1 Proofs of Propositions

Proof of Proposition 2 Write the model in components form as yit = αi + βit + xit, where xit =
ρxit−1 + uit for t = 1, ..., T. Then the panel least squares estimate of ρ is ρ̂ = Cx

NT /D
x
NT , where

Cx
NT =

NX
i=1

"
TX
t=1

(xit − xi·) (xit−1 − xi·−1)−
PT

t=1 [(t− t̄)(xit − xi·)]
PT

t=1 [(t− t̄)(xit−1 − xi·−1)]PT
t=1(t− t̄)2

#
,

Dx
NT =

NX
i=1

 TX
t=1

(xit−1 − xi·−1)
2 −

hPT
t=1(t− t̄)(xit−1 − xi·−1)

i2
PT

t=1(t− t̄)2

 ,
using the sum notation wi· = T−1

PT
t=1 wit, wi·−1 = T−1

PT
t=1wit−1. Expanding the cross product

moments in these expressions and standardizing by N−1, probability limits are taken as N → ∞
with T fixed. A typical term is evaluated in the following manner using a law of large numbers for
heterogeneous sequences. First note that

plimN→∞
1

N

NX
i=1

xitxis = limN→∞
1

N

NX
i=1

E [xitxis] = limN→∞
1

N

NX
i=1

σ2i
ρ|t−s|

1− ρ2
= σ2

ρ|t−s|

1− ρ2
.

Then we have

plimN→∞
1

N

NX
i=1

TX
t=1

xit

Ã
TX
s=1

sxis

!
=

TX
t,s=1

s

Ã
plimN→∞

1

N

NX
i=1

xitxis

!
=

σ2

1− ρ2

TX
t,s=1

sρ|t−s|

= E

(
TX
t=1

xt

TX
s=1

sxs

)
,

thereby writing the limit as a moment of a homogeneous (across i) process xt which follows the stationary
autoregression xt = ρxt−1 + εt where εt is iid

¡
0, σ2

¢
.

Let CNT = Cx
NT − ρDx

NT . Using this approach, we find after some lengthy but routine derivations
using the lemmas in Section 6.2 that the inconsistency as N →∞ with T fixed has the form

p limN→∞(ρ̂− ρ) =
plimN→∞

1
NCNT

plimN→∞
1
NDNT

= −C (ρ, T )
D (ρ, T )

, (45)

where

C (ρ, T ) = − 1

T − 1
2

1− ρ

·
(T − 1)− 2

1− ρ
C1

¸
, (46)

D(ρ, T ) =
T − 2
1− ρ2

·
1− 1

T − 2
4ρ

1− ρ
D1

¸
, (47)

with

C1 = 1− 1

T + 1

Ã
1 +

1− ρ3

(1− ρ)3
1

T

!
+

Ã
1

2
+

1

T + 1

"
1 + 2ρ

1− ρ
+

1− ρ3

(1− ρ)3
1

T

#!
ρT ,

D1 = 1− 1

T + 1

2

1− ρ

(
1 +

1

T − 1

"
1− 1− ρ3

T (1− ρ)
3

¡
1− ρT

¢
+

µ
3ρ

1− ρ
+

T + 3

2

¶
ρT

#)
.
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Upon further algebraic reduction the rational function limit (45) has the following explicit form in terms
of constituent polynomials in ρ and T :

H(ρ, T ) = −C (ρ, T )

D (ρ, T )
= −2ρ a1T

3 + a2T
2 + a3T + a4

b1T 4 + b2T 3 + b3T 2 + b4T + b5
, (48)

where

a0 = − (1 + ρ) (1− ρ)
3
, a1 = −(1− ρ)a0,

a2 = a0(2 + ρT ), a3 = −a1 − 3ρT (1− ρ2)2,

a4 = 2(1 + ρ)(1− ρ3)(1− ρT ), b1 = ρ(1− ρ)4,

b2 = 2ρa0, b3 = (ρ− 1)2(12ρ2 − ρ (ρ+ 1)2 + 4ρT+2),

b4 = (1− ρ2)((1− ρ)22ρ+ 12ρ2+T ) and b5 = 8ρ
2(ρ2 + ρ+ 1)(ρT − 1).

Adjusting (46)and (47) for dominant terms yields the following approximant:

plimN→∞ (ρ̂− ρ) = −2 1 + ρ

T − 2 +O(T−2).

For the first few values of T, the exact limit formulae work out as follows:

plimN→∞ (ρ̂− ρ) =


−12 ρ

2−3ρ−4
ρ−3 for T = 3

−12 ρ
3−6ρ−5
ρ2−5 for T = 4

−12 2ρ
4+2ρ3−5ρ2−17ρ−12
2ρ3+2ρ2−3ρ−15 for T = 5

The approximate formula, −2(1+ρ)/(T−2) is usually smaller (in absolute value) than the exact formula
when ρ is larger than (around) 0.7.

Proof of Proposition 3 From (19), plimN→∞ (ρ̂− ρ) =
©
plimN→∞

1
N ỹ0−1QZ̃ ỹ−1

ª−1 ©
plimN→∞

1
N ỹ0−1QZ̃ ε̃

ª
,

and by virtue of exogeneity

plimN→∞
1

N
ỹ0−1QZ̃ ε̃ = plimN→∞

1

N
ỹ0−1ε̃− plimN→∞

1

N
ỹ0−1Z̃

³
Z̃0Z̃

´−1
Z̃0ε̃

= plimN→∞
1

N
ỹ0−1ε̃ = −σ2A (ρ, T ) ,

as given in (3). Next, when |ρ| < 1, we have

ỹit =
∞P
j=0

ρjZ̃it−jβ +
∞P
j=0

ρj ε̃it := Z̃ρitβ + ỹ0it,

and, using the stacked notation ỹ = Z̃ρβ + ỹ0 and its lagged variant, we have as in (25)

plimN→∞
1

N
ỹ0−1QZ̃ ỹ−1 = β0

·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + plimN→∞

1

N
ỹ00−1ỹ

0
−1

= β0
·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + σ2B (ρ, T ) ,

where B (ρ, T ) is given in (4). It follows that

plimN→∞ (ρ̂− ρ) = − σ2A (ρ, T )

σ2B (ρ, T ) + β0
h
plimN→∞

1
N Z̃0ρ,−1QZ̃Z̃ρ,−1

i
β
, (49)
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as given in (21). Results (22) and (23) follow in a similar way.
When ρ = 1, we have

limρ→1A (ρ, T ) = A (T ) =
(T − 1)
2

, limρ→1B (ρ, T ) = B (T ) =
(T − 1) (T + 1)

6
, (50)

so that (49) becomes

plimN→∞ (ρ̂− ρ) = − σ2A (T )

σ2B (T ) + β0
h
plimN→∞

1
N Z̃01,−1QZ̃Z̃1,−1

i
β
, (51)

in which Z̃1,−1 =
³
Z̃01,0, ..., Z̃

0
1,T−1

´0
with Z̃1,t =

³
Z̃11,t, ..., Z̃

N
t

´0
and Z̃i

t =
Pt

j=0 Z̃it−j . The correspond-
ing result in the incidental trends case is

plimN→∞ (ρ̂− ρ) = − σ2C (T )

σ2D (T ) + β0
h
plimN→∞

1
N Z̃01,−1QZ̃Z̃1,−1

i
β
, (52)

where
limρ→1C (ρ, T ) = C (T ) =

1

2
(T − 2) , limρ→1D (ρ, T ) = D (T ) =

1

15

¡
T 2 − 4¢ , (53)

as in (93) and (90). Formula (23) for the inconsistency of β̂ continues to apply in the unit root case
upon appropriate substitution of result (51) or (52).

Proof of Proposition 4 It is convenient here to use sequential asymptotics with N → ∞ followed

by T →∞ and to employ an embedding argument. Write the panel least squares estimates under cross
sectional dependence as

ρ̂− ρ =
AC
NT

BC
NT

. (54)

In the one factor (K = 1) case, the model is given by

yit = ai + ρyit−1 + uit, uit = δiθt + εit.

Then, noting that

plimN→∞
1

N

NP
i=1

TP
t=1

yit−1uit =
TP
t=1
plimN→∞

1

N

NP
i=1

yit−1uit =
TP
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E (yit−1uit) = 0, (55)
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TP
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TP
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1
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δiεis = 0, (56)
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1

N

NP
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εit−j−1

¸
= 0, (57)

and we have

25



plimN→∞
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#
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1

N

NP
i=1

"
δ2i
T

TP
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(
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#
, (58)

where

σ2A (ρ, T ) = plimN→∞
1

N

NP
i=1

"
1
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t=1
(
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j=0

ρjεit−j−1)
TP
s=1

εis

#
=

σ2

T

1

1− ρ

·
T − 1− ρT

1− ρ

¸
,

as in (3). Setting Zθt =
P∞

j=0 ρ
jθt−j−1 and using the fact that plimN→∞ 1

N

PN
i=1 δ

2
i = µ2δ, (58) becomes

plimN→∞
1

N
AC
NT = −σ2A (ρ, T )− µ2δ

1

T

TP
t=1

Zθt
TP
s=1

θs. (59)

By taking sequential limits as N →∞ followed by T →∞, we have the further result

plimN→∞
1

N

NP
i=1

"
δ2i
T

TP
t=1
(
∞P
j=0

ρjθt−j−1)
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s=1
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#
= µ2δ

µ
1√
T

TP
t=1

Zθt

¶µ
1√
T

TP
s=1

θs

¶
→d µ2δξθηθ, (60)

where, by standard central limit theory, as T →∞ we have"
1√
T

PT
s=1 θs

1√
T

PT
t=1 Zθt

#
→d

"
ξθ
ζθ

#
= N

0,
 σ2θ

σ2θ
1−ρ

σ2θ
1−ρ

σ2θ
(1−ρ)2

 . (61)

Since ξθ is perfectly correlated with ηθ, we can write

ξθζθ = ξ2θ
1

1− ρ
a.s.

By suitable augmentation of the probability space and embedding arguments, we may now write the
convergence in (61) as an almost sure convergence and then (60) can be written as

plimN→∞
1

N

NP
i=1

·
δ2i
T

TP
t=1

Zθt
TP
s=1

θs

¸
= µ2δξ

2
θ

1

1− ρ
+ oa.s (1) ,

where the final term is oa..s. (1) as T →∞. Hence, we have the asymptotic (N,T →∞) approximation
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plimN→∞
1

N
AC
NT = −

σ2

1− ρ
− µ2δξ

2
θ

1

1− ρ
+ oa.s. (1) , as T →∞. (62)

Note that the second term in this limit is a random quantity, while the leading term is− limT→∞A (ρ, T ) ,

the same expression as that occuring in the cross section independent case.
Dealing with the denominator in a similar fashion, we get
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Note that

σ2B (ρ, T ) = plimN→∞
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as in (4). We then have
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Letting T →∞ we have
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and then
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¸
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Combining (65) with (63) and (64) yields

plimN→∞
1

N
BC
NT =

T

1− ρ2
£
σ2 + µ2δσ

2
θ + oa.s. (1)

¤
, as T →∞. (66)

The proposition now follows. First, we have from (59) and (64)
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which gives result (31). Second, combining (62) and (66), we have
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where η2θ = ξ2θ/σ
2
θ is χ

2
1, giving (34).

The extension to the multi factor case (K > 1) is straightforward and is omitted.

Proof of Proposition 5 The pooled least squares estimate satisfies (54) and, since yit = ai+y0it and
y0it =

Pt
s=1 uis + y0i0 = Sit + y0i0, we have
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As in the proof of Proposition 4, plimN→∞ 1
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We proceed with the one factor (K = 1) model, the multi-factor (K > 1) case following in a straight-

forward way. Using the decomposition Sit = δi
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TX
t=1

εit

= −µ2δ
Ã
1

T

TX
p=1

Sθp−1
TX
t=1

θt

!
− plimN→∞

1

N
Aε
NT , say.
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Since εit is independent over i and t, we have plimN→∞ 1
N

PN
i=1 εit−j−1εit = 0 for all j ≥ 0, and then

plimN→∞
1

N
Aε
NT = −

1

T
plimN→∞

1

N

NX
i=1

"
TP
t=1
(
t−1P
j=0

εit−j−1)
TP
t=1

εit

#

= − 1
T

Ã
lim

N→∞
1

N

NX
i=1

σ2i

!
[1 + 2 + 3 + · · ·+ T − 1]

= −σ
2

T

T−1X
i=1

t = −σ
2

2
(T − 1) := −σ2A (T ) , say. (67)

It follows that

p limN→∞
1

N
AC
NT = −σ2A (T )− µ2δ

Ã
1

T

TX
p=1

Sθp−1
TX
t=1

θt

!
:= −σ2A (T )− φAT (68)

When there is no cross section dependence µ2δ = 0, and the first term of (68) is the corresponding result
for the numerator limit in the CSI unit root case.
Dealing with the denominator of (54) in a similar way, we get Sit = δi

Pt
s=1 θs +

Pt
s=1 εis :=

δiS
θ
t + Sεit, and then

plimN→∞
1

N
BC
NT = plimN→∞

1

N

NP
i=1

TP
t=1
(yit−1 − yi·−1)2

= plimN→∞
1

N

NP
i=1

"
TP
t=1

Sit−12 − 1

T

µ
TP
t=1

Sit−1

¶2#

= plimN→∞
1

N

NP
i=1

δ2i

"
TP
t=1

¡
Sθt−1

¢2 − 1

T

µ
TP
t=1

Sθt−1

¶2#

+ plimN→∞
1

N

NP
i=1

"
TP
t=1

¡
Sεit−1

¢2 − 1

T

µ
TP
t=1

Sεit−1

¶2#

= µ2δ
TP
t=1

¡
Sθt−1 − Sθ·−1

¢2
+ plimN→∞

1

N
Bε
NT , (69)

since cross product terms of Sεit and δiS
θ
t have zero probability limit as N → ∞, and where Bε

NT =PN
i=1

PT
t=1

¡
Sεit−1 − Sεi·−1

¢2
. Decompose the second term of (69) as follows

plimN→∞
1

N
Bε
NT = plimN→∞

1

N

NX
i=1

TP
t=1
(
t−1P
j=0

εit−j−1)2 − plimN→∞
1

N

NX
i=1

1

T

Ã
TP
t=1
(
t−1P
j=0

εit−j−1)

!2
= BaT −BbT ,

where
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BaT = plimN→∞
1

N

NX
i=1

"
TP
t=1
(
t−1P
j=0

εit−j−1)2
#

=
TP
t=1
plimN→∞

1

N

NX
i=1

(
t−1P
j=0

εit−j−1)2

=

Ã
lim

N→∞
1

N

NX
i=1

σ2i

!
TP
t=1
(t− 1) = σ2

T (T − 1)
2

, (70)

and

BbT =
1

T
plimN→∞

1

N

NX
i=1

µ
TP
t=1

Sεit−1

¶2

=
1

T
plimN→∞

1

N

NX
i=1

µ
TP
t=1

Sε2it−1 + 2
T−1P
t=1

Sεit−1S
ε
it + · · ·+ 2

1P
t=1

Sεit−1S
ε
iT−1

¶
=

σ2

T

·
T (T − 1)

2
+ 2

T−2P
s=1

sP
s=0

r

¸
=

σ2

T

·
T (T − 1)

2
+ 2

T−2P
s=1

s (s+ 1)

2

¸
=

σ2 (T − 1) (2T − 1)
6

. (71)

Combining (70) and (71), we have

plimN→∞
1

N
Bε
NT = σ2

T (T − 1)
2

− σ2 (T − 1) (2T − 1)
6

= σ2
(T − 1) (T + 1)

6
= σ2B (T ) , say.

Thus

plimN→∞
1

N
BC
NT = B (T ) + µ2δ

TP
t=1

¡
Sθt−1 − Sθ·−1

¢2
= σ2B(T ) + φBT . (72)

The stated result (36) now follows by combining (68) and (72), giving

plimN→∞(ρ̂− ρ) =
plimN→∞

1
NAC

NT

plimN→∞
1
NBC

NT

= −σ2A(T ) + φAT
σ2B(T ) + φBT

,

as required.
By standard weak convergence arguments (e.g., Phillips and Solo, 1992), we have

1√
T

[T ·]X
t=1

θt →d σθW (·) = BM
¡
σ2θ
¢
,

and then

T−2φBT = µ2δT
−2 TP

t=1

¡
Sθt−1 − Sθ·−1

¢2 →d µ
2
δσ

2
θ

Z 1

0

W (r)2 dr (73)

where W (r) =W (r)− R 1
0
W is demeaned standard Brownian motion. Also,

T−1φAT = µ2δ
1

T

TX
p=1

Sθp−1√
T

TX
t=1

θt√
T
→d µ

2
δσ
2
θ

Z 1

0

W (r) drW (1) . (74)
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By suitable augmentation of the probability space and embedding arguments, we can write the weak
convergence in (73) and (74) as almost sure convergence and then we may write

σ2A(T ) + φAT
(T − 1) (T + 1) =

1

T + 1

½
σ2

2
+

1

T − 1φAT
¾

=
1

T + 1

½
σ2

2
+ µ2δσ

2
θ

Z 1

0

W (r) drW (1) + oa.s. (1)

¾
,

and

σ2B(T ) + φBT
(T − 1) (T + 1) =

1

6
σ2 +

µ2δ
(T − 1) (T + 1)

TP
t=1

¡
Sθt−1 − Sθ·−1

¢2
=
1

6
σ2 + µ2δσ

2
θ

Z 1

0

W (r)2 dr + oa.s. (1) .

It follows that

−A(T ) + φAT
B(T ) + φBT

= − 1

T + 1

σ2

2 + µ2δσ
2
θ

R 1
0
W (r) drW (1) + oa.s. (1)

1
6σ

2 + µ2δσ
2
θ

R 1
0
W (r)

2
dr + oa.s. (1)

= − 1

T + 1

3σ2+18µ2δσ
2
θ

R 1
0
W (r)2 dr+6µ2δσ

2
θ

hR 1
0
W (r) drW (1)−3 R 1

0
W (r)2 dr

i
σ2 + 6µ2δσ

2
θ

R 1
0
W (r)2 dr

+ oa.s.

µ
1

T

¶

= − 3

T + 1
− 1

T + 1

6µ2δσ
2
θ

nR 1
0
W (r) drW (1)− 3 R 1

0
W (r)

2
dr
o

σ2 + 6µ2δσ
2
θ

R 1
0
W (r)

2
dr

+ oa.s.

µ
1

T

¶
, (75)

giving result (37).
Simple calculations show that E

³R 1
0
W (r) drW (1)

´
= 1

2 , and

E

½Z 1

0

W (r)
2
dr

¾
= E

(Z 1

0

W (r)
2
dr −

µZ 1

0

W (r) dr

¶2)
=
1

2
− 1
3
=
1

6
,

so that

E

½Z 1

0

W (r) drW (1)− 3
Z 1

0

W (r)2 dr

¾
= 0.

However, the mean of the second term in (75) is not zero.

Proof of Proposition 6 Write

CC
NT =

NX
i=1

"
TX
t=1

(uit − ui·) (xit−1 − xi·−1)−
PT

t=1 [(t− t̄)(uit − ui·)]
PT

t=1 [(t− t̄)(xit−1 − xi·−1)]PT
t=1(t− t̄)2

#
,

and

DC
NT =

NX
i=1

 TX
t=1

(xit−1 − xi·−1)
2 −

hPT
t=1(t− t̄)(xit−1 − xi·−1)

i2
PT

t=1(t− t̄)2

 .
We derive an explicit form for the inconsistency

plimN→∞(ρ̂− ρ) = plimN→∞
1
NCC

NT
1
NDC

NT

. (76)
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The data are generated by the model

yit = ai + bit+ ρyit−1 + uit, ρ ∈ (−1, 1)

which has the alternate form

yit = a0i + b0i t+ xit, xit = ρxit−1 + uit =
∞P
j=0

ρjuit−j .

Linear detrending the variable xit leads to the residual quantity

x̃it = xit −
(
2 (2T + 1)

T (T − 1)

Ã
TX
t=1

xit

!
− 6

T (T − 1)
TX
t=1

txit

)

−
(

12

T (T 2 − 1)
TX
t=1

txit − 6

T (T − 1)
TX
t=1

xit

)
t

= xit − gxiT − hxiT t,

where

gxiT =
2 (2T + 1)

T (T − 1)

Ã
TX
t=1

xit

!
− 6

T (T − 1)
TX
t=1

txit, hxiT =
12

T (T 2 − 1)
TX
t=1

txit − 6

T (T − 1)
TX
t=1

xit, (77)

and this notation will be used extensively below. When K = 1, we have uit = δiθt + εit and then

xit = δi
∞P
j=0

ρjθt−j +
∞P
j=0

ρjεit−j = δix
θ
t + xεit, say,

from which we deduce that x̃it = δix̃
θ
t + x̃εit. Using (55) — (57), proceeding as in the proof of Proposition

4, and working first with the denominator, we have

plimN→∞
1

N
Dc
NT = plimN→∞

1

N

NP
i=1

TP
t=1

ỹ2it−1 = plimN→∞
1

N

NP
i=1

TP
t=1

x̃2it−1

= plimN→∞
1

N

NP
i=1

TP
t=1

¡
δix̃

θ
t−1 + x̃εit−1

¢2
= plimN→∞

1

N

NP
i=1

δ2i
TP
t=1

n¡
x̃θt−1

¢2
+
¡
x̃εit−1

¢2o
= plimN→∞

1

N

NP
i=1

δ2i

·
TP
t=1

¡
x̃θt−1

¢2¸
+ plimN→∞

1

N

NP
i=1

·
TP
t=1

¡
x̃εit−1

¢2¸
.

From the proof of Proposition 2 we have

σ2D (ρ, T ) = plimN→∞
1

N

NP
i=1

·
TP
t=1

¡
x̃εit−1

¢2¸
= σ2

T − 2
1− ρ2

·
1− 1

T − 2
4ρ

1− ρ
D1

¸
, (78)

where D1 is defined in (12). We then have

plimN→∞
1

N
Dc
NT = σ2D (ρ, T ) + plimN→∞

1

N

NP
i=1

δ2i

·
TP
t=1

Z̃2θt

¸
= σ2D (ρ, T ) + µ2δ

TP
t=1

Z̃2θt, (79)
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where Zθt =
P∞

j=0 ρ
jθit−j−1 and Z̃θt = Zθt − gZθT − hZθT t is detrended Zθt. Letting T →∞ we have

1

T

TP
t=1

Z̃2θt →a.s. E
¡
Z2θt
¢
=

σ2θ
1− ρ2

,

and then

plimN→∞
1

N

NP
i=1

δ2i

·
TP
t=1

Z̃2θt

¸
= T

·
µ2δ

σ2θ
1− ρ2

+ oa.s. (1)

¸
, as T →∞. (80)

Combining (80) and (78) with (79) yields

plimN→∞
1

N
DC
NT = σ2D (ρ, T ) +

T

1− ρ2
µ2δσ

2
θ [1 + oa.s. (1)] , as T →∞.

=
T

1− ρ2
©
σ2 + µ2δσ

2
θ + oa.s. (1)

ª
, as T →∞ (81)

Turning to the numerator of (76), we have

plimN→∞
1

N
CC
NT = plimN→∞

1

N

NP
i=1

TP
t=1

ỹit−1ũit = plimN→∞
1

N

NP
i=1

TP
t=1

x̃it−1ũit

= −plimN→∞
1

N

NP
i=1

TP
t=1

xit−1ũi· (82)

= −plimN→∞
1

N

NP
i=1

"
TP
t=1

(Ã
∞P
j=0

ρjuit−j−1

!
(guiT + huiT t)

)#

= −plimN→∞
1

N

NP
i=1

"
δ2i

TP
t=1

(Ã
∞P
j=0

ρjθt−j−1

!¡
gθT + hθT t

¢)#

− plimN→∞
1

N

NP
i=1

"
TP
t=1

(Ã
∞P
j=0

ρjεit−j−1

!
(gεiT + hεiT t)

)#

= −σ2C (ρ, T )− plimN→∞
1

N

NP
i=1

"
δ2i

TP
t=1

Ã
∞P
j=0

ρjθt−j−1

!¡
gθT + hθT t

¢#
, (83)

where, from the proof of Proposition 2, we have

σ2C (ρ, T ) = plimN→∞
1

N

NP
i=1

TP
t=1

xεit−1ε̃it

= plimN→∞
1

N

NP
i=1

"
TP
t=1

(Ã
∞P
j=0

ρjεit−j−1

!
(gεiT + hεiT t)

)#

=
σ2

T − 1
2

1− ρ

·
(T − 1)− 2

1− ρ
C1

¸
,

and C1 is defined in (11). Setting Zθt =
P∞

j=0 ρ
jθt−j−1 as before and using the fact that plimN→∞ 1

N

PN
i=1 δ

2
i =

µ2δ , (83) becomes

plimN→∞
1

N
CC
NT = −σ2C (ρ, T )− µ2δg

θ
T

µ
TP
t=1

Zθt

¶
− µ2δh

θ
T

µ
TP
t=1

tZθt

¶
. (84)
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From (81) and (84) we have

plimN→∞(ρ̂− ρ) =
plimN→∞CC

NT

plimN→∞DC
NT

= −
σ2C (ρ, T ) + µ2δ

n
gθT

³PT
t=1 Zθt

´
+ hθT

³PT
t=1 tZθt

´o
σ2D (ρ, T ) + µ2δ

PT
t=1 Z̃

2
θt

,

and (39) of the Proposition follows.
Next we take sequential limits with N → ∞ followed by T → ∞. By standard limit arguments as

T →∞ we have"
1√
T

PT
t=1 θt

1√
T3

PT
t=1 tθt

#
→d

"
Bθ (1)R 1
0
rBθ (r) dr

#
:=

"
ξθ
υθ

#
= N

Ã
0,

"
σ2θ

1
2σ

2
θ

1
2σ

2
θ

1
3σ

2
θ

#!
, (85)

where Bθ is Brownian motion with variance σ2θ, and"
1√
T

PT
t=1 Zθt

1√
T3

PT
t=1 tZθt

#
→d

1

1− ρ

"
Bθ (1)R 1
0
rBθ (r) dr

#
=

1

1− ρ

"
ξθ
υθ

#
. (86)

Further

gθT

µ
TP
t=1

Zθt

¶
+ hθT

µ
TP
t=1

tZθt

¶
=

(
2 (2T + 1)

T (T − 1)

Ã
TX
t=1

θt

!
− 6

T (T − 1)
TX
t=1

tθt

)µ
TP
t=1

Zθt

¶

+

(
12

T (T 2 − 1)
TX
t=1

tθt − 6

T (T − 1)
TX
t=1

θt

)µ
TP
t=1

tZθt

¶
→ d

1

1− ρ
{4ξθ − 6υθ} ξθ +

1

1− ρ
{12υθ − 6ξθ}υθ

=
1

1− ρ

©
4ξ2θ − 12ξθυθ + 12υ2θ

ª
=

1

1− ρ
[ξθ, υθ]

"
4 −6
−6 12

#"
ξθ
υθ

#

=
σ2θ
1− ρ

[ξθ, υθ]

"
σ2θ

1
2σ

2
θ

1
2σ

2
θ

σ2θ
3

#−1 "
ξθ
υθ

#

=
σ2θ
1− ρ

η2, (87)

where η2 is a χ22 variate.
It follows from (84) and (87), using the same embedding argument as in the proof of Proposition 4,

that

plimN→∞
1

N
CC
NT = −σ2C (ρ, T )− µ2δσ

2
θη
2

1− ρ
[1 + oa.s. (1)] , as T →∞

= − σ2

T − 1
2

1− ρ

·
(T − 1)− 2

1− ρ
C1

¸
− µ2δσ

2
θη
2

1− ρ
+ oa.s. (1) (88)
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Combine (81) and (88), we get

plimN→∞(ρ̂− ρ) =
−σ2C (ρ, T )− µ2δσ

2
θη

2

1−ρ + oa.s. (1)
T

1−ρ2 {σ2 + µ2δσ
2
θ + oa.s. (1)}

= −
2σ2

1−ρ +
µ2δσ

2
θη

2

1−ρ + oa.s. (1)
T

1−ρ2 {σ2 + µ2δσ
2
θ + oa.s. (1)}

= −
1
1−ρ

©
2σ2 + 2µ2δσ

2
θ + µ2δσ

2
θ

¡
η2 − 2¢+ oa.s. (1)

ª
T

1−ρ2 {σ2 + µ2δσ
2
θ + oa.s. (1)}

= −21 + ρ

T
− 1 + ρ

T

µ2δσ
2
θ

¡
η2 − 2¢

σ2 + µ2δσ
2
θ

+ oa.s.

µ
1

T

¶
,

which gives the required approximant (41) as T → ∞ when K = 1. The case K > 1 follows in a
straightforward manner.

Proof of Proposition 7 The model is yit = ai+bit+xit, where xit = xit−1+uit =
Pt

s=1 uis+xi0 =

Sit + xi0 and uit = δiθt + εit when K = 1. The panel least squares estimate is

p limN→∞(ρ̂− ρ) =
plimN→∞

1
NCC

NT

plimN→∞
1
NDC

NT

. (89)

As before, Sit = δi
Pt

s=1 θs +
Pt

s=1 εis := δiS
θ
t + Sεit and we have

plimN→∞
1

N
DC
NT = plimN→∞

1

N

NP
i=1

TP
t=1

ỹ2it−1 = plimN→∞
1

N

NP
i=1

TP
t=1

x̃2it−1

= plimN→∞
1

N

NP
i=1

·
TP
t=1

S̃2it−1

¸
= plimN→∞

1

N

NP
i=1

δ2i

·
TP
t=1

³
S̃θt−1

´2¸
+ plimN→∞

1

N

NP
i=1

·
TP
t=1

³
S̃εit−1

´2¸
= µ2δ

TP
t=1

³
S̃θt−1

´2
+ plimN→∞

1

N
Dε
NT ,

since cross product terms of Sεit and δiS
θ
t have zero probability limit as N → ∞. As in the unit root

CSI case, we get

plimN→∞
1

N
Dε
NT = σ2D (T ) =

1

15
σ2
¡
T 2 − 4¢ , (90)

so that

plimN→∞
1

N
DC
NT =

1

15
σ2
¡
T 2 − 4¢+ µ2δ

TP
t=1

³
S̃θt−1

´2
. (91)
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Next,

p limN→∞
1

N
CC
NT = −p limN→∞

1

N

NX
i=1

TX
t=1

Sit−1ũit

= −plimN→∞
1

N

NP
i=1

·
TP
t=1
{Sit−1 (guiT + huiT t)}

¸
= −plimN→∞

1

N

NP
i=1

·
δ2i

TP
t=1

©
Sθt−1

¡
gθT + hθT t

¢ª¸
−plimN→∞

1

N

NP
i=1

·
TP
t=1

©
Sεit−1 (g

εi
T + hεiT t)

ª¸
= −σ2C (T )− plimN→∞

1

N

NP
i=1

·
δ2i

TP
t=1

Sθt−1
¡
gθT + hθT t

¢¸
= −σ2C (T )− µ2δ

TP
t=1

Sθt−1
¡
gθT + hθT t

¢
(92)

where

σ2C (T ) = p limN→∞
1

N

NX
i=1

TX
t=1

Sεit−1ε̃it = plimN→∞
1

N

NP
i=1

·
TP
t=1

©
Sεit−1 (g

εi
T + hεiT t)

ª¸
=

1

2
σ2 (T − 2) . (93)

Combining (93), (92) and (91) in (89) we get

p limN→∞(ρ̂− ρ) = − σ2C(T ) + φCT
σ2D(T ) + φDT

= −
1
2σ

2 (T − 2) + µ2δ
PT

t=1 S
θ
t−1

¡
gθT + hθT t

¢
1
15σ

2 (T 2 − 4) + µ2δ
PT

t=1

³
S̃θt−1

´2 (94)

where

φCT = µ2δ
TP
t=1

Sθt−1
¡
gθT + hθT t

¢
, φDT = µ2δ

TP
t=1

³
S̃θt−1

´2
,

as required for (42).
Next consider the asymptotic approximant to (94) as T →∞. Standard weak convergence arguments

give

1

T 2

TX
t=1

³
S̃θt−1

´2
→d σ

2
θ

Z 1

0

W̃ 2
θ (r) dr, (95)

where W̃θ (r) =Wθ (r)− aθ − bθr is detrended standard Brownian motion Wθ with

aθ = 4

½Z 1

0

Wθ − 3
2

Z 1

0

rWθ

¾
, bθ = 6

½
2

Z 1

0

rWθ −
Z 1

0

Wθ

¾
,

which leads to

T−2φDT = µ2δT
−2 TP

t=1

³
S̃θt−1

´2
→d µ

2
δσ
2
θ

Z 1

0

W̃ 2
θ (r) dr. (96)
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Now consider

T−1φCT = µ2δT
−1 TP

t=1
Sθt−1

¡
gθT + hθT t

¢
= µ2δ

(
2 (2T + 1)

T 2 (T − 1)

Ã
TX
t=1

θt

!
− 6

T 2 (T − 1)
TX
t=1

tθt

)
TP
t=1

Sθt−1

+µ2δT
−1
(

12

T (T 2 − 1)
TX
t=1

tθt − 6

T (T − 1)
TX
t=1

θt

)
TP
t=1

tSθt−1

= µ2δ

(µ
4

T 3/2

TP
t=1

Sθt−1

¶Ã
1√
T

TX
t=1

θt

!
−
µ

6

T 3/2

TP
t=1

Sθt−1

¶Ã
1

T 3/2

TX
t=1

tθt

!)

+µ2δ

(µ
12

T 3/2

TP
t=1

tSθt−1

¶Ã
1

T 3/2

TX
t=1

tθt

!
−
µ

6

T 3/2

TP
t=1

tSθt−1

¶Ã
1√
T

TX
t=1

θt

!)
+ op (1)

→ d µ2δσ
2
θ

½
4

µZ 1

0

Wθ

¶
Wθ (1)−

µ
6

Z 1

0

Wθ

¶µZ 1

0

rdWθ

¶¾
+µ2δσ

2
θ

½
12

µZ 1

0

rWθ

¶µZ 1

0

rdWθ

¶
− 6

µZ 1

0

rWθ

¶
Wθ (1)

¾
= µ2δσ

2
θ

½
4Wθ (1)

·Z 1

0

Wθ − 3
2

Z 1

0

rWθ

¸¾
+ µ2δ

½
6

Z 1

0

rdWθ

·
2

Z 1

0

rWθ −
Z 1

0

Wθ

¸¾
= µ2δσ

2
θ

½
aθWθ (1) + bθ

Z 1

0

rdWθ

¾
= µ2δσ

2
θ

½Z 1

0

(aθ + bθr) dWθ (r)

¾
. (97)

By suitable augmentation of the probability space and embedding arguments, we can write the weak
convergence in (96) and (97) as almost sure convergence and then we may write using (93)

1

(T − 2) (T + 2)
©
σ2C(T ) + φCT

ª
=

1

T + 2

½
σ2

2
+

1

T − 2φAT
¾

=
1

T + 2

½
σ2

2
+ µ2δσ

2
θ

·Z 1

0

(aθ + bθr) dWθ (r)

¸
+ oa.s. (1)

¾
,

and

1

(T − 2) (T + 2)
©
σ2D(T ) + φDT

ª
=
1

15
σ2 +

µ2δ
(T − 2) (T + 2)

TX
t=1

³
S̃θt−1

´2
=
1

15
σ2 + µ2δσ

2
θ

Z 1

0

W̃ 2
θ (r) dr + oa.s. (1) .
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It follows that

− σ2C(T ) + φCT
σ2D(T ) + φDT

= − 1

T + 2

σ2

2 + µ2δσ
2
θ

hR 1
0
(aθ + bθr) dWθ (r)

i
+ oa.s. (1)

1
15σ

2 + µ2δσ
2
θ

R 1
0
W̃ 2

θ (r) dr + oa.s. (1)

= − 7.5

T + 2

σ2 + 2µ2δσ
2
θ

hR 1
0
(aθ + bθr) dWθ (r)

i
σ2 + 15µ2δσ

2
θ

R 1
0
W̃ 2

θ (r) dr
+ oa.s.

µ
1

T

¶

= − 7.5

T + 2

σ2+15µ2δσ
2
θ

R 1
0
W̃ 2

θ (r) dr+2µ
2
δσ
2
θ

hR 1
0
(aθ+bθr) dWθ (r)−7.5

R 1
0
W̃ 2

θ (r) dr
i

σ2 + 15µ2δσ
2
θ

R 1
0
W̃ 2

θ (r) dr
+oa.s.

µ
1

T

¶

= − 7.5

T + 2
− 2

T + 2

µ2δσ
2
θ

hR 1
0
(aθ + bθr) dWθ (r)− 7.5

R 1
0
W̃ 2

θ (r) dr
i

σ2 + 15µ2δσ
2
θ

R 1
0
W̃ 2

θ (r) dr
+ oa.s.

µ
1

T

¶
,

giving result (43).

Proof of Proposition 8 We have plimN→∞ (ρ̂− ρ) =
©
plimN→∞

1
N ỹ0−1QZ̃ ỹ−1

ª−1 ©
plimN→∞

1
N ỹ0−1QZ̃ ũ

ª
,

and by exogeneity

plimN→∞
1

N
ỹ0−1QZ̃ ũ = plimN→∞

1

N
ỹ0−1ũ− plimN→∞

1

N
ỹ0−1Z̃

³
Z̃0Z̃

´−1
Z̃0ũ

= plimN→∞
1

N
ỹ0−1ũ = −

©
σ2A(ρ, T ) + ψAT

ª
,

as in (59), where A(ρ, T ) and ψAT are as in Proposition 4. When |ρ| < 1, we have

ỹit =
∞P
j=0

ρjZ̃it−jβ +
∞P
j=0

ρj ũit := Z̃ρitβ + ỹ0it,

and then, just as in the proof of Proposition 3, we get

plimN→∞
1

N
ỹ0−1QZ̃ ỹ−1 = β0

·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + plimN→∞

1

N
ỹ00−1ỹ

0
−1

= β0
·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + σ2B (ρ, T ) + ψBT ,

where B (ρ, T ) and ψBT are given in Proposition 4. Result () follows and the same argument gives
result () for the case of detrended data.
When ρ = 1, we get by straightforward combination of the arguments of Propositions 3 and 5

plimN→∞ (ρ̂− ρ) = − σ2A(T ) + φAT

σ2B (T ) + φBT + β0
h
plimN→∞

1
N Z̃ 01,−1QZ̃Z̃1,−1

i
β
,

in which Z̃1,−1 =
³
Z̃01,0, ..., Z̃01,T−1

´0
with Z̃1,t =

³
Z̃11,t, ..., Z̃

N
t

´0
and Z̃i

t =
Pt

j=0 Z̃it−j . The result in
the incidental trends case similarly follows from Propositions 3 and ??.

6.2 Additional Lemmas

The following two lemmas, whose proofs are straightforward and omitted, are used in calculating later
results of the paper. They provide moment formulae for various sample moments of the (homogeneous)
autoregression

xt = ρxt−1 + εt, ρ ∈ (−1, 1], with εt ∼ iid
¡
0, σ2

¢
, (98)
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in the stationary case (|ρ| < 1), where σ2x = σ2

1−ρ2 , and the unit root case (ρ = 1), where the initialization
at t = 0 is x0 = 0. The lemmas provide basic formulae from which reduced results can be obtained by
further calculation or by the use of algebraic manipulation software such as Maple. The latter formulae
are lengthy and are not repeated here.

Lemma 1 ( Stationary xt ):

(a) E
³PT−1

t=1 txt

´2
= σ2x

nPT−1
t=1 t

PT−1
j=t jρj−t +

PT−1
t=2 t

Pt−1
j=1 jρ

t−j
o

(b) E
³PT−1

t=1 txt

´³PT−1
t=1 xt

´
= σ2x

nPT−1
t=1 t

PT−1
j=t ρj−t +

PT−1
t=2 t

Pt−1
j=1 ρ

t−j
o

(c) E
³PT−1

t=1 txt

´³PT
t=2 txt

´
= σ2x

nPT−1
t=1 t

PT−1
j=t jρj−t+1 +

PT−1
t=2 t

Pt−1
j=1 jρ

t−j−1
o

(d) E
³PT−1

t=1 txt

´³PT
t=2 xt

´
= σ2x

nPT−1
t=1 t

PT−1
j=t ρj−t+1 +

PT−1
t=2 t

Pt−1
j=1 ρ

t−j−1
o

(e) E
³PT−1

t=1 txt+1

´³PT−1
t=1 xt

´
= σ2x

nPT−1
t=1 t

Pt
j=1 ρ

j +
PT−2

t=1 t
PT−t−1

j=1 ρj−1
o

(f) E
PT

t=2 xt
PT

t=2 xt−1 = σ2x
PT−1

t=1

PT−1
j=t ρj−t+1 +

PT−1
t=2

Pt−1
j=1 ρ

t−j−1

(g) E
PT

t=2 xtxt−1 = (T − 1)ρσ2x

(h) E
³PT−1

t=1 xt

´2
= σ2x

³
T − 1 + 2ρ

1−ρ
PT−2

k=1 (1− ρk)
´

Lemma 2 ( Unit Root xt ):

(a) E
³PT−1

t=1 txt

´2
= σ2

nPT−1
t=1 (

1
6 t
2 − 1

6 t
4 + 1

2T
2t2 − 1

2Tt
2)
o

(b) E
³PT−1

t=1 txt

´³PT−1
t=1 xt

´
= σ2

nPT−1
t=1 (−12 t3 − 1

2 t
2 + Tt2)

o
(c) E

³PT−1
t=1 txt

´³PT
t=2 txt

´
= σ2

nPT−1
t=1 (t

Pt−2
i=1 i(i+ 1) + t2

PT−1
i=t−1 i)

o
(d) E

³PT−1
t=1 txt

´³PT
t=2 xt

´
= σ2

nPT−1
t=1 (−12 t3 + 1

2 t
2 − t+ Tt2)

o
(e) E

³PT−1
t=1 txt+1

´³PT−1
t=1 xt

´
= σ2

nPT−1
t=1 t

Pt
j=1 j +

PT−2
t=1 t(t+ 1)(T − t− 1)

o
(f) E

PT
t=2 xt

PT
t=2 xt−1 = σ2

nPT−1
t=1

Pt
j=1 j +

PT−2
t=1 (t+ 1)(T − t− 1)

o
(g) E

PT
t=2 xtxt−1 = σ2

PT−1
t=1 t

(h) E
³PT−1

t=1 xt

´2
= σ2

nPT−1
t=1

Pt
j=1 j +

PT−2
t=1 t

PT−1
j=t+1 1

o
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7 Notation
oa.s.(1) tends to zero almost surely

Oa.s(1) bounded almost surelyR 1
0
f

R 1
0
f(r)dr

[·] integer part

:= definitional equality

CSD Cross Section Dependent

CSI Cross Section Independent

wi· T−1
PT

t=1wit

wi·−1 T−1
PT

t=1wit−1
w̃t wt − gwT − hwT t detrended wt; see (77)

gwT
2(2T+1)
T (T−1)

³PT
t=1wt

´
− 6

T (T−1)
PT

t=1 twt

hwT
12

T (T2−1)
PT

t=1 twt − 6
T (T−1)

PT
t=1wt

→d weak convergence

→p→a.s. convergence in probability, almost surely

W (r) standard Brownian motion

W (r) =W − R 1
0
W demeaned standard Brownian motion

W̃ (r) =W (r)− a− br detrended standard Brownian motion

a 4
nR 1

0
W − 3

2

R 1
0
rW

o
b 6

n
2
R 1
0
rWs −

R 1
0
Ws

o
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