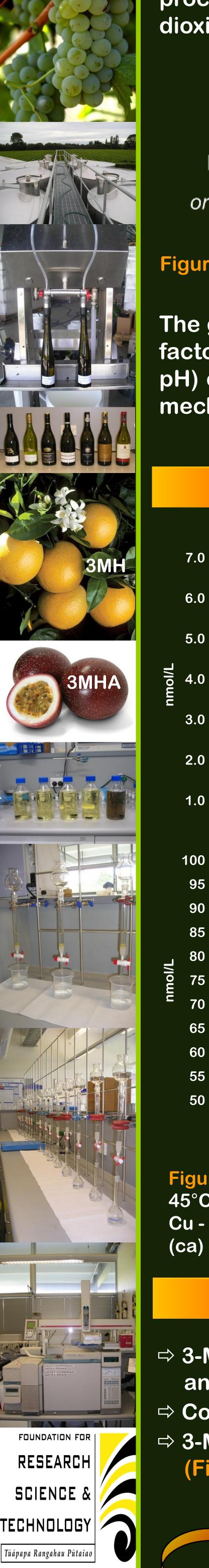
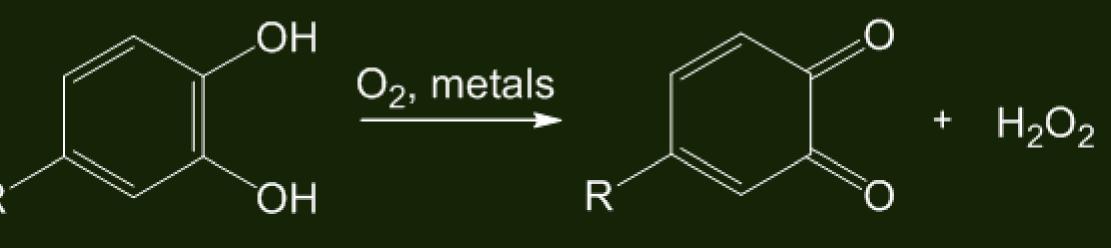


Factors Influencing the Aroma Stability of Sauvignon blanc Wines

M. Herbst-Johnstone, L. Nicolau, and <u>P.A. Kilmartin</u>

Wine Science Programme, The University of Auckland, Private Bag 92019, Auckland, New Zealand [p.kilmartin@auckland.ac.nz]


Introduction


The passion fruit-type aroma of New Zealand Sauvignon blanc wines has been attributed to 3-mercaptohexan-1-ol (3-MH) and its acetate ester 3-mercaptohexan-1-ol acetate (3-MHA). Latest research has shown that these varietal thiols, particularly 3MHA, are unstable throughout storage. Their loss has been ascribed to polyphenol oxidation (Fig. 1), a process which can be inhibited by antioxidants such as sulfur dioxide (SO₂), ascorbic acid (AA) and glutathione (GSH).

Accelerated Sauvignon blanc stability trial

Experimental Set-Up

ortho-dihydroxyphenol

ortho-quinone

Figure 1: Polyphenol autoxidation

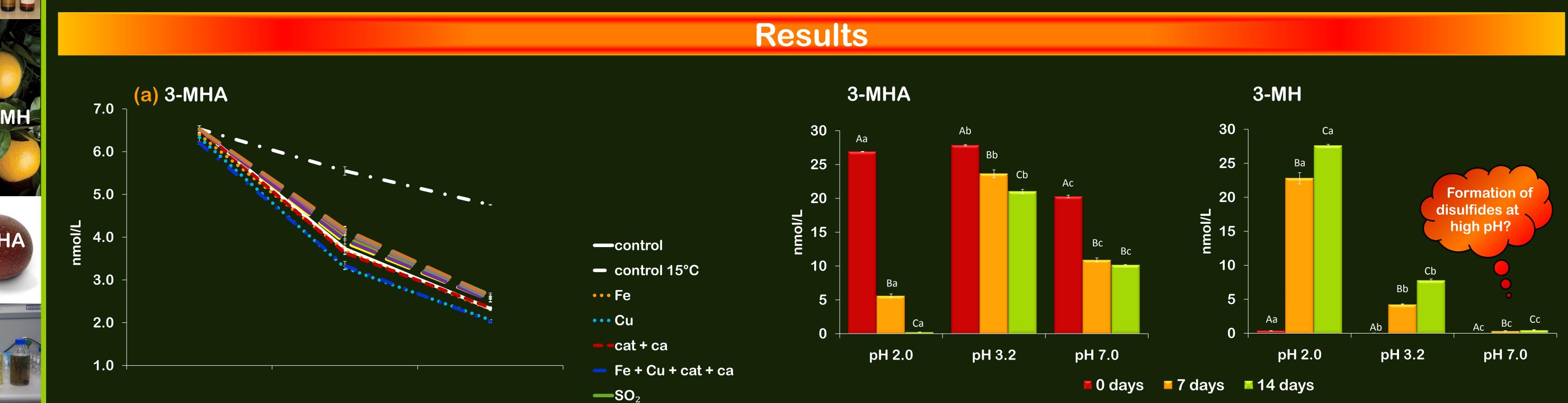
The goal of this study was to determine the impact of various factors (polyphenols, metals, antioxidants, temperature, and pH) on the 3-MH and 3-MHA stability, thus understanding the mechanism leading to the loss of these aroma compounds.

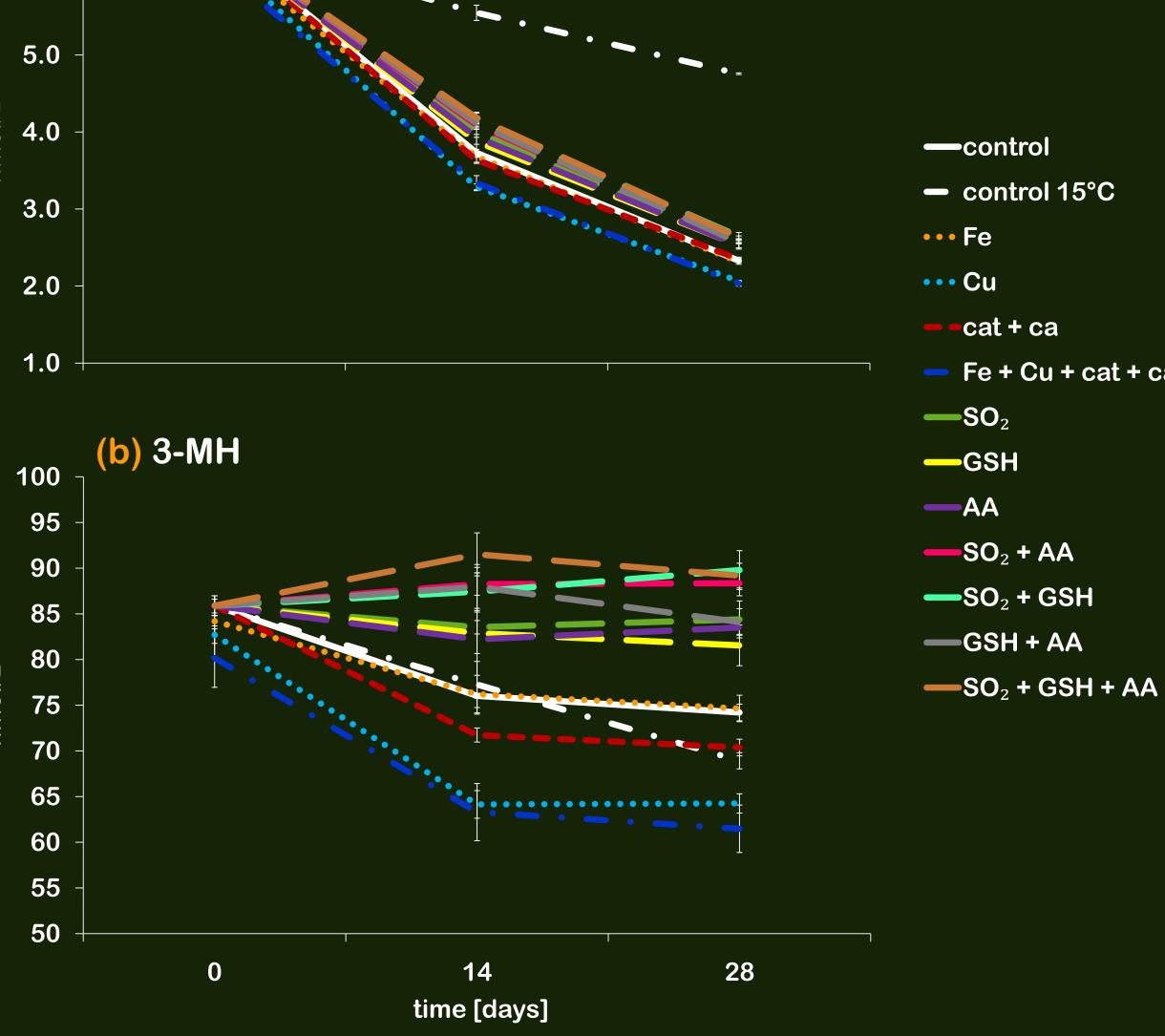
Accelerated 3-MH and 3-MHA stability trial at different pH values

 ⇒ Model wine matrix (ultrapure water/EtOH [88:12 v/v]; 5g/L tartaric acid)

The Sauvignon Blanc Programme

NCE BEHIND NEW ZEALAND WINE


⇒ Wine matrix (Sauvignon blanc)



lethod

Selective extraction of 3-MHA and 3-MH, followed by gas chromatography coupled to mass selective detection ^[1]

^[1] Tominaga, T., Murat, M.L., Dubourdieu, D. (1998). *J. Agric. Food Chem.* **46**: 1044-1048.

Figure 2: Evolution of (a) 3-MHA and (b) 3-MH in Sauvignon blanc at 45°C (excluding control 15°C) in the presence of metals [Fe - 8 mg/L;

Figure 3: Effect of pH on varietal thiol stability in model wine (containing 5000 ng/L 3MHA only) stored at 45°C*

time [days]	0			14			28		
	μ	σ		μ	σ		μ	σ	
3-MHA									
рН 2.0	28.2	0.1	Aa	0.1	0.1	Ва	0.0	0.0	Ва
рН 3.0	30.6	0.2	Ab	15.4	0.1	Bb	4.5	0.3	Cb
рН 3.25	30.4	0.0	Ab	16.8	0.7	Bb	8.6	0.8	Cc
рН 3.5	30.5	0.2	Ab	19.3	1.4	Bc	12.1	0.8	Cd
рН 7.0	19.0	0.5	Ac	9.2	0.1	Bd	3.5	0.9	Cb
3-MH									
рН 2.0	20.8	0.1	Aa	37.3	1.9	Ва	32.3	9.2	Ва
рН 3.0	19.3	0.7	Aa	33.9	0.7	Ва	25.3	0.4	Ca
рН 3.25	20.5	0.2	Aa	24.6	0.1	Ab	23.2	2.9	Aa

Table 1: Effect of pH on varietal thiol stability in Sauvignon blanc stored at 45°C*

> * Data are presented as means of single measurements of duplicate or triplicate flasks ± SD. Means sharing the same letter do not differ significantly [*p* < 0.05] between treatments at a specific time point [lower case] or within the treatment across time [upper case] by TUKEY's HSD test.)

Cu - 0.1 mg/L], polyphenols [catechin (cat) - 20 mg/L; caffeic acid (ca) - 100 mg/L], and antioxidants [at 100 mg/L each]

Figure 4: 3-MHA hydrolysis

рН 3.5	20.1	0.9 Aa	21.4	2.8 Ab	21.4	0.7	Aa
рН 7.0	16.9	0.3 Ab	8.6	0.0 Bc	5.9	0.8	Cb

Conclusions

- Solution Soluti Solution Solution Solution Solution Solution Solution So
- ⇒ Conversion of 3-MHA into 3-MH is indeed favoured at high temperature (Fig. 2) and low pH (Fig. 3, Tab. 1)
- 3-MH stability is affected positively by antioxidants, and negatively by metals as well as polyphenols, resulting in a decline of 19 % (Fig. 2b), indicating an oxidative loss

Loss of the passion fruit-type character in New Zealand Sauvignon blanc is mainly due to loss of 3-MHA via hydrolysis (perception threshold of 4 ng/L versus 60 ng/L for 3-MH)