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Preface

This thesis contributes to the program of numerical characterisation and classifi-
cation of simple games outlined in the classical monograph of von Neumann and
Morgenstern. One of the most fundamental questions of this program is what
makes a simple game a weighted majority game. The necessary and sufficient con-
ditions that guarantee weightedness were obtained by Elgot and refined by Taylor
and Zwicker. If a simple game does not have weights, then Taylor and Zwicker
showed that rough weights may serve as a reasonable substitute. Not all simple
games are roughly weighted, and the class of projective games is a prime exam-
ple. We give necessary and sufficient conditions for a simple game to have rough
weights. We define two functions f (n) and g(n) that measure the deviation of a sim-
ple game from a weighted majority game and a roughly weighted majority game,
respectively. We formulate known results in terms of lower and upper bounds for
these functions and improve those bounds. Also we suggest three possible ways
to classify simple games beyond the classes of weighted and roughly weighted
games. We introduce three hierarchies of games and prove some relationships be-
tween their classes. We prove that our hierarchies are true (i.e., infinite) hierarchies.
In particular, they are strict in the sense that more of the key “resource” yields the
flexibility to capture strictly more games.

Simple games has applications in the theory of qualitative probability orders.
The concept of qualitative probability takes its origins in attempts of de Finetti to
axiomatise probability theory. An initial segment of a qualitative probability order
is a simplicial complex dual to a simple game. We initiate the study of abstract
simplicial complexes which are initial segments of qualitative probability orders.
This is a natural class that contains the threshold complexes and is contained in the
shifted complexes, but is equal to neither. In particular we construct a qualitative
probability order on 26 atoms that has an initial segment which is not a threshold
simplicial complex. Although 26 is probably not the minimal number for which
such example exists we provide some evidence that it cannot be much smaller.
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We prove some necessary conditions for this class and make a conjecture as to a
characterization of them. The conjectured characterization relies on some ideas
from cooperative game theory.
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Chapter 1

Introduction

1.1 Background and Motivation

In this thesis we are focused on mathematical problems arising in relation to some
aspects of game theory and comparative probability orders. Each of these disci-
plines can contribute significantly to the other: the same objects appear there under
different names and interpretations, and different techniques are used to investi-
gate these objects. The subject has broad connections with Economics, Computer
Science and Political Science.

This thesis can be divided into the two following (interrelated) topics

1. Finding an efficient way to compress the information about a game. The problem
arises in games with large number of players. If we keep the information
about all winning and losing coalitions of players then we need an exponential
amount of computer memory. In some situations it is possible to compress this
information by assigning to every player a weight and choosing a threshold,
so that a coalition is winning if and only if the sum of players’ weights in
this coalition reaches the threshold. However it is not always possible to
do as most games are not weighted. We are looking at finding reasonable
substitutes for weights and criteria of their existence.

2. Investigating a new class of abstract simplicial complexes. Abstract simplicial
complexes are close relatives of simple games. Indeed the set of losing coali-
tions of a simple game is an abstract simplicial complex and vice versa. The
new class we intend to study is related to certain orders of subsets of a set
that arise in the study of probability theories related to decision theory. This
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is the theory of qualitative (also known as subjective or comparative) prob-
ability. The decision maker may not know the probabilities of the states of
the world exactly but for each pair of them knows which one is more likely
to happen. Surprisingly the same orders appear in many other areas, e.g., as
monomial orders in the theory of Groebner bases in exterior algebras. Obvi-
ously these orders generalize the standard probability theory which stipulate
that every atom has probability and that the probability is additive. In a way
probabilities serve as weights and comparative probability orders that arise
from probability measures can be considered as “weighted.” Edelman was
the first to suggest that we can generalize threshold simplicial complexes by
abandoning weights but using a qualitative probability orders instead. The
idea is to study initial segments of qualitative probabilities, which by their
nature should be combinatorial generalizations of threshold complexes and
an important subclass of a broad class of shifted complexes. So far this impor-
tant class of abstract simplicial complexes has gone virtually unstudied. For
instance, the smallest number of atoms that are needed to construct an ini-
tial segment of a comparative probability which is not a threshold simplicial
complex is not known.

Below, we will give more details about every topic.

1.1.1 Weightedness and Rough Weightedness

In their classical book von Neumann and Morgenstern (1944) outlined the pro-
gramme of numerical classification and characterisation of all simple games.1 They
viewed the introduction of weighted majority games as the first step in this direc-
tion. They noted however2 that already for six players not all games have weighted
majority representation and they also noted that for seven players some games do
not have weighted majority representation in a much stronger sense. Therefore one
of the most fundamental questions of this programme is to find out what makes a
simple game a weighted majority game. The next step is to measure the deviation
of an arbitrary game from a weighted majority game in terms of a certain function
f (n) of the number of players n and to obtain lower and upper bounds for this
function.

1See Section 50.2.1, page 433.
2Section 5.3 of the same book
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The necessary and sufficient conditions that guarantee weightedness of a game
are known. Elgot (1960) obtained them in terms of asummability. Taylor and
Zwicker (1992) obtained necessary and sufficient conditions later but indepen-
dently in terms of trading transforms. The advantage of the latter characterisation
is that it is constructive in the sense that only finitely many conditions (which
depends on the number of players) has to be checked to decide if the game is
weighted or not. More precisely, they showed that a simple game is a weighted
majority game if no sequence of winning coalitions up to the length 22n can be
converted into a sequence of losing coalitions by exchanging players.

The sequence of coalitions

T = (X1, . . . ,X j; Y1, . . . ,Y j) (1.1)

is called a trading transform if the coalitions X1, . . . ,X j can be converted into the
coalitions Y1, . . . ,Y j by rearranging players. If game G with n players does not
have weights, then the characterisation of Taylor and Zwicker implies that there
exists a trading transform (1.1) where all X1, . . . ,X j are winning and all Y1, . . . ,Y j

are losing. We call such a trading transform a certificate of non-weightedness. We
denote the minimal length j of such a certificateT as f (G) and set f (n) = maxG f (G),
where G runs over all games without weighted majority representation. If f (G) = 2,
then the game G is extremely non-weighted, in fact most games, as noted in (Taylor
& Zwicker, 1999), are of this kind. And it is easy to find a certificate of their
non-weightedness. Games with the condition f (G) > 2 behave in some respects
as weighted games, in particular the desirability relation on singletons is a weak
order (this is why they are called complete games (Carreras & Freixas, 1996; Taylor
& Zwicker, 1999)). For such games Carreras and Freixas (Carreras & Freixas, 1996;
Taylor & Zwicker, 1999; Freixas & Molinero, 2009b) obtained a useful classification
result. So the larger f (G) the closer the game G to weighted majority games. And it
is not surprising that it gets more and more difficult to find a certificate of their non-
weightedness. It is important to know what is the maximal length of certificates
that has to be checked in order to declare that G is weighted. The function f (n)
shows exactly this length. This is a complete analogue to the Fishburn’s function
f (n) defined for linear qualitative probability orders (Fishburn, 1996).

Many old results can be nicely expressed in terms of this function. In particular
the results of Taylor and Zwicker (1992, 1995) (and earlier Gabelman (1961) for
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small values of n) can be presented as lower and upper bounds for f (n) as follows

b
√

nc ≤ f (n) ≤ 22n
.

A natural desire is to make that interval smaller.
If a simple game does not have weights, then rough weights may serve as a

reasonable substitute (see Taylor & Zwicker, 1999). The idea is the same as in the
use of tie-breaking in voting in case when only one alternative is to be elected. If
the combined weight of a coalition is greater than a certain threshold, then it is
winning, if the combined weight is smaller than the threshold, then this coalition
is losing. If its weight is exactly the threshold, then it can go either way depending
on the “tie-breaking” rule.

In Section 3.4 we obtain a necessary and sufficient conditions for the existence
of rough weights. We prove that a game G is a roughly weighted game if for no
j smaller than (n + 1)2

1
2 n log2 n does there exist a certificate of non-weightedness of

length j with the grand coalition among winning coalitions and the empty coalition
among losing coalitions. Let us call such certificates potent. For a game G without
rough weights we define by g(G) the lengths of the shortest potent certificate of
non-weightedness. Then, a function g(n) can be naturally defined which is fully
analogous to f (n). It shows the maximal length of potent certificates that has to be
checked in order to decide if G is roughly weighted or not. Bounds of this function
are particular interest to us.

1.1.2 Generalizations of Rough Weightedness

A simple game is a mathematical object that is used in economics and political
science to describe the distribution of power among coalitions of players (von
Neumann & Morgenstern, 1944; Shapley, 1962). Recently, simple games have been
studied as access structures of secret sharing schemes (Blakley, 1979). They have
also appeared, in some cases under others names, in a variety of mathematical
and computer science contexts, e.g., in threshold logic (Muroga, 1971). Simple
games are closely related to hypergraphs, coherent structures, Sperner systems,
clutters, and abstract simplicial complexes. The term “simple” was introduced by
von Neumann and Morgenstern (1944), because in this type of games players strive
not for monetary rewards but for power, and each coalition is either all-powerful
or completely ineffectual. However these games are far from being simple.

4



An important class of simple games—well studied in economics—is the weigh-
ted majority game (von Neumann & Morgenstern, 1944; Shapley, 1962). In such
a game every player is assigned a real number, his or her weight. The winning
coalitions are the sets of players whose weights total at least q, a certain threshold.
However, it is well known that not every simple game has a representation as a
weighted majority game (von Neumann & Morgenstern, 1944). The first step in
attempting to characterize nonweighted games was the introduction of the class
of roughly weighted games (Taylor & Zwicker, 1999). Formally, a simple game G
on the player set P = [n] = {1, 2, . . . ,n} is roughly weighted if there exist nonnegative
real numbers w1, . . . ,wn and a real number q, called the quota, not all equal to zero,
such that for X ∈ 2P the condition

∑
i∈X wi > q implies X is winning, and

∑
i∈X wi < q

implies X is losing. This concept realizes a very common idea in social choice that
sometimes a rule needs an additional “tie-breaking” procedure that helps to decide
the outcome if the result falls on a certain “threshold.” Taylor and Zwicker (1999)
demonstrated the usefulness of this concept. Rough weightedness was studied
by Gvozdeva and Slinko (2011), where it was characterized in terms of trading
transforms, similar to the characterization of weightedness by Elgot (1960) and
Taylor and Zwicker (1992).

Before moving on, it is worth mentioning in passing the notion of complete
games. In a simple game player, i is said to be at least as desirable as player j (as
a coalition partner) if replacing i in a winning coalition with j never makes that
coalition losing. This desirability relation was introduced and studied by Isbell
(1956). Weighted majority games have the property that players are totally ordered
by the desirability relation. Thus another natural extension of the class of weighted
majority games is the class of complete games, for which the desirability relation
is a total order. This class is significantly larger than the class of weighted majority
games since it contains simple games of any dimension (Freixas & Puente, 2008)
while, the dimension of a weighted game is always 1. Extensive theoretical and
computational results on complete simple games have been obtained by Freixas
and Molinero (2009b). The strictness of our hierarchies for that important class of
simple games is an interesting open question.

It might seem that nonweighted games and even games without rough weights
are somewhat strange. However, an important observation of von Neumann and
Morgenstern (1944, Section 53.2.6) states that they “correspond to a different orga-
nizational principle that deserves closer study.” In some of these games, as von
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Neumann and Morgenstern noted, all the minimal winning coalitions are minori-
ties and at the same time “no player has any advantage over any other” (e.g., the
Fano game introduced later). This is an attractive feature for secret sharing since in
the case of a large number of users it is advantageous to keep minimal authorized
coalitions relatively small. This may be why weighted threshold secret sharing
schemes were largely ignored and were characterized only recently (Beimel, Tassa,
& Weinreb, 2008).

The parameter of the first of the three hierarchies we will discuss reflects the
balance of power between small and large coalitions; the larger this parameter
the more powerful some of the small coalitions are. Gvozdeva and Slinko (2011)
proved that for a game G that is not roughly weighted there exists a certificate of
nonweightedness of the form

T = (X1, . . . ,X j,P; Y1, . . . ,Y j, ∅),

where X1, . . . ,X j are winning coalitions of G, P is the grand coalition, and Y1, . . . ,Y j

are losing coalitions. However, sometimes it is possible to have more than one
grand coalition in the certificate. This may occur when coalitions X1, . . . ,X j are
small but nonetheless winning.

A certificate of nonweightedness of the form

T = (X1, . . . ,X j,P`; Y1, . . . ,Y j, ∅
`)

will be called `-potent of length j + `. Each game that possesses such a certificate
will be said to belong to the class of gamesAq, where q = `/( j + `). The parameter
q can take values in the open interval (0, 1

2 ). We will show that Ap ⊇ Aq for any p
and q such that 0 < p ≤ q < 1

2 , and that if 0 < p < q < 1
2 , then this inclusion is strict,

i.e., we have theAp ) Aq.

Another hierarchy emerges when we allow several thresholds instead of just
one in the case of roughly weighted games. We say that a simple game G belongs to
the class Bk, k ∈ {1, 2, 3, . . .}, if there are k thresholds, 0 < q1 ≤ q2 ≤ · · · ≤ qk, and any
coalition with total weight of players smaller than q1 is losing, any coalition with
total weight greater than qk is winning. We also impose an additional condition that,
if a coalition X has total weight w(X) that satisfies q1 ≤ w(X) ≤ qk, then w(X) = qi for
some i. All games of the class B1 are roughly weighted. In fact, as we will prove in
Section 4.3, almost all roughly weighted games belong to this class: B1 is exactly
the class of roughly weighted games with nonzero quota. We will show that the
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Fano game (Gvozdeva & Slinko, 2011) belongs toB2 but does not belong toB1. We
will prove that the B-hierarchy is strict, that is,

B1 ( B2 ( · · · ( B` ( · · · ,

with the union of these classes being the class of all simple games.
Yet another way to capture more games is by making the threshold “thicker.”

We here will not use a point but rather an interval [a, b] for the threshold, a ≤ b.
That is, all coalitions with total weight less than a will be losing and all coalitions
whose total weight is greater than b will be winning. This time—in contrast with
the k limit of Bk—we do not care how many different values weights of coalitions
falling in [a, b] may take on. (A good example of this situation would be a faculty
vote, where if neither side controls a 2/3 majority—calculated in faculty members
or their grant dollars—then the Dean would decide the outcome as he wished.)
We can keep weights normalized so that the lower end of the interval is fixed at
1. Then the right end of the interval α becomes a “resource” parameter. Formally,
a simple game G belongs to the class Cα if all coalitions in G with total weight
less than 1 are losing and every coalition whose total weight is greater than α is
winning. We show that the class of all simple games is split into a hierarchy of
classes of games {Cα}α∈[1,∞) defined by this parameter. We show that as α increases
we get strictly greater descriptive power, i.e., strictly more games can be described,
that is, if α < β, then Cα ( Cβ. In this sense the hierarchy is strict. This strict
hierarchy result, and our strict hierarchy results for hierarchies A and B, have
very much the general flavor of hierarchy results found in computer science: more
resources yield more power (whether computational power to accept languages
as in a deterministic or nondeterministic time hierarchy theorem, or as is the case
here, description flexibility to capture more games).

The strictness of the latter hierarchy was achieved because we allowed games
with arbitrary (but finite) numbers of players. The situation will be different if
we keep the number of players, n, fixed. Then there is an interval [1, s(n)] such
that all games with n players belong to Cs(n) and s(n) is minimal with this property.
There will be also finitely many numbers q ∈ [1, s(n)] such that the interval [1, q]
represents more n-player games than any interval [1, q′] with q′ < q. We call the
set of such numbers the nth spectrum and denote it Spec(n). We also call a game
with n players critical if it belongs to Cα with α ∈ Spec(n) but does not belong to
any Cβ with β < α. We calculate the spectrum for n < 7 and also produce a set of
critical games, one for each element of the spectrum. We in addition try to give a
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reasonably tight upper bound for s(n).
All three of our hierarchies provide measures of how close a given game is to

being a simple weighted majority game. That is, they each quantify the nearness to
being a simple weighted majority game (e.g., hierarchies B and C quantify based
on the extent and structure of a “flexible tie-breaking” region). And the main theme
and contribution of the chapter is that we prove for each of the three hierarchies
that allowing more quantitative distance from simple weighted majority games
yields strictly more games, i.e., the hierarchies are proper hierarchies.

1.1.3 Simplicial Complexes

The concept of qualitative (comparative) probability takes its origins in attempts of
de Finetti (1931) to axiomatise probability theory. It also played an important role
in the expected utility theory of (Savage, 1954, p.32). The essence of a qualitative
probability is that it does not give us numerical probabilities but instead provides us
with the information, for every pair of events, which one is more likely to happen.
The class of qualitative probability orders is broader than the class of probability
measures for any n ≥ 5 (Kraft, Pratt, & Seidenberg, 1959). Qualitative probability
orders on finite sets are now recognised as an important combinatorial object (Kraft
et al., 1959; Fishburn, 1996, 1997) that finds applications in areas as far apart from
probability theory as the theory of Gröbner bases (e.g., Maclagan, 1998/99).

Another important combinatorial object, also defined on a finite set is an abstract
simplicial complex. This is a set of subsets of a finite set, called faces, with the
property that a subset of a face is also a face. This concept is dual to the concept of a
simple game whose winning coalitions form a set of subsets of a finite set with the
property that if a coalition is winning, then every superset of it is also a winning
coalition. The most studied class of simplicial complexes is the class of threshold
simplicial complexes. These arise when we assign weights to elements of a finite
set, set a threshold and define faces as those subsets whose combined weight is not
achieving the threshold.

Given a qualitative probability order one may obtain a simplicial complex in
an analogous way. For this one has to choose a threshold—which now will be a
subset of our finite set—and consider as faces all subsets that are earlier than the
threshold in the given qualitative probability order. This initial segment of the
qualitative probability order will, in fact, be a simplicial complex. The collection of
complexes arising as initial segments of probability orders contains threshold com-
plexes and is contained in the well-studied class of shifted complexes (C. Klivans,
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2005; C. J. Klivans, 2007). A natural question is therefore to ask if this is indeed a
new class of complexes distinct from both the threshold complexes and the shifted
ones.

In Chapter 5 we give an affirmative answer to both of these questions. We
present an example of a shifted complex on 7 points that is not the initial segment
of any qualitative probability order. On the other hand we also construct an initial
segment of a qualitative probability order on 26 atoms that is not threshold. We
also show that such example cannot be too small, in particular, it is unlikely that
one can be found on fewer than 18 atoms.

1.2 Summary of Results

In the following we present the topics and results obtained in each chapter of the
thesis. The reader is referred to the corresponding chapters for formal definitions
and proofs.

Chapter 2: Preliminaries
This chapter represents a necessary background material on the theory of simple

games.
Only a few structures in mathematics appear in different contexts and are ex-

ploited by many other areas. One of such structures is hypergraphs.

Definition 2.1.1. A hypergraph G is a pair (P,W), where P is a finite set and W is
a collection of subsets of P.

We will consider hypergraphs from a voting-theoretic point of view.

Definition 2.1.2. A simple game is a hypergraph G = (P,W) which satisfies the
monotonicity condition: if X ∈ W and X ⊂ Y ⊆ P, then Y ∈ W. We also require
that W is different from ∅ and P (non-triviality assumption).

Let us consider a finite set P consisting of n elements which we will call players.
For convenience, the set P can be taken to be [n] = {1, 2, . . . ,n}. Any set of players
is called a coalition, and the whole P is usually addressed as the grand coalition.
Elements of the set W are called winning coalitions. We also define the set L =

2P
−W and call elements of this set losing coalitions. A winning coalition is said to
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be minimal if every proper subset is a losing coalition. Due to monotonicity, every
simple game is fully determined by the set of its minimal winning coalitions. A
losing coalition is said to be maximal if every proper superset is a winning coalition.
A simple game is fully determined by set of maximal losing coalitions.

Simple games play the central role in this thesis. We will see ”disguised”
simple games in the areas as disparate as secret sharing schemes and qualitative
probability orders.

Definition 2.2.1. A simple game is called proper if X ∈ W implies Xc
∈ L, and

strong if X ∈ L implies Xc
∈W. A simple game which is proper and strong is called

a constant sum game.

Thus, a game is not proper if and only if the ground set P can be divided into
two disjoint winning coalitions. A game is not strong if and only if the ground set
P is the union of two disjoint losing coalitions. Note, in a constant sum game with
n players there are exactly 2n−1 winning coalitions and exactly the same number of
losing ones.

One of the key classes of simple games are weighted simple games.

Definition 2.3.1. A simple game G is called weighted majority game if there exist
non-negative reals w1, . . . ,wn, and a positive real number q, called quota, such
that X ∈ W iff

∑
i∈X wi ≥ q. Such game is denoted [q; w1, . . . ,wn]. We also call

[q; w1, . . . ,wn] as a weighted majority representation for G.

For simplicity, we denote by w(X) the weight
∑

i∈X wi of a coalition X. Note that
the weight of a coalition X is equal to the dot product w · χ(X) of the weight vector
w with the characteristic vector χ(X) of X. The characteristic vector χ(X) of X is a
vector of Rn which has ith coordinate equal to 0 if i < X and 1 if i ∈ X.

Definition 2.4.1 A sequence of coalitions

T = (X1, . . . ,X j; Y1, . . . ,Y j)

is a trading transform if the coalitions X1, . . . ,X j can be converted into the coalitions
Y1, . . . ,Y j by rearranging players or, equivalently, by several trades. It can also be
expressed as

|{i : a ∈ Xi}| = |{i : a ∈ Yi}| for all a ∈ P.

We say that the trading transform T has length j.
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Note that while in (2.1) we can consider that no Xi coincides with any of Yk, it is
perfectly possible that the sequence X1, . . . ,X j has some terms equal, the sequence
Y1, . . . ,Y j can also contain equal subsets. The order of subsets in these sequences
is not important.

Definition 2.5.1. A simple game G is called k-trade robust if no trading transform
T = (X1, . . . ,X j; Y1, . . . ,Y j) with j ≤ k has all coalitions X1, . . . ,X j winning and all
Y1, . . . ,Y j losing. G is trade robust if it is k-trade robust for every k.

Clearly, if a game is not trade robust then it is not weighted. Is it true, however,
that trade robustness implies weightedness? Does there exist a positive integer k
such that k-trade robustness implies trade robustness? Winder (1962) showed that
in general no such k exists. Nevertheless, if we restrict ourselves to games with
n players, then the situation changes and such a number k exists for each n. Of
course this number k will depend on n. This is an important result contained in
the following theorem. (We note though that the equivalence of the first and the
second was earlier proved by Elgot (1960).)

Theorem 2.5.1.(Taylor & Zwicker, 1992) The following three conditions are equiv-
alent:

• G is a weighted majority game,

• G is trade robust,

• G is 22|P|-trade robust.

Weights represent “power” or “influence” of players. At the same time, there
are non-weighted games in which the players can be lined according to their
“influence”. A natural question arises: what is the influence and how can we
measure it? Consider the following situation: two losing coalitions do a one-
for-one trade, and after the trade one coalition becomes winning and another
one remains losing. Intuitively, the player who turned a losing coalition into
winning is more “powerful” than the other player. Isbell (1958) was the first who
formalized this idea for simple games. Maschler and Peleg (1966) continued a
further generalization of this notion; see also (Muroga, 1971, p. 113).

Definition 2.7.1. Suppose G = (P,W) is a simple game. Then the individual
desirability relation (for G) is the binary relation ≤I on P defined by

p ≤I q iff ∀X ⊆ P − {p, q}, if X ∪ {p} ∈W, then X ∪ {q} ∈W.
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Definition 2.7.2. A simple game G = (P,W) is complete or linear if the individual
desirability relation ≤I for G is a complete preorder.

For simplicity it is convenient to assume that every player is at least as desirable
as the previous one (or the other way around), i.e., i ≥I j iff i ≥ j. As we already
know every simple game is completely defined by the set of minimal winning
coalitions. In the case of complete games we need even less information: a game
is completely defined by the set of shift-minimal winning coalitions. A minimal
winning coalition X is shift-minimal winning coalition if (X − {i}) ∪ { j} is losing
for any i ∈ X and j < X such that j <I i. In the analogous way we can define
shift-maximal losing coalitions.

Every weighted majority game is complete. However, the class of complete
games is much broader then the class of weighted games.

The dual objects are very common in all areas of mathematics. The theory of
simple games no exception.

Definition 2.9.1. The dual game of a game G = (P,W) is defined to be G∗ = (P,Lc).
This is to say that in the game G∗ dual to a game G the winning coalitions are exactly
the complements of losing coalitions of G.

The operation of taking the dual is known to preserve weightedness:

Proposition 2.9.1.(Taylor & Zwicker, 1999, Propositions 4.3.10 and 4.10.1)

(i) The simple game G is weighted iff the dual game G∗ is weighted.

(ii) For every integer k ≥ 2, the simple game G is k-trade robust iff G∗ is k-trade
robust.

Proposition 2.9.2.(Taylor & Zwicker, 1999, Proposition 3.2.8) The individual de-
sirability relation ≤I is dual symmetric in the sense that p ≤I q holds in G iff it holds
in G∗.

Duality it is a useful tool, and as Shapley (1962) wrote “the usefulness of duality
concept depends on the inclusion of improper games in our theory.”

There are two natural substructures that arise from the more general notion
in threshold logic (see Muroga, 1971, p. 112) which can be traced back to at least
(Isbell, 1958). The subgame determined by P′ ⊆ P is the simple game (P′,Wsg),
where

X ∈Wsg iff X ⊆ P′ and X ∈W.
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The subgame determined by P′ ⊆ P is usually denoted by GA where A = P − P′.
The reduced game determined by P′ is the simple game (P′,Wrg), where

X ∈Wrg iff X ⊆ P′ and X ∪ (P − P′) ∈W.

The reduced game determined by P′ is usually denoted by GB, where B = P − P′.
Consider the following situation: a group of people P vote in favor of or against

a law. A coalition wins if it can pass the law. Intuitively, in this situation the
subgame GA results in assuming that all people of A have already voted against
the law. The reduced game GB results in assuming that people in B have already
voted in favor of the law. Hence a Boolean subgame reflects the situation in which
some votes are already known.

Proposition 2.10.1.(Taylor & Zwicker, 1999, Proposition 1.4.8) Assume that G =

(P,W) is a simple game and that B ⊆ P. Then (GB)∗ = (G∗)B, and so GB = ((G∗)B)∗ and
(GB)∗ = (G∗)B.

It is straightforward to show that every subgame and every reduced game of a
weighted majority game is also a weighted majority game. For example, the case
of subgame one only has to retain the same weights for elements of Ac as in G and
the same threshold.

Chapter 3: Weightedness and Rough Weightedness
Results of this chapter are contained in (Gvozdeva & Slinko, 2011).
This chapter is devoted to a more detailed study of weightedness and contains

first attempts to generalize this notion.
As we have seen in Chapter 2 some games are almost weighted in the following

sense:

• all coalitions with weights below the threshold are losing;

• coalitions with weights above the threshold are winning;

• coalitions with weights exactly on the threshold can be winning or losing.

This is a natural approach as we relax conditions on threshold of a weighted game.
Such games are called roughly weighted simple games if weight of at least one
player is not zero or the quota is not zero.
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First we approach simple games from the algebraic point of view. Let T =

{−1, 0, 1} and Tn = T × T × . . .T (n times). For any pair (X,Y) of subsets X,Y ∈ [n]
we define

vX,Y = χ(X) − χ(Y) ∈ Tn,

where χ(X) and χ(Y) are the characteristic vectors of subsets X and Y, respectively.
Now let G = (P,W) be a game. We will associate an algebraic object with G. For

any pair (X,Y), where X is winning and Y is losing, we put in correspondence the
following vector vX,Y. The set of all such vectors we denote I(G).

Definition 3.2.1. Let ei = (0, . . . , 1, . . . , 0), where the only nonzero element 1 is in
the ith position. A subset I ⊆ Tn is called an ideal in Tn if

(v ∈ I and v + ei ∈ Tn) =⇒ v + ei ∈ I, for each i ∈ [n].

There is a natural correspondence between ideals and I(G). More explicitly, I(G)
is an ideal. Nevertheless, not every ideal corresponds to a game. Even if a game
for an ideal exists it may not be unique.

Proposition 3.2.2. Let G be a finite simple game. Then:

(a) G is weighted iff the system v · x > 0, v ∈ I(G) has a solution.

(b) G is roughly weighted iff the system v ·x ≥ 0, v ∈ I(G) has a non-zero solution.

The notions of a trading transform and k-trade-robustness can be algebraically
reformulated as well.

Taylor and Zwicker (1992) showed that 22n-trade robustness implies weighted-
ness of a simple game with n players. As this characterisation of weighted games
implies, to show that a game G is not a weighted majority game it is sufficient to
present a trading transform (X1, . . . ,X j; Y1, . . . ,Y j), where coalitions X1, . . . ,X j are
winning and Y1, . . . ,Y j are losing. We will call such trading transform a certificate
of non-weightedness of G. Two interesting questions emerge immediately. What
is the maximal length of certificates that we have to check, if we want to check
weightedness of a game with n players? If a game is not weighted, then how far
away is this game from being weighted?

Definition 3.3.1. Let G = (P,W) be a simple game with |P| = n. If G is not weighted
we define f (G) to be the smallest positive integer k such that G is not k-trade robust.
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If G is weighted we set f (G) = ∞. The larger the value f (G) the closer is the game
G to a weighted majority game. Let us also define

f (n) = max
G

f (G),

where the maximum is taken over non weighted games with n players. Equiva-
lently f (n) is the smallest positive integer such that f (n)-trade robustness for an
n-player game implies its weightedness.

Summarizing results of Taylor and Zwicker (1995), Taylor and Zwicker (1999)
and Gabelman (1961) in terms of the function f (n) we obtain:

Corollary 3.3.1. For any n ≥ 2,

b
√

nc ≤ f (n) ≤ 22n
.

As Taylor and Zwicker noted in (Taylor & Zwicker, 1999), for most non-
weighted games the value of f (G) is 2. The closer the game to a weighted majority
game the longer is the certificate and it is harder to find it.

By the algebraic means, we improve the existing upper bound. Fishburn (1997)
proved the combinatorial lemma which helps us to construct a series of examples.
In the light of these examples a better lower bound can be found. The new bounds
valid for n ≥ 5 and can be written in the following way:⌊n − 1

2

⌋
≤ f (n) ≤ (n + 1)2

1
2 n log2 n.

Definition 3.4.1. A certificate of non-weightedness which includes P and ∅we call
potent.

We find a criterion for a game to be roughly weighted making use of the idea
outlined in (Kraft et al., 1959).

Theorem 3.4.2. The game G with n players is roughly weighted if one of the two
equivalent statements holds:

(a) for no positive integer j ≤ (n + 1)2
1
2 n log2 n do there exist a potent certificate of

non-weightedness of length j,
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(b) for no positive integer j ≤ (n+1)2
1
2 n log2 n do there exist j vectors v1, . . . , v j ∈ I(G)

such that
v1 + . . . + v j + 1 = 0,

where 1 = (1, 1, . . . , 1).

Suppose we have to check if a game G is roughly weighted or not. According to
the Criterion of Rough Weightedness (Theorem 3.4.2), we have to check if there is
any potent certificates of non-weightedness. We have to know where to stop while
checking those. We define a new function for this.

Definition 3.4.4 If the game is roughly weighted let us set g(G) = ∞. Alternatively,
g(G) is the length of the shortest potent certificate of non-weightedness for G. We
also define a function

g(n) = max
G

g(G),

where the maximum is taken over non roughly-weighted games with n players.

Checking rough weightedness of a game with n players we then have to check
all potent certificates of non-weightedness up to a length g(n).

One of the main result of this chapter can be formulated in terms of function
g(n) as follows:

Theorem 3.4.7. For any n > 5

2n + 3 6 g(n) 6 (n + 1)2
1
2 n log2 n.

We prove the lower bound by constructing examples. We show several easy
relations between functions f and g.

Similarly we can define the function i(n) on complete simple games. In case
of complete games it is sufficient to consider only potents certificate of non-
weightedness with all winning coalitions being shift-minimal. The value of i(n) is
the maximum of the shortest lengths of such potents certificate of non-weightedness,
where the maxim is taken over all non roughly-weighted complete games.

We also study rough weightedness of small games. We show that all games with
n ≤ 4 players, all strong and proper games with n ≤ 5 players, and all constant-sum
games with n ≤ 6 players are roughly weighted. Thus the smallest constant sum
game that is not roughly weighted is the game with seven players obtained from
the Fano plane (von Neumann & Morgenstern, 1944, p. 470). This game is the
smallest representative of the class of projective games (Richardson, 1956). One of
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the consequences of our characterisation is that all projective games do not have
rough weights.
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Chapter 4: Generalizations of Rough Weightedness
Results of this chapter are contained in (Gvozdeva, Hemaspaandra, & Slinko,

2010).
This chapter contributes to the program of numerical characterization and clas-

sification of simple games outlined in the classic monograph of von Neumann and
Morgenstern. We suggest three possible ways to classify simple games beyond
the classes of weighted and roughly weighted games. To this end we introduce
three hierarchies of games and prove some relationships between their classes. We
prove that our hierarchies are true (i.e., infinite) hierarchies. In particular, they are
strict in the sense that more of the key “resource” (which may, for example, be
the size or structure of the “tie-breaking” region where the weights of the different
coalitions are considered so close that we are allowed to specify either winningness
or nonwinningness of the coalition) yields the flexibility to capture strictly more
games.

Due to Proposition 3.6.1, there is a trivial way to make any game roughly
weighted. This can be done by adding an additional player and making him or her
a passer. Then we can introduce rough weights by assigning weight 1 to the passer
and weight 0 to every other player and setting the quota equal to 0. Note that if the
original game is not roughly weighted, then such rough representation is unique
(up to multiplicative scaling). In our view, adding a passer trivializes the game but
does not make it closer to a weighted majority game; this is why in definitions of
our hierarchies B and Cwe do not allow 0 as a threshold value.

The first hierarchy of classesAα tries to capture the richness of the class of games
that do not have rough weights, and does so by introducing a parameter α ∈ (0, 1

2 ).
Our method of classification is based on the existence of potent certificates of
nonweightedness for such games (Gvozdeva & Slinko, 2011). We will now show
that potent certificates can be further classified. We will extract a very important
parameter from this classification.

Definition 4.2.1. A certificate of nonweightedness

T = (X1, . . . ,Xm; Y1, . . . ,Ym)

is called an `-potent certificate of length m if it contains at least ` grand coalitions
among X1, . . . ,Xm and at least ` empty sets among Y1, . . . ,Ym.
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We will say that for a rational number q a game G belongs to the classAq of the
A-hierarchy if G possesses some `-potent certificate of nonweightedness of length
m, such that q = `/m. If α is irrational, we setAα =

⋂
{q:q<α∧ q is rational}Aq.

It is easy to see that, if q ≥ 1
2 , then Aq is empty. So our hierarchy consists of a

family of classes {Aα}α∈(0, 12 ). We show that this hierarchy is strict, that is, a smaller
parameter captures more games. The following proposition starts us on our path
toward showing this.

Proposition 4.2.1. If 0 < α ≤ β < 1
2 , thenAα ⊇ Aβ.

We say that a game G is critical forAα if it belongs toAα but does not belong to
anyAβ with β > α.

Theorem 4.2.1. For every rational α ∈ (0, 1
2 ) there exists a critical game G ∈ Aα.

The straightforward corollary of our theorem that for 0 < α < β < 1
2 we have

Aα ) Aβ. Hence our hierarchy is strict.
TheB-hierarchy generalizes the idea behind rough weightedness to allow more

“points of (decision) flexibility.”

Definition 4.3.1. A simple game G = (P,W) belongs to Bk if there exist real
numbers 0 < q1 ≤ q2 ≤ · · · ≤ qk, called thresholds, and a weight function w : P→ R≥0

such that

(a) if
∑

i∈X w(i) > qk, then X is winning,

(b) if
∑

i∈X w(i) < q1, then X is losing,

(c) if q1 ≤
∑

i∈X w(i) ≤ qk, then w(X) =
∑

i∈X w(i) ∈ {q1, . . . , qk}.

The condition 0 < q1 in the definition is essential. If we allow the first threshold
q1 be zero, then every simple game can be represented as a 2-rough game. It is also
worthwhile to note that adding a passer does not change the class of the game, that
is, a game G belongs to Bk if and only if the game G′ obtained from G by adding a
passer belongs to Bk. This is because a passer can be assigned a very large weight.
Thus B1 consists of the roughly weighted simple games with nonzero quota.

Constructing a series of examples we prove strictness of this hierarchy as well.

Theorem 4.3.1. For every natural number k ∈N+, there exists a game in Bk+1 −Bk.
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Let us consider another extension of the idea of rough weightedness. This time
we will use a threshold interval instead of a single threshold or (as in B-hierarchy)
a collection of threshold points. It is convenient to “normalize” the weights so that
the left end of our threshold interval is 1. We do not lose any generality by doing
this.

Definition 4.4.1. We say that a simple game G = (P,W) is in the class Cα, α ∈ R≥1,
if there exists a weight function w : P → R≥0 such that for X ∈ 2P the condition
w(X) > α implies that X is winning, and w(X) < 1 implies X is losing.

The roughly weighted games with nonzero quota form the class C1. We also
note that adding or deleting a passer does not change the class of the game.

Definition 4.4.2. We say that a game G is critical for Cα if it belongs to Cα but does
not belong to any Cβ with β < α.

It is clear that if α ≤ β, then Cα ⊆ Cβ. However, we can construct an example
and show more.

Theorem 4.4.1. For each 1 ≤ α < β, it holds that Cα ( Cβ.

There is a connection betweenA hierarchy and C hierarchy:

Theorem 4.4.2 Let G be a simple game that is not roughly weighted and is critical
for Ca. Suppose G also belongs toAq for some 0 < q < 1

2 . Then

a ≥
1 − q
1 − 2q

.

The strictness of the latter hierarchy was achieved because we allowed games
with arbitrary (but finite) numbers of players. The situation will be different if
we keep the number of players, n, fixed. Then there is an interval [1, s(n)] such
that all games with n players belong to Cs(n) and s(n) is minimal with this property.
There will be also finitely many numbers q ∈ [1, s(n)] such that the interval [1, q]
represents more n-player games than any interval [1, q′] with q′ < q. We call the set
of such numbers the nth spectrum and denote it Spec(n). We also call a game with
n players critical if it belongs to Cα with α ∈ Spec(n) but does not belong to any Cβ
with β < α.

We try to give a reasonably tight upper bound for s(n):
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Theorem 4.5.1. For n ≥ 4, 1
2

⌊
n
2

⌋
≤ s(n) ≤ n−2

2 .

In Chapter 3 we showed that all games with four players are roughly weighted.
Now let us calculate the spectra for n ≤ 6. Since we may assume that the game
does not have passers we may assume that the quota is nonzero. Hence we have
Spec(4) = {1}. So the first nontrivial case is n = 5.

Let G = ([n],W) be a simple game. The problem of finding the smallest α such
that G ∈ Cα holds is a linear programming question. Indeed, we need to find the
minimum α such that the following system of linear inequalities is consistent:w(X) ≥ 1 for X ∈Wmin,

w(Y) ≤ α for Y ∈ Lmax.

This is equivalent to the following optimization problem:

Minimize: α.
Subject to:

∑
i∈X wi ≥ 1,

∑
i∈Y wi − α ≤ 0, and wi ≥ 0; X ∈Wmin,Y ∈ Lmax.

We used the equivalence of finding spectrum and an optimization problem and
wrote Maple code using the “LPSolve” command to find spectrums for five and
six players.

Theorem 4.5.2. Spec(5) =
{
1, 6

5 ,
7
6 ,

8
7 ,

9
8

}
.

Theorem 4.5.3. The 6th spectrum Spec(6) contains Spec(5) and also the following
fractions:

3
2
,

4
3
,

5
4
,

9
7
,

10
9
,

11
9
,

11
10
,

12
11
,

13
10
,

13
11
,

13
12
,

14
11
,

14
13
,

15
13
,

15
14
,

16
13
,

16
15
,

17
13
,

17
14
,

17
15
,

17
16
,

18
17
.

Chapter 5: Initial Segments Complexes Obtained from Qualitative Probabil-
ity Orders

Results of this chapter are contained in (Edelman, Gvozdeva, & Slinko, 2011).
An important combinatorial object defined on a finite set is an abstract simplicial

complex. This concept is dual to the concept of a simple game in a sense that
a set of subsets of a finite set is a set of losing coalitions of a game iff this set
is an abstract simplicial complex. There are two well-known classes of abstract
simplicial complexes, namely threshold simplicial complexes and shifted simplicial
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complexes. Threshold complexes arise when we assign weights to elements of a
finite set, set a threshold and define its elements as those subsets whose combined
weight is not achieving the threshold. One can see that any threshold complex
correspond to the set of losing coalitions of a simple game. Shifted simplicial
complexes are related to complete simple games. More explicitly a set of subtest of
a finite set is a set of losing coalition of a complete game if and only if it is a shifted
simplicial complex.

In this chapter we initiate the study of abstract simplicial complexes which
are initial segments of qualitative probability orders. This is a natural class that
contains the threshold complexes and is contained in the shifted complexes, but
is equal to neither. In particular we construct a qualitative probability order on
26 atoms that has an initial segment which is not a threshold simplicial complex.
Although 26 is probably not the minimal number for which such example exists we
provide some evidence that it cannot be much smaller. We prove some necessary
conditions for this class and make a conjecture as to a characterization of them. The
conjectured characterization relies on some ideas from cooperative game theory.

The structure of this chapter is as follows. In Section 5.1 we introduce the basics
of qualitative probability orders. In Section 5.2 we consider abstract simplicial
complexes and give necessary and sufficient conditions for them being threshold.
In Section 5.3 we give a construction that will further provide us with examples
of qualitative probability orders that are not related to any probability measure.
Finally in Sections 5.4 and 5.5 we present our main result which is an example
of a qualitative probability order on 26 atoms that is not threshold. Section 5.6
concludes with a conjectured characterization of initial segment complexes that is
motivated by work in the theory of cooperative games.

An order in this chapter is any reflexive, complete and transitive binary relation.
If it is also anti-symmetric, it is called linear order.

Definition 5.1.1. An order � on 2[n] is called a qualitative probability order on [n]
if

∅ � A

for every subset A of [n], and � satisfies de Finetti’s axiom, namely for all A,B,C ∈
2[n]

A � B ⇐⇒ A ∪ C � B ∪ C whenever (A ∪ B) ∩ C = ∅ .

Note that if we have a probability measure p = (p1, . . . , pn) on [n], where pi is the
probability of i, then we know the probability p(A) =

∑
i∈A pi of every event A. We
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may now define a relation � on 2[n] by

A � B if and only if p(A) ≤ p(B);

obviously � is a qualitative probability order on [n], and any such order is called
representable (e.g., Fishburn, 1996; Regoli, 2000). Those not obtainable in this
way are called non-representable. The class of qualitative probability orders is
broader than the class of probability measures for any n ≥ 5 (Kraft et al., 1959).
A non-representable qualitative probability order � on [n] is said to almost agree
with the measure p on [n] if

A � B =⇒ p(A) ≤ p(B).

If such a measure p exists, then the order � is said to be almost representable.
As before we want to consider all objects from algebraic point of view.

Definition 5.1.2. We say that an order � on 2[n] satisfies the k-th cancellation
condition CCk if there does not exist a trading transform (A1, . . . ,Ak; B1, . . . ,Bk)
such that Ai � Bi for all i ∈ [k] and Ai ≺ Bi for at least one i ∈ [k].

The key result of (Kraft et al., 1959) can now be reformulated as follows.

Theorem 5.1.1. A qualitative probability order � is representable if and only if it
satisfies CCk for all k = 1, 2, . . ..

It was also shown in (Fishburn, 1996, Section 2) that CC2 and CC3 hold for linear
qualitative probability orders. It follows from de Finetti’s axiom and properties of
linear orders. It can be shown that a qualitative probability order satisfies CC2 and
CC3 as well. Hence CC4 is the first nontrivial cancellation condition. As was noticed
in (Kraft et al., 1959), for n < 5 all qualitative probability orders are representable,
but for n = 5 there are non-representable ones. For n = 5 all orders are still almost
representable (Fishburn, 1996) which is no longer true for n = 6 (Kraft et al., 1959).

It will be useful for our constructions to rephrase some of these conditions in
vector language. To every such linear order �, there corresponds a discrete cone
C(�) in Tn, where T = {−1, 0, 1}, as defined in (Fishburn, 1996).

Definition 5.1.3. A subset C ⊆ Tn is said to be a discrete cone if the following
properties hold:
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D1. {e1, . . . , en} ⊆ C, where {e1, . . . , en} is the standard basis of Rn,

D2. {−x, x} ∩ C , ∅ for every x ∈ Tn,

D3. x + y ∈ C whenever x,y ∈ C and x + y ∈ Tn.

We note that Fishburn (1996) requires 0 < C because his orders are anti-reflexive.
In our case, condition D2 implies 0 ∈ C.

Given a qualitative probability order � on 2[n], for every pair of subsets A,B
satisfying B � A we construct the characteristic vector of this pair χ(A,B) = χ(A)−
χ(B) ∈ Tn. We define the set C(�) of all characteristic vectors χ(A,B), for A,B ∈ 2[n]

such that B � A. The two axioms of qualitative probability guarantee that C(�) is
a discrete cone (see Fishburn, 1996, Lemma 2.1).

Following (Fishburn, 1996), the cancellation conditions can be reformulated as
well.

Geometrically, a qualitative probability order � is representable if and only if
there exists a non-negative vector u ∈ Rn such that

x ∈ C(�)⇐⇒ (u, x) ≥ 0 for all x ∈ Tn
− {0},

where (·, ·) is the standard inner product; that is, � is representable if and only if
every non-zero vector in the cone C(�) lies in the closed half-space H+

u = {x ∈ Rn
|

(u, x) ≥ 0} of the corresponding hyperplane Hu = {x ∈ Rn
| (u, x) = 0}.

Definition 5.2.1.A subset ∆ ⊆ 2[n] is an (abstract) simplicial complex if it satisfies
the condition:

if B ∈ ∆ and A ⊆ B, then A ∈ ∆.

Subsets that are in ∆ are called faces. Abstract simplicial complexes arose from
geometric simplicial complexes in topology (e.g., Maunder, 1996). In combinatorial
optimization various abstract simplicial complexes associated with finite graphs
(Jonsson, 2005) are studied, such as the independence complex, matching complex
etc. Abstract simplicial complexes are also in one-to-one correspondence with
simple games as defined by (von Neumann & Morgenstern, 1944). Obviously the
set of losing coalitions L is a simplicial complex. The reverse is also true: if ∆ is a
simplicial complex, then the set 2[n]

− ∆ is a set of winning coalitions of a certain
simple game.

A well-studied class of simplicial complexes is the threshold complexes (mostly
as an equivalent concept to the concept of a weighted majority game but also as
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threshold hypergraphs (Reiterman, Rödl, Šiňajová, & Tůma, 1985)). A simplicial
complex ∆ is a threshold complex if there exist non-negative reals w1, . . . ,wn and a
non-negativeconstant q, such that

A ∈ ∆⇐⇒ w(A) =
∑
i∈A

wi < q.

The same parameters define a weighted majority game with the standard notation
[q; w1, . . . ,wn].

A much larger but still well-understood class of simplicial complexes is shifted
simplicial complexes (C. Klivans, 2005; C. J. Klivans, 2007). A simplicial complex
is shifted if there exists an order E on the set of vertices [n] such that for any face F,
replacing any of its vertices x ∈ F with a vertex y such that y E x results in a subset
(F−{x})∪{y}which is also a face. Shifted complexes correspond to complete games
(Freixas & Molinero, 2009b).

One can see that any initial segment of a qualitative probability order is a
simplicial complex. Thus we refer to simplicial complexes that arise as initial
segments of some qualitative probability order as an initial segment complex.

In a similar manner as for the qualitative probability orders, cancellation con-
ditions will play a key role in our analyzing simplicial complexes.

Definition 5.2.2. A simplicial complex ∆ is said to satisfy CC∗k if for no k ≥ 2 does
there exist a trading transform (A1, . . . ,Ak; B1, . . . ,Bk), such that Ai ∈ ∆ and Bi < ∆,
for every i ∈ [k].

There is a connection between CCk and CC∗k. More precisely, if a qualitative
probability order � satisfies CCk then its initial segment ∆(�,T) satisfies CC∗k. This
gives us some initial properties of initial segment complexes. Since conditions CCk,
k = 2, 3, hold for all qualitative probability orders (Fishburn, 1996) the first three
cancelation conditions CC∗1,CC∗2 and CC∗3 hold for all initial segment complexes.

Using cancellation conditions for simplicial complexes, we will show that this
class contains the threshold complexes and is contained in the shifted complexes.
Using only these conditions it will be easy to show that the initial segment com-
plexes are strictly contained in the shifted complexes.

Corollary 5.2.1. Every initial segment complex is a shifted complex. Moreover,
there are shifted complexes that are not initial segment complexes.

Lemma 5.2.2. Every threshold complex is an initial segment complex.
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This leaves us with the question of whether this containment is strict, i.e., are
there initial segment complexes which are not threshold complexes. As we know
any initial segment of a representable qualitative probability order is a threshold
simplex. One might think that evry non-representable qualitative probability order
would have at least one initial segmentt that is not threshold. Unfortunately that
may not be the case. There are examples of qualitative probability orders such that
every initial segment is a threshold complex.

Another approach to finding an initial segment complex that is not threshold
is to construct a complex that violates CC∗k for some small value of k. As noted
above, all initial segment complexes satisfy CC∗2 and CC∗3 so the smallest condition
that could fail is CC∗4. We will now show that for small values of n cancellation
condition CC∗4 is satisfied for any initial segment. This will also give us invaluable
information on how to construct a non-threshold initial segment later.

Definition 5.2.3. Two pairs of subsets (A1,B1) and (A2,B2) are said to be compatible
if the following two conditions hold:

x ∈ A1 ∩ A2 =⇒ x ∈ B1 ∪ B2, and

x ∈ B1 ∩ B2 =⇒ x ∈ A1 ∪ A2.

Lemma 5.2.3. Let � be a qualitative probability order on 2[n], T ⊆ [n], and let ∆ =

∆n(�,T) be the respective initial segment. Suppose CC∗s fails and (A1, . . . ,As,B1, . . . ,Bs)
is a trading transform, such that Ai ≺ T � B j for all i, j ∈ [s]. If any two pairs (Ai,Bk)
and (A j,Bl) are compatible, then � fails to satisfy CCs−1.

This lemma connects cancelation conditions of an initial segment complex and
a qualitative probability order from which it arises. Suppose CC∗4 fails, i.e., there is a
trading transform (A1, . . . ,A4; B1, . . . ,B4), Ai ≺ T � B j. Every pair (Ai,B j), (Al,Bk) is
not compatible. Otherwise by Lemma 5.2.3 the order � fails CC3, which contradicts
the fact that every qualitative probability satisfies CC3. Making you of the fact that
there are no compatible pairs we can show:

Theorem 5.2.4. CC∗4 holds for ∆ = ∆n(�,T) for all n ≤ 17.

By the similar argument the following is true:

Theorem 5.2.5. CC∗5 holds for ∆ = ∆n(�,T) for all n ≤ 8.
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Our approach to finding an initial segment complex that is not threshold will
be to start with a non-linear representable qualitative probability order and then
perturb it so as to produce an almost representable order. By judicious breaking of
ties in this new order we will be able to produce an initial segment that will violate
CC∗4. The language of discrete cones will be helpful.

We need to understand how we can construct new qualitative probability orders
from old ones so we need the following investigation. Let � be a representable but
not linear qualitative probability order which agrees with a probability measure p.

Let S(�) be the set of all vectors of C(�) which lie in the corresponding hyper-
plane Hp through the origin. Clearly, if x ∈ S(�), then −x is a vector of S(�) as well.
Since in the definition of discrete cone it is sufficient that only one of these vectors
is in C(�) we may try to remove one of them in order to obtain a new qualitative
probability order. The new order will almost agree with p and hence will be at least
almost representable. The big question is: what are the conditions under which a
set of vectors can be removed from S(�)?

What can prevent us from removing a vector from S(�)? Intuitively, we cannot
remove a vector if the set comparison corresponding to it is a consequence of those
remaining. We need to consider what a consequence means formally.

There are two ways in which one set comparison might imply another one. The
first way is by means of the de Finetti condition. This however is already built in
the definition of the discrete cone as χ(A,B) = χ(A ∪ C,B ∪ C). Another way in
which a comparison may be implied from two other is transitivity. This has a nice
algebraic characterisation. Indeed, if C ≺ B ≺ A, then χ(A,C) = χ(A,B) + χ(B,C).
This leads us to the following definition.

Following (Christian, Conder, & Slinko, 2007) let us define a restricted sum for
vectors in a discrete cone C. Let u,v ∈ C. Then

u ⊕ v =

{
u + v if u + v ∈ Tn,

undefined if u + v < Tn.

Theorem 5.3.1. Let � be a representable non-linear qualitative probability order
on [n] which agrees with the probability measure p. Let S(�) be the set of all vectors
of C(�) which lie in the hyperplane Hp. Let X be a subset of S(�) such that

• X ∩ {s,−s} , ∅ for every s ∈ S(�).

• X is closed under the operation of restricted sum.

• (S(�) − X) ∩ {e1, . . . , en} = ∅.
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Then Y = S(�) − X may be dropped from C(�), that is CY = C(�) − Y is a discrete
cone.

In this section we shall construct an almost representable linear qualitative
probability order v on 2[26] and a subset T ⊆ [26], such that the initial segment
∆(v,T) of v is not a threshold complex as it fails to satisfy the condition CC∗4.

The idea of the example is as follows. We will start with a representable linear
qualitative probability order � on [18] defined by positive weights w1, . . . ,w18 and
extend it to a representable but nonlinear qualitative probability order �′ on [26]
with weights w1, . . . ,w26. A distinctive feature of �′ will be the existence of eight
sets A′1, . . . ,A

′

4, B′1, . . . ,B
′

4 in [26] such that:

1. The sequence (A′1, . . . ,A
′

4; B′1, . . . ,B
′

4) is a trading transform.

2. The sets A′1, . . . ,A
′

4, B′1, . . . ,B
′

4 are tied in �′, that is,

A′1 ∼
′ . . .A′4 ∼

′ B′1 ∼
′ . . . ∼′ B′4.

3. If any two distinct sets X,Y ⊆ [26] are tied in �′, then χ(X,Y) = χ(S,T),
where S,T ∈ {A′1, . . . ,A

′

4,B
′

1, . . . ,B
′

4}. In other words all equivalences in �′ are
consequences of A′i ∼

′ A′j, A′i ∼
′ B′j, B′i ∼

′ B′j, where i, j ∈ [4].

Then we will use Theorem 5.3.1 to untie the eight sets and to construct a com-
parative probability order v for which

A′1 @ A′2 @ A′3 @ A′4 @ B′1 @ B′2 @ B′3 @ B′4,

where X @ Y means that X v Y is true but not Y v X.
This will give us an initial segment ∆(v,B′1) of the linear qualitative probability

order v, which is not threshold since CC∗4 fails to hold.

Theorem 5.4.1. There exists a linear qualitative probability order v on [26] and
T ⊂ [26] such that the initial segment ∆(v,T) is not a threshold complex.
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Chapter 2

Preliminaries

2.1 Hypergraphs and Simple Games

Only a few structures in mathematics appear in different contexts and are exploited
by many other areas. One of such structures is hypergraphs.

Definition 2.1.1. A hypergraph G is a pair (P,W), where P is a finite set and W is a
collection of subsets of P.

The elements of W are called edges. Hypergraphs are a very well studied and
widely applicable notion. A hypergraph in which every edge consists of exactly
two elements is a graph. We will consider hypergraphs from a voting-theoretic
point of view.

Definition 2.1.2. A simple game is a hypergraph G = (P,W) which satisfies the
monotonicity condition1: if X ∈ W and X ⊂ Y ⊆ P, then Y ∈ W. We also require that
W is different from ∅ and P (non-triviality assumption).

The term “simple” was introduced by von Neumann and Morgenstern (1944)
to distinguish the following class of multiperson games: a coalition is either all-
powerful or completely ineffectual in such games. Simple games can also be
viewed as models of voting systems in which a single alternative, such as a bill or
an amendment, is pitted against status quo. Let us consider a finite set P consisting
of n elements which we will call players. For convenience, the set P can be taken
to be [n] = {1, 2, . . . ,n}. Any set of players is called a coalition, and the whole P is

1According to Isbell (1958), hypergraphs which satisfy monotonicity condition were introdused
by D.B. Gilles in his 1953 Princeton thesis.
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usually addressed as the grand coalition. Elements of the set W are called winning
coalitions. We also define the set L = 2P

−W and call elements of this set losing
coalitions. A winning coalition is said to be minimal if every proper subset is a
losing coalition. Due to monotonicity, every simple game is fully determined by
the set of its minimal winning coalitions. A losing coalition is said to be maximal
if every proper superset is a winning coalition. A simple game is fully determined
by set of maximal losing coalitions.

Example 2.1.1. The UN Security Council consists of five permanent (China, France, the
United Kingdom, Russia, and the United States) and 10 non-permanent countries (on a
rotating basis, e.g., in November 1990: Canada, Colombia, Cuba, Ethiopia, Finland, the
Ivory Coast, Malaysia, Romania, Yemen, and Zaire). A passage requires an approval of at
least nine countries, subject to a veto by any of the permanent members2. We can represent
this situation as a simple game. Let {1, . . . , 5} and {6, . . . , 15} be five permanent and 10
non-permanent countries respectively. Then the UN Security Council is the following
simple game G = ([15],W), where W = {X ⊆ 2[P]

|X ⊃ {1, . . . , 5} and |X| ≥ 9} is the set of
coalitions which can approve a passage.

Simple games can be dated back as early as to the Dedekind’s 1897 work, in
which he found the number of simple games with four or fewer players. Since then
they have also appeared in a variety of mathematical and computer science contexts
under various names, e.g., monotone boolean (Korshunov, 2003) or switching
functions, threshold functions (Muroga, 1971), hypergraphs, coherent structures,
Spencer systems, and clutters.

Simple games have been widely applied as well. For instance, von Neumann
performed early work in the area of reliability theory. Ramamurthy (1990) wrote
detailed mathematical and historical connection between the analysis of voting
systems and the reliability theory. Simple games found an unexpected application
in modeling of neurons in the living organism (see McCulloch & Pitts, 1943), and
logical computing devices (see (Muroga, 1971) for historical details).

Simple games play the central role in this thesis. We will see ”disguised” simple
games in the area of qualitative probability orders.

2We consider the simplified model of the UN Security Council in which an abstention is not
allowed.
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2.2 Constant Sum Games

One can intuitively think that if some group of people form a winning coalition
then all remaining people lose. At first glance it also seems as winning coalitions
are large coalitions and losing are the small ones. An attentive reader would notice
that these “intuitively correct” properties do not follow from the definition of a
simple game. Let us formalize that idea, where we denote the complement P − X
of X by Xc:

Definition 2.2.1. A simple game is called proper if X ∈ W implies Xc
∈ L, and strong

if X ∈ L implies Xc
∈ W. A simple game which is proper and strong is called a constant

sum game.

Thus, a game is not proper if and only if the ground set P can be divided into
two disjoint winning coalitions. A game is not strong if and only if the ground set
P is the union of two disjoint losing coalitions. Note, in a constant sum game with
n players there are exactly 2n−1 winning coalitions and exactly the same number of
losing ones.

One can think that not proper games are not valuable enough to consider. From
the voting point of view not proper games can lead to a contradictory decision.
Shapley (1962, p. 60) goes as far as to say that not proper games “play a role in
the theory somewhat analogous to that of ‘imaginary’ numbers in algebra and
analysis”. This position certainly has some merit in it, but it excludes some real life
situations in which an issue requires an approval of a group of players. A good
example of such situations is a grant of certiorari.

Example 2.2.1. For the case to be considered by the U.S. Supreme Court one can get an
approval of at least four of the nine Justices. Such approval is called a grant of certiorari.

Clearly, the grant of certiorari game is not proper. Some authors do not consider
not strong games, as in such games the issue could be unsolved. Ramamurthy
(1990) says there can be “a paralysis that may result from allowing a losing coalition
to obstruct a decision”.

2.3 Weighted Majority Games

One of the key classes of simple games are weighted simple games.
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Definition 2.3.1. A simple game G is called a weighted majority game if there exist
non-negative reals w1, . . . ,wn, and a positive real number q, called quota, such that X ∈W
iff

∑
i∈X wi ≥ q. Such game is denoted [q; w1, . . . ,wn]. We also call [q; w1, . . . ,wn] a

weighted majority representation for G.

For simplicity, we denote by w(X) the weight
∑

i∈X wi of a coalition X. Note that
the weight of a coalition X is equal to the dot product w · χ(X) of the weight vector
w with the characteristic vector χ(X) of X. The characteristic vector χ(X) of X is a
vector of Rn which has ith coordinate equal to 0 if i < X and 1 if i ∈ X.

Example 2.3.1 (continuation of Example 2.2.1). The grant of certiorari game can be
represented as [4; 1, 1, 1, 1, 1, 1, 1, 1, 1].

The grant of certiorari game is an example of the simplest weighted majority
games, which are often called symmetric games or k-out-of-n games.

Definition 2.3.2. Suppose that G = ([n],W) is a simple game. Then G is a symmetric
game or a k-out-of-n game if W = {X ⊆ 2[P]

| |X| ≥ k}.

In such game every player can be assigned the weight one and the quota set
at k. The detailed study of symmetric games can be traced at least to Bott (1953).
Another interesting example is the European Economic Community.

Example 2.3.2. By the Treaty of Rome in 1958 the European Economic Community
consisted of six countries: France, Germany, Italy, Belgium, the Netherlands, and Lux-
embourg. Since the countries have different population votes were distributed unequally:
France, Germany and Italy got four votes each, Belgium and the Netherlands – two votes
each, and Luxembourg – just one. A coalition needed at least twelve of seventeen possible
votes to win.

Some games are weighted majority games even if they appear otherwise. The
best-known example is the UN Security Council.

Example 2.3.3 (continuation of Example 2.1.1). We use the same notation as in Ex-
ample 2.1.1. The UN Security Council game is a weighted simple game with a weighted
majority representation

[39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
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Coalition X1

Prince Edward Island (1%)
Newfoundland (3%)

Manitoba (5%)
Saskatchewan (5%)
Alberta (7%)
British Colombia (9%)
Quebec (29%)

Coalition X2

New Brunswick (3%)
Nova Scotia (4%)
Manitoba (5%)
Saskatchewan (5%)
Alberta (7%)
British Colombia (9%)

Ontario (34%)

Figure 2.1: Before the trade we have two winning coalitions since there are seven
provinces with a total population exceeding 50% of population in each coalition.
After the trade both coalitions become losing as one of them lacks population and
the other has only six provinces.

Other interesting examples of simple games can be found in (Taylor & Zwicker,
1999; Freixas & Molinero, 2009b).

One can see that choice of weights is not unique and there is a lot of “freedom”.
For example, two representations [3; 1, 1, 2] and [4; 1, 2, 3] describe the same game.

A weight of a player represents the amount of power or influence3 of these
players. Suppose G is a weighted simple game. Then we can line up all the players
in a non-decreasing order, such that every next player is at least as powerful as
the previous one. We examine whether the following is true: if a weight carries
an influence then influence is represented by weights? Consider the following
example:

Example 2.3.4. (Taylor & Zwicker, 1999, Example 1.2.3)
Since 1982, an amendment to the Canadian constitution can become law only if it is

approved by at least seven of the ten Canadian provinces, subject to the proviso that the
approving provinces have, among them, at least half of Canada’s population. This voting
system was first studied in (Kilgour, 1983)

Clearly, a province with larger population has more influence and is thus more
desirable for a coalition’s partner. Yet this game is not weighted. Let us assume,

3An influence can be measured in many different ways. In Chapter 2.7 we will see the individual
desirability relation which also represents influence among players. Alternatively we may define a
power index (e.g., Banzhaf or Shapley) for a player and decide an amount of influence according to
the index. Information about power indices can be found, e.g., in (Felsenthal & Machover, 1998).
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for a moment, that there are non-negative weights and a positive quota q which
represent this game. Consider two winning coalitions X1 and X2 from Figure 2.1.
Imagine that for some reason coalition X1 decides to “trade” Prince Edward Island
and Newfoundland for Ontario. After the “trade” two new coalitions are formed:

Y1 = (X1 − {Prince Edward Island, Newfoundland}) ∪ {Ontario},

Y2 = (X2 − {Ontario}) ∪ {Prince Edward Island, Newfoundland}.

Both, Y1 and Y2, are losing, since Y1 has only six Canadian provinces and Y2

has less then 50% of population. Note that w(X1) + w(X2) = w(Y1) + w(Y2) as the
“trade” is a “local” event and does not affect the combined weight of all coalitions
participating in it. At the same time X1, X2 are winning and Y1, Y2 are losing
coalitions. Hence if this game were weighted we would have

2q ≤ w(X1) + w(X2) = w(Y1) + w(Y2) < 2q,

which is a contradiction.
Therefore, even if we can line up players according to their influence it does not

mean that a game is weighted. Consequently not all games are weighted.
As von Neumann and Morgenstern noted in their classical book (von Neumann

& Morgenstern, 1944, Section 5.3) that already for six players not all games have
weighted majority representation and for seven players some games do not have
weighted majority representation in a much stronger sense.

Proposition 2.3.1. (von Neumann & Morgenstern, 1944)

(a) Each game with 3 or fewer players is weighted.

(b) Each strong or proper game with 4 or fewer players is weighted.

(c) Each constant sum game with 5 or fewer players is weighted.

For six players there are constant sum games that are not weighted (von Neu-
mann & Morgenstern, 1944).

Example 2.3.5. Let n = 6. Let us include in W all sets of cardinality four or greater, 22
sets in total. We want to construct a proper game, therefore we have to choose and include
in W at most one set out of each of the 10 pairs (X,Xc), where X is a subset of cardinality
three. Suppose we included sets X1 = {1, 2, 4}, X2 = {1, 3, 6}, X3 = {2, 3, 5}, X4 = {1, 4, 5},
X5 = {2, 5, 6}, X6 = {3, 4, 6} in W (and four other 3-element sets to insure that the game is
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constant sum). If this game had a weighted majority representation [q; w1, . . . ,w6], then
the following system of inequalities (corresponding to the fact that a winning coalition has
greater weight than a losing coalition) must have a solution:

w1 + w2 + w4 > w3 + w5 + w6,

w2 + w3 + w5 > w1 + w4 + w6,

w3 + w4 + w6 > w1 + w2 + w5,

w1 + w4 + w5 > w2 + w3 + w6,

w2 + w5 + w6 > w1 + w3 + w4,

w1 + w3 + w6 > w2 + w4 + w5.

Nevertheless, this system is inconsistent.

For our purposes the following definition is useful:

Definition 2.3.3. (Taylor & Zwicker, 1999, p. 6) We say that a player p in a game is a
dictator if p belongs to every winning coalition and to no losing coalition. If all coalitions
containing player p are winning, this player is called a passer. A player p is called a vetoer
if p is contained in the intersection of all winning coalitions. A player who does not belong
to any minimal winning coalition is called a dummy. Such a player can be removed from
any winning coalition without making it losing.

Example 2.3.6. Consider a game represented by [1; 1, 0, 0]. The first player is clearly
a dictator. The first player in the game [5; 5, 3, 2, 2] is a passer since there are winning
coalition without the first player, e.g., {2, 3} is a winning coalition. Every permanent
country from Example 2.1.1 is a vetoer. Finally, we have a very interesting historical fact
that Luxembourg from Example 2.3.2 is a dummy.

2.4 Trading Transform

What is a trade? Lets try to understand the notion first and after that we will give
a formal definition. In the world of sports, a trade is very common. For example,
soccer team number one has two goalkeepers and no sweepers. At the same time
team number two doesn’t have a goalkeeper, but has a spare sweeper. Clearly team
one can exchange a goalkeeper for a sweeper. In that case both teams would have
all needed players. Of course it doesn’t mean that the trade was a great deal for in
sports there is one very important factor - teamwork.
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1 2 3 4 a b c + =

1 b + 4 2 a c = 3

a) b)
The first trade The first trade

The second trade The second trade

1 2 3 4 a b c + =

1 2 3 4 a b + = c

Figure 2.2: The trades a) and the trades b) lead to the same final coalitions

Notice it is possible to have several different trades which give the same final
result.

Example 2.4.1. Let X1 = {1, 2, 3, 4}, X2 = {a, b, c} and X3 = {+,=} be three coalitions. On
Figure 2.2 trades on a) and b) are different. However, after two a-trades we have the same
resulting coalitions Y1 = {1, b,+, 4}, Y2 = {2, a,=, 3}, Y3 = {c} as after two b-trades.

In the context of this dissertation we do not take into account which trades we
need to obtain the final coalitions. Such situations require us to consider trading
matrices. In such a matrix we can follow all trades from the beginning till the
final coalition. More information on trading matrixes can be found in, for instance,
(Taylor & Zwicker, 1999, Section 2.2).

Definition 2.4.1. A sequence of coalitions

T = (X1, . . . ,X j; Y1, . . . ,Y j) (2.1)

is a trading transform if the coalitions X1, . . . ,X j can be converted into the coalitions
Y1, . . . ,Y j by rearranging players or, equivalently, by several trades. It can also be expressed
as

|{i : a ∈ Xi}| = |{i : a ∈ Yi}| for all a ∈ P.

We say that the trading transform T has length j.

Note that while in (2.1) we can consider that no Xi coincides with any of Yk, it is
perfectly possible that the sequence X1, . . . ,X j has some terms equal, the sequence
Y1, . . . ,Y j can also contain equal subsets. The order of subsets in these sequences
is not important.
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2.5 Necessary and Sufficient Conditions for Weighted-
ness

What makes a game a weighted majority game? We have already seen in Exam-
ple 2.3.4 that if two winning coalitions can be converted into two losing coalitions
by trading players then a game is not weighted. If this were a necessary and suf-
ficient condition for a game to be weighted, perhaps our work is done. However,
this works only in very special cases and fails in general.

Example 2.5.1 (The Gabelman Games). Gabelman (1961) constructed “almost weighted”
games for small numbers of players. Taylor and Zwicker (1999) rediscovered the same idea.
The main trick is using magic squares to construct a game. The simplest example is a 3× 3
magic square M:

4 9 2
3 5 7
8 1 6

Let [9] be a set of players and every player i has weight i. The matrix M is a magic
square, which means that there exists a constant p = 15 such that the sum of every row
is p and the sum of every column is p. In this example we additionally have the sum of
every diagonal equals to 15. Note that no other set with 3 players except rows, columns,
and diagonals is summed to 15. Let us define the set of winning coalitions in the following
way:

• all sets consisting of 4 or more players are winning;

• all three-player coalitions with weight exceeding 15 are winning;

• all three-player coalitions with weight exactly 15, which are rows of M, are winning.

This game is not weighted, but is “almost weighted”. More explicitly, if the game were
weighted then the total weight of three winning coalitions which are rows of M would be
strictly greater then the total weight of three losing coalitions which are columns of M. At
the same time these weights have to be equal since union of all rows is exactly the union of
all columns of M.
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Taylor and Zwicker (1999) proved that for every n ≥ 3 there exists a rigid magic square4

n × n, which we can use to construct a non-weighted game in the same fashion as above.
For the more detailed explanation see (Taylor & Zwicker, 1999, Section 2.7).

From this example we can see that if a number of winning coalitions can be
converted into the same number of losing coalitions by rearranging players, then
this game is not weighted.

Definition 2.5.1. A simple game G is called k-trade robust if no trading transform
T = (X1, . . . ,X j; Y1, . . . ,Y j) with j ≤ k has all coalitions X1, . . . ,X j winning and all
Y1, . . . ,Y j losing. G is trade robust if it is k-trade robust for every k.

Clearly, if a game is not trade robust then it is not weighted. Is it true, however,
that trade robustness implies weightedness? Does there exist a positive integer k
such that k-trade robustness implies trade robustness? Winder (1962) showed that
in general no such k exists. Nevertheless, if we restrict ourselves to games with
n players, then the situation changes and such a number k exists for each n. Of
course this number k will depend on n. This is an important result contained in
the following theorem. (We note though that the equivalence of the first and the
second was earlier proved by Elgot (1960).)

Theorem 2.5.1. (Taylor & Zwicker, 1992) The following three conditions are equivalent:

• G is a weighted majority game,

• G is trade robust,

• G is 22|P|-trade robust.

It is hard to trace back who was the first to characterize weightedness. Taylor
and Zwicker (1999, p. 68) wrote: “The problem of determining necessary and suf-
ficient conditions for a switching function was known as the synthesis problem
in the early days of threshold logic. The question of the extent to which Elgot’s
result - the earliest of the characterization theorems - is distinct from its algebraic
precursors is a difficult one, for which the answer is, at least in part, subjective,
Muroga (1971, p. 192) referred to some of these early results as ‘forms that are actu-
ally restatements of classical theorems known in the theory of linear inequalities.’

4A rigid magic square is a n× n matrix M of integers for which there is a constant p such that the
sum of every row and the sum of every column is p, additionally if each set S of entries that sums
to p appears as either a row or a column.
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The origin of the geometrical argument5 is less clear. Even von Neumann and
Morgenstern (1944, p. 139) speak of separating hyperplanes, but not in the context
of simple games. A more recent use of the geometrical approach is Einy and Lehrer
(1989).”

It is worthwhile to note that the proof of Theorem 2.5.1 makes no use of mono-
tonicity or the fact that we have only two types of coalitions: either winning or
losing. Taylor and Zwicker (1999, Theorem 2.4.2) generalized this characterization
to pregames6.

2.6 At Least Half Property

In the previous section we gave the characterization of weightedness in terms of
trade robustness. There exists a related combinatorial characterization in (Taylor
& Zwicker, 1999, Section 2.5) which is adapted from the work of Einy and Lehrer
(1989).

Definition 2.6.1. A coalition X is blocking if its complement Xc is a losing coalition.

Definition 2.6.2. (Taylor & Zwicker, 1999, p. 61) A sequence of coalitions 〈Z1, . . . ,Z2k〉

is called an EL sequence if half of its coalitions are winning and half are blocking. A
simple game satisfies the greater-than-half property if every EL sequence has a player
occurring in more then a half of the coalitions in the sequence.

Keeping in mind these definitions, one can show the following theorem:

Theorem 2.6.1. (Taylor & Zwicker, 1999, Theorem 2.4.6) For a simple game G the
following are equivalent:

• G is weighted.

• G satisfies greater-than-half property.

• G is trade robust.
5We visualize the characteristic vector of each coalition as a point in n-dimensional Euclidian

space Rn. In this case a simple game is represented by two sets of points in the hypercube, where
one corresponds to the winning coalitions while other to the losing coalitions. A simple game is
weighted iff W and L can be separated by a hyperplane.

6A pregame is a tuple (P,W,L), where P is a set of players, L ⊆ 2P is a set of losing coalitions,
and W ⊆ 2P is a set of winning coalition, which satisfies the monotonicity condition: if X ∈ W and
Y ⊇ X then Y < L
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2.7 Desirability Relation and Complete Games

We have already seen in Section 2.3 that weights represent “power” or “influence”
of players. At the same time, there are non-weighted games in which the players
can be lined according to their “influence”. A natural question arises: what is
the influence and how can we measure it? Consider the following situation: two
losing coalitions do a one-for-one trade, and after the trade one coalition becomes
winning and another one remains losing. Intuitively, the player who turned a losing
coalition into winning is more “powerful” than the other player. Isbell (1958) was
the first who formalized this idea for simple games. Maschler and Peleg (1966)
continued a further generalization of this notion; see also (Muroga, 1971, p. 113).

Definition 2.7.1. Suppose G = (P,W) is a simple game. Then the individual desirabil-
ity relation (for G) is the binary relation ≤I on P defined by

p ≤I q iff ∀X ⊆ P − {p, q}, if X ∪ {p} ∈W, then X ∪ {q} ∈W.

This relation gives rise to the following three relations on P:

• p ≺I q iff not q ≤I p;

• p <I q iff p ≺I q and p ≤I q both hold;

• p ≡I q iff p ≤I q and q ≤I p both hold.

The relation ≺I is usually called the existential strict ordering.

Definition 2.7.2. A simple game G = (P,W) is complete or linear if the individual
desirability relation ≤I for G is a complete preorder.

This notion is well established, and it is difficult to trace back who was the first
to recognize the importance of this class. The class was considered, among others,
by Winder (1962), Elgot (1960), Muroga, Toda, and Takasu (1961), Muroga (1971),
Hammer, Ibaraki, and Peled (1981), Einy and Lehrer (1989), Taylor and Zwicker
(1992), Carreras and Freixas (1996), Taylor and Zwicker (1999), and Freixas and
Molinero (2009b).

Proposition 2.7.1. (Taylor & Zwicker, 1999, p. 90) Suppose that G is a simple game.
Then the following are equivalent:

• G is a complete game.
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• ≺I=<I (as relations).

• ≺I is transitive.

• ≺I is acyclic.

• ≡I is an equivalence relation.

For simplicity it is convenient to assume that every player is at least as desirable
as the previous one (or the other way around), i.e., i ≥I j iff i ≥ j. As we already
know every simple game is completely defined by the set of minimal winning
coalitions. In the case of complete games we need even less information: a game
is completely defined by the set of shift-minimal winning coalitions.

Definition 2.7.3. In a complete game G = (P,W) a minimal winning coalition X is
shift-minimal if the coalition (X − {i}) ∪ { j} is losing for any i ∈ X and j < X such that
j <I i.

Intuitively, a minimal winning coalition is shift-minimal if an exchange of any
player of the coalition for a less desirable one makes that coalition losing. In the
analogous way we can define shift-maximal losing coalitions:

Definition 2.7.4. In a complete game G = (P,W) a maximal losing coalition X is shift-
maximal if the coalition (X − {i}) ∪ { j} is winning for any i ∈ W and j < W such that
i <I j.

A maximal losing coalition is shift-maximal if a trade of any player in the
coalition for a more desirable one makes it winning. To see the difference between
minimal winning coalitions and shift minimal winning coalitions consider the
following example:

Example 2.7.1. Let G be a complete game on 5 players defined in the following way: a
coalition is winning iff it contains at least one player out of the first two and at least
3 players in total. In this game we have two equivalence classes {1, 2} and {3, 4, 5} or,
more explicitly, 5 ≡I 4 ≡I 3 <I 2 ≡I 1. The set of minimal winning coalitions is
Wmin = {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}}. At
the same time the set of shift-minimal winning coalitions is Wmin = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}.
For instance, {1, 2, 3} is not a shift-minimal coalition since 4 <I 2 and ({1, 2, 3} − {2})∪ {4}
is winning.
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The information about a complete game can be compressed even more. Carreras
and Freixas (1996) illustrate one such technique.

Carreras and Freixas (1996) gave a complete structural characterization of com-
plete games in terms of lattices.

2.8 Weightedness and Complete Games

Every weighted majority game is complete. However, the class of complete games
is much broader then the class of weighted games. In Example 2.3.4 we observed
a complete non-weighted game. Hence, the class of complete games is a natural
generalization of the class of weighted games and is much broader. Freixas and
Molinero (2006, 2009b) did a computational analysis of complete games and char-
acterized all complete games with less than eight players. They also performed
partial computations for complete games with less than eleven players.

There is a certain interest in weightedness of complete games in the case of
integer representations. Minimal integer representations and minimal sum repre-
sentations were studied, for example, in (Muroga, Tsuboi, & Baugh, 1970; Freixas,
Molinero, & Roura, 2007; Freixas & Puente, 2008; Freixas & Molinero, 2009a, 2010).

2.9 Dual Games

The dual objects are very common in all areas of mathematics. The theory of simple
games no exeption.

Definition 2.9.1. The dual game of a game G = (P,W) is defined to be G∗ = (P,Lc).
This is to say that in the game G∗ dual to a game G the winning coalitions are exactly the
complements of losing coalitions of G.

For a more detailed explanation of duality we refer to (Taylor & Zwicker, 1999,
p. 16). We need some standard properties of duality. Shapley (1962) proved:

Theorem 2.9.1. (Shapley, 1962, p. 62) For any simple game G the following hold:

(a) G = G∗∗.

(b) G∗ is proper if and only if G is strong.

(c) G∗ is strong if and only if G is proper.
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The operation of taking the dual is known to preserve weightedness:

Proposition 2.9.1. (Taylor & Zwicker, 1999, Propositions 4.3.10 and 4.10.1)

(i) The simple game G is weighted iff the dual game G∗ is weighted.

(ii) For every integer k ≥ 2, the simple game G is k-trade robust iff G∗ is k-trade robust.

Proposition 2.9.2. (Taylor & Zwicker, 1999, Proposition 3.2.8) The individual desirability
relation ≤I is dual symmetric in the sense that p ≤I q holds in G iff it holds in G∗.

Duality it is a useful tool, and as Shapley (1962) wrote “the usefulness of duality
concept depends on the inclusion of improper games in our theory.”

2.10 Substructures

There are two natural substructures that arise from the more general notion in
threshold logic (see Muroga, 1971, p. 112) which can be traced back to at least
(Isbell, 1958):

Definition 2.10.1. Let G = (P,W) be a simple game. Then G′ = (P′,W′) is a Boolean
subgame of G iff there exist two disjoint subsets A and B of P such that P′ = P− (A∪ B),
and for X ⊆ P′,

X ∈W′ iff X ∪ B ∈W.

The game G′ is called a Boolean subgame determined by A and B.

Definition 2.10.2. A simple game G satisfies a property hereditarily if every Boolean
subgame of G satisfies the property as well.

It is not hard to prove that weightedness is a hereditary property. In this study
we are interested in some special cases of Boolean subgames.

Definition 2.10.3. Consider a simple game G = (P,W), and A ⊆ P, and B = ∅. Then
the Boolean subgame determined by A and B is called the subgame determined by P′,
where P′ = P − A.

Hence, the subgame determined by P′ is the simple game (P′,Wsg), where

X ∈Wsg iff X ⊆ P′ and X ∈W.

The subgame determined by P′ is usually denoted by GA.
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Definition 2.10.4. Let G = (P,W) be a simple game and B ⊆ P, A = ∅. Then the Boolean
subgame determined by A and B is called reduced game determined by P′, where
P′ = P − B.

Thus, the reduced game determined by P′ is the simple game (P′,Wrg), where

X ∈Wrg iff X ⊆ P′ and X ∪ B ∈W.

The reduced game determined by P′ is usually denoted by GB.
Consider the following situation: a group of people P vote in favor of or against

a law. A coalition wins if it can pass the law. Intuitively, in this situation the
subgame GA results in assuming that all people of A have already voted against
the law. The reduced game GB results in assuming that people in B have already
voted in favor of the law. Hence a Boolean subgame reflects the situation in which
some votes are already known.

Proposition 2.10.1. (Taylor & Zwicker, 1999, Proposition 1.4.8) Assume that G = (P,W)
is a simple game and that B ⊆ P. Then (GB)∗ = (G∗)B, and so GB = ((G∗)B)∗ and
(GB)∗ = (G∗)B.

It is straightforward to show that every subgame and every reduced game of a
weighted majority game is also a weighted majority game. For example, the case
of subgame one only has to retain the same weights for elements of Ac as in G and
the same threshold.

More on substructures can be found, for example, in (Taylor & Zwicker, 1999).
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Chapter 3

Weightedness and Rough
Weightedness

3.1 Definitions and Examples

As von Neumann and Morgenstern showed (von Neumann & Morgenstern, 1944),
there is a weighted majority representation for: every simple game with less than
four players, every proper or strong simple game with less than five players, and
every constant sum game with less than six players. For six players there are
constant sum games with six players that are not weighted (von Neumann &
Morgenstern, 1944).

Example 3.1.1 (Continuation of Example 2.3.5). Six players participate in a game. The
set W of winning coalitions consists of all sets of cardinality four or greater and six 3-
element sets X1 = {1, 2, 4}, X2 = {1, 3, 6}, X3 = {2, 3, 5}, X4 = {1, 4, 5}, X5 = {2, 5, 6}, X6 =

{3, 4, 6}. This game is constant sum. Assume it has is a weighted majority representation
[q; w1, . . . ,w6]. Nevertheless the following system of inequalities∑

i∈X j

wi >
∑
i∈Xc

j

wi, j = 1, . . . , 6. (3.1)

is inconsistent. Thence, this game is not weighted. However if we convert all six in-
equalities (3.1) into equalities, then there will be a 1-dimensional solution space spanned by
(1, 1, 1, 1, 1, 1) which shows that this game “almost” has a weighted majority representation
[3; 1, 1, 1, 1, 1, 1]. Indeed, if we assign weight 1 to every player, then all coalition whose
weight falls below the threshold three are in L, all coalitions whose total weight exceeds this
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Figure 3.1: The smallest projective plane of order two.

threshold are in W. However, if a coalition has total weight of three, i.e. it is equal to the
threshold, it can be either winning or losing.

Definition 3.1.1. [ (Taylor & Zwicker, 1999), p. 78] A simple game G is called roughly
weighted if there exist non-negative real numbers w1, . . . ,wn and a real number q, called
the quota, not all equal to zero, such that for X ∈ 2P the condition

∑
i∈X wi < q implies

X ∈ L, and
∑

i∈X wi > q implies X ∈ W. We say that [q; w1, . . . ,wn] is a roughly
weighted representation for G.

The simple game in Example 3.1.1 is roughly weighted with a roughly weighted
representation [3; 1, 1, 1, 1, 1, 1]. We will show later (Theorem 3.6.3) that any con-
stant sum game with six players has a roughly weighted representation. In thresh-
old logic roughly weighted games correspond to pseudo-threshold functions (see
Muroga, 1971, p. 208). We end this section with one example of a seven players
game that cannot be roughly weighted.

Example 3.1.2 (The Fano plane game (von Neumann & Morgenstern, 1944)). Let us
denote by P = [7] the set of points of the projective plane of order two, called the Fano plane
(see Figure 3.1). Let P be the set of players of the new game. Let us also take the seven lines
of this projective plane as minimal winning coalitions:

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {3, 5, 6}, {3, 4, 7}, {2, 5, 7}, {2, 4, 6}. (3.2)

We will denote them by X1, . . . ,X7, respectively. This, as it is easy to check, defines a
constant sum game, which we will denote Fano. If it had a roughly weighted representation
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[q; w1, . . . ,w7], then the following system of inequalities will be consistent:∑
i∈X j

wi ≥

∑
i∈Xc

j

wi, j = 1, . . . , 7.

Nevertheless, adding all the equations up we get
∑7

i=1 wi ≤ 0 which shows that this system
does not have solutions with non-negative coordinates other than the zero solution. Since
all weights are equal to zero, by the definition, the threshold must be non-zero, coalitions
(3.2) cannot be winning. Hence this simple game is not roughly weighted.

3.2 Games and Ideals

We would like to redefine trading transforms algebraically. Let T = {−1, 0, 1} and
Tn = T × T × . . .T (n times). With any pair (X,Y) of subsets X,Y ∈ [n] we define

vX,Y = χ(X) − χ(Y) ∈ Tn,

where χ(X) and χ(Y) are the characteristic vectors of subsets X and Y, respectively.
Let now G = (P,W) be a game. We will associate an algebraic object with G. For

any pair (X,Y), where X is winning and Y is losing, we put in correspondence the
following vector vX,Y. The set of all such vectors we will denote I(G).

Definition 3.2.1. Let ei = (0, . . . , 1, . . . , 0), where the only nonzero element 1 is in the ith
position. Then a subset I ⊆ Tn will be called an ideal in Tn if for any i = 1, 2, . . . ,n

(v ∈ I and v + ei ∈ Tn) =⇒ v + ei ∈ I. (3.3)

Proposition 3.2.1. Let G be a game with n players. Then I(G) is an ideal in Tn.

Proof. The condition (3.3) follows directly from the monotonicity condition for
games. Indeed, if vX,Y + ei is in Tn, then this amounts to either addition of i to X,
which was not there, or removal of i from Y. Both operations maintain X winning
and Y losing. �

We note that G can be uniquely recovered from I(G) only for games which are
proper and strong. Note that in this case we have exactly 2n−1 vectors without zeros
in I. In general it is easy to construct a counterexample. The key to this recovery is
to consider all vectors from I(G) without zeros. Indeed if G is a constant-sum game
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then for every winning coalition X the complement Xc is losing. It meant that the
vector vX,Xc ∈ I(G) and we can reconstruct the the set of winning coalitions.

Example 3.2.1. One can check that simple games G1 = ([3],W1) and G2 = ([3],W2) have
the same ideal

I = {(0, 1, 1), (1, 1, 0), (1, 1, 1), (−1, 1, 0), (0, 1,−1), (0, 1, 0),

(1, 1,−1), (−1, 1, 1), (0, 0, 1), (1, 0, 0), (1, 0, 1)},

where W1 = {2, 12, 13, 23, 123} and W2 = {23, 12, 123}.

One can see that if in addition to I(G) we know that G is strong (or proper) then
G can be uniquely recovered as well. Indeed, if G is proper and X is a winning
coalition, then Xc is losing and vX,Xc ∈ I(G). This vector does not contain zeros and
X can be recovered from it uniquely. Thus for a proper game we can reconstruct
the set of winning coalitions. Similarly, if G is strong we can reconstruct the set of
losing coalitions.

Proposition 3.2.2. Let G be a finite simple game. Then:

(a) G is weighted iff the system

v · x > 0, v ∈ I(G) (3.4)

has a solution.

(b) G is roughly weighted iff the system

v · x ≥ 0, v ∈ I(G) (3.5)

has a non-zero solution.

Proof. The proof of (a) is contained in (Taylor & Zwicker, 1999) (see Lemma 2.6.5
and comment on page 6 why all weights can be chosen non-negative).

Let us prove (b). Suppose G is roughly weighted, Let v = vX,Y ∈ I(G). Then
X ∈W, Y ∈ L and w = (w1, . . . ,wn) satisfies∑

t∈X

wt ≥ q ≥
∑
s∈Y

ws.

This implies
∑

t∈X wt −
∑

s∈Y ws ≥ 0 or v ·w ≥ 0 and then w is a non-zero solution of
(3.5) (due to the non-triviality assumption).
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On the other hand, any solution to the system of inequalities (3.4) gives us a
vector of weights and a threshold. Let w be such a solution. Then for any two
coalitions X ∈W, Y ∈ L we will have vX,Y ·w ≥ 0 or∑

t∈X

wt ≥

∑
s∈Y

ws.

Then the smallest sum
∑

t∈X wt, where X ∈ W, will still be greater than or equal to
the largest sum

∑
s∈Y ws, where Y ∈ L. Hence the threshold q can be chosen between

them so that ∑
t∈X

wt ≥ q ≥
∑
s∈Y

ws.

The only problem left is that w can have negative components and in the definition
of a roughly weighted game all weights must be non-negative. However, due to
the monotonicity, if the game G has any rough weights, then it has a non-negative
system of rough weights too (with the same threshold). Indeed, if, say, weight w1

of the first player is negative, then he cannot be pivotal in any winning coalition.
Since his weight is negative, his removal from a winning coalition cannot make it
losing. By the monotonicity, deleting him from a losing coalition does not make
it winning. In this case the weight w1 can be reset to 0 (or a very small positive
weight). We can do this with every negative weight. �

3.3 Criteria for Weighted Majority Games

3.3.1 Trade-robustness and Function f

We remind that a sequence of coalitions

T = (X1, . . . ,X j; Y1, . . . ,Y j) (3.6)

is a trading transform if the coalitions X1, . . . ,X j can be converted into the coalitions
Y1, . . . ,Y j by rearranging players. We will sometimes use the multiset notation and
instead of (3.6) will write

T = (Xa1
1 , . . . ,X

ak
k ; Yb1

1 , . . . ,Y
bm
m ),

where now X1, . . . ,Xk and Y1, . . . ,Yk are all distinct, a1, . . . , ak and b1, . . . , bm are
sequences of positive integers such that

∑k
i=1 ai =

∑m
j=1 b j and Zci

i denotes ci copies
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of Zi with Zi ∈ {Xi,Yi}, ci ∈ {ai, bi}.

We also have the following obvious algebraic reformulation.

Proposition 3.3.1. Let X1, . . . ,X j and Y1, . . . ,Y j be two sequences of subsets of [n]. Then
(3.6) is a trading transform iff

vX1,Y1 + . . . + vX j,Y j = 0.

Proposition 3.3.2. A simple game G is k-trade robust if for no v1, . . . , vm ∈ I(G) and for
no non-negative integers a1, . . . , am such that

∑m
i=1 ai ≤ k, we have

a1v1 + a2v2 + · · · + amvm = 0. (3.7)

Proof. Suppose G is not k-trade robust and there exists a trading transform (3.6)
with Xi ∈W, Yi ∈ L for all i and j ≤ k. Then by Proposition 3.3.1 we have

vX1,Y1 + . . . + vX j,Y j = 0

with vi = vXi,Yi ∈ I(G) so (3.7) holds. On the other hand, if (3.7) is satisfied for∑m
I=1 ai ≤ k, then vi = vXi,Yi for some Xi ∈W and Yi ∈ L and the sequence

(Xa1
1 , . . . ,X

am
m ; Ya1

1 , . . . ,Y
am
m ),

where Xai
i and Yai

i mean ai copies of Xi and Yi, respectively, is a trading transform
violating k-trade robustness. �

Taylor and Zwicker (1992) showed in Theorem 2.5.1 that 22n-trade robustness
implies weightedness of a simple game with n players. As this characterisation of
weighted games implies, to show that the game G is not a weighted majority game,
it is sufficient to present a trading transform (3.6), where all coalitions X1, . . . ,X j

are winning and all coalitions Y1, . . . ,Y j are losing. We will call such a trading
transform a certificate of non-weightedness of G. An interesting question imme-
diately emerges: if we want to check weightedness of a game with n players what
is the maximal length of certificates that we have to check?

Definition 3.3.1. Let G = (P,W) be a simple game with |P| = n. If G is not weighted we
define f (G) to be the smallest positive integer k such that G is not k-trade robust. If G is
weighted we set f (G) = ∞. The larger the value f (G) the closer is the game G to a weighted
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majority game. Let us also define

f (n) = max
G

f (G),

where the maximum is taken over non weighted games with n players. We can also say that
f (n) is the smallest positive integer such that f (n)-trade robustness for an n-player game
implies its weightedness.

Example 3.3.1. In Example 3.1.2 the corresponding 7 × 7 matrix, composed of vectors
vXi,Xc

i
∈ I(G), i = 1, . . . , 7, will be:

1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 −1
1 −1 −1 −1 −1 1 1
−1 −1 1 −1 1 1 −1
−1 −1 1 1 −1 −1 1
−1 1 −1 −1 1 −1 1
−1 1 −1 1 −1 1 −1


.

Its rows sum to the vector (−1,−1,−1,−1,−1,−1,−1). If we also add the vector vP,∅ =

(1, 1, 1, 1, 1, 1, 1) we will get
7∑

i=1

vXi,Xc
i
+ vP,∅ = 0.

This means that the following eight winning coalitions (X1, . . . ,X7,P), where P is the grand
coalition, can be transformed into the following eight losing coalitions: (Xc

1, . . . ,X
c
7, ∅) (note

that ∅ = Pc). The sequence

(X1, . . . ,X7,P; Xc
1, . . . ,X

c
7, ∅) (3.8)

is a certificate of non-weightedness of G. This certificate is not however the shortest. Indeed,
if we take two lines, say, {1, 2, 3} and {3, 4, 5} and swap 2 and 4, then {1, 3, 4} and {2, 3, 5}
will not be lines, hence losing coalitions. Thus, Fano is not 2-trade robust and f (Fano) = 2.

Theorem 2.5.1 gives us an upper bound for f (n). The following theorem gives
a lower bound.

Theorem 3.3.1. (Taylor & Zwicker, 1995) For each integer m ≥ 2, there exists a game
Gabm, called the Gabelman’s game, with (m + 1)2 players, that is m-trade robust but not
(m + 1)-trade robust.
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Summarising the results of Theorems 2.5.1 and 3.3.1 in terms of function f we
may state

Corollary 3.3.1. For any n ≥ 2,

b
√

nc ≤ f (n) ≤ 22n
.

As Taylor and Zwicker noted in (Taylor & Zwicker, 1999) for most non-weighted
games the value of f (G) is 2. The closer the game to a weighted majority game the
longer is the certificate and it is harder to find it.

3.3.2 A New Upper Bound for f

In what follows we use the following notation. Let x ∈ Rn. Then we write x� 0 iff
xi > 0 for all i ∈ [n]. We also write x > 0 iff xi ≥ 0 for all i ∈ [n] with this inequality
being strict for at least one i, and x ≥ 0 iff xi ≥ 0 for all i ∈ [n]. In this section we
will need the following result which may be considered as a folklore.

Theorem 3.3.2. Let A be an m × n matrix with rational coefficients with rows ai ∈ Qn,
i = 1, . . . ,m. Then the system of linear inequalities Ax � 0, x ∈ Rn, has no solution iff
there exist non-negative integers r1, . . . , rm, of which at least one is positive, such that

r1a1 + r2a2 + · · · + rmam = 0.

A proof can be found in (Taylor & Zwicker, 1999, Theorem 2.6.4, p. 71) or in
(Muroga, 1971, Lemma 7.2.1, p. 192).

Theorem 3.3.3. The following statements for a simple game G with n players are equiva-
lent:

(a) G is weighted,

(b) G is N-trade robust for N = (n + 1)2
1
2 n log2 n.

Proof. We only need to prove that (b) implies (a). Suppose G is not weighted. Then
by Proposition 3.2.2 the system of inequalities

v · x > 0, v ∈ I(G),

is inconsistent. By Theorem 3.3.2 there exist vectors v1, . . . , vm ∈ I(G) and non-
negative integers r1, . . . , rm such that r1v1 + r2v2 + · · · + rmvm = 0. Let m be minimal
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with this property. Then all ri’s are non-zero, hence positive. By a standard linear
algebra argument (see, e.g. Theorem 2.11 from (Gale, 1960)) we may then assume
that m ≤ n + 1 and that the system of vectors {v1, . . . , vm−1} is linearly independent.
We will assume that m = n+1 as it is the worst case scenario. Let A = (a1 a2 . . . an+1)
be the (n + 1)×n matrix, which ith row is ai = vi for i = 1, 2, . . . ,n + 1. The null-space
of the matrix A is one-dimensional, and, since (r1, . . . , rn+1) is in it, the coordinates
in any solution are either all positive or all negative. Looking for a solution of the
system x1v1 + . . .+ xnvn = −vn+1, by Cramer’s rule we find xi = det Ai/det A, where
A = (a1 . . . an) and Ai is obtained when ai in A is replaced with an+1. Thus

det A1 a1 + . . . + det An an + det A an+1 = 0

and by the Hadamard’s inequality (Hadamard, 1893) we have det Ai ≤ nn/2 =

2
1
2 n log2 n. The sum of all coefficients is smaller than or equal to (n + 1)2

1
2 n log2 n = N.

Since G is N-trade robust this is impossible by Proposition 3.3.2. �

Corollary 3.3.2. f (n) ≤ (n + 1)2
1
2 n log2 n.

3.3.3 A New Lower Bound for f (n)

Let w = (w1, . . . ,wn) be a vector with non-negative coordinates. There may be
some linear relations with integer coefficients between the coordinates of w. Let us
define those relations that will be important for us. Let X,Y be subsets of [n] such
that Xi ∩ Yi = ∅. If vX,Y ·w = 0, which is the same as

∑
i∈X wi −

∑
j∈Y w j = 0, then we

say that the coordinates of w are in the relation which corresponds to the vector
v = vX,Y ∈ Tn.

Given X ⊆ [n] we may then introduce w(X) =
∑

i∈X wi. For two subsets X,Y ⊆ [n]
we write X ∼ Y if w(X) = w(Y). Of course, if this happens, then the coordinates of
w satisfy the equation vX,Y ·w = 0. Suppose X ∼ Y, then the equivalence X′ ∼ Y′,
where X′ = X − (X ∩ Y) and Y′ = Y − (X ∩ Y) will be called primitive and X ∼ Y
will be called a consequence of X′ ∼ Y′.

Example 3.3.2. Consider the vector of weights w = (w1,w2,w3,w4,w5) = (1, 2, 5, 6, 10).
Then

w1 + w3 = w4, w1 + w4 = w2 + w3, w2 + w5 = w1 + w3 + w4, w3 + w4 = w1 + w5
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are relations which correspond to vectors

(1, 0, 1,−1, 0), (1,−1,−1, 1, 0), (−1, 1,−1,−1, 1), (−1, 0, 1, 1,−1),

respectively. It is easy to check that there are no other relations between the coordinates of
w. (Note that we do view w1 + w2 + w3 = w2 + w4 and w1 + w3 = w4 as the same relation.)

We have7

Primitive equivalence Total weight of equal subsets
13 ∼ 4 6

14 ∼ 23 7
25 ∼ 134 12
34 ∼ 15 11

Apart from these four equivalences and their consequences there are no other equivalences.

Definition 3.3.2. Let w = (w1, . . . ,wn) be a vector of non-negative coordinates. We
will say that w satisfies the kth Fishburn’s condition if there exist distinct vectors
vi = vXi,Yi ∈ Tn, i = 1, . . . , k, with Xi ∩ Yi = ∅, such that:

• Xi ∼ Yi for i = 1, . . . , k, that is vi ·w = 0 is a relation for the coordinates of w.

• Apart from v1, . . . , vk there are no other relations.

•
∑k

i=1 vi = 0,

• No proper subset of vectors of the system {v1, . . . , vk} is linearly dependent.

For us the importance of this condition is shown in the following:

Theorem 3.3.4. Let w = (w1, . . . ,wn), n > 2, be a vector with positive coordinates which
satisfies the kth Fishburn condition. Then there exists a simple game on n+k players which
is (k − 1)-trade robust but not k-trade robust.

Proof. Suppose vectors vi = vXi,Yi ∈ Tn, i = 1, . . . , k are those that are required
for the kth Fishburn condition. Then by Proposition 3.3.1 the sequence T =

(X1, . . . ,Xk; Y1, . . . ,Yk) is a trading transform. Let w(X) be the total weight of
the coalition X. Then we have si = w(Xi) = w(Yi) for i = 1, . . . , k. Let N be any
positive integer greater than 2w(P).

7Here and below we omit curly brackets in the set notation

54



We define

P′ = P ∪ {n + 1, . . . ,n + k}, X′i = Xi ∪ {n + i}, Y′i = Yi ∪ {n + i}.

Then T1 = (X′1 . . . ,X
′

k; Y′1 . . . ,Y
′

k) is obviously also a trading transform. Let us give
weight N − si to n + i. We will call these new elements heavy. Then

w(X′1) = . . . = w(X′k) = w(Y′1) = . . . = w(Y′k) = N.

Moreover, we are going to show that no other subset of P′ has weight N. Suppose
there is a subset Z ⊂ P′ whose total weight is N and which is different from any of
the X′1, . . .X

′

k and Y′1, . . .Y
′

k. Since N > 2w(P) and 2N− si− s j ≥ 2N−2w(P) > N holds
for any i, j ∈ {1, . . . , k}, then Z must contains no more than one heavy element, say
Z contains n + i. Then for Z′ = Z − {n + i} we have w(Z′) = N − (N − si) = si which
implies Z′ = Xi or Z′ = Yi, a contradiction.

Let us now consider the game G on [n] with roughly weighted representation
[N; w1, . . . ,wn], where X′1, . . .X

′

k are winning and Y′1, . . .Y
′

k are losing. Since these
are the only subsets on the threshold, the game is fully defined. T1 becomes a
certificate of non-weightedness for G so it is not k-trade robust. Let us prove
that it is (k − 1)-trade robust. Suppose, to the contrary, there exists a certificate of
non-weightedness for G

T2 = (U1, . . . ,Us; V1, . . . ,Vs), s ≤ k − 1, (3.9)

where U1, . . . ,Us are all winning and V1, . . . ,Vs are all losing. Then this can happen
only if all these vectors are on the threshold, that is,

w(U1) = . . . = w(Us) = w(V1) = . . . = w(Vs) = N,

hence Ui ∈ {X′1, . . .X
′

k} and V j ∈ {Y′1, . . .Y
′

k}. As was proved, any of Ui and any
of V j contain exactly one heavy player. Suppose, without loss of generality, that
U1 = X′i1 = Xi1 ∪ {n + i1}. Then we must have at least one player n + i1 among the
V1, . . . ,Vs. Without loss of generality we may assume that V1 = Y′i1 = Yi1 ∪ {n + i1}.
We may now cancel n + i1 from the trading transform (3.9) obtaining a certificate of
non-weightedness

T3 = (Xi1 ,U2, . . . ,Us; Yi1 ,V2, . . . ,Vs).
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Continuing this way we will come to a certificate of non-weightedness

T4 = (Xi1 , . . . ,Xis ; Yi1 , . . . ,Yis),

which by Proposition 3.3.1 will give us v1+. . .+vs = 0. The latter contradicts the fact
that no proper subset of vectors of the system {v1, . . . , vk} is linearly dependent. �

Fishburn (1997) proved the following combinatorial lemma which plays the key
role in our construction of games.

Lemma 3.3.1 (Fishburn, 1997). For every n ≥ 5 there exists a vector of weights w =

(w1, . . . ,wn) which satisfies the (n − 1)-th Fishburn condition.

Proof. See (Fishburn, 1996, 1997). �

Corollary 3.3.3. For each integer n ≥ 5, there exists a game with 2n − 1 players, that is
(n − 2)-trade robust but not (n − 1)-trade robust. Moreover, n − 1 ≤ f (2n − 1). For an
arbitrary n ⌊n − 1

2

⌋
≤ f (n). (3.10)

Proof. The first part follows immediately from Theorem 3.3.4 and Lemma 3.3.1.
Indeed, in this case the length of the shortest certificate of non-weightedness is
n− 1. We also trivially have n− 1 ≤ f (2n). These two inequalities can be combined
into one inequality (3.10). �

Example 3.3.3 (Continuation of Example 3.3.2). Suppose P = [9]. The first five
players get weights (w1,w2,w3,w4,w5) = (1, 2, 5, 6, 10). The other four players get weights
(w6,w7,w8,w9) = (106, 105, 100, 101). Then we get the following equivalences:

Equivalence Total weight of subsets
136 ∼ 46 6+106= 112
147 ∼ 237 7+105= 112
258 ∼ 1348 12+100= 112
349 ∼ 159 11+101= 112

We define

• Coalitions whose total weight is > 112 are winning.

• Coalitions whose total weight is < 112 are losing.
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• 46, 237, 1348, 159 are winning.

• 136, 147, 258, 349 are losing.

This gives us a game with a shortest certificate of length 4, that is, f (9) ≥ 4. Gabelman’s
example (see Example 2.5.1) gives f (9) ≥ 3.

Fishburn (1996, 1997) conjectured that a system of n weights cannot satisfy the
n′th Fishburn condition for n′ ≥ n. This appeared to be not the case. Conder
and Slinko (2004) showed that a system of 7 weights can satisfy the 7th Fishburn
condition. Conder8 checked that this is also the case for 7 ≤ n ≤ 13. Marshall
(2007) introduced a class of optimus primes and showed that if p is such a prime
then a system of p weights satisfying the pth Fishburn condition exists. Although
computations show that optimus primes are quite numerous (Marshall, 2007), it is
not known if there are infinitely many of them. The definition of an optimus prime
is too technical to give here.

Corollary 3.3.4. For each integer 7 ≤ n ≤ 13 and also for any n which is an optimus
prime, there exists a game with 2n players, that is (n − 1)-trade robust but not n-trade
robust. Moreover, n ≤ f (2n) for such n.

Proof. Follows from Theorem 3.3.4 along the lines of Corollary 3.3.3. �

3.4 Criteria for Roughly Weighted Games

3.4.1 A Criterion for Rough Weightedness

The following result that we need in this section is not new either. Kraft et al. (1959)
outlined the idea of its proof without much detail. Since this result is of fundamental
importance to us, we give a full proof in the appendix (see Appendix A). On its
our rights this theorem is also known and ”Theorem of the Alternative”, which is
an important tool in convex analysis (for details see Goldman, 1956; Tucker, 1956).

Theorem 3.4.1. Let A be an m × n matrix with rational coefficients. Let ai ∈ Qn,
i = 1, . . . ,m be the rows of A. Then the system of linear inequalities Ax ≥ 0 has no non-
negative solution x ≥ 0, other than x = 0, iff there exist non-negative integers r1, . . . , rm

and a vector u whose all entries are positive integers such that

r1a1 + r2a2 + · · · + rmam + u = 0. (3.11)
8Reported in (Marshall, 2007)
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Definition 3.4.1. A certificate of non-weightedness which includes P and ∅ we will call
potent.

We saw such a certificate in (3.8) for the Fano plane game. Now we can give a
criterion for a game to be roughly weighted.

Theorem 3.4.2 (Criterion of rough weightedness). The game G with n players is
roughly weighted if one of the two equivalent statements holds:

(a) for no positive integer j ≤ (n + 1)2
1
2 n log2 n does there exist a potent certificate of

non-weightedness of length j,

(b) for no positive integer j ≤ (n + 1)2
1
2 n log2 n do there exist j vectors v1, . . . , v j ∈ I(G)

such that
v1 + . . . + v j + 1 = 0, (3.12)

where 1 = (1, 1, . . . , 1).

Proof. Since 1 = vP,∅, by Proposition 3.3.1 we know that (a) and (b) are equivalent.
We also note that, as in Theorem 3.3.3, it can be shown that if a relation (3.12)
holds in an n-player game for some j, then there is another such relation with
j ≤ (n + 1)2

1
2 n log2 n.

Suppose that (3.12) is satisfied but G is roughly weighted. By Proposition 3.2.2
this means that the system

vi · x ≥ 0, i = 1, 2, . . . , j (3.13)

has a non-zero non-negative solution, let us call it also x0. Then

0 = (v1 + . . . + v j + 1) · x0 ≥ |x0| > 0,

where |x| denotes the sum of all coordinates of x. This is a contradiction.
Let us suppose now that a system of rough weights for the game G does not

exist. Then the system (3.13) has no solution and by Theorem 3.4.1 there exist
vectors v1, . . . , vm ∈ I(G) and a vector u whose all coordinates are positive integers
and

v1 + . . . + vm + u = 0 (3.14)

(where not all of the vectors vi may be different). Let us consider the relation (3.14)
with the smallest sum |u| = u1 + . . . + un of coordinates of u. If |u| = n we are
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done. Suppose ui > 1 for some i ∈ [n]. Then we can find j ∈ [n] such that the ith
coordinate of v j is −1. Then v′j = v j + ei ∈ I(G) and we can write

v1 + . . . + v′j + . . . + vm + u′ = 0,

where u′ = u − ei. Since all coordinates of u′ are positive integers and their sum is
|u| − 1 this contradicts the minimality of |u|. �

The game Fano can be generalised in several different ways. We will consider
two such generalisations.

Example 3.4.1 (Hadamard games). An Hadamard matrix H of order n × n is a matrix
with entries ±1 such that HTH = HHT = In, where In is the identity matrix of order n. The
latter condition is equivalent to the system of rows of H as well as the system of columns
being orthogonal. The standard example of Hadamard matrices is the sequence

H1 =

(
1 1
1 −1

)
, Hk+1 =

(
Hk Hk

Hk −Hk

)
discovered by Sylvester (1867). Here Hk is an 2k

× 2k matrix. It is known that the order
of an Hadamard matrix must be divisible by four and the hypothesis is being tested that
for any k an Hadamard matrix of order 4k exists. However it has not been proven and the
smallest k number for which it is not known whether or not an Hadamard matrix of order
4k exists is currently 167 (Kharaghani & Tayfeh-Rezaie, 2005).

Suppose now that an Hadamard matrtix of order n > 4 exists. In a usual way (by
multiplying certain rows and columns by −1, if necessary) we may assume that all integers
in the first row and in the first column of H are 1. Then we consider the matrix H which is
H without its first row and its first column. The game HGn−1 = (P,W) will be defined on
the set of players P = [n−1]. We consider the rows of H and view them as the characteristic
vectors of subsets X1, . . . ,Xn−1. Any two rows of H are orthogonal which implies that the
number of places where these two rows differ are equal to the number of places where they
coincide. However, if Xi ∩ X j = ∅, then the number of places where the two rows differ
would be 2(n/2 − 1) = n − 2 which is greater than n/2 for n > 4. Hence Xi ∩ X j , ∅ for
any i, j. Let us consider X1, . . . ,Xn−1 as minimal winning coalitions of HGn−1. It is easy
to see that the Hadamard game HG7 obtained from H3 is the Fano plane game.

Definition 3.4.2. A game with n players will be called cyclic if the characteristic vectors
of minimal winning coalitions consist of a vector w ∈ Zn

2 and all its cyclic permutations.
We will denote it by C(w).
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It is not difficult to see that the game Fano in Example 3.1.2 is cyclic.

Theorem 3.4.3. Suppose that the Hamming weight of w ∈ Zn
2 is smaller than n/2 and

the game C(w) is proper. Then it is not roughly weighted.

Proof. Let X1, . . . ,Xn correspond to the characteristic vectors, which are w and all
its cyclic permutations. Suppose that the Hamming weight of w is k. Then the
sequence

T = (X1, . . . ,Xn,P, . . . ,P︸  ︷︷  ︸
n−2k

; Xc
1, . . . ,X

c
n, ∅, . . . , ∅︸  ︷︷  ︸

n−2k

)

is a trading transform. Since the game is proper, X1, . . . ,Xn ∈W and Xc
1, . . . ,X

c
n ∈ L.

Thus by Theorem 3.4.2 the game C(w) is not roughly weighted. �

Richardson (1956) studied the following class of games that generalise the Fano
game. Let q = pr, where p is prime. Let GF(q) be the Galois field with q elements and
PG(n, q) be the projective n-dimensional space over GF(q). It is known (Richardson,
1956; Hall, 1986) that PG(n, q) contains qn+1

−1
q−1 points and any its (n− 1)-dimensional

subspace consists of qn
−1

q−1 points. Any two such subspaces have qn−1
−1

q−1 points in their
intersection.

We define a game Prn,q = (PG(n, q),W) by defining the set Wm of all minimal
winning coalition be the set of all (n − 1)-dimensional subspaces of PG(n, q). This
class of games is known as projective games. These games are cyclic by Singer’s
theorem (see, e.g., Hall, 1986, p. 156).

Corollary 3.4.1. Any projective game is not roughly weighted.

Proof. We note that, since any two winning coalitions of Prn,q intersect, this game is
proper. By Singer’s Theorem any projective game Prn,q is cyclic. Now the statement
follows from Theorem 3.4.3. �

3.4.2 The AT-LEAST-HALF Property

We can also characterise rough weightedness in terms of EL sequences similar
to Theorem 2.6.1 of Taylor and Zwicker (1999). We remind to the reader that a
coalition is blocking if it is a complement of a losing coalition. A sequence of
coalitions (Z1, . . . ,Z2k) is called an EL sequence of degree k (see Taylor & Zwicker,
1999, p. 61) if half of its coalitions are winning and half are blocking.
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Definition 3.4.3. A simple game satisfies the at-least-half property of degree k if any
EL sequence of degree k or less has some player occurring in at least half of the coalitions in
the sequence.

Theorem 3.4.4. For a simple game G the following are equivalent:

(i) G is roughly weighted.

(ii) G has the at-least-half property of degree (n + 1)2
1
2 n log2 n.

Proof. Suppose G is roughly weighted and let [q; w1, . . . ,wn] be its roughly weighted
representation. Let Z = (Z1, . . . ,Z2k) be an EL sequence. Then any winning coalition
in Z has weight of at least q and any blocking coalition in Z has weight of at least
Σ − q, where Σ =

∑n
i=1 wi. The total weight of coalitions in Z is therefore at least

kq + k(Σ − q) = kΣ. If (ii) is not satisfied, then any player occurs in the sequence
less than k times and the total weight of coalitions in Z is therefore strictly less than∑n

i=1 kwi = kΣ, which is a contradiction. Hence (i) implies (ii).
Suppose now that (ii) is satisfied but G is not roughly weighted. Then there

exist a potent certificate of non-weightedness

T = (X1, . . . ,Xk,P; Y1, . . . ,Yk, ∅),

where k ≤ (n + 1)2
1
2 n log2 n. Then the sequence Z = (X1, . . . ,Xk; Yc

1, ...,Y
c
k) is an EL

sequence. Consider an arbitrary player a. For a certain positive integer s it occurs
s times in the subsequence Z′ = (X1, . . . ,Xk,P) and s times in the subsequence
Z′′ = (Y1, . . . ,Yk, ∅). Thus in Z it will occur (s − 1) + (k − s) = k − 1 times, which is
less than half of 2k and the at-least-half property of degree k does not hold. By the
Criterion of rough weightedness (Theorem 3.4.2) k can be chosen in the interval
[1, (n + 1)2

1
2 n log2 n], a contradiction. �

3.4.3 Function g.

Suppose now that we have to check if a game G is roughly weighted or not.
According to the Criterion of Rough Weightedness (Theorem3.4.2) we have to
check if there are any potent certificates of non-weightedness. We have to know
where to stop while checking those. We will define a new function for this.

Definition 3.4.4. If the game is roughly weighted let us set g(G) = ∞. Alternatively, g(G)
is the length of the shortest potent certificate of non-weightedness for G. We also define a
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function
g(n) = max

G
g(G),

where the maximum is taken over non roughly-weighted games with n players.

Checking rough weightedness of a game with n players we then have to check
all potent certificates of non-weightedness up to a length g(n).

For the Fano plane game in Example 3.1.2 we have a potent certificate of non-
weightedness (3.8) which has length 8. We will prove that this is the shortest potent
certificate for this game.

Theorem 3.4.5. g(Fano) = 8.

Proof. We claim that any v ∈ I(G) has the sum of coefficients |v| = v1 + . . .+ vn ≥ −1.
Indeed, such a vector would be of the form v = vX,Y, where X is winning and Y is
losing. Since X is winning v has at least three positive ones and since Y is losing it
has at most four negative ones (as all coalitions of size five are winning).

Suppose now there is a sum

v1 + . . . + v j + 1 = 0,

where vi ∈ I(G), which represents a potent certificate of non-weightedness of length
less than eight. In this case j ≤ 6. By the observation above the sum of coefficients
of vectors v1, . . . , v6 is at least −6. Since the sum of coefficients of 1 is seven, we
obtain a contradiction. �

Theorem 3.4.6. f (HGn) = 2 and g(HGn) = n + 1 for all n.

Proof. Repeats the respective proofs for the Fano game. �

Let us now deal with the lower and upper bounds for g.

Theorem 3.4.7. For any n > 5

2n + 3 6 g(n) 6 (n + 1)2
1
2 n log2 n.

Proof. Due to Theorem 3.4.2 we need only to take care of the lower bound. For this
we need to construct a game G with n players such that g(G) = 2n + 3.

Let us define the game Gn,2 = ([n],W) where

• {1, 2} ∈W and {3, 4, 5} ∈W;
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• if |S| > 3 then S ∈W.

Note that all losing coalition have cardinality at most three.
We note that the trading transform

T ={{1, 2}n, {3, 4, 5}n+2,P; {2, 3, 5}3, {2, 3, 4}3,

{2, 3, 6}, . . . , {2, 3,n}︸                  ︷︷                  ︸
n−5

, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}n−1, ∅}

is a potent certificate of non-weightedness for G. Its length 2n + 3 is minimal. To
prove this we will use the idea introduced in the proof of Theorem 3.4.5. Since
all losing coalition have cardinality at most three, any v ∈ I(G) has the sum of
coordinates v1 + . . .+ vn ≥ −1 and all such vectors v with v1 + . . .+ vn = −1 have the
form v{1,2},Y for Y being a losing 3-player coalition.

Suppose now there is a sum

v1 + . . . + vk + 1 = 0,

where vi ∈ I(G), which represents a potent certificateT = (X1, . . . ,Xk,P; Y1, . . . ,Yk, ∅).
Due to the comment above, at least n vectors among v1, . . . , vk must have the sum
of coordinates −1 and hence be of the form v{1,2},Y, where Y is a losing 3-player
coalition. This means that there are at least n sets {1, 2} among X1, . . . ,Xk. Add the
grand coalition and we obtain that the union X1 ∪ . . . ∪ Xk ∪ P has at least n + 1
elements 1 and at least n + 1 elements 2. At the same time no losing coalition can
contain both 1 and 2. Hence we will need at least 2n + 2 losing coalitions Y1, . . . ,Yk

to achieve the equality X1∪ . . .∪Xk∪P = Y1∪ . . .∪Yk∪∅. Hence T is minimal. �

3.4.4 Further Properties of Functions f and g.

What can we say about the relation between f (n) and g(n)? One thing that can be
easily observed is given in the following theorem.

Theorem 3.4.8. f (n) ≤ g(n) − 1.

Proof. Suppose g(n) is finite and there is a sum

v1 + . . . + vm + 1 = 0, m = g(n) − 1,

where vi ∈ I(G), which represents a potent certificate of non-weightedness of length
g(n). We will show that v1, . . . , vm can absorb 1 = e1 + . . . + en and remain in I(G).
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Let us start with e1. One of the vectors, say vi, will have −1 in the first position.
Then we replace vi with vi + e1. The new vector is again in I(G). It is clear that we
can continue absorbing ei’s until all are absorbed. �

Let us talk about the duality in games. The operation of taking the dual is
known to preserve both weightedness and rough weightedness (Taylor & Zwicker,
1999).

Theorem 3.4.9. Let g be a simple game, then f (G) = f (G∗) and g(G) = g(G∗).

Proof. Firstly, we shall prove the statement about f . Let G = (P,W) be a simple game
and T = (X1, . . . ,Xk; Y1, . . . ,Yk) be a certificate of non-weightedness of G, then a
sequence of even length T ∗ = (Yc

1, . . . ,Y
c
k; Xc

1, . . . ,X
c
k) will be a trading transform for

G∗. Indeed, it is not difficult to see that Xc
1, . . . ,X

c
k are losing coalitions in G∗ and

Yc
1, . . . ,Y

c
k are winning. Hence f (G) ≤ f (G∗). However, due to Theorem 2.9.1 we

have f (G∗) ≤ f (G∗∗) = f (G). Proof of the second part of the theorem is similar. �

3.5 Complete Simple Games

Complete games are a very natural generalisation of weighted games. At the same
time this class is much larger so measures of non-weightedness for such games are
important and interesting.

Suppose a complete simple game G is not weighted with |P| = n. Theorem 4.3
of (Freixas & Molinero, 2009b) states that then there exists a certificate of non-
weightedness

T = (X1, . . . ,Xk; Y1, . . . ,Yk) (3.15)

for G such that all coalitions X1, . . . ,Xk are shift-minimal winning coalitions. The
shortest certificate of this kind may not be the shortest in the class of all certificates
of non-weightedness. So if G is complete and not weighted we define i(G) to be the
smallest positive integer k such that G has a certificate of non-weightedness (3.15)
with all X1, . . . ,Xk being shift-minimal winning coalitions. If G is weighted we set
i(G) = ∞. Let us also define

i(n) = max
G

i(G),

where the maximum is taken over all non-weighted complete games G with n
players.
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Theorem 3.5.1. For an odd n ≥ 9⌈n
2

⌉
≤ i(n) ≤ (n + 1)2

1
2 n log2 n.

Proof. The upper bound follows from Corollary 3.3.2. The lower bound follows
from Theorem 5.1 of (Freixas & Molinero, 2009b). �

3.6 Games with a Small Number of Players

Proposition 3.6.1. Suppose G is a simple game with n players. Then G is roughly weighted
if any one of the following three conditions holds:

(a) G has a passer.

(b) G has a vetoer.

(c) G has a losing coalition that consists of n − 1 players.

Proof. To prove (a) we simply give weight 1 to the passer and 0 to everybody else.
The rough quota must be set to 0 (this is possible since we have a non-zero weight).
To prove (b) suppose that v is a vetoer for this game and that there exists a potent
certificate of non-weightedness

T = (X1, . . . ,Xk,P; Y1, . . . ,Yk, ∅), (3.16)

Then v belongs to all winning coalitions X1, . . . ,Xk,P of this trading transform but it
cannot belong to all losing coalitions since ∅ does not contain v. This contradiction
proves (b). Part (c) follows from (b) since if Y is a losing coalition of size n− 1, then
the player v such that {v} = P − Y is a vetoer. �

Theorem 3.6.1. Let G be a proper simple game with n players. If G has a two-player
winning coalition, then G is a roughly weighted game.

Proof. Suppose G has a two-player winning coalition. Players from this coalition
we will call heavy. Since G is proper every winning coalition X must contain at least
one heavy player and any losing coalition Y can contain at most one. Then a potent
certificate of non-weightedness (3.16) cannot exist since coalitions X1, . . . ,Xk,P will
contain at least k+2 heavy players while coalitions Y1, . . . ,Yk, ∅will contain at most
k. Therefore G is roughly weighted. �
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Corollary 3.6.1. Let G be a simple strong game with n players. If G has a losing coalition
of cardinality n − 2, then G is a roughly weighted game.

Proof. The dual game G∗ is proper and it will have a two-player winning coalition,
hence Theorem 3.6.1 implies this corollary since the operation of taking the dual
game preserves rough weightedness. �

Proposition 3.6.2. Every game with n 6 4 players is a roughly weighted game.

Proof. It is obvious for n = 1, 2, 3 as all games in this case are known to be weighted.
Let G be a 4-player simple game. If G has a one-player winning coalition it is roughly
weighted by Proposition 3.6.1(a). Also, if G has a 3-player losing coalition, it is
roughly weighted by Proposition 3.6.1(c). Thus we may assume that all winning
coalitions have at least two players and all losing coalitions have at most two
players.

Suppose that there is a potent certificate of non-weightedness of the form (3.16).
As we mentioned, we may assume that |Xi| ≥ 2 and |Yi| ≤ 2 for every i = 1, . . . , k.
But in this case the multisets X1 ∪ . . . ∪ Xk ∪ P and Y1 ∪ . . . ∪ Yk ∪ ∅ have different
cardinalities and cannot be equal which is a contradiction. �

Theorem 3.6.2. Any simple game G with five players, which is either proper or strong, is
a roughly weighted game.

Proof. Assume, to the contrary, that there exists a game G = ([5],W), which is not
roughly weighted. It means that there is a potent certificate of non-weightedness
(3.16). As in the proof of the previous theorem we may assume that |Xi| ≥ 2 and
|Yi| ≤ 3 for all i = 1, . . . , k. We note that there must exist i ∈ [k] such that |Xi| = 2.
If this does not hold, then |Xi| ≥ 3 for all i and the multisets X1 ∪ . . . ∪ Xk ∪ P and
Y1∪ . . .∪Yk∪∅ cannot be equal. Similarly, there must exist j ∈ [k] for which |Y j| = 3.
Now by Theorem 3.6.1 in the proper case and its corollary in the strong case we
deduce that G is roughly weighted. �

The following example shows that the requirement for the game to be strong or
proper cannot be discarded.

Example 3.6.1 (Game with five players that is not roughly weighted). We define the
game G = (P,W), where P = [5], by defining the set of minimal winning coalitions to be

Wm = {{1, 2}, {3, 4, 5}}.
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Then the trading transform

T = {{1, 2}5, {3, 4, 5}7,P; {2, 3, 5}4, {2, 3, 4}2, {1, 3, 4}2, {1, 4, 5}4, ∅}.

is a potent certificate of non-weightedness. Indeed, all four coalitions {2, 3, 5}, {2, 3, 4},
{1, 3, 4}, {1, 4, 5} are losing since they do not contain {1, 2} or {3, 4, 5}.

We note that any simple constant sum game with five players is weighted (von
Neumann & Morgenstern, 1944).

Theorem 3.6.3. Any simple constant sum game with six players is roughly weighted.

Proof. Assume, to the contrary, that G doesn’t have rough weights. Then there
is a a potent certificate of non-weightedness of the form (3.16). Because G is
proper, by Theorem 3.6.1 every Xi has at least three elements. As G is also strong,
so by Corollary 3.6.1 every Y j contains at most three elements. However, it is
impossible to find such trading transformT under these constraints since multisets
X1 ∪ . . . ∪ Xk ∪ P and Y1 ∪ . . . ∪ Yk ∪ ∅ have different cardinalities. �

Example 3.6.2 (Proper game with six players that is not roughly weighted). We
define G = (P,W), where P = [6]. Let the set of minimal winning coalitions be

Wm = {{1, 2, 3}, {3, 4, 5}, {1, 5, 6}, {2, 4, 6}, {1, 2, 6}}.

A potent certificate of non-weightedness for this game is

T = ({1, 2, 3}, {3, 4, 5}2, {1, 5, 6}, {2, 4, 6}, {1, 2, 6},P; {1, 2, 4, 5}2, {1, 3, 4, 6}2, {2, 3, 5, 6}2, ∅).

An example of a not roughtly weighted constunt-sum game is not known.

3.7 Conclusion and Further Research

In this chapter we proved a criterion of existence of rough weights in the language
of trading transforms similar to the criterion of existence of ordinary weights given
byTaylor and Zwicker (1992). We defined two functions f (n) and g(n) which
measure the deviation of a simple game from a weighted majority game and
a roughly weighted majority game, respectively. We improved the upper and
lower bounds for f (n) and obtain upper and lower bounds for g(n). However the
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gap between lower and upper bounds remain large and further investigations are
needed to reduce it.

We believe the class of complete games—as a natural generalisation of weighted
games—must be thoroughly studied. This class is much larger than the class of
weighted games so measures of non-weightedness for complete games are impor-
tant and interesting. Section 3.5 only scratches the surface of this problem.
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Chapter 4

Generalizations of Rough
Weightedness

4.1 Preliminaries

In Example 3.3.1 we saw that the Fano plane game is not roughly weighted. The
following eight winning coalitions corresponding to the lines of the smallest pro-
jective plane—X1, . . . ,X7,P—can be transformed into the following eight losing
coalitions: Xc

1, . . . ,X
c
7, ∅. So the sequence

(X1, . . . ,X7,P; Xc
1, . . . ,X

c
7, ∅)

is a potent certificate of nonweightedness for this game. So the game is not roughly
weighted, thanks to Theorem 3.4.2.

Due to Proposition 3.6.1, there is a trivial way to make any game roughly
weighted. This can be done by adding an additional player and making him or her
a passer. Then we can introduce rough weights by assigning weight 1 to the passer
and weight 0 to every other player and setting the quota equal to 0. Note that if the
original game is not roughly weighted, then such rough representation is unique
(up to multiplicative scaling). In our view, adding a passer trivializes the game but
does not make it closer to a weighted majority game; this is why in definitions of
our hierarchies B and Cwe do not allow 0 as a threshold value.

As in Chapter 3.2 we would like to use algebraic representation of trading
transforms and coalitions.
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4.2 TheA-Hierarchy

This hierarchy of classesAα tries to capture the richness of the class of games that
do not have rough weights, and does so by introducing a parameter α ∈ (0, 1

2 ).
Our method of classification is based on the existence of potent certificates of
nonweightedness for such games (Gvozdeva & Slinko, 2011). We will now show
that potent certificates can be further classified. We will extract a very important
parameter from this classification.

Definition 4.2.1. A certificate of nonweightedness

T = (X1, . . . ,Xm; Y1, . . . ,Ym)

is called an `-potent certificate of length m if it contains at least ` grand coalitions
among X1, . . . ,Xm and at least ` empty sets among Y1, . . . ,Ym.

Obviously, every `-potent certificate of length m is also an `′-potent certificate
of the same length for any `′ < `.

Definition 4.2.2. Let q be a rational number. A game G belongs to the classAq of the
A-hierarchy if G possesses some `-potent certificate of nonweightedness of length m, such
that q = `/m. If α is irrational, we setAα =

⋂
{q:q<α∧ q is rational}Aq.

It is easy to see that, if q ≥ 1
2 , thenAq is empty. Why? Well, suppose q ≥ 1

2 and
Aq is not empty. Then there is a game G with a certificate of nonweightedness

T = (X1, . . . ,Xk,Pm; Y1, . . . ,Yk, ∅
m) (4.1)

with m ≥ k. This is not possible since m copies of P contain more elements than
are contained in the sets Y1, . . . ,Yk taken together and so (4.1) is not a trading
transform. So our hierarchy consists of a family of classes {Aα}α∈(0, 12 ). We would
like to show that this hierarchy is strict, that is, a smaller parameter captures more
games. The following proposition starts us on our path toward showing this, and
after proving this proposition we will soon establish actual strictness when α is
strictly smaller than β.

Proposition 4.2.1. If 0 < α ≤ β < 1
2 , thenAα ⊇ Aβ.

Proof. It is sufficient to prove this statement when α and β are rational. Suppose
that we have a game G inAβ that possesses a certificate of length n1 with k1 grand
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coalitions and β = k1/n1. Let α = k2/n2. We can then represent these numbers as
β = m1/n and α = m2/n, where n = lcm (n1,n2). Since α ≤ β, we have m2 ≤ m1.
Since n = n1h and m1 = k1h for some integer h, we can now combine h certificates
for G to obtain one with length n and m1 grand coalitions. As m1 ≥ m2 we will get
a certificate for G of length n with m2 grand coalitions. So G ∈ Aα.

�

We say that a game G is critical for Aα if it belongs to Aα but does not belong
to anyAβ with β > α.

Theorem 4.2.1. For every rational α ∈ (0, 1
2 ) there exists a critical game G ∈ Aα.

Proof. First, we will construct a two-parameter family of simple games. For any
integers a ≥ 2 and b ≥ 2, let G = ([a2 + a + b + 1],W) be a simple game for
which a coalition X is winning exactly if |X| > a2 + 1 or X contains a subset whose
characteristic vector is a cyclic permutation of (1, . . . , 1︸  ︷︷  ︸

a+1

, 0, . . . , 0︸  ︷︷  ︸
a2+b

).

Let X1, . . . ,Xa2+a+b+1 be winning coalitions, whose characteristic vectors are cyclic
permutations of (1, . . . , 1︸  ︷︷  ︸

a+1

, 0, . . . , 0︸  ︷︷  ︸
a2+b

). Also let Y1, . . . ,Ya2+a+b+1 be losing coalitions,

whose characteristic vectors are cyclic permutations of

(1, . . . , 1︸  ︷︷  ︸
a

, 0, | 1, . . . , 1︸  ︷︷  ︸
a

, 0, | 1, . . . , 1︸  ︷︷  ︸
a

, 0, | . . . , | 1, . . . , 1︸  ︷︷  ︸
a

, 0, | 0, 1, 0, . . . , 0︸  ︷︷  ︸
b−1

),

where there are a groups of symbols 1, . . . , 1︸  ︷︷  ︸
a

, 0. Regarding the b−1 of the rightmost

part, it is important to keep in mind that b − 1 ≥ 1.
This game possesses the following potent certificate of nonweightedness

T = (X1, . . . ,Xa2+a+b+1,Pa2
−a; Y1, . . . ,Ya2+a+b+1, ∅

a2
−a).

One can see that T is a valid potent certificate. By symmetry losing coalitions in T
each contain a2 + 1 copies of every player and winning coalitions X1, . . . ,Xa2+a+b+1

have only a+1 copies of every player. Hence we need to add a2
−a grand coalitions

to make it a trading transform. Clearly the condition a ≥ 2 is necessary, because
otherwise the certificate T will not be potent.
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So G ∈ A a2−a
2a2+b+1

. Let us prove that G is critical for this class, that is, it does not

belong to anyAq′ for q′ > q. Note that the vectors vi = vXi,Yi belong to the ideal of
this game. Note also that the sum of all coefficients of vi is vi · 1 = a − a2 and that
for any other vector v ∈ I(G) from the ideal of this game we have v · 1 ≥ a − a2.

Suppose G also has a potent certificate of nonweightedness

(A1, . . . ,As,Pt; B1, . . . ,Bs, ∅
t), (4.2)

with q′ = t
t+s >

a2
−a

2a2+b+1 = q. The latter is equivalent to a2+a+b+1
a2−a > s

t . Let ui = vAi,Bi ∈

I(G); then (4.2) can be written as

u1 + u2 + · · · + us + t · 1 = 0.

Since ui ·1 ≥ a−a2, taking the dot product of both sides with 1 we get t(a2 +a+b+1) ≤
s(a2
− a), which is equivalent to a2+a+b+1

a2−a ≤
s
t , so we have reached a contradiction.

We will now show that any rational number between 0 and 1
2 is representable as

a2
−a

2a2+1+b for some positive integers a ≥ 2 and b ≥ 2. Let p
q ∈ (0, 1

2 ). Then q− 2p > 0 and
it is possible to choose a positive integer k such that k2p(q − 2p) − kq − 3 > 0. By the
choice of k one can see that kp > 1+

3+2pk
k(q−2p) ≥ 2. Take a = kp and b = k2p(q−2p)−kq−1.

Substituting these values we get a2
−a

2a2+1+b =
p
q . �

Corollary 4.2.1. If 0 < α < β < 1
2 , thenAα ) Aβ.

Example 4.2.1. Let us illustrate this proof by an example. Suppose a game G is defined
on the set of players P = [10] with a = 2 and b = 3. Let us include in W all sets of
cardinality greater than five and all coalitions with three consecutive players (we think of
players as situated on the circle so that 10 and 1 are neighbors). The 3-player minimal
winning coalitions, denoted X1, . . . ,X10, are

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7},

{6, 7, 8}, {7, 8, 9}, {8, 9, 10}, {9, 10, 1}, {10, 1, 2}.

Let Y1, . . . ,Y10 be the losing coalitions, whose characteristic vectors are cyclic per-
mutations of (1, 1, 0, 1, 1, 0, 0, 1, 0, 0), respectively. For example, Y1 = {1, 2, 4, 5, 8},
Y2 = {2, 3, 5, 6, 9}, and Y10 = {10, 1, 3, 4, 7}.

Then the potent certificate of nonweightedness

T = (X1, . . . ,X10,P2; Y1, . . . ,Y10, ∅
2)
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shows that this game belongs to A1/6. As we saw in the proof of Theorem 4.2.1, for no β
satisfying 1/6 < β < 1/2 does G belong toAβ.

As was mentioned before, the larger parameter α is, the more relatively “small”
winning coalitions and relatively “large” losing coalitions the game has. To see
this, consider a simple game G = ([n],W) with an `-potent certificate of length j + `,

T = (X1, . . . ,X j,P`; Y1, . . . ,Y j, ∅
`).

Set α = `/(` + j). Then G ∈ Aα, and the average number of players in winning
coalitions X1, . . . ,X j is σ/ j where σ =

∑
i∈[ j] |Xi|. At the same time the average

number of players in losing coalitions Y1, . . . ,Y j is (σ + n`)/ j. On average a losing
coalition in T contains n`/ j more players than a winning coalition in T . From
above we know that j > `. The bigger `/(` + j) is the bigger the ratio `/ j is and
hence the bigger n`/ j is. This means that when α is increasing some winning
coalitions become smaller and some losing coalitions become larger.

4.3 B-Hierarchy

The B-hierarchy generalizes the idea behind rough weightedness to allow more
“points of (decision) flexibility.”

Definition 4.3.1. A simple game G = (P,W) belongs to Bk if there exist real numbers
0 < q1 ≤ q2 ≤ · · · ≤ qk, called thresholds, and a weight function w : P→ R≥0 such that

(a) if
∑

i∈X w(i) > qk, then X is winning,

(b) if
∑

i∈X w(i) < q1, then X is losing,

(c) if q1 ≤
∑

i∈X w(i) ≤ qk, then w(X) =
∑

i∈X w(i) ∈ {q1, . . . , qk}.

Games from Bk will be sometimes called k-rough.

The condition 0 < q1 in Definition 4.3.1 is essential. If we allow the first threshold
q1 be zero, then every simple game can be represented as a 2-rough game. To do this
we assign weight 1 to the first player and 0 to everyone else. It is also worthwhile
to note that adding a passer does not change the class of the game, that is, a game
G belongs to Bk if and only if the game G′ obtained from G by adding a passer
belongs to Bk. This is because a passer can be assigned a very large weight. Thus
B1 consists of the roughly weighted simple games with nonzero quota.
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Example 4.3.1. We know that the Fano game is not roughly weighted. Let us assign
weight 1 to every player of this game and select two thresholds, q1 = 3 and q2 = 4. Then
each coalition whose weight falls below the first threshold is in L, and each coalition whose
total weight exceeds the second threshold is in W. If a coalition has total weight of three
or four, i.e., its weight is equal to one of the thresholds, it can be either winning or losing.
Thus the Fano is a 2-rough game.

Example 4.3.2. Let n = 8 and assume we have four types of players with players 2i − 1
and 2i forming the ith type. Let us include in W all sets that contain two elements from
the same type. Minimal winning coalitions for this game are {1, 2}, {3, 4}, {5, 6}, {7, 8}. The
trading transform

T = ({1, 2}2, {3, 4}2, {5, 6}2, {7, 8}2,P; {1, 3, 5, 7}3, {2, 4, 6, 8}3, ∅3)

is the potent certificate of nonweightedness. So by Theorem 3.4.2, G is not roughly weighted.
On the other hand, if we assign weight 1 to every player, then G is a 3-rough game with

thresholds 2, 3, and 4. Let us show that G is not 2-rough. Assume, to the contrary, that we
have weights w1, . . . ,w8 and two positive thresholds q1 and q2 that make this game 2-rough.
Without loss of generality we can assume that w2i−1 ≥ w2i for every type i. Two players
of the same type form a winning coalition. This means that the weight of this coalition is
at least q1. Moreover the players w1,w3,w5,w7 with the biggest weight in each type have
weight not smaller than q1

2 each. Let us consider the following three losing coalitions with
strictly increasing weights

{1, 3} ( {1, 3, 5} ( {1, 3, 5, 7}.

The coalition {1, 3} has weight at least q1

2 +
q1

2 = q1. In the worst-case scenario this coalition
lies exactly on the first threshold q1. So the weight of coalition {1, 3, 5} is greater than or
equal to q2. We can see that in every possible scenario the losing coalition {1, 3, 5, 7} has
weight strictly greater than q2, a contradiction.

Let us generalize the idea of Example 4.3.2.

Theorem 4.3.1. For every natural number k ∈N+, there exists a game in Bk+1 − Bk.

Proof. We will construct a simple game that is a (k + 1)-rough but not k-rough. Let
Gk+1,n = ([n],W) be a simple game with n = 2k + 4 players. We have k + 2 types
of players with the ith type consisting of two elements 2i − 1 and 2i. The set of
minimal winning coalitions of this game is Wm = {{2i − 1, 2i} | i = 1, 2, . . . , k + 2}.
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If we assign weight 1 to every player, then Gk+1,n is (k + 1)-rough game with
thresholds q1 = 2, q2 = 3, . . . , qk+1 = k + 2. Let us assume that this game is j-rough
for some j < k + 1, and let w be the new weight function. Without loss of generality
we may assume that the players are ordered so that w(2i − 1) ≥ w(2i). Since the
coalition {2i−1, 2i} is winning we have w(2i − 1) ≥ q1/2 > 0 for any i = 1, 2, . . . , k+2.
The coalitions L j = {2i−1 | 1 ≤ i ≤ j} are losing, their weights are different, and each
of them has weight at least jq1/2 for all 2 ≤ j ≤ k + 2. Thus at least k + 1 coalitions
of different weights lie in the tie-breaking region.

This is a contradiction. Thus Gk+1,n is not j-rough for any j < k + 1. �

An obvious upper bound on the number of thresholds is K − k + 1, where K is
the cardinality of the largest losing coalition and k the cardinality of the smallest
winning coalition. Indeed, it can be made (K − k + 1)-rough by choosing weights
w(i) = 1 for all i ∈ [n] and setting thresholds k, k + 1, . . . ,K. However this bound is
not tight as is seen from the following example.

Example 4.3.3. Let G = ([7],W) be a simple game with minimal winning coalitions
{1, 2}, {6, 7}, {3, 4, 5} and all coalitions of four players except {2, 3, 4, 6}. This game is not
roughly weighted, because we have the following potent certificate of nonweightedness

T ={{1, 2}7, {3, 4, 5}9,P; {2, 3, 5}3, {2, 3, 4}3,

{2, 3, 6}, {2, 3, 7}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}6, ∅}.

Let us assign weight 0 to the third player and 1
2 to everyone else. Then the following four

statements hold:

• w({1, 2}) = w({6, 7}) = w({3, 4, 5}) = 1 and w({2, 3, 4, 6}) = 3
2 .

• If X is winning coalition with four or more players, then w(X) ≥ 3
2 .

• If X is losing coalition with three players, then w(X) ∈ {1, 3
2 }.

• If X is losing coalition with fewer than three players, then w(X) ≤ 1.

Thus G is a 2-rough game with thresholds 1 and 3
2 . Note that the third player has weight

zero but is not a dummy.
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4.4 C-Hierarchy

Let us consider another extension of the idea of rough weightedness. This time we
will use a threshold interval instead of a single threshold or (as in B-hierarchy) a
collection of threshold points. It is convenient to “normalize” the weights so that
the left end of our threshold interval is 1. We do not lose any generality by doing
this.

Definition 4.4.1. We say that a simple game G = (P,W) is in the class Cα, α ∈ R≥1, if
there exists a weight function w : P → R≥0 such that for X ∈ 2P the condition w(X) > α
implies that X is winning, and w(X) < 1 implies X is losing. Games fromCα will sometimes
be called roughα.

The roughly weighted games with nonzero quota form the class C1. From
Example 4.3.1 we can conclude that the Fano game is in C4/3 (by giving each player
weight 1/3). We also note that adding or deleting a passer does not change the
class of the game.

Definition 4.4.2. We say that a game G is critical for Cα if it belongs to Cα but does not
belong to any Cβ with β < α.

It is clear that if α ≤ β, then Cα ⊆ Cβ. However, we can show more.

Proposition 4.4.1. Let c and d be natural numbers with 1 < d < c. Then there is a simple
game G that is roughc/d, but that for each α < c/d is not roughα.

Proof. Define a game G = (P,W), where P = [cd]. Similarly to the proof of Theo-
rem 4.3.1, we have c types of players with d players in each type and the different
types do not intersect. Winning coalitions are sets with at least c + 1 players and
also sets having all d players from the same type. By i j we will denote the ith player
of jth type.

If we assign weight 1/d to each player, then the lightest winning coalition (d
players from the same type) has weight 1 and the heaviest losing coalition has
weight c/d. Thus G belongs to Cc/d.

Let us show that G is not roughα for any α < c/d. Suppose G is roughα relative
to a weight function w. Let max{1 j, . . . , d j} be the element of the set {1 j, . . . , d j} that
has the biggest weight relative to w.

For any type j we know that w(max{1 j, 2 j, . . . , d j}) ≥ 1
d . The coalition

Y = {max{11, . . . , d1}, . . . ,max{1c, . . . , dc}}
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is losing by definition. Moreover, it has weight w(Y) ≥ c/d. So c/d is the smallest
number that can be taken as α so that G is roughα. �

Theorem 4.4.1. For each 1 ≤ α < β, it holds that Cα ( Cβ.

Proof. We know that Cα ⊆ Cβ. If β is a rational number, then by Proposition 4.4.1
there exists a game G that is roughβ but is not roughα. If β is an irrational number,
then choose a rational number r, such that α < r < β. By Proposition 4.4.1 there
exists a game G that is roughr but is not roughα. So Cα ( Cr. All that remains to
notice is that Cr ⊆ Cβ. �

Theorem 4.4.2. Let G be a simple game that is not roughly weighted and is critical for Ca.
Suppose G also belongs toAq for some 0 < q < 1

2 . Then

a ≥
1 − q

1 − 2q
.

Proof. Obviously we can assume that q is rational. Since G is in Aq, it possesses a
certificate of nonweightedness T of the kind

T = (X1, . . . ,Xt,Ps; Y1, . . . ,Yt, ∅
s).

Suppose we have a weight function w : P → R≥0 instantiating G ∈ Cα. Then since
w(Xi) ≥ 1 and w(P) ≥ a, we have

w(X1) + · · · + w(Xt) + sw(P) ≥ t + sa.

On the other hand, w(Yi) ≤ a and

w(Y1) + · · · + w(Yt) ≤ ta.

From these two inequalities we get t + sa ≤ ta or a ≥ t
t−s . Since q = s

t+s we obtain
a ≥ 1−q

1−2q , which proves the theorem.

�
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4.5 Degrees of Roughness of Games with a Small Num-
ber of Players

Suppose there is a fixed number n of players. Then there is an interval [1, s(n)] such
that all games with n players belong to Cs(n) and s(n) is minimal with this property.
There will be also finitely many numbers q ∈ [1, s(n)] such that the interval [1, q]
represents more n-player games than any interval [1, q′] with q′ < q. We call the set
of such numbers the nth spectrum and denote it Spec(n).

First, we will derive bounds on the largest number s(n) of the spectra Spec(n).

Theorem 4.5.1. For n ≥ 4, 1
2

⌊
n
2

⌋
≤ s(n) ≤ n−2

2 .

Proof. Let G be a game with n players. Without loss of generality we can assume
that G does not contain passers. Moreover the maximal value of s(n) is achieved
on games that are not roughly weighted. By Proposition 3.6.1 the biggest losing
coalition contains at most n − 2 players and the smallest winning coalition has at
least two players. If we assign weight 1

2 to every player, then G is in C(n−2)/2.
We can use a game similar to the one from Theorem 4.3.1 to prove the lower

bound. Suppose our game has n players. If n is odd, then the nth player will be a
dummy. The remaining 2

⌊
n
2

⌋
players will be divided into

⌊
n
2

⌋
pairs: {1, 2}, {2, 3}, . . . ,

{m − 1,m}, where m = 2
⌊

n
2

⌋
. These pairs are declared minimal winning coalitions.

Given any weight function w we have w(max{2i − 1, 2i}) ≥ 1
2 for each i. Then

w({max{1, 2}, . . . ,max{m − 1,m}) ≥
m
2
,

while this coalition is losing. So s(n) ≥ m/2 which proves the lower bound.
�

Now let us calculate the spectra for n ≤ 6. By Proposition 3.6.2 all games
with four players are roughly weighted. Since we may assume that the game
does not have passers we may assume that the quota is nonzero. Hence we have
Spec(4) = {1}. So the first nontrivial case is n = 5.

Let G = ([n],W) be a simple game. The problem of finding the smallest α such
that G ∈ Cα holds is a linear programming question. Indeed, let Wmin and Lmax

be the set of minimal winning coalitions and the set of maximal losing coalitions,
respectively. We need to find the minimum α such that the following system of
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linear inequalities is consistent:w(X) ≥ 1 for X ∈Wmin,

w(Y) ≤ α for Y ∈ Lmax.

This is equivalent to the following optimization problem:

Minimize: α.
Subject to:

∑
i∈X wi ≥ 1,

∑
i∈Y wi − α ≤ 0, and wi ≥ 0; X ∈Wmin,Y ∈ Lmax.

Theorem 4.5.2. Spec(5) =
{
1, 6

5 ,
7
6 ,

8
7 ,

9
8

}
.

Proof. Let G be a critical game with five players. If G has a passer, then as was
noted, the passer can be deleted without changing the class of G, hence G ∈ C1.
If G has no passers and does not belong to C1, then it is not roughly weighted.
By Theorem 3.6.2 each game that is not roughly weighted is not strong and is not
proper. Thus we have a winning coalition X such that Xc is also winning and a
losing coalition Y such that Yc is also losing.

By Proposition 3.6.1 we may assume that the cardinalities of both X and Y are
two. Without loss of generality we assume that X = {1, 2} and Xc = {3, 4, 5}. Note
that Y cannot be contained in Xc as otherwise Yc contains X and is not losing. So
without loss of generality we assume that Y = {1, 5},Yc = {2, 3, 4}.

We have two levels of as yet unclassified coalitions, which can be set either
losing or winning:

level 1 : {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5},

level 2 : {1, 3}, {1, 4}, {2, 5}, {3, 5}, {4, 5}.

We wrote Maple code using the “LPSolve” command. First we choose losing
coalitions on level 1 and delete all subsets of them from level 2. We add every
unclassified coalition from level 1 to winning coalitions. After that we choose
losing coalitions on level 2. We run through all possible combinations of losing
coalitions on both levels and solve the respective linear programming problems.
The results of these calculations are displayed in Table 4.1.

�
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α Minimal winning coalitions and Weight representation
maximal losing coalitions

9
8

Wmin = {{1, 2}, {1, 3, 5}, {1, 4, 5}, {3, 4, 5}}, w1 = 5
8 ,w2 = 3

8 ,w5 = 4
8 ,

Lmax = {{1, 5}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}} w3 = w4 = 2
8

8
7

Wmin = {{1, 2}, {2, 5}, {1, 3, 4}, {3, 4, 5}}, w1 = w5 = 3
7 ,w2 = 4

7 ,
Lmax = {{1, 3, 5}, {1, 4, 5}, {2, 3, 4}} w3 = w4 = 2

7

7
6

Wmin = {{1, 2}, {1, 4, 5}, {3, 4, 5}}, w1 = w2 = 3
6 ,

Lmax = {{1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}} w3 = w4 = w5 = 2
6

6
5

Wmin = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}, {4, 5}}, w1 = w5 = 3
5 ,

Lmax = {{1, 5}, {2, 3, 4}} w2 = w3 = w4 = 2
5

Table 4.1: Examples of critical simple games for every number of the 5th spectrum

Theorem 4.5.3. The 6th spectrum Spec(6) contains Spec(5) and also the following frac-
tions:

3
2
,

4
3
,

5
4
,

9
7
,

10
9
,

11
9
,

11
10
,

12
11
,

13
10
,

13
11
,

13
12
,

14
11
,

14
13
,

15
13
,

15
14
,

16
13
,

16
15
,

17
13
,

17
14
,

17
15
,

17
16
,

18
17
.

Proof. Let G be a critical game with six players. If G has a passer, then G ∈ Cα

where α ∈ Spec(5). In the other words Spec(5) ⊆ Spec(6). If G doesn’t have a
passer, then assume it is not roughly weighted. By Theorem 3.6.3 we know that
every game with six players that is not roughly weighted is either not strong
(Y,Yc

∈ L for some Y ∈ 2P) or is not proper (X,Xc
∈ W for some X ∈ 2P). By

Proposition 3.6.1 we can restrict ourselves to the consideration of games for which
every coalition with less than two players is losing and every coalition with more
that four players is winning. Since G is not roughly weighted there is a potent
certificate of nonweightednessT = (X1, . . . ,Xk,P; Y1, . . . ,Yk, ∅), where the coalitions
X1, . . . ,Xk are winning and the coalitions Y1, . . . ,Yk are losing. The latter absorb all
players in X1, . . . ,Xk and the grand coalition. Then there exists a losing coalition
Y j among Y1, . . . ,Yk with more players than in the smallest winning coalition Xi

among X1, . . . ,Xk. If Xi consists of two players, then Y j has at least three players. If
Xi has three players, then Y j has four players and any subset of it with three players
is also losing. Clearly Xi cannot have four players or more. So in any case we have
a losing coalition with three players and a winning coalition with three players.
Without loss of generality we need to check only six possible cases:

• If G is not proper:

1. {1, 2}, {3, 4, 5, 6} ∈W and {1, 3, 4} ∈ L;

80



2. {1, 2}, {3, 4, 5, 6} ∈W and {3, 4, 5} ∈ L;

3. {1, 2, 3}, {4, 5, 6} ∈W and {1, 4, 5} ∈ L.

• If G is not strong:

4. {1, 2}, {3, 4, 5, 6} ∈ L and {1, 3, 4} ∈W;

5. {1, 2}, {3, 4, 5, 6} ∈ L and {1, 2, 3} ∈W;

6. {1, 2, 3}, {4, 5, 6} ∈ L and {1, 2, 4} ∈W.

For each case the algorithm considers all possible assignments of the attributes
“winning” and “losing” to coalitions that are not yet classified. Let level 1 consists of
all 4-element coalitions, level 2 consists of 3-element coalitions, and level 3 consists
of 2-element coalitions. As in the code discussed in the proof of Proposition 4.5.2,
first the algorithm selects losing coalitions at level 1 (everything else at level 1 will
be winning) and classifies all subsets of these coalitions from levels 2 and 3 as
losing. Next it selects losing coalitions among coalitions of level 2, which are not
yet classified, and classifies all subsets of them from level 3 as losing. Finally, it
selects losing coalitions among remaining coalitions of level 3 and solves the linear
programming problem using “LPSolve” in Maple, which tries to assign weights
to players consistent with the classification of coalitions. We repeat everything for
each possible combination of losing coalitions at all levels. The code and the list of
critical games can be found in Appendix.

�

4.6 Conclusion and Further Research

Economics has extensively studied weighted majority games. This class was pre-
viously extended to the class of roughly weighted games (Taylor & Zwicker, 1999;
Gvozdeva & Slinko, 2011). However, many games are not even roughly weighted,
and some of these games are important both for theory and applications.

In this chapter we introduced three hierarchies, each of which partitions the
class of games without rough weights according to some parameter that can be
viewed as capturing some resource—either a measure of our flexibility on the size
and structure of the tie-breaking region or allowing certain types of certificates of
nonweightedness.
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It is important to look for further connections between the classes of the three
hierarchies, and we commend that direction to the interested reader.

Also, in this chapter we studied only the C-spectrum. Some interesting ques-
tions about this spectrum still remain; for example, the bounds for s(n) are of
considerable interest. It would be interesting to study both the A-spectrum and
B-spectrum as well.

As we mentioned in the introduction, another important generalization of a
class of weighted majority games is the class of complete games. All questions that
we investigated in this article can be reformulated for games in this class: strictness
of the three hierarchies, description of spectra, etc. This is an important direction
for future research.
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Chapter 5

Initial Segments Complexes Obtained
from Qualitative Probability Orders

5.1 Qualitative Probability Orders and Discrete Cones

Definition 5.1.1. An order9
� on 2[n] is called a qualitative probability order on [n] if

∅ � A (5.1)

for every subset A of [n], and � satisfies de Finetti’s axiom, namely for all A,B,C ∈ 2[n]

A � B ⇐⇒ A ∪ C � B ∪ C whenever (A ∪ B) ∩ C = ∅ . (5.2)

Note that if we have a probability measure p = (p1, . . . , pn) on [n], where pi is
the probability of i, then we know the probability p(A) =

∑
i∈A pi of every event A.

We may now define a relation � on 2[n] by

A � B if and only if p(A) ≤ p(B);

obviously � is a qualitative probability order on [n], and any such order is called
representable (e.g., Fishburn, 1996; Regoli, 2000). Those not obtainable in this
way are called non-representable. The class of qualitative probability orders is
broader than the class of probability measures for any n ≥ 5 (Kraft et al., 1959).
A non-representable qualitative probability order � on [n] is said to almost agree

9An order in this chapter is any reflexive, complete and transitive binary relation. If it is also
anti-symmetric, it is called linear order.
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with the measure p on [n] if

A � B =⇒ p(A) ≤ p(B). (5.3)

If such a measure p exists, then the order � is said to be almost representable.
Since the arrow in (5.3) is only one-sided it is perfectly possible for an almost
representable order to have A � B but not B � A while p(A) = p(B).

We begin with some standard properties of qualitative probability orders which
we will need subsequently. Let� be a qualitative probability order on 2[n]. As usual
the following two relations can be derived from it. We write A ≺ B if A � B but not
B � A and A ∼ B if A � B and B � A.

Lemma 5.1.1. Suppose that � is a qualitative probability order on 2[n], A,B,C,D ∈ 2[n],
A � B, C � D and B ∩D = ∅. Then A ∪ C � B ∪D. Moreover, if A ≺ B or C ≺ D, then
A ∪ C ≺ B ∪D.

Proof. Firstly, let us consider the case when A∩C = ∅. Let B′ = B−C and C′ = C−B
and I = B ∩ C. Then by (5.2) we have

A ∪ C′ � B ∪ C′ = B′ ∪ C � B′ ∪D

where we have A ∪ C′ ≺ B′ ∪D if A ≺ B or C ≺ D. Now we have

A ∪ C′ � B′ ∪D⇔ A ∪ C = (A ∪ C′) ∪ I � (B′ ∪D) ∪ I = B ∪D.

Consider the case when A ∩ C , ∅. Let A′ = A − C. By (5.1) and (5.2) we now have
A′ � B. Since now we have A′ ∩ C = ∅ so by the previous case

A ∪ C = A′ ∪ C � B ∪ C � B ∪D.

One can check that if either A ≺ B or C ≺ D we will get a strict inequality A ∪ C ≺
B ∪D in this case as well. �

A weaker version of this lemma can be found in (Maclagan, 1998/99, Lemma
2.2).

Definition 5.1.2. We say that an order � on 2[n] satisfies the k-th cancellation con-
dition CCk if there does not exist a trading transform (A1, . . . ,Ak; B1, . . . ,Bk) such that
Ai � Bi for all i ∈ [k] and Ai ≺ Bi for at least one i ∈ [k].
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The key result of (Kraft et al., 1959) can now be reformulated as follows.

Theorem 5.1.1 (Kraft-Pratt-Seidenberg). A qualitative probability order � is repre-
sentable if and only if it satisfies CCk for all k = 1, 2, . . ..

It was also shown in (Fishburn, 1996, Section 2) that CC2 and CC3 hold for linear
qualitative probability orders. This follows from de Finetti’s axiom and properties
of linear orders. It can be shown that a qualitative probability order satisfies CC2

and CC3 as well. Hence CC4 is the first nontrivial cancellation condition. As
was noticed in (Kraft et al., 1959), for n < 5 all qualitative probability orders are
representable, but for n = 5 there are non-representable ones. For n = 5 all orders
are still almost representable (Fishburn, 1996) which is no longer true for n = 6
(Kraft et al., 1959).

It will be useful for our constructions to rephrase some of these conditions in
vector language. To every such linear order �, there corresponds a discrete cone
C(�) in Tn, where T = {−1, 0, 1}, as defined in (Fishburn, 1996).

Definition 5.1.3. A subset C ⊆ Tn is said to be a discrete cone if the following properties
hold:

D1. {e1, . . . , en} ⊆ C, where {e1, . . . , en} is the standard basis of Rn,

D2. {−x, x} ∩ C , ∅ for every x ∈ Tn,

D3. x + y ∈ C whenever x,y ∈ C and x + y ∈ Tn.

We note that Fishburn (1996) requires 0 < C because his orders are anti-reflexive.
In our case, condition D2 implies 0 ∈ C.

Given a qualitative probability order � on 2[n], for every pair of subsets A,B
satisfying B � A we construct the characteristic vector of this pair χ(A,B) = χ(A)−
χ(B) ∈ Tn. We define the set C(�) of all characteristic vectors χ(A,B), for A,B ∈ 2[n]

such that B � A. The two axioms of qualitative probability guarantee that C(�) is
a discrete cone (see Fishburn, 1996, Lemma 2.1).

Following Fishburn (1996), the cancellation conditions can be reformulated as
follows:

Proposition 5.1.1. A qualitative probability order � satisfies the k-th cancellation condi-
tion CCk if and only if there does not exist a set {x1, . . . , xk} of nonzero vectors in C(�) such
that

x1 + x2 + · · · + xk = 0 (5.4)
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and −xi < C(�) for at least one i.

Geometrically, a qualitative probability order � is representable if and only if
there exists a non-negative vector u ∈ Rn such that

x ∈ C(�)⇐⇒ (u, x) ≥ 0 for all x ∈ Tn
− {0},

where (·, ·) is the standard inner product; that is, � is representable if and only if
every non-zero vector in the cone C(�) lies in the closed half-space H+

u = {x ∈ Rn
|

(u, x) ≥ 0} of the corresponding hyperplane Hu = {x ∈ Rn
| (u, x) = 0}.

Similarly, for a non-representable but almost representable qualitative probabil-
ity order �, there exists a vector u ∈ Rn with non-negative entries such that

x ∈ C(�) =⇒ (u, x) ≥ 0 for all x ∈ Tn
− {0}.

In the latter case we can have x ∈ C(�) and −x < C(�) despite (u, x) = 0.
In both cases, the normalised vector u gives us the probability measure, namely

p = (u1 + . . .+ un)−1 (u1, . . . , un), from which � arises or with which it almost agrees.

5.2 Simplicial Complexes and Their Cancellation Con-
ditions

In this section we will introduce the objects of our study, simplicial complexes that
arise as initial segments of a qualitative probability order. Using cancellation con-
ditions for simplicial complexes, we will show that this class contains the threshold
complexes and is contained in the shifted complexes. Using only these conditions
it will be easy to show that the initial segment complexes are strictly contained in
the shifted complexes. Showing the strict containment of the threshold complexes
will require more elaborate constructions which will be developed in the rest of the
chapter.

Definition 5.2.1. A subset ∆ ⊆ 2[n] is an (abstract) simplicial complex if it satisfies
the condition:

if B ∈ ∆ and A ⊆ B, then A ∈ ∆.

Subsets that are in ∆ are called faces. Abstract simplicial complexes arose from
geometric simplicial complexes in topology (e.g., Maunder, 1996). Indeed, for
every geometric simplicial complex ∆ the set of vertex sets of simplices in ∆ is an
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abstract simplicial complex, also called the vertex scheme of ∆. In combinatorial
optimization various abstract simplicial complexes associated with finite graphs
(Jonsson, 2005) are studied, such as the independence complex, matching complex
etc. Abstract simplicial complexes are also in one-to-one correspondence with
simple games as defined by (von Neumann & Morgenstern, 1944). Obviously the
set of losing coalitions L is a simplicial complex. The reverse is also true: if ∆ is a
simplicial complex, then the set 2[n]

− ∆ is a set of winning coalitions of a certain
simple game.

A well-studied class of simplicial complexes is the threshold complexes (mostly
as an equivalent concept to the concept of a weighted majority game but also
as threshold hypergraphs (Reiterman et al., 1985)). A simplicial complex ∆ is a
threshold complex if there exist non-negative reals w1, . . . ,wn and a non-negative
constant q, such that

A ∈ ∆⇐⇒ w(A) =
∑
i∈A

wi < q.

The same parameters define a weighted majority game with the standard notation
[q; w1, . . . ,wn].

A much larger but still well-understood class of simplicial complexes is shifted
simplicial complexes (C. Klivans, 2005; C. J. Klivans, 2007). A simplicial complex
is shifted if there exists an order E on the set of vertices [n] such that for any face F,
replacing any of its vertices x ∈ F with a vertex y such that y E x results in a subset
(F − {x}) ∪ {y} which is also a face. Shifted complexes correspond to complete10

games (Freixas & Molinero, 2009b).
Let � be a qualitative probability order on [n] and T ∈ 2[n]. We denote

∆(�,T) = {X ⊆ [n] | X ≺ T},

where X ≺ Y stands for X � Y but not Y � X, and call it an initial segment of �.

Lemma 5.2.1. Any initial segment of a qualitative probability order is a simplicial complex.

Proof. Suppose that ∆ = ∆(�,T) and B ∈ ∆. If A ⊂ B, then let C = B−A. By (5.1) we
have that ∅ � C and since A∩C = ∅ it follows from the de Finetti’s axiom (5.2) that
∅ ∪ A � C ∪ A which implies that A � B. Since ∆ is an initial segment, B ∈ ∆ and
A � B implies that A ∈ ∆ and thus ∆ is a simplicial complex. �

10sometimes also called linear
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We will refer to simplicial complexes that arise as initial segments of some
qualitative probability order as an initial segment complex.

In a similar manner as for the qualitative probability orders, cancellation con-
ditions will play a key role in our analyzing simplicial complexes.

Definition 5.2.2. A simplicial complex ∆ is said to satisfy CC∗k if for no k ≥ 2 does there
exist a trading transform (A1, . . . ,Ak; B1, . . . ,Bk), such that Ai ∈ ∆ and Bi < ∆, for every
i ∈ [k].

One can show the connection between CCk and CC∗k.

Theorem 5.2.1. Suppose � is a qualitative probability order on 2[n] and ∆(�,T) is its
initial segment. If � satisfies CCk then ∆(�,T) satisfies CC∗k.

This gives us some initial properties of initial segment complexes. Since condi-
tions CCk, k = 2, 3, hold for all qualitative probability orders (Fishburn, 1996) we
obtain

Theorem 5.2.2. If an abstract simplicial complex ∆ ⊆ 2[n] is an initial segment complex,
then it satisfies CC∗k for all k ≤ 3.

From this theorem we get the following corollary, due to Caroline Klivans
(personal communication):

Corollary 5.2.1. Every initial segment complex is a shifted complex. Moreover, there are
shifted complexes that are not initial segment complexes.

Proof. Let ∆ be a non-shifted simplicial complex. then it is known to contain an
obstruction of the form: there are i, j ∈ [n], and A,B ∈ ∆, neither containing i or j,
so that A∪ i and B∪ j are in ∆ but neither i∪B nor j∪A are in ∆ (C. Klivans, 2005).
But then (A ∪ i,B ∪ j; B ∪ i,A ∪ j) is a trading transform that violates CC∗2. Since all
initial segments satisfy CC∗2 they must all be shifted.

On the other hand, there are shifted complexes that fail to satisfy CC∗2 and hence
can not be initial segments. Let ∆ be the smallest shifted complex (where shifting
is with respect to the usual ordering) that contains {1, 5, 7} and {2, 3, 4, 6} Then it is
easy to check that neither {3, 4, 7} nor {1, 2, 5, 6} are in ∆ but

({1, 5, 7}, {2, 3, 4, 6}; {3, 4, 7}, {1, 2, 5, 6})

is a trading transform in violation of CC∗2. �
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Similarly, the terminal segment

G(�,T) = {X ⊆ [n] | T � X}

of any qualitative probability order is a complete simple game.
Theorem 2.4.2 of the book (Taylor & Zwicker, 1999) can be reformulated to give

necessary and sufficient conditions for the simplicial complex to be a threshold.

Theorem 5.2.3. An abstract simplicial complex ∆ ⊆ 2[n] is a threshold complex if and only
if the condition CC∗k holds for all k ≥ 2.

Above we showed that the initial segment complexes are strictly contained
in the shifted complexes. What is the relationship between the initial segment
complexes and threshold complexes?

Lemma 5.2.2. Every threshold complex is an initial segment complex.

Proof. The threshold complex defined by the weights w1, . . . ,wn and a positive
constant q is the initial segment of the representable qualitative probability order
where pi = wi, 1 ≤ i ≤ n and where the threshold set T has the property that
w(A) ≤ w(T) < q for all A ∈ ∆. �

This leaves us with the question of whether this containment is strict, i.e., are
there initial segment complexes which are not threshold complexes. As we know
any initial segment of a representable qualitative probability order is a threshold
simplex. One might think that evry non-representable qualitative probability order
would have at least one initial segmentt that is not threshold. Unfortunately that
may not be the case.

Example 5.2.1. This example, adapted from (Maclagan, 1998/99, Example2.5, Example
3.9), gives a non-representable qualitative probability order for which every initial segment
complex is threshold. Construct a representable qualitative probability order on 2[5] using
the p′is {7, 10, 16, 20, 22}. The order begins

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 4 ≺ 5 ≺ · · ·

where 1 denotes the singleton set {1} and by 12 we mean {1, 2}. Since the qualitative
probability order is representable, every initial segment is a threshold complex. Now
suppose we interchange the order of 12 and 4. The new ordering, which begins

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 4 ≺ 12 ≺ 5 ≺ · · · ,
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is still a qualitative probability order but it is no longer representable (Maclagan, 1998/99,
Example 2.5). With one exception, all of the initial segments in this new non-representable
qualitative order are initial segments in the original one and, thus, are threshold. The one
exception is the segment

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 4

which is obviously a threshold complex.

Another approach to finding an initial segment complex that is not threshold
is to construct a complex that violates CC∗k for some small value of k. As noted
above, all initial segment complexes satisfy CC∗2 and CC∗3 so the smallest condition
that could fail is CC∗4. We will now show that for small values of n cancellation
condition CC∗4 is satisfied for any initial segment. This will also give us invaluable
information on how to construct a non-threshold initial segment later.

Definition 5.2.3. Two pairs of subsets (A1,B1) and (A2,B2) are said to be compatible if
the following two conditions hold:

x ∈ A1 ∩ A2 =⇒ x ∈ B1 ∪ B2, and

x ∈ B1 ∩ B2 =⇒ x ∈ A1 ∪ A2.

Lemma 5.2.3. Let� be a qualitative probability order on 2[n], T ⊆ [n], and let ∆ = ∆n(�,T)
be the respective initial segment. Suppose CC∗s fails and (A1, . . . ,As,B1, . . . ,Bs) is a trading
transform, such that Ai ≺ T � B j for all i, j ∈ [s]. If any two pairs (Ai,Bk) and (A j,Bl) are
compatible, then � fails to satisfy CCs−1.

Proof. Let us define

Āi = Ai − (Ai ∩ Bk), B̄k = Bk − (Ai ∩ Bk),

Ā j = A j − (A j ∩ Bl), B̄l = Bl − (A j ∩ Bl).

We note that
Āi ∩ Ā j = B̄k ∩ B̄l = ∅. (5.5)

Indeed, suppose, for example, x ∈ Āi ∩ Ā j, then also x ∈ Ai ∩ A j and by the
compatibility x ∈ Bk or x ∈ Bl. In both cases it is impossible for x to be in x ∈ Āi∩ Ā j.
We note also that by Lemma 5.1.1 we have

Āi ∪ Ā j ≺ B̄k ∪ B̄l. (5.6)
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Now we observe that

(Āi, Ā j,Am1 , . . . ,Ams−2 ; B̄k, B̄l,Br1 , . . . ,Brs−2).

is a trading transform. Hence, due to (5.5),

(Āi ∪ Ā j,Am1 , . . . ,Ams−2 ; B̄k ∪ B̄l,Br1 , . . . ,Brs−2)

is also a trading transform. This violates CCs−1 since (5.6) holds and Amt ≺ Brt for
all t = 1, . . . , s − 2. �

Corollary 5.2.2. Let � be a qualitative probability order on 2[n]. Suppose CC∗s fails and
(A1, . . . ,As, B1, . . . ,Bs) is a trading transform, such that Ai � Bi for all i ∈ [s] and Ai ≺ Bi

for at least one i. If any two pairs (Ai,Bi) and (A j,B j) are compatible, then � fails to satisfy
CCs−1.

Proof. Without loss of generality we can assume i = 1 and j = 2. Let

Ā1 = A1 − B1, Ā2 = A2 − B2,

B̄1 = B1 − A1, B̄2 = B2 − A2.

Following the proof of Lemma 5.2.3 and taking into account Lemma 5.1.1 we have
a trading transform

(Ā1 ∪ Ā2,A3, . . . ,As; B̄1 ∪ B̄2,B3, . . . ,Bs),

where Ā1 ∪ Ā2 � B̄1 ∪ B̄2 and Ak � Bk for all k = 3, . . . , s.
To show that the trading transform above witnesses a failure of CCs−1, we need

to prove that at least one inequality out of Ā1 ∪ Ā2 � B̄1 ∪ B̄2 and Ak � Bk, where
k ∈ {3, . . . , s}, is strict. Note that, in the initial trading transform, there exists t ∈ [s]
such that At ≺ Bt. If t > 2, then CCs−1 is clearly fails. If t ∈ {1, 2}, then by Lemma 5.1.1
we have Ā1 ∪ Ā2 ≺ B̄1 ∪ B̄2 and CCs−1 fails as well. �

By definition of a trading transform we are allowed to use repetitions of the
same coalition in it. However we will show that to violate CC∗4 we need a trading
transform (A1, . . . ,A4; B1, . . . ,B4) where all A’s and B’s are different.

Lemma 5.2.4. Let� be a qualitative probability order on 2[n], T ⊆ [n], and let ∆ = ∆n(�,T)
be the respective initial segment. Suppose CC∗4 fails and (A1, . . . ,A4,B1, . . . ,B4) is a trading
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transform, such that Ai ≺ T � B j for all i, j ∈ [4]. Then

|{A1, . . . ,A4}| = |{B1, . . . ,B4}| = 4.

Proof. Note that pairs (Ai,B j), (Al,Bk) are not compatible for every i , l and j , k.
Otherwise by Lemma 5.2.3 the order � fails CC3, which contradicts the fact that
every qualitative probability satisfies CC3. Assume, to the contrary, that we have
at least two identical coalitions among A1, . . . ,A4 or B1, . . . ,B4. Without loss of
generality we can assume A1 = A2. Clearly all A’s or all B’s cannot coincide and
there are at least two different A’s and two different B’s. Suppose A1 , A3 and
B1 , B2. The pair (A1,B1), (A3,B2) is not compatible. It means one of the following
two statements is true: either there is x ∈ A1 ∩ A3 such that x < B1 ∪ B2 or there is
y ∈ B1∩B2 such that y < A1∪A3. Consider the first case. The second case is similar.
We know that x ∈ A1 ∩A3 and we have at least three copies of x among A1, . . . ,A4.
At the same time x < B1 ∪ B2 and there could be at most two copies of x among
B1, . . . ,B4. This is a contradiction. �

Theorem 5.2.4. CC∗4 holds for ∆ = ∆n(�,T) for all n ≤ 17.

Proof. Let us consider the set of column vectors

U = {x ∈ R8
| xi ∈ {0, 1} and x1 + x2 + x3 + x4 = x5 + x6 + x7 + x8 = 2}. (5.7)

This set has an involution x 7→ x̄, where x̄i = 1 − xi. Say, if x = (1, 1, 0, 0, 0, 0, 1, 1)T,
then x̄ = (0, 0, 1, 1, 1, 1, 0, 0)T. There are 36 vectors from U which are split into 18
pairs {x, x̄}.

Suppose now a trading transform T = (A1,A2,A3,A4; B1,B2,B3,B4) witnesses a
failure of CC∗4. It means that Ai ≺ T � B j and no two coalitions inT coincide. Let us
write the characteristic vectors of A1, A2, A3, A4, B1, B2, B3, B4 as rows of 8×n matrix
M, respectively. Since � satisfies CC3, by Lemma 5.2.3 we know that no two pairs
(Ai,Ba) and (A j,Bb) are compatible. The same can be said about the complementary
pair of pairs (Ak,Bc) and (Al,Bd), where {a, b, c, d} = {i, j, h, l} = [4]. We have

Ai ≺ Ba, A j ≺ Bb, Ah ≺ Bc, Al ≺ Bd,

Since (Ai,Ba) and (A j,Bb) are not compatible one of the following two statements is
true: either there exists x ∈ Ai ∩ A j such that x < Ba ∪ Bb or there exists y ∈ Ba ∩ Bb

such that x < Ai ∪A j. As T is a trading transform in the first case we will also have
x ∈ Bc ∩ Bd such that x < Ah ∪ Al; in the second y ∈ Ah ∩ Al such that y < Bc ∪ Bd.
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Let us consider two columns Mx and My of M that correspond to elements
x, y ∈ [n]. The above considerations show that both belong to U and Mx = M̄y.

In particular, if (i, j, k, l) = (a, b, c, d) = (1, 2, 3, 4), then the columns Mx and My

will be as in the following picture
x y

M =



χ(A1)
χ(A2)
χ(A3)
χ(A4)
χ(B1)
χ(B2)
χ(B3)
χ(B4)


=



1 0
1 0
0 1
0 1
0 1
0 1
1 0
1 0


(we emphasize however that we have only one such column in the matrix, not
both). We saw that one pairing of indices (i, a), ( j, b), (k, c), (k, d) gives us a column
from one of the 18 pairs of U. It is easy to see that a vector from every pair of U can
be obtained by the appropriate choice of the pairing of indices. This means that
the matrix contains at least 18 columns. That is n ≥ 18. �

Lemma 5.2.3 can be easily generalised in the following way:

Lemma 5.2.5. Let� be a qualitative probability order on 2[n], T ⊆ [n], and let ∆ = ∆n(�,T)
be the respective simplicial complex. Suppose CC∗k fails and (A1, . . . ,Ak; B1, . . . ,Bk) is a
trading transform, such that Ai ≺ T � B j for all i, j ∈ [k]. If any m disjoint pairs are
compatible, then � fails to satisfy CCk−m.

Before showing that CC∗5 holds for small values of n, we need to investigate how
many identical coalitions we may have in a trading transform that violates CC∗5.
More specifically, we will prove that the trading transform (A1, . . . ,A5,B1, . . . ,B5),
where Ai ≺ T � B j for all i, j ∈ [4], can contain either two identical A’s or two
identical B’s, but not two identical A’s and B’s at the same time.

Lemma 5.2.6. Let � be a qualitative probability order on 2[n], T ⊆ [n], and let ∆ =

∆n(�,T) be the respective initial segment. Suppose T = (A1, . . . ,A5,B1, . . . ,B5) is a
trading transform violating CC∗5, and Ai ≺ T � B j for all i, j ∈ [4]. Assume the pairs
(Ai,B j), (Ak,Bl) are not compatible for any i, j, k, l ∈ [5], i , k and j , l. Then

|{A1, . . . ,A5,B1, . . . ,B5}| ≥ 9.
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Proof. Note that Ai , B j for all i, j ∈ [5] and

|{A1, . . . ,A5,B1, . . . ,B5}| = |{A1, . . . ,A5}| + |{B1, . . . ,B5}|.

Without loss of generality assume A1 = A2 = A3. We know, that the situations
where A1 = · · · = A5 or B1 = · · · = B5 are not possible. Hence, we can assume that
A1 , A4 and B1 , B2. Pairs (A1,B1), (A4,B2) are not compatible. So either there is
x ∈ A1 ∩ A4 such that x < B1 ∪ B2, or there is y ∈ B1 ∩ B2 such that y < A1 ∪ A4.
Consider the first situation (the second can be done in the same way). We have
x ∈ A1 ∩ A4 and, thus, x is contained in at least four sets out of A1, . . . ,A5. On the
other hand, x < B1∪B2. Hence, we have at most three copies of x among B1, . . . ,B5,
a contradiction. Therefore,

|{A1, . . . ,A5,B1, . . . ,B5}| ≥ 6.

Assume there are two pairs of identical sets among the A’s or B’s. Without loss of
generality we have A1 = A2, and A3 = A4, and B1 , B2. By the above we know
that A1 , A3 , A5. The pairs (A1,B1), (A3,B2) are not compatible. Hence, there is
x ∈ A1 ∩ A3 such that x < B1 ∪ B2 or there is y ∈ B1 ∩ B2 such that y < A1 ∪ A3.
From here we consider only the first case and the second one can be done similarly.
Thence x ∈ A1 ∩ A3. There are at least four copies of x among the A’s. At the
same time x < B1 ∪ B2 and there are at most three copies of x among the B’s, a
contradiction. Thus

|{A1, . . . ,A5,B1, . . . ,B5}| ≥ 8.

Suppose, to the contrary, that |{A1, . . . ,A5,B1, . . . ,B5}| = 8 or, equivalently, there are
unique i, j, k, l ∈ [5] such that Ai = A j and Bk = Bl. Without loss of generality we
may assume that i = k = 1, j = l = 2. Pairs (A1,B1), (A3,B3) are not compatible.
Hence, either there is x ∈ A1 ∩ A3 such that x < B1 ∪ B3, or there is y ∈ B1 ∩ B3

such that y < A1 ∪ A3. As above we can consider only the first case. Therefore
x ∈ A1 ∩ A3 and we can meet x at least three times among A1, . . . ,A5. At the same
time x < B1 ∩ B3 and x can be in at most two coalitions among B1, . . . ,B5. We know
T is a trading transform and, hence, we have a contradiction.

�

In the proof of Theorem 5.2.4 we exploit the fact, that there are no compat-
ible pairs in a trading transform. However, if (A1, . . . ,A5; B1, . . . ,B5) witnesses
the failure of CC∗5 then there could be compatible pairs in this trading transform.
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If (Ai,B j), (Ak,Bm) and (Aa,Bb), (Ac,Bd) are compatible pairs then {Ai,B j,Ak,Bm} ∩

{Aa,Bb,Ac,Bd} , ∅. Note that if this intersection is empty then, by Lemma 5.2.5, an
order � fails to satisfy CC2 or CC3. Suppose our trading transform has compatible
pairs (Ai,Bk), (A j,Bl). Let

Āi = Ai − Bk, Ā j = A j − Bl and B̄k = Bk − Ai, B̄l = Bl − A j.

Then by Theorem 5.2.3 we have a trading transform

T = (Āi ∪ Ā j,Am1 ,Am2 ,Am3 ; B̄k ∪ B̄l,Br1 ,Br2 ,Br3),

where Āi ∪ Ā j ≺ B̄k ∪ B̄l and Amt ≺ T � Brs . Let us show that coalitions Āi ∪

Ā j,Am1 ,Am2 ,Am3 are different and so are B̄k ∪ B̄l,Br1 ,Br2 ,Br3 .

Lemma 5.2.7. Let� be a qualitative probability order on 2[n]. Suppose (A1, . . . ,A4,B1, . . . ,B4)
is a trading transform, where Ai ≺ T � B j for all i, j ∈ [3] and A4 ≺ B4. Then

|{A1, . . . ,A4}| = |{B1, . . . ,B4}| = 4.

Proof. Clearly pairs (Ai,B j), (Ak,Bl) and (A4,B4), (Ai,B j) are not compatible, for all
i, j, k, l ∈ [3]. If (Ai,B j), (Ak,Bl) or (A4,B4), (Ai,B j) are compatible then after an appro-
priate enumeration, by Corollary 5.2.2, CC3 fails, a contradiction.

Assume, to the contrary, that we have at least two identical coalitions among A’s
and B’s. Without loss of generality we can consider two following cases: A1 = A2;
A1 = A4.

Arguments similar to the ones used in the proofs of Lemma 5.2.4 and Lemma 5.2.6
show that these two cases are contradictory.

�

Theorem 5.2.5. CC∗5 holds for ∆ = ∆n(�,T) for all n ≤ 8.

Proof. Suppose that (A1, . . . ,A5; B1, . . . ,B5) is a trading transform and Ai ≺ T � B j

for each i, j ∈ [5]. Then by Lemma 5.2.6 it is sufficient to consider the following
cases:

1. there are no compatible pairs, and all A’s and B’s are different;

2. there are no compatible pairs, and exactly two coalitions coincide;

3. there is one different set of compatible pairs.
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Consider the set of column vectors

E = {x ∈ R10
| xi ∈ {0, 1} and x1 + · · · + x5 = x6 + · · · + x10 = k, k ∈ {2, 3}}. (5.8)

This set has an involution x 7→ x̄, where x̄i = 1−xi. Say, if x = (1, 1, 0, 0, 0, 0, 0, 0, 1, 1)T,
then x̄ = (0, 0, 1, 1, 1, 1, 1, 1, 0, 0)T. There are 200 vectors from E which are split into
100 pairs {x, x̄}. Let us write the characteristic vectors of A1, . . . ,A5,B1, . . . ,B5 as
rows M1, . . .M10 of a 10 × n matrix M, respectively. Every vector x ∈ E shows
that six different pairs are not compatible if x is a column of M. For example,
if x = (1, 1, 0, 0, 0, 0, 0, 0, 1, 1)T then pairs (A1,B1), (A2,B2); (A1,B1), (A2,B3); (A1,B2),
(A2,B3); (A3,B4), (A4,B5); (A3,B4), (A5,B5); (A4,B4), (A5,B5) are not compatible. One
can see that any vector from E shows the langest possible number of non-compatible
pairs.

Case (1). There are no compatible pairs and all A’s and B’s are different. There-
fore we need to show that

(5
2

)
·
(5

2

)
= 100 pairs are not compatible. To achieve the

smallest number of columns in M we need to add columns that show the largest
possible number of non-compatible pairs, i.e. vectors of E. Assume that every
new vector x ∈ E cancels out new 6 non-compatible pairs. Hence we need at least
d

100
6 e = 17 columns in M or equivalently n ≥ 17.

Case (2). There are no compatible pairs and exactly two coalitions coincide.
Without loss of generality we may assume A1 = A2. As we know, pairs (A1,Bi), (A3,B j)
are not compatible for every i, j ∈ [5]. To cancel out all such pairs we need 10 vectors
from E, because every vector x ∈ E shows that (A1,Bi), (A3,B j) are not compatible
only for the one pair of indexes i, j. Hence, we need at least 10 columns in M
to cover pairs (A1,Bi), (A3,B j) for all i, j ∈ [5]. Moreover, pairs (A1,Bi), (A4,B j) are
not compatible for every i, j ∈ [5]. Note that in all the ten columns of M every
x ∈ [10] belongs to exactly one coalition A1 or A4. Therefore none of the existing
10 columns of M can show that (A1,Bi), (A4,B j) are not compatible for some i, j. As
before we need at least 10 more vectors of E to cancel out all non-compatible pairs
(A1,Bi), (A4,B j) for all i, j ∈ [5]. Hence, M has at least 20 columns or, equivalently,
n ≥ 20.

Case (3). Without loss of generality we may there is one compatible pair
(A4,B4), (A5,B5). Let

Ā4 = A4 − B4, Ā5 = A5 − B5 and B̄4 = B4 − A4, B̄5 = B5 − A5.
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By Lemma 5.2.3, the trading transform

T = (A1,A2,A3, Ā4 ∪ Ā5; B1,B2,B3, B̄4 ∪ B̄5),

shows the failure of CC4, where Ai ≺ B j for every i, j ∈ [3] and Ā4 ∪ Ā5 ≺ B̄4 ∪ B̄5.
By Lemma 5.2.7

|{A1,A2,A3, Ā4 ∪ Ā5}| = |{B1,B2,B3, B̄4 ∪ B̄5}| = 4.

Denote Ā4 ∪ Ā5 and B̄4 ∪ B̄5 by A′4 and B′4 respectivly. Pairs (Ai,B j), (Ak,Bl)
and (A′4,B

′

4), (Ai,B j) are not compatible for all i, j, k, l ∈ [3]. If (Ai,B j), (Ak,Bl) or
(A′4,B

′

4), (Ai,B j) are compatible then after an appropriate change of notation by
Corollary 5.2.2 CC3 fails, a contradinction. Note that to prevent reducing CC4 to
CC3 by Corollary 5.2.2 we need at least

(3
2

)2
+ 32 = 18 non-compatible pairs. To see

this we consider the following situation:

B′4 ≺ Ai and B′4 ≺ (A′4 − B′4) ∪ (Ai − B j) for i, j ∈ [3].

Let (A′4,Bi), (A j,Bk) be compatible pairs for some i, j, k ∈ [3] and

Ā′4 = A′4 − B′4, Āi = Ai − B j and B̄′4 = B′4 − A′4, B̄ j = B j − Ai.

Then
(Ā′4 ∪ Ā j,Am1 ,Am2 ; B̄i ∪ B̄k,Br,B′4)

is a trading transform, but it doesn’t show the failure of CC3. More specifically,
B′4 ≺ Ams for all s ∈ [2] and B′4 ≺ Ā′4 ∪ Āi. However, either Ams ≺ Br for all s ∈ [2] and
Ā′4∪ Āi ≺ Br, or Ams ≺ B̄i∪ B̄k for all s ∈ [2] and Ā′4∪ Āi ≺ B̄i∪ B̄k. It means there is no
change of notations {Ā′4∪ Ā j,Am1 ,Am2} = {X1,X2,X3} and {B̄i∪ B̄k,Br,B′4} = {Y1,Y2Y3}

such that for the trading transform (X1,X2,X3; Y1,Y2Y3) either Xs � Ys, for every
s ∈ [3], or Ys � Xs, for every s ∈ [3]. Hence CC3 holds even if all pairs (A′4,Bi), (A j,Bk)
are compatible for all i, j, k ∈ [3].

Let (Ai,B j), (Ak,B′4) be compatible pairs for some i, j, k ∈ [3]. Then B′4 ≺ Ai,Ak

and Ai,Ak ≺ B j. We do not know the order of (Ai − B j) ∪ (Ak − B′4) and (B j − Ai) ∪
(B′4 − Ak). Hence, this order may prevent the failure of CC3 even if (Ai,B j), (Ak,B′4)
are compatible pairs.

Therefore 18 is the possible smallest number of non-compatible pairs. More
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explicitly, there are at least 18 non-compatible pairs in a trading transform

(A1,A2,A3,A′4; B1,B2,B3,B′4).

If we have less than 18 non-compatible pairs then it leads to the failure of CC3.
Consider the set of column vectors

V = {x ∈ R8
| xi ∈ {0, 1} and x1 + x2 + x3 + x4 = x5 + x6 + x7 + x8 = 2}.

By the proof of Theorem 5.2.4 there are 36 vectors from V which are split into 18
pairs {x, x̄}. Let us write the characteristic vectors of A1,A2,A3,A′4,B1,B2,B3,B′4 as
rows N1, . . . ,N8 of a 8 × n matrix N, respectively.

Pairs (A1,Bi), (A2,B j) are not compatible for every i, j ∈ [3]. Note that if a
column of N is a vector x ∈ V, satisfying x1 + x2 ∈ {0, 2}, then (A1,Bi), (A2,B j) are not
compatible for the only one pair i, j ∈ [3]. To cover all pairs (A1,Bi), (A2,B j) we need
at least three different vectors of V as columns of N. Clearly x1 + x3 = x2 + x3 = 1 in
every vector out of those three. Hence, in order to show that pairs (A1,Bi), (A3,B j)
and (A2,Bi), (A3,B j) are not compatible for every i, j ∈ [3], we need at least six more
different vectors of V.

Pairs (A′4,B
′

4), (Ai,B j) are not compatible for all i, j ∈ [3]. However in the nine
columns of N we have already showed that all of them are not compatible, because
if (Ai,B j), (Ak,Bl) are not compatible then (A′4,B

′

4), (As,Bt) are not compatible as well
for all {i, k, s} = { j, l, t} = [3]. �

While no initial segment complex on fewer than 18 points can fail CC∗4, there is
such an example on 26 points which will show that the initial segment complexes
strictly contain the threshold complexes. The next three sections are devoted to
constructing such an example. The next section presents a general construction
technique for producing almost representable qualitative probability orders from
representable ones. This technique will be employed in Section 5.4 to construct our
example. Some of the proofs required will be done in Section 5.5.

5.3 Constructing Almost Representable Orders from
Nonlinear Representable Ones

Our approach to finding an initial segment complex that is not threshold will be to
start with a non-linear representable qualitative probability order and then perturb
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it so as to produce an almost representable order. By judicious breaking of ties in
this new order we will be able to produce an initial segment that will violate CC∗4.
The language of discrete cones will be helpful and we begin with a technical lemma
that will be needed in the construction.

Proposition 5.3.1. Let � be a non-representable but almost representable qualitative prob-
ability order which almost agrees with a probability measure p. Suppose that the mth can-
cellation condition CCm is violated, and that for some non-zero vectors {x1, . . . , xm} ⊆ C(�)
the condition (5.4) holds, i.e., x1 + · · ·+ xm = 0 and xi < C(�) for at least one i ∈ [m]. Then
all of the vectors x1, . . . , xm lie in the hyperplane Hp = {x ∈ Rn

| (p, x) = 0}.

Proof. First note that for every x ∈ C(�) which does not belong to Hp, we have
(p, x) > 0. Hence the condition (5.4) can hold only when all xi ∈ Hp. �

We need to understand how we can construct new qualitative probability orders
from old ones so we need the following investigation. Let � be a representable but
not linear qualitative probability order which agrees with a probability measure p.

Let S(�) be the set of all vectors of C(�) which lie in the corresponding hyper-
plane Hp. Clearly, if x ∈ S(�), then −x is a vector of S(�) as well. Since in the
definition of discrete cone it is sufficient that only one of these vectors is in C(�)
we may try to remove one of them in order to obtain a new qualitative probability
order. The new order will almost agree with p and hence will be at least almost
representable. The big question is: what are the conditions under which a set of
vectors can be removed from S(�)?

What can prevent us from removing a vector from S(�)? Intuitively, we cannot
remove a vector if the set comparison corresponding to it is a consequence of those
remaining. We need to consider what a consequence means formally.

There are two ways in which one set comparison might imply another one. The
first way is by means of the de Finetti condition. This however is already built in
the definition of the discrete cone as χ(A,B) = χ(A ∪ C,B ∪ C). Another way in
which a comparison may be implied from two other is transitivity. This has a nice
algebraic characterisation. Indeed, if C ≺ B ≺ A, then χ(A,C) = χ(A,B) + χ(B,C).
This leads us to the following definition.

Following (Christian et al., 2007) let us define a restricted sum for vectors in a
discrete cone C. Let u,v ∈ C. Then

u ⊕ v =

{
u + v if u + v ∈ Tn,

undefined if u + v < Tn.
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It was shown in (Fishburn, 1996, Lemma 2.1) that the transitivity of a qualitative
probability order is equivalent to closedness of its corresponding discrete cone with
respect to the restricted addition (without formally defining the latter). The axiom
D3 of the discrete cone can be rewritten as

D3. x ⊕ y ∈ C whenever x,y ∈ C and x ⊕ y is defined.

Note that a restricted sum is not associative.

Theorem 5.3.1 (Construction method). Let � be a representable non-linear qualitative
probability order on [n] which agrees with the probability measure p. Let S(�) be the set of
all vectors of C(�) which lie in the hyperplane Hp. Let X be a subset of S(�) such that

• X ∩ {s,−s} , ∅ for every s ∈ S(�).

• X is closed under the operation of restricted sum.

• (S(�) − X) ∩ {e1, . . . , en} = ∅.

Then Y = S(�) − X may be dropped from C(�), that is CY = C(�) − Y is a discrete cone.

Proof. We first note that if x ∈ C(�)−S(�) and y ∈ C(�), then x⊕y, if defined, cannot
be in S(�). So due to closedness of X under the restricted addition all axioms of
a discrete cone are satisfied for CY. On the other hand, if for some two vectors
x,y ∈ X we have x⊕ y ∈ Y, then CY would not be a discrete cone and we would not
be able to construct a qualitative probability order associated with this set. �

Example 5.3.1 (Positive example). The probability measure

p =
1
16

(6, 4, 3, 2, 1).

defines a qualitative probability order � on [5]:

∅ ≺ 5 ≺ 4 ≺ 3 ≺ 45 ≺ 35 ∼ 2 ≺ 25 ∼ 34 ≺ 1 ≺ 345 ∼ 24 ≺ 23 ∼ 15 ≺ 245 ≺ 14 ∼ 235 . . .

(Here only the first 17 terms are shown, since the remaining ones can be uniquely recon-
structed. See (Kraft et al., 1959, Proposition 1) for details. There are only four equivalences
here

35 ∼ 2, 25 ∼ 34, 23 ∼ 15 and 14 ∼ 235,
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and all other follow from them, that is:

35 ∼ 2 implies 345 ∼ 24, 135 ∼ 12;

25 ∼ 34 implies 125 ∼ 134;

23 ∼ 15 implies 234 ∼ 145;

14 ∼ 235 has no consequences

Let u1 = χ(2, 35) = (0, 1,−1, 0,−1), u2 = χ(34, 25) = (0,−1, 1, 1,−1), u3 = χ(15, 23) =

(1,−1,−1, 0, 1) and u4 = χ(235, 14) = (−1, 1, 1,−1, 1). Then

S(�) = {±u1,±u2,±u3,±u4}

and X = {u1,u2,u3,u4} is closed under the restricted addition as ui ⊕ u j is undefined for
all i , j. Note that ui ⊕ −u j is also undefined for all i , j. Hence we can subtract from the
cone C(�) any non-empty subset Y of−X = {−u1,−u2,−u3,−u4} and still get a qualitative
probability. Since

u1 + u2 + u3 + u4 = 0.

it will not be representable. The new order corresponding to the discrete cone C−X is linear.

Example 5.3.2 (Negative example). A certain qualitative probability order is associated
with the Gabelman game of order 3. Nine players are involved each of whom we think as
associated with a certain cell of a 3 × 3 square:

1 2 3
4 5 6
7 8 9

The ith player is given a positive weight wi, i = 1, 2, . . . , 9, such that in the qualitative
probability order, associated with w = (w1, . . . ,w9),

147 ∼ 258 ∼ 369 ∼ 123 ∼ 456 ∼ 789.

Suppose that we want to construct a qualitative probability order � for which

147 ∼ 258 ∼ 369 ≺ 123 ∼ 456 ∼ 789.
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Then we would like to claim that it is not weighted since for the vectors

x1 = (0, 1, 1,−1, 0, 0,−1, 0, 0) = χ(123, 147),

x2 = (0,−1, 0, 1, 0, 1, 0,−1, 0) = χ(456, 258),

x3 = (0, 0,−1, 0, 0,−1, 1, 1, 0) = χ(789, 369)

we have x1 + x2 + x3 = 0. Putting the sign ≺ instead of ∼ between 369 and 123 will
also automatically imply 147 ≺ 123, 258 ≺ 456 and 369 ≺ 789. This means that we are
dropping the set of vectors {−x1,−x2,−x3} from the cone while leaving the set {x1, x2, x3}

there. This would not be possible since x1 ⊕ x2 = −x3. So every X ⊃ {x1, x2, x3} with
X ∩ {−x1,−x2,−x3} = ∅ is not closed under ⊕.

5.4 An Example of a Nonthreshold Initial Segment of
a Linear Qualitative Probability Order

In this section we shall construct an almost representable linear qualitative proba-
bility order v on 2[26] and a subset T ⊆ [26], such that the initial segment ∆(v,T) of
v is not a threshold complex as it fails to satisfy the condition CC∗4.

The idea of the example is as follows. We will start with a representable linear
qualitative probability order � on [18] defined by positive weights w1, . . . ,w18 and
extend it to a representable but nonlinear qualitative probability order �′ on [26]
with weights w1, . . . ,w26. A distinctive feature of �′ will be the existence of eight
sets A′1, . . . ,A

′

4, B′1, . . . ,B
′

4 in [26] such that:

1. The sequence (A′1, . . . ,A
′

4; B′1, . . . ,B
′

4) is a trading transform.

2. The sets A′1, . . . ,A
′

4, B′1, . . . ,B
′

4 are tied in �′, that is,

A′1 ∼
′ . . .A′4 ∼

′ B′1 ∼
′ . . . ∼′ B′4.

3. If any two distinct sets X,Y ⊆ [26] are tied in �′, then χ(X,Y) = χ(S,T),
where S,T ∈ {A′1, . . . ,A

′

4,B
′

1, . . . ,B
′

4}. In other words all equivalences in �′ are
consequences of A′i ∼

′ A′j, A′i ∼
′ B′j, B′i ∼

′ B′j, where i, j ∈ [4].

Then we will use Theorem 5.3.1 to untie the eight sets and to construct a com-
parative probability order v for which

A′1 @ A′2 @ A′3 @ A′4 @ B′1 @ B′2 @ B′3 @ B′4,
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where X @ Y means that X v Y is true but not Y v X.
This will give us an initial segment ∆(v,B′1) of the linear qualitative probability

order v, which is not threshold since CC∗4 fails to hold.

Let� be a representable linear qualitative probability order on 2[18] with positive
weights w1, . . . ,w18 that are linearly independent (over Z) real numbers in the
interval [0, 1]. Due to the choice of weights, no two distinct subsets X,Y ⊆ [18]
have equal weights relative to this system of weights, i.e.,

X , Y =⇒ w(X) =
∑
i∈X

wi , w(Y) =
∑
i∈Y

wi.

Let us consider again the set U defined in (5.7). Let M be a subset of U with the
following properties: |M| = 18 and x ∈ M if and only if x̄ < M. In other words M
contains exactly one vector from every pair into which U is split. By M we will also
denote an 8×18 matrix whose columns are all the vectors from M taken in arbitrary
order. By A1, . . . ,A4,B1, . . . ,B4 we denote the sets with characteristic vectors equal
to the rows M1, . . . ,M8 of M, respectively. The way M was constructed guarantees
that the following lemma is true.

Lemma 5.4.1. The subsets A1, . . . ,A4,B1, . . . ,B4 of [18] satisfy:

1. (A1, . . . ,A4; B1, . . . ,B4) is a trading transform;

2. for any choice of i, k, j,m ∈ [4] with i , k and j , m the pair (Ai,B j), (Ak,Bm) is not
compatible.

We shall now embed A1, . . . ,A4,B1, . . . ,B4 into [26] and add new elements to
them forming A′1, . . . ,A

′

4, B′1, . . . ,B
′

4 in such a way that the characteristic vectors
χ(A′1), . . . , χ(A′4), χ(B′1), . . . , χ(A′1) are the rows M′

1, . . . ,M
′

8 of the following matrix

M′ =



1...18 19 20 21 22 23 24 25 26

χ(A1)
χ(A2)
χ(A3)
χ(A4)

I I

χ(B1)
χ(B2)
χ(B3)
χ(B4)

J I


.
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Here I is the 4 × 4 identity matrix and

J =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Note that if X belongs to [18], it also belongs to [26], so the notation χ(X) is
ambiguous as it may be a vector from Z18 or from Z26, depending on the circum-
stances. However the reference set will be always clear from the context and the
use of this notation will create no confusion.

One can see that (A′1, . . . ,A
′

4; B′1, . . . ,B
′

4) is again a trading transform and there are
no compatible pairs (A′i ,B

′

j), (A
′

k,B
′

m), where i, k, j,m ∈ [4] and i , k or j , m.We shall
now choose weights w19, . . . ,w26 of new elements 19, . . . , 26 in such a way that the
sets A′1,A

′

2,A
′

3,A
′

4,B
′

1,B
′

2,B
′

3,B
′

4 all have the same weight N, which is a sufficiently
large number. It will be clear from the proof how large it should be.

To find weights w19, . . . ,w26 that satisfy this condition we need to solve the
following system of linear equations

(
I I
J I

) 
w19
...

w26

 = N1 −M ·w, (5.9)

where 1 = (1, . . . , 1)T
∈ R8 and w = (w1, . . . ,w18)T

∈ R18.

The matrix from (5.9) has rank 7, and the augmented matrix of the system has
the same rank. Therefore, the solution set is not empty, moreover, there is one free
variable (and any one can be chosen for this role). Let this free variable be w26 and
let us give it value K, such that K is large but much smaller than N. In particular,
126 < K < N. Now we can express all other weights w19, ...,w25 in terms of w26 = K
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as follows:

w19 = N−K − (χ(A4) − χ(B1) + χ(A1)) ·w

w20 = N−K − (χ(A4) − χ(B1) + χ(A1) − χ(B2) + χ(A2)) ·w

w21 = N−K − (χ(A4) − χ(B1) + χ(A1) − χ(B2) + χ(A2)−

χ(B3) + χ(A3)) ·w

w22 = N−K − χ(A4) ·w

w23 = K−(−χ(A4) + χ(B1)) ·w

w24 = K−(−χ(A4) + χ(B1) − χ(A1) + χ(B2)) ·w

w25 = K−(−χ(A4) + χ(B1) − χ(A1) + χ(B2) − χ(A2) + χ(B3)) ·w.

(5.10)

By choice of N and K weights w19, ...,w25 are positive. Indeed, all “small” terms
in the right-hand-side of (5.10) are strictly less then 7 · 18 = 126 < min{K,N − K}.

Let �′ be the representable qualitative probability order on [26] defined by the
weight vector w′ = (w1, . . . ,w26). Using �′ we would like to construct a linear
qualitative probability order v on 2[26] that ranks the subsets A′i and B′j in the
sequence

A′1 @ A′2 @ A′3 @ A′4 @ B′1 @ B′2 @ B′3 @ B′4. (5.11)

We will make use of Theorem 5.3.1 now. Let Hw′ = {x ∈ Rn
|(w′, x) = 0} be the

hyperplane with the normal vector w′ and S(�′) be the set of all vectors of the
respective discrete cone C(�′) that lie in Hw′ . Suppose

X′ = {χ(C,D) | C,D ∈ {A′1, . . . ,A
′

4,B
′

1, . . . ,B
′

4} and D earlier than C in (5.11)}.

This is a subset of T26, where T = {−1, 0, 1}. Let also Y′ = S(�′) − X′. Since by
construction ei < S(�′) for every i ∈ [26] to use Theorem 5.3.1 with the goal to
achieve (5.11) we need to show, that

• S(�′) = X′ ∪ −X′ and

• X′ is closed under the operation of restricted sum.

If we could prove this, then C(v) = C(�′)−Y′ is a discrete cone of a linear qualitative
probability order v on [26] satisfying (5.11). Then the initial segment ∆(v,B′1) will
not be a threshold complex, because the condition CC∗4 will fail for it.

Let Y be one of the sets A1,A2,A3,A4,B1,B2,B3,B4. By Y̆ we will denote the
corresponding superset of Y from the set {A′1,A

′

2,A
′

3,A
′

4,B
′

1,B
′

2,B
′

3,B
′

4}.
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Proposition 5.4.1. The subset

X = {χ(C,D) | C,D ∈ {A1, . . . ,A4,B1, . . . ,B4} with D̆ earlier than C̆ in (5.11)}.

of T18 is closed under the operation of restricted sum.

Proof. Let u and v be any two vectors in X. As we will see the restricted sum u ⊕ v
is almost always undefined. Without loss of generality we can consider only five
cases.

Case 1. u = χ(Bi,A j) and v = χ(Bk,Am), where i , k and j , m. In this case by
Lemma 5.4.1 the pairs (Bi,A j) and (Bk,Am) are not compatible. It means that there
exists p ∈ [18] such that either p ∈ Bi ∩ Bk and p < A j ∪ Am or p ∈ A j ∩ Am and
p < Bi ∪Bk. The vector u + v has 2 or −2 at pth position and u⊕v is undefined. This
is illustrated in the table below:

χ(Bi) χ(Bk) χ(A j) χ(Am) χ(Bi,A j) χ(Bk,Am) u + v
pth 1 1 0 0 1 1 2

coordinate 0 0 1 1 -1 -1 -2

Case 2. u = χ(Bi,A j), v = χ(Bi,Am) or u = χ(B j,Ai), v = χ(Bm,Ai), where j , m.
In this case choose k ∈ [4]−{i}. Then the pairs (Bi,A j) and (Bk,Am) are not compatible.
As above, the vector χ(Bi,A j) + χ(Bk,Am) has 2 or −2 at some position p. Suppose
p ∈ Bi ∩ Bk and p < A j ∪ Am. Then Bi has a 1 in pth position and each of the vectors
χ(Bi,A j) and χ(Bi,Am) has a 1 in pth position as well. Therefore, u ⊕ v is undefined
because u + v has 2 in pth position. Similarly, in the case when p ∈ A j ∩ Am and
p < Bi ∪ Bk the pth coordinate of u + v is −2. The case when u = χ(B j,Ai) and
v = χ(Bm,Ai) is similar.

Case 3. u = χ(Bi,B j), v = χ(Bk,Bm) or u = χ(Ai,A j), v = χ(Ak,Am), where
{i, j, k,m} = [4]. By construction of M there exists p ∈ [18] such that p ∈ Bi ∩ Bk and
p < B j ∪ Bm or p < Bi ∪ Bk and p ∈ B j ∩ Bm. So there is p ∈ [18], such that u + v has 2
or −2 in pth position. Thus u ⊕ v is undefined.

Case 4. u = χ(Bi,B j), v = χ(Bk,Bm) or u = χ(Ai,A j), v = χ(Ak,Am), where i = k or
j = m. If i = k and j = m, then u ⊕ v is undefined. Consider the case i = k, j , m
and u = χ(Bi,B j), v = χ(Bi,Bm). Let s = [4]− {i, j,m}. By construction of M either we
have p ∈ [18] such that p ∈ Bi ∩ Bs and p < B j ∪ Bm or p < Bi ∪ Bs and p ∈ B j ∩ Bm. In
both cases u + v has 2 or −2 in position p.

Case 5. u = χ(Bi,B j), v = χ(Bk,Bm) or u = χ(Ai,A j), v = χ(Ak,Am), where j = k
or i = m. Suppose j = k. Since i > j and j > m we have i > m. This implies
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that χ(Bi,Bm) belongs to X. On the other hand u + v = χ(Bi) − χ(Bm) = χ(Bi,Bm).
Therefore u ⊕ v = u + v ∈ X. �

Corollary 5.4.1. X′ is closed under restricted sum.

Proof. We will have to consider the same five cases as in the Proposition 5.4.1. As
above in the first four cases the restricted sum of vectors will be undefined. In
the fifth case, when u = χ(B′i ,B

′

j), v = χ(B′k,B
′

m) or u = χ(A′i ,A
′

j), v = χ(A′k,A
′

m),
where j = k or i = m, we will have u + v = χ(B′i) − χ(B′m) = χ(B′i ,B

′

m) ∈ X′ or
u + v = χ(A′i) − χ(A′m) = χ(A′i ,A

′

m) ∈ X′. �

To satisfy conditions of Theorem 5.3.1 we need also to show that the intersection
of the discrete cone C(�′) and the hyperplane Hw′ equals to X′∪−X′. More explicitly
we need to prove the following:

Proposition 5.4.2. Suppose C,D ⊆ [26] are tied in �′, that is C �′ D and D �′ C. Then
χ(C,D) ∈ X′ ∪ −X′.

Proof. Assume, to the contrary, that there are two sets C,D ∈ 2[26] that have equal
weights with respect to the corresponding system of weights defining �′ but
χ(C,D) < X′ ∪ −X′. The sets C and D have to contain some of the elements from
[26] − [18] since w1, . . . ,w18 are linearly independent. Thus C = C1 ∪ C2 and D =

D1∪D2, where C1,D1 ⊆ [18] and C2,D2 ⊆ [26]−[18] with C2 and D2 being nonempty.
We have

0 = χ(C,D) ·w′ = χ(C1,D1) ·w + χ(C2,D2) ·w+,

where w+ = (w19, . . . ,w26)T. By (5.10), we can express weights w19, . . . ,w26 as linear
combinations with integer coefficients of N,K and w1, . . . ,w18 obtaining

χ(C2,D2) ·w+ =

 4∑
i=1

γiχ(Ai) +

4∑
i=1

γ4+iχ(Bi)

 ·w + β1N + β2K,

where γi, β j ∈ Z.
Clearly the expression in the brackets on the right-hand-side is just a vector

with integer entries. Let us denote it α. Then

χ(C2,D2) ·w+ = α ·w + β1N + β2K, (5.12)

where α ∈ Z18. We can now write χ(C,D) ·w′ in terms of w,K and N:

0 = χ(C,D) ·w′ = (χ(C1,D1) + α) ·w + β1N + β2K.
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We recap that K was chosen to be much greater then
∑

i∈[18] wi and N is much greater
then K. So if β1, β2 are different from zero then |β1N + β2K| is a very big number,
which cannot be canceled out by (χ(C1,D1) +α) ·w. Weights w1, . . . ,w18 are linearly
independent, so for arbitrary b ∈ Z18 the dot product b ·w can be zero if and only
if b = 0. Hence

w(C) = w(D) iff χ(C1,D1) = −α and β1 = 0, β2 = 0.

Taking into account that χ(C1,D1) is a vector from T18, we get

α < T18 =⇒ w(C) , w(D).

We need the following two claims to finish the proof, their proofs are delegated
to the next section.

Claim 1. Suppose χ(C1,D1) belongs to X ∪ −X. Then χ(C,D) belongs to X′ ∪ −X′.

Claim 2. If α ∈ T18, then α belongs to X ∪ −X.

Now let us show how with the help of these two claims the proof of Proposi-
tion 5.4.2 can be completed. The sets C and D have the same weight and this can
happen only if α is a vector in T18. By Claim 2 α ∈ X ∪ −X. The characteristic
vector χ(C1,D1) is equal to −α, hence χ(C1,D1) ∈ X ∪ −X. By Claim 1 we get
χ(C,D) ∈ X′ ∪ −X′, a contradiction. �

Theorem 5.4.1. There exists a linear qualitative probability order v on [26] and T ⊂ [26]
such that the initial segment ∆(v,T) is not a threshold complex.

Proof. All weights are positive so {e1, . . . , e26} ∩ S(�′) = ∅. Then by Corollary 5.4.1
and Proposition 5.4.2 all conditions of Theorem 5.3.1 are satisfied. Therefore C(�′

)−(−X′) is a discrete cone C(v), wherev is an almost representable linear qualitative
probability order. By construction A′1 @ A′2 @ A′3 @ A′4 @ B′1 @ B′2 @ B′3 @ B′4 and thus
∆(v,B′1) is an initial segment, which is not a threshold complex. �

Note that we have a significant degree of freedom in constructing such an
example. The matrix M can be chosen in 218 possible ways and we have not
specified the linear qualitative probability order �.
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5.5 Proofs of Claim 1 and Claim 2

Lets fix some notation first. Suppose b ∈ Zk and xi ∈ Zn for i ∈ [k]. Then we define
the product

b · (x1, . . . , xk) =
∑
i∈[k]

bixi.

It resembles the dot product (the difference is that the second argument is a sequence
of vectors) and is denoted in the same way. For a sequence of vectors (x1, . . . , xk)
we also define (x1, . . . , xk)p = (x(p)

1 , . . . , x
(p)
k ), where x( j)

i is the jth coordinate of vector
xi.

We start with the following lemma.

Lemma 5.5.1. Let b ∈ Z6. Then

b · (χ(B1,A4), χ(B2,A1), χ(B3,A2), χ(A2,A1), χ(A3,A1), χ(A4,A1)) = 0

if and only if b = 0.

Proof. We know that the pairs (B1,A4) and (B2,A1) are not compatible. So there
exists an element p that lies in the intersection B1 ∩ B2 (or A1 ∩ A4), but p < A4 ∪ A1

(p < B1 ∪ B2, respectively). We have exactly two copies of every element among
A1, . . . ,A4 and B1, . . . ,B4. Thus, the element p belongs to A2 ∩ A3 (B3 ∩ B4) and
doesn’t belong to B3 ∪ B4 (A2 ∪ A3 ). The following table illustrates this:

χ(A1) χ(A2) χ(A3) χ(A4) χ(B1) χ(B2) χ(B3) χ(B4)
pth 0 1 1 0 1 1 0 0

coordinate 1 0 0 1 0 0 1 1

Then at pth position we have

(χ(B1,A4), χ(B2,A1), χ(B3,A2), χ(A2,A1), χ(A3,A1), χ(A4,A1))p = ±(1, 1,−1, 1, 1, 0)

and hence
b1 + b2 − b3 + b4 + b5 = 0.

From the fact that other pairs are not compatible we can get more equations relating
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b1, . . . , b6:
b1 − b2 + b3 − b4 − b6 = 0 from (B1,A4), (B3,A2);
−b1 + b2 + b3 + b5 + b6 = 0 from (B1,A4), (B4,A3);

b2 + b5 + b6 = 0 from (B1,A1), (B2,A2);
b4 + b6 = 0 from (B1,A1), (B3,A3);

b3 + b5 + b6 = 0 from (B1,A1), (B3,A2).

The obtained system of linear equations has only the zero solution. �

Lemma 5.5.2. Let a = (a1, . . . , a8) be a vector inZ8 whose every coordinate ai has absolute
value which is at most 100. Then a ·w+ = 0 if and only if a = 0.

Proof. We first rewrite (5.10) in more convenient form:

w19 = N − K − (−χ(B1,A4) + χ(A1)) ·w

w20 = N − K − (−χ(B1,A4) − χ(B2,A1) + χ(A2)) ·w

w21 = N − K − (−χ(B1,A4) − χ(B2,A1) − χ(B3,A2) + χ(A3)) ·w

w22 = N − K − χ(A4) ·w

w23 = K − χ(B1,A4) ·w

w24 = K − (χ(B1,A4) + χ(B2,A1)) ·w

w25 = K − (χ(B1,A4) + χ(B2,A1) + χ(B3,A2)) ·w

w26 = K

(5.13)

We calculate the dot product a · w+ substituting the values of w19, . . . ,w26

from (5.13):

0 = a ·w+ = N
∑
i∈[4]

ai − K

∑
i∈[4]

ai −

∑
i∈[4]

a4+i


−

[
χ(B1,A4)

 7∑
i=5

ai −

3∑
i=1

ai

 + χ(B2,A1)

 7∑
i=6

ai −

3∑
i=2

ai


+ χ(B3,A2)(−a3 + a7) +

∑
i∈[4]

aiχ(Ai)
]
·w.

(5.14)

The numbers N and K are very big and
∑

i∈[18] wi is small. Also |ai| ≤ 100.
Hence the three summands cannot cancel each other. Therefore

∑
i∈[4] ai = 0 and∑

i∈[4] a4+i = 0. The expression in the square brackets should be zero because the
coordinates of w are linearly independent.
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We know that a1 = −a2−a3−a4, so the expression in the square brackets in (5.14)
can be rewritten in the following form:

b1χ(B1,A4) + b2χ(B2,A1) + b3χ(B3,A2)+

a2χ(A2,A1) + a3χ(A3,A1) + a4χ(A4,A1),
(5.15)

where b1 =
∑7

i=5 ai −
∑3

i=1 ai, b2 =
∑7

i=6 ai −
∑3

i=2 ai and b3 = a7 − a3.

By Lemma 5.5.1 we can see that expression (5.15) is zero iff b1 = 0, b2 = 0, b3 = 0
and a2 = 0, a3 = 0, a4 = 0 and this happens iff a = 0. �

Proof of Claim 1. Assume, to the contrary, that χ(C1,D1) ∈ X ∪ −X and χ(C,D) does
not belong to X′ ∪−X′. Consider χ(C̆1, D̆1) ∈ X′ ∪−X′. We know that the weight of
C is the same as the weight of D, and also that the weight of C̆1 is the same as the
weight of D̆1. This can be written as

χ(C1,D1) ·w + χ(C2,D2) ·w+ = 0,

χ(C1,D1) ·w + χ(C̆1 − C1, D̆1 −D1) ·w+ = 0.

We can now see that

(χ(C̆1 − C1, D̆1 −D1) − χ(C2,D2)) ·w+ = 0.

The left-hand-side of the last equation is a linear combination of weights w19, . . . ,w26.
Due to Lemma 5.5.2 we conclude from here that

χ(C̆1 − C1, D̆1 −D1) − χ(C2,D2) = 0.

But this is equivalent to χ(C,D) = χ(C̆1, D̆1) ∈ X′∪−X′, which is a contradiction. �

Proof of Claim 2. We remind the reader that α was defined in (5.12). Sets C and D
have the same weight and we established that β1 = β2 = 0. So

χ(C2,D2) ·w+ = α ·w.

If we look at the representation of the last eight weights in (5.13), we note that
the weights w19, w20, w21, w22 are much heavier than the weights w23, w24, w25, w26.
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Hence w(C) = w(D) implies

|C2 ∩ {19, 20, 21, 22}| = |D2 ∩ {19, 20, 21, 22}| and

|C2 ∩ {23, 24, 25, 26}| = |D2 ∩ {23, 24, 25, 26}|.
(5.16)

That is C and D have equal number of super-heavy weights and equal number of
heavy ones.

Without loss of generality we can assume that C2 ∩ D2 is empty. Similar to
derivation in the proof of Lemma 5.5.2, the vector α can be expressed as

α = a1χ(B1,A4) + a2χ(B2,A1) + a3χ(B3,A2) +
∑
i∈[4]

biχ(Ai) (5.17)

for some ai, b j ∈ Z. The characteristic vectors χ(A1), . . . , χ(A4) participate in the
representations of super-heavy elements w19, . . . ,w22 only. Hence bi = 1 iff element
18 + i ∈ C2 and bi = −1 iff element 18 + i ∈ D2. Without loss of generality we can
assume that C2 ∩D2 = ∅. By (5.16) we can see that if C2 contains some super-heavy
element p ∈ {19, . . . , 22} with χ(Ak), k ∈ [4], in the representation of wp, then D2 has
a super-heavy q ∈ {19, . . . , 22}, q , p with χ(At), t ∈ [4] − {k} in representation of wq.
In such case bk = −bt = 1 and

bkχ(Ak) + btχ(At) = χ(Ak,At).

By (5.16) the number of super-heavy element in C2 is the same as the number of
super-heavy elements in D2. Therefore (5.17) can be rewritten in the following way:

α = a1χ(B1,A4) + a2χ(B2,A1) + a3χ(B3,A2) + a4χ(Ai,Ap) + a5χ(Ak,At),

where a1, a2, a3 ∈ Z; a4, a5 ∈ {0, 1} and {i, k, t, p} = [4].

Now the series of technical facts will finish the proof.

Fact 1. Suppose a = (a1, a2, a3) ∈ Z3 and |{i, k, t}| = |{ j,m, s}| = 3. Then

a1χ(B j,Ai) + a2χ(Bm,Ak) + a3χ(Bs,At) ∈ T18

if and only if

a ∈ {(0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1), (1, 1, 1), (−1,−1,−1)}. (5.18)
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Proof. The pairs ((B j,Ai), (Bm,Ak)), ((B j,Ai), (Bs,At)) and ((Bm,Ak), (Bs,At)) are not
compatible. Using the same technique as in the proofs of Proposition 5.4.1 and
Lemma 5.5.1 and watching a particular coordinate we get

(a1 + a2 − a3), (a1 − a2 + a3), (−a1 + a2 + a3) ∈ T,

respectively. The absolute value of the sum of every two of these terms is at most
two. Add the first term to the third. Then |2a2| ≤ 2 or, equivalently, |a2| ≤ 1. In a
similar way we can show that |a3| ≤ 1 and |a1| ≤ 1. The only vectors that satisfy all
the conditions above are those listed in (5.18). �

Fact 2. Suppose a = (a1, a2, a3) ∈ Z3 and |{i, k, t}| = |{ j,m, s}| = 3. Then

a1χ(B j,Ai) + a2χ(Bm,Ak) + a3χ(Bs,At) + χ(Ak,At) ∈ T18

if and only if
a ∈ {(0, 0, 0), (0, 1, 0), (0, 0,−1), (0, 1,−1)}.

Proof. Considering non-compatible pairs ((Bm,Ak), (Bs,At)), ((B j,Ai), (Bm,Ak)),
((B j,Ai), (Bs,At)), ((B j,Ak), (Bs,Ai)), ((B j,At), (Bm,Ai)), we get the inclusions

(−a1 + a2 + a3), (a1 + a2 − a3 − 1), (a1 − a2 + a3 + 1), (a1 − 1), (a1 + 1) ∈ T,

respectively. We can see that |2a2 − 1| ≤ 2 and |2a3 + 1| ≤ 2 and a1 = 0. So a2 can be
only 0 or 1 and a3 can have values −1 or 0. �

Fact 3. Suppose a = (a1, a2, a3) ∈ Z3 and {i, k, t, p} = [4] and |{ j,m, s}| = 3. Then

a1χ(B j,Ai) + a2χ(Bm,Ak) + a3χ(Bs,At) + χ(Ai,Ap) ∈ T18

if and only if
a ∈ {(0, 0, 0), (1, 0, 0), (1, 1, 1), (2, 1, 1)}.

Proof. Let ` ∈ [4] − { j,m, s}. From consideration of the following non-compatible
pairs

((B j,Ai), (Bm,Ak)), ((B j,Ai), (Bs,At)), ((Bm,Ak), (Bs,At)), ((B j,Ai), (Bm,At)),

((B j,Ai), (Bm,Ap)), ((B j,Ai), (Bs,Ap)), ((Bs,At), (B`,Ai))
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we get the following inclusions

(a1 + a2 − a3 − 1), (a1 − a2 + a3 − 1), (−a1 + a2 + a3),

(a1 − 1), (a1 − a3), (a1 − a2), (a2 − a3 + 1) ∈ T,

respectively. So we have |2a3−1| ≤ 2 (from the second and the third inclusions) and
|2a2 − 1| ≤ 2 (from the first and the third inclusions) from which we immediately
get a2, a3 ∈ {1, 0}. We also get a1 ∈ {2, 1, 0} (by the forth inclusion).

• If a1 = 2, then by the fifth and sixth inclusions a3 = 1 and a2 = 1.

• If a1 = 1, then a2 can be either zero or one. If a2 = 0 then we have χ(B j,Ai) +

a3χ(Bs,At) + χ(Ai,Ap) = χ(B j,Ap) + a3χ(Bs,At). By Fact 1, a3 can be zero only.
On the other hand, if a2 = 1, then a3 = 1 by the seventh inclusion.

• If a1 = 0 then a2 can be a 0 or a 1. Suppose a2 = 0. Then a3 = 0 by the first
two inclusions. Assume a2 = 1. Then a3 = 0 by the third inclusion and on the
other hand a3 = 1 by the second inclusion, a contradiction.

This proves the statement. �

Fact 4. Suppose a = (a1, a2, a3) ∈ Z3 and {i, k, t, p} = [4] and |{ j,m, s}| = 3. Then

a1χ(B j,Ai) + a2χ(Bm,Ak) + a3χ(Bs,At) + χ(Ai,Ap) + χ(Ak,At) < T18.

Proof. Let ` ∈ [4] − { j,m, s}. Using the same technique as above from consideration
of non-compatible pairs

((B j,Ai), (Bm,At)), ((Bs,At), (B j,Ak)), ((B j,Ai), (Bs,At)),

((Bm,Ak), (Bs,At)), ((B j,Ai), (Bm,Ap)), ((B j,Ai), (B`,Ak))

we obtain inclusions:

a1, a3, (a1 − a2 + a3), (−a1 + a2 + a3), (a1 − a3), (a1 − a3 − 2) ∈ T,

respectively.
From the last two inclusions we can see that a1 − a3 = 1. This, together with the

first and the second inclusions, imply (a1, a3) ∈ {(1, 0), (0,−1)}. Suppose (a1, a3) =

(1, 0). Then

χ(B j,Ai) + a2χ(Bm,Ak) + χ(Ai,Ap) + χ(Ak,At) = χ(B j,Ap) + a2χ(Bm,Ak) + χ(Ak,At).
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By Fact 3, it doesn’t belong to T18 for any value of a2.
Suppose now that (a1, a3) = (0,−1). Then by the third and the forth inclusions

a2 can be only zero. Then a = (0, 0,−1) and

−χ(Bs,At) + χ(Ai,Ap) + χ(Ak,At) = −χ(Bs,Ak) + χ(Ai,Ap).

However, by Fact 3 the right-hand-side of this equation is not a vector of T18. �

Fact 5. Suppose a ∈ Z5 and

v = a1χ(B j,Ai) + a2χ(Bm,Ak) + a3χ(Bs,At) + a4χ(Ai,Ap) + a5χ(Ak,At).

If a4, a5 ∈ {0, 1,−1} and v ∈ T18, then v belongs to X or −X.

Proof. First of all, we will find the possible values of a in case v ∈ T18. By Facts 1 –4
one can see that v ∈ T18 iff a belongs to the set

Q ={(0, 0, 0, 0, 0), (±1, 0, 0, 0, 0), (0,±1, 0, 0, 0), (0, 0,±1, 0, 0), (1, 1, 1, 0, 0),

(0, 0, 0,±1, 0), (±1, 0, 0,±1, 0), (±1,±1,±1,±1, 0), (±2,±1,±1,±1, 0),

(0, 0, 0, 0,±1), (0,±1, 0, 0,±1), (0, 0,∓1, 0,±1), (0,±1,∓1, 0,±1)}.

By the construction of � the sequence (A1, . . . ,A4; B1, . . . ,B4) is a trading trans-
form. So for every {i1, . . . , i4} = { j1, . . . , j4} = [4] the equation

χ(Bi1 ,A j1) + χ(Bi2 ,A j2) + χ(Bi3 ,A j3) + χ(Bi4 ,A j4) = 0. (5.19)

holds. Taking (5.19) into account one can show, that for every a ∈ Q, vector v
belongs to X or −X. For example, if a = (2, 1, 1, 1, 0) then

2χ(B j,Ai) + χ(Bm,Ak) + χ(Bs,At) + χ(Ai,Ap) =

χ(B j,Ai) − χ(B`,Ap) + χ(Ai,Ap) = χ(B j,B`),

where ` ∈ [4] − { j,m, s}. �

One can see that v from the Fact 5 is the general form of α. Hence α ∈ T18 if and
only if α ∈ X ∪ −X which is Claim 2. �
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5.6 Acyclic Games and a Conjectured Characterization

So far we have shown that the initial segment complexes strictly contain the thresh-
old complexes and are strictly contained within the shifted complexes. In this
section we introduce some ideas from the theory of simple games to formulate a
conjecture that characterizes initial segment complexes. The idea in this section is
to start with a simplicial complex and see if there is a natural linear order available
on 2[n] which gives a qualitative probability order and has the original complex as
an initial segment. We will follow the presentation of Taylor and Zwicker (1999).

Let ∆ ⊆ 2[n] be a simplicial complex. Define the Winder desirability relation,
≤W, on 2[n] by A ≤W B if and only if for every Z ⊆ [n] − ((A − B) ∪ (B − A)) we have
that

(A − B) ∪ Z < ∆⇒ (B − A) ∪ Z < ∆.

Furthermore define the Winder existential ordering, ≺W, on 2[n] to be

A ≺W B⇐⇒ It is not the case that B ≤W A.

Definition 5.6.1. A simplicial complex ∆ is called strongly acyclic if there are no k-cycles

A1 ≺W A2 ≺W · · ·Ak ≺W A1

for any k in the Winder existential ordering.

Theorem 5.6.1. Suppose � is a qualitative probability order on 2[n] and T ∈ 2[n]. Then the
initial segment ∆(�,T) is strongly acyclic.

Proof. Let ∆ = ∆(�,T). It follows from the definition that A ≺W B if and only if there
exists a Z ∈ [n] − ((A − B) ∪ (B − A)) such that (A − B) ∪ Z ∈ ∆ and (B − A) ∪ Z < ∆.
From the definition of ∆ it follows that

(A − B) ∪ Z ≺ (B − A) ∪ Z

which, by de Finneti’s axiom 5.2, implies

A − B ≺ B − A

and hence, again by de Finneti’s axiom,

A ≺ B.
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Thus a k-cycle
A1 ≺W · · · ≺W Ak ≺W A1

in ∆ would imply a k-cycle
A1 ≺ · · · ≺ Ak ≺ A1

which contradicts that ≺ is a total order. �

Conjecture 1. A simplicial complex ∆ is an initial segment complex if and only if it is
strongly acyclic.

We will return momentarily to give some support for Conjecture 1. First,
however, it is worth noting that the necessary condition of being strongly acyclic
from Theorem 5.6.1 allows us to see that there is little relationship between being
an initial segment complex and satisfying the conditions CC∗k.

Corollary 5.6.1. For every M > 0 there exist simplicial complexes that satisfy CC∗M but
are not initial segment complexes.

Proof. Taylor and Zwicker (Taylor & Zwicker, 1999) construct a family of complexes
{Gk}, which they call Gabelman games that satisfy CC∗k−1 but not CC∗k. They then
show (Taylor & Zwicker, 1999, Corollary 4.10.7) that none of these examples are
strongly acyclic. The result then follows from Theorem 5.6.1. �

Our evidence in support of Conjecture 1 is based on the idea that the Winder
existential order can be used to produce the related qualitative probability order
for strongly acyclic complexes. Here are two lemmas that give some support for
this belief:

Lemma 5.6.1. If ∆ is a simplicial complex with A ∈ ∆ and B < ∆ then A ≺W B.

Proof. Let Z = A ∩ B. Then

(A − B) ∪ Z = A ∈ ∆

(B − A) ∪ Z = B < ∆,

and so A ≺W B. �

Lemma 5.6.2. For any ∆, the Winder existential order ≺W satisfies the property

A ≺W B⇐⇒ A ∪D ≺W B ∪D

for all D disjoint from A ∪ B.
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Proof. See (Taylor & Zwicker, 1999, Proposition 4.7.8). �

This pair of lemmas leads to a slightly stronger version of Conjecture 1.

Conjecture 2. If ∆ is strongly acyclic then there exists an extension of ≺W to a qualitative
probability order.

What are the barriers to proving Conjecture 2? The Winder order need not be
transitive. In fact there are examples of threshold complexes for which ≺W is not
transitive (Taylor & Zwicker, 1999, Proposition 4.7.3). Thus one would have to
work with the transitive closure of ≺W, which does not seem to have a tractable
description. In particular we do not know if the analogue to Lemma 5.6.2 holds for
the transitive closure of ≺W.

5.7 Conclusion

In this chapter we have begun the study of a class of simplicial complexes that
are combinatorial generalizations of threshold complexes derived from qualitative
probability orders. We have shown that this new class of complexes strictly con-
tains the threshold complexes and is strictly contained in the shifted complexes.
Although we can not give a complete characterization of the complexes in ques-
tion, we conjecture that they are the strongly acyclic complexes that arise in the
study of cooperative games. We hope that this conjecture will draw attention to
the ideas developed in game theory which we believe to be too often neglected in
the combinatorial literature.
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Appendix A

Proof of Theorem 3.4.1

Proof of Theorem 3.4.1. In one direction the statement is clear: if a linear combination
(3.11) with coefficients r1, . . . , rm exists, then there are no non-negative solutions for
Ax ≥ 0, other than x = 0. Indeed, suppose s = (s1, . . . , sn) is such a solution. Denote
r = (r1, . . . , rm). If x = (x1, . . . , xn) ≥ 0 is a non-zero solution, then (3.11) implies
(rA)x = s1x1 + . . . + snxn < 0, which is impossible since r(Ax) ≥ 0.

Let us prove the reverse statement by induction. For n = 1 the matrix A is an
m × 1 matrix system reduces to a11x1 ≥ 0, . . . , am1x1 ≥ 0. Since it has no positive
solutions we have ai1 < 0 for some i. Suppose ai1 = − s

t , where s, t are integers and
the fraction s

t is in lowest possible terms. Then we can take ri = t and r j = 0 for j , i
and obtain r1a1 + r2a2 + · · · + rmam = tai1 = −s < 0 and s is an integer.

Suppose now that the statement is proved for all m × k matrices A with k < n.
Suppose now A is an m × n matrix and the system Ax ≥ 0 has no non-negative
solutions other than x = 0.

Suppose that a certain column, say the jth one, has no positive coefficients.
Then we may drop this column and the resulting system will still have no non-zero
non-negative solutions (otherwise we can take it, add x j = 0, and obtain a non-zero
non-negative solution for the original system). By the induction hypothesis for the
reduced system we can find non-negative integers r1, . . . , rm and a vector u such
that (3.11) is true. Then the same r1, . . . , rm will work also for the original system.

We may now assume that any variable has positive coefficients. Let us consider
the variable x1. Its coefficients are not all negative but they are not all positive
either (otherwise the system would have a non-zero non-negative solution x =

(1, 0, . . . , 0)). Multiplying, if necessary, the rows of A by positive rational numbers,
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we find that our system is equivalent to a system of the form

x1 − fi(x2, , . . . , xn) ≥ 0,

−x1 + g j(x2, , . . . , xn) ≥ 0,

hp(x2, , . . . , xn) ≥ 0,

i = 1, . . . , k, j = 1, . . . ,m, p = 1, . . . , `, where fi(x2, , . . . , xn), g j(x2, , . . . , xn) and
hp(x2, , . . . , xn) are linear functions in x2, , . . . , xn, and k ≥ 1, m ≥ 1. The matrix
of such system has the rows: Ui = (1,ui), V j = (−1,v j), Ws = (0,ws), where
i = 1, . . . , k, j = 1, . . . ,m, s = 1, . . . , `. Then the following system of km + m + `
inequalities

gi(x2, , . . . , xn) ≥ f j(x2, , . . . , xn),

gi(x2, , . . . , xn) ≥ 0,

hs(x2, , . . . , xn) ≥ 0,

i = 1, . . . , k, j = 1, . . . ,m, s = 1, . . . , `, has no non-negative solutions other than
x2 = . . . = xn = 0. Indeed, if such a solution (x2, . . . , xn) is found then we can set
x1 = min gi(x2, , . . . , xn) and since this minimum is non-negative to obtain a non-zero
solution of the original inequality.

By the induction hypothesis there exist non-negative integers ai, j, d j, et, s, where
i = 1, . . . , k, j = 1, . . . ,m, t = 1, . . . , ` such that at least one of these integers positive
and

m∑
j=1

k∑
i=1

ai, j(ui + v j) +

m∑
j=1

d jv j +
∑̀
t=1

etwt + s1 = 0, (A.1)

where s ∈ Rn−1 has all its coefficients non-negative. Let Bi =
∑m

j=1 ai, j, C j =
∑k

i=1 ai, j,
d =

∑m
j=1 d j. Then

∑k
i=1 Bi =

∑m
j=1 C j, and (A.1) can be rewritten as

k∑
j=1

BiUi +

m∑
j=1

(C j + d j)V j +
∑̀
t=1

etWt + de1 + (0, s1) = 0.

If d , 0, then we have finished the proof. If not, then we found the numbers
r1

1, . . . , r
1
m such that

r1
1a1 + . . . + r1

mam + (0, s1) = 0.
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Similarly, we can find the numbers r2
1, . . . , r

2
m such that

r2
1a1 + . . . + r2

mam + (s2, 0) = 0.

But then we can set ri = r1
1 + r2

1, i = 1, . . . ,m and s = (0, s1) + (s2, 0) and obtain (3.11).
Now all coordinates of s are positive, hence the statement is proved. �
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Appendix B

Examples of critical simple games for
every number of the 6th spectrum

α
Minimal winning coalitions and Weight representationmaximal loosing coalitions

18
17

Wmin = {{2, 3, 4}, {2, 3, 6}, {2, 4, 6}, {2, 5, 6}, w1 = 3\17,w2 = 8\17,
{1, 2, 4, 5}{1, 3, 4, 6}, {1, 3, 5, 6}}, w3 = 5\17,w4 = 4\17,

Lmax = {{1, 2, 4}, {1, 2, 6}, {1, 3, 6}, {2, 4, 5}, w5 = 2\17,w6 = 7\17
{1, 2, 3, 5}, {1, 3, 4, 5}, {1, 4, 5, 6}, {3, 4, 5, 6}}

17
16

Wmin = {{1, 2}, {2, 4, 6}, {2, 5, 6}, {1, 3, 4, 6}, w1 = 7\16,w2 = 9\16,
{1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {3, 4, 5, 6}}, w4 = w5 = 4\16,

Lmax = {{1, 3, 6}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, w3 = 2\16,w6 = 6\16
{2, 3, 6}, {2, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}, {1, 3, 4, 5}}

16
15

Wmin = {{1, 2}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, w1 = 8\15,w2 = 7\15,
{1, 5, 6}, {2, 3, 4}, {2, 4, 6}, {2, 5, 6}, {4, 5, 6}, {3, 4, 5, 6}}, w3 = 3\15,w4 = 5\15,

Lmax = {{1, 5}, {1, 6}, {1, 3, 4}, {2, 3, 5}, {2, 3, 6}, w5 = 4\15,w6 = 6\15
{2, 4, 5}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}}

15
14

Wmin = {{1, 3}, {1, 6}, {1, 2, 4}, {1, 2, 5}, w1 = 9\14,w2 = 3\14,
{2, 3, 6}, {3, 5, 6}, {4, 5, 6}, {2, 3, 4, 5}}, w3 = 5\14,w4 = 2\14,

Lmax = {{1, 2}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, w5 = 4\14,w6 = 8\14
{2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}}

14
13

Wmin = {{3, 6}, {1, 2, 3}, {1, 2, 5}, {1, 2, 6}, w1 = 5\13,w3 = 6\13,
{1, 3, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 5, 6}, w2 = w5 = 4\13,

{3, 4, 5}, {4, 5, 6}, {2, 3, 5, 6}}, w4 = 3\13,w6 = 7\13
Lmax = {{1, 6}, {5, 6}, {1, 2, 4}, {1, 3, 4}, {1, 4, 5},

{2, 3, 5}, {2, 4, 5}, {2, 4, 6}}

Table B.1: Examples of critical simple games for every number of the 6th spectrum
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α
Minimal winning coalitions and Weight representationmaximal loosing coalitions

13
12

Wmin = {{1, 3}, {3, 5}, {3, 6}, {1, 5, 6}, {2, 4, 5}, w1 = 3\12,w3 = 9\12,
{2, 5, 6}, {4, 5, 6}, {1, 2, 4, 6}, {2, 3, 4, 6}}, w2 = w4 = 2\12,
Lmax = {{5, 6}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, w5 = 8\12,w6 = 5\12
{1, 4, 5}, {1, 4, 6}, {2, 3, 4}, {2, 4, 6}}

12
11

Wmin = {{1, 2}, {1, 6}, {1, 3, 4}, {1, 3, 5}, w1 = 6\11,w3 = 2\11
{2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {4, 5, 6}}, w2 = w6 = 5\11,

Lmax = {{1, 3}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, w4 = w5 = 3\11
{2, 3, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}}

12
11

Wmin = {{1, 2}, {1, 6}, {1, 3, 4}, {1, 3, 5}, w1 = 6\11,w3 = 2\11
{2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {4, 5, 6}}, w2 = w6 = 5\11,

Lmax = {{1, 3}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, w4 = w5 = 3\11
{2, 3, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}}

11
10

Wmin = {{1, 2}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, w1 = w2 = 5\10,
{2, 3, 4}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {4, 5, 6}}, w3 = 2\10,w4 = 4\10,

Lmax = {{2, 4}, {1, 3, 4}, {1, 5, 6}, {2, 3, 5}, w5 = w6 = 3\10
{2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}}

10
9

Wmin = {{1, 3}, {3, 5}, {1, 2, 5}, {1, 4, 6}, {1, 5, 6}, w1 = w5 = 4\9,
{2, 3, 6}, {2, 4, 5}, {3, 4, 6}, {4, 5, 6}}, w3 = 5\9,w4 = 2\9,

Lmax = {{3, 6}, {1, 2, 4}, {1, 2, 6}, {1, 4, 5}, w2 = w6 = 3\9
{2, 3, 4}, {2, 4, 6}, {2, 5, 6}}

17
15

Wmin = {{1, 2, 3}, {1, 3, 5}, {1, 5, 6}, {2, 3, 5}, w1 = 4\15,w2 = 3\15,
{3, 4, 5}, {3, 5, 6}, {4, 5, 6}, {1, 3, 4, 6}}, w3 = 8\15,w4 = 1\15,

Lmax = {{3, 5}, {1, 3, 4}, {1, 3, 6}, {1, 4, 5}, {2, 5, 6}, w5 = 9\15,w6 = 5\15
{1, 2, 4, 5}, {1, 2, 4, 6}, {2, 3, 4, 6}}

15
13

Wmin = {{1, 2}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, w1 = 7\13,w2 = 6\13,
{2, 3, 5}, {2, 4, 5}, {2, 5, 6}, {3, 4, 6}, {1, 3, 4, 5}}, w3 = w4 = 4\13,

Lmax = {{2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 5, 6}, {2, 3, 4}, w5 = 3\13,w6 = 5\13
{2, 3, 6}, {2, 4, 6}, {3, 4, 5}, {3, 5, 6}, {4, 5, 6}}

13
11

Wmin = {{1, 2, 3}, {1, 5, 6}, {2, 5, 6}, {3, 4, 5}, w1 = w2 = w4 = 3\11,
{3, 4, 6}, {4, 5, 6}}, w3 = 5\11,

Lmax = {{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {2, 3, 4}, w5 = w6 = 4\11
{2, 3, 5}, {2, 3, 6}, {3, 5, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}}

17
14

Wmin = {{1, 2, 3}, {1, 2, 6}, {1, 3, 6}, {2, 5, 6}, w1 = 4\14,w4 = 1\14,
{3, 5, 6}, {4, 5, 6}, {2, 3, 4, 5}}, w2 = w3 = 5\14,

Lmax = {{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 5}, w5 = 7\14,w6 = 6\14
{1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 6}}

Table B.2: Examples of critical simple games for every number of the 6th spectrum
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α
Minimal winning coalitions and Weight representationmaximal loosing coalitions

11
9

Wmin = {{1, 2}, {2, 5}, {1, 3, 4}, {1, 3, 6}, w1 = w5 = 4\9,
{1, 4, 5}, {1, 4, 6}, {3, 4, 6}, {4, 5, 6}}, w2 = 5\9,

Lmax = {{1, 4}, {1, 3, 5}, {1, 5, 6}, {2, 3, 4}, w3 = w4 = w6 = 3\9
{2, 3, 6}, {2, 4, 6}, {3, 4, 5}, {3, 5, 6}}

16
13

Wmin = {{1, 2, 3}, {1, 2, 4}, {1, 4, 6}, {2, 4, 5}, w1 = w5 = 5\13,
{3, 4, 5}, {4, 5, 6}, {1, 3, 4, 6}}, w4 = 6\13,w6 = 2\13,

Lmax = {{1, 3, 4}, {1, 4, 5}, {1, 2, 5, 6}, w2 = w3 = 4\13
{1, 3, 5, 6}, {2, 3, 4, 6}, {2, 3, 5, 6}}

5
4

Wmin = {{1, 2}, {1, 3, 6}, {1, 4, 6}, {1, 5, 6}, {2, 3, 5}, w1 = w2 = w6 = 2\4,
{2, 4, 5}, {2, 4, 6}, {3, 5, 6}, {4, 5, 6}}, w3 = w4 = w5 = 1\4

Lmax = {{1, 6}, {1, 3, 4}, {2, 3, 4}, {2, 3, 6},
{2, 5, 6}, {3, 4, 6}, {1, 3, 4, 5}}

14
11

Wmin = {{1, 2}, {4, 5}, {4, 6}, {1, 3, 5}, {1, 3, 6}, w1 = 7\11,w2 = 4\11,
{1, 5, 6}, {2, 3, 4}, {3, 5, 6}}, w3 = 1\11,w4 = 6\11,

Lmax = {{1, 5}, {1, 6}, {2, 4}, {1, 3, 4}, {2, 3, 5}, w5 = w6 = 5\11
{2, 3, 6}, {2, 5, 6}}

9
7

Wmin = {{1, 2}, {3, 5}, {5, 6}, {1, 4, 5}, {1, 4, 6}, w1 = w3 = w6 = 3\7,
{2, 3, 4}, {2, 3, 6}, {2, 4, 6}, {3, 4, 6}}, w2 = w5 = 4\7,

Lmax = {{1, 5}, {2, 3}, {2, 6}, {4, 6}, {1, 3, 4}, w4 = 1\7
{1, 3, 6}, {2, 4, 5}

13
10

Wmin = {{2, 3}, {1, 3, 6}, {1, 5, 6}, {3, 4, 5}, w1 = w4 = 2\10,
{3, 4, 6}, {4, 5, 6}} w2 = w3 = 5\10,

Lmax = {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 5, 6}, w5 = 4\10,w6 = 4\10
{3, 5, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}}

17
13

Wmin = {{1, 2}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, w1 = 6\13,w2 = 7\13,
{3, 4, 6}, {4, 5, 6}}, w3 = w5 = 3\13,

Lmax = {{1, 3, 4}, {1, 4, 6}, {2, 3, 4}, {2, 4, 6}, {2, 5, 6}, w4 = w6 = 5\13
{1, 3, 4, 5}, {1, 3, 5, 6}}

4
3

Wmin = {{1, 2}, {2, 5}, {1, 3, 6}, {1, 4, 6}, {1, 5, 6}, w1 = w3 = 1\3,
{2, 3, 4}, {3, 4, 6}, {4, 5, 6}}, w2 = 2\3,

Lmax = {{1, 6}, {2, 3, 6}, {2, 4, 6}, {3, 4, 5}, {3, 5, 6}, w4 = w5 = w6 = 1\3
{1, 3, 4, 5}}

3
2

Wmin = {{1, 6}, {2, 3}, {2, 5}, {2, 6}, {3, 4}, w1 = w2 = w3 = 1\2,
{4, 6}, {1, 3, 5}}, w4 = w5 = w6 = 1\2

Lmax = {{1, 3}, {1, 2, 4}, {1, 4, 5}, {3, 5, 6}}
9
8 ,

8
7 , add dummy player with zero weight

7
6 ,

6
5 to games from Table 4.1

Table B.3: Examples of critical simple games for every number of the 6th spectrum
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Appendix C

Maple’s Codes

C.1 Code for the 5th Spectrum

with(Optimization):

with(combinat):

# The procedure “All” generates the set of all subsets of {1, ..,n}with cardinality
#in [i1, i2].

All:=proc(i1::integer,i2:: integer, n::set):: set;

local i, p, allcomb;

allcomb:={}:

for i from i1 by 1 to i2 do

allcomb:=allcomb union choose(n,i):

end do:

allcomb:

end proc;

# The procedure “supersetsminus” removes all supersets (not necessary strict)
#of a set seta from a set of subsets all.

supersetsminus:=proc(seta::set, all::set)::set;

local i,ss;

ss:=all;

for i in all do

if verify(‘intersect‘(seta,i), seta, { ‘set‘, ‘equal‘})
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then ss:=ss minus {i}: end if:

end do:

ss;

end proc;

# The procedure “subsetsminus” removes all subsets (not necessary strict) of a
#set seta from a set of subsets all.

subsetsminus:=proc(seta::set, all:: set):: set;

local i,ss;

ss:=all;

for i in all do

if (i subset seta) then ss:=ss minus {i}: end if:

end do:

ss;

end proc;

# The procedure “converttoconditions” returns the set f w of vectorsχ( j)x, where
#χ( j) is the characteristic vector of a set j of a (note that every set from a is a subset
#of {1, ..,n}) and x is a vector of undermined variables.

converttoconditions:=proc(a::set,n::integer)::set;

local uslx,p,fw,i1,i2;

uslx :={seq(x[i], i = 1 .. n)};

p:=0;

fw:={};

for i1 in a do

for i2 in i1 do

p:=p+uslx[i2];

end do;

fw:= fw union {p};

p:=0;

end do;

fw;

end proc;

#The procedure “rough” returns the list f inal, which consists of two sets f inal1
#and f inal2, where f inal1 is the set of all possible parameters α. The set f w is a
#set of known winning coalitions. The set f l is a set of known losing coalitions.
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#For every classification, say classification number r, it solves linear programming
#problem and find value p, such that this game is critical in Cp. If we had the
#same p for some previous situation (or equivalently p ∈ f inal1) we go to the next
#classification. If we found p for the first time then we add it to f anal1 and add the
#list [p, {conditions}] to f inal2, where {conditions} is a set of conditions: χ( j)x ≤ p if j
#is losing and χ( j)x ≥ 1 if j is winning.

rough:=proc(fw::set, fl::set, g:: set, n:: integer)::list;

local k, k1, p,p1, i,j, i1,i2, final1,final2, final3,indexall,

wincond,looscond,strangecond,indexw, indexl, uslx, condition,

addcond, final;

final1:= {};

final2:={};

final3:={};

#Form idex set.

indexall := {seq(i, i=1..nops(g))};

#Form known conditions from fw≥ 1 and fl ≤ z.

wincond:= converttoconditions(fw,n);

looscond:= converttoconditions(fl,n);

strangecond:= converttoconditions(g,n);

condition:={};

for k1 in wincond do

condition:= ‘union‘(condition, {k1 >= 1});

end do;

for k1 in looscond do

condition:= ‘union‘(condition,{k1<=z});

end do;

addcond:={};

#All additional conditions for winning coalitions.
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for k1 in strangecond do

addcond:= ‘union‘(addcond,{k1>=1});

end do;

p := LPSolve(z, ‘union‘(‘union‘(condition, addcond), {z>=1}));

p1 := convert(p[1], rational);

if evalb(p1 in final1) then

else final1 := ‘union‘(final1, {p1});

final2:=final2 union {[p, {condition,addcond}]};

end if;

#First one of the additional conditions is loosing, after that two, three and so on.

for i in indexall do

addcond:={};

for j in All(i,i,g) do

indexl:=j:

indexw:= g minus j:

for k in indexw do

addcond:= ‘union‘(addcond,{ converttoconditions({k},5)[1]>=1});

end do;

for k in indexl do

addcond:= ‘union‘(addcond,{ converttoconditions({k},5)[1]<=z});

end do;

p := LPSolve(z, ‘union‘(‘union‘(condition, addcond), {z>=1}));

p1 := convert(p[1], rational);

if evalb(p1 in final1) then

else final1 := ‘union‘(final1, {p1});

final2:=final2 union {[p, {condition,addcond}]};

end if;

end do;

end do;

final:=[final1,final2];

end proc;

######################
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final1:={};

final2:={};

final3:={};

fw := {{1,2}, {3,4,5} };

fl:={ {1,5}, {2,3,4} };

level3:={ {1,3,4} , {1,3,5} , {1,4,5}, {2,3,5}, {2,4,5} };

level2:= {{1,3}, {1,4}, {2,5}, {3,5}, {4,5}};

for i1 from 0 to 4 do

p:=All(i1,i1,level3):

for i2 in p do

fwtemp:=fw:

fltemp:=fl:

g:=i2;

l2:=level2;

for i3 in g do

l2:=subsetsminus(i3,l2);

end do;

fltemp:=fltemp union g;

fwtemp:=fwtemp union (level3 minus g);

P:= rough(fwtemp , fltemp, l2, 5);

final1:=‘union‘(final1,P[1]);

final2:=‘union‘(final2,P[2]);

end do;

end do;

C.2 Code for the 6th Spectrum

with(Optimization):

with(combinat):

#Digits:=50;
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#The procedure “All” generates a set of all subsets of {1, ..,n}with cardinality in
#[i1, i2].

All:=proc(i1::integer,i2:: integer, n::set):: set;

local i, p, allcomb;

allcomb:={}:

for i from i1 by 1 to i2 do

allcomb:=allcomb union choose(n,i):

end do:

allcomb:

end proc;

# The procedure “supersetsminus” removes all supersets (not necessary strict)
#of a set seta from the set of subsets all.

supersetsminus:=proc(seta::set, all::set)::set;

local i,ss;

ss:=all;

for i in all do

if verify(‘intersect‘(seta,i), seta, { ‘set‘, ‘equal‘})

then ss:=ss minus {i}: end if:

end do:

ss;

end proc;

# The procedure “subsetsminus” removes all subsets (not necessary strict) of a#
set seta from the set of subsets all.

subsetsminus:=proc(seta::set, all:: set):: set;

local i,ss;

ss:=all;

for i in all do

if (i subset seta) then ss:=ss minus {i}: end if:

end do:

ss;

end proc;

#The procedure “subsetsofsetminus” removes all subsets (not necessary strict)
#of sets in setsa from the set of subsets all.
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subsetsofsetminus:=proc(setsa::set, all::set)::set;

local i,ss;

ss:=all;

for i in setsa do

ss:=subsetsminus(i, ss);

end do;

ss;

end proc;

#The procedure “supersetsofsetminus” removes all supersets (not necessary
#strict) of sets in setsa from the set of subsets all.

supersetsofsetminus:=proc(setsa::set, all::set)::set;

local i,ss;

ss:=all;

for i in setsa do

ss:=supersetsminus(i, ss);

end do;

ss;

end proc;

# The procedure “converttoconditions” returns the set f w of vectorsχ( j)x, where
#χ( j) is the characteristic vector of a set j of a (note that every set from a is a subset
#of {1, ..,n}) and x is a vector of undermined variables.

converttoconditions:=proc(a::set,n::integer)::set;

local uslx,p,fw,i1,i2;

uslx :={seq(x[i], i = 1 .. n)};

p:=0;

fw:={};

for i1 in a do

for i2 in i1 do

p:=p+uslx[i2];

end do;

fw:= fw union {p};

p:=0;

end do;

fw;

end proc;
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#The procedure “rough” returns the list f inal, which consists of two sets f inal1
#and f inal2, where f inal1 is the set of all possible parameters α. The set f w is
#a set of known winning coalitions, f l is a set of known losing coalitions, g is a
#3-element list, where g[i] consists of all unclassified coalitions of cardinality i + 1.
#Note that g[i] doesn’t contain subsets of sets from f l and supersets of sets from
# f w. The algorithm classifies sets from g[1], g[2] and g[3] as it is explained in the
#chapter. For every such classification, say classification number x, it solves a linear
#programming problem and finds value p, such that this game is in Cp. If we have
#the same p for some previous situation (or, equivalently, p ∈ f inal1) we go to the
#next classification. If we find p for the first time then we add it to f anal1 and add
#the list [p, {conditions}] to f inal2, where {conditions} is a set of conditions: χ( j)x ≤ p
#if j is losing, and χ( j)x ≥ 1 if j is winning.

rough:=proc(fw::set, fl::set, g:: list, n:: integer)::list;

local final1, final2, l4,l2temp1,l3temp1, l2temp2, i1,i2,i3,k1,k2,

k3,j1,fwtemp,fltemp,fwtemp2,fltemp2,fwtemp3,fltemp3,p,p1,condition,

final;

final1:= {};

final2:={};

l4:=g[3];

for i1 from 0 by 1 to nops(l4) do

for k1 in All(i1,i1,l4) do

fwtemp:=fw;

fltemp:=fl;

l2temp1:=g[1];

l3temp1:=g[2];

l2temp1:=subsetsofsetminus(k1,l2temp1);

l3temp1:=subsetsofsetminus(k1,l3temp1);

fwtemp:=fwtemp union (l4 minus k1);

fltemp:=fltemp union k1;

for i2 from 0 to nops(l3temp1) do

for k2 in All(i2,i2,l3temp1) do

l2temp2:=subsetsofsetminus(k2,l2temp1);

fwtemp2:=fwtemp union (l3temp1 minus k2);

fltemp2:=fltemp union k2;
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for i3 from 0 to nops(l2temp2) do

for k3 in All(i3,i3,l2temp2) do

fwtemp3:=fwtemp2 union (l2temp2 minus k3);

fltemp3:=fltemp2 union k3;

fltemp3:= converttoconditions(fltemp3,n);

fwtemp3:= converttoconditions(fwtemp3,n);

condition:={};

for j1 in fwtemp3 do

condition:= ‘union‘(condition, {j1 >= 1});

end do;

for j1 in fltemp3 do

condition:= ‘union‘(condition,{j1<=z});

end do;

p := LPSolve(z, condition union {z>=1}, assume = nonnegative);

p1 := convert(p[1], rational);

if evalb(p1 in final1) then else

final1 := ‘union‘(final1, {p1});

final2:=final2 union {[p, {condition}]};

end if;

end do;

end do;

end do;

end do;

end do;

end do;

final:=[final1,final2];

end proc;

# The main code.
# The not proper case 1.

final1:={}:

final2:={}:

fw := {{1,2}, {3,4,5,6} }:

fl:={{1,3,4}}:
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P:={seq(i,i=1..6)} :

level4:=All(4,4,P) :

level3:=All(3,3,P) :

level2:= All(2,2,P) :

level4:=supersetsofsetminus(fw,level4) :

level4:=subsetsofsetminus(fl,level4) :

level3:=supersetsofsetminus(fw,level3) :

level3:=subsetsofsetminus(fl,level3) :

level2:=supersetsofsetminus(fw,level2) :

level2:=subsetsofsetminus(fl,level2) :

g:=[level2,level3,level4] :

final:=rough(fw,fl,g,6) :

final1:=final1 union final[1] :

final2:=final2 union final[2] :

k := final1: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i]-k[j]) < 10ˆ(-7) then k1 := ‘minus‘(k1, {k[j]})

end if

end do

end do:

final1:=k1:

k := final2: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i][1][1]-k[j][1][1]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]})

end if

end do

end do:

final2 := k1;

# The not proper case 2.

fw := {{1,2}, {3,4,5,6} }:

fl:={{3,4,5}}:

P:={seq(i,i=1..6)} :
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level4:=All(4,4,P) :

level3:=All(3,3,P) :

level2:= All(2,2,P) :

level4:=supersetsofsetminus(fw,level4) :

level4:=subsetsofsetminus(fl,level4) :

level3:=supersetsofsetminus(fw,level3) :

level3:=subsetsofsetminus(fl,level3) :

level2:=supersetsofsetminus(fw,level2) :

level2:=subsetsofsetminus(fl,level2) :

g:=[level2,level3,level4] :

final:=rough(fw,fl,g,6) :

final1:=final1 union final[1] :

final2:=final2 union final[2] :

k := final1: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i]-k[j]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]}) end if

end do

end do:

final1:=k1:

k := final2: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i][1][1]-k[j][1][1]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]}) end if

end do

end do:

final2 := k1;

# The not proper case 3.

fw := {{1,2,3}, {4,5,6} }:

fl:={{1,4,5} }:

P:={seq(i,i=1..6)} :

level4:=All(4,4,P) :

level3:=All(3,3,P) :
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level2:= All(2,2,P) :

level4:=supersetsofsetminus(fw,level4) :

level4:=subsetsofsetminus(fl,level4) :

level3:=supersetsofsetminus(fw,level3) :

level3:=subsetsofsetminus(fl,level3) :

level2:=supersetsofsetminus(fw,level2) :

level2:=subsetsofsetminus(fl,level2) :

g:=[level2,level3,level4] :

final:=rough(fw,fl,g,6) :

final1:=final1 union final[1] :

final2:=final2 union final[2] :

k := final1: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i]-k[j]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]}) end if

end do

end do:

final1:=k1:

k := final2: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i][1][1]-k[j][1][1]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]}) end if

end do

end do:

final2 := k1;

#The not strong case 1.

finalk:={} :

final1k:={} :

final2k:={} :

fl := {{1,2}, {3,4,5,6} }:

fw:={} :

P:={seq(i,i=1..6)} :
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level4:=All(4,4,P) :

level3:=All(3,3,P) :

level2:= All(2,2,P) :

level4:=subsetsofsetminus(fl,level4) :

level3:=subsetsofsetminus(fl,level3) :

level2:=subsetsofsetminus(fl,level2) :

g:=[level2,level3,level4] :

finalk:=rough(fw,fl,g,6) :

final1k:=final1k union finalk[1] :

final2k:=final2k union finalk[2] :

k := final1k: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i]-k[j]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]}) end if

end do

end do:

final1k:=k1:

k := final2k: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i][1][1]-k[j][1][1]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]}) end if

end do

end do:

final2k := k1:

#The not strong case 2 (cases 2 and 3 from the chapter)

fl := {{1,2,3}, {4,5,6} }:

fw:={ }:

P:={seq(i,i=1..6)} :

level4:=All(4,4,P) :

level3:=All(3,3,P) :

level2:= All(2,2,P) :

level4:=subsetsofsetminus(fl,level4) :

level3:=subsetsofsetminus(fl,level3) :

139



level2:=subsetsofsetminus(fl,level2) :

g:=[level2,level3,level4] :

finalk:=rough(fw,fl,g,6) :

final1k:=final1k union finalk[1] :

final2k:=final2k union finalk[2] :

k := final1k: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i]-k[j]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]}) end if

end do

end do:

final1k:=k1:

k := final2k: k1 := k:

for i to nops(k) do

for j from i+1 to nops(k) do

if abs(k[i][1][1]-k[j][1][1]) < 10ˆ(-7)

then k1 := ‘minus‘(k1, {k[j]}) end if

end do

end do:

final2k:=k1:

# f inal1k is a set of all possible α.
# f inal2k is set of [p, {conditions}], where p ∈ f inal1k.
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