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Abstract
Background: Effective population size (Ne) is related to genetic variability and is a basic parameter
in many models of population genetics. A number of methods for inferring current and past
population sizes from genetic data have been developed since JFC Kingman introduced the n-
coalescent in 1982. Here we present the Extended Bayesian Skyline Plot, a non-parametric Bayesian
Markov chain Monte Carlo algorithm that extends a previous coalescent-based method in several
ways, including the ability to analyze multiple loci.

Results: Through extensive simulations we show the accuracy and limitations of inferring
population size as a function of the amount of data, including recovering information about
evolutionary bottlenecks. We also analyzed two real data sets to demonstrate the behavior of the
new method; a single gene Hepatitis C virus data set sampled from Egypt and a 10 locus Drosophila
ananassae data set representing 16 different populations.

Conclusion: The results demonstrate the essential role of multiple loci in recovering population
size dynamics. Multi-locus data from a small number of individuals can precisely recover past
bottlenecks in population size which can not be characterized by analysis of a single locus. We also
demonstrate that sequence data quality is important because even moderate levels of sequencing
errors result in a considerable decrease in estimation accuracy for realistic levels of population
genetic variability.

Background
Coalescent theory has been described as "the most signif-
icant progress in theoretical population genetics in the
past two decades of [last] century" [1]. Methods based on
coalescent theory enable estimation of both current and
past population sizes directly from genetic data. Effective
population size (Ne) is linked to the rate of genetic drift
and inbreeding, and is useful for example when investi-
gating the possibility of interbreeding between Neander-
thals and early humans [2], or when looking at patterns of
genetic variation in human genes [3]. Even when popula-

tion size history is of secondary interest the incorporation
of models of population size may improve the genetic
mapping of diseases and estimation of genetic traits [4].

A concise introduction to the coalescent
The coalescent was formally introduced by Kingman in
1982 [5]. This was the culmination of eight years of devel-
oping the "circle of ideas known as the coalescent" [6]
which brought into light the essence of the relation
between population size and ancestry. Informally, the
larger the population, the longer any two individuals have
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to trace their ancestry back in time until meeting their
common ancestor (concestor [7]). The meeting of those
two ancestral lineages is known as the coalescence event.

To formally develop the theory one has to assume the
population is mixing perfectly so that all members of the
same generation have equal probability of being the
ancestor of any member in the next generation. Kingman
introduces the idea using an idealized Wright-Fisher pop-
ulation but shows how the Moran model also has the coa-
lescent as its diffusion limit (for a good summary of these
models see [8]).

Consider two random members from a population of
fixed size N. By perfect mixing, the probability they share
a concestor in the previous generation is 1/N. The proba-
bility the concestor is g + 1 generations back is

. This elementary reasoning shows that g, as a

random variable, has a geometric distribution with a suc-

cess rate of λ = 1/N, and so has mean N and variance of
N3/(N - 1).

With n lineages the time to the first coalescence is derived

in the same way, only now there are  possible pairs

that may coalesce, resulting in a success rate of

 and mean time to coalescence of .

This assumes N is much larger than O(n2). An interesting
consequence is that the total number of generations
required for n lineages to coalesce into one is

, which is always less than

2N regardless of n.

Kingman goes on to show that as N grows the coalescent
process converges to a continuous time Markov chain. For
the above λ = 1/N is the instantaneous probability of coa-
lescing, i.e. the probability of coalescing on a short time
interval Δt is O(λΔt). Unsurprisingly the solution turns
out to be the exponential distribution f(t) = λe-λt, the con-
tinuous equivalent of the geometric distribution.

While Kingman mentions that population size does not
have to be constant the details are not given. The general-
ization of the coalescent for the case where the population
size changes over time, N = N(t) is given by Griffiths and
Tavare [9]. They showed that the coalescent density for the

first coalescence event being at time t in the past given n
lineages is:

In the rest of the article we shall call N = N(t) the demo-
graphic function or sometimes just demographic when the
context is clear. Note that while N(t) may take any form
whose inverse can be integrated, the density is character-
ized by two numbers only, the intensity (average of pop-
ulation size inverse over the interval) and population size
at the end of the interval.

All together, given a demographic function N(t) and a list
of coalescence times T = (tn+1 = 0, tn, tn-1,...t2) where tn is the
time n lineages has coalesced into n - 1, the probability
those times are the result of the coalescent process reduc-
ing n lineages into 1 is obtained by multiplying the (inde-
pendent) probabilities for each coalescence event,

One nice feature of coalescent theory is that demographic
inference depends only on coalescent times and so can be
coupled with any method which can estimate the geneal-
ogy in a statistically consistent manner. There are numer-
ous examples of the coalescent theory being coupled with
different data and estimation procedures for the coales-
cent times. Tavare et al estimated coalescent times from
genetic data using only the number of segregating sites
while assuming a known demographic function [10].
Coalescent theory has also been used within Markov
chain Monte Carlo (MCMC) algorithms to estimate con-
stant [11] and exponentially growing [12] population
sizes using microsatellite data. More recently the Skyline
Plot, a maximum likelihood estimator (MLE) of the
demographic function for a known genealogy, was intro-
duced [13]. This was further extended in the form of the
Bayesian Skyline Plot (BSP) [14], a MCMC method that
estimates the demographic function directly from
sequence data and provides much needed credible inter-
vals. This paper extends the BSP further by allowing the
joint analysis of multiple loci and eliminating the require-
ment to pre-specify the model dimensionality. An alterna-
tive approach using reversible jump MCMC to
dynamically change the dimensionality of the demo-
graphic model was previously introduced [15], but was
implemented for a known genealogy only. More recently
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an alternative which uses Gaussian Markov random fields
(GMRFs) to achieve temporal smoothing of the popula-
tion sizes has been developed [16], but this method does
not currently support multiple loci.

Inferring population size from coalescent times
Estimating changes in population size is a challenging
task, especially when the magnitude of the change is
small. Even if the exact coalescence times are known the
space of demographic functions capable of generating
them is large. In general the coalescent times are unknown
and have to be estimated by phylogenetic reconstruction,
thus increasing the set of plausible demographic functions
further. In addition, the "observation window" is limited
by the last coalescent which is on average 2N generations
in the past. Moreover, under a constant population size it
is expected that half of the time to the root of the tree is
spanned by just one coalescent interval (one data point),
so no dynamics can be inferred, just the average popula-
tion size over that time span. Similarly (under constant
size expectations) just two data points account for 2/3 of
the tree, and so on. Thirdly evolutionary bottlenecks
(periods with smaller population sizes) have shorter coa-
lescence times, reducing the observation window further.

Faced with these problems, one might be tempted to
increase the number of samples. However the returns
from such an investment diminish quickly – the addi-
tional coalescent events occur inside a small stretch of
time. It is much better to add sequences from independ-
ent loci from the same population since all loci share the
same demographic history. The assumption of independ-
ence requires loci from different chromosomes or suffi-
ciently distant to one another to be considered unlinked
by recombination. Doubling the number of (independ-
ent) loci doubles the amount of information over the
whole "observation window". In this paper we introduce
the Extended Bayesian Skyline Plot (EBSP), a new varia-
ble-dimension Bayesian method for inferring non-para-
metric population size changes through time from
multiple loci. The EBSP builds on the Bayesian Skyline
Plot (BSP) [14] in several ways:

• Permits analysis of multiple loci. Any number of
unlinked nuclear or mitochondrial loci from individuals
in the population may be combined to infer the shared
population size history. Each loci may have its own popu-
lation factor which takes care of differences in ploidy and
inheritance. For example, In many animals the popula-
tion of alleles of a nuclear gene is four times greater than
that of mtDNA since there are two copies of the nuclear
gene in each individual and mtDNA is inherited exclu-
sively maternally in most species. In that case the popula-
tion factor can be set to 4 for nuclear genes and 1 for
mtDNA if inference of mtDNA gene population size is

desired, or to 2 for nuclear genes and 1/2 for mtDNA to
infer the number of individual animals.

• Uses Bayesian stochastic variable selection. The original
BSP required the researcher to arbitrarily choose i the
number of population size steps, or control points. The
demographic function is then constrained to be a piece-
wise constant function with exactly i distinct levels. It is
not obvious how to a priori choose i, and a poor choice
may lead to larger credible bounds and in more extreme
cases inhibit convergence. The EBSP, in a true Bayesian
spirit, lets the data select the appropriate smoothness of
the demographic function using Bayesian stochastic vari-
able selection (BSVS) [17-19].

• Supports piecewise linear demographic functions.
Because real life population size dynamics tend to be con-
tinuous, a piecewise linear demographic function will
generally be a more appropriate model than the piecewise
constant function used by the BSP.

Methods
Consider the most simple case of two lineages and con-
stant population size N. Given that the time to coalesce
was t, what can be said about N? The maximum likeli-
hood estimate (i.e. the value which maximizes f(t|N)) is
N = t [20]. While this is the best point estimate possible,
the large variability inherent in a stochastic process driven
by an exponential distribution makes a point estimate
unsatisfactory. The Bayesian framework provides a way to
quantify the uncertainty using Bayes rule,

.

With the natural non informative prior for a scale variable
f(N) = 1/N [21] the cumulative probability can be solved
which enables us to obtain an explicit numerical solution
for the credible interval. This turns out to be [0.093t,
19.504t], an order of magnitude at both sides of t. Point
estimates from this distribution can also be computed.

The mode is , median is t/ln(2) and the mean is

infinite.

On the other hand, a genealogy with n lineages contains n
- 1 independent observations via the time intervals
between subsequent coalescence events, providing a
much better estimate of N. However, it should be noted
that point estimates from a Bayesian inference typically
contain a built-in bias. For example the bias for the
median in the two lineages case above is on average 44%
(1/ln(2) - 1). The bias in real life data sets which contain
multiple loci from several individual is naturally much
reduced.
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The likelihood of genealogies from multiple loci

The likelihood of the EBSP is derived from m genealogies
in the form of rooted trees, denoted G = {g1, g2...gm}, were

gk is estimated from nk contemporaneous sequences. The

time scale for all genealogies should match that of the tar-
get population being estimated, but the substitution rate
may vary among loci. For example, mtDNA is known to
evolve at a much faster rate than nuclear DNA [22,23] so
when combining both in one analysis the difference in
substitution rate needs to be estimated. We designate the

set of substitution rate parameters μ to keep the notation
from becoming overly confusing. In addition let P = p1,

p2,...,pk be the population size factor of gk, which accounts

for any differences in ploidy and/or mode of inheritance
among loci. The internal nodes of each genealogy gk

define nk - 1 coalescent event times

, where uk,j is the time j lineages

have coalesced into j - 1. The start point is fixed at zero,

.

Now let T = {t0 = 0, t1, t2,...,tn} ∈ ∪k uk be the vector con-

taining all  coalescence times in sorted

order. The demographic function is defined by the popu-

lation size and indicator vectors, Θ and Λ. Θ = {θ0,

θ1,...,θn} where θj is the effective population size at time tj,

and Λ = {λ0 = 1, λ1, λ2,...,λn}, λj ∈ {0, 1}. Θ values whose

indicator is off (zero) are inactive and do not contribute to
the demographic function. One such construction is dem-
onstrated in Figure 1.

Let  be the total number of active indicators and

define the list of active population size parameters

,

The corresponding times as defined in a similar way,

Now it is possible to define the resulting piecewise linear
demographic function,

The per-locus demographic function depends on the pop-

ulation size factor as well, .

The use of the ranked coalescence times in the construc-
tion of the demographic function is natural since from
equation 1 each interval contains the same amount of
information. Associating one parameter with each "coa-
lescent interval" (i.e. an interval where all lineages survive
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Constructing a demographic function from population values and indicatorsFigure 1
Constructing a demographic function from popula-
tion values and indicators. The demographic function 
(solid line) is a piecewise linear function whose X axis points 
(time) are a subset of the set of all coalescent times, and 
whose Y axis values (population size) are the value of the 
population parameter (θ) at this point. Time starts at zero 
(the present) increases as we move further into the past. The 
indicator parameter (λ) determines the subset to use for the 
X axis. In the instance shown above only three of the six 
population values are used. λ4 = λ5 = 1, λ1 = λ2 = λ3 = 0.
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terminated by a coalescent event) helps to avoid over
specifying the demographic function. This approach has
been used in the BSP [14] and more recently in the Baye-
sian skyride method [16].

The likelihood calculation requires integrating 

over one or more intervals . By definition the time

points  partition the interval so that the

demographic function is linear on each sub interval. The
integral over the interval is then obtained by summing
over those sub intervals using the easily derived integral of
the inverse of y(x) = ax + b over an arbitrary interval [v0,

v1],

The log likelihood of each genealogy is

The prior of Θ is composed from individual priors on θj,
where each value is drawn from an exponential distribu-
tion with a mean of ϕ.

The priors on all of the θ's contribute to the posterior, but
only active ones participate in the demographic function,
and therefore the coalescent likelihood in equation 5.
Therefore, when inactive, θj follows just the prior distribu-
tion but when active it follows the posterior (prior and
coalescent).

When an appropriate prior value for the mean population
size is not known in advance ϕ may be estimated in a hier-
archical manner. A suitable prior distribution is selected
and ϕ is allowed to change under that prior. One may
choose the scale-free reference prior (fϕ(ϕ) = 1/ϕ) as the
least informative option or a so-called "diffuse" prior such
as a log-normal with high variance. Note that using the
reference prior may lead to very slow mixing and so it may
be advisable to follow a "empirical Bayes" approach as
suggested in [15] and obtain an estimate from the data
itself. It is important to remember that since ϕ is the mean

of an exponential distribution the choice of prior will
make little difference unless the amount of data is small.
However selecting a ϕ (or a prior for it) which is smaller
by two orders of magnitude or more than the truth may,
in our experience, cause non convergence of the chain
(data not shown). Selecting higher values may slow mix-
ing but do not appear to impact convergence. In practice
fixing ϕ to a large enough value works very well (simula-
tion results not given here).

Our simulation studies used a log-normal prior with a
standard deviation in log-space of 2 and the mean (in real
space) was randomly selected uniformly from the interval

[0.5 , 3.5 ] (  is the mean of the true demographic

function averaged over the ages of the simulated trees).

The prior on Λ is chosen as if r = ∑iλi is drawn from a

(truncated) Poisson distribution with a mean of  =
ln(2), then uniformly from all binary vectors containing
exactly r ones.

The choice of  = ln(2) gives a 50% prior weight to a con-
stant population size and 50% to a non-constant one.
This prior is used in all simulations and analyses unless

specifically noted. The prior parameter  may be
increased to indicated stronger prior belief in a non-con-
stant demographic. However data with some support for
changes in population size will tend to overcome the prior
and a prior that focuses probability on a small number of
change-points will tend to result in narrower credible
intervals.

The method works for serially sampled data as well, and
has been implemented in the software package BEAST
[24] for both contemporaneous and time-stamped data.
The definitions above can be easily modified to accom-
modate genealogies containing non-zero tip times but the
notation is even more cumbersome and therefore for clar-
ity is not given here. For an example of BEAST XML input
file of 32 loci [see Additional file 1].

MCMC Implementation
The posterior distribution to be sampled for the EBSP is
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The term fD{Dk | gk, μ} is the genealogy likelihood calcu-
lated from the data and model parameters using standard
methods [25]. The genealogy can be sampled by any of
the published methods available in BEAST [24].

Inactive θ's can be drawn directly from the prior θi ~
Exp(ϕ). The posterior distribution for active θ's has no
closed form and is sampled by applying generic scale-
parameter proposal schemes (the scale operator) available
in BEAST to each parameter of population size.

The indicators are sampled by combination of a bit-flip
operator and Poisson weighting. By itself the bit-flip gen-
erates samples with a stationary probability of

 taking care of the first term in equation

7, while the Poisson weighting accounts for the second
half.

The bit-flip operator uniformly picks one bit of Λ and flips
it. Since the transition probability for the move and the
reverse move are equal to 1/n the Hastings ratio [26] for
changing a 1 to a 0 is

The Poisson weighting contributes an additional factor of

r/ .

The ratio for changing a 0 to 1 is derived in the same way

and is equal to .

Results and Discussion
To demonstrate some of the features of EBSP and the
inference of demographic functions in general, this sec-
tion describes the results of simulations performed using
an implementation of EBSP in BEAST [24] (The Beast-
EBSP program is available from http://beast-mcmc.goog
lecode.com/ and an example XML input file is available as
an additional file). Simulations are invaluable during the
development of a new method and in addition may pro-
vide insight into the properties of the EBSP in particular
and demographic inference in general. Having said this,
the simulation results we present here are aimed to serve
only as examples of the various issues that need to be con-
sidered, since only a small subset of parameter combina-
tions can be feasibly explored.

Here are the steps taken to generate a simulated data set.
First pick a demographic N(t), number of loci, ploidy and
number of samples for each loci. Then, for each locus, a
genealogical tree T is simulated under N(t) and the coales-
cent process. Then a set of sequences is simulated using T
and a DNA substitution model (which has its own set of
parameters). The sequences are then used as the raw data
for an MCMC run, and posterior samples from the run are
used to estimate the population size history (and other
parameters of the model if required). Note that while the
simulated data contains the complete set of loci for each
"individual" this is not strictly necessary. Data sets con-
taining only a subset of loci for some individuals can be
used as well.

Bayesian summary for functions
Summary statistics computed from posterior samples are
the standard and straightforward way to present results of
an MCMC run. When dealing with functions, however,
there is no direct equivalent for single value statistics such
as a median or Highest/Central Posterior Density (HPD/
CPD [27]). For example there is no obvious way to pick
one population size function out of the MCMC sample
which represents a "middle" or a "center" in the same way
a median does for single value statistics. However such
statistics are highly useful for the purpose of visualization,
quantification and comparison and are easily constructed
from multiple estimates at specific grid points [28].

A piecewise linear function connecting the median popu-
lation size estimated at specific time points is a natural
choice for the median when posterior samples are piece-
wise linear functions. Since the demographic has a natural
resolution limit n, the total number of coalescence events,
we propose that the construction of the median demo-
graphic also use n points which are estimated by the mean
times of the ordered coalescent events over all posterior
trees. This is different from the approach currently taken
by Tracer [29] which uses a fixed (say 100) evenly spaced
points. This inappropriately ignores the natural spacing of
coalescent events and lumps together information from
several intervals at the beginning while half the points at
past times are essentially based on the age of a single coa-
lescent interval. It is of course possible to refine the time
axis further by introducing more points between mean
coalescent event but this adds only a small amount of
information and we prefer to keep a visual clue about of
the amount of data the estimate is based upon. It should
be noted that these choices are relevant only for summa-
rizing the posterior distribution. Specific hypothesis tests
related to population size history should always be con-
structed directly from the posterior samples and not from
any summary statistic.
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The same procedure is used to build the mean, Central or
Highest Posterior Density functions through time. Figure
2 shows two snapshots from an interactive exploration of
one recovered population size history. The figures depict
a nested set of credible intervals. We shall denote the p-
percentile of the posterior density of N(t) at time t as
N'p(t).

By comparing the median demographic  to the

true demographic N(t) using a function norm, from t = 0

to the median root height, t = τ, we can define a relative
recovery error:

Note that while the word error above is used to describe
the average distance between an estimate and the truth,
this quantity contains a bias component which is to be
expected of a Bayesian estimate of a scale parameter.

The size of the relative 95% credible interval is defined in
a similar way:

Another useful statistic is the frequentist coverage of the
estimator, which measures the percentage of time the true
value of the demographic was inside the 95% credible
interval:

where I is the indicator function.

Estimation when population size is constant
The first set of simulations was set up to reflect a typical
data set with current technology. We simulated three
nuclear markers and one mtDNA gene from 12 individu-
als sampled from a constant-sized population of 50,000.
Twenty-four recombination free sequences of length 1600
were generated for each nuclear marker but only 12 for the
mtDNA, mimicking a situation where both alleles are
sequenced from each nuclear locus. We used the HKY85
[30] substitution model to describe mutation within each
locus with κ = 2.5 for the nuclear loci and κ = 15 for the
mtDNA. The mtDNA locus substitution rate was set to 10-

7, 20 times faster than that of the nuclear (5 × 10-9), pro-
ducing a mtDNA tree with an average height of approxi-
mately 0.01 substitutions (2 × 5 × 104 × 10-7). Note that
although the MCMC runs try to mimic real life usage and
estimate all unknown parameters (κ, mtDNA μ etc), only
results for the demographic function are given below.
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Posterior distribution of the recovered demographic functionFigure 2
Posterior distribution of the recovered demographic function. The recovered demographic from a Bayesian analysis 
can be presented using gray-scale shading to represent CPD levels (quantiles). The dotted line shows the median. The solid line 
represents the "truth", i.e. the demographic function used to generate the simulated data.
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In this first set of simulations 100 independent data sets
were generated and each was analyzed in three different
ways: (a) with the EBSP, (b) under the assumption of a
constant size coalescent model, and (c) under the
assumption of a constant population size with the geneal-
ogy (i.e. coalescent times) fixed to the simulated values.
This allows us to measure the relative contributions to the
overall uncertainty in the demographic function estimate
that arise from (i) model averaging, (ii) uncertainty in
coalescent times and (iii) the intrinsic stochastic nature of
the coalescent process. This approach is quite useful and
is used again later. The results are summarized in Table 1.

This initial set of simulations demonstrates that even with
four loci the credible interval has the same order of mag-
nitude as the population size itself. Furthermore, the
uncertainty that arises from estimating the coalescent
times from the genetic data (about 40%) is comparable to
the uncertainty arising from estimating the population
size from the coalescent times. The remaining 20% is due
to using the EBSP when the demographic function was in
fact constant (this can be considered to be the price of
model averaging).

Using longer sequences improves the estimates of coales-
cent times, and thus reduces that component of the uncer-
tainty. This is demonstrated by a second set of simulations
which use the same model parameters but with sequences
of length 16000 bp. The results are shown in Table 2.

Longer branch lengths, either through increased mutation
rate or increased population size would also lead to less
uncertainty in the estimates, so that short sequences
would be sufficient provided the product of population
size and mutation rate is much larger than in our first sim-
ulations. This is demonstrated by the results from 100
MCMC runs in which the population is ten times larger in
size (Table 3).

The second and third sets of simulations show how longer
sequences or a larger population effectively narrow the
credible intervals by allowing better estimation of coales-
cent times. When studying smaller populations it is advis-
able to use longer sequences in order to ensure accurate
estimates of the branch lengths. However we note that this

is not necessarily possible with nuclear loci that experi-
ence large amounts of recombination.

Number of loci vs. error
While increasing sequence length improves the estima-
tion of coalescent times, only additional loci can reduce
the variability in estimating the population size function
from those coalescent times. The next set of runs show the
effect of increasing the number of loci. A single locus was
simulated for 5 individuals, then a second one was added
to make two, then two more to make four, doubling up to
32. For this analysis the simulated coalescent times were
used directly, so that we could focus exclusively on the
contribution of the variability in the coalescent process to
the 95% HPD interval. The results of 100 such runs are
shown in Figure 3.

Empirically, both the error and 95% credible interval are

reduced by a factor of  when doubling the number of
loci. This suggests that the relation between median error/
HPD interval size and the number of coalescent points
(sample size) follows the pattern of simpler cases where
doubling the sample size reduces the variance by half. A
rigorous proof requires an analytical solution for the
median and HPD and is a non trivial task beyond the
scope of this paper.

Number of samples vs. error
Increasing the number of sampled individuals per locus
also improves the estimates but the effect is much more
modest. Figure 4 shows the results of multiple runs with
16 loci but using 3 to 20 individuals. For each case 100
simulations were made with both a constant and a non-
constant demographic function. The non-constant popu-
lation size function linearly decreases from N to N/4 back
in time on the interval [0, 0,375N] generations, and is
constant at N/4 at earlier times. Again the raw data were
the coalescent times rather than sequence data.

The exact form of the errors is unclear but it does seem to
fit an inverse relation with a positive limit. The lower
bound depends on the nature of the demographic and on
the number of loci as well. Unsurprisingly the bounds and
error for the constant demographic are smaller than those

2

Table 1: Constant population size, N = 50,000

model % inside 95 HPD median relative error median relative bias HPD relative bounds

EBSP 97.65% 0.22 0.053 1.23

constant population size 96% 0.17 0.009 0.9

constant population size, fixed trees 96% 0.086 0.006 0.44
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for the non-constant case, but the total amount of reduc-
tion is approximately the same beyond 8 samples. For
example using 16 samples instead of 8 gains an additional
reduction of the HPD bounds by 16% and 14% respec-
tively.

Detecting evolutionary bottlenecks
Evolutionary bottlenecks present a tough challenge for
reconstruction of population size history. Periods of low
population size increase the rate of coalescence and limits
the number lineages that survive the bottleneck, therefore
severely reducing the ability to detect changes in popula-
tion size prior to the bottleneck time. Interest in the effect
of evolutionary bottlenecks on genetics predates the coa-
lescent. For example Nei and colleagues investigated the
effect of a population bottleneck on the expected hetero-
zygosity for a neutral locus [31]. A more recent study [32]
demonstrates the difficulties in analyzing population
structure from contemporary sequences using several
methods.

Given enough data the EBSP can detect past population
bottlenecks. Figure 5 shows the result of running one
locus from 480 individuals compared with 32 loci from
16 individuals for an identical demographic containing
two bottlenecks in quick succession.

While there is an equal number of coalescent events in
both cases, only the analysis of multiple loci is able to
"see" past the first bottleneck and even past the second. It
is important to stress that this is a carefully constructed
example. Lowering the population size at the bottlenecks
or changing the difference between the maximum and
minimum population sizes will alter the number of loci
required for a successful recovery.

Testing for a non constant demographic function
The EBSP lets the data itself select the correct dimension-
ality of the demographic function and so allows statistical

inferences regarding the number of change points in the
population size function N(t). This example examines the
relation between the amount of data and the frequentist
coverage for the most simple case involving a single
change from a constant population size to linear growth.
Going back in time, the target demographic is linearly
decreasing from N to N/4 on [0, 3/8N] generations, and
remains constant at earlier times. A hundred data sets
were simulated for different numbers of loci between 2
and 32, each sampled from 8 individuals. For each data
set the posterior estimate and credible set of the number
of control points in the demographic function was
recorded. The true demographic function had one change
in population size at 3/8N time ago. Therefore, runs in
which the HPD of the number of change points excluded
0 but contained 1 were recorded as a success since they
rejected the null hypothesis of a constant population size.
Runs in which the HPD contained 0 were counted as a
miss. No run failed to include 1 change in the credible
interval. The mean success rate as a function of numbers
of loci is shown in Figure 6. With 16 loci the success rate
was greater than 95%, while it is quite low at around 20%
for 4 loci. It seems to follows a logistic-like shape, but the
small number of points does not allow us to elucidate the
relationship more precisely.

Effect of DNA sequencing errors
DNA sequencing typically involves several stages and each
may introduce errors, from replication during PCR [33] to
incorrect base calling [34]. Realistically modeling the
effects of such errors on sequence data is difficult, but
even a simplistic approach may prove instructive in
describing their impact on demographic inference. This
example reuses the setting and sequence data of the first
example in which the population size was constant, but
randomly changing bases at some fixed rate. This
degraded data is then reanalyzed in the same way as the
first experiment. Table 4 shows the results of two runs at
0.01% and 0.1% error rates.

Table 2: Constant population size, 10× more sites

model % inside 95 HPD median relative error median relative bias HPD relative bounds

EBSP (16000 bp) 96.84% 0.13 0.034 0.77

Table 3: Constant population size, 10× population size (N = 500,000)

model % inside 95 HPD median relative error median relative bias HPD relative bounds

EBSP 98.94% 0.12 -0.008 0.71

constant population size 99% 0.1 -0.024 0.54

constant population size, fixed trees 99% 0.079 -0.005 0.44
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For this particular setting an error rate of 0.1% has a cata-
strophic effect. Even a rate of 0.01% was enough to double

the size of the credible intervals. It is clear that data quality
is an important prerequisite for a successful population
genetic analysis.

Hepatitis C Virus in Egypt
The epidemic history of Hepatitis C virus in Egypt has
been previously analyzed using both the BSP [14] and
parametric Bayesian coalescent analysis [35]. We take
another look at the data to examine the two non-paramet-
ric methods side by side and investigate the effects of prior
and model choice.

The single locus data consists of an alignment of 63 partial
gene sequences of length 411 bp [36]. The results of two
MCMC runs, the first using piecewise-constant BSP with m

= 24 and the second using the piecewise-linear EBSP (
= ln(2)) are shown in Figure 7.

Drummond et al [14] note that the sequences "contain
ample phylogenetic information". Our simulation studies
suggest that while 63 samples seem sufficient, a single loci
can only detect general trends and not finer details. In this
case both methods agree on a sharp decline (going back in
time) at around 50–60 years ago. However the BSP
favours a constant demographic until that time, while the
EBSP favours steady decline and constant demographic

lError in demographic recovery as a function of number of lociFigure 3
Error in demographic recovery as a function of 
number of loci. The error (on log-log scale) reduces line-
arly as the number of loci increases (solid line). Using 4 times 
the number of loci halves the error. Likewise, the 95% HPD 
interval also reduces linearly on a log-log scale with increas-
ing loci (dashed line), and also appears to reduce by a factor 
of 2 with a quadrupling of the number of loci.

Error in demographic recovery as a function of number of samplesFigure 4
Error in demographic recovery as a function of number of samples. Error and credible intervals are shown as a func-
tion of the number of sampled individuals per loci for 16 independent loci. Both the error (solid line) and the HPD interval 
(dashed line) reduce with increasing number of sequences but both converge to a positive limit, that can only be improved on 

by sampling more loci. A best fitting line of the form  is shown and serves only to highlight the general trend.

(a) Non-constant population (b) Constant population

y a a
a x= + +0

1
2
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from 60 years ago backwards. We suggest this difference is
an effect of model and prior choice and we present one
run (out of several) which supports this view.

Figure 8 shows the result of running the EBSP using the
piecewise constant model and an expected prior average
number of change points of 6. It is evident that making
the priors more similar reduce the difference in the final
estimates. The advantage of using the EBSP for a single

loci is that it gives a Bayesian estimate of the number of
changes actually present in the data. In this case the cred-
ible set was {1, 2} which strongly supports a non constant
demographic, but a mean of 1.35 suggests that choosing
m = 24 for the BSP is too high.

The population size history of Drosophila ananassae
Aparup et al [37] investigated the demography and popu-
lation structure of Drosophila ananassae. The authors col-
lected samples from 160 individuals over 16 geographic
locations and sequenced 10 fragments whose length
ranges from 371 to 487, giving a total of 650 kb.

The result of an EBSP analysis for each of the 16 locations
is shown in Figure 9. While the sequence length per loci is
relatively short and there are just 529 SNPs in the data-set,
our simulation studies suggest the combined power of 10
loci is likely to provide a good overview of the trends in
population size changes through time.

Our simulation study has already demonstrated how pos-
terior probabilities of r (the number of change points) can
be used to infer demographic change. Aparup et al found
support for population expansion in 4 of the central pop-
ulations – BKK, BOG, KL, and MNL (Location names are
abbreviated as in the original article). Our analysis finds
strong evidence for population expansion in 5 of the 16
populations (BKK, BOG, CH, KK and MNL). In each of
the five populations the posterior probability of a non-
constant population was greater than 95%, i.e. Pr(r > 0) >
95%.

Multi-locus recovery of a demographic function with evolutionary bottlenecksFigure 5
Multi-locus recovery of a demographic function with evolutionary bottlenecks. Using multi-locus data enables the 
detection and accurate recovery of population bottlenecks. The true demographic function is shown as solid line, while the 
dotted line indicates the posterior median.

(a) 480 samples (b) 16 samples 32 loci

Testing statistically for the presence of demographic changesFigure 6
Testing statistically for the presence of demographic 
changes. The success rate of rejecting a constant demo-
graphic as a function of number of loci.
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As a more lenient alternative one may use the Bayes factor

 to test for the presence of change [38]. The pop-

ulations of KL and PUR with Bayes factors of 5.2 and 4.4
respectively show "substantial" support according to the
suggested interpretation of Kass and Raftery, but whether
those values are large enough is a matter of personal pref-
erence.

The expansion in the Indian CH and PUR populations
started more recently than the expansion in the central
areas. The Puri (PUR) population seem to experience a
trend which is somewhere in between that of Chennai
(CH) to its South-west which shows clear expansion and
Bhubaneswar (BBS) to its North-east having no expan-
sion.

The power of multiple loci in improving estimates has
already been discussed so we would like to offer here a dif-
ferent visual view of the same effect. We choose the Puri

(PUR) area which had the smallest support for population
expansion. Figure 10 details the results of running an
EBSP analysis for each of the 10 fragments individually
and the combined analysis. It is evident a human would
find it quite hard to draw conclusions based on the 10
separate runs. The figure also seems to support our conjec-
tured reduction of uncertainty by a factor of about 3 (i.e.

about ).

Performance and Mixing
We would like to briefly comment on the EBSP perform-
ance for the two real data sets presented above. The single
locus Hepatitis C data was analyzed using both the EBSP
and the BSP. In both cases the chain length was set to 100
m and sampled every 2000 states, leaving 49500 samples
after removing 10% burn-in. The EBSP run took 2.6 hours
on a Quad core Intel Xeon CPU at 2.66 GHz and the BSP
took 3.6 hours. The effective sample size (ESS) for the pos-
terior was 5200 for the EBSP and 630 for the BSP, giving a
rate of approximately 2 seconds per EBSP effective sample

Pr r
Pr r

( | )
( | )
D
D

≠
=

0
0

10

Table 4: The effect of DNA sequencing errors

% inside 95 median relativeeerror median relative bias HPD relative bounds

Original data, no errors HPD 97.65% 0.22 0.053 1.23

0.01% sequencing error 96.05% 0.53 0.29 1.95

0.1% sequencing error 73.97% 29.54 12.22 65.28

Hepatitis C virus data: comparison of BSP and EBSPFigure 7
Hepatitis C virus data: comparison of BSP and EBSP. Comparison of a EBSP (blue) and BSP (gray) analysis of the Hep-
atitis C virus data. On the left side the Y axis is in log scale, and linear on the right. Both methods agree on the trend but differ 
due to model and prior choices. Credible intervals from the EBSP are smaller.
Page 12 of 15
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:289 http://www.biomedcentral.com/1471-2148/8/289
and 20 seconds for the BSP. A closer look reveals that the
component responsible for the slower mixing is the gene-
alogy likelihood, i.e. likelihood of sequence data given the
tree (fD {Dk | gk, μ}). Since the coalescent acts as a prior for
the tree it seems that the EBSP is allowing a faster mixing
of the coalescent times in the tree by providing a demo-
graphic history N(t) with less variability.

For the Drosophila ananassae data set one MCMC chain
was produced for each of the 16 locations. Each chain was
run 2.75 × 107 steps and sampled every 5000 steps, leav-
ing 5000 samples after removing 10% burn-in. The ESS
for the posterior ranged between 220 and 2957, with a
mean of 1154. This wide range may be due to variations
between populations in the amount of concordance in
estimated population size history among loci. Popula-
tions which exhibit conflicting demographic signals
among loci are expected to mix slower. However this con-
jecture is based only on visual inspection of results from
the analysis of individuals genes. It is also possible that
some improvement might come from allowing variation
in mutation rate among loci.

Conclusion
Multi-locus approaches are becoming more attractive
with decreasing DNA sequencing costs and increasing
computational power. Felsenstein has recently investi-
gated the ideal combination of samples, sites and loci for
a fixed cost under maximum likelihood settings [39]. He
found that increasing the number of loci is the most cost

effective way of improving accuracy, as well as determin-
ing that a small number of samples (around 8) is suffi-
cient. Carling and colleagues find that 25 loci from 10
samples is sufficient to accurately estimate constant pop-
ulation size, again under MLE [40].

The EBSP provides a tool to investigate populations that
change size through time, by directly inferring the popu-
lation size as a function of time using sequence data from
multiple loci. The EBSP estimates the dimensionality of
the population size function automatically from the data,
avoiding model over-specification and its associated
noise. The Bayesian nature of the EBSP provide an explicit
measure of modeling uncertainty. Since we need less indi-
viduals when using multiple loci, computational per-
formance is typically not an issue. Running an EBSP for 10
loci and 10 individuals is approximately the same compu-
tational effort as running 1 locus for 90 individuals. Mix-
ing, however, is always an issue with MCMC and is data
dependent. The EBSP may take longer to mix when there
is very little information in the data or there is some con-
flicting signal among the loci analyzed.

The power of the multi-locus approach in providing better
estimates of population size under the stochastic coales-
cence process is clearly demonstrated by simulation
results. However, the results show that taking care of other
factors is important too: quality of sequence data, suffi-
cient number of sites and enough samples all help to pro-
vide better estimation of coalescent times. Those
improvements are reflected directly in the bias and credi-
ble intervals of the demographic function estimation.

The results emphasize the importance of support meas-
ures when inferring population size history. The inherent
uncertainty in population size inference is still substantial
even for the large data-sets being collected nowadays.
Therefore, it is important to always provide credible inter-
vals with any estimate of population size. From our inves-
tigations it appears that high-quality data sets of 16
unlinked loci or more should be used to accurately infer
population size history. A relatively small number of indi-
viduals is sufficient, but more individuals still provide
tangible benefits for data sets using less loci. We are cur-
rently working on an extension of this work to the estima-
tion of a species tree from multiple gene trees.
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Hepatitis C: EBSP stepwise model and E() = 6Figure 8

Hepatitis C: EBSP stepwise model and E( ) = 6. 
Matching more closely the model and prior between the 
EBSP and BSP brings the results much closer. Note the nega-

tive effect of the prior choice E( ) = 6 on the size of credi-
ble bounds.
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16 EBSP runs on Drosophila ananassaeFigure 9
16 EBSP runs on Drosophila ananassae. The estimated demographic history for each of the 16 locations. The abbreviated 
names of the sampling locations are given above each plot. An asterisk (*) is appended to locations whose demographics are 
non-constant according to the EBSP with 95% posterior probability. Locations with some support (i.e. where the Bayes factor 

 is greater than 3) are also indicated (PUR and KL).
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A detailed look at the Puri Drosophila ananassae population size historyFigure 10
A detailed look at the Puri Drosophila ananassae 
population size history. A detailed view of the Puri (PUR) 
demographic analyses. The median reconstruction for each 
of the 10 individual loci is shown, along with the union of the 
95% HPD areas in light gray. The thick blue line shows the 
median for the combined analysis and the 95% HPD is given 
in darker gray.
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