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Chapter 1

Introduction

As the title suggests, this thesis consists of two parts: quadratic forms and modular

forms. The theory of quadratic forms is among the oldest and most highly developed

studies of mathematics, with various application in number theory, linear algebra, analytic

geometry and algebraic topology, etc. Here we are interested in its number-theoretical

aspect, in particular, quadratic forms of three variables over the rational integers or integral

ternary quadratic forms. The motivation of our study began with Schiemann’s result that

positive definite ternary quadratic forms are determined by their theta series. In other

words, if two positive definite ternary quadratic forms represent the same set of integers

the same number of times, then they are the same. We then go on examining the effect

of multiplicities of representation in this statement. That is, what happens if we drop the

condition “the same number of times”? Somewhere along the line, we realised that this

question was already considered by Kaplansky. He also made a conjecture about it in

a letter to Schiemann in 1997. This conjecture involves Dickson’s idea of regular forms.

Loosely speaking, a ternary quadratic form is regular when the set of its non-representable

numbers form some arithmetic progressions. A typical example is the form x2 + y2 + z2

which misses all the numbers of the form 4k(8n+7). With this idea, Kaplanky’s conjecture

are presented as follows:

“If two positive ternaries represent the same numbers ignoring multiplicity, then at

least one of the following holds:

1. Both are regular.

2. One is equivalent to ax2 + by2 + bz2 + byz and the other to ax2 + by2 + 3bz2.

3. One is equivalent to ax2 + ay2 + az2 + byz + bxz + bxy, one to ax2 + (2a − b)y2 +

(2a+ b)z2 + 2bxz.”

In this thesis, we proved that Kaplansky’s conjecture holds for a certain family of forms,

which are known as diagonal forms. Jones (1928) proved that there are precisely 102 reg-

ular diagonal forms. This fact combined with our result implies further that Schiemann’s

statement becomes invalid but a near miss in this simplest case. Specifically, it remains

true for all but two pairs of diagonal forms. These are presented in Subsection 2.4.3.

3



4 CHAPTER 1. INTRODUCTION

The theory of modular forms begins with the study of theta functions. It is closely

related to the question of determining the number of ways to represent an integer as sums

of n squares, where n is a positive integer. A classical result is Jacobi’s four squares theorem

which give the answer for the case n = 4. In fact, the question can be successfully dealt

with for the case n is an even integer, using modular forms of integral weights. However,

modular forms of integral weights are inapplicable when n is odd. To derive similar results

in this case, we need the theory of modular forms of half integral weights. A systematic

approach to this theory was first given by Shimura in 1973. For the second half of the

thesis, we study both modular forms of integral and half integral weights. Some main

results of this part include the formulae of representing an integer as sums of two and four

squares, a recursive relation for sums of three squares, relation between sums of five squares

and Dirichlet L-function. We emphasise modular forms of half integral weights due to their

connection with ternary quadratic forms. In Subsection 3.3.4, we give one application to

demonstrate the idea. Except for this subsection, the others are independent with the first

half of the thesis.



Chapter 2

Ternary quadratic forms

2.1 General theory

In this section, F will be a field whose char(F) 6= 2. I ⊂ F is a subring or a subfield. The

set of all units of I is denoted by U(I). We also denote the transpose of a matrix A by

At, the set of all matrices of dimension n × n over I by Mn(I). We will use bold letters

to denote vectors. Interpretation of vectors as row or column vectors is flexible, which

depends on context.

2.1.1 Basic facts and notations

Definition 2.1.1.1. A quadratic form in n variables x = (x1, . . . , xn) over I is defined

by

f(x) =
n∑
i=1

fiix
2
i +

∑
1≤i<j≤n

fijxixj,

where fij ∈ I (1 ≤ i, j ≤ n).

We can rewrite f in matrix notation as

f(x) = xGr(f)xt,

where

Gr(f) :=


f11

f12
2

. . . f1n
2

f12
2

f22 . . . f2n
2

...
...

. . .
...

f1n
2

f2n
2

. . . fnn


is called the Gram matrix of f .

Definition 2.1.1.2. The determinant of a quadratic form f , denoted by D(f), is defined

to be 2n det(Gr(f)).

If D(f) = 0, we say that f is singular (or degenerate). Otherwise, f is non-singular

(or non-degenerate).

5



6 CHAPTER 2. TERNARY QUADRATIC FORMS

Definition 2.1.1.3. Let k ∈ I. We say that a quadratic form f represents k (or k is

representable by f) if there exists x = (x1, . . . , xn) ∈ In such that

f(x) = k.

If gcd(x1, . . . , xn) = 1, then the representation is called primitive (or proper). Otherwise,

it is called imprimitive (or non-proper).

The number of representations of k by f is called the multiplicity of representation

and is denoted by rf (k).

The set of all representable k of f over I is denoted by VI(f).

More generally, we can speak of a representation of a form g in m variables by a form

f in n variables over I if there are b1, . . . ,bm ∈ In such that

f(y1b1 + . . .+ ymbm) = g(y1, . . . , ym).

We have the following definition

Definition 2.1.1.4. Let f, g be two quadratic forms in n variables over I. We say that

f, g are equivalent over I (or I-equivalent), denoted by f ∼I g, if each represents the

other.

The following lemma gives a simple criterion to check if two forms are equivalent.

Proposition 2.1.1.5. ([Cas08], Lemma 2.1, p.7) Two non-singular forms f, g are I-

equivalent iff there exists a matrix T ∈ Mn(I) such that det(T ) ∈ U(I) and

Gr(f) = T tGr(g)T.

2.1.2 Quadratic spaces

Definition 2.1.2.1. A quadratic space over F is defined to be a finite dimensional F-

vector space U together with a symmetric bilinear form φ : U × U −→ F.

We will denote the dimension of U by dim(U) and set

φ(u) = φ(u, u) (u ∈ U).

From the function φ(u) of the single variable u, we can derive the symmetric bilinear form

φ(u1, u2) via the formula

φ(u1, u2) =
1

4

[
φ(u1 + u2)− φ(u1 − u2)

]
. (2.1)

Therefore, instead of starting with the bilinear form φ(u1, u2), we could have started with

a function φ(u) of a single variable subject to the following conditions

i. φ(λu) = λ2φ(u).

ii. The right hand side of (2.1) is a bilinear form in u1 and u2.
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Immediately from Equation (2.1), we have

Lemma 2.1.2.2. Suppose that the bilinear form φ(u1, u2) is not identically 0. Then there

exists a u ∈ U such that φ(u) 6= 0.

Let dim(U) = n and suppose {u1, . . . , un} is a basis for U . Then

f(x1, . . . , xn) = φ
(∑

i

xiui
)

=
∑
i,j

xixjφ(ui, uj) (2.2)

is a quadratic form over F.

If {u′1, . . . , u′n} is another basis for U , then

f(x′1, . . . , x
′
n) = φ

(∑
i

x′iu
′
i

)
=
∑
i,j

x′ix
′
jφ(u′i, u

′
j)

is clearly equivalent to f . Also, every form equivalent to f arises in this way.

Definition 2.1.2.3. The dual of U , denoted by Hom(U,F), is the set of all F-linear maps

from U to F.

Define

ψ : U −→ Hom(U,F)

w 7−→ φw : u 7→ φ(u,w)

We have the following definition

Definition 2.1.2.4. A quadratic space (U, φ) is non-singular if ψ is an isomorphism.

Otherwise, (U, φ) is singular.

Lemma 2.1.2.5. The following statements are equivalent

i. (U, φ) is non-singular.

ii. If w ∈ U and φ(u,w) = 0 for all u ∈ U , then w = 0.

iii. det[φ(ui, uj)]1≤i,j≤n 6= 0, where {u1, . . . , un} is any basis of U.

iv. The form f given by (2.2) is non-singular.

Proof. Clearly, (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv). We will prove (ii) ⇐⇒ (iii). Indeed, if

det[φ(ui, uj)]1≤i,j≤n 6= 0, then there is an r such that φ(ur, uj) =
∑r−1

k=1 ckφ(uk, uj) =

φ(
∑r−1

k=1 ckuk, uj), where ck ∈ F and j ∈ {1, . . . , n}. Due to (ii), ur =
∑r−1

k=1 ckuk, which is

a contradiction since {ui}i forms a basis for U . Therefore, (ii) =⇒ (iii). The argument is

reversible, so (iii) =⇒ (ii).

Definition 2.1.2.6. The radical of a quadratic space (U, φ), denoted by U0, is the set of

all a ∈ U such that φ(a, b) = 0 for all b ∈ U .

If a1, a2 ∈ U0, then x1a1 +x2a2 ∈ U0 due to bi-linearity of φ. Clearly, 0 ∈ U0. Therefore,

U0 is a subspace of U . Following Definition 2.1.2.4, the quadratic space (U, φ) is non-

singular precisely when U0 = {0}.
We will use the notion of radical later to prove the equivalence of a singular quadratic form

(over a principal ideal domain) to a non-singular quadratic form in a smaller number of

variables (see Subsection 2.1.4).
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2.1.3 Lattices

Definition 2.1.3.1. Let U = {u1, . . . , un} be a set of n linearly independent vectors over

F . A lattice over I with basis U is the set of all points of the form

x1u1 + . . .+ xnun, xi ∈ I, 1 ≤ i ≤ n.

A lattice may have many bases. The next proposition gives a necessary and sufficient

condition for a set of vectors to be a basis for a lattice.

Proposition 2.1.3.2. ([Cas08], Lemma 2.1, p.103) Let Λ be the lattice over I with basis

{u1, . . . , un} and {v1, . . . , vn} elements of Λ. Suppose that

vi =
∑
k

rikuk, rik ∈ I, 1 ≤ i, k ≤ n.

Then {v1, . . . , vn} is a basis for Λ iff

det[rik] ∈ U(I).

If I is a principal ideal domain, then there is a special choice of basis for Λ to represent

linearly independent elements as follows

Lemma 2.1.3.3. ([Cas08], Lemma 3.4, p.105) Suppose that I is a principal ideal domain.

Let {v1, . . . , vk} be linearly independent elements of Λ. Then there exist a basis {u1, . . . , un}
of Λ such that

v1 = s11u1,

v2 = s21u1 + s22u2,

...

vk = sk1u1 + . . .+ skkuk,

where sij ∈ I and sii 6= 0.

2.1.4 Quadratic forms over principal ideal domains

Proposition 2.1.4.1. Suppose I is a principal ideal domain. Then any singular quadratic

form is I-equivalent to a non-singular form in a smaller number of variables.

Proof. Let Λ be an I-lattice in a quadratic space (U, φ) and Λ0 the radical of Λ. That is,

Λ0 = {a ∈ Λ : φ(a, b) = 0 ∀ b ∈ Λ}.

Let k be the maximal number of linearly independent vectors in Λ0. If {v1, . . . , vk} is

a linearly independent set of elements of Λ0, then by Lemma 2.1.3.3, there exist a basis

{u1, . . . , un} of Λ such that

v1 = s11u1,

v2 = s21u1 + s22u2,

...

vk = sk1u1 + . . .+ skkuk,
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where sij ∈ I and sii 6= 0.

It is easy to see that ui ∈ Λ0 (1 ≤ i ≤ k). By maximality of k, the radical Λ0 is the

sub-I-module of Λ spanned by {u1, . . . , uk}.
Let Λ1 be the submodule of Λ spanned by {uk+1, . . . , un}. Clearly, the quadratic form

induced by φ on Λ1 is non-singular.

In the next section, we will consider quadratic forms over the rational integer Z. Since

Z is a principal ideal domain, we will only need to consider non-singular quadratic forms

due to the above proposition.

2.2 Quadratic forms over Z
From this section onward, all quadratic forms are non-singular without being mentioned.

We will use Qp,Zp to denote the set of p-adic numbers and p-adic integers respectively. If

p = ∞, we agree with the convention Q∞ = Z∞ = R, the set of all real numbers. Also,

| · |p denotes the p-adic valuation on Qp and Zp.

2.2.1 Positive definite forms

Definition 2.2.1.1. A quadratic form f over Z is said to be positive definite if VR(f) =

R≥0 . It is said to be strictly positive definite if f is positive definite and f(x) = 0

only when x = 0.

Definition 2.2.1.2. Let M = [mij]i,j=1,...,n ∈ Mn(R). Then its leading principal ma-

trices are matrices of the form [mij]i,j=1,...,k, where k ∈ {1, . . . , n}.

The following way to determine the positivity of forms are usually known as Sylvester

criterion.

Proposition 2.2.1.3. ([Hor90], Theorem 7.2.5, p.404) A form f is (stricly) positive def-

inite if and only if the leading principal minors of its Gram matrix have (positive) non-

negative determinants.

For convenience, we include the following definition (which does not logically belong

here) in this subsection for later use.

Definition 2.2.1.4. Let

f(x) =
n∑
i=1

fiix
2
i +

∑
1≤i<j≤n

fijxixj

be a quadratic form over Z. If gcd(fij) = 1, then f is called primitive. Otherwise, f is

called non-primitive.
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2.2.2 Equivalence classes

It is well-known that equivalence classes of a given determinant is finite, as stated in the

following theorem

Theorem 2.2.2.1. ([Cas08], Theorem 1.1, p.128) Let n ∈ N, d ∈ Z \ {0} be given. Then

there are only finitely many equivalence classes of integral quadratic forms f in n variables

(x1, . . . , xn) with D(f) = d.

In 1958, Brandt and Intrau published a table of primitive positive definite ternary

quadratic forms (up to equivalence) of discriminants up to 1000. Schiemann later recom-

puted it. We will therefore refer to this table as Brant-Intrau-Schiemann table and will use

it later in Subsection 3.3.4. For details about Brant-Intrau-Schiemann table, see [Gab12].

2.2.3 Genera

Definition 2.2.3.1. Two non-singular integral quadratic forms f, g are said to be in the

same genus if they are equivalent in every Zp (including p =∞). That is,

f(x) = g(Tpx) (2.3)

for some Tp ∈ Mn(Zp) with det(Tp) ∈ U(Zp) for all p.

We deduce immediately from Definition 2.2.3.1 that each quadratic form belongs to a

unique genus. A procedure to find all forms in the same genus with a given one is given in

Subsection 3.3.4. Here we only state some facts about forms in the same genus. Let f be

a quadratic form. We denote the genus of f by Gen(f).

Proposition 2.2.3.2. Let g ∈ Gen(f). Then D(g) = D(f).

Proof. Due to (2.3),

D(f) = det(Tp)
2D(g)

for all p. Therefore, D(f)/D(g) ∈ U(Zp) for all p, which means D(f)/D(g) ∈ {±1}. The

value p =∞ eliminates the case D(f)/D(g) = −1. Thus, D(f) = D(g).

Theorem 2.2.2.1 and Proposition 2.2.3.2 together imply

Theorem 2.2.3.3. The number of equivalence classes in a genus is finite.

However, finiteness is not yet good enough, as it does not ensure a bound on the number

of equivalence classes. In fact, we have

Theorem 2.2.3.4. ([Cas08], Corollary, p.154) The number of equivalence classes in a

genus may be arbitrarily large.

There is an interesting link between forms in the same genus via the set of representable

numbers, as stated in the following theorem

Theorem 2.2.3.5. ([Cas08], Theorem 1.3, p.129) Let f(x1, . . . , xn) be an integral form

and let a 6= 0 be an integer which is represented by f over each Zp (including p = ∞).

Then a is represented over Z by some form g in the same genus as f .
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Two forms in the same genus are also ‘p-adically close’. In particular,

Proposition 2.2.3.6. ([Cas08], Corollary 1, p.140) Let P be a finite set of primes p 6=∞
and let f, g be integral forms in the same genus. Then there is an f ∗ integrally equivalent

to f which is arbitrarily close to g in the p-adic sense for each p ∈ P .

Proposition 2.2.3.7. ([Cas08], Corollary 2, p.138) Let f be a positive definite integral

form in n ≤ 5 variables with D(f) = 1. Then f is equivalent to

x2
1 + . . .+ x2

n.

2.3 Reduction theory

2.3.1 Minkowski reduced forms

Since equivalence forms have the same properties and the same set of representable num-

bers, it is more convenient to work with a representative of an equivalence class than each

individual in the same class. The problem of finding suitable representatives belongs to

the so-called reduction theory. There are several ways to define such representatives in

literature. Here we follow that of Minkowski, which appears to be the most suitable one.

Definition 2.3.1.1. A strictly positive definite quadratic form f is said to be Minkowski

reduced if for each j

f(e∗j) ≥ f(ej)

where ej = (0, . . . , 0, 1, 0, . . . , 0) and e∗j runs through all the integral vectors with which

{e1, . . . , ej−1} can be extended to a basis {e1, . . . , ej−1, e
∗
j , . . .} of the lattice of integral

vectors.

Theorem 2.3.1.2. ([Cas08], Theorem 1.1, p.256) Every strictly positive definite form is

equivalent to at least one and at most finitely many reduced forms.

Proposition 2.3.1.3. ([Cas08], Lemma 1.2, p.257) Let n ≤ 4 and f(x) =
∑n

i=1 fiix
2
i +∑

1≤i<j≤n fijxixj, where fij ∈ Z. A necessary and sufficient condition that f(x) be Minkowski

reduced form is that

1. 0 < f11 ≤ f22 ≤ . . . ≤ fnn.

2. f(s) ≥ fkk for 1 ≤ k ≤ n and for all s with

sj = 0 or ± 1 for j < k,

sk = 1,

sj = 0 for j > k.

For convenience, we will write down conditions (1) and (2) of Proposition 2.3.1.3 more

explicitly for the cases n = 2 and n = 3:

1. n = 2: A quadratic form f(x) = f11x
2
1 + f22x

2
2 + f12x1x2 is Minkowski reduced iff

0 < f11 ≤ f22 and |f12| ≤ f11.
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2. n = 3: A quadratic form f(x) = f11x
2
1 + f22x

2
2 + f33x

2
3 + f12x1x2 + f13x1x3 + f23x2x3

is Minkowski reduced iff 0 < f11 ≤ f22 ≤ f33, max{|f12|, |f13|} ≤ f11, |f23| ≤ f22 and

|f12 ± f23| ≤ |f11 + f22 ± f13|.

2.3.2 Geometry of positive definite forms and Minkowski re-

duced forms

The Gram matrix of a quadratic form in n variables is symmetric. So to understand the

geometry of quadratic forms, we embed their Gram matrices into the space Rn(n+1)/2. We

have the following theorems

Theorem 2.3.2.1. ([Cas08], Theorem 5.1, p.270)

i. The set P0 of all strictly positive definite forms is an open convex subset of Rn(n+1)/2.

ii. The closure P of P0 consists of all positive definite forms or semi-definite forms.

To understand the geometry of Minkowski reduced forms, we need the following defi-

nition

Definition 2.3.2.2. A form f is called strictly Minkowski reduced if it is Minkowski

reduced and the only integral unimodular transformation T such that f(Tx) is also Minkowski

reduced are the diagonal transformations with entries ±1.

Theorem 2.3.2.3. ([Cas08], Lemma 5.3, p.271)

i. The set R0 of all strictly Minkowski reduced forms is convex and open.

ii. The set R of all Minkowski forms is the relative closure of R0 in P0.

2.4 Ternary quadratic forms and Kaplansky’s conjec-

ture

This section presents our work on Kaplansky’s conjecture. Our main results are Theorem

2.4.3.12 and Theorem 2.4.3.13. For simplicity, we will denote a ternary quadratic form by

T (z, y, z) := 〈a, b, c, d, e, f〉 := ax2 + by2 + cz2 + dyz + ezx+ fxy,

where a, b, c, d, e, f ∈ Z, throughout this section. If d = e = f = 0, we call T a diagonal

form. Diagonal forms are of main interest in the last subsection.

2.4.1 Schiemann reduced forms

By Theorem 2.3.1.2, we know that at most finitely many Minkowski reduced forms are

equivalent to a given form. For binary quadratic forms, there is only one such Minkowski

reduced form (see [Cox89]). For ternary quadratic forms, this is no longer true. For

example, the form x2 +3y2 +3z2 +2xy−2yz−xz is equivalent to x2 +2y2 +3z2−2yz−xz
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and x2 + 2y2 + 2z2 + xz, both of which are Minkowski reduced. However, the uniqueness

property is so highly desirable that much effort was made to find such a reduction procedure

for ternary quadratic forms (see [Dic92], Chapter IX). One such procedure was given by

Schiemann in [Sch97]. Here we present Schiemann’s idea.

Definition 2.4.1.1. A positive ternary quadratic form

T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx+ fxy

is called Schiemann reduced iff the following conditions are satisfied

1. T is Minkowski reduced.

2. e ≥ 0, f ≥ 0,

e = 0 or f = 0 =⇒ d = 0.

3. a = b =⇒ |d| ≤ e,

b = c =⇒ |e| ≤ f .

4. a+ b+ d− e− f = 0 =⇒ 2a− 2e− f ≤ 0,

f = a =⇒ e ≤ 2d,

e = a =⇒ e ≤ 2d,

d = b =⇒ f ≤ 2e,

d > −b.

Taking the conditions of Minkowski’s reduction into account, we have the following sets

of inequalities for Schiemann reduced forms

1. 0 < a ≤ b ≤ c,

−b < d ≤ b,

0 ≤ e ≤ a,

0 ≤ f ≤ a,

a+ b ≤ −d+ e+ f .

2. e = 0 or f = 0 =⇒ d = 0.

3. a = b =⇒ |d| ≤ e,

b = c =⇒ |e| ≤ f ,

f = a =⇒ e ≤ 2d,

e = a =⇒ e ≤ 2d,

d = b =⇒ f ≤ 2e.

4. a+ b+ d− e− f = 0 =⇒ 2a− 2e− f ≤ 0.

Note that D(T ) = 4abc+ def − ad2− be2− cf 2, and when T is Schiemann reduced, we

have

2abc ≤ D(T ) ≤ 4abc.

The significance of Schiemann reduded forms is expressed by the following theorem.

Theorem 2.4.1.2. ([Sch97], pp.509− 510) Each positive ternary quadratic form is equiv-

alent to a unique Schiemann reduced form.
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2.4.2 Regular forms

Following Dickson in [Dic27], we make the following definition

Definition 2.4.2.1. Let n be a positive integer. We call n an eligible number for

representation by T (x, y, z) if the congruence equation

T (x, y, z) ≡ n (mod k)

is solvable for all integer k ≥ 1. The set of all eligible numbers of T (x, y, z) is denoted by

E(T ). If an integer is not eligible, then we say it is ineligible (or sporadic).

A form T (x, y, z) is regular if it represents all of its eligible numbers.

Theorem 2.4.2.2. ([Jag97], [Jon28]) There are at most 913 regular positive ternary quadratic

forms and precisely 102 regular positive diagonal ternary quadratic forms.

The list of 913 possibly regular forms can be found in [Jag97], 899 of which are proved

regular. So there remain 14 candidates (see [Jag10]). Also, [Dic39] gives a list of all 102

regular diagonal forms together with their ineligible numbers (see pp.111− 113).

Theorem 2.4.2.3. ([Jon39], p.166) An eligible number of a ternary form T is represented

by a ternary form T ′ ∈ Gen(T ).

Proposition 2.4.2.4. Any form in a genus of one class is regular.

Proof. By Theorem 2.4.2.3, any form in a genus of one class represents all of its eligible

numbers, thus regular.

As mentioned in Theorem 2.4.2.2, there are precisely 102 regular positive diagonal

forms. This result was proved by Jones in 1928. It happens that 82 of these forms are

in genera of one class (see [Jon39], p.167), so regularity follows at once from Proposition

2.4.2.4. Therefore, the hardest part of the proof is perhaps due to the word “precisely”.

Corollary 2.4.2.5. The form x2 + y2 + z2 is regular.

Proof. By Proposition 2.2.3.7, x2 + y2 + z2 is in a genus of one class.

Corollary 2.4.2.6. The form 2x2 + 2y2 + 3z2 + 2yz + 2xz + 2xy is regular.

Proof. As proved in Example 3.3.4.10, 2x2 + 2y2 + 3z2 + 2yz + 2xz + 2xy is in a genus of

one class.

With Definition 2.4.2.1, we can now reformulate what it means for two ternary quadratic

forms to be in the same genus in terms of their eligible numbers (Proposition 2.4.2.9). We

first state two lemmas used in the proof of this reformulation.

Lemma 2.4.2.7. ([Cas08], Lemma 5.2, p.123) Let T = 〈a1, a2, a3, a4, a5, a6〉 and T ′ =

〈b1, b2, b3, b4, b5, b6〉 be ternary quadratic forms with D(T ) = D(T ′) and p a prime. Suppose

that

ai ≡ bi (mod pδ+2λ),

where |D(T )|p = p−δ and

λ =

{
1 if p = 2

0 otherwise
.

Then T ∼Zp T
′.
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Lemma 2.4.2.8. ([Jon39], p.165) Let T and T ′ be ternary quadratic forms. Then D(T ′) =

D(T ) and E(T ′) = E(T ) if and only if there exists a matrix M = [mij] ∈ M3(Q) with the

following properties:

(i) det(M) = 1.

(ii) |mij|p ≤ 1 for all prime p|2D(T ) and i, j ∈ {1, 2, 3}.

(iii) T ′(x) = T (Mx) for all x ∈ Z3.

Proposition 2.4.2.9. Let T and T ′ be ternary quadratic forms. Then T ′ ∈ Gen(T ) if and

only if D(T ′) = D(T ) and E(T ′) = E(T ).

Proof. (=⇒) We denote T = 〈a1, a2, a3, a4, a5, a6〉, T ′ = 〈b1, b2, b3, b4, b5, b6〉. By Proposition

2.2.3.2, D(T ′) = D(T ). Now let n ∈ E(T ). Then T (x) ≡ n (mod k) is solvable for all inte-

ger k ≥ 1, where x ∈ Z3. By Proposition 2.2.3.6. There is a form T ∗ = 〈a∗1, a∗2, a∗3, a∗4, a∗5, a∗6〉
such that T ∗ is integrally equivalent to T and a∗i ≡ bi (mod k) for arbitrary k ∈ Z, where

i ∈ {1, 2, 3, 4, 5, 6}. Since T ∗ is integrally equivalent to T , there is a matrix M ∈ M3(Z)

such that T ∗(x) = T (Mx). Therefore, T ∗(x) ≡ n (mod k) is solvable for all integer k ≥ 1.

Thus, T ′(x) ≡ n (mod k) is solvable for all integer k ≥ 1.

(⇐=) Let D(T ′) = D(T ) and E(T ′) = E(T ). If p - 2D(T ), then T ∼Zp T
′ by Lemma

2.4.2.7. If p | 2D(T ), then T ∼Zp T
′ by Lemma 2.4.2.8. Finally, the condition D(T ) =

D(T ′) says that T and T ′ are also equivalent over the reals. Hence T and T ′ are in the

same genus.

Recall that we denote the set of representable numbers of a form T by VZ(T ). We will

drop the subscript Z as it is clear in our present consideration.

Proposition 2.4.2.10. If V (T ) = V (T ′), then E(T ) = E(T ′).

Proof. Let n ∈ E(T ), then

∀ k ∈ Z T ≡ n (mod k) is solvable.

Therefore,

∀ k ∈ Z ∃m ∈ Z ∃(x, y, z) ∈ Z3, T (x, y, z) = n+mk.

Since V (T ) = V (T ′), n+mk ∈ V (T ′) and so n ∈ E(T ′). By symmetry, E(T ) = E(T ′).

Corollary 2.4.2.11. If V (T ) = V (T ′) and D(T ) = D(T ′), then T ′ ∈ Gen(T ).

Proposition 2.4.2.12. If V (T ) = V (T ′), then T is regular if and only if T ′ is regular.

Proof. By Proposition 2.4.2.10, E(T ) = E(T ′). Suppose T is regular, then V (T ) = E(T ).

So V (T ′) = E(T ′).

Proposition 2.4.2.13. If T, T ′ are inequivalent forms in the same genus of size 2, then

V (T ) = V (T ′) if and only if T and T ′ are regular.
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Proof. (=⇒) Let n ∈ E(T ). Then by Theorem 2.4.2.3, either T (x, y, z) = n or T ′(x, y, z) =

n is solvable. Therefore, we always have n ∈ V (T ). Clearly, n ∈ V (T ) implies n ∈ E(T ).

Hence, V (T ) = E(T ). This together with Proposition 2.4.2.12 say that T and T ′ are

regular. (⇐=) Let T and T ′ be both regular. Then V (T ) = E(T ) and V (T ′) = E(T ). Since

they are in the same genus, E(T ) = E(T ′) by Proposition 2.4.2.9. Thus, V (T ) = V (T ′).

Corollary 2.4.2.14. The form x2 + y2 + 10z2 is irregular.

Proof. The only form in the same genus with x2 + y2 + 10z2 is 2x2 + 2y2 + 3z2 + 2yz (see

Example 3.3.4.9). Note that x2 + y2 + 10z2 does not represent 3 whereas the latter does.

So by Proposition 2.4.2.13, x2 + y2 + 10z2 is irregular.

The form x2 + y2 + 10z2 is known in literature as the Ramanujan form.

2.4.3 On Kaplansky’s conjecture

Schiemann (1993) proved that positive ternary quadratic forms are determined by their

theta series. In particular, two positive ternary quadratic forms are equivalent if they rep-

resent the same set of integers the same number of times up to a bound. For details, see

[Sch97]. We are then led to consider the question: “What happens if two positive ternary

quadratic forms represent the same set of integers, ignoring their multiplicities of repre-

sentation?”. Kaplansky (1997) gave the following conjecture

If two positive ternaries represent the same numbers ignoring multiplicity, then at least

one of the following holds:

1. Both are regular.

2. One is equivalent to < s, t, t, t, 0, 0 > and the other to < s, t, 3t, 0, 0, 0 >.

3. One is equivalent to < t, t, t, s, s, s >, one to < t, 2t− s, 2t+ s, 0, 2s, 0 >.

In this subsection, we will prove Kaplansky’s conjecture holds when the two forms are

diagonal. But first, we rule out the possibility that if two positive ternary quadratic forms

have the same set of representable numbers, then they are equivalent.

Proposition 2.4.3.1. If V (ax2 + by2 + fxy) = V (a′x2 + b′y2 + f ′xy), then

V (ax2 + by2 +mz2 + fxy) = V (a′x2 + b′y2 +mz2 + f ′xy) ∀m ∈ Z.

Proof. Let n ∈ V (ax2 + by2 +mz2 + fxy). Then

∃ (x0, y0, z0) ∈ Z3, n = ax2
0 + by2

0 +mz2
0 + fx0y0.

So that n−mz2
0 ∈ V (ax2 + by2 + fxy) = V (a′x2 + b′y2 + f ′xy). Then

∃ (x1, y1) ∈ Z2, n−mz2
0 = a′x2

1 + b′y2
1 +mz2

0 + f ′x1y1.

Thus, n ∈ V (a′x2 + b′y2 + f ′xy). The statement follows by symmetry.
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Example 2.4.3.2. We know that V (x2 + y2 +xy) = V (x2 + 3y2). By Proposition 2.4.3.1,

V (x2 + y2 + +3z2 + xy) = V (x2 + 3y2 + 3z2). Note also that x2 + y2 + 3z2 + xy and

x2 + 3y2 + 3z2 are Schiemann reduced, hence not equivalent.

In what follows, we will denote T = ax2 + by2 + cz2 and T ′ = a′x2 + b′y2 + c′z2. Since

each ternary quadratic form is equivalent to a unique Schiemann reduced form and the

Schiemann reduced form of a diagonal form remains diagonal, we will assume T, T ′ are

Schiemann reduced in what follows. Also, note that if V (T ) = V (T ′) and s ∈ Z, then

s divides V (T ) implies s divides V (T ′) and vice versa. We can therefore assume further

that T, T ′ are primitive. To prove Kaplansky’s conjecture for diagonal forms, we divide the

problem into 4 cases: a = c, a = b < c, a < b = c and a < b < c. The general setting for

our method is to find some bounds on the coefficients a, b, c, a′, b′, c′ and then to examine all

the possibilities given by the bounds. This requires detailed checking of approximately 70

sub-cases, which sometimes can be labourious. To shorten the work, we will present here

some most common sub-cases. The others will follow by similar arguments. In general,

the method works well for most sub-cases. There are a few sub-cases when the bounds are

too large. We overcome this by using congruence equations. We now start by listing all

lemmas used for proving the above 4 cases.

Lemma 2.4.3.3. Let x ∈ Z. Then

(i) x2 + 1 is a square ⇐⇒ x = 0.

(ii) x2 + 2 is not a square.

(iii) x2 + 3 is a square ⇐⇒ x = ±1.

(iv) x2 + 4 is a square ⇐⇒ x = 0.

Proof. We prove (iv) only. The others follow from the same argument. (=⇒) Let x2 +

4 = y2. Then (|y| − |x|)(|y| + |x|) = 4. It follows that |y| − |x| = 1, |y| + |x| = 4 or

|y| − |x| = |y|+ |x| = 2. The first case is not solvable in Z. The latter gives x = 0. (⇐=)

Clear.

Lemma 2.4.3.4. Let m,u ∈ Z≥0. Then 4m(4u+1) is the sum of two squares and 4m(4u+3)

is not the sum of two squares.

Proof. Since 4u + 1 ≡ 1 (mod 4), every prime factors p ≡ 3 (mod 4) are of even powers.

Also, 4u + 3 ≡ 3 (mod 4) implies 4u + 3 contains a prime factor p ≡ 3 (mod 4) of odd

powers. Thus, the lemma follows.

Lemma 2.4.3.5. Let x, y,m ∈ Z and m > 0. If x2 + y2 ≡ 0 (mod 4m), then x = 2mx0

and y = 2my0 for some x0, y0 ∈ Z.

Proof. First, note that x2 + y2 ≡ 0 (mod 4) implies x, y are both even. The result follows

from induction on m.

Proposition 2.4.3.6. Let T = ax2 + by2 + cz2, where a = c, and T ′ = a′x2 + b′y2 + c′z2 be

primitive Schiemann reduced positive definite ternary quadratic forms. Suppose V (T ′) =

V (T ). Then both T and T ′ are regular.
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Proof. Since T is Schiemann reduced, we have a ≤ b ≤ c. But a = c, so we must have

a = b = c. Primitivity implies a = b = c = 1. Therefore, T = x2 + y2 + z2 which is regular.

The proposition now follows from Proposition 2.4.2.12.

Proposition 2.4.3.7. Let T = ax2 + ay2 + cz2, where a, c are distinct, and T ′ = a′x2 +

b′y2+c′z2 be primitive Schiemann reduced positive definite ternary quadratic forms. Suppose

V (T ′) = V (T ). Then either T = T ′ or both T and T ′ are regular.

Proof. Since T ′ is Schiemann reduced, we have a′ ≤ b′ ≤ c′. Being the smallest repre-

sentable numbers of T and T ′, a = a′. Also, since 2a ∈ V (T ), b′ = a. So far, we have

T = ax2 + ay2 + cz2,

T ′ = ax2 + ay2 + c′z2.

Without loss of generality, we suppose c ≤ c′. If c = c′, then T = T ′ and we are done. If

c < c′, then c′ = c + k for some k > 0 and ax2 + ay2 = c is solvable. Since T is primitive,

a = 1. Note that x2 + y2 ≡ 0, 1, 2 (mod 4). So we will consider the following cases: c = 4t,

c = 4t+ 1 and c = 4t+ 2 for some t ∈ Z.

Case 1: Let c = 4t. Since c is the sum of two squares, using Lemma 2.4.3.4, we can

be more precise and write c = 4n(4s + r), where n ∈ Z≥1, s ∈ Z≥0 and r ∈ {1, 2}. So

T = x2 + y2 + 4n(4s + r)z2 ≡ x2 + y2 ≡ 0, 1, 2 (mod 4). For any specific (x0, y0, z0) ∈ Z3,

we always have

T ′(x0, y0, z0) = T (x0, y0, z0) + kz2
0 ≡ 0, 1, 2 (mod 4),

Let (x0, y0, z0) = (0, 1, 1), we deduce that k ≡ 0, 1, 3 (mod 4). Similarly, (x0, y0, z0) =

(0, 2, 1) implies k ≡ 0, 1, 2 (mod 4) and (x0, y0, z0) = (1, 1, 1) implies k ≡ 0, 2, 3 (mod

4). So we must have k ≡ 0 (mod 4). Let us write k = 4m(4u + v), where m,u ∈ Z≥0,

v ∈ {0, 1, 2, 3}. If u = v = 0, then T = T ′. So we can restrict further that v ∈ {1, 2, 3}.
Therefore,

T = x2 + y2 + 4n(4s+ r)z2,

T ′ = x2 + y2 + (4n(4s+ r) + 4m(4u+ v)) z2.

We need to check the following 2 sub-cases

(1i) r = 1: Observe that 4n(4s+ 3) ∈ V (T ). Since V (T ) = V (T ′), the equation

x2 + y2 + (4n(4s+ r) + 4m(4u+ v)) z2 = 4n(4s+ 3)

is solvable. Since 4n(4s+3) ≤ 3×4n(4s+1), we have z = 1 and so x2+y2+4m(4u+v) =

2× 4n is solvable. This implies m ≤ n.

If m = n, then x2 + y2 ≡ 0 (mod 4m). By Lemma 2.4.3.5, x = 2mx1 and y = 2my1

for some x1, y1 ∈ {0,±1}. If x1, y1 ∈ {±1}, then u = v = 0 and so T = T ′.

For other values of x1, y1, we have either u = 0, v = 1 or u = 0, v = 2. Therefore,

T = x2+y2+4n(4s+1)z2 and T ′ = x2+y2+4n(4s+2)z2 or T ′ = x2+y2+4n(4s+3)z2.

In either case, 4n(4s+7) ∈ V (T ′). It follows that x2 +y2 +4n(4s+1)z2 = 4n(4s+7) is

solvable. Since 4s+7 ≡ 3 (mod 4), using Lemma 2.4.3.4, we deduce that z = 1, which
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implies x2 + y2 = 6 × 4n is solvable. Now use Lemma 2.4.3.5, we have x2
2 + y2

2 = 6,

where x = 2nx2 and y = 2ny2. But this equation has no solution, so these cases are

impossible.

If m < n, then x2 +y2 ≡ 0 (mod 4m). By Lemma 2.4.3.5, x = 2mx1 and y = 2my1 for

some x1, y1 ∈ Z. Then x2 + y2 + 4u+ v = 2× 4n−m. It follows that x2
1 + y2

1 + v ≡ 0

(mod 4). Since x2
1 + y2

1 ≡ 0, 1, 2 (mod 4), we have v ∈ {2, 3}. If v = 3, then

T ′ = x2 + y2 + (4n(4s+ 1) + 4m(4u+ 3)) z2. Then 4n(4s+ 1) + 4m(4u+ 3) ∈ V (T ′).

Therefore, x2 + y2 + 4n(4s + 1)z2 = 4n(4s + 1) + 4m(4u + 3) is solvable. Note that

4n(4s+1)+4m(4u+3) < 3×4n(4s+1). This forces z = 1, and so x2+y2 = 4m(4u+3)

is solvable. By Lemma 2.4.3.4, 4m(4u+3) is not the sum of two squares. So this case

is not possible. If v = 2, then T ′ = x2 + y2 + (4n(4s+ 1) + 4m(4u+ 2)) z2. Then we

also have 4n(4s + 1) + 4m(4u + 3) ∈ V (T ′). Using the same argument as before, we

deduce that this case is also not possible.

(1ii) r = 2: We have T = x2 + y2 + 4n(4s + 2)z2. Therefore, 4n(4s + 3) ∈ V (T ) and we

are back in the case (1i).

Case 2: If c = 4t+1 or c = 4t+2, then T = x2 +y2 +(4t+1)z2 or T = x2 +y2 +(4t+2)z2.

In either case, 4t+3 ∈ V (T ). This means x2 +y2 + c′z2 = 4t+3 is solvable. But 4t+3 ≡ 3

(mod 4) and 4t+3 ≤ 2c < 2c′. It follows that z = 1 and so x2 +y2 +c′ = 4t+3. Therefore,

x2 + y2 + k = 2, which implies k ∈ {1, 2}. We consider the following 2 sub-cases

(2i) c′ = c+ 1: We have

T = x2 + y2 + cz2,

T ′ = x2 + y2 + (c+ 1)z2.

Then c + 6 = 12 + 22 + (c+ 1)12 ∈ V (T ′). So x2 + y2 + cz2 = c+ 6 is solvable. But

c + 6 ≡ 3 (mod 4), we must have x = y = 0 and z = 2. Then c = 2. Note that

x2 + y2 + 2z2 is regular. Now use Proposition 2.4.2.12 and we are done.

(2ii) c′ = c+2: Similar to the above case, c+6 ∈ V (T ′) and we deduce that T = x2+y2+2z2

which is regular.

The proposition now follows.

Proposition 2.4.3.8. Let k ∈ {1, 2} and s ∈ Z+. Let T = kx2 + s2y2 + s2z2 and

T ′ = kx2 + s2y2 + c′z2 be Schiemann reduced positive definite ternary quadratic forms.

Suppose V (T ′) = V (T ). Then T = T ′ or both T and T ′ are regular.

Proof. We prove the case k = 1 only. The case k = 2 is proved similarly. When k = 1, we

have T = x2 + s2y2 + s2z2 and T ′ = x2 + s2y2 + c′z2. Since 2s2 + 4 ∈ V (T ), the equation

x2 + s2y2 + c′z2 = 2s2 + 4 is solvable. Clearly, y = 0 since otherwise, s2 + 4 is a square,

which would imply s = 0. If z = 0, then 2s2 + 4 is a square and so is 2s2 + 1. But then 3

is the difference of two squares, which is not possible. Thus z 6= 0 and c′ ≤ 2s2 + 4. Note

also that c′ ≥ s2 since T ′ is Schiemann reduced. If c′ = s2, then T = T ′. We now consider

other sub-cases.
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(i) c′ = 2s2 + r, r ∈ {1, 2, 3, 4}: Since 3s2 ∈ V (T ). So x2 + s2y2 + (2s2 + r)z2 = 3s2 is

solvable. So either x2 = 3s2 or x2 = 2s2 or x2 + r = s2 is solvable. The first two

cases are clearly not possible. For the last case, using lemma 2.4.3.3, we have either

s2 = 1 with r = 1 or s2 = 4 with r = 3, 4 respectively. The 3 corresponding cases are

T = x2 + y2 + z2, T ′ = x2 + y2 + 3z2 and T = x2 + 4y2 + 4z2, T ′ = x2 + 4z2 + 11z2

and T = x2 + 4y2 + 4z2, T ′ = x2 + 4z2 + 12z2. For the first case, T does not represent

7, whereas T ′ does. So this case is not possible. For the second case, T does not

represent 11 whereas T ′ does. So this case is also not possible. For the last case, T

does not represent 28 whereas T ′ does. So this case is also not possible. Therefore,

c′ ≤ 2s2.

(ii) c′ = 2s2: Then T ′ = x2 + s2y2 + 2s2z2. Note that T ′ represents 15s2, whereas T does

not. So this case is not possible.

(iii) c′ = s2 + r, 0 < r < s2: If r = l2 for some l ∈ Z, then T ′ = x2 + s2y2 + (s2 + l2)z2.

We have s2 + l2 + 1 ∈ V (T ′). Since x2 + l2 + 1 ≤ 2s2, we have either x2 = l2 + 1

or x2 = s2 + l2 + 1 is solvable. The first case implies l = 0 by Lemma 2.4.3.3, so

not possible since r > 0. For the second case, if s = 1, then T = x2 + y2 + z2 and

T ′ = x2 + y2 + 2z2. Since 15 is in V (T ′) but not V (T ), this case is not possible. If

s ≥ 2, then s2 + l2 + 4 ≤ 3s2. So either x2 = l2 + 4 or x2 = s2 + l2 + 4 is solvable.

The latter case combined with the fact s2 + l2 + 1 is a square will imply l = 0, so not

possible. So l2 + 4 is a square. By Lemma 2.4.3.3, we have l = 0. So we eliminate

this case also. Now we consider r 6= l2 for any l ∈ Z. Since s2 + r ∈ V (T ′), we must

have s2 + r is a square. Similar to previous case, we consider s2 + r+ 1 and s2 + r+ 4

and finally conclude that this case is also not possible.

Note that the conclusion for k = 1 is T = T ′. For k = 2, by the same argument as above,

we have either T = T ′ or T = x2 + 2y2 + 2z2 which is regular. The proposition now

follows.

Proposition 2.4.3.9. Let T = ax2 + by2 + bz2, where a, b are distinct, and T ′ = a′x2 +

b′y2+c′z2 be primitive Schiemann reduced positive definite ternary quadratic forms. Suppose

V (T ′) = V (T ). Then either T = T ′ or both T and T ′ are regular.

Proof. Since T ′ is Schiemann reduced, we have a′ ≤ b′ ≤ c′. Being the smallest repre-

sentable numbers of T and T ′, a = a′. Since b ∈ V (T ), b is also representable by T ′. So

there is some (x0, y0, z0) ∈ Z3 such that ax2
0 + b′y2

0 + c′z2
0 = b. We consider 2 cases as

follows: y0 = z0 = 0 and either y0 6= 0 or z0 6= 0.

Case 1: If y0 = z0 = 0, then b = ax2
0 for some x0 ∈ Z+. Since T is primitive, a = 1. So

that T = x2 + x2
0y

2 + x2
0z

2. Then x2
0 + 1 ∈ V (T ). Note that x2

0 + 1 can not be a square

when x0 6= 0. Therefore, b′ ≤ x2
0 + 1. We consider the following 2 sub-cases

(1i) b′ = x2
0 + 1: Then T ′ = x2 + (x2

0 + 1)y2 + c′z2. It follows that x2
0 + 2 ∈ V (T ′). But

neither 2 nor x2
0 + 2 is a square, this case is not possible.

(1ii) b′ ≤ x2
0 = b: Then b′ = x2

1 for some x2
1 ∈ Z+. The value x2

1 +1 ∈ V (T ′) forces x1 = x0.

So that T ′ = x2 + x2
0y

2 + c′z2. By Proposition 2.4.3.8, we have T = T ′.
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Case 2: Either y0 or z0 is non-zero. Then b′ ≤ b. If b′ = b, then T ′ = ax2 + by2 + c′z2.

Since 2b ∈ V (T ), there is some (x1, y1, z1) ∈ Z3 such that ax2
1 + by2

1 + c′z2
1 = 2b. So either

ax2
1 = 2b or ax2

1 = b. The latter case boils down to the sub-case (1ii), and so T = T ′. For

the first case, we consider 2T = 2x2 + x2
1y

2 + x2
1z

2 and T ′ = 2x2 + x2
1y

2 + 2c′z2 instead. By

Proposition 2.4.3.8, T = T ′ or both are regular.

The proposition now follows.

Proposition 2.4.3.10. Let T = ax2 + by2 + cz2, where a, b, c are distinct, and T ′ =

a′x2 + b′y2 + c′z2 be primitive Schiemann reduced positive definite ternary quadratic forms.

Suppose b 6= b′ and V (T ′) = V (T ). Then either T = T ′ or both T and T ′ are regular.

Proof. Schiemann reduced condition just means a ≤ b ≤ c and a′ ≤ b′ ≤ c′. Since a, b, c

are distinct, we have a < b < c. As before, a = a′. We can suppose b′ < b. The case b < b′

is dealt with similarly. Since b′ < b, b′ = au2 for some u ∈ Z. Next, we consider c′. There

are only 3 possibilities: c′ < b, c′ = b and c′ > b.

If c′ < b, then c′ = av2 for some v ∈ Z, and so a = 1 as T ′ is primitive. Then T =

x2 + by2 + cz2 and T ′ = x2 + u2y2 + v2z2. Note that u2 + 1 ≤ b. If u2 + 1 < b, then u2 + 1

is a square, but it is not. So u2 + 1 = b. Therefore, u2 + 2 ∈ V (T ) = V (T ′). Since u2 + 2

is not a square, this case is not possible.

If c′ = b, then T ′ = ax2 + au2y2 + bz2. Since u2 + 1 is not a square, a+ au2 /∈ V (ax2). So

b ≤ a+au2. If b = a+au2, then a = 1 as T ′ is primitive. Then T = x2 +(1+u2)y2 +cz2 and

T ′ = x2 +u2y2 + (1 +u2)z2. From u2 + 4 ∈ V (T ′), we deduce that c ≤ u2 + 4. If c = u2 + 4,

then u2+8 ∈ V (T ). If u2+8 is a square, then u = 1. It follows that T ′ = x2+y2+2z2 which

is regular. If u2 + 8 ∈ V (x2 + u2y2) with y 6= 0, then u = 1 and again T ′ = x2 + y2 + 2z2

which is regular. The case u2 + 8 ∈ V (T ′) with z 6= 0 also gives u = 1. If b < a+ au2, then

b = au2 + k for some 0 ≤ k < a. Note that a+ au2 ∈ V (ax2 + (au2 + k)y2) with y 6= 0. If

y = 1, then k = 0. This case gives T = x2 +y2 +2z2 or T ′ = x2 +y2 +z2 which are regular.

If y ≥ 2, then 4au2 > a+ au2, so c ≤ a+ au2. If c = a+ au2, then again T = x2 + y2 + 2z2

or T ′ = x2 + y2 + z2. If c < a+ au2, then T = x2 + y2 + z2.

If c′ > b, then b = am2 + au2n2 for some m,n ∈ Z. So T = ax2 + a(m2 + u2n2)y2 + cz2.

Since au2 + a ∈ V (T ′) is not a square, we have a(m2 + u2n2) ≤ au2 + a. It follows that

m = n = 1. So a(u2 +2) ∈ V (T ). Easy checking shows that c′ ≤ a(u2 +2). If c′ = a(u2 +2),

then a = 1. The value u2 +3 ∈ V (T ′) tells us that c ≤ u2 +3. So c = u2 +2 and c = u2 +3.

But we can check that c does not assume these two values. So this case is not possible.

If a(u2 + 1) < c′ < a(u2 + 2), then c′ = a(u2 + 1) + k for some 0 < k < a. The value

a(u2 + 1) + k ∈ V (T ′) gives c ≤ c′. Checking the two cases c = c′ and c < c′ to see that

this case is also not possible.

The proposition now follows.

Proposition 2.4.3.11. Let T = ax2 + by2 + cz2, where a, b, c are distinct, and T ′ =

a′x2 + b′y2 + c′z2 be primitive Schiemann reduced positive definite ternary quadratic forms.

Suppose b = b′ and V (T ′) = V (T ). Then T = T ′ or both T and T ′ are regular.

Proof. Without loss of generality, we suppose c ≤ c′. If c = c′, then T = T ′. If c < c′, then

c = au2 + bv2 for some u, v ∈ Z. The primitive condition of T now implies gcd(a, b) = 1.

We will consider the following 2 cases: a ≡ b ≡ 1, 3 (mod 4) and a 6≡ b (mod 4). The latter

case divides into 10 sub-cases: a ≡ 0 (mod 4), b ≡ 1, 3 (mod 4); a ≡ 1 (mod 4), b ≡ 0, 2, 3
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(mod 4); a ≡ 2 (mod 4), b ≡ 1, 3 (mod 4) and a ≡ 3 (mod 4), b ≡ 0, 1, 2 (mod 4). We will

prove the first case only. The second case is proved similarly.

Now suppose a ≡ b ≡ r (mod 4), r ∈ {1, 3}. Note that u2, v2 ≡ 0, 1 (mod 4). So we will

consider the following 4 sub-cases:

Case 1. u2 ≡ v2 ≡ 1 (mod 4): Consider A = a + au2 + bv2 ∈ V (T ). If A ∈ V (ax2 + by2),

then 1 + u2 + v2 ≡ x2 + y2 (mod 4) is solvable. It follows that 3 ≡ x2 + y2 (mod 4) is

solvable. This is impossible by Lemma 2.4.3.4. So A /∈ V (ax2 + by2). This means c′ ≤ A.

So c′ = c+ k, where 0 < k ≤ a.

(1i) k = a: Then T = ax2 + by2 + (au2 + bv2)z2 and T ′ = ax2 + by2 + (au2 + bv2 + a)z2.

Consider b + au2 + bv2 ∈ V (T ). As before, b + au2 + bv2 /∈ V (ax2 + by2). So

au2 + bv2 + b = ax2 + by2 + au2 + bv2 + a. Then b − a = ax2 + by2. Note that

0 < b − a < b. Therefore, b − a = ax2
0 for some x0 ∈ Z. So a | b, which implies

a = 1 since gcd(a, b) = 1. It follows that b = 1 + x2
0, where x0 = 2x1 for some

x1 ∈ Z. So far, we have T = x2 + (1 + 4x2
1)y2 + (u2 + (1 + 4x2

1)v2)z2 and T ′ =

x2 + (1 + 4x2
1)y2 + (u2 + (1 + 4x2

1)v2 + 1)z2. Consider u2 + (1 + 4x2
1)v2 + 5 ∈ V (T ′). As

before, u2 + (1 + 4x2
1)v2 + 5 /∈ V (x2 + (1 + 4x2

1)y2). This means 5 = x2 + (1 + 4x2
1)y2.

So x1 = y = 1. Therefore, b = 5. We have T = x2 + 5y2 + (u2 + 5v2)z2 and

T ′ = x2 + 5y2 + (u2 + 5v2 + 1)z2. But then u2 + (1 + 4x2
1)v2 + 17 ∈ V (T ′), whereas

u2 + (1 + 4x2
1)v2 + 17 /∈ V (T ). So this case is not possible.

(1ii) 0 < k < a: Consider au2 + bv2 + a ∈ V (T ). As before, au2 + bv2 + a /∈ V (ax2 + by2).

So au2 + bv2 + a = ax2 + by2 + au2 + bv2 + k. Then a− k = ax2 + by2. This is not

possible since a− k < a.

Case 2. u2 ≡ 0 (mod 4), v2 ≡ 1 (mod 4): Consider a + b + au2 + bv2 ∈ V (T ). If

a + b + au2 + bv2 ∈ V (ax2 + by2), then 3 ≡ x2 + y2 (mod 4) is solvable. This is not true

by Lemma 2.4.3.4. So a+ b+ au2 + bv2 /∈ V (ax2 + by2). Therefore, c′ ≤ a+ b+ au2 + bv2.

We consider the following subcases:

(2i) c′ = a+b+au2+bv2: We have 9a+b+au2+bv2 ∈ V (T ). As before, 9a+b+au2+bv2 /∈
V (ax2+by2). So 9a+b+au2+bv2 = ax2

0+by2
0 +a+b+au2+bv2, whence 8a = ax2

0+by2
0

for some x0, y0 ∈ Z. Note that x0 < 3. If x0 = 0, then 8a = by2. Then y = 1, b = 8a

or y = 2, b = 2a. Since gcd(a, b) = 1, a = 1. Then b = 8 or b = 2. These two values

for b are not possible in our current consideration as a ≡ b (mod 4). Note that the

second possibility is valid when we consider the case when a ≡ 1 (mod 4) and b ≡ 2

(mod 4). It gives the form x2 + 2y2 + 4z2 which is regular.

(2ii) c′ = au2 + bv2 + b + k, where 0 < k < a: Consider a + b + au2 + bv2 ∈ V (T ). Since

a+b+au2+bv2 /∈ V (ax2+by2), we have a+b+au2+bv2 = ax2+by2+au2+bv2+b+k.

Then a− k = ax2 + by2. This is not possible since a− k < a.

(2iii) c′ = au2 +bv2 +b: Consider a+9b+au2 +bv2 ∈ V (T ). As before, a+9b+au2 +bv2 /∈
V (ax2+by2). So a+9b+au2+bv2 = ax2

0+by2
0 +(au2+bv2+b)z2

0 for some x0, y0, z0 ∈ Z.

Clearly, 0 < |z0| < 3. If |z0| = 2, then a + 5b = ax2
0 + by2

0 + 3(au2 + bv2), whence

|v| = 1. Then a + 2b = ax2
0 + by2

0 + 3au2. If |y0| = 1, then a + b = ax2
0 + 3au2.

Therefore, a|b and so a = 1. Then 1 + b = x2
0 + 3u2. But 1 + b ≡ 2 (mod 4), whereas
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x2
0+3u2 ≡ 0, 1 (mod 4). So y0 = 0. Then a+2b = ax2+3au2. Again, a|b so a = 1. We

have 1 + 2b = x2
0 + 3u2. But 1 + 2b ≡ 3 (mod 4), whereas x2

0 + 3u2 ≡ 0, 1 (mod 4). So

|z0| = 1. We have a+8b = ax2
0 + by2

0. Clearly, |y0| ≤ 2. If |y0| = 2, then a+4b = ax2
0.

Since gcd(a, 4) = 1, we have a|b, and so a = 1. Therefore, T = x2 + by2 +(u2 + bv2)z2

and T ′ = x2 + by2 + (u2 + bv2 + b)z2. Consider u2 + bv2 + b + 1 ∈ V (T ′). Since

u2 + bv2 + b + 1 /∈ V (x2 + by2), we have 1 + b = s2 + bt2 for some s, t ∈ Z. If t = 0,

then 2b = s2. But 2b ≡ 2 (mod 4), so this is not possible. Thus, |t| = 1. Then b = s2.

Consider u2 + s2u2 + 2s2 + 4 ∈ V (T ′). Again, u2 + s2u2 + 2s2 + 4 /∈ V (x2 + by2)

implies 2s2 + 4 = x2 + s2y2 is solvable. It is easy to check that this is not possible.

If |y0| = 1, then a+ 7b = ax2 + by2 is solvable. Therefore, 7b = a(x2 − 1) is solvable.

But then 3 ≡ x2 − 1 (mod 4). It follows that 2|x and so 4|b, which is not possible.

If y0 = 0, then a + 8b = ax2 is solvable. Then 8b = a(x2 − 1). Since gcd(a, 8) = 1,

we have a|b and so a = 1. Then 8b = x2 − 1 is solvable. But 8b + 1 ≡ 3 (mod 4),

whereas x2 ≡ 0, 1 (mod 4). So this case is not possible.

(2iv) c′ = au2 + bv2 + k, where 0 < k < b: Consider a + b + au2 + bv2 ∈ V (T ). Since

a+ b+ u+ bv2 /∈ V (ax2 + by2), we have a+ b− k = ax2
0 + by2

0 for some x0, y0 ∈ Z. If

|y0| = 1, then a− k = ax2
0, which implies a|k. This is impossible since a− k < a. So

y0 = 0. Then a+ b− k = ax2
0, and so k = a+ b− ax2

0. Note that x2
0 ≡ 0, 1 (mod 4).

If x2
0 ≡ 0 (mod 4), then consider au2 + bv2 + k ∈ V (T ′). We have au2 + bv2 + k ≡ 3a

(mod 4), so au2 + bv2 + k /∈ V (ax2 + by2). Therefore, a+ b− ax2
0 = k = as2 + bt2 for

some s, t ∈ Z. But a+ b− ax2
0 < b, so t = 0 and a+ b− ax2

0 = as2. Then a|b and so

a = 1. We have 1 + b = s2 +x2
0. This is not possible since 1 + b ≡ 2 (mod 4), whereas

s2+x2
0 ≡ 0, 1 (mod 4). If x2

0 ≡ 1 (mod 4), then consider a+b+(au2+bv2+k) ∈ V (T ′).

Note that a+b+(au2+bv2+k) ≡ 3a (mod 4), so a+b+(au2+bv2+k) /∈ V (ax2+by2).

This means 2(a+ b)− ax2
0 = as2 + bt2 for some s, t ∈ Z. Note that |t| < 2. If |t| = 1,

then 2a+ b− ax2
0 = as2, whence a|b. So a = 1. Then 2 + b = s2 + x2

0. But 2 + b ≡ 3

(mod 4). So this is not possible. If t = 0, then 2(a+ b)−ax2
0 = as2. We still have a|b

and so a = 1. It follows that 2(1 + b) = x2 + x2
0. But 2(1 + b) ≡ 0 (mod 4), whereas

s2 + x2
0 ≡ 1, 2 (mod 4). So this is also not possible. In sum, this case is not possible.

Case 3. u2 ≡ 1 (mod 4), v2 ≡ 0 (mod 4): Similar to case 2.

Case 4. u2 ≡ v2 ≡ 0 (mod 4): We write u = 4euu2
0 and v = 4evv2

0, where u2
0 ≡ v2

0 ≡ 1 (mod

4). We first consider the case eu = ev. In what follows, we assume r = 1. The case r = 3

is treated similarly. We consider 4eua + au2 + bv2 ∈ V (T ). Suppose 4eua + au2 + bv2 ∈
V (ax2 + by2). Then 4eua + au2 + bv2 = ax2 + by2 is solvable. Using Lemma 2.4.3.5, we

know that a + au2
0 + bv2

0 = ax2 + by2 is solvable. This will imply 3 ≡ x2 + y2 (mod 4)

is solvable, which is a contradiction. So 4eua + au2 + bv2 /∈ V (ax2 + by2). Therefore,

c′ ≤ 4eua + au2 + bv2. Let us write c′ = au2 + bv2 + k, where 0 < k ≤ 4eua. Let k = 4lk0,

where k0 6≡ 0 (mod 4). We also assume l < eu. The cases l = eu and l > eu are treated

similarly. If k0 ≡ 1 (mod 4), then consider 4la + 4lb + au2 + bv2 + k ∈ V (T ′). Note that

4la+4lb+au2 +bv2 +k = 4l(a+b+4eu−l(au2
0 +bv2

0)+k0) and a+b+4eu−l(au2
0 +bv2

0)+k0 ≡ 3

(mod 4). So 4la+4lb+au2+bv2+k /∈ V (ax2+by2). Also 4la+4lb+au2+bv2+k < 4(au2+bv2),

so 4la+ 4lb+ k = ax2 + by2. But this implies 3 ≡ a+ b+ k0 ≡ x2 + y2 (mod 4) is solvable,

which is a contradiction. So this cases is not possible. The case k0 ≡ 2, 3 (mod 4) are
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treated similarly.

The proposition now follows.

We combine all the above propositions to derive the following theorem

Theorem 2.4.3.12. Let T and T ′ be positive definite quadratic forms. Suppose T ∼
ax2 + by2 + cz2, T ′ ∼ a′x2 + b′y2 + c′z2, where a, b, c, a′, b′, c′ ∈ Z, and V (T ′) = V (T ). Then

either T ∼ T ′ or both T and T ′ are regular.

Thus, we have proved that Kaplansky’s conjecture holds for diagonal forms. Recall

that there are exactly 102 regular forms (see Theorem 2.4.2.2). The next step is therefore

to go on checking what regular diagonal forms have the same set of representable numbers.

We went through 102 regular diagonal forms listed in [Dic39] and observed that there are

only 2 pairs of such forms. One is T = x2 + y2 + z2 and T ′ = x2 + 2y2 + 2z2. The other

is T = x2 + y2 + 2z2 and T ′ = x2 + 2y2 + 4z2. Note that all these forms appeared in our

proofs of the above propositions. This fact together with Theorem 2.4.3.12 gives

Theorem 2.4.3.13. Let T and T ′ be positive definite quadratic forms. Suppose T ∼
ax2 + by2 + cz2, T ′ ∼ a′x2 + b′y2 + c′z2, where a, b, c, a′, b′, c′ ∈ Z, and V (T ′) = V (T ). Then

one of the following holds

(i) T ∼ x2 + y2 + z2 and T ′ ∼ x2 + 2y2 + 2z2, or vice versa.

(ii) T ∼ x2 + y2 + 2z2 and T ′ ∼ x2 + 2y2 + 4z2, or vice versa.

(iii) T ∼ T ′.

Recall that Schiemann proved if two ternary quadratic forms represent the same set of

integers and each integer has the same multiplicity of representation by these two forms,

then the two forms are the same (see [Sch97]). The above theorem says that Schiemann’s

result will not hold, even for the simplest case when the two forms are diagonal, if the

multiplicity condition is dropped. However, it is a “near miss” as we can see.

We also notice that if we increase T and T ′ by a term xy or zx, say T ∼ ax2+by2+cz2+fxy

and T ′ ∼ a′x2 +b′y2 +c′z2 +f ′xy, then in Schiemann reduced forms, a, b, c, f, a′, b′, c′, f ′ > 0

and a, a′ will still be the smallest elements represented by T, T ′ respectively. These facts

are crucial in our proof of Kaplansky’s conjecture for diagonal forms. So we expect the

result will still hold in this case. In fact, the author strongly believe this is the case. The

proof, if follows the above method, will clearly consume a considerable amount of time and

effort. Therefore, a subtler method, if exists, will be our delight.



Chapter 3

Modular forms of half integral weight

3.1 Modular group, congruence subgroups and cusps

3.1.1 Modular group

Definition 3.1.1.1. The modular group is the group

SL2(Z) :=

{[
a b

c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}
.

For short, we will denote the modular group by Γ. Elements of Γ can also be viewed as

automorphisms of the Riemann sphere Ĉ = C∪∞ via the fractional linear transformation[
a b

c d

]
(z) =

az + b

cz + d
, z ∈ Ĉ.

By definition, [
a b

c d

]
(−d

c
) =∞,

[
a b

c d

]
(∞) =

{
a/c if c 6= 0,

∞ if c = 0.

Note that for γ, γ′ ∈ Γ, we have (γ′γ)(z) = γ′(γ(z)) and ±γ ∈ Γ give the same transfor-

mation on Ĉ.

Definition 3.1.1.2. The upper half plane is the set

H := {z ∈ C : Im(z) > 0}.

Let γ =

[
a b

c d

]
∈ Γ. Simple calculations show that

Im(γ(z)) =
Im(z)

|cz + d|2
,

which implies that γ(z) ∈ H whenever z ∈ H. That is, the modular group preserves the

upper half plane.

25
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Figure 3.1: Fundamental domain F (Γ)

Proposition 3.1.1.3. ([Fre05], Proposition V.I.8, p.335) Γ is generated by the two ele-

ments

T :=

[
1 1

0 1

]
, S :=

[
0 −1

1 0

]
.

Let G be a subgroup of Γ acting on H. We say that two points z1, z2 ∈ H are G-

equivalent if there is a g ∈ G such that z2 = gz1. This leads to the following definition

Definition 3.1.1.4. A region F ⊂ H is called a fundamental domain for the subgroup

G of Γ if F satifies the following conditions

i. F is closed.

ii. Every z ∈ H is equivalent to a point in F .

iii. No points in F are equivalent to each other, except the boundary points.

Proposition 3.1.1.5. ([Kob84], Proposition 1, p.102) A fundamental domain for Γ is

F (Γ) := {z ∈ H : −1

2
≤ Rez ≤ 1

2
and |z| ≥ 1}.

3.1.2 Congruence subgroups

Definition 3.1.2.1. Let N be a positive integer. The principal congruence subgroup

of level N is defined by

Γ(N) :=

{[
a b

c d

]
∈ Γ :

[
a b

c d

]
≡
[

1 0

0 1

]
(mod N)

}
,

where we interpret the matrix congruence entry-wise.

Definition 3.1.2.2. A subgroup of Γ is called a congruence subgroup if it contains

Γ(N) for some positive integer N , in which case it is also called a congruence subgroup

of level N.
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The two most important congruence subgroups are

Γ0(N) :=

{[
a b

c d

]
∈ Γ :

[
a b

c d

]
≡
[
∗ ∗
0 ∗

]
(mod N)

}
,

Γ1(N) :=

{[
a b

c d

]
∈ Γ :

[
a b

c d

]
≡
[

1 ∗
0 1

]
(mod N)

}
,

where ∗ indicates arbitrary integers.

Proposition 3.1.2.3. ([Kil08], Proposition 2.12, 2.13, pp.23-24) Let N be a positive inte-

ger. Then

Γ(N) E Γ1(N) E Γ0(N) E Γ

and

[Γ1(N) : Γ(N)] = N,

[Γ0(N) : Γ1(N)] = φ(N),

[Γ : Γ0(N)] = N
∏
p|N

(1 +
1

p
),

where φ is the Euler totient function.

Following the previous subsection, we will find a fundamental domain for a congruence

subgroup of level N . Here we illustrate the method for the case Γ0(N) when N = 4.

First, we need the following proposition

Proposition 3.1.2.4. ([Kil08], Proposition 2.15, p.26) Let Γ′ ⊂ Γ be a congruence sub-

group. Suppose that [Γ : Γ′] = n and

Γ =
n⋃
i=1

αiΓ
′.

Then

F (Γ′) =
n⋃
i=1

α−1
i F (Γ).

Example 3.1.2.5. In this example, we will construct a fundamental domain for Γ0(4)

using Proposition 3.1.2.4. First, note that the coset representatives for Γ modulo Γ0(4) are

{I, S, T−1S, T−2S, T−3S, ST−2S}. So the fundamental domain for Γ0(4) is given by Figure

3.2.

3.1.3 Cusps

Let H̄ = H ∪ Q ∪ {∞}. That is, we extend H to H̄ by adjoinging to it the set Q ∪ {∞}.
Each element of Q ∪ {∞} is called a cusp. Note that we visualise ∞ as a point far up in

positive imaginary axis direction. For this reason, we sometines denote it i∞.
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Figure 3.2: Fundamental domain F (Γ0(4))

Each a/c ∈ Q in the lowest terms will determine a matrix

[
a b

c d

]
∈ Γ (by solving

ad− bc = 1) such that [
a b

c d

]
(∞) =

a

c
.

This means that all rational numbers are in the same Γ-equivalence class as∞. Therefore,

Γ permutes the cusps transitively.

If Γ′ ⊂ Γ is a subgroup, then Γ′ permutes the cusps, but in general not transitively. This

means there may be more than one Γ′-equivalence class among the cusps. By a cusp

of Γ′, we mean a Γ′-equivalence class of cusps. Any convenient representative of a Γ′-

equivalence class can be chosen to be a cusp. Figure 3.1 says that Γ has a single cusp

at ∞, whereas Figure 3.2 says Γ0(4) has 2 cusps at 0 and −1/2. Figure 3.2 also gives a

geometrical explanation of “cusp”, as at 0 and −1/2, the fundamental domain of Γ0(4) has

the appearance that we usually associate with the word “cusp”.

3.2 Modular forms of integral weights

3.2.1 Modular forms of integral weights for Γ

Definition 3.2.1.1. Let k be an integer. A meromorphic function f : H −→ C is called a

weakly modular form of weight k for Γ if

f(γ(z)) = (cτ + d)kf(z), ∀ γ =

[
a b

c d

]
∈ Γ, z ∈ H.

Let γ = −I in Definition 3.2.1.1, we obtain f = (−1)kf . Therefore, the only weakly

modular form of odd weight k (on Γ) is the zero function.
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Next, let γ = T , where T is the translation[
1 1

0 1

]
: z 7−→ z + 1.

Then f(z + 1) = f(z). By Fourier analysis, we know that f has the Fourier expansion

f(z) =
∑
n∈Z

anq
n, q = e2πiz. (3.1)

The expansion (3.1) is called the q-expansion of f .

Definition 3.2.1.2. The function f is said to be holomorphic (resp. vanishes) at infinity

if an = 0 for n < 0 (resp. n ≤ 0) in the q-expansion (3.1).

Definition 3.2.1.3. Let k be an integer. A function f : H −→ C is called a modular

form of weight k for Γ if f satisfies the following conditions

i. f is holomorphic on H.

ii. f is weakly modular of weight k.

iii. f is holomorphic at ∞.

The C-vector space of all modular forms of weight k for Γ is denoted by Mk(Γ). Moreover,

if condition (iii) is replaced by

iii’. f vanishes at ∞,

then f is called a cusp form of weight k for Γ. The C-vector space of all cusp forms of

weight k for Γ is denoted by Sk(Γ).

Remark 3.2.1.4. It follows from Definition 3.2.1.3 that the product of two modular

forms (resp. cusp forms) of weight k1 and k2 is a modular form (resp. cusp form) of weight

k1 + k2; the quotient of two modular forms (resp. cusp forms) of weight k1 and k2 is a

modular form (resp. cusp form) of weight k1 − k2.

Next, we will construct concrete examples of modular forms and cusp forms of weight

k for Γ. We start with a definition.

Definition 3.2.1.5. Let k be an even integer greater than 2 and z ∈ H. The Eisenstein

series of weight k is defined to be

Gk(z) :=
∑
m,n

′ 1

(mz + n)k
,

where the prime summation means to sum over all pairs of integers (m,n) ∈ Z2 \ {(0, 0)}.

Proposition 3.2.1.6.

Gk ∈ Mk(Γ).

Proof. There are 3 conditions to check
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i. Since k > 2, Gk converges absolutely on H and uniformly on any compact subset of

H. Therefore, Gk is holomorphic on H.

ii. For the weakly modular condition, it suffices to checkGk(T (z)) = Gk(z) andGk(S(z)) =

Gk(z). But this is obvious.

iii. Gk is holomorphic at infinity because

lim
z→i∞

∑
m,n

′ 1

(mz + n)k
=
∑
n

′ 1

nk
= 2ζ(k) <∞,

where ζ(k) denotes the Rieman zeta function of level k.

In the proof above, we have proved that Gk is holomorphic at infinity without using

the q-expansion of Gk. However, it will be useful to compute explicitly the q-expansion of

Gk(z).

Proposition 3.2.1.7.

Gk(z) = 2ζ(k)
(

1− 2k

Bk

∞∑
n=1

σk−1(n)qn
)
,

where q = e2πiz, Bk is the k-th Bernoulli number defined by

x

ex − 1
=
∞∑
k=0

Bk
xk

k!
,

and σk−1 is the arithmetic divisor-sum function

σk−1(n) =
∑
d|n

dk−1.

Proof. From complex analysis, we have

π cot(πz) =
1

z
+
∞∑
n=1

( 1

z + n
+

1

z − n

)
, z ∈ H. (3.2)

Continuously differentiating both side of (3.2) and replacing z by mz, we obtain

∞∑
n=−∞

1

(mz + n)k
=

(2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πinmz. (3.3)

It is well-known that (for details, see [Whi35]) for even k

ζ(k) = −(2πi)k

2k!
Bk. (3.4)
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Substituting (3.4) into (3.3), we have

∞∑
n=−∞

1

(mz + n)k
= − 2k

Bk

ζ(k)
∞∑
d=1

dk−1qdm.

Hence,

Gk(z) = 2ζ(k) + 2
∞∑
m=1

∞∑
n=−∞

1

(mz + n)k
= 2ζ(k)

(
1− 2k

Bk

∞∑
m,d=1

dk−1qdm
)
.

We now collect coefficients of a fixed power qn in the last double sum to obtain the propo-

sition.

Define

Ek(z) :=
1

2ζ(k)
Gk(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn. (3.5)

Then Ek has coefficient a0 = 1 in its q-expansion. We call Ek the normalised Eisenstein

series. Another way to look at the normalised Eisenstein series is

Ek =
1

2

∑
m,n∈Z

gcd(m,n)=1

1

(mz + n)k
, k ∈ 2Z, k ≥ 4. (3.6)

To see this, note that for each pair (m,n) ∈ Z2 with gcd(m,n) = 1, the multiples of

(mz + n)−k appear ζ(k) times in Gk. Since Gk converges absolutely for k > 2, we can

rewrite it as Gk = 2ζ(k)Ek. Therefore, (3.5) and (3.6) define the same series.

Let g2(z) = 60G4(z) and g3(z) = 140G6(z). Define

∆(z) := g2(z)3 − 27g3(z)2.

The function ∆(z) is normally called the modular discriminant. It arises from the study

of elliptic curves. For details, see [Kob84].

Proposition 3.2.1.8.

∆(z) ∈ S12(Γ).

Proof. Since

ζ(4) =
π4

90
, ζ(6) =

π6

945
,

we can rewrite g2 and g3 in terms of Ek as

g2(z) =
4π4

3
E4(z), g3(z) =

8π6

27
E6(z).

Therefore,

∆(z) =
(2π)12

1728

[
E4(z)3 − E6(z)2

]
. (3.7)

It follows from Remark 3.2.1.4 that ∆(z) ∈ M12(Γ). Equation (3.7) tells us that a0 = 0 in

the q-expansion of ∆. Thus, ∆(z) ∈ S12(Γ).



32 CHAPTER 3. MODULAR FORMS OF HALF INTEGRAL WEIGHT

The following propositions describe dimensions of spaces of modular forms and cusps

forms.

Proposition 3.2.1.9. ([Kob84], Proposition 9, p.117) Let k be an even integer.

i. M0(Γ) = C.

ii. Mk(Γ) = 0 if k is negative or k = 2.

iii. Mk(Γ) = CEk if k ∈ {4, 5, 6, 10, 14}.

iv. Sk(Γ) = 0 if k < 12 or k = 14; S12(Γ) = C∆; Sk(Γ) = ∆Mk−12(Γ).

v. Mk(Γ) = Sk(Γ)
⊕

CEk if k > 2.

We formulate the above proposition as

Theorem 3.2.1.10. Let k be an even positive integer. Then

dimMk(Γ) =

{
b k

12
c+ 1 if k 6≡ 2 (mod 12)

b k
12
c if k ≡ 2 (mod 12)

,

and

dimSk(Γ) =

{
b k

12
c if k 6≡ 2 (mod 12)

b k
12
c − 1 if k ≡ 2 (mod 12)

.

3.2.2 Modular forms of integral weights for congruence subgroups

First, we introduce some notations.

Let γ =

[
a b

c d

]
∈ Γ and let f be a function on H̄ with values in Ĉ = C ∪∞. We denote

f(z)|[γ]k := (cz + d)−kf(γ(z)).

[γ]k is called weight k operator for Γ. It follows immediately that f |[γ1γ2]k =
(
f |[γ1]k

)
|[γ2]k.

Also, let qN denote e2πiz/N .

Definition 3.2.2.1. Let k be an integer and Γ′ ⊂ Γ be a congruence subgroup of level N .

A function f : H̄ −→ Ĉ which is meromorphic on H is called a weakly modular form

of weight k for Γ′ if

f(z)|[γ]k = f(z), γ =

[
a b

c d

]
∈ Γ′, z ∈ H̄.

Note that TN =

[
1 N

0 1

]
∈ Γ(N). So let γ = TN in the above definition, we have

f(z +N) = f(z). By Fourier analysis, f has the qN -expansion

f(z) =
∑
n∈Z

anq
n
N . (3.8)



3.2. MODULAR FORMS OF INTEGRAL WEIGHTS 33

Definition 3.2.2.2. The function f is said to be holomorphic (resp. vanishes) at infinity

if an = 0 for n < 0 (resp. n ≤ 0) in the qN -expansion (3.8).

Definition 3.2.2.3. Let f be a meromorphic function on H and let Γ′ ⊂ Γ be a congruence

subgroup of level N . Let k ∈ Z. Then f is called a modular form of weight k for Γ′ if f

satisfies the following conditions

i. f is holomorphic on H.

ii. f is weakly modular of weight k for Γ′.

iii. f |[γ]k is holomorphic at ∞ for all γ ∈ Γ.

The C-vector space of all modular forms of weight k for Γ′ is denoted by Mk(Γ
′). Moreover,

if condition (iii) is replaced by

iii’. f |[γ]k vanishes at ∞ for all γ ∈ Γ,

then f is called a cusp form of weight k for Γ′. The C-vector space of all cusp forms of

weight k for Γ′ is denoted by Sk(Γ
′).

It is useful to point out some simple facts from the above definition

1. If f ∈ Mk(Γ
′) and Γ′′ ⊂ Γ′ is a subgroup, then f ∈ Mk(Γ

′′).

2. If f ∈ Mk1(Γ
′) and g ∈ Mk2(Γ

′), then fg ∈ Mk1+k2(Γ
′).

The above statements still hold when we replace Mk(Γ
′) by Sk(Γ

′).

Proposition 3.2.2.4. Let s ∈ Q∪ {∞}. The condition (iii) in Definition 3.2.2.3 depends

only on the Γ′-equivalence class of s. More precisely, if s = γ1∞ and γ1∞ = γγ2∞ for

some γ1, γ2 ∈ Γ and γ ∈ Γ′, then the smallest power of qN that occurs in the Fourier

expansion of f |[γ1]k and f |[γ2]k is the same.

Proof. Since γ1∞ = γγ2∞, we have γ−1
1 γγ2 fixes ∞. Therefore, γ−1

1 γγ2 = ±T j for some

j ∈ Z. It follows that γ2 = ±γ−1γ1T
j. Let f(z)|[γ1]k =

∑
n∈Z anq

n
N . Then

f |[γ2]k = f(z)|[±γ−1γ1T
j] = (±1)k(f |[γ1]k)|[T j]k,

where we have used f |[±I]k = (±1)kf and f |[γ−1]k = f .

Denote g = f |[γ1]k. Then

f(z)|[γ2]k = (±1)kg(z + j) = (±1)k
∑
n∈Z

ane
2πinj/NqnN .

The proposition now follows.

Let f be weakly modular for Γ′ and let s ∈ Q∪{∞}. We write s = γ∞ for some γ ∈ Γ.

Then f is said to be holomorphic (resp. vanishing) at the cusp s if f |[γ]k is holomorphic

(resp. vanishing) at ∞. The above proposition says that the choice of γ ∈ Γ such that

s = γ∞ is not important. Thus, the condition (iii) in Definition 3.2.2.3 is really a condition

about holomorphicity at each cusp of Γ′.

As before, the next step is to give explicit examples to show that modular forms and

cusp forms for congruence subgroups do exist.

In what follows, we will use bold letters to denote vectors.
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Definition 3.2.2.5. Let N be a positive integer. Let a = (a1, a2) and m = (m1,m2) be

in (Z/NZ)2. Let k be an integer greater than 2. The Eisenstein series of level N is

defined by

Ga
k(z) = Ga mod N

k (z) :=
∑

m∈Z2

m≡a mod N

1

(m1z +m2)k
, z ∈ H. (3.9)

If a = (0, 0), we delete m = (0, 0) in the sum (3.9). Note that when a = (0, 0),

m = (Nm,Nn) and the Eisenstein series of level N now becomes

G0
k(z) = N−k

∑
m,n∈Z

′ 1

(mz + n)k
= N−kGk(z),

which is the Eisenstein series for Γ. Therefore, it is unnecessary to consider this case any

more. So for Eisenstein series of level N , we suppose a 6= (0, 0).

Proposition 3.2.2.6.

Ga
k ∈ Mk(Γ(N)), G

(0,a2)
k ∈ Mk(Γ1(N)).

Proof. We will prove the first statement only. The latter follows by the same argument.

There are 3 conditions to check

i. Ga
k converges absolutely on H and uniformly on any compact subset of H, hence is

holomorphic on H.

ii. Let γ =

[
a b

c d

]
∈ Γ. Consider

Ga
k(z)|[γ]k = (cz + d)−k

∑
m≡a modN

1(
m1

az+b
cz+d

+m2

)k
=

∑
m≡a modN

1

[(m1a+m2c)z + (m1b+m2d)]k
.

Let m’ = (m1a + m2c,m1b + m2d) = mγ. Since m ≡ a (mod N), we have m’ ≡
aγ (mod N). Note that the map

f : {m : m ≡ a (modN)} −→ {m’ : m’ ≡ aγ (modN)}
m 7−→m’ = mγ

is a bijection. Therefore,∑
m≡a modN

1

[(m1a+m2c)z + (m1b+m2d)]k
= Gaγ

k (z).

It follows that

Ga
k(z)|[γ]k = Gaγ

k (z). (3.10)

If γ ∈ Γ(N), then γ ≡
[

1 0

0 1

]
(mod N). Thus,

Ga
k(z)|[γ]k = Ga

k(z), γ ∈ Γ(N).
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iii. By (3.10), we know that [γ]k permutes Ga
k for γ ∈ Γ. Therefore, it suffices to show

Ga
k is finite at ∞. We have

lim
z→i∞

Ga
k(z) =

∑
m≡a modN

m1=0

1

mk
2

=

{
0 if a1 6= 0∑

n≡a2 modN n
−k if a1 = 0

.

In either case, we always have limz→i∞G
a
k(z) <∞ since k ≥ 2.

The proposition now follows.

Recall that the Dedekind η-function is defined by

η(z) = e2πiz/24

∞∏
n=1

(1− e2πinz), z ∈ H.

It satisfies the following functional equation

η(−1

z
) =

√
z

i
η(z), (3.11)

where
√

denotes the principal branch of square root. For details about the Dedekind

η-function, see [Kob84] and [Apo90]. We will use the Dedekind η-function to construct an

example of cusp forms for congruence subgroups.

Proposition 3.2.2.7.

[η(z)η(2z)]8 ∈ S8(Γ0(2)).

Proof. Again, there are 3 conditions to check

i. Clearly, f(z) := [η(z)η(2z)]8 is holomorphic on H.

ii. Note that Γ0(2) is generated by −I, T and ST 2S =

[
−1 0

2 −1

]
. It is trivial to

check that f is invariant under [−I]8 and [T ]8. For [ST 2S]8, we write

[
−1 0

2 −1

]
=

1
2

[
0 −1

2 0

]
T

[
0 −1

2 0

]
and check

f(z)|
[

0 −1

2 0

]
8

= 24(2z2)−8

(
η

(
− 1

2z

)
η

(
−1

z

))8

= (2z2)−4

(√
2z

i
η(2z)

√
z

i
η(z)

)8

= (η(z)η(2z))8 = f(z),

where we have used the functional equation (3.11). So f is also invariant under

[ST 2S]8.

iii. The coset representatives for Γ modulo Γ0(2) are I, S, ST−1S. So Γ0(2) has only one

cusp at 0. Using the transformation (3.11), we see immediately that f vanishes at 0.
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The proposition now follows.

We recall the following definition

Definition 3.2.2.8. A Dirichlet character mod m is defined to be a function χ : Z −→
C with the following properties

i. χ(ab) = χ(a)χ(b) for all a, b ∈ Z.

ii. χ(a) = χ(b) if a ≡ b (mod m).

iii. χ(a) 6= 0⇐⇒ gcd(a,m) = 1.

The conductor of χ is the smallest positive integer n such that χ(a) depends only on a

mod n when gcd(a, n) = 1. The character χ is called primitive if m = n.

For details about Dirichlet characters, see [Cop09]. Next, we will consider several ways

to construct new modular forms out of given ones. In what follows, we denote χ to be a

Dirichlet character and

Mk(N,χ) :=

{
f ∈ Mk(Γ1(N)) : f |[γ]k = χ(d)f ∀γ =

[
a b

c d

]
∈ Γ0(N)

}
. (3.12)

It is easy to see that Mk(N,χ) is a subspace of Mk(Γ1(N)). A special case is when χ is

trivial

Mk(N,χtriv) = Mk(Γ0(N)).

Let GL+
2 (Q) be a subgroup of GL2(Q) consisting of all matrices of positive determinants.

We now extend weight k operator [γ]k to be defined for all γ ∈ GL+
2 (Q).

f(z)|[γ]k := (detγ)k/2(cz + d)−kf(γ(z)), γ ∈ GL+
2 (Q).

Proposition 3.2.2.9. ([Kob84], Proposition 17, p.127)

(a) Let Γ′ ⊂ Γ be a congruence subgroup and α ∈ GL+
2 (Q). Set Γ′′ = α−1Γ′α ∩ Γ. Then

Γ′′ ⊂ Γ is a congruence subgroup. The map f 7−→ f |[α]k takes Mk(Γ
′) to Mk(Γ

′′)

and takes Sk(Γ
′) to Sk(Γ

′′). In particular, if f ∈ Mk(Γ) and g(z) = f(Nz), then

g ∈ Mk(Γ0(N)).

(b) Let χ and χ1 be Dirichlet characters modulo M and N respectively. If f(z) =∑∞
n=0 anq

n ∈ Mk(M,χ) and define fχ1(z) :=
∑∞

n=0 anχ1(n)qn, then fχ1 ∈ Mk(MN2, χχ2
1).

If f is a cusp form, then so is fχ1.

We usually refer to fχ1 in the above proposition as the twist of f by Dirichlet character

χ1.

Proposition 3.2.2.10. ([Kob84], Proposition 28, p.137)

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ),

where the sum is over all Dirichlet characters modulo N .
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Later we will often work with the space Mk(Γ1(4)) and Mk(Γ0(4)). So it is convenient

to state some of their properties here. We obtained the dimension formulae for Mk(Γ1(4))

and Mk(Γ0(4)) below by working out special cases of Theorem 3.5.1 and Theorem 3.6.1

in [Dia05]. These two general theorems contains several ideas which are too involved to

discuss here. For details, see Chapter 3 of [Dia05].

Proposition 3.2.2.11. ([Kob84], Proposition 29, p.138) Let k be a positive integer. Then

Mk(Γ1(4)) =

{
Mk(4, χtriv) if k is even

Mk(4, χ) if k is odd
,

where χtriv is the trivial character modulo 4 and χ is the unique non-trivial character

modulo 4.

Proposition 3.2.2.12. Let k be an integer. If k ≤ 0, then dimMk(Γ1(4)) = 0. If k > 0,

then

dimMk(Γ1(4)) =

{
k+2

2
if k is even

k+1
2

if k is odd
.

Proposition 3.2.2.13. Let k be an integer. Then

dimMk(Γ0(4)) =

{
k+2

2
if k ∈ 2N ∪ {0}

0 otherwise
.

3.2.3 Hecke operators

In previous subsections, we treated modular forms for Γ and its congruence subgroups

separately. So it is natural to do the same here in defining Hecke operators on modular

forms. However, on noting that

Γ = Γ(1) = Γ1(1) = Γ0(1),

we only need to define Hecke opertors on congruence subgroups of Γ. In what follows, we

will denote Γ1,Γ2 to be congruence subgroups of Γ.

We start with a definition

Definition 3.2.3.1. Let α ∈ GL+
2 (Q). The double coset Γ1αΓ2 in GL+

2 (Q) is defined to

be

Γ1αΓ2 := {γ1αγ2 ∈ GL+
2 (Q) : γ1 ∈ Γ1, γ2 ∈ Γ2}.

We now let Γ1 act on the double coset Γ1αΓ2 by left multiplication, which partitions

it into orbits. The set of such orbits is called the orbit space. Next we will show that the

orbit space has finite cardinality.

Proposition 3.2.3.2. ([Dia05], Lemmas 5.1.1, 5.1.2, p.164) Let α ∈ GL+
2 (Q) and Γ3 =

α−1Γ1α ∩ Γ2 ≤ Γ2. Define

h : Γ2 −→ Γ1αΓ2

γ2 7−→ αγ2.

Then h induces a bijection from the set of cosets of Γ3 \ Γ2 to the orbit space Γ1 \ Γ1αΓ2.
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Corollary 3.2.3.3. Let Γ1 act on Γ1αΓ2 by left multiplication. Then the number of orbits

is finite.

Proof. Let Γ3 be defined as in Proposition 3.2.3.2. Since α−1Γ1α ∩ Γ,Γ2 are congruence

subgroups, so is Γ3 = (α−1Γ1α ∩ Γ) ∩ Γ2. In particular,

[Γ : Γ2] <∞, [Γ : Γ3] <∞.

It follows that

[Γ2 : Γ3] =
[Γ : Γ3]

[Γ : Γ2]
<∞.

Definition 3.2.3.4. Let α ∈ GL+
2 (Q) and f ∈ Mk(Γ1). We define the weight k double

coset operator [Γ1αΓ2]k on f to be

f |[Γ1αΓ2]k :=
∑
j

f |[βj]k,

where βj runs through the set of orbit representatives for Γ1 \ Γ1αΓ2.

It is not straightforward to see that the above definition is well-defined, as the sum

might depend on the set of representatives. So we spend some time in showing that it is

in fact not the case.

Now suppose that Γ1βj1 = Γ1βj2 for βj1 = γ1,j1αγ2,j1 and βj2 = γ1,j2αγ2,j2 (γi,jk ∈ Γi).

Then αγ2,j1 ∈ Γ1αγ2,j2 . Since f ∈ Mk(Γ1), we have

f |[βj1 ]k = f |[αγ2,j1 ]k = f |[αγ2,j2 ]k = f |[γ1,j2αγ2,j2 ]k = f |[βj2 ]k.

as expected.

Proposition 3.2.3.5. If f ∈ Mk(Γ1), then f |[Γ1αΓ2]k ∈ Mk(Γ2). If f ∈ Sk(Γ1), then

f |[Γ1αΓ2]k ∈ Sk(Γ2).

Proof. We will prove the first statement only. The second follows by a similar argument.

Let γ ∈ Γ2. If {βj} is the set of representatives of Γ1αΓ2 modulo Γ1, then so is {βjγ}.
Hence

(f |[Γ1αΓ2]k) |[γ]k =
∑
j

f |[βjγ]k = f |[Γ1αΓ2]k.

Three special cases of double coset operators are

1. Γ1 ⊃ Γ2: Let α = I. Then f |[Γ1αΓ2]k = f . This gives an inclusion which injects

Mk(Γ1) into Mk(Γ2).

2. α−1Γ1α = Γ2: Here f |[Γ1αΓ2]k = f |[αk]. This gives a translation from Mk(Γ1) to

Mk(Γ2). It follows that this is also an isomorphism.
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3. Γ1 ⊂ Γ2: Let α = I and {γj} be the set of representatives for Γ1 \ Γ2. Then

f |[Γ1αΓ2]k =
∑

j f |[γj]k. This is a trace map which projects Mk(Γ1) onto its subspace

Mk(Γ2).

The following argument shows that the general double coset operator is a composition

of the above special ones. Let Γ3 = α−1Γ1α ∩ Γ2, Γ4 = αΓ3α
−1 = Γ1 ∩ αΓ2α

−1. We have

Γ1 ⊃ Γ4, α−1Γ4α = Γ3 and Γ3 ⊂ Γ2. It follows from Proposition 3.2.3.2 that the following

composition is the general double coset operator

f 7−→ f 7−→ f |[α]k 7−→
∑
j

f |[γj]k.

Next, we will define the first type of Hecke operator.

Definition 3.2.3.6. Let N be a positive integer, d ∈ (Z/NZ)∗ and f ∈ Mk(Γ1(N)). Let

α ∈ Γ0(N) be such that α ≡
[
∗ ∗
∗ d

]
(mod N). The diamond operator 〈d〉 is the

double coset operator f |[Γ1(N)αΓ1(N)]k.

As noted before, Γ1(N) E Γ0(N). Therefore, the 〈d〉 is a translation from Mk(Γ1(N))

to itself. So we can rewrite 〈d〉 as

〈d〉f = f |[α]k, α ∈ Γ0(N), α ≡
[
∗ ∗
∗ d

]
(mod N).

It follows that the space Mk(N.χ) defined by (3.12) can be rewritten as

Mk(N,χ) = {f ∈ Mk(Γ1(N)) : 〈d〉f = χ(d)f, d ∈ Z}.

This means that Mk(N.χ) is a χ-eigenspace of 〈d〉. Hence, 〈d〉 preserves the decomposition

Mk(Γ1(N)) =
⊕

χ Mk(N,χ). Now we consider the second type of Hecke operator.

Definition 3.2.3.7. Let N be a positive integer and let f ∈ Mk(Γ1(N)). The Tp operator

is defined by

Tpf = f

∣∣∣∣[Γ1(N)

[
1 0

0 p

]
Γ1(N)

]
k

, p prime.

Proposition 3.2.3.8. ([Dia05], Proposition 5.2.4, p.173) Let d, e ∈ Z/NZ and p, q be

primes. Then

i. 〈d〉Tp = Tp〈d〉.

ii. 〈d〉〈e〉 = 〈e〉〈d〉.

iii. TpTq = TqTp.

Let N be a positive integer. So far we have defined two types of Hecke operators: 〈d〉
for d ∈ (Z/NZ)∗ and Tp for p a prime number. Now we will extend these to operators 〈n〉
and Tn for any n ∈ Z+.

For n ∈ Z+ with gcd(n,N) = 1, the definition for 〈n〉 is the same as the case n ∈ (Z/NZ)∗.
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If gcd(n,N) > 1, then 〈n〉 = 0. It follows from Proposition 3.2.3.8 that 〈n〉 is completely

multiplicative.

Next we define Tn for arbitrary n ∈ Z+. Set

T1 = 1,

T rp = TpTpr−1 − pk−1〈p〉Tpr−2 , r ≥ 2,

Tn =
∏

Tpeii , n =
∏

peii .

It also follows from Proposition 3.2.3.8 that Tn is multiplicative (not completely). The

effect of Tn on Mk(Γ1(N)) is as follows

Proposition 3.2.3.9. ([Dia05], Proposition 5.3.1, p.179) Let f ∈ Mk(Γ1(N)) whose q-

expansion is f(z) =
∑∞

n=0 anq
n and n, d ∈ Z+. Suppose Tnf(z) =

∑∞
m=0 bmq

m and 〈d〉f =∑∞
m=0 a

(d)
m qm. Then

bm =
∑

d|gcd(m,n)

dk−1a
(d)

mn/d2 .

Suppose further that f ∈ Mk(N,χ). Then Tnf ∈ Mk(N,χ) and

bm =
∑

d|gcd(m,n)

χ(d)dk−1amn/d2 .

The definition of Tpr is chosen so that the generating function for Tn captures the Euler

product factorisation as that of the Riemann zeta function. In particular,
∞∑
n=1

Tnn
−s =

∏
p

1

1− Tpp−s + 〈p〉pk−1−2s
.

For details, see [Kob84], pp.156 - 158 and [Dia05], p.179.

One of the most important results is the following proposition which we will use exten-

sively later.

Proposition 3.2.3.10. ([Kob84], Proposition 40, p.163) Suppose f ∈ Mk(N,χ) is an

eigenform for all of the operators Tn with eigenvalues λn, n ∈ Z+. Let f(z) =
∑∞

n=0 anq
n.

Then an = λna1 for n ∈ Z+. In addition, a1 6= 0 unless k = 0 in which case f is constant.

If a0 6= 0, then λn is given by

λn =
∑
d|n

χ(d)dk−1.

As preparation for the next subsection, we will prove the following lemma

Lemma 3.2.3.11. Let Γ′ ⊂ Γ1(N) be a congruence subgroup, f ∈ Mk(Γ
′) and n ∈ Z+.

Let {f1, . . . , fs} be the set of all basis eigen-forms for T2. Suppose T2fi = λifi for all

i ∈ {1, . . . , s} and the eigen-values λi’s are distinct. Then fi is an eigenform for Tn for all

i ∈ {1, . . . , s}.
Proof. Let p be a prime. Then T2Tpfi = TpT2fi = Tp(λifi) = λiTpfi. So Tpfi ∈
span{f1, . . . , fs}, say Tpfi =

∑s
j=1 cjfj, where cj ∈ C. We then have T2Tpfi = T2(

∑
j cjfj) =∑

j cjλjfj. So λi(
∑

j cjfj) =
∑

j cjλjfj. It follows that
∑

j cj(λi−λj)fj = 0. Since the fj’s

are linearly independent and λj’s are distinct, we must have cj = 0 for j 6= i. Therefore,

fi is an eigenform for Tp. Similarly, fi is an eigenform for all diamond operators 〈p〉. Thus

fi is an eigenform for Tn, where n ∈ N is arbitrary.
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3.2.4 The theta function and applications to sums of even squares

Definition 3.2.4.1. The theta function is defined by

θ(z) :=
∑
n∈Z

qn
2

, z ∈ H, q = e2πiz.

Now suppose

θk(z) =
∑
n∈Z

cnq
n.

Let rk(n) denote the number of ways that n can be represented as the sum of k squares.

Then clearly, rk(n) = cn. So the problem of finding rk(n) boils down to calculating cn.

In principle, we can do this using the theory of modular forms, in particular the theta

function. In this subsection, we give explicit formulae for the cases when k = 2, 4. The

proofs are based on Koblitz’s ideas in [Kob84]. We note that more elementary proofs are

also available for these facts (see [Nat00] or [Mor06]).

We first introduce some notation. We use
(
c
d

)
to denote the Kronecker symbol and define

εd :=

√(
−1

d

)
, d odd,

where
√

is the principal branch of square root.

Finally, we define the factor of automorphy to be

j(γ, z) :=
( c
d

)
ε−1
d

√
cz + d, γ =

[
a b

c d

]
∈ Γ0(4), z ∈ H.

Theorem 3.2.4.2. ([Kob84], Theorem, p.148) Let γ ∈ Γ0(4) and z ∈ H. The theta

function satisfies the transformation

θ(γz) = j(γ, z)θ(z),

where j(γ, z) is the automorphy factor.

Corollary 3.2.4.3.

θ2k ∈ Mk(4, χ
k
−1),

where χ−1 is the Dirichlet character modulo 4 defined by

χ−1(n) :=

(
−1

n

)
= (−1)(n−1)/2.

Proof. Clearly, θ2k ∈ Mk(Γ1(4)). Now let γ =

[
a b

c d

]
∈ Γ0(4). Using Theorem 3.2.4.2,

we have

θ2k(γz) = j2k(γ, z)θ2k(z) =
( c
d

)2k
(
−1

d

)k
(cz + d)kθ2k(z) = χk−1(d)(cz + d)kθ2k(z).
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Proposition 3.2.4.4. Let n be a positive integer. Then

r2(n) = 4
∑
d|n
d odd

(
−1

d

)
.

Proof. By Corollary 3.2.4.3, θ2 ∈ M1(4, χ−1). Note that M1(4, χ−1) = M1(Γ1(4)) by Propo-

sition 3.2.2.11. But Mk(Γ1(4)) is one dimensional by Proposition 3.2.2.12. It follows that

Mk(Γ1(4)) is spanned by θ2 and θ2 is an eigenform for all Hecke operator Tn. The q-

expansion for θ2 for the first few terms is

θ2 = 1 + 4q + . . . .

So that a0 = 1 6= 0 and a1 = 4. Let N = 4 and χ(d) = χ−1 for d odd in Proposition

3.2.3.10, we have

r2(n) = 4
∑
d|n

χ(d)dk−1 = 4
∑
d|n
d odd

(
−1

d

)
.

Corollary 3.2.4.5. Let p be an odd prime. Then

r2(p) =

{
8 if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).

Proof. We have

r2(p) = 4

(
1 +

(
−1

p

))
=

{
8 if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).

Proposition 3.2.4.6. Let n be a positive integer. Then

r4(k) =

{
8σ1(n) if n is odd,

24σ1(m) if n = 2sm where m is odd, s ∈ Z+.

Proof. First, we define

F (z) :=
∑
n odd

σ1(n)qn = q + 4q3 + . . . , z ∈ H.

Also note that

θ4 = 1 + 8q + . . . ∈ M2(4, χ2
−1)

by Corollary 3.2.4.3. But M2(4, χ2
−1) = M2(4, χtriv) = M2(Γ0(4)). So θ4 ∈ M2(Γ0(4)). It

can easily be shown that F ∈ M2(Γ0(4)) and {F, θ4} is linearly independent. But M2(Γ0(4))

has dimension 2 by Proposition 3.2.2.12. It follows that {F, θ4} is a basis for M2(Γ0(4)).

Applying Proposition 3.2.3.9, we have

T2F = 0,

T2θ
4 = θ4 + 16F.



3.3. MODULAR FORMS OF HALF INTEGRAL WEIGHTS 43

It follows that {F, θ4 + 16F} forms an eigen-basis for T2. Now we use Lemma 3.2.3.11 to

deduce that these are also eigenforms for Tn, where n is arbitrary. Denote

θ4(z) + F (z) =
∞∑
n=0

anq
n.

It follows that

an =

{
r4(n) + 16σ1(n) if n is odd,

r4(n) if n is even.

When n is odd, λn = σ1(n). Apply Proposition 3.2.3.10 to θ4 + 16F , we have

r4(n) + 16σ1(n) = λ1a1 = 24σ1(n).

Thus,

r4(n) = 8σ1(n), n odd.

When n = 2sm, λn = σ1(m). Apply Proposition 3.2.3.10 to θ4 + 16F , we have

r4(n) = λ1a1 = 24σ1(m).

Now the proposition follows.

Corollary 3.2.4.7. The form x2 + y2 + z2 + t2 is universal. That is, it represents all

natural numbers.

Proof. It follows from the above proposition that r4(n) > 0 for all n ∈ N.

3.3 Modular forms of half integral weights

3.3.1 Four-sheeted covering of GL+
2 (Q)

Let T be the set of fourth-roots of unity, i.e, T = {±1,±i}. We define

G :=

{
(α, φ(z)) : α =

[
a b

c d

]
∈ GL+

2 (Q), φ(z)2 = t
cz + d√

detα
, t ∈ {±1}

}
.

Loosely speaking, G is 4 times as big as GL+
2 (Q). It contains 4 branches of square-root of

±(cz + d). We call G the four-sheeted covering of GL+
2 (Q).

We define a binary relation on G as follows

(α, φ(z)) · (β, ψ(z)) = (αβ, φ(βz)ψ(z)).

It is straight-forward to check that (G, ·) forms a group. Next, we define

P : G −→ GL+
2 (Q) : (α, φ(z)) 7−→ α,

which is a projection from G onto GL+
2 (Q). Clearly, P is a homomorphism. We denote

G1 := P−1(Γ),
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where Γ is the full modular group SL2(Z). Then G1 is a subgroup of G.

Now let ξ = (α, φ(z)) ∈ G, we define the action of ξ on H to be the same as α on H, i.e,

ξz := αz. If f is a function on H and k ∈ Z, then an operator [ξ]k/2 of weight k/2 is defined

by

f(z)|[ξ]k/2 := f(ξz)φ(z)−k = f(αz)φ(z)−k.

It follows that

f |[ξ1ξ2]k/2 =
(
f |[ξ1]k/2

)
[ξ2]k/2.

This gives an action of G on the space of such functions.

Next, let Γ′ ⊂ Γ0(4) be a subgroup, so that the automorphy factor j(γ, z) is defined for

γ ∈ Γ′. We define

Γ̃′ := {(γ, j(γ, z)) : γ ∈ Γ′} ≤ G.

Note that P |Γ′ is an isomorphism. In particular, Γ̃0(4) ∼= Γ0(4). The inverse of P |Γ̃0(4) is

then

L : Γ0(4) −→ Γ̃0(4) : γ 7−→ γ̃ = (γ, j(γ, z)),

which is called a lifting of P .

In the next subsection, we will use the above notions to define modular forms of half

integral weight for Γ̃ and congruence subgroup.

3.3.2 Modular forms of half integral weights

Definition 3.3.2.1. Let k be an odd integer and Γ′ be of finite index in Γ0(4). Let Γ̃′, Γ̃0(4)

be as in previous subsection. A function f : H̄ −→ Ĉ which is meromorphic on H is called

a weakly modular form of weight k/2 for Γ̃′ if

f(z)|[γ̃]k/2 = f(z), γ = (γ, j(γ, z)) ∈ Γ̃′, z ∈ H̄,

where j(γ, z) is the automorphy factor.

To define modular form of half integral weight, as before, we need the notions of holo-

morphicity and vanishing at infinity. Since we have a slightly different definition for weakly

modular forms, some explanation will be needed for these notions.

Note that the condition [Γ0(4) : Γ′] <∞ implies [Γ : Γ′] <∞. If we denote

Γ̃′∞ := {γ̃ ∈ Γ̃′ : γ̃∞ =∞},

then there must be some M ∈ Z+ such that

Γ̃′∞ =



{(
±
[

1 M

0 1

]k
, 1

)}
k∈Z

if − 1 ∈ Γ′,{([
1 M

0 1

]k
, 1

)}
k∈Z

or

{(
−
[

1 M

0 1

]k
, 1

)}
k∈Z

if − 1 /∈ Γ′.

But

f(z)

∣∣∣∣∣
[(
±
[

1 M

0 1

]
, 1

)]
k/2

=
(
f(z)|[±1̃]k/2

) ∣∣∣∣∣
[([

1 M

0 1

]
, 1

)]
k/2

= f(z +M).
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So in both cases, f is invariant under the translation z 7−→ z+M . So by Fourier analysis,

f has a qM expansion

f(z) =
∑
n∈Z

anq
n
M , qM = e2πiz/M . (3.13)

Definition 3.3.2.2. The function f is said to be holomorphic (resp. vanishes) at infinity

if an = 0 for n < 0 (resp. n ≤ 0) in the qM -expansion (3.13).

With the above definition, we can now proceed as in Subsection 3.2.2.

Definition 3.3.2.3. Let f be a meromorphic function on H and let Γ′ be of finite index in

Γ0(4). Let Γ̃′, Γ̃0(4), G1 be as in the previous subsection. Let k be an odd integer. Then f

is called a modular form of weight k/2 for Γ̃′ if f satisfies the following conditions

i. f is holomorphic on H.

ii. f is weakly modular of weight k for Γ̃′.

iii. f |[γ̃]k is holomorphic at ∞ for all γ̃ ∈ G1.

The set of all modular forms of weight k/2 for Γ̃′ is denoted by Mk/2(Γ̃′). Moreover, if

condition (iii) is replaced by

iii’. f |[γ̃]k vanishes at ∞ for all γ̃ ∈ G1,

then f is called a cusp form of weight k/2 for Γ̃′. The set of all cusp forms of weight

k/2 for Γ̃′ is denoted by Sk/2(Γ̃′).

Note that for each cusp s ∈ Q ∪ {∞}, there is a γ̃ ∈ G1 such that s = γ̃∞. Using

similar arguments as before, we can show that the conditions (iii) and (iii’) above depend

only on the Γ̃′-equivalence class of s (see [Kob84], Proposition 2, p.181).

The following proposition relates the spaces Mk/2(Γ̃0(4), χ) and Sk/2(Γ̃0(4), χ) when k ∈ 2Z
to familiar spaces from the previous section.

Proposition 3.3.2.4. ([Kob84], Proposition 3, p.183) Let 4 | N and k ∈ 2Z. Then

Mk/2(Γ̃0(4), χ) = Mk/2(N,χ
k/2
−1 χ), Sk/2(Γ̃0(4), χ) = Sk/2(N,χ

k/2
−1 χ).

Next, we will describe the structure of Mk/2(Γ̃0(4)). If P ∈ C[X1, . . . , Xn] and each

Xi are assigned to weight wi, then the monomial Xk1
1 . . . Xkn

n is said to have weight w =∑n
i=1 kiwi, and we say P has pure weight w if each monomial in P has weight w.

Proposition 3.3.2.5. ([Kob84], Proposition 4, p.184) Let θ(z) =
∑∞

n=−∞ q
n2

and F (z) =∑∞
n=1 σ1(n)qn, where q = e2πiz. Assign weight 1/2 to θ and weight 2 to F . Then Mk/2(Γ̃0(4))

is the space of all polymonials in C[θ, F ] having pure weight k/2.

Corollary 3.3.2.6. ([Kob84], Corollary, p.184)

dim Mk/2(Γ̃0(4)) = 1 +

⌊
k

4

⌋
.
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Now we will modify the definition for normalised Eisenstein series from Subsection 3.2.1

to give an example of modular forms of half integral weight. Recall that the normalised

Eisenstein series is defined by

Ek(z) :=
∑
m,n∈Z

gcd(m,n)=1

(mz + n)−k, k ∈ 2Z, k ≥ 4. (3.14)

For each pair (m,n) ∈ Z2 with gcd(m,n) = 1, we can complete it to a matrix γ =[
a b

m n

]
∈ Γ. We denote Γ∞ :=

{
±
[

1 j

0 1

]
, j ∈ Z

}
and define an equivalence relation

on Γ as follows: γ1, γ2 ∈ Γ are equivalent iff γ1 = αγ2 for some α ∈ Γ∞. This simply means

that γ1, γ2 have the same bottom row (m,n) up to a sign. We can now rewrite (3.14) as

Ek(z) =
∑

γ∈Γ∞\Γ

Jk(γ, z)−1, k ∈ 2Z, k ≥ 4,

where Jk(γ, z) := (mz + n)k, which is the automorphy factor of modular forms of integral

weight k. The condition γ ∈ Γ∞ \ Γ says that the sum is over all equivalence classes of γ.

Notice that Γ0(4)∞ = Γ∞. We are now ready to modify the normalised Eisenstein series

(3.14) to construct an example of modular forms of half integral weights.

Definition 3.3.2.7. Let k be an odd integer and k ≥ 5. We define

Ek/2(z) :=
∑

γ∈Γ∞\Γ0(4)

Jk(γ, z)−1.

We also define

Fk/2(z) := Ek/2

∣∣∣∣∣
[([

0 −1

4 0

]
,
√

2z

)]
k/2

.

and call Fk/2 the companion Eisenstein series of Ek/2.

Proposition 3.3.2.8. ([Kob84], pp.186− 187)

Ek/2, Fk/2 ∈ Mk/2(Γ̃0(4)).

Definition 3.3.2.9. A Dirichlet L-series is a function of the form

L(s, χ) =
∞∑
n=1

χ(n)

ns
,

where χ is a Dirichlet character.

Definition 3.3.2.10. A quadratic field is a field of the form Q(
√
l), where l ∈ Z. The

discriminant of Q(
√
l) is defined by

D :=

{
l if l ≡ 1 (mod 4),

4l otherwise.

The corresponding character for Q(
√
l) is defined by

χD(·) :=

(
D

·

)
,

where
(
a
b

)
is the Kronecker symbol.
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Proposition 3.3.2.11. ([Kob84], Proposition 6, p.193) Let λ = (k − 1)/2 ≥ 2. Then

Hk/2 := ζ(1− 2λ)(Ek/2 + (1 + ik)2−k/2Fk/2) ∈ Mk/2(Γ̃0(4))

has the following property: if D = (−1)λl or (−1)λ4l, l > 0, is the discriminant of a

quadratic field and χD is the corresponding character, then the |D|-th q-expansion coeffi-

cient of Hk/2 equals L(1− λ, χD).

Corollary 3.3.2.12. Let D be the discriminant of a real quadratic field and χD the corre-

sponding character. Then

r5(D) = 120L(−1, χD) + 20
∑
|j|<
√
D

D−j2 odd

σ1(D − j2).

Proof. We consider the space M5/2(Γ̃0(4)). By Corollary 3.3.2.6, M5/2(Γ̃0(4)) has dimension

2. By Theorem 3.2.4.2, θ5 ∈ M5/2(Γ̃0(4)). Note also that θF ∈ M5/2(Γ̃0(4)). But θ5 and

θF are linearly independent. So {θ5, θF} forms a basis for M5/2(Γ̃0(4)). By Proposition

3.3.2.11, the function H5/2 ∈ M5/2(Γ̃0(4)). Therefore,

H5/2 = aθ5 + bθF

for some a, b ∈ C. We have

H5/2(z) =
1

120
− 1

6
q + . . .

θ5(z) = 1 + 10q + . . .

(θF )(z) = q + 2q2 + . . . .

On comparing the constant coefficients and the coefficients of the first powers of q, we

derive

H5/2 =
1

120
θ5 − 1

6
θF.

Next we use Proposition 3.3.2.11 to obtain

L(−1, χD) =
1

120
r5(D)− 1

6

∑
|j|<
√
D

D−j2 odd

σ1(D − j2).

The proposition now follows.

The following is the counterpart of Proposition 3.2.2.9.

Proposition 3.3.2.13. ([Geh11], Fact 9, 10, p.11) Let k be an odd integer, N ∈ 4Z and

f =
∑∞

n=0 anq
n ∈ Mk/2(N,χ). Then

i. f(Mz) ∈ Mk/2(NM,
(

4M
·

)
χ).

ii. If ψ is a primitive character of conductor M , then fψ(z) :=
∑∞

n=0 ψ(n)anq
n ∈

Mk/2(NM2, χψ2).
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3.3.3 Hecke operators

With slight modification from Subsection 3.3.1, we are ready to define

Definition 3.3.3.1. Let k be an odd integer. Let α ∈ G, Γ̃1, Γ̃2 ⊂ Γ̃0(4) be subgroups and

f ∈ Mk/2(Γ̃1). We define the weight k/2 double coset operator [Γ̃1αΓ̃2]k/2 on f to be

f |[Γ̃1αΓ̃2]k/2 :=
∑
j

f |[βj]k/2,

where βj runs through the set of orbit representatives for Γ̃1 \ Γ̃1αΓ̃2.

For our purpose, we will consider only the case Γ̃1 = Γ̃2 = Γ̃1(N) and α = ξn :=([
1 0

0 n

]
, 4
√
n

)
, where N, n ∈ Z.

Proposition 3.3.3.2. ([Kob84], Proposition 12, p.204) If n > 0 is not a perfect square

and gcd(n,N) = 1, then

f |[Γ̃1(N)ξnΓ̃1(N)]k/2 = 0.

Due to the above proposition, we only need to consider Hecke operators on Mk/2(Γ̃1)

of index prime to N when that index is a perfect square. Some modifications to Hecke

operators in Subsection 3.2.3 are needed to define Hecke operators of half integral weight.

For details, see [Kob84]. Here we adopt the following definition

Definition 3.3.3.3. Let p be a prime. We define the Hecke operator Tp2 to be

Tp2 := p
k
2
−2f |[Γ̃1(N)ξp2Γ̃1(N)]k/2,

where ξp2 =

([
1 0

0 p2

]
,
√
p

)
.

Next, we examine the effect of Tp2 on the coefficients of a modular form.

Proposition 3.3.3.4. ([Kob84], Proposition 13, p.207) Suppose that 4 | N , χ is a Dirichlet

character modulo N, p - N is a prime and k = 2λ + 1 is a positive odd integer. Let

f(z) ∈
∑∞

n=0 anq
n ∈ Mk/2(Γ̃0(N), χ). Then

Tp2f(z) =
∞∑
n=0

bnq
n,

where

bn = ap2n + χ(p)

(
(−1)λn

p

)
pλ−1an + χ(p2)pk−2an/p2 .

Here we take an/p2 = 0 if p2 - n.

As an application of Hecke operators of half integral weight, we will prove the following

recurrence relation of r3(n), which appeared in [Hir99], p.101.
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Proposition 3.3.3.5. Let p be an odd prime and n ∈ Z. Then

r3(p2n) =

[
p+ 1−

(
−n
p

)]
r3(n)− pr3(n/p2),

where
(
a
b

)
denotes the Legendre symbol. Here we take r3(n/p2) = 0 if p2 - n.

Proof. We consider the modular form θ3. By Theorem 3.2.4.2, θ3 ∈ M3/2(Γ̃0(4)). By

Corollary 3.3.2.6, M3/2(Γ̃0(4)) has dimension 1. Therefore, M3/2(Γ̃0(4)) = Cθ3. Note that

T 2
p preserves the space M3/2(Γ̃0(4)), so that Tp2θ

3 = cθ3 for some c ∈ C. Using Proposition

3.3.3.4 and comparing the constant coefficients, we deduce that c = p+1. Using Proposition

3.3.3.4 again, we obtain the result.

3.3.4 Application to ternary quadratic forms

This subsection presents Lehman’s idea of finding all forms having the same genus in

[Leh92]. We will go into details and work out 2 concrete examples. In these examples, the

Brant-Intrau-Schiemann table is used.

Definition 3.3.4.1. A matrix M of dimension k over Z is called even if its entries on

the main diagonal are all even.

Theorem 3.3.4.2. ([Leh92], Theorem, p.400) Let f(x1, . . . , xk) =
∑n

i=1 fiix
2
i+
∑

1≤i<j≤n fijxixj
be a positive definite quadratic form over Z. Let

Af :=

[
∂2Q

∂xi∂xj

]
i,j=1,...,k

.

Define N to be the smallest integer so that NA−1 is an even matrix. Let

θf (z) :=
∑

(m1,...,mk)∈Zn

qf(m1,...,mk), q = e2πiz.

Then

θf ∈ Mk/2(N,χd),

where

d :=


detA if k ≡ 0 (mod 4),

− detA if k ≡ 2 (mod 4),

detA/2 if k is odd,

and χd(·) :=
(
D
·

)
, where d = qr2 with q square-free and

D :=

{
q if q ≡ 1 (mod 4),

4q if q ≡ 2, 3 (mod 4).

Definition 3.3.4.3. The integer N in the above theorem is called the level of the positive

definite quadratic form f .
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Now let f, g be positive definite quadratic forms in k variables. Suppose that g = tf

for some t ∈ Z. Then θ(g) has weight k/2 and level tN . Its character is χd if k is even and

χtd if k is odd. Also, the q-expansion of θ(g) is the same as that of θ(f) with all exponents

multiplied by t. Therefore, in finding the level of a positive definite quadratic form, we can

restrict ourselves to the case when f is primitive, i.e, when the greatest common divisor of

the coefficients of f is 1.

Definition 3.3.4.4. Let M = [mij] ∈ Mk(Z) and s, t ∈ {1, . . . , k}. Let Mst be the sub-

matrix of M formed by crossing out the s-th row and the t-th column. Then, the (s, t)

co-factor of M is defined to be (−1)s+tMst.

Definition 3.3.4.5. Let f be a positive definite ternary quadratic form and Af be defined

as in Theorem 3.3.4.2. Let Cij be the (i, j) co-factor of Af . We define the divisor of f to

be

m := mf := gcd(C11, C22, C33, 2C23, 2C13, 2C12).

Let α = C11/m, β = C22/m, γ = C33/m, ρ = 2C23/m, σ = 2C13/m and τ = 2C12/m. The

reciprocal of f is defined to be

φ(x, y, z) = αx2 + βy2 + γz2 + ρyz + σxz + τxy.

Since we are interested in ternary quadratic forms, the following special case of Theorem

3.3.4.2 is useful.

Proposition 3.3.4.6. ([Leh92], pp.401−402) Let f be a positive definite ternary quadratic

form and Af , N be as in Theorem 3.3.4.2. Let Cij be the (i, j) co-factor of Af . Then

N =
detAf

2m
,

where m is the divisor of f .

Definition 3.3.4.7. Let f be a positive definite ternary quadratic form with divisor m.

Let p run over all prime divisors of m. We define the symbol (f/p) as follows:

If p is odd, then (f/p) := (f11/p), where (f11/p) is the Legendre symbol.

If p = 2, then define (f/4) := (−1)(a−1)/2 if 16|m, and (f/8) := (−1)(a2−1)/8 if 32|m.

Let φ be the reciprocal of f with divisor µ. Let p run over all prime divisors of µ. The

symbol (φ/p) is defined as follows:

If p is odd, then (φ/p) := (γ/p), where (γ/p) is the Legendre symbol.

(φ/4) and (φ/8) are defined similarly as (f/4) and (f/8).

The set of symbols {(f/p) : p|m} ∪ {(φ/p) : p|µ} are called the collection of genus

symbols for f .

To find all forms having the same genus, we need the following reformulation of Defi-

nition 2.2.3.1.

Proposition 3.3.4.8. ([Leh92], p.410) Let f and g be primitive positive definite ternary

quadratic forms. Then f, g are in the same genus if and only if they have the same deter-

minant, level and the collection of genus symbols.
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Using the above proposition, we can now easily compute which ternary quadratic forms

are in the same genus of a given one.

Example 3.3.4.9. In this example, we will find all ternary quadratic forms in the same

genus as f = x2 + y2 + 10z2. Note that N(f) = D(f) = 40 and the divisor of f is m = 4.

The reciprocal for f is φ = 10x2 + 10y2 + z2 with divisor µ = 40. The genus symbol

for f is (φ/5) = (1/5) = 1. Looking at the Brand-Intrau-Schiemann table, we know that

there are 2 more primitive positive ternary quadratic forms of determinant 40, which are

g1 = x2 + 2y2 + 5z2 and g2 = 2x2 + 2y2 + 3z2 + 2yz. Using Proposition 3.3.4.6, we compute

the levels of these forms which are both 40. The reciprocal forms of g1, g2 are respectively

φ1 = 10x2 + 5y2 + 2z2 and φ2 = 5x2 + 6y2 + 4z2 + 4yz. Let m1,m2, µ1, µ2 be the divisors

of g1, g2, φ1, φ2 respectively. Then m1 = m2 = 4, µ1 = µ2 = 40. The genus symbol for

g1 is (φ1/5) = (2/5) = −1. The genus symbol for g2 is (φ2/5) = (4/5) = 1. This gives

g2 = 2x2 + 2y2 + 3z2 + 2xz as the only form in the same genus with f = x2 + y2 + 10z2.

Example 3.3.4.10. In this example, we will find all ternary quadratic forms in the same

genus as f = 2x2 + 2y2 + 3z2 + 2yz + 2xz + 2xy. Note that N(f) = D(f) = 28 and the

divisor of f is m = 4. The reciprocal of f is φ = 5x2 + 5y2 + 3z2 − 2yz − 2xz − 4xy

with divisor µ = 28. The genus symbol for f is (φ/7) = (3/7) = −1. Looking at the

Brand-Intrau-Schiemann table, we know that there are 2 more primitive positive ternary

quadratic form of determinant 28, which are g1 = x2+y2+7z2 and g2 = x2+2y2+4z2+2yz.

Using Proposition 3.3.4.6, we compute the levels of these forms which are both 28. The

reciprocal forms of g1, g2 are respectively φ1 = 7x2+7y2+2z2 and φ2 = 7x2+4y2+2z2+2yz.

Let m1,m2, µ1, µ2 be the divisors of g1, g2, φ1, φ2 respectively. Then m1 = m2 = 4, µ1 =

µ2 = 28. The genus symbol for g1 is (φ1/7) = (2/7) = 1. The genus symbol for g2 is

(φ2/7) = (2/7) = 1. This eliminates both g1, g2. So f = 2x2 + 2y2 + 3z2 + 2yz+ 2xz+ 2xy

is in a genus of one class.
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Chapter 4

Conclusion

Schiemann (1993) proved that if two positive definite ternary quadratic forms represent

the same numbers with the same multiplicities, then they are the same. In the first half

of this thesis, we consider the effect of having the same multiplicities of representation

in the statement. Kaplansky (1997) conjectured that if two forms have the same set of

representable numbers, then either both are regular or one is equivalent to 〈s, t, t, t, 0, 0〉,
the other to 〈s, t, 3t, 0, 0, 0〉 or one is equivalent to 〈t, t, t, s, s, s〉, the other to 〈t, 2t,−s, 2t+
s, 0, 2s, 0〉. We proved the conjecture holds when two forms are diagonal. Since there are

only 102 regular diagonal forms, the result further implies that Schiemann’s result does

not hold even for the simplest case, but a near miss. The method we used to prove the

results might by applicable if the two forms are increased by a term xy or xz, but will be

time and effort consuming. So a subtler method is desirable. In the second half of the

thesis, we study modular forms. This topic is mostly independent with the first part of the

thesis. The emphasis is on modular forms of half integral weight due to their connection

with ternary quadratic forms. The theory of modular forms has been used successfully to

determine the number of ways an integer can be represented as sums of n square, where

n ∈ Z+ \{3}. Here we demonstrate the cases n = 2 and n = 4. We also present a recursive

relation for sums of three squares by using Hecke operators, and an interesting relation

between sums of five squares and Dirichlet L-series. In the last subsection of this part, we

give an application of modular forms in finding all ternary quadratic forms being in the

same genus as a given one.
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