Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
PHOTOPERIODIC CONTROL OF DEVELOPMENT IN THE NEW ZEALAND LEAFROLLER MOTH
PLANOTORTRIX OCTO DUGDALE (LEPIDOPTERA, TORTRICIDAE)

Michael Charles Morris

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in zoology, University of Auckland.

July 1990.
ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. R.D. Lewis and my DSIR advisor, Dr. J.R. Clearwater for their support, encouragement, constructive criticism and intellectual stimulation.

To staff at DSIR Entomology Division, thank you for providing insects, diet, facilities and technical support. Especially thanks to the staff at Insect Rearing and to Mr. Peter Wright.

Thanks to staff and students of the Zoology Department, for creating a pleasant working environment and for valuable discussions and comments. Special thanks to Peter Collett and Trevor Belsen for equipment, Lindsay Plank for computing and statistical assistance and Dave Lambert for use of the Evolutionary Genetics Laboratory. Also thanks to Peter Ritchie, Brian Martin and Sean Connell for helping out with experiments.

To friends, family and the Evangelical Union Biosciences Cell Group, thank you for your prayers and support throughout the past three years. Thanks also to Adrienne Black, Carol Hobday, Dr. Milan Kalous, Tony Larson, Brian Martin, my father Dr. Tom Morris and Peter Ritchie for typing and proof reading. The financial assistance of my grandmother, the late Mrs. Lucy Braddon was also appreciated.

Lastly thanks to God for providing me with the inspiration and desire to enjoy the study of His creation.
ABSTRACT

The aim of this study is to test for photoperiodic control of larval and pupal development in the New Zealand moth *Planotortrix octo* Dugdale.

The photoperiodic response curves for larval and pupal development and especially for instar number at 17°C and 21°C indicate that a photoperiodic mechanism is involved. Superimposed on this response is the suggestion that daylength affects development rate directly, with larvae and pupae developing faster under longer photophases. This effect is especially strong for pupal development (Chapter 3).

The effects of thermophotoperiods (Chapter 4), night interruption and resonance experiments (Chapter 6) provide further evidence for photoperiodic involvement. The response to resonance experiments suggests the involvement of an hourglass rather than a circadian mechanism.

Larvae reared under short days accumulate significantly more lipids in the 5th and 6th instars than larvae reared under long days (Chapter 4). This finding, combined with the suppressed development rate and higher instar number under short days, suggests that a weak form of diapause may be present in this insect. This is significant in being the first recorded incidence of a photoperiodically induced diapause in a phyllophagous New Zealand insect for which a year round food supply is available (Chapter 1).

By transferring insects from long to short days I found that long days have more influence than short days on larval development (Chapter 7).

An attempt was made to measure juvenile hormone titres under long and short days using a *Galleria* bioassay. The test used was not sensitive enough however to measure any significant amounts of juvenile hormone (Chapter 8).

Simulations of the experimental results were performed using a damped circadian oscillator model (Chapter 9). This model was considered the most appropriate to use, based on the experimental results and on a review of the literature (Chapter 2). Simulations showed good similarities with experimental results in most cases, but could not account for resonance responses.
CONTENTS

LIST OF TABLES AND FIGURES vi

LIST OF ABBREVIATIONS viii

CHAPTER ONE
GENERAL INTRODUCTION 1

1.1. Photoperiodism in Living Systems 1
 1.1.1. Migration in Insects 1
 1.1.2. Diapause in Insects 2
 1.1.3. Photoperiodic Response Curves 3
 1.1.4. Effects of Temperature 3
 1.1.5. Photoperiod and Development Rate 4
1.2. Diapause in New Zealand Insects 5
 1.2.1. Introduction 5
 1.2.2. Evidence for Diapause in New Zealand Insects 6
 1.2.3. Conclusion 8
1.3. Hormonal Control of Diapause 9
 1.3.1. Juvenile Hormone and Larval Development 9
 1.3.2. Juvenile Hormone and Larval Diapause 10
1.4. The Study Animal 10
 1.4.1. Classification 10
 1.4.2. Life Cycle 11
 1.4.3. Host Plants and Pest Status 12

CHAPTER TWO
MECHANISMS FOR TIME MEASUREMENT IN INSECT PHOTOPERIODISM 13

2.1. Introduction 13
2.2. The Photoperiodic Counter 13
2.3. Circadian models for Photoperiodism 14
2.4. External Coincidence Models 16
2.5. Hourglass Models 18
2.6. Two Oscillator Models 19
2.7. The Dual System Model 20
2.8. Resonance Models 21
2.9. Damped Oscillator Models 22
2.10. Conclusion 25

CHAPTER THREE
EFFECTS OF PHOTOPERIOD AND CONSTANT TEMPERATURE ON DEVELOPMENT IN P. OCTO 29

3.1. Introduction 29
3.2. Materials and Methods 30
 3.2.1. Insect Rearing and Experimental Conditions 30
 3.2.2. Statistical Analyses 31
3.3. Results 31
 3.3.1. Larval Development 31
 3.3.2. Head Capsule Widths 31
 3.3.3. Pupal Weight 34
 3.3.4. Pupal Duration 34
CHAPTER EIGHT
INSENSITIVITY OF THE GALLERIA WAX TEST IN
MEASURING JUVENILE HORMONE TITRES IN P. OCTO

8.1. Introduction
8.2. Materials and Methods
 8.2.1. Preparation of JH Crude Extract
 8.2.2. The Galleria Bioassay
8.3. Results
8.4. Discussion

CHAPTER NINE
GENERAL DISCUSSION

9.1. Evidence for Diapause in Planotortrix octo
9.2. The Photoperiodic Mechanism in P. octo
 9.2.1. Introduction
 9.2.2. Description of the Model
 9.2.3. Simulations Using the Damped Oscillator Model
 9.2.4. Possible Identity of INDSUM and the Oscillator
9.3. Other Possible Photoperiodic Effects in P. octo

REFERENCES

APPENDIX ONE

APPENDIX TWO
LIST OF TABLES AND FIGURES

Chapter One

Fig. 1.1. Types of photoperiodic response curves common in insects. 3

Chapter Two

Fig. 2.1. The damped circadian oscillator showing the threshold concentration and the position of the photoinducible phase. 23
Fig. 2.2. Computer simulations of the behaviour of the damped oscillator under three thermoperiods. 24
Table 2.1. Summary of photoperiodism models. 27-28

Chapter Three

Table 3.1. Analysis of variance for larval duration. 32
Fig. 3.1. Percentage (+/- SEM) of larvae developing through more than 5 instars. 32
Fig. 3.2. Mean (+/- SEM) larval duration at two temperatures. 32
Fig. 3.3. Mean (+/- SEM) duration of instars 1-3. 32
Fig. 3.4. Mean (+/- SEM) duration of instars 4-6. 32
Table 3.2. Analysis of variance for head capsule widths of instars 1-6. 33
Table 3.3. Mean (SEM) head capsule widths in mm. 33
Fig. 3.5. Mean (+/- SEM) head capsule width for instars 2, 4 and 6. 33
Fig. 3.6. Distribution of 5th instar head capsule widths. 33
Fig. 3.7. Mean (+/- SEM) pupal weight. 34
Fig. 3.8. Mean (+/- SEM) pupal duration. 34
Table 3.4. Analysis of variance for pupal weight and pupal duration. 34

Chapter Four

Fig. 4.1. Larval development under different thermophotoperiodic regimes. 41
Fig. 4.2. Mean (+/- SEM) duration for each instar under thermophotoperiodic regimes. 41
Fig. 4.3. Larval development under different thermoperiodic regimes. 42
Table 4.1. Analysis of variance for thermoperiods and thermophotoperiods. 42
Fig. 4.4. Mean (+/- SEM) duration for each instar under thermoperiodic regimes. 43
Table 4.2. Analysis of variance for thermoperiods and constant temperatures. 43
Fig. 4.5. Pupal duration and pupal weight under thermoperiodic regimes. 44
Chapter Five

Table 5.1. Percentage lipids found in different life cycle stages of Planotortrix octo. 49

Chapter Six

Fig. 6.1. Night interruption experiments used for determining the position of \(\varphi_i \). 51
Fig. 6.2. The extended night experiments used for rearing \(P. octo \). 51
Fig. 6.3. Larval development under night interruption experiments. 52
Fig. 6.4. Mean (+/- SEM) duration of each instar under night interruption experiments. 52
Fig. 6.5. Mean (+/- SEM) pupal duration and pupal weight for night interruption experiments. 52
Fig. 6.6. Mean (+/- SEM) larval duration for extended night experiments. 53
Table 6.1. Analysis of variance for night interruption experiments. 53
Table 6.2. Analysis of variance for extended night experiments. 53

Chapter Seven

Fig. 7.1. Larval development under transfer experiments. 57
Fig. 7.2. Mean (+/- SEM) duration for the later instars under transfer experiments. 57
Fig. 7.3. Mean (+/- SEM) pupal weight. 57
Fig. 7.4. Mean (+/- SEM) head capsule widths of instars 3 and 4. 58
Table 7.1. Analysis of variance for transfer experiments. 58

Chapter Eight

Fig. 8.1. Percentage response (+/- SEM) for different concentrations of JH analogue, using Galleria bioassay. 61
Table 8.1. Results of Galleria bioassay for larvae and pupae at different developmental stages. 62

Chapter Nine

Fig. 9.1. Simulations of photoperiodic response curves for larval development using a damped oscillator model. 69
LIST OF ABBREVIATIONS

DD Continual darkness.
GC-MS Gas chromatography - mass spectroscopy.
GPD General purpose diet.
GU Galleria unit.
h Hours.
INDSUM Diapause induction titre.
JH Juvenile hormone.
Lx Duration of instar x.
LD_{x1:x2} A light-dark cycle where \(x_1 \) and \(x_2 \) are the time of the light and dark period respectively in hours.
LDLD_{x1:x2:x3:x4} As above only the light periods are \(x_1 \) and \(x_3 \) and the dark periods are \(x_2 \) and \(x_4 \).
LL Continual light.
PPRC Photoperiodic response curve.
PTTH Prothoracicotropic hormone.
RIA Radioimmunoassay.
T Period of the light/dark cycle.
\(\tau \) Free running period of a biological rhythm.
\(\phi_i \) Photoinducible phase.
Wx Head capsule width of instar x.
ZT Zeitgeber time.