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ABSTRACT

The aim of this study is to test for photoperiodic control of larval and pupal
development in the New zealandmoth planotortri^x, octo Dugdale.

The photoperiodic response curves for lan'al and pupal development and
especially for instar number at, ]-ToC and 21oC indicate that a photoperiodic
mechanism is irrvolved. Superimposed on this response is the suggestion that
daylength affects development rate directly, with lanrae and pupae developing
faster under longer photophases. Tlris effect is especially strong for pupal
development (Chapter 3).

The effects of thermophotoperiods (Chapter 4), night internrption and resonance
experiments (Chapter G) provide further evidence for photoperiodic
involvement. The response to resonance experiments suggests the involvement
of an hourglass rather than a circadian mechanism.

Larvae reared under short days accumulate significantly more lipids in the Eth
and 6th instars than larvae reared under long days (Chapter 4). This finding,
combined with the suppressed development rate and higher instar number
under short days, suggests that a weak fonn of diapause may be present in this
insect. This is significant in being the first recorded incidence of a
photoperiodically induced diapause in a phyllophagous New Zealand insect for
which a year round food supply is available (Chapter 1).

By transferring insects from long to short days I found that long days have more
influence than short days on larval development (chapter z).

An attempt was made to measure juvenile hormone titres under long and short
days using a Galleria bioassay. The test used was not sensitive enough however
to measure any significant amounts ofjuvenile hormone (Chapter g).

Simulations of the experimental results were performed. using a damped
circadian oscillator model (Chapter g). This model was considered the most
appropriate to use, based on the experimental results and on a review of the
literature (Chapter 2). Simulations showed good similarities with experimental
results in most cases, but could not account for resonance responses.
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