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In many cell types, oscillations in the concentration of free intracellular calcium ions are used to
control a variety of cellular functions. It has been suggested [J. Sneyd er al., “A method for
determining the dependence of calcium oscillations on inositol trisphosphate oscillations,” Proc.
Natl. Acad. Sci. U.S.A. 103, 1675-1680 (2006)] that the mechanisms underlying the generation and
control of such oscillations can be determined by means of a simple experiment, whereby a single
exogenous pulse of inositol trisphosphate (IP;) is applied to the cell. However, more detailed
mathematical investigations [M. Domijan er al., “Dynamical probing of the mechanisms underlying
calcium oscillations,” J. Nonlinear Sci. 16, 483-506 (2006)] have shown that this is not necessarily
always true, and that the experimental data are more difficult to interpret than first thought. Here,
we use geometric singular perturbation techniques to study the dynamics of models that make
different assumptions about the mechanisms underlying the calcium oscillations. In particular, we
show how recently developed canard theory for singularly perturbed systems with three or more
slow variables [M. Wechselberger, “A propos de canards (Apropos canards),” Preprint, 2010] ap-
plies to these calcium models and how the presence of a curve of folded singularities and corre-
sponding canards can result in anomalous delays in the response of these models to a pulse of

IP;. © 2010 American Institute of Physics. [d0i:10.1063/1.3523264]

Oscillations in the concentration of cytoplasmic free cal-
cium are a signaling mechanism in practically every cell
type and control a wide variety of cellular functions, from
secretion and movement to cell differentiation and gene
expression.3 It is thus important to understand the
mechanisms underlying the generation and control of
such oscillations. Previous work has shown that calcium
oscillations often arise as a result of one of the two prin-
cipal mechanisms: either class I mechanisms, where os-
cillations occur as a result of calcium feedback on the
inositol trisphosphate (IP3) receptor, or class II mecha-
nisms, where calcium affects the rate of production or
degradation of IP; , leading to feedback on the release of
calcium. It has been claimed® that a simple experiment
(a single exogenous pulse of IP;) is able to distinguish
between whether or not calcium oscillations in a cell are a
result principally of a class I or a class II mechanism.
However, more detailed mathematical studies of these
models’ have shown that the situation is more complex
than appeared at first, and there are situations in which a
class I model can look remarkably like a class II model,
making the interpretation of the experimental data am-
biguous and difficult. Here, we perform a detailed math-
ematical study of class I and class II models, investigate
how they respond to a pulse of IP; , and provide a de-
tailed explanation of why class I and class II models can-
not necessarily
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be easily distinguished by the IP; pulse experiment. It
turns out that this is related to the phenomenon of ca-
nards in systems with three slow variables, the theory of
which has been developed recently.25

I. INTRODUCTION

Calcium is one of the main secondary signaling messen-
gers in living cells.? Changes in calcium concentration usu-
ally take the form of oscillations, in which the free cytoplas-
mic calcium concentration alternately rises and falls. In most
cells, it is believed that the signal is encoded in the frequency
of the oscillation, although in some cells the amplitude of the
oscillations is known to be important as well.”?

There is general agreement over the first steps of the
process that results in calcium oscillations: " binding of an
agonist to a cell-surface receptor initiates a series of reac-
tions that ends in the formation of the intracellular second
messenger, inositol (1,4,5)-trisphosphate (IP;), which opens
IP; receptors (which are also calcium channels) on the mem-
brane of the endoplasmic reticulum (ER), leading to the re-
lease of calcium from that internal store. Oscillations in the
cytoplasmic calcium concentration occur as calcium is alter-
nately released from, and pumped into, the ER.

The exact mechanisms that cause such cyclical release
and re-uptake remain controversial. There are two principal
hypotheses: class I models claim that the oscillations occur
as a result of calcium feedback on the IP; receptor (IPR).*?
Since calcium can activate the IPR quickly, release of

© 2010 American Institute of Physics
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FIG. 1. (Color online) Responses of the Atri model (1) with €e=0.01 to 1P
pulses. The IP; pulse is applied at the time indicated by the arrow, with the
explicit form of the pulse given by Eq. (2), assuming that any transients
have died out before the time trace is started. Each panel shows the time
series of the concentrations C of calcium (red curve) and P of IP; (black
curve). Panel (a) is for class 1 with a=0, 7=0.48 (7=2) for #=0.40
(v=0.96) and other parameter values as in Table L. Panel (b) is also for class
I, as in panel (a) except with £=0.233 (v=0.56). Panel (c) is for class IT with
a=1, 7=0 (7=0) for ?=0.417 (v=1.00).

calcium from the ER is a positive feedback process. How-
ever, on a slower time scale, calcium also inactivates the
IPR, thus giving a slower negative feedback. It is well
known from many models"? that fast positive feedback fol-
lowed by slower negative feedback can generate oscillations.
However, the biochemistry of calcium oscillations is far
more complex than merely feedback on the IPR. Indeed,
calcium itself affects the rates of production and degradation
of IP;, leading again to positive and negative feedback on the
release of calcium. This second feedback loop is incorpo-
rated in class II models and is the principal mechanism un-
derlying oscillations in some cell types.22

However, in real cells, both class I and class II mecha-
nisms will usually occur, in which case one has to use a
hybrid model that includes both mechanisms. One of the im-
portant current questions in the study of calcium dynamics is
whether, in each cell type, both mechanisms are equally im-
portant, or whether one mechanism, class I or class II, domi-
nates and, hence, drives the oscillations.

One possible way to distinguish between class 1 and
class II mechanisms was introduced in Ref. 22. There, it was
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shown that in a variety of class I models, an exogenous pulse
of IP; causes a temporary increase in oscillation frequency,
while in class II models, an identical pulse of IP; causes a
phase lag, with the next peak occurring after a delay. These
types of responses are illustrated in Figs. 1(a) and 1(c), re-
spectively, with time series of the concentrations of calcium
and IP; generated from a representative intracellular calcium
model known as the Atri model,"’ system (1) as defined
below in Sec. T A.

The model predictions were tested in two cell types,
namely, in mouse pancreatic acinar cells and mouse airway
smooth muscle cells.”> The authors concluded that calcium
oscillations generated by cholecystokinin in pancreatic aci-
nar cells are the result of a class II mechanism, while calcium
oscillations generated by methacholine in mouse airway
smooth muscle are the result of a class I mechanism.

Unfortunately, the story is not as simple as presented in
Ref. 22. As reported in Ref. 7, under certain conditions, a
class I model can respond to an IP; pulse by exhibiting a
small number of faster oscillations, followed by a long delay,
before recovering to the initial oscillatory pattern. This is a
highly nonintuitive result: in class I models the oscillation
frequency is an increasing function of the IP; concentration
(assuming that transients have died away), and thus a tem-
porary increase in the IP; concentration might be expected to
lead to a temporary increase in oscillation frequency, not to a
long delay. Although this is usually what happens, sometimes
the pulse in IP; causes the response described above, i.e., a
small number of faster oscillations, followed by a long delay
before oscillations appear again. A specific example of such
a response can be seen in Fig. 1(b). We term this response an
anomalous delay. The occurrence of anomalous delays under
certain circumstances creates problems for the interpretation
of the experimental results. If a class I model can sometimes
respond like a class I model, then how can the two model
types be distinguished using pulses of IP5?

A. Multiple time scales in a representative model

A first step toward a better understanding of the model
dynamics is presented in our recent work."" Based on geo-
metric singular perturbation theory (GSPT),>'*'%326 e
showed in that paper that the intrinsic dynamics of models of
intracellular calcium dynamics is mainly controlled by dis-
tinct time scales describing the (slow or fast) evolution of the
model variables relative to each other. This inherent
multiple-time-scale structure provides us with a simple nec-
essary condition for class I and class II dynamics by calcu-
lating a dimensionless quantity e<< 1 representing the ratio of
the different time scales involved.

This is most easily illustrated using a representative
model, the Atri model,l’7 which we will use as an example
throughout this paper, and which has the following dimen-
sionless form:"'
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The four variables are the nondimensionalized calcium
concentration C in the cytoplasm (reference scale is
0.=1.0 uM), the nondimensionalized total calcium concen-
tration C, in the cell (again, reference scale is Q,=1.0 uM),
the nondimensionalized IP; concentration P in the cytoplasm
(reference scale is Q,=10.0 uM), and the fraction r of IPRs
that have not been inactivated by calcium. The values of the
parameters used in Eq. (1) are the same as those in Ref. 7
and given in Table I; we work here with the dimensionless
parameters 7=716V,/Q., p=v0Q./(Q,5V,), ,é:,BQC/(évp),
and e=0<1, which is the singular perturbation parameter.
The parameter ¥ is a scaled version of the maximal rate v of
IP; formation. Experimentally, v is relatively easily manipu-
lated as it is directly related to the concentration of agonist
applied to the cell. We use ¥ as the primary bifurcation pa-
rameter, but also report our results in terms of v for ease of
comparison with earlier work on the Atri model.”

With the choice of model parameter values as given in
Table I, the dynamics of C is significantly faster than the
dynamics of C,, as is consistent with previous theoretical and

experimental works.>' As argued in Ref. 11, the parameters B
and v are O(1) in the parameter domain of interest, so P is a
slow variable compared with C. The dynamics of r, the in-
activation of the IP; receptor, is of order O(1/7). If
7=0(1), then r is a slow variable. On the other hand, if

Chaos 20, 045104 (2010)

TABLE I. Values of parameters for the Atri model (1), which are the same
as the values used in Ref. 7. All substrate concentrations are concentrations
per liter cytosol, i.e., uM= uM/(liter cytosol).

Parameter Value
b 0.111
S 0.01
b% 5.405
Mo 0.567
M 0.433
Vi 0.889
ks 0.7 uM
ky 1.1 uM
k, 04 uM
k, 0.06 uM
k 1.1 uM
k, 4.0 uM
Kiux 6.0 s7!
v, 240 uMs™!
v, 20.0 uM s~!
a 1.0 uM 57!
a 0.2 s7!
B 0.8 s7!

7=0(e) or less, then r is a fast variable. These two cases
have an interpretation in terms of the class I and class II
models as discussed before.

Class I models require a slow negative feedback on the
IP; receptor, which is modeled by r. Therefore, 7=0(1) is a
necessary condition and we define a class I model as Eq. (1)
with a=0, i.e., no calcium feedback on the IP; production,
and 7=0(1). This leads to a model with one fast (C) and
three slow variables (C,,r, P). Note that the dynamics of the
third slow variable P is decoupled from the others. On the
other hand, class II models abolish the slow negative feed-
back on the IP; receptor via a fast (instantaneous) response
to calcium concentration in the r-dynamics but include cal-
cium feedback on the IP; production. Hence, we define a
class IT model as Eq. (1) with «#0 and 0<7<1, which
leads to a model with two fast (C,r) and two slow variables
(C,,P). The hybrid Atri model is then defined as Eq. (1) with
a#0 and 7=0(1) or less, and may have either two or three
slow variables, depending on the order of 7.

In all these cases (class I, class II, or hybrid), the Atri
model (1) has at least two slow variables, which makes our
geometric singular perturbation analysis presented in Ref. 11
significantly different from the presentation in Ref. 7 where
they only identified one slow variable (C,). In particular,
we were able to explain mixed-mode oscillations (MMOs)4
observed in class I and class II via canard theory,s’ﬁ’26 and we
also identified the necessary time-scale criterion for the
r-dynamics to distinguish class I and class II models.

B. The focus of this work

In this paper, we go a step further with our analysis and
consider the response to a pulse of IP5 in class I, class II, and
hybrid forms of the Atri model. We use GSPT>!1012:23:25.26
investigate the mechanisms underlying the different pulse re-
sponses and, in particular, to explain the anomalous delays

Downloaded 31 May 2012 to 130.216.113.29. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



045104-4 Harvey et al.

seen in, for example, Fig. 1(b). In our numerical simulations,
we follow Ref. 7 and model the pulsing process using the
time-dependent function,

S(t)) = MH(t, — t))H(tg+ A1), ©)

which is added to the right-hand side of the equation for P in

Eq. (1). Here, M denotes the pulse magnitude and H is the
Heaviside function,

0 if x<O0
H(x) = .
1 if x=0.

The pulse is applied at time 7, and has duration A; we used

M=8.333, to=12, and A=0.72 throughout, which are the val-
ues used in Ref. 7, after nondimensionalization.

We want to point out that the results obtained in Ref. 11
for the class I model are not sufficient to predict the pulsed
dynamics for the class I model or the dynamics of the hybrid
model in the case 7=0(1); in these two cases, a model re-
duction to two slow variables is not possible and we must
study the full four-dimensional system (1) with three
slow variables to understand rigorously the observed pulsing
behavior.

Section II presents the analysis of the class I Atri model.
Although this system has three slow variables, we show that
it has geometric structures similar to those found in other
biophysical models with two slow variables.”'>1%2% we
identify specific geometric objects (so-called folded invari-
ant manifolds and canards,23’25’26 as defined in Sec. II A) that
are responsible for the anomalous delays observed in certain
parameter regimes of the pulsed class I Atri model and ex-
plain why these mechanisms for delay could not occur if
there were only two slow variables in the model. In particu-
lar, we identify two major types of anomalous delays caused
by two different mechanisms. These results provide the first
application of recent work of Wechselberger,25 which ex-
tends canard theory to systems with three (or more) slow
variables.

The analysis for the class I model is done in Sec. III. We
show in Sec. IV that the hybrid model can exhibit dynamics
similar to either the class I or class II models, and that the
presence or absence of anomalous delays in this case can be
understood just as in the class I and class II cases. The rela-
tion between earlier work on pulse responses reported in Ref.
7 and the results presented here is discussed in detail in Sec.
V, where we also summarize our results.

Il. DYNAMICS OF THE CLASS | ATRI MODEL

The class I Atri model, for which =0 and 7=0(1) in
Eq. (1), has one fast variable, namely, C, and three slow

variables, namely, C,, r, and P. Since a=0, the P—equation
decouples from the other variables and P evolves monotoni-

cally to its equilibrium value P=7/ ,@ If one is primarily

Chaos 20, 045104 (2010)

interested in the long-term dynamics of the class I Atri
model, then it suffices to study the three-dimensional slice
{P=9/p} of the (C,C,,r,P)-space because all orbits will
eventually evolve to this submanifold of phase space. This
approach was taken in Ref. 11 to study the unpulsed dynam-
ics, and we give a brief summary in Sec. II A including basic
concepts from GSPT.> 326

In order to understand the transient response to pulsing
of IP5, analysis of the full four-dimensional system is neces-
sary. We present these new results about the pulsed class I
Atri model in Sec. II B, where we also describe two mecha-
nisms that explain the anomalous delays sometimes seen in
this case.

We use 7=0.48 (7=2.0) throughout for the numerical
illustrations of the class I Atri model. Qualitatively similar
results are obtained for other choices of 7 that are O(1).

A. Class | dynamics in the absence of pulsing

If we restrict our attention to the slice {P=7/ ,é}, then the
class I Atri model becomes a system with one fast and two
slow variables. The dynamics of such a three-dimensional
system can be analyzed using the established methods from
GSPT.>%2¢ However, we prefer to summarize the results in
Ref. 11 about the unpulsed class I Atri model in the context
of the full four-dimensional phase space because this facili-
tates the extension to the pulsed case.

The dynamics of singularly perturbed systems such as
the Atri model (1) frequently consists of a mix of slow and
fast motions, with the prototypical example being a relax-
ation oscillation (RO), i.e., a periodic motion consisting of
long periods of small changes interspersed with short periods
of large changes in the (fast) state variables. As €—0, the
corresponding trajectory converges during slow motions to
solutions of the singular limit system of Eq. (1),

p
0=f(C,C,r,P,0)
dc,
_— = C
di, 81(0)
{ dr (3)
JR— C,
di, 82(C,r)
dP
_=83(C,P),
kdt1

which is a differential algebraic system called the reduced
problem. Here, the algebraic constraint f(C,C,,r,P,0)=0
defines a three-dimensional (hyper)surface S,, which is
the phase space for the three slow variables (C,,r,P).
As described in Ref. 11, S, is given (in the physiological
relevant domain) as a graph over (C,r,P)-space, i.e.,
So={(C,C,,r,P) e Hi:C,:C,(C,r,P)}, where
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FIG. 2. (Color) Example of an attracting RO (black curve) for the class I Atri model with €=0.01 and #=0.317 (v=0.76). The slow and fast segments of the
RO can be explained using the critical manifold, as explained in the text. Panel (a) shows the intersection of the critical manifold (pink surface) with the slice

in (C,r,C,)-coordinates, where P=0/ ﬁ=0.95 is fixed at its equilibrium value. The blue curves are the intersections of the fold surfaces with the slice and the
blue dot marks the folded-focus singularity that occurs for this value of P. Panel (b) is an enlargement showing the passage of the RO past the folded-focus
singularity projected onto the (r,C)-plane. Panel (c) shows the projection onto (C,r, P)-coordinates with an enlargement near the folded focus shown in panel
(d). The blue surfaces are the fold surfaces F~; on these surfaces the C,-coordinate appears as a color gradient (light to dark as C, increases). The green and
dark-blue curve is the locus of folded singularities; blue indicates a folded focus, green indicates a folded node, consistent with the color coding of singularities
in Fig. 3. Panel (e) with corresponding enlargement in panel (f) shows the time series for C corresponding to the RO.

_C
ke
C+a
C(C,r,P)=(1+1/vy)C+ § . (4)
! kﬂunyc P C
v |t o I b+V, P
¢ P+ C+—
0, 0.

This graph representation of the critical manifold can par-  F*={(C,C,,r,P) € Sy:f(C,C,,r,P)=0}, where fo=df/dC,
tially be seen in Fig. 2(a), which shows S, for #=0.317 in the full four-dimensional phase space, as shown in Fig.
(v=0.76) restricted to the slice {P=9/B} in (C,r,C,)-space.  2(c) in projection onto (C,r, P)-space. The color gradient on
The critical manifold is cubic shaped and this is also the case  these surfaces indicates the value of C,, ranging from 2.1
for other values of P. Hence, there are two fold surfaces, (light) to 3.2 (dark). The fold surfaces F* separate S, into

Downloaded 31 May 2012 to 130.216.113.29. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



045104-6 Harvey et al.
three three-dimensional sheets, S; and S,; the outer two
sheets, Sai, are attracting and the inner sheet, S,, is repelling.
Thus, Sy=S,UF US,UF*US;. Note that the objects in
Figs. 2(a) and 2(c) are viewed from below, that is, the lower
fold curve is closer to the viewer than the upper fold curve.
During fast motions, the trajectory of a RO converges to
solutions of the layer problem, which is obtained by first
switching to the fast time scale #,=7,/€ in Eq. (1) and then
taking the singular limit e— 0, which gives

dc

— =f(C,C,r,P,0
dt ( T )
&)
dc, _dr _dP_
dt, dt, dt,

Hence, the layer problem is a simple one-dimensional system
for the evolution of the fast variable C, while the slow vari-
ables (C,,r,P) are constant. Note that the three-dimensional
manifold S, the phase space of the reduced problem (3), is a
manifold of equilibria for the layer problem (5) and defines
the interface between the two subsystems. The motion to-
ward S or away from S, in the layer problem is along one-
dimensional fast fibers. In the singular limit, switching be-
tween slow and fast motion of a RO happens at the fold
surfaces F™*.

Figure 2 clearly shows the power of GSPT, namely, the
ability to concatenate solution segments of the lower-
dimensional limiting problems, the one-dimensional layer (5)
and the three-dimensional reduced problem (3), to obtain an
approximate solution of the full four-dimensional model (1).
Starting from F~ at relatively low C-values, near the blue dot
in Fig. 2(a), the RO makes an almost vertical jump away
from S, with a corresponding sharp peak in the time series
in Fig. 2(e). As soon as the orbit reaches the attracting sheet
S? of S, the motion becomes slow again and follows S, back
to the other fold surface F*, after which another near-vertical
jump occurs to the other attracting sheet S, of S,. In Fig.
2(c), we cannot see the attracting sheets S;j, but we can
clearly distinguish the near-vertical jumps in the fast
C-direction. Observe how the orbit passes the upper fold
surface F* in Fig. 2(c) on its way to S'. This is not a true
intersection but appears to be so only due to the projection of
four-dimensional phase space. A similar observation can be
made at the lower fold surface F~ in Fig. 2(c).

In the Atri model, the layer problem is particularly
simple since it is only one dimensional, and so we focus
solely on analyzing the three-dimensional reduced problem
(3). By definition, the reduced vector field has to be in the
tangent bundle of the critical manifold S,. As described in
Eq. (4), S, is given as a graph over (C,r, P)-space, i.e., C,
=C,(C,r,P). This graph representation of S, provides the
opportunity to study the reduced flow (3) in the single
(C,r,P)-chart. Taking the total time derivative of
f(C,C,,r,P,0)=0 defines a vector field for C that is con-
strained to the tangent bundle of S, and leads to the reduced
problem projected onto the base (C,r,P) given by

Chaos 20, 045104 (2010)

.
dc
_de_sztg1+frg2+ng3
1
dr
{ —=- 6
d, 82 (6)
dap _
Ldtl_ 83

where (C,C,,r,P) € Sy and fc=3f/dC, fc=df/IC,, etc. This
system is singular along the fold surfaces F*, where f-=0.
To understand the reduced flow completely, we rescale time
by the factor —f, which gives the desingularized problem

C=fc,gl + 182+ /p83
r=—fcg (7
P:—fcgss

where the overdot denotes, for convenience, differentiation
with respect to the new rescaled time. The reduced flow is
equivalent to the desingularized flow up to a time parametri-
zation change on the repelling sheet S, where f->0, i.e., one
only has to reverse the direction of the desingularized flow
on S, to obtain the corresponding reduced flow. We distin-
guish two types of singularities in the desingularized
problem (7):

* Ordinary singularities are defined by g,=g,=g3=0 away
from the fold surface, i.e., fc#0.

e Folded singularities are defined by f-=0 and fcgi+/:&
+fpg3=0, and represent a one-dimensional submanifold of
singularities on the fold surface f-=0.

Ordinary singularities correspond generically to isolated
equilibrium points of the reduced problem (6) [respectively
Eq. (3)]. Here, we have a single equilibrium that is a stable
node on the lower sheet S, for 0<v<0.144 (0<vw
<0.345), a saddle on the middle sheet S, for 0.144<p
<3.34 (0.345<v<8.02), and again a stable node but on the
upper sheet S? for ©>3.34 (v>8.02). GSPT predicts that for
sufficiently small €>0, these hyperbolic equilibria (away
from the fold surfaces F=) persist as true equilibria of the
full system (1). In the case of a stable node, this equilibrium
corresponds to the only stable attractor of the system.

In the case of the (unstable) saddle equilibria, there exist
stable attractors other than equilibria and the folded singu-
larities become important objects in determining these attrac-
tors. It turns out that at the values of ¥ of interest, only one of
the two fold surfaces of S, contains such folded singularities,
namely, the fold surface F~ with the lowest C-values, as
indicated in Fig. 2(c). These folded singularities all have one
zero eigenvalue since there is a curve of folded singularities.
The corresponding eigenvector of each of these folded sin-
gularities is tangent to the curve of folded singularities. The
other two eigenvalues vary as we move along the curve of
folded singularities. Following the general canard theory de-
veloped in Ref. 25 and by analogy with canard theory for the
case of two slow variables,>*?® we classify these singulari-
ties according to the signs of their nonzero eigenvalues. A
folded singularity with two negative real eigenvalues (and
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FIG. 3. (Color) Classification of folded singularities on the fold surface F~
of S in the class I Atri model for a range of values of 7. For each 7, there
exists a curve of folded singularities parametrized by P. The type of the
folded singularities are indicated by the colors red, green, and blue, for
folded saddle, folded node, and folded focus, respectively. The gray shaded
region consists only of folded singularities with »> 1, which is unphysical.

The equilibrium value of P=7v/ ,é (black dashed line) indicates at which
folded singularity the attractor passes the fold surface. The white dashed
lines indicate the values of # used for Figs. 6, 7, and 9 (from right to left,
respectively).

one zero eigenvalue) is called a folded node, a singularity
with two real eigenvalues of opposite sign is called a folded
saddle, and a singularity with a complex conjugate pair of
eigenvalues with nonzero real part is called a folded focus.
Figure 3 shows the types of folded singularities seen in the
class I Atri model for a range of ?-values by assigning a
color to the P-coordinate associated with each singularity;
we color folded saddles red, folded nodes green, and folded
foci blue.

Note that folded singularities do not correspond to the
equilibria of the reduced flow (6). In the case of a folded
saddle or folded node, the role of the folded singularity is to
provide a mechanism by which orbits of the reduced flow on
the outer sheet S, may reach the folded singularity in finite
time and then cross to the repelling inner sheet S,. In the case
of a folded node, there is an associated sectorial region of
phase space, known as the funnel, in which trajectories are
attracted to the folded node and can pass from S, to S,. For
€#0, this leads to local oscillatory behavior, as shown in
Figs. 4(b), 4(d), and 4(f), due to canards of folded node type
(see, e.g., Refs. 23, 25, and 26 for theoretical background).

The dynamics of the full (i.e., nonsingular) unpulsed
class I system can now be understood in terms of these geo-
metric structures. Since we are not interested in the transient
behavior in the unpulsed case, the relevant folded singularity
is that which occurs at the equilibrium value of P for the ¥
value of interest; this ?-dependent line of singularities is in-
dicated by the dashed black line in Fig. 3. We find that the

singularity at P=9/ is a folded saddle for # e [0.0,0.144]
(r€[0.0,0.345]), a folded node for #e[0.144,0.259]
(re[0.345,0.623]), and a folded focus for »>0.259
(v>0.623).

GSPT predicts that for sufficiently small €>0, the at-
tractor in the region with ©<0.144 (v<0.345) and
p>3.34 (v>8.02) is the stable node equilibrium (as ex-
plained above). In the case 3.34>9>0.259, we have a
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saddle on the repelling inner sheet S, and a folded focus on
F~. GSPT predicts in this case a stable RO as the attractor.

The equilibrium value P=7/ ,é for the case shown in Fig. 2
lies in the blue region of Fig. 3 and the enlargements in Figs.
2(b), 2(d), and 2(f) show that the periodic orbit is, indeed, a
RO.

In the case 0.114<1<<0.259, there is a saddle on the
repelling inner sheet S, and a folded node on F~. GSPT pre-
dicts here either MMO or RO in the full system, depending
on the global return mechanism. > Specifically, we expect
that the attractor will be a MMO periodic orbit, provided the
passage near the folded node leads to a global return into the
funnel region; this is precisely what happens for the case
shown in Fig. 4. Detailed calculations shown in Fig. 7 of
Ref. 11 provide e-dependent boundaries of the MMO regime.
In the case €=0.01, this is given by 0.158<<$<<0.259
(0.38<v<<0.63). For larger values of o, the return is outside
the funnel and the attractor will be a periodic orbit of ordi-
nary RO type.

The type of attractor that occurs in the class I Atri model
without pulsing is qualitatively the same for any sufficiently
small value of e, i.e., the attractor is either a stable node, a
MMO or a RO, with the boundaries of the intervals of ¥ on
which each type of attractor occurs being only slightly
changed by the size of e. For example, the shift of the pa-
rameter value on the lower boundary of the MMO regime
from its singular limit value is O(e) and is explained by
singular Hopf bifurcation theory.16 On the other hand, the
upper boundary of the MMO regime shifts from its singular
limit value by O(€"?), as expected from canard theory.” A
more quantitative underpinning, such as higher-order
asymptotic estimates of these boundary shifts, is outside the
scope of this work and will be reported elsewhere.

B. Class | dynamics with pulsing

The insight gained from the analysis of the unpulsed
class I model yields an explanation for the different types of
transient responses seen in the pulsed class I Atri model.
Note that the long-term behavior of the pulsed model is just
as for the unpulsed model, i.e., equilibria, MMOs, or ROs
may be observed, depending on the sizes of ¥ and e.

The effect of a pulse of IP; is to send an orbit rapidly to
a high value of P with the precise location after the pulse
depending on the pulse size and on the position of the orbit
immediately before the pulse. Since the evolution of P is
independent of the other variables in the class I model, the
P-component of the orbit will then relax to its equilibrium
value, but during this relaxation the other variables will
evolve in a more complicated way. The left column of Fig. 5
shows three different possibilities, corresponding to three
representative values of #; the corresponding panels in the
right column are enlargements of the subthreshold phenom-
ena occurring after the pulse is applied. The pulse response
in Fig. 5(a), for =0.4 (»=0.96), exhibits a small transient
increase in the frequency of oscillation, followed by smooth
re-establishment of the attracting RO. The transient phenom-
ena are all of RO type [see Fig. 5(b)]. We observe a small
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FIG. 4. (Color) Example of an attracting MMO (black curve) for the class I Atri model with €=0.01 and ©=0.167 (v=0.40). Panel (a) shows the intersection

of the critical manifold (pink surface) with the slice in (C,r,C,)-coordinates, where P=ﬁ/,@=0.50 is fixed at its equilibrium value; the light pink section
indicates the funnel region of the folded node (green dot) that occurs for this value of P. The blue curves are the intersections of the fold surfaces with the
slice. Panel (b) is an enlargement showing the passage of the MMO past the folded-node singularity projected onto the (r,C)-plane. Panel (c) shows the
projection onto (P,r,C)-coordinates with an enlargement near the folded node shown in panel (d). The blue surfaces are the fold surfaces F~; on these
surfaces the C,-coordinate appears as a color gradient (light to dark as C, increases). The red, green, and dark-blue curve is the locus of folded singularities;
red indicates a folded saddle, blue indicates a folded focus, and green indicates a folded node, consistent with the color coding of singularities in Fig. 3. Panel
(e) with corresponding enlargement in panel (f) shows the time series for C corresponding to the MMO.

decrease in oscillation amplitude immediately after the pulse
is applied, caused by the fact that the transient orbit passes
through a region of phase space in which the fold surfaces
are closer together [see Fig. 6(a)]; this effect would not be
detectable experimentally. Figure 5(c) shows the response for
7=0.317 (v=0.76). Here, we observe MMO-like behavior
that causes relatively long delays between peaks during the
transient part [see Fig. 5(d)]. Eventually, however, the orbit
settles back to the expected RO for this ?-value. The re-
sponse in Fig. 5(e) for =0.233 (v=0.56) relaxes back to an
MMO, as expected, but we observe a very long delay before
the oscillation restarts [see Fig. 5(f)].

The full three-dimensional critical manifold S, plays an
important role in our explanation of the pulse response of the
class I Atri model, as do the two-dimensional fold surfaces

and the curves of folded singularities. We already introduced
these structures in the previous section and refer, in particu-
lar, to Fig. 3, where the three cases corresponding to Fig. 5
are indicated by white dashed vertical lines at the respective
p-values. Since P is no longer fixed for the pulsed class I Atri
model, we always show in the figures that follow two pro-
jections, namely, one onto (C,r,C,)-space and one onto
(C,P,r)-space. In each projection we also plot the two fold
surfaces F* with the curve of folded singularities of S,. The
fourth missing coordinate in each projection is indicated by a
color gradient on the fold surfaces. We use light (low) to
dark (high) for C,, as before, and pink (high) to cyan (low)
for P.

After the pulse, the orbit will typically not be near S and
the first behavior observed is, therefore, typically a fast tran-
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FIG. 5. (Color online) Time series of the C-coordinate for the pulsed class I Atri model with e=0.01. Panels (a), (c), and (e) show the responses for

7=0.400 (v=0.96),

7=0.317 (v=0.76), and »=0.233 (v=0.56), respectively; these values correspond to the white dashed vertical lines in Fig. 3. Enlargements

of the boxed regions in panels (a), (c), and (e) are given in panels (b), (d), and (f), respectively. These enlargements show the transient behavior after the pulse

is applied at #;=12 and P has decayed to 5. Compare also Figs. 6, 7, and 9.

sition to an attracting sheet of Sy, after which the evolution is
(approximately) dictated by the slow flow on S, until the
orbit meets a fold surface. This typically occurs at a regular
jump point so that the orbit continues with a fast jump to the
other attracting sheet of Sj. As a consequence, we observe a
large RO in the transient dynamics.

We observe a series of such transient oscillations in the
time series in Figs. 5(a) and 5(b), where »=0.4 (v=0.96).
The corresponding phase portrait is shown in Fig. 6; panel
(a) shows the projection onto (C,r,C,)-space and panel (b)
onto (P,r,C)-space. Note that the curve of folded singulari-

ties consists only of folded foci (blue) for this p-value (see
Fig. 3). Fold points in a neighborhood of a folded focus are
regular jump points. Hence, each time the fold surface is

reached near such a folded focus a regular fast jump hap-
pens. By identifying the near-vertical transitions from the
fold surface F~ in Fig. 6, we can identify the sequence of
jump points on this fold surface. Both for the transient and
the long-term dynamics, we see that the orbit interacts with
the fold surface F~ at regular jump points and the oscillations
are all of RO type.

FIG. 6. (Color) RO-like transient behavior for the pulsed class I Atri model with #=0.4 (v=0.96) and €=0.01. Panels (a) and (b) show projections onto
(C,,r,C)-space and (P, r,C)-space, respectively. The two fold surfaces are shown, with a color gradient indicating the value of the missing fourth coordinate;
P ranges from 5 (pink) to 0 (cyan) in panel (a) and C, ranges from 2.1 (light) to 3.2 (dark) in panel (b). The curves of folded singularities are also shown, with
the color indicating the type of folded singularity as in Fig. 3. The corresponding time series for the orbit is shown in Figs. 5(a) and 5(b).
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FIG. 7. (Color) MMO-like transient behavior for the pulsed class I Atri model with #=0.317 (v=0.76) and €=0.01. Panels (a) and (b) show projections onto
(C,,r,C)-space and (P,r,C)-space, respectively. The two fold surfaces and folded singularities are shown with coloring as in Fig. 6. The corresponding time

series for the orbit is shown in Figs. 5(c) and 5(d).

1. Anomalous delay due to interaction with a folded
node

The time series in Fig. 5(c), where ©=0.317 (»=0.76),
shows oscillations immediately after the pulsing similar to
the case shown in Fig. 5(a), but the initial increase in fre-
quency is followed by a relatively long delay before the orbit
returns to its unpulsed oscillation, which is of RO type for
this P-value. Note the small-amplitude oscillations visible in
the enlargement in Fig. 5(d) before the second and third
spikes. As indicated in Fig. 3, the folded singularities on S,
are no longer all folded foci. For high P-values, the singu-
larities are folded nodes and there is an associated three-
dimensional funnel region on S,. As P decreases from a high
value after pulsing, the transient orbit may enter this funnel
region, in which case the orbit will have a quiescent period
as it moves through the funnel region on S, toward the curve

(a)

0.14
C ]

0.12 |

1.3 P

of folded-node singularities on F~, then will exhibit small
oscillations near F~ followed by a fast jump toward S;. The
transient orbit may return to the three-dimensional funnel
region and again pass through another folded node at a
smaller value of P, until P has decreased to values where the
funnel ceases to exist because the folded singularities are of
folded-focus type.

Figure 7 shows two projections of the phase portrait for
the case with 9=0.317 (v=0.76). The MMO-like transient
behavior occurs each time the orbit reaches the fold surface
F~ at a (green) folded node. We observe that the pulsed orbit
first crosses the fold surface F~ at a jump point, but after the
fast jump, the orbit falls into the funnel region for the seg-
ment of folded-node singularities and the second crossing of
the fold surface F~ is at a folded node.

np

n

Vo

FIG. 8. (Color) Enlargements of segments of the pulsed orbit plotted in Fig. 7(b) near the second (a) and third (c) crossing of the fold surface F~ show the
interaction with the curve of folded nodes. The black dashed lines are the weak eigenvectors of the folded nodes involved (green circles). The second column
shows a projection along the vector direction associated with the zero eigenvalue of the folded node, such that the fold surface is almost one dimensional.
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FIG. 9. (Color) Dynamics of the pulsed class I Atri model with #=0.233 (v=0.56) and €=0.01, showing one orbit after pulsing (black curve). Panels (a) and
(b) show projections onto (C,,r,C)-space and (P, r,C)-space, respectively. At the equilibrium value of P, the folded singularity is a folded node. All surfaces
and curves are colored as in Fig. 6. The corresponding time series for the orbit is shown in Figs. 5(¢) and 5(f).

Panels (a) and (b) in Fig. 8 show a close-up of the pas-
sage through the folded-node segment at this second cross-
ing; panel (a) is an enlargement near the folded node in the
same projection as Fig. 7(b), and panel (b) shows the projec-
tion along the vector v, associated with the zero eigenvalue
of the folded node involved in this second crossing. The
coordinate axes are aligned with the vector v, that is tangent
to the fold surface but orthogonal to v, and with two addi-
tional vectors n; and n, normal to the fold surface. The pro-
jection in Fig. 8(b) shows oscillating behavior that is remi-
niscent of a passage through a folded node for a three-
dimensional system with two slow variables.>*%¢ Indeed, the
small-amplitude oscillations occur about an axis that corre-
sponds to the weak eigendirection of the folded node, which
is the black dashed line in Fig. 8.

The third crossing of the fold surface by the orbit in Fig.
7(b) is also at a folded node. A close-up for this crossing is
shown in Fig. 8(c), with Fig. 8(d) showing the projection
along the vector associated with the zero eigenvalue. After
this third crossing, P has decreased so much that the type of
folded singularities changes to folded foci (blue segment)
and the transient orbit (as well as the long-term behavior)
thereafter looks like a RO.

The pulse response of the model at this value of # can,
therefore, be characterized as being a few RO-type oscilla-
tions of greater frequency and smaller amplitude than the
attracting RO, followed by a number of MMO-like oscilla-
tions (each including a delay, then some small-amplitude os-
cillations, then a fast jump) before re-establishment of the
RO. We note that the number and amplitudes of the ROs
immediately after the pulsing and before the delay, as well as
the length of the delay and the number of small-amplitude
oscillations during the transient, may depend on factors such
as the location in phase space of the orbit immediately before
pulsing, the length and magnitude of the applied pulse and
on the exact v value, but the underlying mechanism de-
scribed here is robust.

Thus, we have identified a mechanism causing anoma-
lous delays in the pulse response of the class I Atri model: a
“delay” before resumption of ROs can occur as the transient
orbit after a pulse passes through the funnel region associ-
ated with a segment of folded-node singularities on the stable
sheet S, of the critical manifold. Note that the trapping

region of the folded-node segment, the funnel, causes a delay
effect because orbits on S, slow down as they move to and
along the weak eigendirection of the folded nodes. Further-
more, orbits have to make a certain number of small-
amplitude oscillations near the folded nodes before they ul-
timately get “ejected” from the funnel.

2. Anomalous delay due to interaction
with a segment of folded saddles

The anomalous delay seen in the time series in Fig. 5(e)
is a pulse response of the class I Atri model that is caused by
a second different mechanism, namely, by passage near a
segment of folded-saddle singularities. We have found that a
one-dimensional family of folded saddles can also provide a
trapping region for the slow flow. Such a trapping region is
bounded by the families of stable and unstable manifolds of
the folded saddles. Unlike the funnel region for a segment of
folded nodes, the families of (un)stable manifolds each form
two-dimensional surfaces on S, that prevent orbits from
reaching the fold surface F~ and ultimately force solutions
away from F~ on S,. The unstable manifolds are often com-
pact on S, because they can bend back and connect to folded
nodes in a neighboring segment. This offers an escape from
the trapping region because solutions will leave a neighbor-
hood of the folded saddles along the unstable eigendirection
of the folded saddles until P eventually gets small enough
that the folded singularities change to folded-node type. As
soon as the orbit escapes from its “trap,” a jump is observed
in the transient orbit.

An example of this type of behavior is shown in Fig. 9
for the case p=0.233. Both projections show that the pulsed
orbit passes near F~, lingering very close to the segment of
folded saddles. Figure 10 shows an enlargement of part of
Fig. 9(b), but projected onto (P,r,C)-space so that F~ ap-
pears horizontal. This figure also shows the two-dimensional
surfaces formed by the one-dimensional stable (blue) and
one-dimensional unstable (red) manifolds of the segment of
folded saddles. The pulsed orbit enters this region near the
surface of stable manifolds. As it comes close to the fold
surface F~ and the curve of folded saddles, it is pushed away
along the surface of unstable manifolds and remains trapped
on S, until it reaches the segment of folded nodes. Note that
passage near a segment of folded saddles followed by a seg-
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FIG. 10. (Color) Enlargement of Fig. 9, showing the stable (dark-blue) and
unstable (dark-red) manifolds of the curve of folded saddles, as well as the
pulsed orbit (black) as it passes through this region. The stable and unstable
manifolds and the fold surface (light blue) all intersect at the curve of folded
singularities (shown in light red and green).

ment of folded nodes produces a more lengthy delay than
passage near a segment of folded nodes only. In this model,
that delay is especially long as the unstable eigenvalues are
very close to zero for the whole segment of folded saddles,
meaning that solutions on the unstable manifold of the seg-
ment of folded saddles will stay close to the segment and,
consequently, travel very slowly and take a long time to
reach the folded-node region where oscillations resume.

lll. DYNAMICS OF THE CLASS Il MODEL

A class IT model is defined as Eq. (1) with a# 0 (here
we choose @=1.0) and 0<7< 1. Hence, the r-dynamics is
considered fast, which leads to a model with two fast (C,r)
and two slow variables (C,, P). As explained in Ref. 11, it is
possible to make a quasi-steady-state approximation of the
r-variable by letting 7— 0 and setting

&
C)= 52—,
0= c

in which case system (1) effectively becomes three dimen-
sional, with one fast variable and two slow variables,

(®) 0.3

C
0.2+

0.14
3
c, 3:5 2705 P
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Standard techniques from GSPT were used in Ref. 11 to
analyze this system, and the main results from that paper are
summarized in Sec. III A.

A. Class Il dynamics in the absence of pulsing

The constraint f(C ,C,,P,0)=0 defines the critical mani-
fold S, of system (8). The constraint equation can be solved
for C, as a function of C and P; the resultant surface is
plotted in Fig. 11. An important feature of S is that it has
two fold curves (relative to C) for P<<0.45, with the folds
merging in a cusp at P=~0.45. In the region P<<0.45, the
manifold is cubic shaped, with the outer sheets S, of S
(corresponding to larger and smaller values of C) being at-
tracting and the inner sheet S, (corresponding to intermediate
values of C) being repelling. For P >0.45, the single sheet S,
of S, is attracting. As usual, the critical manifold can be
thought of as organizing the dynamics of Eq. (8) in the sense
that, for sufficiently small €, solutions of Eq. (8) will alter-
nate between spending relatively long periods of time near S,
and making fast jumps between different sheets of Sj.

As discussed in Ref. 11, for most values of ¥ in the
interval [0.311, 0.629] solutions are attracted to a RO like
that shown in Fig. 11. This is the case even though there are
folded-node singularities on the fold curves of S, because the
global dynamics forces orbits away from the regions near the
folded singularities. For € sufficiently small, there can be a
very small interval of ¥ near #=0.629 where orbits are at-
tracted to a folded node and MMOs are observed, but this is
of no further interest here. Outside the interval [0.311,
0.629], solutions are attracted to a stable node.

For the purposes of understanding the response of the
class II model to IP; pulses, a little more detail about the
folded-node singularities is helpful. This detail does not af-
fect the long-term behavior of solutions to this model but
does have implications for the transient behavior immedi-
ately after a pulse, as discussed in Sec. III B. Figure 12
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FIG. 11. (Color online) Example of an attracting RO (black curve) for the class II Atri model (8) with €=0.001 and #=0.417 (v=1.0). Panel (a) shows the
critical manifold (pink surface), which has two fold curves for P<<0.45 (blue curves). These curves merge in a cusp point at P~0.45. Panel (b) is an
enlargement of panel (a) from a different view point, illustrating the cubic shape of the critical manifold.
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FIG. 12. (Color online) Dynamics on the critical manifold for the class II Atri model (8) for two values of »: #=0.417 (v=1.0) and #=0.542 (v=1.3) in panels
(a) and (b), respectively. The critical manifold is pink and the fold curves are blue. The green dots show the location of folded-node singularities and the purple
curves emanating from the folded nodes are the associated strong canards. The light-pink region is the funnel region for the folded node. In panel (a), the

funnel region is bounded by the lower fold curve and the strong canard. In panel (b), the funnel region is an open region of the critical manifold.

shows some features of the critical manifold for two repre-
sentative choices of . For # € [0.311,0.446], the strong ca-
nard for the folded node on the lower fold curve bends
around and joins again to the fold curve, meaning that the
folded node is inaccessible unless an orbit starts in the funnel
region which is bounded by the strong canard and the fold
curve. This situation is illustrated in Fig. 12(a). In contrast,
for ©e[0.446,0.629], the strong canard does not meet the
lower fold curve except at the folded node, and the associ-
ated funnel region is open. In this case, the funnel region
attracts the flow from an open region of the critical manifold
[see Fig. 12(b)].

B. Class Il dynamics with pulsing

Due to the three-dimensional nature of the class II sys-
tem, any delays such as that seen in Fig. 1(c) must be ex-
plained by a completely different mechanism than those used
for the class I model. Nevertheless, we can still use the geo-
metric structures found in the analysis of the unpulsed class
II system. An IP; pulse applied to this model moves an orbit
rapidly to higher values of P (i.e., past the cusp). For small e,
orbits will first move quickly toward the critical manifold,
then follow the slow flow on the critical manifold until a fold
curve is encountered, after which the orbit could make a fast
jump. Since there are no folds in the critical manifold for

a
( ) 0.3 -
C
0.2 -
0.1 _\\/0
S P

Ci

large P, there can be no fast jumps and hence no oscillations
initially. Eventually, the value of P will decrease sufficiently
that the orbit returns to the folded section of the critical
manifold and then eventually to the attracting RO which oc-
curs for low values of P. This explains the observed delay in
the onset of oscillations after the pulse—until P is small
enough there can be no oscillations.

The details of the evolution once P is small enough for
the critical manifold to be folded (P <0.45) depend on the
details of the folded singularities described above. For
0<0.446 (v<1.07), the funnel region (when it exists at all)
is completely bounded by the fold curve and strong canard,
and so a transient orbit cannot enter the region. Instead, the
pulsed orbit goes below the funnel region and settles down to
the RO. On the other hand, if the funnel region is open
(0.446<$<0.629, i.e., 1.07<v<1.51), then a pulsed orbit
will typically return to the attractor via the funnel of the
folded node. This results in small oscillations in the transient
orbit before RO are established again. Figure 13 confirms
this prediction in the case p=0.542 (v=1.30).

IV. DYNAMICS OF THE HYBRID MODEL

The hybrid Atri model is obtained by setting a# 0 and
7#0 in Eq. (1). This system may have either two fast and
two slow variables or one fast and three slow variables, de-

(b)
0.5 1 F5
C P
0 T r T T 0
0 10 20 30 40 50
tq

FIG. 13. (Color online) Dynamics for the class IT Atri model (8) with $=0.542 (v=1.3) and €=0.01. All curves and surfaces in panel (a) are the same as in
Fig. 12, except that the black curve shows a trajectory after the application of an IP; pulse. After the pulse, the trajectory passes the cusp point on the fold
curves, then passes through the funnel region toward the folded node, resulting in a delay followed by characteristic small oscillations before re-establishment
of the RO. Panel (b) shows the corresponding time series of this trajectory. The red curve shows C and is plotted against the left vertical axis. The black curve
is P and is plotted against the right vertical axis.
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FIG. 14. (Color online) Partial bifurcation set for the hybrid Atri model (1)
for €=0.01, a=1.0, and various ¥ and 7. The locations of Hopf bifurcations
(HBs) are marked, and the shaded region indicates the values of # and 7 for
which MMOs are observed. A sharp transition in the slope of the Hopf
bifurcation curves occurs at 7=0.05 at about the same value of 7 where
MMOs cease to exist. This value of 7 corresponds to the hybrid model
making a transition from having three slow variables (7=0O(1)) to having
two slow variables (7=0(1072)).

pending on the relative size of 7. A comprehensive analysis
of the hybrid Atri model was not presented in Ref. 11 either
for unpulsed or pulsed versions of the model since GSPT
relevant to systems with three slow variables had not been
developed when Ref. 11 was written. In this section, we ar-
gue that when 7=0(1) the dynamics of the hybrid model has
many qualitative features of the pure class I model. As a
consequence, the pulse response of the hybrid model is, for
these values of 7, similar to the pulse response of the class I
model. In particular, the delay sometimes seen after pulsing
of the hybrid model when 7=0(1) can be attributed to the
existence of segments of folded saddles and folded nodes in
the singular limit of the hybrid model. If, on the other hand,
7<<1, the hybrid model behaves like a class 11 model in both
the pulsed and unpulsed dynamics. There is an intermediate
range of values of 7 where the hybrid model is in transition
between class I and class II forms. In this transition regime,
there are more than two time scales in the model since r
evolves on a distinct time scale, between fast and slow.
GSPT based on the assumption of there being just two dis-
tinct time scales in the model is unable to give clear predic-
tions about the behavior in the model in this case, and nu-
merical investigations indicate that for 7 values in this
regime features of both class I and class II dynamics may be
observed. For instance, immediately after pulsing, a transient
orbit may undergo a few oscillations with a slightly in-
creased frequency (like in a class I model), then have a
lengthy delay while the orbit moves near a section of critical
manifold in which there are no folds and no folded singulari-
ties (like in a class IT model) before regular oscillations
resume.

A. Hybrid model without pulsing

Analysis of the time scales of the Atri model presented
in Ref. 11 showed that the hybrid Atri model might be ex-
pected to behave like a class I model if 7=0(1), and like a
class I model if #=0(1072). Numerical evidence for a tran-
sition regime is contained in Fig. 14, which shows a partial

Chaos 20, 045104 (2010)

FIG. 15. (Color) The types of folded singularity seen in the hybrid Atri
model (1) with @=1.0, 7=0.48 (7=2.0), and =0 for a range of values of ?.
The meanings of the colors are the same as in Fig. 3. The white dashed lines
indicate the values of ¥ used for Figs. 18-20. The black dashed curves
(labeled P.) for >0.125 indicate the maximum and minimum values of P
for the attracting closed orbit (MMO or RO) at each value of ». For
<<0.125, the attracting orbit is an equilibrium solution with P value given
by the dashed black line. The inset shows an enlargement of the indicated
region.

bifurcation set for the hybrid Atri model in the case that €
=0.01. Oscillations are possible only in the region in be-
tween the two curves of Hopf bifurcations, denoted HB; and
HB, in Fig. 14. These oscillations are of RO type, except in
the shaded region, where MMOs exist. A clear transition
regime can be seen as 7 decreases in Fig. 14. Specifically, at
7=0.05, the distance between HB, and HB, changes sud-
denly and the MMO regime terminates.

A detailed investigation of the case a=1, 7=0.48
(7=2.0), and €=0.01, which is a representative parameter
choice for which the hybrid model has three slow variables,
provides evidence that there are many features in common
between this model and the pure class I model discussed in
Sec. III. In the hybrid model, P does not evolve indepen-
dently of other variables, with the consequence that the long-
term dynamics does not lie in fixed-P slices of phase space
(as was the case for class I), but otherwise phase space plots
look rather similar to Figs. 2, 4, and 6-9, as will be shown
below.

Techniques from GSPT can be applied to the hybrid
model, just as for the class I model in Sec. II. In particular,
the three-dimensional critical manifold and the different
types of folded singularities that exist can be computed, and
singular MMOs can be constructed for a range of values of ¥
where folded-node singularities occur. Figure 15 shows the
types of folded singularity seen in the hybrid system for
various values of ». While the boundaries of the regions of
existence of the various types of folded singularities have
shifted compared with the class I case shown in Fig. 3, the
similarities are clear. Note that in class I, the variable P
evolves to a single equilibrium value, even if the other vari-
ables oscillate as part of a MMO or RO, whereas in the
hybrid model, P oscillates slightly when there is a MMO or
RO. The range of values of P that occurs along the singular
closed orbit for each value of 7 is indicated by the dashed
black curves labeled P, in Fig. 15.

The geometric structures present in the singular limit
perturb in the nonsingular case just as they did for class I.
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FIG. 16. (Color) Example of an attracting MMO (black curve) for the hybrid Atri model for €=0.01, @=1.0, ?=0.167 (¥=0.40), and 7=0.48 (7=2.0). Color
coding of surfaces and curves is as in Fig. 6. Panel (a) shows a projection onto (C,,r,C)-coordinates with an enlargement illustrating the passage of the MMO
past the folded-node singularity in panel (b). Panels (c) and (d) similarly show the situation projected onto (P, r,C)-coordinates [compare with Figs. 4(c) and
4(d)]. Panel (e) with corresponding enlargement in panel (f) shows the time series for C corresponding to the MMO.

Thus, for instance, intervals of ¥ for which singular MMOs
or ROs occur in the singular limit persist in the nonsingular
system, with the boundaries of these intervals shifted in an
appropriate e-dependent way, just as shown above for class 1.

Figure 16 gives an example of class I-like behavior of
the hybrid model, for the choice ©=0.167 (v=0.40); for this
choice of parameters, there is an attracting MMO. There are
clear similarities between Figs. 4 and 16, consistent with our
claim that the hybrid Atri model behaves like a class I model
when 7=0(1).

The dynamics of the unpulsed hybrid model in the case
that #=0(1072) or less is qualitatively like the dynamics for
the pure class II model, but the argument is simpler than for
the class I case: the quasi-steady-state approximation used to
reduce the class II model to a system of three equations in
Ref. 11 works equally well for the hybrid model when
#=0(1072) or less, and so our description of the class II
model dynamics in Sec. III is valid also for the hybrid model
in this regime.

When 7 is of an order intermediate between O(1) and
0(1072), then methods of analysis based on the assumption
of there being two distinct time scales in the model are no
longer appropriate. Results derived for systems with three
time scales may be relevant for this transition regimef’14 but

we do not undertake this kind of analysis here.

B. Hybrid model with pulsing

Since the long-term dynamics of the hybrid model can
be qualitatively like the dynamics in either the class I or class
IT models, depending on the size of 7, it is no surprise that
the hybrid model may respond to a pulse of IP; in similar
ways to the class I and II models. In particular, we may
encounter the same types of anomalous delays as for class I.
We illustrate this using the hybrid model with 7=0.48 (7=2)
and €=0.01. Figure 17 shows three different possibilities,
corresponding to three representative values of ¥; compare
with the pulsed responses for the class I model in Fig. 5.
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FIG. 17. (Color online) Time series of the C-coordinate for the pulsed hybrid Atri model with @=1.0, 7=0.48 (7=2.0), and €=0.01. Panels (a), (c), and (e)
show the responses for =0.583 (v=1.4), ?=0.500 (v=1.2), and ?=0.167 (v=0.40), respectively; these values correspond to the white dashed vertical lines
in Fig. 15. Enlargements of the boxed regions in panels (a), (c), and (e) are given in panels (b), (d), and (f), respectively. These enlargements show transient
behavior after the pulse is applied at ;=12 and P has decayed to 5. Compare also Figs. 18-20.

Figure 18 shows a pulsed orbit in phase space for the
hybrid model when 7=0.48 (7=2) and »=0.583 (v=1.4),
with the associated time series being plotted in Figs. 17(a)
and 17(b). In this case, the unpulsed model is in the class I
regime and we can locate a three-dimensional critical mani-
fold containing a curve of folded singularities. The folded
singularities consist of folded foci only and the pulsed orbit
meets the fold surface F~ at jump points only. The pulse
response for this value of 7 is, therefore, qualitatively similar
to that seen in the class I model with #=0.400 [see Figs. 5(a),
5(b), and 6].

Figure 19 shows a pulsed orbit for the hybrid model
when ©=0.500 (v=1.2), with the associated time series being
plotted in Figs. 17(c) and 17(d). In this case, the first four
passages through the fold surface F~ occur at jump points,
the next passage is at a folded node, and the orbit eventually
settles down to a RO. The pulse response for this value of ¥
is, thus, qualitatively similar to the case for the class I model
with #=0.317 [see Figs. 5(c), 5(d), and 7].

Figure 20 shows a pulsed orbit for the hybrid model
when 7=0.167 (v=0.4), with the associated time series being
plotted in Figs. 17(e) and 17(f). In this case, the pulsed orbit
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FIG. 18. (Color) RO-like transient behavior for the pulsed hybrid Atri model with #=0.583 (v=1.4), a=1.0, 7=0.48 (7=2.0), and €=0.01. Panels (a) and (b)
show projections onto (C,,r,C)-space and (P, r,C)-space, respectively. All surfaces and curves are the same as in Fig. 6. All intersections of the orbit with the
fold surface occur at jump points. A time series for the orbit is shown in Figs. 17(a) and 17(b).
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FIG. 19. (Color) MMO-like transient behavior for the pulsed hybrid Atri model with $=0.50 (v=1.2), a=1.0, 7=0.48 (7=2.0), and €=0.01. Panels (a) and
(b) show projections onto (C,,r,C)-space and (P,r,C)-space, respectively. All surfaces and curves are the same as in Fig. 6. The first five passages through
the fold surface are at jump points, the next passage is at a folded node, and the orbit is eventually attracted to a RO (crossing the fold surface at a jump point).

A time series for the orbit is shown in Figs. 17(c) and 17(d).

makes two passages through the fold surface F~ at jump
points, then spends an extended period of time drifting near
the segment of folded saddles, then enters the funnel region
for the folded nodes, and eventually settles down to an
MMO. The pulse response for this value of 7 is, thus, like the
case for the class I model with ©=0.233 [see Figs. 5(e), 5(f),
and 9].

Hence, we see that the hybrid Atri model with a=1.0
and 7=0.48 (7=2.0) responds to pulses of IP; in a qualita-
tively similar way to the class I Atri model. Similar results
are found for any 7 greater than about 0.2.

As argued above, when the hybrid model is in the class
II regime, i.e., when 7<<1, the model can be reduced to a
three-dimensional model and we find in numerical experi-
ments that pulsing has a similar effect to that seen in the pure
class II model. Specifically, after pulsing, there is a delay
before re-establishment of oscillations because the pulse
pushes the orbit into a region of the phase space where the
associated critical manifold has no folds. Oscillations are
only re-established once the variable P has decayed enough
that the critical manifold is folded.

We have derived no clear theoretical predictions about
the response to pulsing for the hybrid model in the transition
regime between the class I and class II regimes, but prelimi-
nary numerics show that in this case the pulse response has
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characteristics of both class I and class II behavior. The tran-
sition regime is being investigated further and will be re-
ported on elsewhere.

V. DISCUSSION

In this paper, we have used GSPT to investigate the re-
sponse of a representative model (the Atri model) of oscilla-
tory calcium dynamics to an exogenous pulse of IP;. Previ-
ous work on this model’ identified a so-called anomalous
delay in the transient response of certain versions of the
model, specifically in the class I and hybrid versions of the
model for a range of values of the main bifurcation param-
eter v, and gave a heuristic explanation for the phenomenon
based on a fast-slow decomposition with one slow variable.
However, as we have shown, a full analysis of pulsing in the
Atri model requires recognition that the model may have two
or three slow variables.

Making use of the recent results of Wechselberger,25
which extend canard theory to systems with three or more
slow variables, we have shown that the delays sometimes
seen in the pulsed class I and hybrid versions of the Atri
model are associated with the existence of a curve of folded
singularities, either folded saddles or folded nodes, in the
singular limit of the model. In the parameter regime of inter-
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FIG. 20. (Color) Dynamics for the pulsed hybrid model with #=0.167 (v=0.4), @=1.0, 7=0.48 (7=2.0), and €=0.01. Panels (a) and (b) show projections onto
(C,,r,C)-space and (C,r, P)-space, respectively. All surfaces and curves are the same as in Fig. 6. The first three passages through the fold surface occur at
jump points, then the orbit has a period of drifting along the curve of folded saddles. Eventually, the orbit settles down to an MMO, corresponding to passage
near a folded node. A time series for the orbit is shown in Figs. 17(e) and 17(f).
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est, the Atri model has periodic attractors, typically of either
MMO or RO type. The effect of pulsing with IP; is to move
the orbit rapidly away from the periodic attractor to a region
of phase space where P is large. The way in which the orbit
returns through phase space to the vicinity of the periodic
attractor produces the characteristic pulse response of the
model and is heavily influenced by the dynamics of the sin-
gular limit of the model of interest, as summarized below.

In the class I version of the Atri model, P evolves inde-
pendently of the other variables. After pulsing, P decays
monotonically to an equilibrium value, while the other vari-
ables can oscillate. For sufficiently small values of the sin-
gular perturbation parameter €, the transient orbit will alter-
nate between periods when it closely follows the critical
manifold of the singular limit system and fast jumps between
different sheets of the critical manifold. At larger values of ¥
where the critical manifold either has no folded singularities
or the folded singularities are of folded-focus type, then tran-
sient and long-term oscillations are of RO type; while the
transient orbit might display small changes in frequency or
amplitude of oscillation after pulsing, no significant delays
are observed in the associated time series. However, at
smaller values of ¥ when the singular limit has folded singu-
larities of folded-node or folded-saddle type, there may be
relatively long periods in the transient orbit where there are
no oscillations. Sometimes the transient orbit displays
MMO-like behavior including delays and small-amplitude
oscillations (when it passes near a segment of folded nodes)
and sometimes there is a more lengthy delay (when the orbit
passes near a segment of folded saddles), followed by MMO-
like transients (near a segment of folded nodes).

Delays are also observed in the pulse response of the
class II Atri model, but in this case they are caused by a
completely different mechanism. We showed that in the pa-
rameter regime of interest, the two-dimensional critical
manifold for the singular limit of the class II Atri model has
a cusp; for smaller values of P, the critical manifold is cubic
shaped, which means that ROs (and sometimes MMOs) can
occur, but at higher values of P, the folds merge in a cusp so
that the critical manifold is not folded and oscillations do not
occur. The effect of pulsing in this case is to send the orbit
into the part of phase space where the manifold is not folded.
Until the variable P has decayed sufficiently so that the orbit
has passed the cusp region and once again gets close to the
folded part of the critical manifold, there can be no oscilla-
tions. This results in the observed delay in the onset of os-
cillations after pulsing in the class II model.

We have argued that the hybrid Atri model has three
regimes: a class I regime when 7=0(1), a class II regime
when #=0(1072) or less, and a transition regime for interme-
diate sizes of 7. The form of the pulse response of the hybrid
model is then determined by these regimes: the pulse re-
sponse is class I-like if the unpulsed model is in the class I
regime and is class II-like if the unpulsed model is in the
class II regime. Features of both class I and class II pulse
responses can be seen in the hybrid model in the transition
regime.

A crucial step in understanding the dynamics of the class
I Atri model and of the hybrid model in the class I regime

Chaos 20, 045104 (2010)

was the ability to apply GSPT to systems with three slow
variables. The examples in this paper are the first application
of the results in Ref. 25 that extend canard theory to the case
of three (or more) slow variables. Based on what is seen in
systems with two slow variables,” %% it is perhaps not sur-
prising that the presence of folded-node singularities in the
singular limit of the Atri model can result in complicated
(MMO-like) dynamics. More surprising is the important role
played by folded saddles; we found that passage near a seg-
ment of folded saddles can result in an extended quiescent
period in the time series of a pulsed solution. The trapping
region created by the (un)stable manifolds of the folded
saddles is only terminated due to a transition in the type of
folded singularities—here to folded nodes—and the release
is observed as a transient calcium spike due to a jump near a
folded node. We note that a passage near a single folded
singularity would not produce this effect; this is something
that can only occur in systems with three or more slow
variables.

A major difference between our analysis of the Atri
model and that presented in Ref. 7 is that we have deter-
mined that the model can have two or three slow variables,
whereas just one slow variable (¢, in the notation of Ref. 7)
was used in Ref. 7. As a consequence, some features of the
dynamics (such as MMOs) were not identified in Ref. 7.
Analysis of the pulse responses for class I and hybrid models
in Ref. 7 implicitly had two slow variables since p and c,
were treated as parameters, and an association between the
location of certain bifurcations of the (two-dimensional) fast
subsystem and the transient behavior of the pulsed orbits was
reported. We believe that our use of a singular limit in which
there are either three slow variables (for class I and some
hybrid cases) or two slow variables (for class II and some
hybrid cases) leads to a clearer explanation of the observed
phenomena, including the long-term dynamics and the re-
sponse to pulsing.

The original motivation for studying the response of the
Atri model to a pulse of IP; was a desire to understand the
dynamics behind an experimental protocol proposed in Ref.
22. In the models studied in Ref. 22, it seemed that there was
a clear difference in the response of different types of model
to an IP; pulse: class I models responded with a temporary
increase in oscillation frequency, while class II models re-
sponded with a phase lag (delay) before re-establishment of
oscillations. Thus, it was thought that the experimental pro-
tocol could be used to determine whether the calcium oscil-
lations in a particular cell type were predominantly deter-
mined by class I or class II mechanisms. The anomalous
delays that are sometimes observed when the class I Atri
model is pulsed have muddled the presumed differences be-
tween the response types. In this paper, we have identified
the mathematical mechanisms behind the varying types of
pulse responses; the next steps are to look at other intracel-
lular calcium models (see, e.g., Refs. 8, 17, and 18) to deter-
mine whether these mechanisms are present and then to re-
visit the experimental protocol to see if it can be modified so
that its interpretation is unambiguous. Work along these lines
is ongoing and will be reported elsewhere.
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Finally, we note that identification of the time scales
present in the Atri model suggests a mathematical basis for
determining whether class I or class II mechanisms will drive
the oscillations in a hybrid model that includes both. We
conjecture that the dominant mechanism is determined by
the relative speed of the receptor dynamics (represented by
the variable r in our model); slow receptor dynamics will
result in class I mechanisms being dominant and fast recep-
tor dynamics will result in class II mechanisms being domi-
nant. This insight into the behavior of hybrid models has
been confirmed in this paper for the Atri model, but results
for other models will be reported elsewhere.
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