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ABSTRACT 

The work described by this thesis presents several new methods of the computer modelling of 
sheet metal forming.  In particular it focuses on the design steps of sheet metal forming; blank 
shape prediction, part design, die design and part applications. 

This work concentrates on developable surfaces, which are the tangent surfaces of space 
curves and include cones and cylinders.  Developable surfaces are so called, because they can 
be rolled out (developed) onto a plane without stretching, tearing or creasing.  A folded 
developable is formed when a developable surface is folded about a curve.  Since folded 
developables are formed only by folding they are ideally suited to being constructed from 
sheet metal. 

New theories are presented that accurately predict the surface that will be formed if a general 
developable surface is folded about a general curve.  The theories have been developed into a 
computer program, 3FD, that allows the rapid and accurate design of folded developables.  
Several different folded developables have been designed using the program and compared 
with physical results, with excellent geometric correlation. 

An improved method of computer aided blank shape prediction has been developed.  The 
method can be applied to both folded developables and to general sheet metal components.  
The method uses new boundary conditions to increase the accuracy of the predicted blank 
shape.  The method also indicates possible areas of forming problems.  A pressed automobile 
component is used to illustrate the increased accuracy of the new method. 

The design program can also generate the geometry necessary to create the die set to form a 
folded developable.  Such a die set has been created and a folded developable formed from it.  
The formed folded developable closely matches the computational model. 

The design program has also been used to investigate the kinematics of folded developables.  
The mechanism of a simple folded developable has been determined and the implications and 
possible applications of this are discussed. 

 

 

 

Frontispiece:  Multiple images of conical folded developable.  The coloured images show the 
surfaces formed by changing the initial surface radius of curvature from 0.1 (red) to 1 (violet).  
The folding curve geodesic radius of curvature remains constant at 0.5. 
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1. INTRODUCTION 

This thesis demonstrates several new methods of computer modelling sheet metal forming.  
These methods provide design tools which apply to all stages of sheet metal component 
design.  The methods are as follows: 

1. An existing method of blank shape prediction is expanded to give greater accuracy and 
versatility. 

2. New theories and computational models have been developed to produce a program that 
permits the rapid design of folded developables, a previously little used engineering 
structure. 

3. A method of constructing a die set for the manufacture of folded developables has been 
developed and successfully trialled. 

4. The kinematics of folded developables have also been investigated to show an application 
of folded developables. 

These developments provide tools that will allow future sheet metal designers to design more 
creatively and with greater accuracy. 

In the following sections of this chapter metal forming and sheet metal forming are 
introduced.  The specific developments in computer modelling of sheet metal forming, 
described in this work, are then introduced, together with their potential applications. 

1.1. METAL FORMING. 

'Metal Forming' refers to a group of manufacturing processes by which the shape of a 
workpiece (a solid body of metal) is converted to another shape  [Lange et al. 1985].  This 
change in shape occurs without change in the mass or composition of the metal of the 
workpiece. 

Metal forming is a subset of manufacturing processes.  The manufacturing processes may be 
divided into six main groups: 
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Primary forming Original creation of a shape e.g. ingot 
casting. 

Deforming or Metal Forming Change the shape of a solid body e.g. deep 
drawing. 

Separating Machining or removal of material e.g. 
turning in a lathe. 

Joining Uniting individual workpieces to form sub 
assemblies e.g. welding. 

Coating Application of thin layers to a workpiece 
e.g. galvanising. 

Changing the Material Properties Deliberately changing the properties of the 
workpiece in order to achieve desired 
characteristics e.g. tempering steel. 

Metal Forming encompasses many different forming techniques.  These can be classified by 
two methods: 

• The means of deformation, and 

• The initial shape. 
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1.1.1. The Means of Deformation. 

Common means of deformation are; 

Compressive Forming • Rolling 
• Open-die forming 
• Closed-die forming 
• Indenting 
• Pushing through a die 

Combined tensile and compressive forming • Pulling through a die 
• Deep drawing 
• Flange Forming 
• Spinning 
• Upset bulging 

Tensile Forming • Stretching 
• Expanding 
• Recessing 

Forming by Bending • Bending with linear tool motion 
• Bending with rotary tool motion 

Forming by shearing • Joggling 
• Twisting. 
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1.1.2. The Initial Shape. 

Metal forming may also be classified by considering the initial shape of the workpiece.  The 
two major divisions are: 

• bulk or massive forming, and  

• sheet metal forming. 

1.1.2.1. Bulk Forming 

Bulk forming considers the deformation of bars and castings - workpieces in which all three 
linear dimensions are of a similar order of magnitude.  By contrast, in sheet metal forming the 
initial workpiece will have one linear dimension orders of magnitude smaller than the other 
two e.g. 1000 mm by 1000 mm by 1.2 mm. 

Bulk forming is characterised by three axis compressive forming whereas sheet metal forming 
is characterised by both compressive and tensile forming in the large axis of the sheet. 

Historically metal forming was for a long time purely bulk forming.  6000 years ago in the 
Neolithic age primitive humans forged and hammered metal.  The introduction of iron gave 
rise to hot forging best exemplified by historic blacksmiths who used the heat from a coal fire 
and the energy of their own muscles to turn pieces of bar and ingots into horse shoes, armour 
and swords. 

Sheet metal did not make an appearance until the late 18th century.  Initially the sheet was 
hammered flat but by the late 19th century, with the development of cast steels and the double 
action press, modern sheet metal forming began. 

1.1.2.2. Sheet Metal Forming. 

Sheet metal forming is one of the principal processes used in the manufacture of a wide 
variety of consumer and commercial products.  Products such as automobiles, roofing, 
whiteware, kitchenware, medical equipment and kitchen sinks, to name a few, are formed 
wholly or partly from sheet metal. 

The sheet metal industry involves primary metal suppliers, tool and die makers, metal 
stampers, lubricant suppliers and designers.  Sheet metal forming is the culmination of all the 
above industries' inputs, to achieve a part with the desired shape, performance, finish, quality 
and cost [Karima 1989]. 
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Historically this has been achieved by design/build/validate steps [Keeler and Stine 1989].  
The part was designed by the part designer who then passed the design to the die designer, 
who modified the design and then passed it to the tool maker and so on. 

Part and die design were undertaken by sheet metal forming craftspeople.  These artisans 
based designs on past experience gained from trial and error with previous designs.  Their 
success at designing a part or die was dependent on how closely it matched a part or die 
previously designed.  Radical changes in shape or material made initial designs difficult, often 
inaccurate and the design process slow. 

The development of analysis techniques such as Grid Circle Analysis and Forming Limit 
Diagrams, [Keeler and Backofen 1963], have increased the accuracy of sheet metal design. 

In grid circle analysis, the flat sheet of metal about to be deformed, is covered in a regular 
grid of small circles.  The deformation of the circles after forming provides information on 
the strain magnitude and direction in the deformed part. 

A forming limit diagram is a plot of data obtained from grid circle analysis.  The two 
principal strains ε1 and ε2 are plotted against each other for each circle.  Tests performed on 
the same material provide an envelope within which the strains must lie for successful 
forming. 

Grid circle analysis and the forming limit diagram allow the designer to quantify and analyse 
the strains in a deformed part, reducing the number of trials needed for a successful design. 
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1.1.3. Differences Between Folded Developables and Conventional Sheet Forming. 

Sheet metal parts can be divided into two categories: 

• stampings, and  

• developables  

[Duncan and Duncan 1979]. 

Stamping sheet metal parts are those in which permanent deformation, either  thinning or 
shear distortion (drawing), must occur in the sheet in order to achieve the final shape.  Sheet 
metal parts which can be formed by bending the sheet into place without stretching or 
drawing in the plane; are called 'developable' parts. 

The forming techniques and material properties required are different for each category. 

1.1.3.1. Stampings - Forming Techniques and Material Properties. 

Stampings are most commonly produced in draw dies.  In a draw die the material is retained 
at the edges and stretched over a punch.  In draw die forming the material must have a large 
ultimate tensile stress to yield stress (UTS/Y) ratio.  It may be shown that this ratio must 
exceed a lower limit given by, 

UTS
Y

e=
µπ
2 ,         (1.1) 

where µ is the average coefficient of friction between the sheet and the punch [Marcimak & 
Duncan 1992].  This friction coefficient is rarely less than 0.2, so the ultimate tensile/yield 
ratio must be greater than 1.4.  Most materials used in die forming have an ultimate 
tensile/yield ratio of 1.5 to 2.0 to make die forming easy. 

However the modern demand for lighter weight, higher strength products, especially in the 
auto industry, has caused problems.  To reduce the weight of a sheet component such as a 
door panel, it must be made from thinner sheet.  To retain function, the initial yield stress or 
'strength' of the material must increase.  Unfortunately the most convenient methods of 
increasing initial yield stress such as work hardening, precipitation hardening and grain 
refinement do not increase the ultimate tensile stress.  Thus the UTS/Y ratio drops, making 
die forming difficult for high strength steels. 

One solution to the problems associated with die forming of high strength sheet is to make the 
component a developable. 
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1.1.3.2. Developables - Forming Techniques and Material Properties. 

Developables are most commonly formed by roll forming and bending.  Roll forming 
involves passing the sheet through a series of rolls which bend the sheet to the desired section.  
Bending may be performed in a variety of ways such as press-brake bending, flanging, folding 
and pressing.  Conventionally the bends are straight and have a constant bend angle.  Thus the 
range of shapes that can be produced is small. 

Material requirements are different from stampings.  Ultimate tensile/yield ratio is not critical 
and materials with a UTS/Y ratio of one can be formed by bending.  The critical material 
property is the maximum strain due to bending.  In simple bending this is; 

�max � 1/[2(r/t)]        (1.2) 

where r is the radius of the bend and t is the thickness of the sheet.  For a 5t bend, the outer 
strain is 10%.  Provided this is less than the fracture strain which is approximately indicated 
by reduction in area of the material in a tensile test, satisfactory bending will occur. 
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1.2. COMPUTER AIDED MODELLING OF SHEET METAL FORMING. 

As the name suggests, computer aided modelling of sheet metal forming uses computer 
programs to solve possible sheet metal design problems.  Many different methods are used in 
the programs including Finite Element Methods, Geometric Rules and Metal Flow Analysis.  
Some programs run on Cray mainframes others run on simple PCs. 

The problems this work attempts to answer are: 

• What shape (blank shape) should the component be before forming? 

• How can a folded developable component be designed? 

• How can the above component be formed? 

• What applications does the component have? 

1.2.1. Blank Shape Prediction.  

The blank shape of a part is its flat shape prior to deformation.  Finite element analysis 
(described in section 2.2) has had limited success in predicting the blank shape of parts with 
complicated shape.  Several alternative methods have been proposed including slip line field  
methods (described in Section 2.2) and the constant area transformation. 

The constant area transformation assumes plane strain or zero thinning conditions during 
deformation.  Developed by Sowerby, Duncan and Chu [1986] it is a simple geometric 
mapping process that conserves the area between the blank shape and the finished part.  This 
is a predictive technique and is used as a means of reducing the number of costly press shop 
trials that are required with new tooling.  The constant area transformation is not an exact 
solution to the actual metal forming process, but rather a technique that allows an insight into 
the forming process necessary to produce the desired shape. 

In this work, the method developed by Sowerby, Duncan and Chu has been expanded and 
improved.  The original model was restricted to straight boundaries, perpendicular to one 
another.  Mathematical and computational methods for the modelling of any boundary have 
been developed.  This increases the accuracy of the predicted blank shape and greatly 
increases the range of parts that may have their blank shape predicted. 
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1.2.2. Folded Developable Part Design. 

Computer Aided Design (CAD)  and Computer Aided Manufacture (CAM) have changed the 
way engineers design parts.  Most manufacturing firms now use computer packages such as 
AUTOCAD, CADAM and CATIA to assist in the design of their sheet metal parts.  
Designs are stored on computer disk rather than paper, and complex solid models of the part 
can be produced.  However the parts are still designed from experience and previous parts are 
used as guides. 

In this work a new method of part design is presented.  The mathematical and computational 
method allows the designer to design folded developables interactively.  A folded developable 
is a sheet surface that has been folded along an arbitrary curve to produce two separate 
developable surfaces joined along this fold curve.   

Because a developable surface (or developable) is folded and not drawn or stamped, material 
properties which govern drawing deformation may not be critical.  Because the UTS/Y ratio is 
no longer critical, developables provide a means of forming high strength materials. 

The method of modelling curved line folding of such developables, described in this thesis, 
greatly increases the range of products that can be produced by 'developable' methods.  This 
gives the part designer a new option when designing parts. Computer modelling gives 
engineers and designers the opportunity to add folded developables to their list of choices 
when designing a new product. 
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1.2.3. Die Design for Folded Developables. 

When a part has been designed, and its blank shape predicted, the tools for forming it must be 
designed.  For parts that are to be pressed or folded the most common forming method is die 
forming.  Two metal plates are machined to form male and female dies, as shown in Fig. 1.1.  
Pressing the two dies together, with the sheet blank between forms the part. 

Male Die

Sheet Blank

Female Die

 

Fig. 1.1  Schematic of Die Forming. 

In this thesis a computational method for the design of dies for folded developables is 
presented.  This allows folded developables to be readily created, as the part can be designed, 
the blank shape predicted and the dies designed all in one integrated computer program.  The 
theory and practice behind the die design, with an example is in Chapter 4. 

1.2.4. Kinematics: An Application of Folded Developables. 

An important skill in design is consideration of possible applications for the part to be 
designed.  Can the designed part meet the design specifications?  An intelligent approach to 
design involves going from the design idea to the finished part in the smallest possible 
number of prototypes, thus reducing the extra time and cost of multiple prototypes.  In light of 
this, modern design methods allow the testing and evaluation of some parameters before the 
first prototype is even constructed, e.g. some solid modelling programs allow checking for 
interference between parts in an assembly. 

The kinematics of folded developables is discussed in Chapter 5.  The kinematics of folded 
developables results in linear displacements in response to changes in curvature of the initial 
surface. 

Using this result folded developables can be used as simple mechanisms.  The mechanism is 
described so the performance of the folded developable mechanism can be evaluated prior to 
manufacture. 
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2. COMPUTER AIDED BLANK SHAPE PREDICTION. 

Computer Aided Blank Shape Prediction is the process of determining the blank shape of a 
desired part using a computer.  The blank shape of a sheet metal part is the original shape of 
the flat sheet, before the sheet metal is deformed.  To reduce waste of metal the blank shape 
should be such that trimming is minimised after forming.  The relation investigated here is an 
assumption of constant area between the finished part and the blank shape.  A computer 
program has been used to reduce the time taken and increase the accuracy of predicting the 
blank shape.  Hence the name Computer Aided Blank Shape Prediction. 

2.1. BLANK SHAPES AND METAL FORMING. 

Metal forming of a simple shape can be defined as the transformation of a piece of metal into 
a useful part by means of plastic deformation [Berry 1988].  In sheet metal deformation the 
initial shape is either a flat sheet or tube and has a much smaller thickness than length or 
width dimension.  Typically the thickness may vary from 1/50th to 1/5000th of the length or 
width. 

Sheet metal forming involves the deformation of a basic shape (the blank shape) usually cut 
from a flat sheet, which is then plastically deformed into its final shape.  The deformation 
process is characterised by large displacements but low strains.  Studies at Toyota show that 
strains over large areas of auto body panels rarely exceed 4-5%  [Duncan and Sowerby 1981]. 

Sheet forming includes brake forming, deep drawing, stretch forming, rubber pad forming and 
folding.  All these forming methods use an initial blank shape.  Accurately predicting this 
blank shape and better understanding the processes involved has a large scale industrial 
application. 
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2.2. REVIEW OF COMPUTER AIDED BLANK SHAPE PREDICTION. 

2.2.1. Methods of Determining Blank Shape. 

The determination of the most efficient blank shape for a deformed part, by either a physical 
or computer model, is the engineer's problem.  He or she must determine the set of 
displacements that link the final and initial states of the part. 

2.2.1.1. Non Computational Methods. 

Historically blank shapes were predicted by experience, by trial and error and by rule methods 
as illustrated in Fig. 2.1.  These methods give reasonable results for simple shapes but are 
unable to cope with the complex parts formed today. 
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Fig. 2.1 Non computational method of blank shape prediction. 

Modern methods my be divided into two main categories; one type is Finite Element 
Modelling (F.E.M.) or Finite Difference Modelling and the other Geometric Modelling. 
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2.2.1.2. Finite Element Modelling. 

Finite Element Modelling is a computer based numerical analysis technique that is widely 
used [Wood 1981].  Basically the method involves breaking down a complex problem into a 
number of simpler component problems from which the complex problem can be constituted 
according to a set of defined rules.  This is similar to a brick building.  Each brick is simple to 
construct but the building may have a very complex shape. 

Automobile researchers have been trying to model metal forming for more than twenty years 
[Hatt 1993].  Early efforts employed 'implicit' finite element codes.  Programs such as 
NASTRAN, MARC or ANSYS solve a global sparse matrix to estimate stresses and 
deformations.  In practical forming problems, this matrix can consist of 20 000 to 50 000 
elements.  Because metal forming simulations are time-dependent, the matrix must be solved 
a number of times to get the answer right.  Implicit codes thus took too long. 

F.E.M. is usually performed by modelling an actual or imaginary forming process moving 
through a series of small but discrete steps. [Chu, Soper  1985].  The calculations begin with 
set initial conditions (blank shape, lubrication, die geometry etc.) and continue until the 
desired part shape has been reached or some unacceptable result such as tearing, wrinkling, 
localised necking, or thinning is indicated.  If the modelling shows that the part cannot be 
formed, the initial conditions must be changed until an acceptable solution is reached. 

Initially F.E.M. was not very successful because of the complexity of "real" metal forming 
problems and the large amounts of computing time required.  An example of the problems 
faced by F.E.M. is the modelling of a simple lift out panel by General Motors [Arlinghaus 
1985].  Due to (i) the large number of elements and associated size of three dimensional 
stiffness matrix required for accurate modelling, and (ii) the non-linearities of the problem 
caused by material, geometric and boundary conditions, the problem required hundreds of 
hours on an IBM 3081 to be solved.  To produce results inside a day, the team had to use a 
CRAY 1-S/2000 with a machine coded program.  

During the eighties, computers became faster and F.E.M. more accurate and more efficient. 
Modern Finite Element packages such as ABAQUS are capable of analysing metal forming 
problems taking plastic flow, lubrication, friction and formability into account [Hibbitt, 
Karlsson and Sorensen 1989 I].  Recent work at Volvo Personvagnar Olofström has shown 
good results can be achieved by the use of dynamic F.E.M. using programs originally 
developed for motor vehicle crash simulation [Hyllander 1991].  Dynamic F.E.M. codes solve 
plastic deformation by 'explicit' codes.  Explicit codes do not solve a global matrix and so 
require less computing time [Hatt 1993].  However the time required is still large.  The 
explicit F.E.M. program PAM-STAMP requires up to two months to analyse a complex 
stamping [Hatt 1993].  A recently reported problem modelled an aluminium sheet metal 
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forming problem that involved 127 000 finite elements in the mesh [Clifford 1993].  It 
required 65 hours of CRAY supercomputer CPU time, probably over a week of real time. 

F.E.M. is also no longer exclusively performed on mainframe computers.  The advances in 
computing technology have produced Personal Computers with processors such as the 80386 
which for smaller meshes (less than 60 000 nodes) can perform the required calculations as 
fast as mainframes [Bussler and Paulsen 1988]. 

Despite advances in algorithms and computer power, the basic problems of F.E.M. remain, 
namely, the critical importance of element selection, the accuracy of both the mathematical 
model and the input data and their expense. 

The importance of element selection was stated by MacNeal and Harder [1985] who said 
"Nothing is as important to the success of Finite Element Analysis as the accuracy of the 
elements...it has been shown that almost every problem is capable of evoking results ranging 
from excellent to poor". 

R.W.Clough [1990] states that "the results of a finite element analysis cannot be better than 
the data and judgement used in formulating the mathematical model, regardless of the 
refinement of the computer program that performs the analysis".  He then examines the 
modelling of stress and strain by finite elements and adds "...an even more troublesome 
tendency among many engineers [is] to accept as gospel the stress values produced by a finite 
element computer program... clearly the assumption of specified strain patterns used in 
formulating the element stiffness makes it impossible for stress equilibrium to be satisfied 
locally at arbitrary points within elements".  F.E.M. programs are also expensive e.g. 
ABAQUS, a mainframe based system and ANSYS, a PC based system are both over 
USD 10 000. 

Designers of sheet metal parts need simple analytical tools to give them guidance about what 
might or might not work as they are developing part designs.  Today's F.E.M. codes are too 
complex for this purpose [Hatt 1993]. 

This has led to the use of a simplified finite element analysis in which only selected regions 
of the part are analysed [Gloeckl and Lange 1983]. 

However the problems described above have lead to the development of alternative methods 
to perform the same tasks as F.E.M. or to provide better initial condition estimates, thereby 
reducing computing time. 
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2.2.1.3. Simplified Models of Forming Processes. 

Because the analysis of actual sheet metal forming is so complex, tool designers have 
developed simple models of forming processes which can be solved and displayed on simple 
personal computer systems [Duncan and Sowerby 1981].  For example, if the sheet is 
clamped in the die ring, either as a flat surface or as a developable surface, it is assumed that, 
as the punch descends, the sheet is penetrated by the punch and at any instant, elements of the 
sheet are either unmoved or adhere to the punch.  Clearly this is a gross simplification of the 
process but the analysis is not difficult as it is a simple interpenetration exercise.  It is a useful 
aid and the designer can adjust the orientation of the punch and blank on the screen to obtain 
a suitable "foot-print" of the punch on the sheet. 

Similar to this "foot-print" approach is the use of total strain theory.  This considers the 
complex curves on a part to be a straight line.  The change in length caused by the punch (or 
other deformation devices) is then used to calculate the strains, determined by the ratio of 
final to initial length.  This information is used to predict blank shape and possible defect 
sites.  This method has been used to good effect by both NISSAN [Furubayashi 1985] and 
MAZDA [Yamasaki, Nishiyama and Tamura 1985] motor companies. 

Another modern technique which predicts blank shape and gives some information on the 
forming process is Slip line field analysis.  Slip line fields are a method of solving problems 
relating to the plane plastic flow of a rigid-perfectly plastic solid [Johnson, Sowerby and 
Venter 1982].  The solution consists of a statically admissible stress field and a kinematically 
admissible velocity field that is related to the stress field according to the flow rule, there 
being positive plastic energy dissipation where deformation occurs.  Slip-line fields and 
hodographs are graphical solutions of the plane flow equations. While successful for simple 
shapes slip line fields are not suitable for modelling complex re-entrant shapes.  

2.2.1.4. Geometric Modelling and The Ideal Sheet Metal. 

In forming, the sheet is transformed from a plane to a non-developable surface [Duncan and 
Sowerby 1981].  Some deformation is necessary but for practical purposes it may be 
preferable that this should be done by in-plane shear distortion rather than thinning.  Hence 
the ideal sheet would be considered to have an infinite strength or resistance to deformation in 
the through thickness direction i.e. during deformation the thickness would remain constant. 

An example of a sheet metal forming model of the deformation of this "ideal" sheet is the 
Constant Area Transformation model, which is detailed in the next section.  If thickness is 
constant throughout deformation and volume is conserved (as it is in common metal forming 
processes), the area of the sheet material is invariant.  Though in reality no such ideal sheet 
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metal exists, many traditional design rules use a constant thickness (and thus constant area) 
approach. 

We would wish to form the sheet without force, hence the in-plane yield stress should be 
zero.  Obviously a component of zero strength is of no use so we would also wish some 
subsequent hardening mechanisms. 

While no such metals exist, modern drawing quality steels come close to this ideal. Their high 
normal plastic anisotropy (r values) [Lange 1985], mean that they deform in the plane more 
easily than in the through thickness direction.  It is possible also to develop sheet that will 
gain strength after forming by strain ageing. 
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2.3. CONSTANT AREA TRANSFORMATION BLANK SHAPE PREDICTION. 

Computer Aided Blank Shape Prediction is a computer modelling method that can be used to 
predict blank shape.  It is a geometric transformation based on an assumption of constant 
area. Previous work by J.L.Duncan, R.Sowerby and E.Chu [1986] detailed a method of 
constant area transformation; this has been used to develop a computer modelling package 
[Templer 1987]. 

Computer Aided Blank Shape Prediction may be considered in two parts:  Element 
Transformation and Boundary Specification. 

2.3.1. The Constant Area Transformation. 

The argument for applying the assumption Constant Area Deformation to 'real' sheet metal 
may be found by examining metal forming theory and practice as follows [Marcimak & 
Duncan 1992]. 

2.3.1.1. Justification of the Constant Area Transformation. 

If we subject an element of metal to various tractions, as shown in Fig. 2.2 we will induce in 
it a two dimensional stress state. 

σ

τ

σY

X

XY

 

Fig 2.2  Two dimensional stress state on an element. 

The stress state of the element can be transformed to the actions of two principal stresses 
using a Mohrs circle of stress as shown in Fig. 2.3.  This is a good approximation of sheet 
metal stamping deformation as the third principal stress normal to the sheet which is created 
by the tooling is often less than a few percent of the in-plane stresses.  
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Fig 2.3  Mohr circle of stress and the calculated principal stresses. 

If this stress state reaches a certain level governed by the yield criterion, the element will 
deform or strain.  Two common yield criteria are the Von Mises and Tresca yield conditions, 
shown for a two dimensional stress state in Fig. 2.4. 
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Fig 2.4  The Von Mises and Tresca yield criteria in the plane stress space (σ3=0). 

If we consider also the strains, ε1  vs. ε2 and plot the membrane strains, we obtain a forming 
limit diagram.  A plane stress forming limit diagram for a typical simple sheet metal part is 
shown in Fig. 2.5.  It is important to remember that stress states are limited by strength and 
yield criteria while strain states are limited by ductility or stability. 
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Fig 2.5  The various limits to a simple sheet forming process. 

Ductile fracture may be caused by stresses exceeding the critical shear stress.  In the strain 
space diagram this is illustrated by the two curves marked fracture on Fig. 2.5.  In the left-
hand side, shear occurs on a plane perpendicular to the surface as a result of high drawing 
stresses, ε1 = -ε2 ; on the right-hand side, shear occurs at 45° to the sheet surface,  ε1 = ε2.  
Wrinkling failure is not governed solely by a material property, it is associated with the 
constraint imposed and buckling characteristics governed by the elastic modulus and 
thickness. 

There is a further limit inherent in sheet metal forming.  Sheet metal forming comes about as 
a result of tractions transmitted through the sheet; these tractions arise from the normal forces 
exerted by the tooling on the sheet.  The tractions in the plane of the sheet are mostly tension.  
However if the material is drawn into a converging space, compressive tractions will arise.  A 
typical example is in drawing  the flange of a deep cup.  The circumferencial forces and 
hence stresses are compressive while the radial stress varies from a high tensile value at the 
inner radius of the flange to zero at the outer edge.  This is a limiting stress case in sheet 
metal forming; the membrane principal stresses in the sheet cannot both be compressive,  and 
the limit is when σ2 is negative and σ1 is zero i.e. when  ε2 = -2ε1.  This is illustrated by the 
line of slope -1/2 in Fig. 2.5. 

As can be clearly seen from the safe forming diagram, the basic slope of the window of safe 
deformation is elongated with the largest dimension having a slope of -1.  This corresponds to 
ε2 = -ε1 i.e. ε3 = 0, or constant area deformation.  Since the strains that can be maintained in 
constant thickness deformation on the safe forming diagram are much larger than in other 
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strain paths, the majority of high strain sheet metal forming processes use this direction of 
straining.  The diagram below (see Fig. 2.6) illustrates that this Constant Area direction is also 
a favourable stress state to reach yield. 
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Fig 2.6  The effect of stress directions on effective stress (and therefore the energy) 
required for deformation. 

If one remembers that the tensile forces transmitted through the sheet must obey an 
equilibrium condition then it seems likely that those regions in which the stresses required for 
deformation are at a minimum  (σ1 = -σ2  = Y/2) will be more likely to deform than regions 
where one stress is maximised (plane strain) or both are large (σ1 = σ2 = Y). 

Thus, although few metal forming processes are perfect Constant Area Transformations, the 
majority may be approximated by such an assumption. 

2.3.1.2. Constant Area Transformation Method. 

The constant area transformation is a method of transforming the elements of a deformed 
surface onto a flat blank. Each element is assumed to deform without change in thickness or 
area (plane strain conditions) and continuity between elements is assumed so that there are no 
gaps or overlap. 

The deformed surface is first covered with a quadrilateral grid having nodes I, J, K ...N as 

shown in Fig. 2.7. This can be drawn on the part or be generated by a computer mesh 
generation system. The nodes of the grid are then digitised and when these co-ordinates are 
known, geometric calculations and transformations can be carried out. The mapping 
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procedure is illustrated in Fig. 2.7.  Fig. 2.7(a) shows a region of mesh located on the 
deformed part.   
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Fig 2.7  (a) Region of mesh located on the surface of a part.  (b) - (e) The complete 
mapping procedure. 

The boundary nodes i,j,k etc. are laid down on the flat sheet using some arbitrary rule.  The 

choice of these rules and the effect of the different assumptions and rules regarding the 
placement of boundary nodes is discussed in detail in the next section. With known nodes, 
triangles ijk, jkl etc. can be determined.  
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An example of a simple boundary rule is to assume that the boundary nodes will lie along 
straight lines.  The two dividing lines along nodes IJM and IKN are assumed in this case to be 
at right angles. The distances between i,k,n (on the flat plane) and  i,j,m are calculated and 
plotted along the X and Y axes. This is performed by determining the distances between the 
nodes and 'laying them out flat' on the axes.  

It now remains to calculate the position of L on the plane ( l ). This calculation is shown in 
Fig. 2.7(b)-(e). The first offset h1 is calculated by dividing the area of the triangle JKL by half 
the length of the line jk.  To conserve the area of the planar triangle point l1 must lie on a line 
parallel to jk a distance h1 away. Using the area of triangle JLM and the line length jm, l2 can 
be calculated which must lie parallel to jm. Similarly l3 can be calculated. 

As shown in Fig. 2.7(e) the lines form a triangle within which l, the transformed position of L 
is assumed to lie. Duncan, Sowerby and Chu [1986] suggest the centroid of the triangle as the 
location of point l. Thus the quadrilateral JKLM has been mapped from a 3-D deformed 
surface onto a plane using the constant area transformation. After locating point l the rest of 
the transformed surface can be determined by repeating the procedure. 

For computing the blank shape, a slightly different algorithm to the one detailed above is used 
as shown by Fig. 2.8. 



COMPUTER AIDED MODELLING OF SHEET METAL FORMING       R.G.TEMPLER 

   30 

J

I

K

L

Z

X

Y

h1

i j m

k

n

Y

X

(a)

(b)

h2

i j m

k

n

Y

X

(c)

l 1

l 2

h3

i j m

k

n

Y

X

(d)

i j m

k

n

Y

X

(e)

l 3

l2

l 3

l 1

 

Fig 2.8  (a) Quadrilateral of a mesh located on the surface of a part.  (b) - (e) The 
complete computer aided mapping procedure. 

This method of transformation uses the information of the single quadrilateral element of 
interest.  In all other respects it is identical.  This method is adopted because of the finite 
nature of the meshes analysed and allows transformation right to the edge of the mesh rather 
than stopping one element back. 
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2.4. BOUNDARY SPECIFICATION. 

The development of Computer Aided Blank Shape Prediction has been three fold, 

(i) Investigation of new boundary definition methods, 

(ii) Developing methods of assessing mapping performance, 

(iii) Investigating possible forming information obtainable from mapping. 

This section details the two existing methods of boundary specification and the two new 
methods that have been developed. 

2.4.1. Existing Methods of Boundary Definition. 

The effects of boundary definition on finished blank shape can be determined by considering 
a simple three-dimensional part (see Fig. 2.9) and transforming it to a flat blank using several 
boundary definition methods. 
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Fig 2.9  Test Shape. 

The two existing boundary definition methods are (i) regular lengths laid at right angles, as 
shown in Fig. 2.10 and (ii) actual lengths laid at right angles, as shown in Fig. 2.11.  These 
boundaries only accurately model forming conditions when there is very little change in shape 
during deformation and the boundaries were originally both straight and at right angles, thus 
restricting the range of parts which may be analysed.  If we consider most real parts, this is 
rarely the case. 
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Fig 2.10  Regular lengths at right angles. 
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Fig 2.11  Actual lengths at right angles. 
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2.4.2. New Methods of Boundary Definition. 

Common 'real' boundaries are planes of symmetry and free edges.  

2.4.2.1  Plane of Symmetry. 

If we consider the plane of symmetry shown in Fig. 2.12 we note that no shear occurs along 
the plane, therefore lines parallel and close to the plane of symmetry remain parallel, and 
lines close to and perpendicular to the plane of symmetry remain perpendicular.  This is 
because the plane of symmetry is a principal stress plane. 

Plane of Symmetry

Perpendicular Distances Constant

Shear Stress Zero

 

Fig 2.12  Elements adjacent to an axis of symmetry. 

To model this boundary the 'Curve Match' boundary specification method was developed.  To 
simulate the presence of a plane of symmetry at the boundary, lines parallel to the boundary 
remain parallel; this is illustrated by Fig. 2.13. 
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Fig 2.13  The 'curve match' method of blank shape prediction. 

In the 'Curve Match' method shown in Fig. 2.13 the boundary closest to the Y axis is being 
laid down.  Starting from the origin we are attempting to find the plane position of the three 
dimensional point K.  First the true length of line lik is determined.  The distance between the 
Y axis and the point K, ∆x1, is calculated and conserved.  Point k is found by plotting a line 
parallel to the Y axis offset by the distance ∆x1 and then swinging the known length lik in an 
arc to intersect the line.  This intersection gives the plane transformation of the point K, point 

k, as calculated by the 'Curve Match' method. 
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2.4.2.2  Free Edge. 

We now consider the Free edge shown in Fig. 2.14. 
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Fig 2.14  A free boundary.  No stress can be maintained perpendicular to the 
boundary. 

The only stresses that can act on the element are parallel to the free edge.  Taking this further 
if we consider a small element in a corner, no forces can act on it, and the element is 
undeformed, with the internal angles remaining constant.  If a free boundary has only a low or 
zero stress gradient perpendicular to it, the relative angles of the elements of the boundary 
will be approximately conserved. 

To model this boundary the 'Angle Conservation' boundary specification method was 
developed.  As an approximation of this in the Angle Conservation method three dimensional 
line lengths and internal angles are preserved, as shown in Fig. 2.15. 
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Fig 2.15  The 'angle conservation' method of blank shape prediction. 

In the 'Angle Conservation' method shown in Fig. 2.15 the boundary closest to the Y axis is 
being laid down.  Starting from the origin we are attempting to find the plane position of the 
three dimensional point K.  First the true length of line lik is determined.  The angle between 
the points K I J, α, is calculated and conserved.  Point k is found by plotting a line of length 
lik at an angle of α to the X axis.  This plot gives the plane transformation of the point K, point 
k, as calculated by the 'Angle Conservation' method.  The position of point N and other points 

are found by calculating the internal angles β and γ.  These internal angles can then be added 
to give the total angle change.  This can then be used along with the true length lkn to find the 
position of point N. 
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2.5. COMPUTER AIDED BLANK SHAPE PREDICTION ASSESSMENT. 

The development of new methods of boundary specification prompted investigation of means 
of assessing the performance of the various algorithms. 

2.5.1. Visual Assessment. 

The most obvious means of assessing the correctness of the result is visual - does the shape 
produced look like a possible blank shape for the original three dimensional part; is the 
connectivity correct; are the boundaries smooth etc.  This is an important method but is very 
difficult to quantify.  Two methods that produce similar shapes can be visually hard to tell 
apart. 

2.5.2. The Area Ratio. 

Another method of assessment developed by the author is the comparison of areas.  By 
definition in the constant area transformation we are attempting to conserve area.  A simple 
possible measure of the accuracy and correctness of the transformation can be found by 
comparing the areas of the three dimensional and two dimensional quadrilaterals that make up 
the initial part and the final blank shape. 

This gave rise to an area ratio for each quadrilateral, 

AR = Area of 3D element
Area of element in blank

      (2.1) 

The information that may be obtained by considering individual quadrilaterals' area ratios is 
detailed in a later section.  Only the average area ratios are considered in this section.  The 
average area ratio may be defined as the total of all the area ratios divided by the number of 
quadrilaterals.  The average area ratio, or AR  provides a numerical measure of the accuracy 
of the constant area assumption over the entire part.  The following results also indicate that 
as AR  approaches 1.0 the accuracy of the blank shape prediction increases.  Thus AR  
provides a convenient method of assessing Computer Aided Blank Shape Prediction 
assessment. 

If we consider the simple test piece illustrated in Fig. 2.9, the average area ratios for the four 
boundary specification methods are shown in Table 2.16.  The increase in AR  corresponds to 
an increase in the visual accuracy of the mapping - it looks more like the original part shape. 
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Table 2.16  Average area ratio values. 

Method of Boundary Specification Fig. No. AR  % Error 

Regular side length at 90° 2.10 1.039 3.9 

Actual side length at 90° 2.11 1.036 3.6 

Curve Match 2.13 0.994 0.6 

Angle Conservation 2.15 0.994 0.6 

The above results suggest that the two new methods of blank shape prediction are more 
accurate.  Analysis of more complex components can now be attempted with confidence.   
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2.5.3 Auto body pressing Analysis. 

One of the biggest users of pressed sheet metal is the auto industry.  In this section part of an 
aluminium auto body panel is analysed by the preceding methods.  The component was 
marked with a fine square mesh before pressing then digitised after forming [Z. Zhang 1993].  
The auto body pressing is shown in Fig. 2.17.   

 

Fig 2.17  A fine map mesh of the 3D auto part.  The area used for the blank shape 
prediction is outlined by the bold line. 

In Fig 2.17 the boundary OB was towards the centre of the deformed sheet and was close to a 
plane of symmetry.  Boundaries OA and BC were near to free edges and boundary AC was in 
the middle of a sizeable part of the sheet. 

In Fig. 2.18 the bold outline borders the area used as a test for the blank shape prediction 
program.  This area then had a quadrilateral mesh drawn onto it.  The mesh was digitised and 
used as the input for the program, see Fig. 2.18.  The deformed shape boundary corner nodes 
are labelled O, A, B, and C.  The predicted blank shape corner nodes will be denoted by O,  
A', B', and C'.  O is the reference node and is common to both deformed and blank shapes.  
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Fig 2.18  The 3D digitised mesh used as the input for the blank shape prediction.  The 
bold line denotes the chosen boundary. 

The section chosen had been, prior to deformation, marked with a regular grid mesh.  This 
permitted large strain analysis to be performed on the part and also allowed the 'initial' shape 
of the drawn-on grid flat blank to be determined.  The initial blank shape was determined by 
plotting the intersections of the drawn-on mesh (marked after deformation) and the scribed 
regular mesh (marked prior to deformation) as shown in Fig. 2.17.  
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The intersections with the regular mesh produce the 'initial' blank shape shown in Fig. 2.19.  
This is used as a comparison for the various predicted blank shapes. 

 

Fig 2.19  The 'actual' initial blank shape of the deformed section.  This was 
determined by transforming the intersections between the fine mesh and the coarse 
mesh transformed back to the original rectangular grid. 
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Fig 2.20 illustrates the blank shape predicted using fixed boundary nodes as described in 
section 2.4.1 (line style ÄÄÄÄ) overlaid on the 'actual' blank shape (line style - - - - -).  The 
average area ratio, AR  is 1.059 which shows reasonable agreement between the area of the 
blank shape and the deformed part.  Clearly there is little agreement along the boundary 
nodes.  While A and A' are close the boundary between O and A is curved while O and A' 
are, by definition, straight.  The same applies to OB.  The large distortion along boundary BC' 
is caused by the large bump in the deformed part at this point; because the transformation 
uses a straight line approximation errors occur in areas of high curvature.  The bump is also 
be an area of biaxial stretching, where the assumption of constant area is less valid.  It is this 
that causes the distortion.  While the mapping is generally good, the boundary match is poor. 

 

Fig 2.20  The blank shape predicted using fixed boundary nodes overlaid on the actual 
blank shape.  The AR  is 1.059. 
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Fig 2.21 illustrates the blank shape predicted using the angle match method of assigning 
boundary nodes, overlaid on the 'actual' blank shape.  The average area ratio, AR , is 0.9989 
which shows excellent agreement between the area of the blank shape and the deformed part.  
Boundary OA is mapped with increased accuracy, OA' following the curve to produce a more 
accurate shape.  OB is not well mapped by OB' as the angle conservation curves away at the 
top.  C' however lies closer to the position of C than in the fixed side prediction.  While the 
mapping is generally good, and the lower boundary accurate, the OB boundary match is poor. 

 

Fig 2.21  The blank shape predicted using the angle conservation method of placing 
boundary nodes overlaid on the actual blank shape.  The AR  is 0.9989. 
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Fig 2.22 illustrates the blank shape predicted using the curve match method of assigning 
boundary nodes, overlaid on the 'actual' blank shape.  The average area ratio, AR , is 1.024 
which again shows good agreement between the area of the blank shape and the deformed 
part.  Boundary OA is mapped with reasonable accuracy, OA' following the curve but at the 
end near A' curving in the wrong direction.  OB' is extremely well mapped and it follows OB 
almost perfectly.  C' however lies further from the position of C than the fixed side prediction.  
While the mapping is generally good, and the OB boundary accurate, the OA boundary match 
is only reasonable. 

 

�  

Fig 2.22  The blank shape predicted using the curve match method of placing 
boundary nodes overlaid on the actual blank shape.  The AR  is 1.024. 
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Obviously the best result would be to combine the boundary methods, allowing the 
appropriate boundary condition to apply to each side.  The prediction program has been 
modified to allow this, the user being given three options for each boundary: fixed, angle 
match and curve match.  Specifying a separate boundary condition for two boundaries 
produced the result shown in Fig. 2.23.  In this case the OA boundary is modelled by angle 
conservation and the OB boundary by curve matching.  There is an improved correspondence 
to the real part, as edge OA is free and boundary OB is in the middle of a wider part of metal 
and forms a rough plane of symmetry. 

 

Fig 2.23  The blank shape predicted using the curve match method for boundary OB' 
and the angle conservation method for boundary OA'.  The AR  is 1.002. 
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The average area ratio, AR  is 1.002 showing excellent agreement between the blank area and 
the area of the deformed shape.  Boundary OA is mapped with good accuracy, OA' following 
the curve.  OB' is extremely well mapped as it follows OB almost perfectly.  C' lies closer to 
the position of C than any of the previous predictions.  The general mapping is encouraging, 
with both boundaries accurately mapped. 

Table 2.24  Blank Shape Transformation Results. 

Boundary Mapping Method AR 

Fixed 1.059 

Angle Conservation 0.9989 

Curve Match 1.024 

Combined Angle Conservation and Curve Match 1.002 

 

These results, shown in Table 2.24, illustrate the benefits of increased accuracy in boundary 
node placement.  As illustrated by both the average area ratio and visual inspection, the closer 
the boundary node match the more accurate the total mapping.  Boundary node accuracy is 
markedly increased by the use of the two new methods, angle conservation and curve match.  
These provide a simple yet realistic method of modelling common real life boundary 
conditions.  The inclusion of these methods in a Computer Aided Blank Shape Prediction 
program increases both the accuracy of the prediction and the range of shapes that can be 
mapped. 
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2.6. PROVIDING MORE THAN SHAPE INFORMATION WITH COMPUTER 
AIDED BLANK SHAPE PREDICTION. 

Computer Aided Blank Shape Prediction involves a numerical analysis of a deformed three 
dimensional surface.  Can this analysis provide us with further forming information about the 
part? 

As previously mentioned (in section 2.5.2) an Area Ratio of the areas of the three dimensional 
quadrilateral to the plane quadrilateral is of use in determining the accuracy of the 
transformation.  In the following section further uses for the information obtained by the 
individual area ratios (AR) as opposed to average area ratio ( AR )will be examined. 

2.6.1. Effective Strain vs. Area Ratio. 

If we compare plots of effective strain with plots of values of area ratio, there are several 
notable similarities.  Effective strain is a measure of the work done during a non-strain-
hardening deformation and may be defined as:- 

ε ε ε ε= + +2
3 11

2
22
2

33
2        (2.2) 

Figure 2.25 is a contour plot of effective strain calculated from the measured deformed small 
grid, using the large strain analysis method described in appendix 7.1.  The regions of greatest 
effective strain are labelled A to E.   
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Fig 2.25  The effective strain (ε ) contour map.  The contours range from 0.1 to 0.5.  
Peak strains are: A 0.67,  B 0.43,  C 0.51,  D  0.44,  E 0.63. 

Figure 2.26 is a contour plot of the areas where the area ratio exceeds 1.1 (red) or is below 0.9 
(blue).  These regions are labelled a to e.  It is immediately obvious that there is a good 
correlation between areas of high effective strain and areas where the area ratio deviates 
significantly from 1.0.  In particular areas A and a, B and b and C and c are in very similar 
positions. 
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Fig 2.26  The area ratio contour map (AR).  RED 1.1 <AR< 1.5, BLUE 0.5 <AR< 0.9. 

The Area Ratio for individual quadrilaterals provides us with clues to the location of areas of 
high effective strain.  Areas of high effective strain are also areas where failure, or forming 
difficulties are more likely to occur.  Thus the 'local' area ratios provide us with some simple 
predictive forming information. 

These results indicate that the Computer Aided Blank Shape Prediction program developed 
may not only provide a predicted blank shape, but also a clue to problem forming areas. 
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2.7. CONCLUSIONS. 

This work on computer aided blank shape prediction has resulted in three major 
improvements.   

The two new methods of specifying boundary shape, angle conservation and curve match, 
permit the experienced designer to improve the predicted blank shape.  By using their 
knowledge of the component, what edges are free or approximate planes of symmetry the 
designer can input this information to the computational method.  The results obtained can 
give a better approximation of the actual blank shape, both visually and numerically. 

The area ratio can provide information on the accuracy of the constant area transformation.   

An area with area ratios significantly greater or less than one may indicate possible areas of 
high strain, areas which may cause problems during the forming process. 

These three developments may enable the designer to more accurately and usefully predict 
blank shape, thus speeding development and eventual production. 
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3. FOLDED DEVELOPABLES. 

This chapter examines folded developables.  Developables are defined and the mathematics 
that governs their behaviour is presented.  The folding of developable surfaces along curved 
lines is introduced and discussed and a computational method for modelling folding is 
presented along with examples of its use. 

3.1. DEFINITIONS OF A FOLDED DEVELOPABLE. 

Before embarking on a mathematical description of folded developables several definitions 
are necessary.  To define a folded developable, notation, developable surfaces and 
'developments' must first be defined. 

3.1.1. Notation. 

Scalars 

s arc length parameter along a curve 

β angle between the principal normal and the tangent plane 

γ angle between the tangent and a generator 

α fold angle 

S1,2 developable surfaces 1 and 2 

P a point on the developable surface 

C a space curve 

K first curvature of a space curve, surface curvature in a particular direction 

K1,2 principal curvatures of developable surfaces S1,2 

Kg geodesic curvature 

τ torsion of a curve 

τg geodesic torsion 

ω angle between the osculating plane and the surface normal 

ρ radius of curvature 



COMPUTER AIDED MODELLING OF SHEET METAL FORMING       R.G.TEMPLER 

   52 

Vectors 

b binormal unit vector 

n unit principal normal vector to a curve 

N unit vector normal to a surface 

r position vector of a point 

t unit tangent vector of a curve 

u unit vector in a tangent plane normal to a surface curve 

This notation applies for Chapters 3, 4 and 5. 

3.1.2. Developable Surfaces. 

The Shorter Oxford Dictionary defines a developable surface as "a ruled surface in which 
consecutive generators intersect".  The Encyclopaedic Dictionary of Mathematics for 
Engineers [Sneddon 1976] defines a ruled surface as "a surface that can be generated by 
moving a straight line with one degree of freedom".  This is shown in Fig. 3.1, which also 
shows the developable surface being 'unwrapped' to form its development.  The various 
positions of the line, moved with one degree of freedom, identify the "generators".  Thus a 
developable surface or developable is a ruled surface with generators that intersect either at a 
point or intersect and are tangent to some arbitrary curve.  This intersection point or curve is 
known as the edge of regression.  Thus a developable surface is the surface described by a 
series of lines tangent to the edge of regression. 

Development
(Plane) Generator

Developable Surface

 

Fig. 3.1  A developable surface showing the plane development being 'unwrapped' 
from the surface. 
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Common developable surfaces have simple edges of regression.  The two most common 
developable surfaces are the cone and the cylinder.  The cone has an edge of regression at its 
vertex.  This means that the generators that form a cone have the vertex of the cone as their 
origin.  The cylinder has an edge of regression at infinity because the generators are parallel. 

3.1.3. Development. 

A development of a developable surface is formed when a developable surface is unwrapped 
onto a flat plane.  In the process of unwrapping generator length and arrangement is 
preserved.  The arc distance between two points on a developable is also conserved in the 
development.  Because a development is flat its curvature in any direction is zero. 

For a surface to be developable it must be capable of being unbent into a plane; i.e. a 
developable surface can only be deformed by bending about its generators.  A cone may be 
unbent to form a segment of a circle and the radius of the circle will be the slant height of the 
cone.  This is the development of a cone.  Likewise the development of a cylinder is a 
rectangle with one side equal to the length of the cylinder and the other side equal to the 
circumference. 

3.1.4. Folded Developables. 

A folded developable is a developable surface that has been folded along an arbitrary curve.  
Folding a developable along an arbitrary curve will produce two separate developable 
surfaces joined along the fold curve.  The total object is known as a folded developable. 

Not all curves on a developable surface can be used as fold curves; for example a folded 
developable cannot be formed by folding one developable surface along a straight line which 
is not itself a generator (alternatively it might be stated that a straight fold folds the 
developable surface back on itself resulting in two identical surfaces occupying the same, or 
in a physical example where thickness is greater than zero, very close to the same, space).  
Some folding curves may contain points of inflection that cause the folded surfaces to change 
the sign of their curvature.  An example of a folded developable and its development is shown 
in Fig. 3.2. 
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Developable Surface Folding Curve

(a)

 

A

B

(b)

 

A B

(c)

 

Fig 3.2  Curved line folding (a) a folding curve on a developable surface.  (b) folding 
along the curve to produce the second developable surface B from the original surface 
A.  (c) the plane development of both surfaces. 

Folded developables can be made of sheet material - flat sheets of cardboard, sheet metal or 
plastic for example.  Sheet metal represents the area of largest potential for folded 
developables due to its widespread use. 

�
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3.2 A REVIEW OF THE MATHEMATICS OF FOLDED DEVELOPABLES. 

The mathematics of folded developable has seen two major areas of contribution; 

1. the creation and description of developable surfaces. 

2. elucidation of folded developables. 

3.2.1 Developable Surfaces. 

Developable surfaces have been detailed in many mathematical texts.  Willmore [1959] 
comprehensively details developable surfaces, specifying their mathematical and geometric 
properties. 

A large amount of the work on developable surfaces has been produced by Naval architects.  
Ship hulls are traditionally constructed from steel plates or timber planks.  If the hull is 
formed from developable surfaces large savings in construction time can be achieved as the 
hull material does not need to be deformed. 

Vickers, Bedi, Blake and Dark [1987] describe the use of computer generated developable 
surfaces to loft and fair hull shapes.  Lofting is the process of laying out a full size working 
drawing of ship lines and contours, usually on the wooden floor in the loft above the plant.  
Fairing is the art of modifying a surface to achieve smoothness of form in all three views 
(plan, side and end elevation).  Fairing is a skilled, time-consuming, iterative approach in 
which lines drawn in one view are projected into the other two views until all lines appear 
acceptably smooth. 

To create a developable hull shape, the hull is initially described by a series of cross sections 
known as station lines.  These cross sections are then joined by a series of polynomial splines 
known as profile lines.  Developable surfaces are generated between pairs of profile lines as 
shown in Fig. 3.3. 
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Fig 3.3  Straight line generators for developable surfaces. 

The normals to the generator lines may be calculated from; 

( )

( ) i2

i1

LsN

LrN

×=

×=

j

i

x
dx
d

x
dx
d

.       (3.1) 

The tests for developability are; 
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× =
=

0
1.

.             (3.2) 

The use of such a system to design ship hulls proved extremely successful with an estimated 
cost saving of USD 15000 to 20000 per ship.  This was due to the greatly reduced time taken 
for lofting and fairing and the more efficient use of material. 

Two methods for creating simple developable surfaces between arbitrary curves are described 
by Weiß and Furtner [1988].  The first method, by Weiß, follows seven steps to create 
developable surfaces between two space curves p and q: 

1. parameterise the curves p and q. 

2. take an arbitrary point P on p and its left and right neighbour Pl and Pr on p. 

3. on q pick point Q, Ql and Qr. 

4. test if Ql, Qr, Pl and Pr are coplanar (using modified forms of equations 3.1 and 3.2) and if 

they are not, 

5. pick out the 'next' series of points Q-new, Ql-new and Qr-new on q as shown in Fig. 3.4 and test 

again; and if the four points are finally coplanar 
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6. store the co-ordinates of P and Q 

7. go on with the 'next' P on p until finished. 

p

q

P P
P

Q Q
Q

r
l

r-new

l-new new

r

l

Q

Q Q

 

Fig 3.4  Developable generators connecting the curves p and q. 

This method simply requires a small computer program to allow developable surfaces to be 
generated between two general curves. 

The second method, developed by Furtner is more accurate, but depends on the ability of 
curves p and q to be defined parametrically.  If the curves are expressed in the parametric 
form p=p(u) and q=q(v) then the point Q which defines the developable surface generator 
may be found by determining its corresponding parameter v from the equation 

( ) ( ) ( ) ( ) ( ) 0.. =′−′= vuvuv u qpqpd .     (3.3) 

This equation is solved numerically using either a change in tangent angle between 
developable surfaces or a maximum step distance as an aid to convergence on a correct 
solution. 

The major advantage of Furtner's method, besides increased accuracy is the increased 
robustness of the algorithm.  It can be successfully applied with less user intervention. 

Naval Architects Letcher, Brown and Stanley [1988] also examine the use of developable 
surfaces for lofting and fairing ship hulls.  In addition to the approach of Vickers et al. [1987] 
and the method described by Weiß they consider the end effects of developable panels. 

At the end of a pair of profile lines it may not be possible to form developable surfaces.  The 
creation of imaginary extensions of the profile lines, which allow the surfaces to 'run out', as 
shown in Fig. 3.5, ensures the entire panel is composed of developable surfaces. 



COMPUTER AIDED MODELLING OF SHEET METAL FORMING       R.G.TEMPLER 

   58 

Generators

Upper Profile Line

Lower Profile Line

Run Out

 

Fig 3.5  The end of a developable panel from a yacht with the 'run out' shown by the 
dashed lines.  The run out allows the panel to be fully specified by developable 
surfaces that are then trimmed to size. 

This method has been extensively applied in the commercial software packages 
FAIRLINE™, AutoYACHT™ and AutoSHIP™. 

Aumann [1991] described the extensive mathematical conditions for the extension of Weiß 
and Furtner's methods to use developable Bézier patches.  The patches are used in place of the 
flat quadrilaterals to form a developable surface between two curves. 

Though complex, this method makes it possible for surfaces to be first order continuous (i.e. 
tangents continuous) and in some cases second order continuous (i.e. rate of change of the 
tangent along the surface continuous). 

An unusual approach to developable surfaces was taken by Redont [1989] who looked at a 
novel method for representing and controlling developable surfaces.  In Redont's method the 
developable is generalised by describing its spherical indicatix.  This is the transformation of 
a representative curve on the developable onto a unit sphere, where the position of the curve 
X(s) say, is transformed to a curve N(σ) on the sphere where σ is a function of the arc length 
of the developable, s.  A knowledge of this transformation, plus the angular relationship 

between the tangent to the representative curve and the normal to the surface, allows the 
developable to be extracted from the spherical indicatix.  In simple cases the relation between 
the two vectors is often constant or a linear function. 

In the special case of a conical developable the spherical indicatix reduces to a circle.  Thus 
the developable can be created and manipulated by specifying the position  and shape of a 
curve on the circular indicatix that represents the transformation space of the developable. 

This method produces developable surfaces composed of conical sections that can be 
manipulated and deformed.  Despite its mathematical interest Redont's method has little 
practical application as there is no easy physical or visual link between the line on the 
spherical indicatix and the developable surface it produces.  Redont's deformation does not 
allow for the creation of folded developables. 
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Developable surfaces can today be easily created between two general curves.  CAD packages 
such as Pro/ENGINEER™, CATIA™ and AutoSURF™ all allow their creation simply by 
selecting the two lines. 

The challenge this work conquers is to give designers a tool with which they can easily create 
any general folded developable. 
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3.2.2 Folded Developables. 

Duncan and Duncan [1982] produced the definitive work on folded developables.  Their 
elucidation of the mathematics of folded developables is referred to in Section 3.3.  While 
their work detailed the mathematical relationships of the two developable surfaces and the 
folding curve, it does not present a method for the creation of a general folded developable.  
However their inclusion of several special case folded developables, typically involving conic 
sections, allowed developables to be used as  engineering structures.  Such applications of 
folded developables, usually developed by trial and error are now common in every day life, 
especially in the packaging industry. 

Staublin and Gerdeen [1986] investigated the springback of a particular folded developable.  
The special case chosen was a sheet metal conical developable with a plane fold line and 
constant fold angle.  The folding curve radius, the radius between the generators of the two 
surfaces, was chosen as zero. 

Staublin and Gerdeen used finite element analysis to model the springback.  The folded 
developable was modelled as two elastic surfaces joined by a plastic hinge.  The forces and 
moments caused by the forming of each surface can be determined for the special case and 
are then used to determine the springback.  The springback is determined by allowing the 
stresses trapped after folding to relax producing a change in shape. 

For the developable shown in Fig. 3.6 Staublin and Gerdeen found that, the spring back angle 
∆θ was at a minimum in the middle of the fold curve increasing to a maximum at the edges. 

α

θ
a

a

t

R

 

Fig. 3.6  Geometry of a surface resulting from curved line folding. 

They also found the following approximate relationships for the springback angle; 

∆θ ∝ 1
3
2t

        (3.4) 
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∆θ ∝ a           (3.5) 

∆θ ∝ R2         (3.6) 

Recently Kergosien, Gotoda and Kunii [1994], published work on the virtual creasing of 
paper.  Their investigation of creasing used a finite element style approach, successively 
solving a grid mesh for minimum energy, and then comparing results with models of creased 
paper.  They have produced representations of zero or very small radius creases  and straight 
line creasing.  These results are similar to folded developables, in that they produce two 
developable or near developable surfaces joined by a crease or fold.  However due to the lack 
of the precise geometric relationships developed later in this work, the representations are 
approximations that provide 'qualitative' results for a few special cases only. 

This work presents a solution to the major barrier to the use of folded developables in 
engineering.  Section 3.4 describes a systematic design theory for the creation of a general 
folded developable.  The design theory and the computational tool based on it allow the 
designer to design folded developables rapidly and accurately. 

 
�
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3.3. THE MATHEMATICS OF FOLDED DEVELOPABLES. 

3.3.1. Geometry of a Developable Surface. 

A point on a general developable surface is shown in Fig. 3.7.  A general developable surface 
consists of a series of generators that originate from an edge of regression. 

S1

P
Generators

 

Fig 3.7  The general developable surface S1. 

The curvature of a surface is a measure of the rate of change of the slope of a surface with 
respect to the distance across the surface.  It is a property of developable surfaces that in the 
direction of the generators the curvature is zero.  Because generators are straight lines their 
slope does not change along their length. 

However perpendicular to the generators the curvature of the developable surface is at a 
maximum.  This curvature is known as the principal curvature and is shown in Fig. 3.8. 

S1

P

1/K1ρ =1

 

Fig 3.8  The general developable surface S1, with the maximum principal curvature, 
K1, at point P shown. 

Note that, 

ρ1
1

1=
K

,        (3.7) 

where ρ1, is the principal radius of curvature.  Thus the developable surface at point P curves 

with a radius perpendicular to the generator of ρ1.  A common simple developable surface is a 
cylinder; the radius of a cylinder is equal to the radius of curvature and is the reciprocal of the 
curvature. 
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3.3.2. Geometry of a Space Curve. 

Consider a space curve, C, as shown in Fig 3.9 [Kreyszig 1983].  If C is a continuously 
differentiable curve, defined by the vector C, then the following relations apply, 

t C= d
ds

,                  (3.8) 

where s is the arc length along C.  The curvature is; 

K
d
ds

d
ds

= =t C2

2 .                 (3.9) 

Provided the curvature, K, is not zero; 

n t= 1
K

d
ds

,                 (3.10) 

where n is the unit principal normal vector of C.  n is perpendicular to t as the derivative of a 

vector (
d
ds

t
) is either zero or perpendicular to the original vector. 

The vector; 

b t n= ×                  (3.11) 

is called the unit binormal vector of C. 

t

n

b binormal

tangent

principal normal

C curve

Osculating Plane

Normal PlaneRectifying Plane

 

Fig 3.9  The space curve C, with the unit tangent, normal and binormal vector triad 
shown. 
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Since 
d
ds
b

 is perpendicular to both b and t it must lie in the same direction as, and be 

proportional to,  the normal n of the curve.  Thus 

d
ds
b n= −τ ,                 (3.12) 

where the scalar function τ is known as the torsion of the curve C.  The torsion is 

τ = − •n bd
ds

.                 (3.13) 

Using the results above the Frenet formulas can be developed: 

d
ds

K
t n= ,                  (3.14) 

d
ds

K
n t b= − + τ ,                 (3.15) 

d
ds
b n= −τ .                  (3.16) 

3.3.3. Geometry of a Developable Surface and Curve. 

A developable surface, with a curve that passes through a point P, as shown in Fig. 3.10, 
contains the vector triad t, n, and b.  t is the tangent to curve C at point P, n is the normal to 
curve C at point P and b the binormal to curve C at point P.  The angle γ, is the angle between 
the tangent, t, and the generator GP. 

P
γ

b

n

t

C

G

S1

 

Fig. 3.10  A portion of a developable surface containing the curve C and the generator 
GP. 

There exists a tangent plane that is co-incident with GP along its entire length and contains 

the tangent vector, t, as shown in Fig. 3.11. 
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Fig. 3.11  A portion of a developable surface containing the curve C and the tangent 
plane to the generator GP.  The curvature of the surface and the angles to the tangent 
and normal are shown. 

The vector N is the surface normal of this tangent plane at the point P.  The normal curvature 
of the surface in the direction of the curve C is known as the surface normal curvature, KN.  

The angle β is the angle between the principal normal, n, at P and the tangent plane. 

If the curve C is projected into the tangent plane it forms the curve C', as shown in Fig. 3.12. 

P

t

C

G

N

Tangent Plane O

C'

u

S1

 

Fig. 3.12  A portion of a developable surface containing the curve C and C' the 
projection of C' into the tangent plane to the generator GP. 

The curvature of C' is invariant with changes in the developable surface curvature, and is 
known as the geodesic curvature, Kg.  The Geodesic curvature is in the direction of the vector 

u as shown in Fig. 3.12.  From Fig. 3.12  

K
OPg = 1

.            (3.17) 
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The geodesic torsion, τg, of the surface is the arc rate of rotation of the normal N along the 
curve C. 

At a point P on the surface, there exists two orthogonal directions, in which the geodesic 
torsion of a surface curve is zero and the normal curvatures K0 and K1 attain maximum and 
minimum values known as principal curvatures.  The curvatures may be transformed in a 
similar fashion to principal stresses.  In the direction of the tangent to the curve C at point P, 
at an angle γ to the generator PG, as shown in Fig. 3.11, the properties are given by Euler's 
formulae, 

( ) γτ

γγ

2sin
2
1

sincos

10

2
1

2
0

KK

KKK

g

N

−=

+=
.        (3.18) 

In the developable S1, the generator PG is a principal direction in which K0 = 0.  The other 
principal direction is perpendicular to PG along which the normal curvature is K1. 

Thus  

K KN = 1
2sin γ          (3.19) 

and 

τ γ γg K= 1 cos sin .        (3.20) 

The curvatures are related by Meusnier's theorem, which may be expressed as 

K K Kn C g Nn u N= +          (3.21) 

Where Kn is the normal curvature of the curve C at point P and Kg is the geodesic curvature.  
Fig. 3.13 illustrates the relation of these vectors in a plane normal to the tangent t. 

K

N
n

u

β

C

g

Kn

KN

P  

Fig. 3.13  A diagram of the relations between the curvatures shown in the normal 
plane at P.  The tangent to the curve C, which passes through point P, points out of the 
page. 

From Fig. 3.7 
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cosβ =
K

K
g

n

,              (3.22) 

where β is the angle between the unit normal to the curve C, nC, and the tangent plane, as 
shown in Fig 3.11. 

It is shown by Duncan and Duncan [1982] that using the triple scalar product 
K r r r2τ = ' , ' ' , ' ' '  equation 3.19 can be expressed in terms of torsion, thus, 

( )
g

gNNg

K

KKKK
ττ −

−
= 2

''

       (3.23) 

where primes (') denote differentiation with respect to distance s. 

This may be defined as  

�
�

�
�
�

� +−= gds
d τβτ         (3.24) 

after the theorem of Bonnet [Willmore 1959]. 

3.3.4. Geometry of Folding. 

If during the curving of surface S1 by bending about the generators, the sheet is also folded or 
creased along the curve C, the sheet on the other side assumes a developable surface S2 which 
is not a continuation of S1.  The curve C lies in each surface and the previous relations apply 

to both surfaces [Duncan and Duncan 1982]. 

The folded developable created by folding along the curve C is shown in Fig. 3.14. 
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Fig. 3.14  The two developable surfaces S1 and S2 formed by folding along curve C. 

Fig. 3.15 illustrates the curvature relations for the two surfaces. 
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β

 

Fig 3.15  A diagram of the relations between the curvatures of the two developable 
surfaces S1 and S2.  The tangent to the curve C that passes through the point P points 
out of the page.  The subscripts 1 and 2 refer to the two developable surfaces. 

As, 

K Kg gu u1 = 2 ,          (3.25) 

the osculating plane, within which lies the unit normal nC, bisects the tangent planes for each 
surface.  The tangent planes are defined by the unit tangent vector t, and the two unit direction 
vectors u1 and u2 that are both at an angle β to the normal nC,. 

From Fig. 3.15 it follows that 

K KN N2 1= -          (3.26) 

The process of curved line folding produces two surfaces having equal and opposite surface 
normal curvatures in the direction of the fold.  When viewed from one side, a curved-line fold 
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can only connect a concave and convex surface as in Fig. 3.14.  From Fig. 3.15 we note that 
for this to be possible the fold line must be curved i.e. if Kg =0, β=π/2 if KN1>0.  This would 
indicate that S2 would fold back upon S1.  Therefore, in a folded developable, nC, and  N1, 
cannot be collinear. 

Considering torsion we obtain, 

( )
2

''

K

KKKK

ds
d gNNg −

−=β
,                 (3.27) 

and since, from equation 3.26, KN1=-KN2 , K'N1= K'N2  we also obtain 

d
ds

d
ds

β β1 2= − .         (3.28) 

Thus the geodesic torsion of the surface S2 in the direction of the fold is, from equation 

(3.22), given as; 

τ τ β
g g

d
ds2 1 2= + .                 (3.29) 

The surface S2 is completely defined by the surface S1 and the curve C.  In some special cases 
the generators of the surface S2 can be determined from these relations.   

However, the generators of the second surface, created when a general developable surface is 
folded along a general space curve, cannot be determined.  The following section details a 
computational method to find the generators of surface S2, for any general developable and 
general folding curve.  This has not previously been developed. 

 
�
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3.4. A COMPUTATIONAL METHOD FOR THE GENERATION OF 
DEVELOPABLES FOLDED ALONG AN ARBITRARY CURVE. 

3.4.1. Introduction. 

Section 3.4 describes a new method for computationally modelling folded developables.  The 
theories behind the method, the details of the numerical techniques and a description of a 
computer program that implements the method are presented.  Results obtained from the 
program are also discussed. 

Previous design of folded developables was by trial and error.  While the theorems governing 
curved folded developables have existed for some time [Duncan and Duncan 1982], the 
mathematics to predict the shape of a general folded developable have not previously been 
given.  Prior to this work the only solutions for folded developables were two special cases; a 
right circular cone and a cylinder and cone [also Duncan and Duncan 1982].  The 
mathematics to predict the result of folding a developable surface along a curved line has 
been determined in this work and forms the basis of a computer package, 3FD, that allows 
rapid and systematic graphical design of folded developables. 

A folded developable is composed of two developable surfaces joined by a common folding 
curve, and to create it, three major steps must be followed.  The first surface must be defined, 
the folding curve must be defined and from this the second surface must be constructed. 

The first surface is defined by the edge of regression and the curvature (or radius of curvature) 
of the surface.  This surface may then be unwrapped onto a flat plane to form the 
development of the surface.  The folding curve is most easily defined as a curve on that 
development. 

Two simple folded developables are illustrated in Fig. 3.16. 
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(a) 

A C

A'

Edge of
Regression

First Surface

Folding Curve Second Surface
 

(b) 

A C

A'

First Surface

Folding Curve

Second Surface

 

Fig 3.16 (a)  Conic Developable.  The 'first' surface is the surface between the edge of 
regression and the folding curve.  (b)  Cylindrical Developable.  The edge of 
regression for a cylindrical surface is an infinite distance to the left. 
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3.4.2. Definition of the First Surface. 

In this work it is convenient to define the first surface in terms of its development and the 
curvature about the generators. 

3.4.2.1. Development of the First Surface. 

The first surface can be physically formed by cutting the development from a sheet of 
material and bending it about the generators.  As the plane development is curved about its 
generators, it passes through a family of developable surfaces and the edge of regression 
becomes increasingly twisted.  In Fig. 3.17 a simple developable surface, with the generators 
limited by a folding curve is shown with its development, which has been unwrapped onto the 
plane. 

Plane

First Surface

C

Development
of the First Surface

 

Fig 3.17  The development of the first developable surface.  The first surface is 
bounded by the folding curve C. 

3.4.2.2. The Edge of Regression. 

The edge of regression, which contains the starting points of the surface generators, can be 
defined in the development in several different ways.  In this work there are three 
classifications; 

(i) edge of regression is a point - a cone.  

(ii) edge of regression a point at infinity - a cylinder. 

(iii) edge of regression is a mathematical function - the general case. 
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Generators of the surface initially lie in the plane of the edge of regression and are tangential 
with the edge of regression.  Generators are projected either from points that are separated by 
regular intervals on the edge of regression or at regular angular intervals from the edge of 
regression.  For practical purposes the generators are limited in length, but mathematically 
they may extend infinitely on one side of the edge of regression.  Examples of edges of 
regression are shown in Fig. 3.18. 

(a)

(b)

(c)

(d)

y=cosx-1
 

Fig. 3.18  Examples of Edges of Regression. 
 (a)  General Curve 
 (b)  Point of Regression i.e. a cone. 
 (c)  Edge of Regression at Infinity i.e. a cylinder 
 (d)  Mathematical Function, (y=cosx-1). 
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3.4.2.3. Specifying the Curvature. 

If the development of the edge of regression of a developable surface is given by some 
function in a flat plane, the curved developable surface is formed by torsion, or 'twist' of the 
edge of regression [Willmore 1959].  This torsion is related to principal curvature K of the 
surface (in a direction normal to the generator).  As stated in Section 3.3.4 the principal 
curvature parallel to the generator is zero.  Therefore the curvature of a folded developable 
element is defined by one principal curvature.  It is a property of a developable that the 
curvature varies inversely with distance, l, along the generator [Willmore 1959], i.e. 

l
l

K
K

D

B

B

D

=          (3.28) 

where lengths and curvatures are defined by Fig. 3.19.  Hence, by specifying the curvature KB 
at some point B as shown in Fig. 3.19, the surface curvature is specified.  Curvature at point B 
may be specified by several methods.  The simplest methods involve the specification of the 
radius of curvature (the inverse of curvature) at that point.  The specification of curvature is 
detailed in Section 3.4.3.4 

1/K

1/K

A

B

D
l

lB

D

B

D

 

Fig 3.19  The relation between curvature and generator length. 

3.4.3. Specifying the Folding Curve and the Curvature at the Intersection of the Folding 
Curve and the Generators. 

To construct the second developable surface the intersections between the folding curve and 
the first surface generators must be found.  Because the folding curve is most easily defined 
in the development, the curvature of the first surface at the points of intersection with the 
folding curve must be determined.   
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3.4.3.1. The Folding Curve. 

In the development, the folding curve may be defined either by a sequence of discrete points 
or by a simple mathematical function such as a circular arc or bezier curve.  Several 
restrictions apply  

(i)  the curve cannot be straight for any length. 

(ii)   the curve may not fold back on itself. 

These conditions are consequential to the relationship 

cosβ =
K

K
g

n

,            (3.29) 

that was developed as equation (3.22) in section 3.3. 

3.4.3.2. Determining the Intersection between the Plane Folding Curve and the 
Generators. 

The intersection of the generators with the folding curve can be found by several methods.  
For a piecewise curve or spline the intersection may be found by interpolation as shown in Fig 
3.20 below. 

O X

Y

l

A B
f(x,y)

C
C

C

1

2

n

B

 

Fig. 3.20  Plane development of a general developable.  The generators intersect a 
folding curve at points C1 to Cn. 
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However for a mathematically defined curve such as the arc of a circle an exact intersection 
may be determined.  This is demonstrated below. 

Consider a generator defined by the points A, on the edge of regression, and B some length l 
away from A, that intersects a folding curve that is the arc of a circle.  The centre of the circle 
is a distance xc from an arbitrary X axis and a distance yc from an arbitrary Y axis.  The radius 
of the arc is R.  This is shown in Fig 3.21. 

O X

Y

Edge of
Regression

A

C
B

R

y

x
C

C
D

l

 

Fig. 3.21  Intersection between a generator and a circular arc. 

In the X,Y co-ordinate system defined, a line co-incident with the generator is described by  

y mx D= +            (3.30) 

where m is the gradient of the generator and D is a constant determined by the edge of 
regression's offset from the co-ordinate axis.  D may be determined by finding its intersection 

of the line with the y axis.  The circular arc can be defined by the equation  

( ) ( ) 222 Ryyxx CC =−+−        (3.31) 

where R is the radius and xc and yc the offsets from the origin of the centre.  Equating 

equations 3.30 and 3.31 will give the point of intersection. 

Equation 3.31 can be expanded to 

y yy y R x xx xC C C C
2 2 2 2 22 2− + = − + −        

y yy R x xx x yC C C C
2 2 2 2 22 2− = − + − −            (3.32) 
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Substituting this into equation (3.30) produces, 

( ) ( )mx D y mx D R x xx x yC C C C+ − + = − + − −2 2 2 2 22 2 ,     

or 

( ) ( ) ( ) 022221 222222 =+++−+−−++ DyyxRDxmyDmxmx CCCCC     (3.33) 

Since equation 3.33 is a quadratic equation the solution for x is simply, 

( ) ( ) ( )( )
1

21
2

222222

+
+++−+−−−±−−−

=
m

DyyxRDmxmyDmxmyDm
x CCCCCCC (3.34) 

Only the positive solution is valid as the generators extend from the edge of regression in the 
positive direction. 

3.4.3.3. Finding the Position of the Folding Curve in the First Surface. 

When the intersection of the folding curve with the generators in the development of the first 
surface has been found, the folding curve in the curved first surface may be easily 
determined.  The length AC, from the edge of regression to the folding curve along a 

generator, is the same in both the development (two dimensional) and the curved developable 
surface (three dimensional).  Thus the position of C in the curved surface can be determined 
by moving along the generator AB in the curved surface a distance of AC. 

3.4.3.4. Finding the Curvature of the First Surface at the Folding Curve. 

Using the property of developables described in Section 3.2.2 that curvature is linearly related 
to length along a generator, the curvature at the folding curve intersection point C, can be 
determined from the known curvature at point B using the relation, 

K
AB
AC

KC B= .         (3.35) 
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3.4.4. Construction of the Generators of the Second Surface. 

The direction of a generator in the second surface can be specified by determining, 

1. The fold angle (α), 

2. The angle (γ2) the generator makes with the tangent of the folding curve. 

These angles are shown in Figs 3.22 and Fig. 3.23 below 

CA

A'
First Surface

Second Surface
Generator

2β

αFold Angle
Generator

 

Fig 3.22  Part of a simple folded developable showing the fold angle between the 
generators in the normal plane.  The tangent to the folding curve points out of the 
page. 

t
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A'First Surface

Second Surface
Generator

γ
γ
1

2

Tangent Plane
 

Fig 3.23  Part of a simple folded developable with the two angles between the tangent 
vector and the generators in the tangent plane shown. 

3.4.4.1. The Fold Angle. 

The fold angle is the angle between the generators and is π − 2β.  To determine the fold angle 
the angle β must be found. 

From Section 3.3, 
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cosβ =
K

K
g

n

         (3.29) 

The above equation uses the first curvature of the fold curve and the geodesic curvature of the 
fold curve to determine β.  It is more useful, to express β in terms of the principal normal 
curvature of the first surface, KN1 or KN for ease of notation, and the geodesic curvature of the 
folding curve, Kg, 

tanβ = K
K

N

g

         (3.36) 

The implications of this result on the kinematics of folded developables are discussed later in 
Chapter 5. 

To find β at the intersection points between the generators of the first surface and the fold 
curve the local values of the surface's normal and geodesic curvatures must be found.  For a 
known first developable surface the first principal curvature, K1, at the point C can be 

determined as in Section 3.4.3.4.  Also known from the geometry of the folding curve, is the 
geodesic curvature Kg of the folding curve, as shown in Fig. 3.24.  The geodesic curvature of 

the folding curve is the same for both the first developable surface and for the second 
developable surface created by folding about the folding curve, as proven in Section 3.3 
equation 3.17. 

A P

O

Folding Curve C

1
Kg

= PO

 

Fig. 3.24  Part of the development of a developable showing the geodesic curvature at 
the point P of the folding curve. 
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3.4.4.2. The Angle of the Second Generator to the Folding Curve Tangent. 

The angle, γ2, between the second generator and the tangent vector of the folding curve can be 
determined algebraically as detailed below, using the results of Section 3.3. 

Given 

K KN = 1
2sin γ ,           (3.37) 

τ γ γg K1 1 1 1= cos sin ,          (3.38) 

τ τ β
g g

d
ds2 1 2= + ,          (3.39) 

and 

K KN N2 1= − ,            (3.40) 

substituting (3.26) into (3.27) leads to 

K K
d
ds2 2 2 1 1 1 2cos sin cos sinγ γ γ γ β= + .     (3.41) 

Using (3.38), (3.39) and (3.41) 

K K2
2

2 1
2

1sin sinγ γ= −          

or 

K
K

2
1

2
1

2
2

= − sin
sin

γ
γ

          (3.42) 

Substituting (3.41) into (3.42) produces 

− = +K
K

d
ds

1
2

1 2

2
1 1 1 2

sin cos
sin

cos sin
γ γ
γ

γ γ β
         (3.43) 

which can be rearranged, 

− = +K
K

d
ds

1
2

1

2
1 1 1 2

sin
tan

cos sin
γ

γ
γ γ β

         , 

or 

tan
sin

cos sin
γ γ

γ γ β2
1

2
1

1 1 1 2
= −

+

K

K
d
ds

.              (3.45) 
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d
ds
β

 is a measure of the twist of the folding curve C.  It is determined by the rate of change of 

the fold angle as it moves along the folding curve as 

d
ds

d
ds

β α= − .             (3.46) 

Equation 3.45 can be used to determine the second tangent angle, γ2.  This angle together with 

the fold angle, α, fully defines the direction of the generator in the second developable. 

This key new result means that the second surface of any general folded developable can 
be constructed from any developable first surface and a general folding curve. 

In general however it is not possible to know the local values of the first tangent angle, γ1 and 

the rate of angular change of the osculating plane 
d
ds
β

.  In the general case these must be 

determined by a numerical method detailed in the next section?? 
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3.4.5. A Numerical Method for Determining the Tangent Angles and Rate of Change of 
Fold Angle and Finding the Image of the First Generator. 

Because in the general case it is not possible to know the local values of γ1 and 
d
ds
β

, they must 

be determined by a numerical method.  The relevant approximations are described below?? 

3.4.5.1. Generator Tangent Angle. 

The desire to create a numerical method to find the tangent angle requires an elemental 
approach.  An element of a general developable surface, shown in Fig. 3.25 below is now 
considered.  To determine the angle γ2, the angle that the existing developable surface 
generator makes with the tangent vector of the folding curve, γ1, must be found.  If AC >>    

Ci-1Ci+1 the tangent, t??can be assumed to be parallel to the chord Ci-1Ci+1 and passes 
through the point Ci, as shown in Fig. 3.25.  γ1 can then be easily determined and is given by, 

�
�

�

�

�
�

�

�

−
−

−+
�
�

�

�

�
�

�

�

−
−

=
−+

−+

11

11arctanarctan1

ii

ii

ii

ii

CC

CC

AC

AC

xx

yy

xx

yy
πγ     (3.47) 
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Fig 3.25  The tangent angle γ1, the angle between the tangent vector t, and the 
generator AiCi. 

3.4.5.2. Rate of Change of the Fold Angle. 

To determine 
d
ds
β

, since AC >> Ci-1Ci+1 and if the rate of change of β is also small then the 

following approximation may be used; 

d
ds C C

C C

i i

i i
β β β

=
−

− +

− +

1 1

1 1

.                (3.48) 
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By making these two numerical approximations it is possible to determine β and γ1.  γ2 is 
calculated from equation 3.45 while β can be found using for each generator 

�
�

�

�

�
�

�

�
=

gi

Ni
i K

K
arctanβ                (3.49) 

With these angles known the fold angle, α, and γ2 can be calculated and the direction of the 
generator in the second surface is known. 

By repeating this process, as shown by the flow diagram in Fig. 3.26, for all generators, 
surface two can be constructed. 
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Fig. 3.26  Flow Diagram for the construction of the second surface. 
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3.4.5.3. Creating the Second Surface Generators. 

It is useful, particularly for graphical display, to know the generator of the second surface that 
connects to a generator in the first surface at the folding curve.  It is also useful to limit the 
generator's length, so it fits in the desired display space. 

This second generator is found by conserving length.  Since the fold angle and angle to the 
tangent of the folding curve, relative to the first generator, are known for the second generator 
all that is required is to limit its length.  This is done simply by measuring along the second 
generator the same distance as the length of the first (AC) to a point A', the end of the second 
generator.  This is shown in Fig 3.27 below 

A

C

A'

First Surface

Folding Curve

Second Surface

 

Fig 3.27  The second generator CA' in the second developable surface that connects to 
the generator in the first surface AC. 
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3.4.5.4. The Plane Development of the Complete Developable. 

Once the folded developable has been defined, its plane development may be calculated.  
Since the development of the initial surface is known, the development of the second surface 
needs to be found. 

For simple folded developables such as those formed from two conic surfaces, the plane 
development is easily found.  The development is simply a sector of a circle with a radius 
equal to the generator total length of both surfaces. 

For more complex shapes the plane development can be found by two methods.  Since all 
generator lengths and angles are known the blank shape can be produced directly or it can be 
approximated by assuming that the area between two generators is constant, whether the 
generators are plane or part of a curved surface.  By definition a developable surface cannot 
undergo deformation other than simple bending.  Since simple bending does not result in any 
area change, the constant area assumption is valid. 

The development of the second surface can be determined using the constant area 
transformation blank shape prediction method described in Chapter 2. 
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3.4.6. Computer Program Functionality. 

The program 3FD uses four steps to create a folded developable. 

1. The development of the first developable surface must be defined. 

2. The surface curvature must be specified. 

3. The folding curve must be specified. 

4. The second developable surface must be constructed. 

The program also allows the user to view the created developable from any angle, to produce 
a colour shaded image and to plot both the three dimensional image and the flat development. 

To illustrate this process, the steps required to produce the simple cone developable shown in 
Fig. 3.28 below will be detailed. 

 

Fig 3.28  Simple Cone Developable. 

3.4.6.1. Definition of the Development of the First Surface. 
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A developable surface is defined by a series of generators and related curvatures, as described 
in Section 3.4.2.1.  The program has four options for the edge of regression: 

(i) Cone.  The edge of regression is a point.  The number of generators must be specified 
and these are calculated as radii at 5° intervals.  The resulting plane surface is a segment 
of a circle. 

(ii) Cylinder.  The edge of regression is a point at infinity.  The number of generators must 
be specified and these are horizontal lines at regular intervals.  The resulting plane 
surface is a rectangle. 

(iii) Function.  The edge of regression is a predefined mathematical function.  A simple 
function is y = cos x-1 used in the program.  The number of generators must be specified 
and these are tangent to the edge of regression at regular intervals. 

(iv) Bezier.  The edge of regression is a Bezier curve.  A Bezier spline is a mathematical 
function that can be described by four points.  Two points form the ends of the spline 
and the other two indicate tangent directions at the ends.  This permits a general curve to 
be simply described.  The generators are tangent to the Bezier curve (edge of regression) 
at regular intervals. 

In the case of the cone developable the definition of the plane elements is a simple procedure.  
The program user selects CONE from the E.O.R. (Edge of Regression) menu, then specifies 
the number of generators, the generators are spaced at five degree intervals.  The following 
development, shown in Fig. 3.29, is displayed.  In this case the number of generators chosen 
is five. 

A B

 

Fig. 3.29  A Simple Cone Developable's Generators. 

The program also creates two imaginary generators that are either side of the developable 
surface, as shown in Fig. 3.30. 
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A B

 

Fig. 3.30  Imaginary Generators, shown as dashed lines, which are used during 
calculations. 

These are used as aids to calculate the positions of the generators after folding. 

3.4.6.2. Curvature Specification. 

With the edge of regression and generators defined in the plane, curvature can be added to the 
surface.  The program has four options for specifying this curvature. 

(i) Cone Fixed.  A cone can be described by the length of the generators and the radius of 
its base.  The radius of curvatuue and base radius are related by equation (3.49) 
following.  There is no variation of curvature at points on different generators that are 
the same length.  This is shown in Fig. 3.31. 

A

B

r

 

Fig. 3.28  Cone curvature definition. 
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(ii) Normal Fixed.  The radius of curvature (the reciprocal of curvature), is defined as being 
normal to the generator.  The normal radius of curvature of a developable surface, is the 
radius of curvature perpendicular to the generators. 

The relationship between the  cone base radius and the normal radius of curvature is 
geometric and given by 

( )
1

1
2

+
+

=
Normal

NormalNormal
Cone r

rr
r        

 (3.49) 

Curvature depends only on the distance along generators from the apex of the cone.  This is 
shown in Fig. 3.32. 
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B
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rcone

 

Fig. 3.32  The definition of curvature normal to the generator. 
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(iii) Bezier.  A bezier curve can be created in a plane perpendicular to, and at the end of, the 
first generator.  The generators are then 'draped' over the bezier curve.  The end of the 
developable's surface then has similar curvature to the bezier curve, as shown in Fig. 
3.33.  The radius of curvature, and hence the curvature, of the developable surface is 
found by intersecting the perpendicular bisectors of adjacent generators. 

A
B

Bezier Curve

Bezier Control Points

 

Fig. 3.33  Bezier curvature definition. 

In the simple cone case the curvature is simply specified by selecting NORMAL from the RAD 

of CURV (Radius of Curvature) menu.  The user is then requested to enter the normal radius 

of curvature for the first developable surface.  If 0.5 is entered the result, shown in Fig. 3.34, 
is displayed. 

 

Fig. 3.34  End view of a simple Cone Developable, after surface curving. 
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3.4.6.3. Folding Curve Specification and Folding. 

The initial surface is now fully specified.  To determine the second surface, the folding curve 
must be defined.  Following folding curve definition the generators of the first developable 
surface are folded about the folding curve using the method described in Section 3.4.1.  Each 
generator is considered as the mid-line of a triangular element formed by the intersections of 
its two adjacent generators and the fold curve, as shown in Fig. 3.35. 

A

Folding Curve

P
C

M

 

Fig 3.35  The triangular element APM, that includes the generator AC, that is used to 
calculate the position of the generator CA' in the second surface. 

The program has four options for fold curve definition. 

(i) Axis Arc.  The fold curve is the arc of a circle.  The centre of the circle lies on the 
horizontal line made by the first generator.  The centre of the arc is the point, A, of the 
first generator on the edge of regression. The intersection of the folding curve and the 
plane developable is calculated as in Section 3.4.3.3, shown below in Fig. 3.36.  The 
new lengths of each generator are calculated and the lengths of the generators in the 3D 
developable surface are reduced to match them.  The second surface of the folded 
developable is then calculated following the procedures described previously. 

A

r
C B
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Fig. 3.36  Axis arc folding curve. 

(ii) Centre Arc.  The fold curve is the arc of a circle.  The centre of the circle and its radius 
must be specified.  The  intersection of the folding curve and the plane developable is 
calculated as in Section 3.4.3.3, as shown in Fig. 3.37.  The new lengths of each 
generator are calculated and the lengths of the generators in the 3D developable surface 
are reduced to match them.  The second surface of the folded developable is then 
calculated following the procedures described previously. 

A

r

C B

Centre

 

Fig. 3.37  Centre arc folding curve.  Centre point and the radius of the fold curve must 
be defined. 

(iii) Bezier.  The fold curve is a Bezier curve.  The curve may be anywhere on the plane 
development provided it crosses all the generators.  The intersection of the folding curve 
and the plane developable is calculated as in Section 3.4.3.3, as shown in Fig. 3.38 
below.  The new lengths of each generator are calculated and the lengths of the 
generators in the 3D developable surface are reduced to match them.  The second 
surface of the folded developable is then calculated following the procedures described 
previously. 

A
C B

 

Fig. 3.38  Bezier folding curve.  The four bezier control points must be specified. 
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In the case of the simple cone developable the fold curve is the arc of a circle with its centre 
at the vertex of the cone and having a radius of 0.5.  After folding the developable can be 
displayed as a three dimensional shaded image as shown in Fig 3.39 below. 

 

Fig 3.39  Shaded Image of the Folded Developable. 

3.4.6.4. Visual Information and Output. 

The program that has been developed permits viewing of the created developable from any 
angle.  Four fixed views (Right Elevation, Left Elevation, Main Elevation and Plan) are set 
plus a three dimensional view that can be fully rotated.  The default shows the wire frame 
structure of the folded developables but any of the views can be colour shaded. 

The program can produce three dimensional plots of the folded developable as well as two 
dimensional plots of the development.  Examples of these will be given in the following 
sections. 
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3.4.7. Results. 

The results of the 3FD program may be examined by comparing folded developables 
generated by the program with similar physical models. 

In each case, the basic shape of the folded developable will be compared with the physical 
model.  The predicted fold angle and the angles predicted for the generators relative to the 
folding curve will also be compared. 

The physical models are made from thin cardboard sheet.  The development is drawn on the 
sheet and it is cut out then folded.  The surfaces are folded about the generators until the 
radius of curvature of the first surface at the fold curve, ρΝ matches that desired.  The radius 
of curvature match is assured by using cardboard templates that match the desired curvature.  
These are glued to the underside of the first surface to fix curvature. 

3.4.7.1. Simple Cone Developable. 

This simple cone folded developable was used as an example of the operation of the 3FD 
program in the previous section.  It is represented by seven equally spaced generators. 

The radius of curvature of the developable surface prior to the folding curve is equal for all 
generators at equal distances from the edge of regression (the cone point).  The radius of 
curvature increases in proportion to the distance from the point of the cone.  If the generators 
are of unit length the principal radius of curvature, normal to the surface, ρN, at the folding 
curve is 0.5. 

The plane projection of the folding curve is the arc of a circle with its centre at the vertex of 
the cone.  The radius of this arc, which is also the geodesic radius of curvature of the folding 
curve, ρg, is 0.5. 
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(a)  

 

 

(b) 
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(c)   

Fig. 3.40 Simple Cone Developable (a) 3FD Prediction, (b) Physical Model and (c) the 
3FD predicted development. 

As shown in Fig. 3.40(a) and Fig. 3.40(b) the shape of the two models, computer generated 
(a) and physical (b) is very similar.  The predicted fold angle is 90° and the measured angle is 
equal.  The angles of the generators relative to the tangent of the folding curve are also 
identical. 

3.4.7.2. Simple Cylindrical Developable. 

A simple cylindrical surface represented by seven equally spaced generators has a constant 
radius of curvature ρN of 0.5 if the generator distance to the folding curve is one unit in 
length.  The folding curve in the plane development is the arc of a circle of radius, ρg, of 0.5 
with a centre at the start of the first generator. 
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(a)   

 

(b) 
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(c)  

Fig. 3.41 Simple cylindrical developable a) 3FD Prediction, (b) Physical Model and 
(c) the 3FD predicted development. 

Fig 3.41 (a) and (b) shows that the shape predicted by the 3FD program closely matches the 
physical model.  The predicted fold angle of 90° and the angles of the generators relative to 
the folding curve are also similar for the 3FD model and the physical model. 

 
� 3.4.7.3. Developable Defined by a Function. 

This folded developable's first surface has an edge of regression defined by the equation 
y=cosx-1.  The surface is represented by seven generators at equal angular spacing. 

The normal radius of curvature of the surface, ρN, at the end of each generator is fixed at 0.5.  
The folding curve is the arc of a circle, radius and geodesic radius of curvature, ρg, 0.5 with 
the centre at the start of the first generator. 
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(a)   

( 

b) 
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(c)   

Fig. 3.42  Function defined developable (a) 3FD Prediction, (b) Physical Model and 
(c) the 3FD predicted development. 

A comparison of Fig 3.42 (a) and (b) shows the shapes are almost identical.  Due to the 
changes in surface normal curvature, ρN, at the folding curve the predicted fold angles range 
from 31° to 53°.  The measured fold angles range from 33° to 54°.  The difference is due to 
the difficulty in exactly making and folding the physical model.  The thickness of a line on 
the cardboard can vary the radius of curvature and thus the fold angle. 

The generator angles with the folding curve for the physical model match those predicted by 
the 3FD program. 

3.4.7.4. Bezier Defined Developable. 

This folded developable has an edge of regression which is a bezier curve.  The first surface is 
represented by seven generators which are projected tangent to the edge of regression at 
regular angular intervals.  The plane projection of the folding curve, ρg, is a circular arc of 
radius 0.5. 
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(a)   

 

(b) 
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(c) 

Fig. 3.43 Bezier Defined Developable a) 3FD Prediction, (b) Physical Model and (c) 
the 3FD predicted development. 

Once again the physical and computational models match in shape as shown in Fig. 3.43.  
The fold angles ranging from 90° for the first generator to 73° for the seventh generator 
match. 

The generator alignment to the folding curve is also identical for both models. 

3.4.7.5. Complex Conical Shape. 

This example is a more complex folded developable because of the large changes in generator 
angle relative to the folding curve, on both sides of the folding curve. 

In this case to physically model the 3FD results, the development predicted by the program 
must be used to make a physical model.  If the two models match shape and fold angles we 
may assume that the program is accurately modelling a physically realisable situation. 

The first surface of the folded developable is a cone surface with the normal radius of 
curvature, ρN, fixed at the ends of the generators at 0.5.  The folding curve is the arc of a 
circle with the radius, in plane projection (ρg), of 0.6. 

The centre of the folding curve is not located at the edge of regression; its location is shown 
in Fig. 3.44. 
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Fig 3.44 Centre of folding curve location 

Because the normal radius of curvature of the cone, ρN, varies with generator length, it varies 
markedly along the folding curve as the generators are intersected at differing lengths.  This 
results in large changes in the fold angle, which results in a large change in angle with respect 
to distance along the folding curve.  This, from the theory described in Section 3.1, causes 
large changes in the generator angles.  The changes in the angles are shown in Fig. 3.45.  The 
physical model compared with the computational is shown in Fig 3.46. 

A
C B

 

Fig. 3.45  The solid lines represent the development of the initial cone surface.  The 
dashed lines represent the development of the second surface after it has been folded. 
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(a)   

 

(b) 
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(c)   

Fig. 3.46 Complex Coneal Shape (a) 3FD Prediction, (b) Physical Model and (c) the 
3FD predicted development.. 

From Fig. 3.46 (a) and (b) above the shapes clearly match.  Thus the shape predicted by the 
3FD program accurately reflects the physical process of creating a folded developable. 

3.4.7.6. Roofing Tile Shape. 

An application of folded developables currently in production is metal roofing tiles.  A simple 
developable roof tile can be modelled in seconds using 3FD.  The resulting model is shown in 
Fig. 3.47. 
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Fig. 3.47  Cardboard model of the roof tile developable . 

The curved sections of the roof tile are simply the folded cylindrical surface described in 
example 2   The development of the folded developable shown in Fig. 3.48 below illustrates 
that the roof tile can be made purely by folding. 
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Fig. 3.48  Roof Tile Development. 

The 3FD program allows the modelling of this, and more complex sheet forms, quickly, 
easily and as the  examples show - accurately. 

3.4.7.7. Convergence Check for Increasing Generator Numbers for an Identically 
Sized Developable. 

To examine the accuracy of the central difference approximation used to determine the 
tangent angle, a convergence check on a sample result has been performed. 

A conical developable with an angle of 30° between edge generators in its development has 
been created.  The generators are one unit in length.  The normal radius of curvature of the 
first developable surface is 1.0,  at the generator ends.  The folding curve is a circular arc 
radius of 0.6, with the centre at (0.0,0.3) if the first generator stretches from (0,0) to (1,0). 

The developable was first created with three generators and the fold angle and tangent angles 
of the 'mid' (15°) generator recorded.  The developable was then re-created with an increasing 
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number of generators, but identical curvature and folding curve.  In each case the fold angle 
and tangent angles were recorded.  The developable is shown in Fig. 3.49. 

 

Fig. 3.49  A conical developable created with an increasing number of generators 
(3,5,7,9). 

The fold angle for each developable is shown in Table 3.50. 
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Table 3.50  Fold Angle for the mid generator vs. Number of Generators that make a 
complete, but identically sized, developable. 

Number of Generators Fold Angle ° 

3 90.3 

5 90.3 

7 90.3 

9 90.3 

11 90.3 

13 90.3 

15 90.3 

23 90.3 

As expected fold angle is independent of the number of generators.  The fold angle is 
determined purely by curvature relationships and does not use any central difference 
approximations. 

The tangent angles of the generators are shown in tabular form in Table 3.51 and in graphical 
form in Fig. 3.52. 
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Table 3.51  Tangent Angles for the mid generator vs. Number of Generators that make 
a complete, but identically sized, developable. 

Number of Generators First Tangent Angle 
(γ1) 

Second Tangent Angle 
(γ2) 

3 109.9 65.1 

5 114.5 60.7 

7 116.0 59.1 

9 116.7 58.6 

11 117.2 58.2 

13 117.4 57.9 

15 117.6 57.8 

23 118.1 57.3 

 

Convergence Check of Middle Generator Angles
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Fig. 3.52  Graphical Convergence Check. 
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The results converge rapidly, asymptotically approaching the final solution.  This is the 
expected and desired result for a central difference approximation. 

3.4.8. Conclusions. 

Presented in the preceding section are the theory and equations required to construct the 
second surface of any general folded developable from any developable first surface and a 
general folding curve. 

This theory forms the basis of the computer program 3FD.  This program uses the above 
equations to allow the user to create three dimensional computational models of folded 
developables. 

The 3FD program: 

• Allows the user to define the first surface, by defining the first surface edge of 
regression and curvature. 

• Allows the user to define the folding curve as a specific curve, such as the arc of a 
circle, or as any general curve. 

• The program then constructs and displays the second surface. 

• The developable can be rotated three dimensionally on screen and can be displayed as a 
wire frame or colour shaded image. 

• The development of the folded developable can also be constructed using the Computer 
Aided Blank Shape Prediction method described in Section III. 

• The programs Graphical User Interface allows the above process to be performed 
quickly and intuitively. 

The results of the 3FD program have been compared with physical models.  All the results, 
from simple conical developables to complex general curved developables, have shown 
excellent agreement between predicted and measured generator position. 

The results produced by the 3FD program also show rapid and consistent convergence when 
tested with an increasing density of generators. 

The 3FD program and the theory behind it accurately model folded developables.  It is hoped 
that this will lead to a greater use of folded developables in science and industry. 
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4. DIE DESIGN - FOLDED DEVELOPABLES. 

An important part of Engineering is the transition from theory to practice.  This involves the 
engineer translating a design idea to a finished design.  This may take the form of a detailed 
design drawing or a computer generated solid model, but the most common and most useful 
'finished' design is a design prototype. 

In the previous chapter a theoretical and computational method for the creation of curved 
folded developables was presented.  This method proved to be accurate for the modelling of 
materials such as paper that can be easily creased or formed with very small fold radii.  To 
form a sheet metal folded developable the simplest method is the use of a folding die.  A 
description of a method that can be used to define such a die set is described in this chapter. 

This method allows a user to design theoretical folded developables and to design sheet metal 
dies to manufacture them. 

4.1.  THEORY 

This section describes the mathematics behind the creation of the folding dies.  The transition 
between the theoretical folded developable shape and the folding dies involves the addition of 
a folding radius along the folding curve. At each section on the curve, the following steps 
must be performed: 

1. the two generators that make up the section of folded developable of interest, must be 
translated to a reference plane 

2. a folding radius must be added between the two generators, as shown in Fig. 4.1. 

3. the modified generators and folding radius must be translated back to their original 
position. 

These generators can be used to define the new folded shape.  The final step in the creation of 
the folding dies is offsetting the top and bottom dies to allow for material thickness. 

Springback is not considered in the creation of the dies as it is a material dependent 
phenomenon.  The springback of folded developables is discussed by Staublin and Gerdeen 
[1986].
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Fig 4.1  Two generators of a folded developable linked by a folding radius. 

4.1.1.  Co-ordinate Transformation. 

The reference plane used for the addition of the folding radius is the XY plane with the C 

point at the origin.  Consider the generator pairing shown in Fig. 4.2. 

O

Y

XZ
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Fig 4.2  A generator pairing shown relative to the reference axes. 

Point C and the associated generator pair, may be translated to the origin by; 

A A C2 1 1= −            

A A C2 1 1' '= − ,             (4.1) 

where A, C and A' are vector terms and the subscript 1 denotes the original vector, 2 the 
transformed vector.  The transformed generator pair is shown in Fig. 4.3. 
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Fig 4.3  The generator pairing after the first transformation. 

The plane containing A2 and A'2 has a unit direction vector n, as shown in Fig. 4.4. 
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Fig 4.4  The generator pairing and the normal to the plane they lie in. 

The unit normal vector is, 

n A A
A A

= ×
×

'
'
2 2

2 2

.             (4.2) 

The rotation angles are defined by, 

sinθ = n X .,                      (4.3) 

and 

sinϕ = nY .                      (4.4) 

The rotation can be expressed as two components.  Rotation about the Y axis, RY is 
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Rotation about the X axis, RX is, 
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The combined rotation R is, 
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1
0

R .            (4.7) 

Following this rotation the generator pair will lie in the XY plane, as shown in Fig. 4.5. 
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Fig 4.5  The transformed generator pairing after rotation into the XY plane.  The angle 
ψ is the angle between the X axis and the closest transformed generator. 

Following this transformation the folding radius is added.  The generator pair with the 
addition of the folding radius is then translated back to its original co-ordinates using the 
same process described above but with the rotation matrix , RT, the transpose of R. 

4.1.1.1. Numerical Example. 

Consider the generator pairing composed of the points: 

A = (4, 4, 4) 

C = (2, 2, 2) 

A' = (4, 2, 4). 
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Using equation 4.1, 

A2 = (2, 2, 2) 

A2' = (2, 0, 2). 

The normal to the generator pair is, from equation 4.2, 

( )
222 404

04,44,40

++
−−−=n  

n = (-0.707, 0.0, 0.707). 

The rotation matrix is, from equation 4.7, 

�
�
�

�

�

�
�
�

�

�

−
=

707.00707.0
010
707.00707.0

R . 

Rotating points A2 and A2' by the above matrix gives; 

A3 = (2.82, 2, 0) 

A3' = (2.82, 0, 2). 

These points are clearly in the XY plane, and both generator length and the angle between the 
generators have been conserved.  The points can be returned to their original position by 
rotation using the matrix, 

�
�
�

�

�

�
�
�

�

� −
=

707.00707.0
010
707.00707.0

TR , 

and addition of the original point C. 
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4.1.2. Addition of the Folding Radius. 

If a folded developable is folded in a die with a regular folding radius, the radius forms the 
arc of a circle connecting the generators of the two surfaces.  This is shown in Fig. 4.6. 

Folding Radius

Original Folding Curve

r

 

Fig 4.6  Folded Developable with fold radius shown. 

In the XY reference plane a generator pair and folding curve radius, r, is shown in Fig. 4.7. 
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Fig 4.7  The generator pair and folding radius in the reference plane. 

The folding curve radius centre is denoted by the point F.  To define the curve described by 

the folding radius, the position of the centre of the folding radius must be found. 

If the generator pairing is rotated through the angle ψ, the generator OA'4 will be co-incident 
with the X axis.  The centre of the folding radius, F, then lies at the point (l,r) as shown in 

Fig. 4.8. 



COMPUTER AIDED MODELLING OF SHEET METAL FORMING       R.G.TEMPLER 

   119 

Y

X

A

A'
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L D
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Fig 4.8  The generator pair and folding radius in the reference plane, rotated so the 
generator OA'4 is co-incident with the X axis. 

From the geometry the distance L is given by, 

�
�

�
�
�

�
=

2
tan

φ
r

L .         (4.8) 

From Fig 4.8 the point D is (L,0) and E (Lcos(φ/2),Lsin(φ/2)).  The equation of the folding 

radius curve is, 

( ) ( )x F y F rx y− + − =2 2 2 .         (4.9) 

From equation 4.9 any point on the folding radius may be calculated. 

Thus in the reference plane, the new shape of the generators with folding radius is fully 
described. 

The final shape is achieved, by the generator pairing and fold radius being rotated by the 
angle -ψ, before translation by RT and addition of the original point C. 



COMPUTER AIDED MODELLING OF SHEET METAL FORMING       R.G.TEMPLER 

   120 

4.1.3 Die Face Offset. 

A Die Set typically consists of two dies.  During folding the dies close completely on the 
metal folding it to match the shape of the dies.  In folding the deformation should be limited 
to the folding curve, so the dies must be at least the thickness of the sheet apart. 

To design the die shapes the steps described in section 4.1.2 must be followed, but with the 
following changes. 

1. For the top die the A and A' points must be offset from the middle surface by t/2 and the 
folding radius reduced by t/2, where t is the thickness of the sheet. 

2. For the bottom die, the A and A' points must be offset from the middle surface by t/2 and 
the folding radius increased by t/2. 
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4.2.  THE DIE DESIGN PROGRAM 

The design of dies for the forming of folded developables is included in the design program 
3FD.  The GUI menu system allows the user to create a die set with a specified folding radius 
using an already created folded developable.  The program can also display the blank shape 
required to produce such a die formed folded developable.  The major subroutines are 
described in the following sections. 

4.2.1. Die Fold 

This subroutine adds a folding radius to an existing folded developable.  The program 
currently limits die set creation to folded developables based on cylinders and cones, but the 
theory and program can be extended to general folded developables.  The major steps in the 
subroutine are illustrated in Fig. 4.8. 

Start

Read Data From Existing Developable 

Transform Co-ordinate to Reference Plane

Add Folding Radius

Transform back to orginal co-ordinates
with Folding Radius

Have all generator pairs  
had a folding radius added

Draw New Folded Developable

Stop

Choose Next
Generator Pair

No

Yes

Define Folding Radius
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Fig 4.8  Schematic of the Die Fold Subroutine. 

The folding radius is defined in terms of a fold radius to thickness ratio.  This ratio is 
typically specified for common folding materials.  It gives an indication of how tight a fold 
can be sustained by a given material.  The use of the ratio ensures that the output from the 
program is dimensionless and generally within -1 to 1 in all dimensions.  The output can then 
be scaled to match the desired sheet size or thickness. 

The mathematics of Die Fold follows the theory described in Sections 4.1.1 and 4.1.2. 

4.2.2. Die Draw 

The die draw subroutine uses the same structure and subroutines as the draw subroutine used 
in 3FD to display folded developables, with the addition of drawing the folding radius.  The 
points on the folding radius are stored in an array, D similar to the arrays A, C and A' that 

store the points of the start of the first surface generators, the folding curve and the end of the 
second surface generators respectively. 

The die draw subroutine follows a different drawing process to the draw subroutine, this 
process is shown in Fig. 4.9. 
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Start

Draw Line from A(i) to D(i,j)

Draw Line From D(i,j) to D(i,j+1)

Stop

No

Yes

NG:  Number of Generators
NP:  Number of Folding Curve Points 

i=1
j=1

j = NP-1

j = j + 1

Draw Line From D(i,NP) to A'(i)

No

Yes

i = NG

i = i + 1

Generator Lines

Draw Line From A(1) to A(2) .. A(NG)

Draw Line From D(1,1) to D(2,1) .. D(NG,1)

Cross Generator Lines

Draw Line From D(1,2) to D(2,2) .. D(NG2)

Draw Line From D(1,NP) to D(2,NP) .. D(NG,NP)

Draw Line From A'(1) to A'(2) .. A'(NG)

 

Fig. 4.9  Schematic of the Procedures of Subroutine Die Draw. 
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4.2.3. Die Set 

This subroutine repeats the die fold subroutine but with modified input values.  The top die is 
displaced upwards and the bottom die downwards.  Fig. 4.10 illustrates the procedures 
followed. 

Start

Top Die

Add t/2 to A(z), C(z), A'(z)

Fold Rad = Fold Rad - t/2

DIEFOLD

Bottom  Die

Subtract  t/2 to A(z), C(z), A'(z)

Fold Rad = Fold Rad + t/2

Stop

DIEFOLD

 

Fig 4.10  Schematic of the procedures of the die set subroutine. 

4.2.4. Die Blank 

This subroutine predicted the blank shape required for the die set created by the die set 
subroutine.  The blank shape is predicted using the Computer Aided Blank Shape Prediction 
(C.A.B.S.P) method described in Chapter 5. 

The blank shape prediction method uses the constant area transformation to determine the 
blank shape.  The three dimensional folded developable, with or without folding radius may 
be represented by a continuous set of adjacent quadrilaterals, as shown in Fig 4.11 below. 
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Quadrilaterals

 

Fig 4.11 The Quadrilateral representation of a folded developable with folding radius. 

The blank shape is mapped to a flat plane, quadrilateral by quadrilateral preserving the area 
from the three dimensional quadrilaterals to the planar quadrilaterals. 

The subroutines that perform this transformation are described in Appendix 7.2. 
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4.3.  EXAMPLES 

4.3.1. Numerical Model of a Die Set and Die Blank Based on a Simple Cylindrical 
Developable. 

The folded developable shown in Fig 4.12 consists of a simple cylindrical developable, with a 
first surface principal radius of curvature of 0.5 and a folding curve of radius 0.4, thus the fold 
angle is 103°. 

 

Fig. 4.12  Cylindrical Folded Developable. 

A folding radius equal to 10 times the thickness of the sheet is added using the Die Fold 
subroutine to produce the developable shown in Fig 4.13. 
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Fig. 4.13  Cylindrical Folded Developable with folding radius added. 

The die set, for the folded developable is shown in Fig. 4.14.  The top and bottom dies are 
displaced some distance from the developable for ease of viewing. 
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Fig. 4.14  Cylindrical Folded Developable Die Set. 

The blank shape predicted by the 3FD program for the die set is shown in Fig 3.15. 
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(a)  

(b) 

 

Fig. 4.15  (a) Cylindrical Folded Developable Blank Shape.  (b) Blank Shape with the 
addition of a folding radius. 

The blank shape with the folding radius is very similar to the blank shape formed without the 
folding radius.  This is an expected result as the folding radius is small in relation to the 
generator lengths.  The lines that make up the segments of the folding curve are clearly shown 
on the blank shape. 
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4.3.3. Physical Model of a Die Set and Die Blank Generated from 3FD Output. 

The physical model was generated by the following steps. 

1. Die Set generated in 3FD 

2. Numerical Output passed to CATIA 

3. Numerical Output used to create a NURBS surface model in CATIA 

4. Cutter Paths generated in CATIA 

5. CATIA output sent to Five Axis Mill for NC Machining 

6. Blank Shape cut from sheet by hand. 

7. Folded Developable formed between the two dies pressed. 

The physical folded developable is shown in Fig 4.16.  The physical developable is a close 
geometric match to the computational model shown in Fig. 4.12. 
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Fig. 4.16  The Physical Cylindrical Folded Developable. 

The folded developable was formed from thin aluminium foil, as this cannot easily be 
stretched.  Thus the folded developable could only be formed by folding.  The female section 
of the die set was machined from timber and is shown in Fig. 4.17 
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Fig 4.17  The female die for forming the cylindrical folded developable. 

The male die was made from plaster of Paris using the female die as a mould.  The complete 
die with the folded developable between the dies is shown in Fig. 4.18. 
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Fig. 4.18  Cylindrical Folded Developable with folding radius added. 

While the die set created was simple, it aptly illustrates that the die shapes created by the 
design program can be used to manufacture actual parts. 
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4.4.  CONCLUSIONS 

The Die Design section of the 3FD program provides the important step from idea to reality. 

It allows the rapid design and manufacture of dies for the forming of folded developables. 

It provides the final step in taking curved folded developables from interesting mathematical 
entities to physically useful design parts. 
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5. THE KINEMATICS OF FOLDED DEVELOPABLES. 

Kinematics is the study of motion.  In this section the kinematics of folded developables, their 
motion as they fold, is investigated.  Previous works on Folded Developables have not 
covered kinematics in detail.  The development of a computational model of folded 
developables, as discussed in Chapter 3, allows the kinematics of folded developables to be 
modelled as well. 

5.1. INTRODUCTION. 

Folded developables are formed from sheets of material.  Thus the kinematics of folded 
developables involves an investigation of sheet kinematics and mechanisms.  A good 
introduction to the definition and design of mechanisms is Molian [1982].  Mechanisms may 
be classified as components that translate one mechanical motion into another predictable 
motion. 

Sheet mechanisms include common components such as snap fits and bimetalic switches.  
Less common components such as a Spencer disk and a Belleville spring are also sheet 
mechanisms and their usage provides an insight into possible applications for a folded 
developable mechanism [Tuttle 1967]. 

A Spencer disk, shown in Fig. 5.1(a), is a snap action mechanism actuated by heat.  Two 
metals with widely different coefficients of thermal expansion are fused together to form a 
convex or spherical disk.  When heated the disk tends to reverse its curvature but this is 
resisted by the tension in the rim.  When the heat and consequent force exceed the resisting 
force the disk snaps through the centre.  Upon cooling the reverse takes place.  Spencer disks 
are used as thermal cut outs on current limiting relays. 

A Belleville spring, shown in Fig 5.1(b), has a snap action as it nears the centre position.  The 
load can be a few grams or several hundred kilograms, dependent on its exact geometry.  
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(a)

Bimetalic Dome

(b)

Truncated Cone  

Fig 5.1 (a) a Spencer disk.  (b) a Belleville spring. 

However a folded developable mechanism generally does not 'snap' from one position to 
another.  It provides a continuous range of motion within defined limits. 

To determine the mechanisms of folded developables, the way they react to imposed forces 
and the theory behind this must be examined.  A folded developable formed from a thin 
flexible sheet, such as cardboard can have forces applied to it in two distinct ways.  The first 
involves changing the curvature of one of the surfaces, hereafter referred to as the first or 
initial surface.  The second involves increasing or decreasing the twist of the folding curve. 

A

A'

U

W

V

(a)

Initial Surface Force

Second Surface
prior to forces acting

Second Surface
after forces acting
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A

A'

U

W

V

(b)

Initial Surface Force or Moment

Second Surface
prior to forces acting

Second Surface
after forces acting

 

Fig 5.2 (a)  forces that alter the curvature of a folded developable.   (b) forces that 
change the torsion of the folding curve. 

These two mechanisms are described in the following sections. 

5.2. FOLD ANGLE KINEMATICS 

The motion of a folded developable during folding is dependent on three major parameters: 

(i) the normal surface curvature of the initial, or first, developable surface 

(ii) the curvature of the plane projection of the folding curve 

(iii) the twist of the folding curve. 

The first two parameters effect the fold angle of the folded developable.  Changing either of 
them results in the fold angle changing and the folded developable moving. 

In this examination of the kinematics of folded developables, the generators are assumed to 
remain fixed to the folded surfaces. 

5.2.1. Parameters That Govern Generator Position. 

The position of the generator in the 'second' developable surface of a folded developable 
relative to the 'initial' surface is dependent on the fold or dihedral angle, α, and the two 
tangent angles γ1 and γ2.  These angles are shown in Fig. 5.3.  The fold angle is equal to π−2β 

where β is the angle between the tangent plane and the normal to the folding curve and 2β is 
known as the bend angle. 
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Fig. 5.3 (a)  The generator tangent angles γ1 and γ2 .(b)  The definition of the fold 
angle α. 

5.2.2. The Effects of Changing the Normal Curvature of the First Surface on the Fold 
Angle. 

The most important condition on the fold angle is described in Section 3.3.  During the 
forming of a folded developable 

tanβ = K
K

N

g

,        (5.1) 

where KN is the principal normal curvature of the developable surface at the folding curve and 
Kg is the geodesic curvature of the folding curve.  This may be expressed in terms of radii of 

curvature as 

tanβ
ρ
ρ

= g

N

,        (5.2) 
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where, β is the angle between the normal to the folding curve and the surface normal, ρN is 
the non-zero principal radius of curvature of the developable surface at a given point and ρg is 
the geodesic radius of curvature of the plane projection of the folding curve. 

As the fold angle, α, is π−2β, the fold angle may be expressed as, 

��
�

�
��
�

�
−=

N

g

ρ
ρ

πα arctan2 .            (5.3) 

The fold angle is influenced purely by the geodesic radius of curvature and the normal radius 
of curvature of the first surface. 

As described in section 3.3, when the fold curve is straight, ρg → ∞.  When this occurs α is 

either 0 or 2π, the sheet either folds back on itself or no fold occurs. 

If the geodesic radius of curvature is fixed, the fold angle,  

tanα
ρ

∝ − 1

N

.                 (5.4) 

For this case, tanα is dependent purely on the normal radius of curvature of the developable 
surface. 

5.2.3. The Effects of Changes in the Geodesic Curvature of the Fold Curve, on the Fold 
Angle. 

From equation (5.2) if the principal radius of curvature of the surface is fixed, the fold angle, 
α, is dependent purely on the geodesic radius of curvature of the folding curve.  Thus, 

tanα ρ∝ − g .                 (5.5) 

The accuracy of the equations used by the 3FD program can be checked by measuring the 
fold angle of a large physical model and comparing it with the fold angle predicted by 3FD. 
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5.2.4. Experimental Verification. 

The models used for the validation of the kinematics results were a large card folded 
developable.  The folded developables were formed from two cylindrical surfaces.  Templates 
were used to ensure that changes in the curvature of the first surface were as close as possible.  
Different models were created for each of the examples that had a different folding curve 
radius of curvature.  In all cases the models were made from templates created by the 3FD 
program. 

5.2.4.1.  Changes in the Normal Curvature of the First Surface. 

The results and comparisons are shown below in Fig. 5.4(a) and (b).  Generator Length is 1.0. 

Normal Radius of 

Curvature  

3FD Fold Angle   Model Fold Angle 
Range 

0.1 157.4 156-158 

0.2 136.4 136-138 

0.4 102.7 102-104 

0.5 90.0 90 

0.6 79.6 78-80 

0.8 64.0 63-65 

1.0 53.1 53-55 

1.2 45.2 46-48 

1.4 39.3  

1.6 34.7 33-36 

1.8 31.1  

2.0 28.1 27-31 

3.0 18.9  

4.0 14.25 13-17 
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5.4 (a) Fold Angle (in Degrees) vs. Normal Radius of Curvature with Geodesic Radius 
of Curvature fixed at 0.5.  (b) Graph of Results 

From Fig. 5.4 it is clear that the 3FD program is accurately modelling curved line folding. 

Graphically the folded developable 'opens' as the normal radius of curvature increases.  This 
is illustrated by Fig. 5.5. 
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Fig. 5.5  Cylindrical folded developable.  Geodesic Radius of Curvature Fixed at 0.5.  
Normal Radius of curvature ranges from 0.1 to 10.0.  Note:  The artifacting of the first 
surface is caused by an error in the graphics system, not the program. 

The results are as expected from theory, as the normal radius of curvature of the developable 
surface increases, the developable approaches a flat surface and the fold angle asymptotically 
approaches 180°.  If the fold angle is 180° there is no fold and the surface is continuous. 
�  

5.2.4.2. Changes in the Geodesic Curvature of the Folding Curve. 

The results and comparisons are shown below in Fig. 5.6(a) and (b). 
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Geodesic Radius of 
Curvature   

3FD Fold Angle   Model Fold Angle 
Range 

0.1 22.6 22-24 

0.2 43.6 43-45 

0.4 77.3 77-79 

0.5 90.0 90 

0.6 100.4 99-101 

0.8 116.0 116-118 

1.0 126.9  

1.2 134.8  

1.4 140.7 138-141 

1.6 145.3  

1.8 149.0  

2.0 151.9 150-154 

3.0 161.1  

4.0 165.8  

10.0 174.3 172-176 

5.6 (a) Fold Angle (in Degrees) vs. Geodesic Radius of Curvature with Normal Radius 
of Curvature fixed at 0.5. 
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5.7 (b) Graphical Results 

Graphically the folded developable 'closes' as the geodesic radius of curvature increases.  This 
is illustrated by Fig. 5.8. 

 

Fig. 5.7  Cylindrical folded developable.  Normal Radius of Curvature Fixed at 0.5.  
Geodesic Radius of curvature ranges from 0.1 to 10.0. 
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ρ  = 0.2g ρ  = 0.5g ρ  = 1.0g

α = 44° α = 90° α = 127°

Plane developments with folding curves shown.  In all cases 

View of the front edge

ρ  = 0.5
N

 

Fig. 5.8  Detail from Fig. 5.7, the effect of increasing the folding curve radius.  The 
changed folding curves results in three different first surfaces. 

From Fig. 5.6 and Fig 5.7 it is clear that the 3FD program is accurately modelling curved line 
folding. 

The results match the theory, as the geodesic radius of curvature of the folding curve 
increases, the folding curve approaches a straight line and the fold angle approaches zero.  If 
the folding curve is straight the radius of curvature is infinite and the fold angle will be zero.  
If the fold angle is zero the developable folds back on itself. 

The results show that the folded developable acts as a predictable, non linear mechanism.  For 
a known change in the radius of the fold curve a predictable movement of the generators 
occurs. 

5.2.5. The Fold Angle Mechanism. 

A folded developables' fold angle can be changed by applying a force to change the curvature 
of its first surface.  The change in the fold angle causes the folded developable to act as a 
mechanism, translating a force to a predictable motion. 

The mechanism may be actuated by 'squeezing' the edges of a developable at the folding 
curve.  Assuming the generators remain fixed to the surface, this action reduces the distance, 
D, which in turn reduces the normal radius of curvature of the surface, as shown in Fig. 5.9. 
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ρ Θ Distance D
Folding Curve

 

Fig 5.9  Relationship between the radius of curvature and the distance D. 

The mechanism may be described by the response of the fold angle to changes in D.  The 
distance D is related to the normal radius of curvature by equation (5.6), 

��
�

�
��
�

�
=

N
N

C
D

ρ
ρ

2
sin2 ,        (5.6) 

where C is the folding curve chord length. 

The response of such a mechanism with a folding curve C length of p/2 is shown in Fig. 5.10. 

Folded Developable Mechanism.  Chord Distance pi/4.
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Fig 5.10  The folded developable mechanism. 
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5.3. THE EFFECTS OF THE PRINCIPAL CURVATURE OF THE FIRST SURFACE 
ON THE INCLINATION OF THE SECOND SURFACE GENERATOR. 

The angle, γ2, that a generator in the second surface makes with the tangent of the fold curve 
can be determined by equation (5.7), developed in section 3.4.4, 

tan
sin

cos sin
γ γ

γ γ β2
1

2
1

1 1 1 2
= −

+

K

K
d
ds

       (5.7) 

where γ1 is the initial surface generator tangent angle, K1 is the curvature of the initial surface 

and 
d
ds
β

 is a measure of the rotation rate of the osculating plane of the folding curve C.  These 

three parameters determine the angle the second generator makes with the tangent. 

If the folding curve has a constant fold angle 
d
ds
β

 = 0 then γ2 = -γ1 unless π γ π< <1

3
2

. 

Kinematically γ2 is affected by changes in K1 only if 
d
ds
β

 is not zero.  Thus γ2 changes only if 

the fold angle changes along the length of the fold curve. 

If the change in the fold angle is negative, 
d
ds
β

 < 0 then the second generator angle is of 

greater magnitude than the first, γ2 > γ1: 

The effects of changing the three parameters are shown in the numerical examples in the 
following section. 

5.3.1.  Numerical Examples. 

1. No change in fold angle (no osculating plane rotation). 

if γ1 = 60° 

 
d
ds
β

= 0.0 

and K1 = 0.5 

then ��
�

�
��
�

�

×+°°
°−=

0.0260sin60cos5.0
60sin5.0

arctan
2

2γ  

 γ2 = -60° or 120°. 
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The arctan solution produces two roots.  In the computations only the positive root is used.  
As predicted if there is no change in fold angle, the two tangent angles are equal and opposite 
in sign. 

2. Positive change in the fold angle (negative osculating plane rotation). 

If γ1 = 60° 

 
d
ds
β

 = -0.1 

and K1 = 0.6 

then ��
�

�
��
�

�

−×+°°
°−=

1.0260sin60cos6.0
60sin6.0

arctan
2

2γ  

  γ2 = -82.4° or 97.6°, 

If the fold angle increases along the folding curve, the second tangent angle will be of greater 
magnitude than the first but of opposite sign. 

3. Negative change in the fold angle (positive osculating plane rotation). 

If γ1 = 60° 

 
d
ds
β

 = 0.1 

and K1 = 0.6 

then γ2 = -44.4° or 135.6°. 

If the fold angle decreases along the folding curve, the second tangent angle will be of lesser 
magnitude than the first but of opposite sign. 
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5.3.2. Computational Example. 

If the first surface is part of a cone and the folding curve's centre is not at the apex of the 
cone, then the folding curve intersects the surface's generators at different distances from the 
apex of the cone.  This results in different curvatures occurring at the folding curve, the fold 

angle is generally not constant, the fold curve is twisted and 
d
ds
β

 does not equal zero. 

This is illustrated by Fig. 5.11 (a) (b) and (c) below.  The three figures are three views of two 
developables.  Both have identical first surfaces but one has a twisted folding curve, while the 
other does not.  The comparison with a physical model of this process is illustrated by 
example 5 in the results section of chapter 3. 

 

Fig. 5.11  (a)  Cone developable.  Two identical initial surfaces folded differently.  For 
one surface the fold angle is constant because the normal radius of curvature does not 
change along the fold line.  For the other the fold angle varies so the angles the 
generators make with the folding curve vary.  In each case the normal radius of 
curvature is 0.9 at the base of the cone and the folding curve radius is 0.5. 
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Fig. 5.11  (b)  Cone developable.  The same developable in a plane view. 
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Fig. 5.11  (c)  Cone developable.  The same developable side view 

The effects of the twisted folding curve, on the fold angle and the tangent angles are 
numerically quantified in Fig. 5.12. 
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Generator 
Number 

Plane       

α 

Twisted    

α 

Plane        

γ1 

Twisted    

γ1 

Plane        

γ2 

Twisted    

γ2 

1 96.74 78.73 86.88 135.07 86.88 29.24 

2 96.74 84.13 85.63 132.79 85.46 33.02 

3 96.74 89.20 84.40 130.18 83.88 37.49 

4 96.74 93.80 83.20 127.29 82.33 42.15 

5 96.74 97.93 82.02 124.17 80.80 46.91 

6 96.74 101.60 80.88 120.85 79.30 51.69 

7 96.74 104.80 79.80 117.39 77.86 56.44 

Fig. 5.12  A comparison of fold and tangent angles for a developable with (i) a plane 
folding curve and (ii) a twisted folding curve. 

The developable with the plane folding curve has a constant fold angle.  This is because the 
curvature of the first surface is equal at all, the generator intersections with the folding curve.  
If there is no change in the fold angle, from equation 5.7, the tangent angles will be equal.  
The tangent angles, in Fig 5.12, are close to equal, the slight increasing error due to rounding 
errors in the calculations (Max error less than 2.5%). 

A twisted folding curve causes a changing fold angle.  This is due to a variation in the 
curvature of the first surface at the intersections of the folding curve with the generators.  
From equation 5.3, this change in fold angle causes a change in fold angle.  If the fold angle 
changes along the folding curve, from equation 5.7, the tangent angles will not be equal.  This 
is shown in Fig. 5.12. 
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5.4. CONCLUSIONS. 

The conclusions drawn from the modelling of the kinematics of folded developables are: 

If the folding curve has a fixed radius of curvature in the plane projection, ρg, then as the 
radius of curvature of the initial surface increases the fold angle increases and the folded 
developable opens.  Conversely if the folding curve has a fixed radius and the radius of 
curvature of the initial surface decreases the fold angle reduces and the folded developable 
closes. 

If a developable surface, with a fixed principal surface curvature (fixed radii of curvature) is 
folded along a curve, that is part of the arc of a circle in its plane projection, the tangent of the 
fold angle is inversely dependent on the radius of the folding curve.  As the plane projection 
of the radius increases the fold angle reduces.  The relationship is not linear and is described 
by equation 5.3. 

Folded developables act as predictable, non linear mechanisms.  For a known change in the 
radius of curvature of the surface a predictable movement of the generators occurs. 

The mechanism may be described by considering a distance , D, where D is the chord 
distance of the folding curve.  Reducing the distance, D, reduces the normal radius of 
curvature of the surface and this causes a change in the fold angle that results in a change in 
generator position.  The description for this motion is shown in Fig 5.6. 

The angle, γ2, that a second surface generator makes to the tangent of the folding curve is 
governed by three parameters.  The first is the angle, γ1, the corresponding generator in the 
first surface makes with the tangent curve.  The second, K1, is the principal curvature of the 

first surface.  The third, 
d
ds
β

, is the rate of rotation of the osculating plane along the folding 

curve.  This is inversely related to the rate of change of the fold angle along the folding curve.  
The exact relation is described in equation 5.7. 

If there is no change in fold angle, the two tangent angles are equal and opposite in sign.  If 
the fold angle increases along the folding curve, the second tangent angle will be of greater 
magnitude than the first but of opposite sign.  If the fold angle decreases along the folding 
curve, the second tangent angle will be of lesser magnitude than the first but of opposite sign. 
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7. APPENDICES 

7.1.  LARGE STRAIN ANALYSIS 

In Fig. 7.1 the homogeneous deformation of the square OABC into the deformed rhomboid 
O'A'B'C' is shown. 

Y

X

F

FO A

A'

C

C'

B

B'

F

F

11

22

12

21

 

Fig. 7.1  Homogeneous deformation of a rhomboid. 

The transformation can be mathematically described as 

x F X F Y

y F X F Y

= +
= +

 11 0 12 0

12 0 22 0

        (7.1) 

where X and Y are the initial coordinates and x and y the transformed coordinates.  The 
coefficients Fij can be evaluated from three points after deformation, typically from O', A' and 
C'.  Equation 7.1 can be written in matrix form 

�
�
�
�

�

	










�

�

�
�
�
�

�

	










�

�

=

�
�
�
�

�

	










�

�

22

21

12

11

2

1

2

1

2

1

2

1

2

1

2

1

0
0

0
0

0
0

0
0

F

F

F

F

Y

Y

X

X
Y

Y

X

X

y

y

x

x

         (7.2) 

or in tensor notation 

x F.X=                 (7.3) 
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where x represents the deformed state and X the initial state.  F is the deformation gradient 
tensor with coefficients Fij. 
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22
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F                  (7.4) 

F is usually a non-symmetric tensor, F12  ≠ F21.  It is always possible to find a positive 
symmetric tensor U, U12 = U21, which produces the same shape change as F and which is 
related to F by 

F R U= .                 (7.5) 

where R represents rigid body rotation.  The symmetric tensor U produces symmetric 

deformation of the original square as shown in the bottom diagram of Fig. 7.1.  It must be 

rotated by R in order to reach the configuration of O'A'B'C'. 

Thus it can be concluded that F can be divided into a pure deformation U and a pure rotation 

R.  In most realistic forming processes the full transformation F through the simultaneous 

action of rigid body rotation and pure deformation.  This means the principal directions rotate 

during forming and the strain path becomes coaxial in the general case.  This is different from 

the idealised situation where the pure deformation and rigid rotation are consecutive events.  

In that case the principal directions are fixed and the strain path is both straight and coaxial.  

In this case of 'pure homogeneous deformation' U alone deforms the initial square. 

The inversion of the matrix in equation 7.3 will give the values of the four F coefficients 
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where 

( )1221 YXYX −
= 1D              (7.7) 

The deformation tensor derived from equation 7.14 is unsymmetrical, so a symmetric second 

order tensor, known as the Cauchy-Green deformation tensor, C, can be evaluated from 

C F FT= .               (7.8) 

where  FT is the transpose of F. 
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Expanding Equation 7.8, the components of C are 

C F F

C C F F F F

C F F

11 11
2

21
2

12 21 11 12 21 22

22 12
2

22
2

= +
= = +

= +

              (7.9) 

The principal values (eigenvalues) of C can be obtained by the transformation rule of a 

second order tensor.  Alternatively a Mohr's circle construction could be employed.  In this 
case the principal values are the elongation values squared, ie. λ11

2  and λ22
2 ,where the 

elongation ratio is the ratio of final line length to initial line length.  The principal values 

obtained from equation 7.9, are given by 
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The orientation of the principal axes is determined from 

tan2
2 12

11 22

θ =
−
C

C C
        (7.11) 

It follows that the principal logarithmic surface strains are 

( )
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.               (7.12) 

The third principal logarithmic strain, the thickness strain, may be determined using the 
incompressibility assumption 

ε ε ε11 22 33 0+ + =                (7.13) 

or 

λ λ λ11 22 33 1=           (7.14) 

The representative or equivalent strain ε  is given by 
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2 εεεε ++= .      (7.15) 
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7.2. 3FD COMPUTER PROGRAM SUBROUTINE AND ALGORITHM DETAILS. 

The previous section described the functions performed by the 3FD program.  3FD is a 
FORTRAN program, and uses PHIGS (Programmers Hierarchal Interactive Graphics System) 
to provide the Graphical User Interface, (GUI).  Although developed on an IBM RS6000 
computer with IBM's implementation, graPHIGS, of PHIGS it can be transferred to other 
computers and implementations of PHIGS with few modifications. 

This appendix describes in greater detail the structure of the program, the menus' structure, 
the algorithms behind the major subroutines and some detail of the graphics routines used to 
create the user interface. 

7.2.1. Overall Program Sequence. 

The sequence of the 3FD program is shown in Fig. 3.38.  When the program is started it  
initialises the GUI, displays the title and introduction sequence, then moves into an event 
driven program loop.  The program waits for the user to select one of the menu items and then 
executes the corresponding subroutines.  This continues until the user decides to terminate the 
programs operation.  The program then shuts down the GUI and terminates.  This structure is 
shown in Fig. 7.2. 

  Program Start. 

  Initialise Graphics. 

  Display Title Graphics and Introduction. 

  Start Menu Driven Loop. 

   Await Menu Item Selection 

   Read Menu Item Selection 

   Call Appropriate Subroutines 

   Repeat unit 'Quit' Selected 

  Shut Down Graphics. 

  Terminate Program. 

Fig. 7.2  Sequence of events controlled by the program 3FD.  The event driven loop is 
controlled by the subroutine PHLOOP. 

The general structure of the program PHLOOP and the data flows between the major modules 
is shown in Fig. 7.3. 
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GUI

PHIGS
Data

Types

INPUT

Identification

Data
Data
Store

Req.

Data
Developable
Calculations

3D
Display

Commands to Create Developables

Display/Viewing Commands

Fig 7.3  General Structure of the program and the data flows between major modules. 

The details of the GUI and 3D display modules is shown in Fig. 7.4 

GUI Control

Main Menu

Sub Menus

Menu Display

Menu Selection

 

Fig 7.4 (a)  Expansion of 'GUI' in Fig 7.3 
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Fig 7.4 (b)  Expansion of '3D Display' in Fig 7.3 

The user interfaces with the 3FD program through the 'pop-up' menus.  The main menu of the 
program is displayed at the bottom of the graphics screen.  The user selects one of the items 
of the main menu by moving the cursor over the menu name and clicking a cursor button.  A 
secondary menu then appears on the screen.  In a similar fashion the user may select an item 
from the secondary menus.  The program then calls the appropriate subroutines.  The menus 
are designed to allow the user to intuitively design a folded developable and are structured as 
shown in Fig. 7.5. 

The major subroutines used in 3FD are described in the following sections. 

Set View Edge Reg Rad Curve Fold Quit
Main View Conic Cone Fixed Axis Arc

Right Elevation Cylinder Bezier Centre Arc

Left Elevation Function Normal Fixed Bezier

Main Elevation Bezier Flip

Plan Flatwrap

Shade Dieset

Wire Frame Dieflat

Plot  

Fig. 7.5  Menu Tree for program 3FD. 
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7.2.2. The INPUT Subroutine. 

The input subroutine is an interrupt driven subroutine.  Upon interruption (some action by the 
user such as a menu pick, keyboard entry or dial movement) the subroutine determines the 
type of data that has been received and calls the relevant subroutine.  The data type is 
determined by the data input class.  Classes primarily relate to the device used for input, for 
example a string type input is data entered by the keyboard.  The structure of INPUT is 
described by the Pseudo Code in Fig. 7.6. 

 Subroutine Input 

  Await Input 

  When Input Occurs Determine Type of Input  

  If Input = Locator (Indicate) 

   Call GPGTLC (Get Locater) 
  else if Input = Pick (Select) 
   Call GPGTPK (Get Pick) 

  else if Input = Valuator (Dials) 

   Call VALIN (Read Dials) 

  else if Input = Choice (Function Keys) 

   Call CHOIN (Which Key) 

  else if Input = String (Keyboard) 

   Call GPGTST (Get String) 

  Endif 

  RETURN 

Fig. 7.6  The INPUT Subroutine which accepts data from the GUI and then passes it 
on to the processing subroutines. 

7.2.3. The Set View Subroutine. 

Changing the views of the Folded Developable is controlled by the OPTNA subroutine.  This 
accepts the menu selection of the user and displays the corresponding view of the folded 
developable.  The view is changed by moving the view port around the three dimensional 
object using the conventions shown in Fig. 7.7. 
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Fig. 7.7  Viewport Definitions 

7.2.4. The Edge of Regression Subroutines. 

As described in section 3.4.2.2 there are four possible methods of defining the edge of 
regression and hence the plane development of the first surface.  The algorithms for the 
creation of a flat cone surface and for a surface defined by an edge of a regression defined by 
the function y = cos x -1 are shown in Figures 7.8 and 7.9. 

 Subroutine AIN (Arc Input) 
  Prompt user to INPUT number of Generators. 

  NP = INPUT 

  i = -1 

  Start Generator Creation Loop 

   A(i,x) = -0.5 

   A(i,y) = 0.0 

   A(i,z) = 0.0 

   Theta = i * 5° 

   B(i,x) = A(i,x) + cos (Theta) 

   B(i,y) = A(i,y) - sin (Theta) 

   B(i,z) = 0.0 

   i = i+1 

  IF i < NP + 1 go to start of loop 

  RETURN 

Fig. 7.8 The AIN Subroutine which creates the plane development of the first surface 
of a cone developable. 
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The loop starts at -1 and continues to the number of generators +1 to create all the generators 
used in the folding calculations. 

The function edge of regression is created in the subroutine INPUTE described in Fig. 7.9. 

 Subroutine INPUTE 

  Prompt user to INPUT number of Generators. 

  NP = INPUT 

  i = -1 

  Start Generator Creation Loop 

   Ang = i*5° 

   A(i,x) = Ang-0.5 

   A(i,y) = Cos(Ang) - 1.0 

   A(i,z) = 0.0 

   dy/dx = -sin(Ang) 

   Theta = Arctan(dy/dx) 

   B(i,x) = A(i,x) + cos (Theta) 

   B(i,y) = A(i,y) + sin (Theta) 

   B(i,z) = 0.0 

   i = i+1 

  IF i < NP + 1 go to start of loop 

  RETURN 

Fig 7.9  The subroutine INPUTE that creates the plane development of the first 
surface of a developable with the edge of regression defined by a function. 

7.2.5. The Radius of Curvature Subroutines. 

As described in section 3.4.3.3 there are three possible methods of defining the radius of 
curvature of the first developable surface; cone, normal and bezier.  The algorithm for a fixed 
normal radius of curvature is shown in Fig 7.10. 

 Subroutine FNIN (Fixed Normal In) 

  INPUT Radius of Curvature 

  RHO = INPUT 

  i = -1 

  Start of the Curvature Addition Loop. 

   r = sqrt ((RHO*(RHO+1))/(RHO+1)) 

   L = Generator Length 

   theta = i*5° 

   alpha = theta/r 
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   beta   = arcsin(r/L) 

   XX = sqrt (L*L - r*r) 

   YY = -rsin(alpha) 

   ZZ =  rcos(alpha) 

   B(i,x) = XXcos(beta) + ZZsin(beta) -0.5 

   B(i,y) = YY 

   B(i,z) = XXsin(beta) - ZZcos(beta) 

   i = i+1 

  IF i < NP + 1 go to start of loop 

  RETURN 

Fig 7.10  The subroutine FINN that defines fixed normal curvature. 

7.2.6. The Folding Subroutines. 

As described in section 3.4.2.4 there are three methods of defining the folding curve.  The 
example algorithm, Fig 7.11, is for a bezier curve folding curve.  After the folding curve has 
been defined in the plane development, the surface is then folded.  This algorithm, Fig. 7.12, 
follows the theory developed in Section 3.4. 

The Bezier fold curve is created by the user inputting the four control points for the bezier 
curve.  The first and the fourth points define the start and end of the bezier curve, the second 
and third points define the direction and magnitude of the tangents at the start and end of the 
curve.  The curve is then drawn and intersected with the generators.  At each intersection 
point, the radius of curvature of the folding curve is determined.  This information is then 
passed to the Folding Subroutine CURV2. 
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 Subroutine Bezcurv 

  Control Point Input 
  User to INPUT Four Control Points 

  u(1) to u(4) & v(1) to v(4) = INPUT 

  t = 0 

 

   Start Bezier Curve Creation Loop 

   i = t*50 + 1 

   XX(i) = (1-t)3u(1) + 3t(1-t)2u(2) + 3t2(1-t)u(3) +t3u(4) 

   YY(i) = (1-t)3v(1) + 3t(1-t)2v(2) + 3t2(1-t)v(3) +t3v(4) 

   t = t + 0.02 

  If t < 1.0 go to start of loop 

 

  Draw Curve 

  Move_to (XX(1),YY(1)) 

  i = 2 

  Start Draw Loop 

   Draw_Line_to(XX(i),YY(ii)) 

   i=i+1 

  If i < 50 Go to loop start 

 

  Find Generator Intersections 

  A x,y,z = Generator Start Point 
  B x,y,z = Generator End Point 
  C x,y = Plane Generator Fold Point 
 

  For Each Generator 

  beta = arctan((B(y) - A(y))/(B(x) - A(x)) 

  gap = 10 000 

  i = 1 

  Start Intersection Gap Loop 

   xgen = XX(i) 

   ygen = A(y) + (xgen - A(x))sin(beta) 

   gen_gap = YY(i) - ygen 

   diff = sqrt(gen_gap*gen_gap) 

   IF diff < gap then 

    gap = diff 

    istore = i 

   ENDIF 
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  If i < 50 go to loop start 

  C(x) = XX(istore) 

  C(y) = YY(istore) 

 

  Calculating Radius of Curvature. 
  The Radius of Curvature is calculated by finding the intersections of the  
  normals of the bezier curve.  The normals originate from a point on the folding 
  curve Ci and a point either side of it, Ci-1 and Ci+1. 
 

  m1 = (C(i,y) - C(i-1,y))/(C(i,x) - C(i-1,x)) 

  D1 = C(i,y)/(m1*C(i,x)) 

  m2 = (C(i+1,y) - C(i,y))/(C(i+1,x) - C(i,x)) 

  D2 = C(i,y)/(m2*C(i,x)) 

 

  Intersection Point O(x),O(y) 
  O(x) = (D2 - D1)/(m1-m2) 

  O(y) = m1O(x) + D1 

 

  Radius of Curvature RHO 

  RHO(i) = sqrt( [O(x)-C(i,x)]2 + [O(y)-C(i,y)]2 ) 

  RETURN 

Fig. 7.11  Detail of the subroutine BEZCURV used to create a bezier curve folding 
curve. 

The subroutine that folds the developable surface along the specified folding curve is 
CURV2.  The subroutine follows the numerical algorithm described in section 3.4.  The 
structure of the subroutine is shown in Fig. 7.12. 

 Subroutine CURV2 

  NP = Number of Generators 

  i = -1 

  Start Generator Folding Loop 

   Determine Tangent to Folding Curve 

   Determine the tangent Angle Gamma1 
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   Determine the rate of Change of Fold Angle 

    
d
ds C C

i iβ β β= − −1

1 2

 

   Determine Gamma 2 

    tan
sin

cos sin
γ γ

γ γ β2
1

2
1

1 1 1 2
= −

+

K

K
d
ds

 

   Determine the location of A', the end of the generator 

   i = i+1 

  IF i < NP + 1 go to start of loop 

  RETURN 

Fig. 7.12  The structure of the CURV2 subroutine that folds the first developable 
surface along the folding curve. 

7.2.7. The Display Subroutines. 

The folded developables created by 3FD can be displayed as either wireframe or shaded 
polygon models.  The subroutine that displays the wireframe is C2 and its structure is detailed 
in Fig. 7.13. 

 Subroutine C2 

  Open Graphics Structure 

  Empty Graphics Structure 

  i=1 

  Start Wireframe Generator Creation Loop 

   Move3D(A(i,x),A(i,y),A(i,z)) 

   Draw3D(C(i,x),C(i,y),C(i,z)) 

   Draw3D(ADASH(i,x),ADASH(i,y),ADASH(i,z)) 

   i = i+1 

   If i < Number of Generators+1 go to loop start 

  Start Loop to Draw Curves Across the developable 

   i=2 

   Move3D(A(1,x),A(1,y),A(1,z)) 

   Start A Curve Loop 

    Draw3D(A(i,x),A(i,y),A(i,z))  

    i = i+1 

    if i < No. Gens +1 go to loop start 

   i=2 

   Move3D(C(1,x),C(1,y),C(1,z)) 

   Start C Curve Loop 



COMPUTER AIDED MODELLING OF SHEET METAL FORMING       R.G.TEMPLER 

   171 

    Draw3D(C(i,x),C(i,y),C(i,z))  

    i = i+1 

    if i < No. Gens +1 go to loop start 

   i=2 

   Move3D(ADASH(1,x),ADASH(1,y),ADASH(1,z)) 

   Start ADASH Curve Loop 

    Draw3D(ADASH(i,x),ADASH(i,y),ADASH(i,z))  

    i = i+1 

    if i < No. Gens +1 go to loop start 

  Close Graphics Structure 

  Update Workstation 

  RETURN 

Fig. 7.13  The C2 subroutine structure that displays the wireframe developables. 

The colour shaded model is generated in a similar fashion.  To shade the polygons additional 
information is required.  The normal to the surface of the polygon must be specified.  The 
subroutine that creates the shaded polygon model is CPOLY and its structure is described in 
Fig. 7.14. 
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 Subroutine CPOLY 

  Open Graphics Structure 

  Empty Graphics Structure 

  Define Lights 

  Define Polygon Attributes such as colour, etc. 

  i=1 

  Start First Surface Polygon Creation Loop 

   Surface Definition (A(i),C(i),C(i+1),A(i+1)) 

   Normal Calculation using Cross Products 

    d1 = C(i+1,x) - A(i,x) 

    d2 = C(i+1,y) - A(i,y) 

    d3 = C(i+1,z) - A(i,z) 

    e1 = A(i+1,x) - C(i,x) 

    e2 = A(i+1,y) - C(i,y) 

    e3 = A(i+1,z) - C(i,z) 

    d1xe1 = d2e3 - d3e2 

    d1xe2 = d3e1 - d1e3 

    d1xe3 = d1e2 - d2e1 

    de_av = sqrt((d1xe1)2 + (d1xe2)2 + (d1xe3)2)) 

    normal_x = (d1xe1)/de_av 

    normal_y = (d1xe2)/de_av 

    normal_z = (d1xe3)/de_av 

   Draw Polygon 

   i =i+1 

   If i < No. of Gens go to loop start 

  Repeat for Second Surface 

  Update Workstation 

  RETURN 

Fig. 7.14  The CPOLY subroutine that displays the developable as colour shaded 
polygons. 

7.2.8. The Graphics Structure Subroutine. 

The subroutine OPPHE opens the PHIGs graphics systems and sets up the graphics structures 
shown in Fig. 7.14.  The basic structure of this subroutine is detailed in Fig. 7.15. 
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 Subroutine OPPHE 

  Read Program Defaults File 

  Open PHIGS System 

  Open Workstation 

  Define Colours 

  Set Up Views 

   View = Screen Dims & AR 

   Main View (3D) 

   Right Elevation 

   Left Elevation 

   Main (Front) Elevation 

   Plan 

  Draw Structures 

   Menu Structure 

   Initial Box Structure. 

  Associate Roots with Views 

   Give each view an identifier and setup empty graphics structures in the 
   views. 
  Initialise Input Devices 

   Locator (mouse) 

   Valuator (dials) 

   Choice (function keys) 

   Pick (mouse) 

   String (keyboard) 

  RETURN 

Fig 7.15 The OPPHE subroutine that initialises the GUI and creates the PHIGS 
structures used by the program. 
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