

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

#### Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

#### General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

#### UNIVERSITY OF AUCKLAND LIBRARY

This thesis is issued on loan to you on the understanding that it will be consulted for the purpose of research or private study only.

The author's permission must be obtained before any material in the thesis is published elsewhere. Due acknowledgement must be made to the author in any citation.

> Janet Copsey Librarian

# Isolation and Characterisation of Two Amylin Responsive Proteins from Rat Skeletal Muscle

## **Shao Chin Lee**

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biological Sciences, The University of Auckland, 1997

## **To My Family**

#### ABSTRACT

Two amylin responsive proteins, here designated ARP1 and ARP2, were discovered from rat skeletal muscle through two dimensional gel electrophoresis analysis. ARP1 was detected only in amylin-stimulated muscles where the insulin-stimulated glucose incorporation into glycogen was inhibited. This protein incorporated <sup>32</sup>Pi but not [<sup>35</sup>S]-methionine in the metabolic labelling experiments. Subsequent molecular characterisation revealed that ARP1 was a novel monomeric form (designated form 1) of protein p20, and two other monomeric forms (designated forms 2 and 3 respectively) of protein p20 were also characterised. The production of ARP1 was not affected by the presence of insulin, but calcitonin gene-related peptide (CGRP) was found to evoke the production of ARP1 in the presence or absence of insulin. In contrast, ARP2 was detected in both control and amylin-stimulated muscles. Amylin stimulation evoked incorporation of [<sup>35</sup>S]-methionine but not <sup>32</sup>Pi into the protein and increased its concentration significantly.

It is concluded that amylin elicits the production of ARP1 through phosphorylation and increases the protein biosynthesis of ARP2; the amylinevoked production of ARP1 is insulin independent; amylin and CGRP share, at least in part, an intracellular signal transduction pathway; and ARP1 and 2 may be involved in the development of insulin resistance. It is suggested that ARP1 and 2 could potentially be used as molecular markers for the analysis of amylin action.

### ACKNOWLEDGMENT

I would like to express my sincere thanks to all who have contributed to the study, especially:

Professor Garth JS Cooper for creating the opportunity; Mrs. Catriona Knight for performing the protein sequencing and her help in proof-reading and editing; Mrs. Judy Douglas for day to day back-up; Dr. D. Christie for his great help; Dr. M. Hubbard for being my advisor; Mrs. Cynthia Tse and Professor JAJH Critchley for their help in proof-reading and editing; and Professor J. Kistler for his comments on the manuscript submitted to the Journal of Biological Chemistry for publication.

Appreciation is also extended to Mr. S. Spence, J. Bai, A. Clarke, Mrs. S. Zhang, Mrs. C. Buchanan and other group members for friendship.

## **ABBREVIATIONS**

| 2D    | Two dimensional                                  |
|-------|--------------------------------------------------|
| 2 DE  | Two dimensional gel electrophoresis              |
| ARP1  | Amylin responsive protein 1 (form 1 protein p20) |
| ARP2  | Amylin responsive protein 2                      |
| CGRP  | Calcitonin gene-related peptide                  |
| DMEM  | Dulbecco's Modified Eagle Medium                 |
| DTT   | Dithiothreitol                                   |
| EDL   | Extensor Digitorum Longus                        |
| EDTA  | Ethylenediamine tetraacetic acid                 |
| GCG   | Genetics computer group                          |
| HPLC  | High performance liquid chromatography           |
| IDDM  | Insulin-dependent diabetes mellitus              |
| IPG   | Immobilised pH gradient                          |
| MS    | Mass spectrometry                                |
| NIDDM | Non insulin-dependent diabetes mellitus          |
| PMSF  | Phenylmethylsulphonylfluoride                    |
| PMF   | Peptide mass fingerprinting                      |
| SDS   | Sodium dodecyl Sulfate                           |
| TFA   | Trifluoroacetic acid                             |
| TNF   | Tumour necrosis factor                           |
| TOF   | Time of flight                                   |
| Tris  | Tri(hydroxymethyl)aminomethane                   |
|       |                                                  |

Abbreviations of units of measurement and of physical and chemical quantities are those recommended by the Journal of Biological Chemistry (*J. Biol. Chem.* 271, 1-4, 1996).

## TABLE OF CONTENTS

## CONTENT

## PAGE

| ABSTRACT          | 1   |
|-------------------|-----|
| ACKNOWLEDGMENT    | 2   |
| ABBREVIATION      | 3   |
| TABLE OF CONTENTS | 4   |
| LIST OF FIGURE S  | 11  |
| LIST OF TABLES    | 13  |
| APPENDIX          | 117 |
| REFERENCES        | 118 |

## **Chapter 1: Introduction**

| 1.1.     | Insulin resistance                                        | 14 |
|----------|-----------------------------------------------------------|----|
| 1.1.1.   | The history and the current concept                       | 14 |
| 1.1.1.1. | History                                                   | 14 |
| 1.1.1.2. | The current concept of insulin resistance                 | 15 |
| 1.1.2.   | Clinical and economic significance of insulin resistance  | 15 |
| 1.1.2.1. | Insulin resistance in diseases                            | 15 |
| 1.1.2.2. | Economic impact of insulin resistance                     | 17 |
| 1.1.3.   | Skeletal muscle is the major site of insulin resistance   | 17 |
| 1.1.4.   | Non-oxidative glucose metabolism is the major metabolic   |    |
|          | pathway involved in the development of insulin resistance | 19 |
| 1.1.5.   | Molecular mechanisms of insulin resistance                | 19 |
| 1.1.5.1. | Insulin resistance as a consequence of insulin receptor   |    |
|          | abnormalities                                             | 19 |

| 1.1.5.2. | Insulin resistance as a consequence of post-receptor          |    |
|----------|---------------------------------------------------------------|----|
|          | abnormalities                                                 | 21 |
| 1.1.5.3. | Changes in glucose transport and intra-cellular metabolism in |    |
|          | insulin resistance                                            | 22 |
| 1.1.5.4. | The glucose-fatty acid cycle                                  | 23 |
| 1.1.5.5. | Genetic influence                                             | 23 |
| 1.1.6.   | The common form of insulin resistance                         | 23 |
| 1.1.7.   | Insulin resistance: Summary                                   | 24 |
| 1.2.     | Amylin                                                        | 25 |
| 1.2.1.   | Potential biological functions of amylin                      | 25 |
| 1.2.2.   | Molecular mechanisms of amylin action                         | 27 |
| 1.2.2.1. | Amylin signal transduction                                    | 27 |
| 1.2.2.2. | Targets of amylin action                                      | 27 |
| 1.2.3.   | Is amylin implicated in the pathogenesis of the common        |    |
|          | form of insulin resistance?                                   | 28 |
| 1.2.4.   | Amylin and the common form of insulin resistance:             |    |
|          | Understanding of the current controversy and its potential    |    |
|          | resolutions                                                   | 29 |
| 1.2.5.   | Amylin: Summary                                               | 30 |
| 1.3.     | The project                                                   | 30 |
| 1.3.1.   | Objectives                                                    | 30 |
| 1.3.2.   | Overall experimental design                                   | 31 |

Chapter 2: Separation of rat skeletal muscle proteins by two dimensional gel electrophoresis and the technical optimisation

| 2.1.     | Two dimensional gel electrophoresis           | 32 |
|----------|-----------------------------------------------|----|
| 2.2.     | Materials and methods                         | 33 |
| 2.2.1.   | Chemicals, solutions and equipment            | 33 |
| 2.2.1.1. | Chemicals and equipment                       | 33 |
| 2.2.1.2. | Solutions                                     | 34 |
| 2.2.2.   | Sample preparation and protein quantification | 37 |

| 2.2.2.1. | Tissue homogenisation                                            | 37 |
|----------|------------------------------------------------------------------|----|
| 2.2.2.2. | Protein quantification                                           | 37 |
| 2.2.3.   | Procedure of 2 DE                                                | 38 |
| 2.2.4.   | Visualisation of protein spots                                   | 39 |
| 2.2.4.1. | Silver staining                                                  | 39 |
| 2.2.4.2. | Coomassie blue staining                                          | 40 |
| 2.2.4.3. | Post-staining treatment of fels                                  | 40 |
| 2.3.     | Separation of rat skeletal muscle proteins using analytical 2 DE | 40 |
| 2.4.     | Attempts made for the optimisation of the analytical 2 DE        | 44 |
| 2.4.1.   | Removal of the background plaque                                 | 44 |
| 2.4.2.   | Effects made for better protein focusing                         | 44 |
| 2.5.     | Preparative 2 DE of EDL proteins and its technical               |    |
|          | optimisation                                                     | 46 |
| 2.6.     | Discussion                                                       | 52 |
| 2.6.1.   | Separation of skeletal muscle proteins using 2 DE                | 52 |
| 2.6.2.   | Determination of the electrophoresis conditions for the project  | 52 |
| 2.6.2.1. | Analytical 2 DE                                                  | 52 |
| 2.6.2.2. | Preparative 2 DE                                                 | 53 |

Chapter 3: Computer-assisted image analysis of 2D gels

| 3.1.   | Introduction                                          | 54 |
|--------|-------------------------------------------------------|----|
| 3.2.   | Image analysis using the ImageMaster 1.1: The basics  | 54 |
| 3.3.   | Analysis of gel and film Images using ImageMaster 1.1 | 56 |
| 3.3.1. | Spot detection                                        | 55 |
| 3.3.2. | Image matching                                        | 59 |
| 3.4.   | Strategy of 2D image matching for the project         | 59 |

Chapter 4: Analysis of EDL stimulated *in vitro* with amylin using analytical 2 DE and computer-assisted image analysis: The discovery of two amylin responsive proteins

| 4.1.     | Introduction                                                               | 61 |
|----------|----------------------------------------------------------------------------|----|
| 4.2.     | Experimental procedure                                                     | 62 |
| 4.2.1.   | Animals                                                                    | 62 |
| 4.2.2.   | Muscle dissection and incubation                                           | 62 |
| 4.2.3.   | Metabolic labelling of skeletal muscle using [ <sup>35</sup> S]-methionine | 63 |
| 4.2.4.   | Muscle sample homogenisation and protein quantification                    | 63 |
| 4.2.5.   | Analytical 2 DE                                                            | 63 |
| 4.2.6.   | Molecular weight calibration                                               | 64 |
| 4.2.7.   | Image analysis                                                             | 64 |
| 4.3      | Results                                                                    | 64 |
| 4.3.1.   | Distribution of EDL proteins on 2D gel: An overview                        | 65 |
| 4.3.1.1. | EDL proteins on analytical 2D gels                                         | 65 |
| 4.3.1.2. | Reproducibility of the 2 DE analysis of EDL sample                         | 65 |
| 4.3.2.   | Identification of two EDL proteins response to amylin                      |    |
|          | stimulation                                                                | 65 |
| 4.3.2.1. | Identification of a protein produced in response to amylin                 |    |
|          | stimulation                                                                | 66 |
| 4.3.2.2. | Identification of a protein quantitatively increased in response to        |    |
|          | amylin stimulation                                                         | 66 |
| 4.3.2.3. | Results of the metabolic labelling of ARP1 and ARP2                        |    |
|          | with [ <sup>35</sup> S]-methionine                                         | 69 |
| 4.4      | Discussion                                                                 | 71 |
| 4.4.1.   | The molecular mechanism of ARP1 production: Evidence that                  |    |
|          | ARP1 is produced through amylin-evoked protein post-                       |    |
|          | translational modification                                                 | 71 |
| 4.4.2.   | Amylin-stimulated protein synthesis: The molecular mechanism               |    |
|          | of the increase in ARP2 concentration                                      | 71 |
| 4.4.3.   | The power and limits of the current 2 DE technology                        | 74 |

Chapter 5: Microcharacterisation of the amylin responsive proteins: Identification of ARP1 as a novel monomeric form of protein p20

| 5.1.     | Introduction                                              | 75 |
|----------|-----------------------------------------------------------|----|
| 5.2.     | Materials and methods                                     | 77 |
| 5.2.1.   | Chemicals, enzyme and solutions                           | 77 |
| 5.2.1.1. | Chemicals and enzyme                                      | 77 |
| 5.2.1.2. | Solutions used in the in-gel digestion                    | 78 |
| 5.2.2.   | In-gel digestion and organic solvent extraction           | 77 |
| 5.2.3.   | Reversed phase HPLC                                       | 78 |
| 5.2.4.   | Protein microsequencing                                   | 79 |
| 5.2.5.   | Protein sequence analysis                                 | 79 |
| 5.3.     | Results                                                   | 79 |
| 5.3.1.   | Microcharacterisation of a high concentration EDL protein |    |
|          | (spot D, Fig. 4.1): Testing the technical procedure       | 79 |
| 5.3.2.   | Microcharacterisation of the amylin responsive proteins   | 81 |
| 5.3.2.1. | Identification of ARP1 as protein p20                     | 81 |
| 5.3.2.2. | Approaches used to characterise ARP2                      | 85 |
| 5.4.     | Discussion                                                | 85 |
| 5.4.1.   | ARP1 is a monomeric form of protein p20                   | 85 |
| 5.4.2.   | ARP1 is a novel monomeric form (designated form 1) of     |    |
|          | protein p20                                               | 86 |
| 5.4.3.   | Evidence that ARP1 is produced through phosphorylation in |    |
|          | response to amylin stimulation                            | 87 |
| 5.4.4.   | Molecular characterisation of ARP2: The technical         |    |
|          | considerations                                            | 88 |
| 5.4.5.   | Protein microsequence analysis: My unique experience      | 90 |
| 5.4.6.   | Trypsin autodigestion during the in-gel digestion         | 90 |

Chapter 6: Insulin-independent production of ARP1: Relevance to the development of insulin resistance

| 6.1.   | Introduction                                                      | 92 |
|--------|-------------------------------------------------------------------|----|
| 6.2.   | Experimental procedure                                            | 93 |
| 6.2.1. | Sample preparation and analytical 2 DE-image analysis             | 93 |
| 6.2.2. | Mild heat shock treatment                                         | 93 |
| 6.2.3. | Metabolic labelling with [ <sup>14</sup> C]-D-glucose             | 94 |
| 6.2.4. | Glycogen purification and <sup>14</sup> C counting                | 94 |
| 6.3.   | Results and discussion                                            | 95 |
| 6.3.1. | Amylin elicits insulin resistance in EDL                          | 95 |
| 6.3.2. | ARP1 is produced in skeletal muscles in response to CGRP          |    |
|        | stimulation                                                       | 95 |
| 6.3.3. | Insulin dose not have an effect on ARP1 production in response to |    |
|        | amylin or CGRP stimulation                                        | 98 |

## Chapter 7: Towards the proteome analysis of rat skeletal muscle EDL: Identification of 18 EDL proteins

| 7.1.   | Introduction                                          | 102 |
|--------|-------------------------------------------------------|-----|
| 7.2.   | Experimental protocols                                | 103 |
| 7.2.1. | Separation of EDL proteins using preparative 2 DE     | 103 |
| 7.2.2. | Protein microcharacterisation using sequence analysis | 103 |
| 7.3.   | Results and discussion                                | 104 |

#### **Chapter 8: Discussion**

| 8.1.     | A summary of the results                                       | 111 |
|----------|----------------------------------------------------------------|-----|
| 8.2.     | ARP1                                                           | 111 |
| 8.2.1.   | A mini review on protein p20 and homologous HSP27/28           | 111 |
| 8.2.2.   | Protein phosphorylation: The mechanism of ARP1 production      | 113 |
| 8.2.2.1. | ARP1 is produced through post-translational modification(s)    | 113 |
| 8.2.2.2. | Phosphorylation is involved in amylin-elicited ARP1 production | 113 |

| 8.2.3. | The search for ARP1's precursor                         | 114 |
|--------|---------------------------------------------------------|-----|
| 8.2.4. | ARP1 can possibly be used as a molecular marker in the  |     |
|        | analysis of amylin action and the role of amylin in the |     |
|        | development of the common form of insulin resistance    | 114 |
| 8.3.   | ARP2                                                    | 115 |
| 8.4.   | Possible directions for future work                     | 116 |

## LIST OF FIGURES

#### FIGURE

#### PAGE

| Fig. 2.1  | Separation of EDL proteins using analytical 2 DE             | 41 |
|-----------|--------------------------------------------------------------|----|
| Fig. 2.2. | Separation of soleus muscle proteins using analytical 2 DE   | 42 |
| Fig. 2.3. | Separation of rat liver proteins using analytical 2 DE       | 43 |
| Fig. 2.4. | Gel image after the plaque removal                           | 45 |
| Fig. 2.5. | Separation of EDL proteins using preparative 2 DE            | 47 |
| Fig. 2.6. | Separation of EDL proteins using preparative 2 DE at a high  |    |
|           | dample loading using loading cup method (part of a           |    |
|           | whole image)                                                 | 48 |
| Fig. 2.7. | The construction of a rehydration chamber for                | *  |
|           | rehydration loading of protein samples                       | 50 |
| Fig. 2.8. | Separation of EDL proteins using preparative 2 DE at a high  |    |
|           | level of sample loading using rehydration loading            | 51 |
| Fig. 3.1. | Use of the image analysis software package ImageMaster       |    |
|           | 1.1 in the detection of protein spots                        | 56 |
| Fig. 3.2. | False positive and negative gel spot detection by            |    |
|           | ImageMaster 1.1                                              | 57 |
| Fig. 3.3. | Significant false negative detection of film spots by        |    |
|           | ImageMaster 1.1.                                             | 58 |
| Fig. 3.4. | Strategy for muscle sample preparation and subsequent        |    |
|           | 2D gel image matching                                        | 60 |
| Fig. 4.1. | Distribution of EDL proteins on the analytical gels          | 67 |
| Fig. 4.2. | Identification of a protein spot consistently and            |    |
|           | exclusively present in the EDL muscles stimulated in vitro   |    |
|           | with amylin (part of a whole image)                          | 68 |
| Fig. 4.3. | Identification of a protein spot quantitatively increased in |    |

|           | the amylin-stimulated EDL muscles (part of a whole                 |     |
|-----------|--------------------------------------------------------------------|-----|
|           | image)                                                             | 70  |
| Fig. 4.4. | Autoradiography of the 2D gels of EDL muscles                      |     |
|           | metabolically labelled with [ <sup>35</sup> S]-methionine          | 72  |
| Fig. 4.5. | Identification of a radioactive signal spot present only on        |     |
|           | the films of the experimental 2D gels                              | 73  |
| Fig. 5.1. | Modern protein microcharacterisation techniques                    | 76  |
| Fig. 5.2. | Separation of tryptic fragments of a trial protein (spot D,        |     |
|           | Fig. 4.1) by reversed phase HPLC                                   | 80  |
| Fig. 5.3. | Separation of tryptic fragments of the proteins separated in       |     |
|           | spots 1, 3 and 4                                                   | 82  |
| Fig. 5.4. | Detection of a radioactive signal spot corresponding to            |     |
|           | ARP1 from EDL muscles metabolically labelled with <sup>32</sup> Pi | 89  |
| Fig. 5.5. | Separation of trypsin autodigests by reversed phase                |     |
|           | HPLC                                                               | 90  |
| Fig. 6.1. | Glycogen synthesis in EDL muscles with different                   |     |
|           | experimental treatments                                            | 96  |
| Fig. 6.2. | Partial gel image of some muscle strips prepared                   |     |
|           | under different experimental conditions                            | 97  |
| Fig. 7.1. | Separation of EDL proteins on preparative 2D gels for              |     |
|           | proteome analysis                                                  | 105 |
| Fig. 7.2. | Plotting the theoretical pI values against the gel location        |     |
|           | of 11 relatively well characterised proteins                       | 110 |

## LIST OF TABLES

| TABLE | BLE | TA |
|-------|-----|----|
|-------|-----|----|

#### PAGE

| . Some physiological and pathophysiological conditions     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| associated with insulin resistance                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Syndrome X                                                 | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Some inhibitory factors of insulin receptor                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential biological functions of amylin                   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Running conditions for the first dimensional separation    | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Running conditions for the second dimensional              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| separation                                                 | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Isoelectric focusing of EDL proteins with extended eime    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Microsequence analysis of the proteins separated in        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| spots 1 (ARP1), 3 and 4 (Fig. 4.1 and 4.2)                 | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analysis of sequence obtained from tryptic fraction 9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of ARP1                                                    | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Detection of ARP1 in EDL muscle with different             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| experimental treatments                                    | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sequence analysis of 18 EDL proteins                       | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The eheoretical pI value and gel location of 11 relatively |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| well characterised proteins                                | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                            | associated with insulin resistance<br>Syndrome X<br>Some inhibitory factors of insulin receptor<br>Potential biological functions of amylin<br>Running conditions for the first dimensional separation<br>Running conditions for the second dimensional<br>separation<br>Isoelectric focusing of EDL proteins with extended eime<br>Microsequence analysis of the proteins separated in<br>spots 1 (ARP1), 3 and 4 (Fig. 4.1 and 4.2)<br>Analysis of sequence obtained from tryptic fraction 9<br>of ARP1<br>Detection of ARP1 in EDL muscle with different<br>experimental treatments<br>Sequence analysis of 18 EDL proteins<br>The eheoretical pI value and gel location of 11 relatively |