http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
RADIATIVE TRANSFER IN MULTIPLY LAYERED MEDIA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS,
THE UNIVERSITY OF AUCKLAND, FEBRUARY 2006

Nathaniel J. de Lautour
Abstract

The theory of radiative transfer is applied to the problem of multiple wave scattering in a one-dimensional multilayer. A new mathematical model of a multilayer is presented in which both the refractive index and width of each layer are randomized. The layer widths are generated by a new probability distribution which allows for strong layer width disorder. An expression for the transport mean free path of the multilayer is derived based on its single-scattering properties. It will be shown that interference between the field reflected from adjacent layer interfaces remains significant even in the presence of strong layer width disorder. It will be proven that even when the scattering is weak, the field in a random multilayer localizes at certain frequencies. The effect of increasing layer width randomization on this form of localization is quantified.

The radiative transfer model of time-harmonic scattering in multilayers is extended to narrow-band pulse propagation in weakly scattering media. The tendency of pulses to broaden in this medium is discussed. A radiative transport model of the system is developed and compared to numerical solutions of the wave equation. It is observed that pulse broadening is not described by simple transfer theory. The radiative transfer model is extended by the addition of a Laplacian term in an attempt to model the effect of ensemble average pulse broadening. Numerical simulation results in support of this proposal are given, and applications for the theory suggested.

Finally, the problem of acoustic wave scattering by planar screens is considered. The study was motivated by the idea that multiple scattering experiments may prove possible in a medium composed of such scatterers. Successful multiple scattering in a medium of planar scatterers will depend on the scattering cross-section at angles
away from normal incidence. The scattering cross-section is calculated for a circular disc using a new technique for solving the acoustic wave equation on planar surfaces. The method is validated by comparison with available analytic solutions and the geometric theory of diffraction.
Acknowledgments

I would like to thank my principal supervisor Professor Chris Tindle for agreeing to take on this role. Professor Tindle’s advice and insight helped at many stages to guide this work to a conclusion, and his careful reading of the draft through a number of iterations was particularly appreciated.

I would also like to thank Professor Richard Weaver for a comprehensive review of an early draft of this work. In particular, his suggestion that the Bragg resonances apparent in some of the early results were worthy of further exploration led to much of the work that makes up the third chapter. I am also grateful to Professor Weaver for pointing out a mathematical error in the treatment of the boundary conditions of the convective-diffusive two-stream equation given in the fourth chapter.

Finally, I would like to thank my family and friends for their kind support and encouragement over the course of this work.
Contents

Abstract iii

Acknowledgments v

1 Introduction 1

2 Multiple scattering and the radiative transfer equation 5
 2.1 The derivation of the radiative transfer equation 7
 2.2 Summary 17

3 Steady-state scattering in the one-dimensional multilayer 19
 3.1 Chapter structure 21
 3.2 Wave scattering and localization in one dimension 22
 3.3 The transfer matrix method 25
 3.4 A single-scattering model of the multilayer 28
 3.4.1 Numerical tests of the single-scattering model 33
 3.5 Multiple scattering models of the multilayer 38
 3.5.1 Radiative transfer theory 38
 3.5.2 A stochastic theory of finite one-dimensional random media 41
 3.5.3 The transport coefficient from single scattering theory 43
 3.5.4 The KP-stochastic and heuristic results compared 46
 3.5.5 The radiative transfer and stochastic theories compared with numerical solutions of the wave equation 46
 3.5.6 Discussion 54
3.6 Summary and conclusions ... 55

4 Radiative transfer theory and pulse propagation in a one-dimensional multilayer ... 57
 4.1 Chapter structure .. 59
 4.2 Previous work ... 61
 4.3 The time-dependent radiative transfer equation 64
 4.3.1 The time-dependent two-stream equation 66
 4.3.2 Solution of the time-dependent two-stream equation .. 68
 4.4 The decay of the coherent wave 71
 4.5 Fourier synthesis of pulses in the SVEA 74
 4.6 Stochastic layer width models 76
 4.7 Numerical simulations .. 83
 4.7.1 Problem definition ... 85
 4.7.2 Results ... 86
 4.8 Ensemble average broadening 92
 4.8.1 Broadening in a fixed length multilayer 93
 4.8.2 Radiative transfer with convective-diffusion 95
 4.8.3 Solution of the steady-state CDTSE 97
 4.8.4 Solution of the time-dependent CDTSE 100
 4.8.5 Application of the CDTSE to pulse spreading 106
 4.9 Summary and conclusions 107

5 A new Galerkin method for acoustic wave scattering by planar screens 109
 5.1 Background ... 109
 5.2 Chapter structure .. 111
 5.3 Diffraction and scattering by planar screens 112
 5.4 The method ... 114
 5.4.1 Integral equations and the Galerkin method 114
 5.4.2 The governing equation for diffraction by a thin screen 116
 5.4.3 Constructing a basis using scaling functions 119