

LIBRARY Te Tumu Herenga THE UNIVERSITY OF AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Molecular Approaches to Horticultural Crop Improvement

Ross G. Atkinson

Plant Science

School of Biological Sciences

University of Auckland

Thesis submitted in fulfilment

of the requirements for

the degree of

Doctor of Philosophy

May, 1993

UNIVERSITY OF AUCKLAND LIBRARY BIOLOGY THESIS AMAGNY 94-122

Table of Contents

Acknowled	gements	vii
Abstract		ix
Abbreviatio	ons	xi
Chapter 1	Introduction	1
1.1 Gene	e transfer for crop improvement	1
Part A - Ge	ene transfer	3
1.2 Appl	e	3
1.3 Pepi	no	4
1.4 Tam	arillo	5
1.5 Integ	rative plant gene transfer systems	6
1.5.1	Agrobacterium-mediated gene transfer	6
1.5.2	Alternative gene transfer systems	8
1.6 Mole	ecular basis for Agrobacterium-mediated gene transfer	8
1.6.1	The T-DNA region	9
1.6.2	Virulence genes	9
1.6.3	Chromosomal virulence loci	11
1.6.4	The structure of integrated T-DNA	11
1.6.5	Expression of integrated transgenes	12
1.7 Deve	elopment of efficient Agrobacterium-mediated gene transfer systems	13
1.7.1	Agrobacterium-plant interaction	13
1.7.1	1.1 Influence of plant genotype and the wound response	13
1.7.1	1.2 Choice of Agrobacterium strain	14
1.7.2	The influence of tissue culture conditions on transformation	15
1.7.2	2.1 Competence for transformation	15
1.7.2	2.2 Availability and contact with Agrobacterium	16
1.7.3	Selection of transformed cells	17
1.7.4	The utility of the pKIWI binary vector system	17
Part B - Ki	wifruit & Polygalacturonase	18
1.8 Kiwi	fruit	18
1.8.1	Introduction	18
1.8.2	Taxonomy of the Actinidia genus	20

1.8.3	Taxonomy of kiwifruit	21
1.8.4	Ploidy in Actinidia species	22
1.8.5	Molecular biology and Actinidia phylogenetics	23
1.9 Pc	lygalacturonase	23
1.9.1	Fruit development and ripening	24
1.9.2	The cell wall and softening	25
1.9.3	1.9.3 PG gene expression	
1.9.4	PG isozymes and maturation	27
1.9.5	The relationship of PG to fruit softening	28
1.9.6	1.9.6 Kiwifruit ripening and softening	
1.10 A	ms of this research	30
Chanton	2 Motorials and Mathada	21
Chapter	2 Materials and Methods	31
2.1 B	affers and solutions	31
2.2 Er	zymes and chemicals	31
2.3 Ba	cteria	31
2.3.1	Escherichia coli	31
2.3.2 Agrobacterium		32
2.3.3	Bacterial growth media	32
2.3.4	Maintenance and selection of bacteria and plasmids	32
2.3.5	Agrobacterium inocula for transformation experiments	34
2.4 M	anipulation of bacteria	34
2.4.1	Preparation and transformation of competent cells	34
2.	4.1.1 Heat-shock transformation	34
2.	4.1.2 Electroporation	35
2.4.2	Rapid plasmid DNA preparation for size screening	35
2.4.3	Plasmid DNA extraction	35
2.	4.3.1 Alkaline lysis extraction	35
2.	4.3.2 Sequencing DNA preparations	35
2.4.4	Colony screening	36
2.5 Pl	ant culture	37
2.5.1	Plant material	37
2.5.2	Sterilisation of plant material	37
2.5.3	Plant basal media, hormones and antibiotics	37
2.5.4	Plant media developed in this thesis	38
2.5.5	Plant growth conditions	38
2.6 Pl	ant transformation protocols	39
2.6.1	Tumour induction procedure	39
2.6.2	Apple regeneration and transformation protocols	39

2.6.3	Protocol for regenerating transgenic pepino plants	39
2.6.4	Protocol for regenerating transgenic tamarillo plants	40
2.7 Phen	otypic assays of transgenic plants	40
2.7.1	Pepino chloroplast guard cell counts	40
2.7.2	Pepino root tip chromosome counts	41
2.7.3	Expression of kanamycin resistance	41
2.7.4	Expression of the gusA reporter gene	41
2.7.5	Expression of herbicide resistance	41
2.7.6 Progeny screening of tamarillo plants		42
2.8 Isola	tion of plant DNA and RNA	42
2.8.1	Preparation of pepino genomic DNA	42
2.8.2	Preparation of apple, tomato and tamarillo genomic DNA	43
2.8.3	Preparation of genomic DNA from Actinidia species	43
2.8.4	Preparation of RNA from kiwifruit	43
2.8.5	Column purification of mRNA	44
2.9 DNA	and RNA manipulations	44
2.9.1	Restriction enzyme digests	44
2.9.2	Column purification of digested genomic DNA	45
2.9.3	Dephosphorylation	45
2.9.4	Generation of phosphorylated, blunt-ended termini	45
2.9.5	Ligation of DNA fragments	46
2.9.6	Synthesis of cDNA	46
2.9.7 Agarose gel electrophoresis		46
2.10 Polymerase chain reactions		46
2.10.1	Oligonucleotide primers	47
2.10.2	Amplification using primers to pKIWI110	47
2.10.3	Screening of plasmids for inserts	48
2.10.4	Amplification using PG primers	48
2.11 Sout	hern hybridisation	48
2.11.1	Alkaline transfer	48
2.11.2	SSC transfer	49
2.11.3	Preparation of probes	49
2.11.4	Hybridisation and detection	49
2.11.5	Removal and reuse of probes	50
2.12 Softv	vare	50

Chapter 3	Agrobacterium-mediated transformation	
	of apple, pepino and tamarillo	51
3.1 Intro	duction	51
	ing susceptibility to Agrobacterium infection	51
3.2.1	Protocol and rationale	51
3.2.2	Survey results	52
3.2.3	Summary and Conclusions	55
3.3 Tiss	ue culture and gene transfer in apple	55
3.3.1	Introduction	55
3.3.2	Development of apple micropropagation protocols	55
3.3.	2.1 Establishment of aseptic apple cultures	56
3.3.	2.2 Apple shoot proliferation	56
3.3.	2.3 Root formation and establishment in the glasshouse	57
3.3.3	Optimisation of apple shoot regeneration	58
3.3.	3.1 Introduction	58
3.3.	3.2 Hormones	59
3.3.	3.3 Gelling agents	60
3.3.	3.4 Antibiotic bacteriostats	61
3.3.	3.5 Basal medium	62
3.3.	3.6 Non-specific media supplements	63
3.3.	3.7 Summary and Conclusion	64
3.3.4	Choice of Agrobacterium strains and binary vectors for apple	
	transformation	64
3.3.5	Kanamycin selection levels for apple transformation	65
3.3.6	Optimisation of transient gusA gene expression in apple	66
3.3.7	Attempts to regenerate transgenic apple plants	67
3.3.8	Summary	69
3.4 Trai	nsformation of pepino and analysis of transgenic plants	69
3.4.1	Introduction	69
3.4.2	Development of a micropropagation protocol for pepino	69
3.4.3	Optimisation of pepino shoot regeneration	70
3.4.4	Analysis of regenerated pepino plants	71
3.4.5	Optimisation of transformation in pepino	71
3.4.6	Phenotypic analysis of transgenic pepino plants	74
3.4.7	PCR analysis of transgenic pepino plants	75
3.4.8	Southern analysis of transgenic pepino plants	76
3.4.9	Summary and Discussion	78
	nsformation of tamarillo and analysis of transgenic plants	81
3.5.1	Introduction	81

iv

3.5.2	Development of a micropropagation protocol for tamarillo	81
3.5.3	Optimisation of tamarillo shoot regeneration	81
3.5.4	Optimisation of transformation in tamarillo	83
3.5.5	Regeneration of transgenic tamarillo plants	84
3.5.6	Phenotypic analysis of transgenic tamarillo plants	86
3.5.7	PCR analysis of transgenic tamarillo plants	87
3.5.8	Southern analysis of transgenic tamarillo plants	87
3.5.9	Inheritance of the transgenic phenotype in tamarillo plants	89
3.5.10	Summary and Discussion	90
Chapter 4	Characterisation of polygalacturonase genes	93
4.1 Chai	racterisation of λ clones from a kiwifruit genomic library	93
4.1.1	Isolation and preliminary characterisation	93
4.1.2	Sequencing strategy for λ clone C10	94
4.1.3	Analysis of C10 sequence and comparison to the tomato gene	102
4.1.	3.1 Analysis of exons and introns	102
4.1.	Analysis of the 3' and 5' regions of the C10 gene	105
4.1.4	Sequence analysis of λ clones C15 and C12	107
4.1.5	Comparison of kiwifruit PG with sequences from other plant species	109
4.2 Sout	hern hybridisation using PG probes	112
4.3 Char	acterisation of PG genomic sequences amplified by PCR	114
4.3.1	Primer design	114
4.3.2	Initial PCR experiments using PG specific primers	115
4.3.3	Cloning and characterisation of a PG genomic fragment from apple	115
4.4 Isola	tion and characterisation of kiwifruit PG cDNA clones	117
4.5 Usin	g PG sequences to develop a phylogeny of four Actinidia species	120
4.5.1	Rationale	120
4.5.2	Amplification, cloning and sequencing	121
4.5.3	Calibration of error rates	121
4.5.4	Sequence alignment within species	122
4.5.5	Comparison of PCR-generated PG sequences with previously	
	sequenced genomic and cDNA clones	124
4.5.6	Analysis of Actinidia PG clones using PAUP	125
4.6 Anal	ysis of repeat sequences found in the PG genomic clones	132
4.7 Sum	mary and Discussion	134

v

Chapter 5 Concluding discussion	137
Part A - Gene transfer systems	137
5.1 Utility of the pKIWI110 vector	137
5.2 Apple	138
5.3 Pepino	140
5.4 Tamarillo	140
Part B - Characterisation of polygalacturonase genes	141
5.5 Fruit-specific promoters	142
5.6 Gene expression and antisense	
5.7 Actinidia phylogeny	145
Bibliography	149
Appendix I Sequencing subclones	171
I.1 Subclones from λ clone C10	171
I.2 Subclones from λ clones C15 and C12	172
Appendix II Sequences from C15	173
II.1 Sequence from C15 subclone No. 490	173
II.2 Sequence from C15 subclone No. 486	174
II.3 Sequence from C15 subclone No. 505	175
Appendix III Sequence from C12	176
Appendix IV Apple PG genomic sequence	177
Appendix V Alignment of PG sequences within Actinidia species	178
V.1 A. deliciosa - 5' end	178
V.2 A. deliciosa - 3' end	181
V.3 A. chinensis - 5' end	184
V.4 A. chinensis - 3' end	185
V.5 A. eriantha - 5' end	186
V.6 A. eriantha - 3' end	187
V.7 A. chrysantha - 5' end	189
V.8 A. chrysantha - 3' end	190
Appendix VI Publications	191

Acknowledgements

I would like to thank the following people and organisations:

My supervisor, Associate Professor Richard Gardner for his guidance and help during the research undertaken in this thesis.

The Horticultural and Food Research Institute of New Zealand Ltd (previously DSIR Fruit and Trees, previously DSIR Division of Horticulture and Processing) for allowing me study leave to undertake this research and for the financial support to do so.

My Hort Research PhD advisers Alan Seal, Don Burns and Paul Glucina for their interest and advice.

Keith Hammett, Greg Pringle, Mark McNeilage and Allan White for providing plant material and Nga Tama and Sigrun Steinhagen for looking after my plants in the glasshouse.

Elspeth MacRae for the use of her kiwifruit cDNA library and mRNA samples.

Debbie Hutching for all the help with the transformation experiments.

Amanda Chapman for doing all those sequencing runs.

Dave Whittaker for collaboration with cloning and sequencing of PG clones.

Bart Janssen for letting me use the pKIWI110 vector and for all the advice and ideas.

Jeannette Keeling for help with the RNA preps, the λ preps and everything else I've borrowed or used over the years.

My Hort Research colleagues based at University - Lena, Trixie and Jacqui; and the PMBies - Susan, Kim, Jeannette, Keith, Colin, Robin, Tom, Andreas, Lynn and Gwen for their advice, friendship and support and for making the PMB lab such an enjoyable place to work.

Susan, Kim and Jeannette for their diligence in proof-reading this manuscript.

Astrid for her constant supply of enthusiasm (and calories).

Finally, I would especially like to thank my family for their tolerance, support and understanding throughout the course of this work.

viii

Abstract

Plant biotechnology and molecular biology are now being used to complement conventional breeding programmes in most of the world's important crop species. The aim of the research described in this thesis was to improve New Zealand's horticultural crop plants through application of similar molecular techniques.

A) Gene transfer systems for apple, pepino and tamarillo

Tissue culture systems were developed for micropropagation and regeneration of apple (cv Royal Gala), pepino (cv El Camino) and tamarillo (selection Oratia Red). In all three species, transient expression of the gusA reporter gene was observed and kanamycin resistant callus was produced, following inoculation with the pKIWI110 binary vector in the avirulent Agrobacterium strain LBA4404. No transgenic apple shoots were obtained. However, transgenic pepino and tamarillo plants expressing the gusA reporter gene, kanamycin resistance and herbicide tolerance were successfully regenerated. PCR and Southern analysis provided molecular evidence for integration of foreign DNA into the genomes of transgenic pepino and tamarillo plants, but indicated deletions of the integrated T-DNAs had occurred with high frequency. Inheritance of the transgenic phenotypes was demonstrated in the progeny of transgenic tamarillo plants.

B) Characterisation of polygalacturonase genes

A kiwifruit genomic clone with homology to a tomato cDNA clone for polygalacturonase (PG) was sequenced over an 8.1 kb region. The sequence revealed a gene divided into nine exons, with 58% overall identity to the tomato PG gene at the amino acid level. Significant homology was also noted to PG genes isolated from peach, *Oenothera organensis* and maize, particularly in several blocks of conserved amino acids believed to encode the active site of the enzyme. Analysis of the kiwifruit PG promoter revealed three 81 bp direct repeat sequences just upstream of the kiwifruit peptide start codon. These repeats were also conserved in a second kiwifruit PG genomic clone. Characterisation of partial cDNA clones indicated that at least two mRNAs for PG were expressed in ripe kiwifruit. Southern hybridisation detected the PG gene at low copy number in the genomes of kiwifruit, two other *Actinidia* species, apple and pepino. PCR was used to amplify a fragment of the apple PG gene for sequence analysis.

PG sequences were also used to help define the genetic origin of kiwifruit. A region of the PG gene was amplified and sequenced from four *Actinidia* species: kiwifruit (*A. deliciosa*), *A. chinensis*, *A. eriantha* and *A. chrysantha*. These sequences were used to produce a phylogeny using PAUP

х

(phylogenetic analysis using parsimony). Two distinct lineages of PG genes were observed in the genomes of A. deliciosa, A. chinensis and A. eriantha. Within both these lineages, A. deliciosa sequences were quite distinct to those found in the other three Actinidia species, with the exception of a single sequence that was identical to A. chinensis. These results suggest that hexaploid kiwifruit is an allopolyploid with A. chinensis and at least one other Actinidia species as likely progenitors.

Abbreviations

2,4-D	2,4-dichlorophenoxyacetic acid
35S	35S promoter region of cauliflower mosaic virus
2-iP	isopentenyl adenine
ACC	1-aminocyclopropane-1-carboxylic acid
als	acetolactate synthase
BA	6-benzylaminopurine
bma	basal medium solidified with 0.8% Davis agar
bmp	basal medium solidified with 0.2% phytagel
bp	base pair(s)
Bt	Bacillus thuringiensis
BRL	Bethesda Research Laboratories
°C	degrees Celsius
cDNA	complementary DNA
CTAB	cetyl-trimethylammonium bromide
cv(s)	cultivar(s)
dCTP	2'-deoxycytidine triphosphate
dNTP(s)	deoxynucleotide triphosphate(s)
DIG	digoxygenin
DMDC	dimethyldicarbonate
DNA	deoxyribonucleic acid
DSIR	Department of Scientific and Industrial Research
DTT	dithiothriotol
EDTA	ethylene diamine tetra-acetic acid
EtBr	ethidium bromide
g	acceleration of gravity
GA ₃	gibberellic acid
gusA	β-D-glucuronidase A
h	hour(s)
Hort Research	The Horticultural and Food Research Institute of New Zealand Ltd
IAA	indole-3-acetic acid
IBA	indole-3-butyric acid
ICMP	International Collection of Microorganisms from Plants
IPTG	isopropyl-β-D-thiogalactoside
kb	kilobase(s)
mRNA	messenger RNA

	101 101 #
min	minute(s)
NAA	naphthaleneacetic acid
nptII	neomycin phosphotransferase II
NZ	New Zealand
PAUP	phylogenetic analysis using parsimony
PCR	polymerase chain reaction
PEG	polyethylene glycol
PG	polygalacturonase
rATP	adenosine triphosphate
RFLP(s)	restriction fragment length polymorphism(s)
RNA	ribonucleic acid
rpm	revolutions per minute
S	second(s)
SDS	sodium dodecyl sulphate
TaMV	tamarillo mosaic virus
T-DNA	transferred DNA
Ti	tumour-inducing
Tris.Cl	Tris (hydroxymethyl)-aminomethane
tRNA	transfer RNA
UWGCG	University of Wisconsin Genetics Computer Group
var	variety
vir	virulence
X-Gal	5-bromo-4-chloro-3-indolyl-B-D-thiogalactoside
X-Gluc	5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid