Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Automata-Theoretic Models for Computational Complementarity

A thesis presented to
The University of Auckland
in fulfillment of the thesis requirement
for the degree of

Doctor of Philosophy

by

Elena Calude

The University of Auckland
October 1997
Abstract

The purpose of this Thesis is to study, from the mathematical point of view, a new type of questions about finite automata, questions motivated by looking at automata as toy models of physical particles.

Working along the line of research initiated by Moore, two computational complementarity principles are studied, (for finite–deterministic, complete or incomplete, nondeterministic–automata with outputs but no initial states) both theoretically and experimentally; they mimic the physical complementarity and the Einstein–Podolsky–Rosen effect.

Automata are studied via simulations (informally, the automaton A is simulated by the automaton B if B can perform all computations A can execute and produces the same outputs; two automata are equivalent in case they simulate each other). A new type of minimization problem will be solved and the solution is proved to be unique up to an isomorphism; the minimal automaton equivalent to a given automaton can be constructed only in terms of outputs for deterministic complete or incomplete automata, but one needs the whole internal machinery for nondeterministic automata. It happens that minimal automata are exactly the automata which may feature computational complementarity.

Even if the original motivation will remain only metaphorical, the physical motivation was good to suggest new definitions and constructions (simulation, universality, complementarity) leading to new mathematical results (existence of universal finite automaton, solving in a new way the minimalization problem for nondeterministic automata).
Acknowledgments

I wish to warmly thank Dr. Hans Guesgen, my supervisor, for his continuous encouragement and advice, especially during the period when my research reached a dead end.

My thanks goes to Professor Karl Svozil for introducing me to computational complementarity, and to Dr. Bakh Khoussainov, Dr. Marjo Lipponen, Dr. Radu Nicolescu and Professor Sheng Yu for their scientific cooperation over the last years; I have learnt a lot from each of them.

I would like to express my deep gratitude to Professors Arto Salomaa and George Păun for their helpful and constructive comments.

A word of thanks is due to Professors Bob Doran and Peter Gibbons who showed faith in my research abilities from the early stages of my PhD programme (much more than myself).

I would like to thank Penny Barry, Dorothy Brown, Anita Lai, Neena Raniga and Peter Shields for their kind and efficient support.

The financial support offered by the University of Auckland Research Committee is acknowledged with thanks.

Not least, a warm thank you to Andreea and Cris for their encouragement, patience and faith in me.
Contents

1 Introduction 1
2 Physical Complementarity 3
3 Mathematical Background 7
4 Simulations 15
5 Computational Complementarity 25
 5.1 Moore’s Theorem .. 25
 5.2 Moore’s Theorem Revisited 28
 5.3 Two Complementarity Principles 28
 5.4 More About Moore’s Automaton 36
 5.5 Decidability and Complexity 37
6 Minimality and Universality 43
 6.1 Minimality .. 43
 6.2 Other Models of Minimality 46
 6.3 Universality ... 49
7 Testing Computational Complementarity 53
 7.1 Operators ... 53
 7.2 Complementarity: Reversible Instances for Complete Deterministic Automata ... 56
 7.3 Complementarity: Non-Reversible Instances for Complete Deterministic Automata ... 65
 7.4 A Glimpse into Programs ... 67
 7.5 Computational Complementarity Statistics 74
8 Open Questions 77
Bibliography 81