

LIBRARY Te Tumu Herenga THE UNIVERSITY OF AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Biochemical and Molecular characterisation of Trichoderma species.

Sarah Louise Dodd-Wilson

Plant Science School of Biological Sciences University of Auckland

Thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

March 1996

UNIVERG		S. ListeD
	ΜΑΥ	1996
1	LIBRAR	Y

Abstract

The growing importance of many *Trichoderma* strains as biological control agents and producers of valuable metabolites and enzymes has made their distinction from other *Trichoderma* isolates essential. However, the use of morphological and cultural characters alone to differentiate individuals within the genus *Trichoderma* to a level that is most informative has proved difficult due to a lack of reliable characters.

In this study, alternative biochemical and molecular techniques were assessed for their ability to differentiate between isolates of the genus *Trichoderma*. Fifty isolates representing the *Trichoderma* species *T. atroviride*, *T. hamatum*, *T. inhamatum*, *T. koningii*, *T. virens*, *T. viride* and five morphological sub-groupings of the *T. harzianum* species were examined. ITS sequence data, RAPD PCR and the ability of an isolate to produce the metabolite 6-pentyl-α-pyrone (PAP) were all used to differentiate between morphologically indistinguishable isolates. Altogether four levels of variation were recognised. The greatest level of resolution was achieved with the RAPD PCR technique, followed by both morphological characters and sequence data from the ITS1 region of the ribosomal gene complex. Sequence data from the ITS2 region provided the third level of resolution. The fourth level of resolution was achieved with both sequence data from the second variable region (D2) of the 28S-like ribosomal gene and determination of an isolate's ability to produce the metabolite PAP. Based on these results, it was proposed that a new taxonomic system be established in which individuals of the genus *Trichoderma* are distinguished by a combination of morphological, cultural, biochemical and molecular characters.

Sequence data and RAPD PCR data were also tested for their reliability in estimating the phylogeny of *Trichoderma*. Sequence data from the ITS1 region proved to be the most reliable for predicting the phylogeny of morphologically defined species, whereas RAPD data was most useful for predicting the unrooted phylogeny of strains of morphologically identical isolates (i.e. isolates with less than 10% nucleotide divergence). None of the data employed in the present study were able to resolve all the species tested. It was concluded that additional sequence from a more variable region would be required to achieve this.

In addition to the characterisation and phylogenetic studies, two approaches were undertaken in an attempt to isolate a gene(s) vital to the production of the antifungal metabolite PAP, a metabolite believed to be important in the biological control activity of a number of the isolates under

i

investigation. Both attempts were unsuccessful and additional studies undertaken to determine how important PAP is in the biological control activity of *Trichoderma* isolates were inconclusive. Nevertheless, a natural PAP deficient mutant was identified among the 50 isolates under investigation. Furthermore, synthetic PAP was found to inhibit the infection of lentil seedlings by *Sclerotium rolfsii* when 10 mg was added to a pot containing six seedlings and three viable sclerotia of the pathogen. The metabolite did not appear to have any detrimental effects on the growth and development of the seedlings.

ii

Acknowledgments

I would like to thank the following people and organisations:

My supervisors, Dr. Alison Stewart and Dr. Ross Crowhurst for their guidance and help during the research undertaken in this thesis.

The Horticultural and Food Research Institute of New Zealand Ltd. for the use of their facilities at the Mt Albert Research Centre during the research.

Dr. Robert Hill, HortResearch (Ruakura), for organising the funding of this project and supplying a number of the isolates investigated.

My HortResearch PhD advisers, Joanna Bowen, Matthew Templeton, Erik Rikkerink, Dave Greenwood, Robin Mitchell and Kim Plummer for their interest, technical advice and proof reading of manuscripts.

Dr. Gary Samuels (USDA, Maryland, USA) for identifying the Trichoderma isolates.

Dr. Allen Rodrigo (University of Washington, Seattle, USA) for his assistance with the phylogenetic analysis of data.

Paul Sutherland (HortResearch) for his help and technical assistance with the SEM work.

Kaye Forster and Martin Heffer (HortResearch) for their help with the photography.

Dr. Harry Young (HortResearch) for his assistance with the mass spectrometry work.

Dr. John Maindonald (HortResearch) for his assistance with the statistical analysis of data.

Robyn Lee for her help with generating the UV mutants.

John Armstrong (Australian National University, Canberra) for his assistance with the RAPDist computer program.

My fellow students at both the University of Auckland and Mt. Albert Research Centre: Carol Stewart, Kirsten Wurms, Pauline Weeds, Brett Alexander, Stuart Kay, Robin Howett and Lia Leifting, for their friendship and support.

My family and friends for their support and encouragement during the course of this study.

Special thanks to my husband Peter for his assistance in the final preparation of this thesis and his endless support, encouragement and tolerance throughout the course of this study.

Table of Contents	
Abstract	i
Acknowledgments	iii
Abbreviations	xi
List of tables	xiii
List of figures	XV
Chapter 1 Introduction	1
1.1 The genus Trichoderma	1
1.1.1 Biological control of phytopathogens by Trichoderma species	2
1.1.1.1 Mycoparasitism and hyphal lysis	4
1.1.1.2 Antibiosis	4
1.1.1.3 Competition	5
1.1.1.4 Promotion of plant growth	5
1.1.1.5 Biological control of Armillaria induced disease by Trichoderma species	6
1.2 Taxonomy of the genus Trichoderma	7
1.3 Alternative techniques employed to differentiate Trichoderma isolates	10
1.3.1 Biochemical techniques	10
1.3.1.1 Specific antisera recognition assays	11
1.3.1.2 Isoenzyme analysis	11
1.3.1.3 Chemotaxonomic studies	12
1.3.2 Molecular techniques	13
1.3.2.1 Electrophoretic karyotyping	14
1.3.2.2 Restriction fragment analysis	15
1.3.2.3 RFLP analysis	16
1.3.2.4 RAPD PCR analysis	17
1.3.2.5 Nucleotide sequence comparison	17
1.3.3 Studies employing a combination of molecular techniques	18
1.3.4 Phylogenetic studies	19
1.4 Aims of thesis	20

v

ġ.

Chapter 2 Cultural and morphological studies	22
2.1 Introduction	
2.2 Materials and Methods	
2.2.1 Fungal cultures	23
2.2.2 SEM studies	23
2.2.3 Cultural and light microscopy studies	26
2.2.4 Morphological identifications	27
2.3 Results	27
2.3.1 SEM studies	27
2.3.2 Cultural and light microscopy studies	32
2.3.3 Morphological identifications	34
2.4 Discussion	36
Chapter 3 Sequence analysis	46
3.1 Introduction	46
3.1.1 DNA sequence for phylogenetic analysis	46
3.1.1.1 Selection of target sequence	47
3.1.1.2 Isolation and sequencing of target sequences	47
3.1.2 Reconstruction of the phylogenetic tree	49
3.1.2.1 UPGMA method	49
3.1.2.2 Neighbour-joining method	49
3.1.2.3 Parsimony methods	50
3.1.3 Assessing accuracy of phylogenetic reconstruction	
3.1.3.1 Statistical analysis of trees	51
3.1.3.1.1 The bootstrap test	51
3.1.3.1.2 Consistency index	52
3.1.3.2 Congruence studies	52
3.2 Materials and Methods	52
3.2.1 Extraction of DNA from fungal cultures	53
3.2.2 PCR primers	54
3.2.3 Amplification conditions	55
3.2.4 Editing and alignment of sequence data	55
3.2.5 Reconstruction of the phylogenetic tree	56
3.2.5.1 Outgroup selection	56
3.2.5.2 Selection of the best distance model	57

vi

3.2.5.3 Neighbour-joining trees	57
3.2.5.4 Parsimony trees	58
3.2.6 Congruence studies for ITS1 and ITS2 sequence data	58
3.2.6.1 Comparison of tree topologies	58
3.3 Results	59
3.3.1 Sequence data	59
3.3.2 Cluster analysis (UPGMA trees)	63
3.3.2.1 D2 sequence	63
3.3.2.2 ITS sequence	66
3.3.3 Reconstruction of the phylogenetic tree	68
3.3.3.1 Outgroup selection	69
3.3.3.2 Selection of the best distance model	72
3.3.3.3 Neighbour-joining trees	78
3.3.3.1 D2 neighbour-joining tree	78
3.3.3.2 ITS neighbour-joining trees	78
3.3.3.4 Parsimony trees	80
3.3.3.5 Congruence studies for ITS1 and ITS2 sequence data	82
3.3.3.5.1 Comparison of tree topologies	82
3.3.3.5.2 First-order pruning	82
3.4 Discussion	86
Chapter 4 RAPD PCR analysis	92
4.1 Introduction	92
4.1.1 The RAPD PCR technique	92
4.2 Materials and Methods	94
4.2.1 Amplification conditions	94
4.2.2 Analysis of RAPD band patterns	96
4.2.3 Scoring of individual bands	96
4.2.3.1 GelCompar method	96
4.2.3.2 Scoring by eye method	97
4.2.4 Reconstruction of the phylogenetic tree	97
4.2.4.1 Neighbour-joining method	100
4.2.4.2 Parsimony analysis	100
4.2.4.3 Comparison of tree topologies	101

vii

i

	101
4.3 Results	
4.3.1 RAPD PCR technique	101
4.3.2 RAPD band patterns	105
4.3.3 Scoring of bands	114
4.3.4 Reconstruction of the phylogenetic tree	114
4.3.4.1 Trees generated from data set A	119
4.3.4.1.1 Neighbour-joining trees	119
4.3.4.1.2 Parsimony tree	119
4.3.4.1.3 Comparison of unrooted topologies	120
4.3.4.2 Trees generated from data set B	120
4.3.4.2.1 Neighbour-joining trees	120
4.3.4.2.2 Parsimony tree	129
4.3.4.2.3 Comparison of unrooted tree topologies	129
4.3.4.3 Trees generated from data set C	131
4.3.4.3.1 Neighbour-joining trees	131
4.3.4.3.2 Parsimony tree	133
4.3.4.4 Trees generated from data set D	133
4.3.4.4.1 Neighbour-joining trees	133
4.3.4.4.2 Parsimony tree	135
4.3.4.4.3 Comparison of unrooted tree topologies	135
4.4 Discussion	135
Chapter 5 6-pentyl-α-pyrone studies	144
5.1 Introduction	144
5.1.1 Strategies for cloning the PAP gene	146
5.1.1.1 Enzyme isolation and sequencing	146
5.1.1.2 Complementation analysis	147
5.2 Materials and Methods	148
5.2.1 Detection of 6-pentyl- α -pyrone (PAP) in MEA plate cultures	148
5.2.1.1 Extraction of PAP from fungal cultures	148
5.2.1.2 Gas chromatographic analysis of extracts	149
5.2.1.3 Mass spectrometry	150
5.2.1.4 Statistical analysis of data	150
5.2.1.5 Effect of environmental conditions on an isolate's ability to produce PAP	151
5.2.2 Isolation of the enzyme involved in the proposed final step of PAP biosynthesis	151

viii

 5.2.2.1 Determination of the best method to hydrolyse the pyrone ring 5.2.2.2 Identification of acid product using TLC plate method 5.2.3.4 Hydrolysis of the AAP pyrone ring using potassium hydroxide 5.2.4 Purification of acid product 5.2.2.5 Acid identification using GC and MS 5.2.6 Preliminary enzyme assays 5.2.3 Generation of PAP deficient mutants and their biocontrol capabilities 5.2.3.1 Determination of the UV dosage 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP deficient mutants 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3 I Detection of PAP production in isolates 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Detocyme results 5.3.3.1 Detocyme results 5.3.3.1 Detocyme results 5.3.3.3 Bioassay results 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	151 152 153 154 154 154 154 156 156 156 157 158 158 158
 5.2.2.3 Hydrolysis of the AAP pyrone ring using potassium hydroxide 5.2.2.4 Purification of acid product 5.2.2.5 Acid identification using GC and MS 5.2.2.6 Preliminary enzyme assays 5.2.3 Generation of PAP deficient mutants and their biocontrol capabilities 5.2.3.1 Determination of the UV dosage 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsil</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP deficient mutants 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	153 154 154 154 156 156 156 157 158 158
5.2.4 Purification of acid product 5.2.2.5 Acid identification using GC and MS 5.2.2.6 Preliminary enzyme assays 5.2.3 Generation of PAP deficient mutants and their biocontrol capabilities 5.2.3.1 Determination of the UV dosage 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.3 Bioassay results 5.4 Discussion 5.4 Discussion Bibliography APPENDICES	154 154 154 156 156 157 158 158
 5.2.2.5 Acid identification using GC and MS 5.2.6 Preliminary enzyme assays 5.3 Generation of PAP deficient mutants and their biocontrol capabilities 5.2.3.1 Determination of the UV dosage 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Statistical Science Science Bibliography APPENDICES	154 154 156 156 157 158 158
5.2.2.6 Preliminary enzyme assays 5.2.3 Generation of PAP deficient mutants and their biocontrol capabilities 5.2.3.1 Determination of the UV dosage 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	154 156 156 157 158 158
 5.2.3 Generation of PAP deficient mutants and their biocontrol capabilities 5.2.3.1 Determination of the UV dosage 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	156 156 157 158 158
 5.2.3.1 Determination of the UV dosage 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	156 157 158 158
 5.2.3.2 DAPI staining of conidial nuclei 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	157 158 158
 5.2.3.3 Production of UV mutants 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	158 158
 5.2.3.4 Colony morphology and growth rate of mutants 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	158
 5.2.3.5 RAPD PCR analysis of mutants 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on Sclerotium rolfsii pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	
 5.2.3.6 Biocontrol assay 5.2.3.7 Effect of AAP on Sclerotium rolfsii pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	159
5.2.3.7 Effect of AAP on <i>Sclerotium rolfsii</i> pathogenicity 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	107
 5.3 Results 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	159
 5.3.1 Detection of PAP production in isolates 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	160
 5.3.2 Enzyme isolation 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	160
 5.3.3 Generation of PAP deficient mutants 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	160
 5.3.3.1 Colony morphology and growth rate of mutants 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	171
 5.3.3.2 RAPD PCR analysis of mutants 5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES 	173
5.3.3.3 Bioassay results 5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	176
5.4 Discussion Chapter 6 Concluding Discussion Bibliography APPENDICES	178
Chapter 6 Concluding Discussion Bibliography APPENDICES	178
Bibliography APPENDICES	186
Bibliography APPENDICES	
APPENDICES	197
APPENDICES	
	206
Appendix one Media preparation	206
Appendix two Morphological characteristics of <i>Trichoderma</i> isolates	206 225
Appendix three Distance matrices	206 225 227
Appendix four Tree description of most parsimony trees generated from sequence	225
Appendix five Neighbour-joining trees generated from RAPD data	225 227 230

ž

ix

х		
Appendix six	PTP values for neighbour-joining RAPD trees	251
Appendix seven	Tree description of most parsimony trees generated from RAPD data	255
Appendix eight	Statistical analysis of PAP studies	257
	Y Contraction of the second	

AAP	6-amyl-α-pyrone
bp	base pairs
°C	degrees Celcius
CI	Consistency Index
cm	centimetre
D2	second variable domain within the 28S rRNA gene
DAPI	diamidino-2-phenylindole
diam	diameter
DNA	deoxyribonucleic acid
EDTA	ethylene diamine tetra-acetic acid
eV	electron volts
dATP	2'-deoxyadenosine 5'-triphosphate
dCTP	2'-deoxycytidine 5'-triphosphate
dGTP	2'-deoxyguanosine 5'-triphosphate
dTTP	2'-deoxythymidine 5'-triphosphate
dNTP(s)	2'-deoxynucleotide 5'-triphosphate(s)
g	acceleration of gravity
g	grams
GC	gas chromatography
GCG	Genetics Computer Group Inc.
h	hour(s)
HC1	hydrochloric acid
HortResearch	The Horticultural and Food Research Institute of New Zealand
HPLC	high pressure liquid chromatography
Hz	Hertz
ICMP	International Collection of Microorganisms from Plants
ITS	internally transcribed spacer
Kb	Kilobase(s)
KCl ₂	potassium chloride
λ	Lambda bacteriophage
М	molar (moles/litre)
m	metre
MEA	malt extract agar
MEGA	molecular evolutionary genetics analysis
MgCl ₂	magnesium chloride
min	minute(s)
mL	millilitre
mm	millimetre
μL	microlitre
MP	maximum parsimony
MPW	millipore filter purified water
mRNA	messenger RNA
MS	mass spectrometry
mtDNA	mitochondrial RNA
Mw	molecular weight
ng	nanograms
nm	nanometre
NZ	New Zealand
DID	

6-pentyl-α-pyrone

Abbreviations

7

PAP

xii	
PAUP	phylogenetic analysis using parsimony
PCR	polymerase chain reaction
pmol	picomole
p.s.i.	pounds per square inch
PTP	permutation tail probability
RAPD	random amplified polymorphic DNA
rDNA	ribosomal DNA
RFLP	restriction fragment length polymorphism
RNA	ribonucleic acid
rpm	revolutions per minute
rRNA	ribosomal RNA
S	second(s)
SDS	sodium dodecyl sulphate
SDW	sterile distilled water
SEM	scanning electron microscopy
TBE	Tris-borate acid-EDTA buffer
TLC	thin layer chromatography
Tris	Tris(hydroxymethyl)-aminomethane
UPGMA	unweighted pair group method using arithmetic averages
UV	ultra violet
v	volume
W	weight
WA	water agar

List of tables

Ł

Table		Page
1.1	Examples of the successful field control of phytopathogens by Trichoderma species.	3
2.1	Origin of fungal strains.	24
2.2	Morphological and cultural characters used to identify nine Trichoderma isolates.	33
2.3	Revised identification of fungal strains.	35
2.4	Morphological and cultural characters used to differentiate the sections <i>Trichoderma</i> and <i>Pachybasium</i> from all other sections within the genus <i>Trichoderma</i> .	40
2.5	Morphological and cultural characters used to differentiate the species <i>Trichoderma hamatum</i> , <i>T. harzianum</i> and <i>T. virens</i> from all other species within the section <i>Pachybasium</i> .	41
3.1	Primers for the amplification of rDNA in fungi.	54
3.2	Partial sequence of the Domain 2 region of the 28S rRNA gene for the <i>Trichoderma</i> isolates and the <i>Fusarium oxysporum</i> outgroup.	60
3.3	Partial sequence of the ITS1, 5.8S and ITS2 rDNA regions of the genome for the <i>Trichoderma</i> isolates and the <i>Acremonium uncinatum</i> , <i>A typhinium</i> , <i>Epichloe typhina</i> and <i>Fusarium oxysporum</i> outgroups.	61
3.4	Properties of sequence data.	64
3.5	Mean transition frequencies for pairwise comparisons between sequence from each outgroup test organism and sequences from the <i>Trichoderma</i> isolates in each of the three ITS sequence data sets.	70
3.6	Lower diagonal matrices for sequence data from the D2 region of the 28S rRNA gene.	74
3.7	Lower diagonal matrices for sequence data from the ITS1 region of the rRNA genes.	75
3.8	Lower diagonal matrices for sequence data from the ITS2 region of the rRNA genes.	76
3.9	Lower diagonal matrices for sequence data from the ITS1, 5.8S and ITS2 combined regions of the rRNA genes.	77
4.1	List of the RAPD primers used to characterise the 50 <i>Trichoderma</i> isolates and the <i>Fusarium oxysporum</i> outgroup, the number of loci detected by each one and their sequence.	95

4.2	Determination of isolates with shared RAPD PCR band patterns with 20 primers each of 10 nucleotides in length.	107
5.1	Pyrone production by representative isolates of seven Trichoderma species.	161
5.2	Effect of pH of growth medium on PAP production by two <i>Trichoderma</i> harzianum (M1057 & HEND) isolates and one <i>T. koningii</i> (MTM) isolate.	165
5.3	Effect of available nutrients on PAP production by two <i>Trichoderma harzianum</i> (M1057 & HEND) isolates and one <i>T. koningii</i> (MTM) isolate.	165
5.4	Effect of incubation temperature on PAP production by two <i>Trichoderma</i> harzianum (M1057 & HEND) isolates and one <i>T. koningii</i> (MTM) isolate.	166
5.5	Effect of culture age on PAP production by two <i>Trichoderma harzianum</i> (M1057 & HEND) isolates and one <i>T. koningii</i> (MTM) isolate.	166
5.6	Production of PAP by UV induced mutants of <i>Trichoderma harzianum</i> I isolate M1057 when grown on MEA plates.	176
5.7	Comparison of mycelial growth rate of UV induced PAP mutants to that of the <i>Trichoderma harzianum</i> I wildtype (M1057) on MEA plates.	179
5.8	Comparison between the ability of PAP mutants and the <i>Trichoderma harzianum</i> I wildtype (M1057) to control <i>Sclerotium rolfsii</i> infection of lentil seedlings.	179
5.9	Effect of PAP mutants and <i>Trichoderma harzianum</i> I wildtype (M1057) on lentil seedlings.	181
5.10	Effect of differing concentrations of AAP on <i>Sclerotium rolfsii</i> infection of lentil seedlings.	181
6.1	Summary of the origin, morphological, biochemical and molecular characterisation of the 50 <i>Trichoderma</i> isolates investigated in this study.	200

xiv

1

List of figures

ĩ

Figure		Page
2.1	Conidia of <i>Trichoderma</i> isolates observed using the scanning electron microscope under 8800 x magnification.	28
2.2	Conidia of <i>Trichoderma harzianum</i> I isolates observed using the scanning electron microscope under 8800 x magnification.	30
2.3	Conidiophore branching systems of the three species-aggregates (a) <i>T. viride</i> , (b) <i>T. harzianum</i> and (c) <i>T. hamatum</i> , according to the key of Rifai (1969).	42
2.4	Chart illustrating the different conidiophore branch patterns of the five sections recognised in the genus <i>Trichoderma</i> , and showing the placement in these sections of Rifai's species-aggregates and other species.	43
3.1	Arrangement of ribosomal RNA genes in fungi.	48
3.2	Pileup generated UPGMA tree for D2 sequence from 50 Trichoderma isolates and a representative isolate of Fusarium oxysporum.	65
3.3	Pileup generated UPGMA tree for (a) ITS1 sequence, (2) ITS2 sequence and (c) ITS1, 5.8S and ITS2 combined sequence from 18 <i>Trichoderma</i> isolates and a representative <i>Fusarium oxysporum</i> .	67
3.4	Preliminary neighbour-joining estimates of <i>Trichoderma</i> isolate phylogeny for sequence data from (a) the D2 region of the 28S ribosomal gene and (b) the ITS1, (c) ITS2, and (d) ITS1, 5.8S and ITS2 combined regions of the ribosomal genes.	71
3.5	The two representative tree topologies of unrooted trees derived from all phylogenetic trees using the taxa present in all sequence data sets.	72
3.6	Preliminary neighbour-joining estimates of <i>Trichoderma</i> isolate phylogeny for sequence data from the (a) ITS1, (b) ITS2 and (c) ITS1, 5.8S and ITS2 combined regions of the ribosomal genes.	73
3.7	Neighbour-joining estimates of <i>Trichoderma</i> isolate phylogeny for sequence data from the (a) D2 region of the 28S ribosomal gene, (b) ITS1 region, (c) ITS2 region and (d) ITS1, 5.8S and ITS2 combined regions of the ribosomal genes.	79
3.8	The most parsimonious estimates of <i>Trichoderma</i> isolate phylogeny (a) for sequence data from the D2 region, with <i>Fusarium oxysporum</i> specified as the outgroup, and for sequence data from the (b) ITS1, (c) ITS2 and (d) ITS1, 5.8S and ITS2 combined regions, with <i>Acremonium uncinatum</i> , <i>A. typhinum</i> , <i>Epichloe typhina</i> and <i>F. oxysporum</i> specified as the outgroups.	81
3.9	The most parsimonious trees for sequence from the (a) ITS1 and (b) ITS2 data sets. The ITS1 data set has had sequence for the taxa OMK and GJS89 removed so that both ITS1 and ITS2 data sets have identical taxa.	83

xvi		
3.10	The most parsimonious trees for sequence from the (a) ITS1 and (b) ITS2 data sets. In addition to the removal of OMK and GJS89 sequence from the ITS1 data set, both ITS1 and ITS2 data sets have had GJS90 sequence removed.	85
4.1	RAPD PCR products generated from the DNA of isolates HEND, KEK and HPP1 respectively with primers OPAV06 and OPAV17 showing the difference between major and minor bands.	98
4.2	Comparison of RAPD PCR products generated from (a) non-purified DNA and (b) DNA purified with Wizard DNA Clean-up System using primers OPAV01 and OPAV02.	102
4.3	Comparison of RAPD PCR products generated with <i>Taq</i> polymerase from either (1) BRL Life Technologies Inc. or (2) Boehringer Mannheim.	103
4.4	Comparison of RAPD PCR products generated with either fresh buffer made and stored at 10°C for less than one month, or thawed commercial Boehringer Mannheim buffer.	103
4.5	Comparison of RAPD PCR products generated with differing concentrations of Mg^{2+} in each reaction.	104
4.6	Determination of the optimum concentration of sample DNA for RAPD reactions.	104
4.7	Comparison of RAPD PCR products from 20 identical reactions.	106
4.8	RAPD PCR products generated from the DNA of each of the 50 Trichoderma isolates plus the Fusarium oxysporum isolate using primer OPAV03.	112
4.9	GelCompar alignment of the standardised lanes from three gels of RAPD PCR products generated with primer OPAV08.	115
4.10	GelCompar generated UPGMA tree for RAPD PCR band data generated with primer OPAV03 for the 50 <i>Trichoderma</i> isolates and the <i>Fusarium oxysporum</i> outgroup.	116
4.11	GelCompar generated UPGMA tree for RAPD PCR band data generated with primer OPAV08 for the 50 <i>Trichoderma</i> isolates and the <i>Fusarium oxysporum</i> outgroup.	117
4.12	GelCompar generated UPGMA tree for RAPD PCR band data generated with primer OPAV17 for the 50 <i>Trichoderma</i> isolates and the <i>Fusarium oxysporum</i> outgroup.	118
4.13	Neighbour-joining tree generated from RAPD data from 50 <i>Trichoderma</i> isolates, with <i>Fusarium oxysporum</i> specified as the outgroup. Distances were calculated using formula 2 in the RAPDist computer programme.	121
4.14	Neighbour-joining tree generated from RAPD data from 50 <i>Trichoderma</i> isolates, with <i>Fusarium oxysporum</i> specified as the outgroup. Distances were calculated using formula 9 in the RAPDist computer programme.	123

4.15	The most parsimonious estimate of phylogeny estimated from RAPD PCR data generated from 50 <i>Trichoderma</i> isolates.	125
4.16	Unrooted trees derived from the RAPD generated phylogenetic trees.	127
4.17	Neighbour-joining tree generated from RAPD PCR data of the data set reduced to 18 <i>Trichoderma</i> isolates, with <i>Fusarium oxysporum</i> specified as the outgroup.	128
4.18	The most parsimonious estimate of phylogeny estimated from RAPD PCR data generated from (a) the data set reduced to 18 <i>Trichoderma</i> isolates and (b) the data set further reduced by the elimination of isolates GJS90 and GJS89.	130
4.19	Neighbour-joining tree generated from RAPD data from the data set reduced to 18 <i>Trichoderma</i> isolates and then further reduced by elimination of isolates GJS89 and GJS90.	132
4.20	Estimates of phylogeny for 15 <i>Trichoderma harzianum</i> I isolates using RAPD data, where the <i>T. harzianum</i> II isolate (JD10) was specified as the outgroup.	134
5.1	6-pentyl-α-pyrone (PAP or AAP)	145
5.2	The proposed final step in the biosynthesis of 6-pentyl- α -pyrone by <i>Trichoderma</i> species.	147
5.3	Gas chromatograms of chloroform extracts of MEA plate cultures for the two <i>Trichoderma</i> isolates, a) <i>T. harzianum</i> I (M1057) and b) <i>T. harzianum</i> IV (HEND).	163
5.4	Mass spectrum of the dominant gas chromatogram peak produced by analysis of the chloroform extract of a MEA plate culture of the <i>Trichoderma harzianum</i> I isolate M1057.	164
5.5	Effect of pH of the growth medium on colony morphology.	167
5.6	Effect of available nutrients on colony morphology.	168
5.7	Effect of incubation temperature on colony morphology	169
5.8	Effect of culture age on colony morphology	170
5.9	TLC analysis of the products of AAP hydrolysis by potassium hydroxide over a period of time.	172
5.10	Behaviour of acid band on TLC plates when developed in either the presence or absence of formic acid.	172
5.11	Purified acid product of hydrolysed AAP.	173
5.12	Gas chromatogram of the purified acid produced by the hydrolysis of AAP.	174
5.13	Gas chromatogram of enzyme assay product where purified acid was incubated overnight with the crude enzyme extract from a ten day old <i>Trichoderma harzianum</i> I (M1057) culture.	174

xvii

xviii		
5.14	Effect of UV light irradiation on Trichoderma spore survival.	175
5.15	Colony morphology of mutant isolates grown on MEA for 2 weeks under a 12 h light phase at 25°C.	177
5.16	Comparison of RAPD PCR products generated from UV induced mutants and the <i>Trichoderma harzianum</i> I (M1057) wildtype using six primers.	180
5.17	Comparison between the ability of PAP mutants and the <i>Trichoderma harzianum</i> I wildtype (M1057) to control <i>Sclerotium rolfsii</i> infection of lentil seedlings.	182
5.18	Effect of PAP mutants and <i>Trichoderma harzianum</i> I wildtype (M1057) on lentil seedlings.	184
5.19	Effect of differing concentrations of AAP on <i>Sclerotium rolfsii</i> infection on lentil seedlings.	188