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Abstract

In this paper we propose a test statistic to discriminate between models with finite
variance and models with infinite variance. The test statistic is the ratio of the sample
standard deviation and the sample interquartile range. Both asymptotic and finite
sample properties of the test statistic are discussed. We show that the test is consistent
against infinite-variance distributions and has small size distortions. The statistic is
applied to compare the competing models for S&P 500 index returns. Qur test can
not reject most distributions with finite variance for both a pre-crash sample and a
post-crash sample, and hence supports the literature. However, for a sample including
crash days, our test suggests that the finite-variance distributions must be rejected.
The finding is different from what have been discovered in the recent literature.
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1 Introduction

Modelling stock returns has been a very interesting topic for a long time. One reason is
that some important models in financial theory critically rely on the distribution form
for the returns of underlying stocks, such as mean-variance portfolio theory, capital
asset pricing models, and prices of derivative securities. In the search for satisfactory
descriptive models of stock returns, many distributions have been tried and some new
distributions have been created over past several decades. Tucker (1992) categorizes
the candidate models by independent and linear processes and time-dependent pro-
cesses where both independence and linearity are relaxed. Time-dependent processes
have been successful in the modelling of financial time series including daily stock
returns. However, as Clark (1992) claims, the descriptive validity of compcting time-
independent model still remains unresolved and there has been much debate between
them. All time-independent models can be divided by two families. One family has
finite-variance. Examples include the normal distribution proposed by Osborne (1959),
the Student t distribution by Blattberg and Gonedes (1974), the mixture of normals
(MN) by Kon (1984), the compound log-normal and normal (LN) distribution by Clark
(1973), the mixed diffusion-jump (MDJ)} model by Press (1967) and more recent one,
the Weibull distribution by Mittnik and Rachev (1993). The other family has infinite-
variance, such as the Stable distribution proposed by Mandlebrot (1963) and Fama
(1965).

The Stable distribution has been appreciated as a possible alternative to describe
the stock returns for both statistical and economic reasons. Statistically speaking, the
Stable distribution has domain of attraction and belongs to their domain of attraction.

Economically speaking, the stable distribution has unbounded variation, and hence

is consistent with continuous-time equilibrium in competitive markets (see McCulloch

(1978)).




Despite these appealing properties, the Stable distribution is less commonly used
today. It has fallen out of favor, partly because of the difficulties involved in theo-
retical modelling; standard financial theory, such as the option theory, almost always
requires finite variance of returns. Furthermore, evidence has been found against the
Stable distribution. Firstly, using the conventional likelihood ratio test, Blattberg and
Gonedes (1974) found that the Student t distribution has greater descriptive validity
than the symmetric Stable distribution, and Tucker (1992) found that finite-variance
models outperform the asymmetric Stable distribution. Using the Komogorov-Smirnov
test, Mittnik and Rachev (1993) found that the Weibull distribution is the most suit-
able candidate. Secondly, when the tail behavior was investigated, Akgiray and Booth
(1987) found that the tails of Stable distribution are too thick to fit the empirical data.
Thirdly, Lau, Lau and Wingender (1990) found that as the sample size gets big the
sample high moments secms to converge while the Stable distribution implies that sam-
ple high moments should blow up rapidly. Finally, the evidence provided by Blattberg
and Gonedes (1974) indicates that the distribution of monthly returns conforms well
to the normal distribution, while the Stable distribution implies that long horizon (for
example, monthly) returns will be just as non-normal as short-horizon (for example,
daily) returns.

The purpose of this paper is to re-examine the descriptive power of the finite-
variance distribution family and the infinite-variance distribution family as models of
daily stock returns. However, instead of using overall goodness of fit testing method-
ology or model selection criteria, we concentrate on studying the variance behavior
for chosen distribution families. To be more specific, we propose a test statistic to
distinguish finite-variance families against infinite-variance families for stock returns.
Particular attention is paid to the variance due to two reasons. Firstly, as far as

the variance is concerned, an infinitc-variance model is fundamentally riskier than a

finite-variance model. Secondly and more importantly, many financial models critically




depend on the assumption on the second moment. Examples include the capital asset
pricing model (CAPM) and the Black-Scholes option price model. As a result, finite
variance and infinite variance could have very different implications for theoretical and
empirical analysis. Unfortunately, testing for finite variance or infinite variance based
on a sample without choosing specific distribution families will probably never be pos-
sible since such a test could have no power. Instead of directing the test on variance
itself, we test a specific finite-variance model against a specific infinite-variance model.

The paper is organized as follows. The next section introduces the test statistic,
motivates the intuition behind it, and obtains the statistical properties of it. Section 3
bricfly summarizes the candidate models of the stock returns, including finite-variance
family and infinite-variance family. The proposed statistic is used to discriminate
between these two families. Section 4 discusses the implementation of the test as well
as Monte Carlo studies and an empirical application. Section 5 concludes. All the

proofs are collected in Appendix A and B.

2 Proposed Statistic and Its Properties

DuMoucher (1973} states that if a sample has a standard deviation many times as
large as the interquartile range, the Data Generating Process (DGP) could have an
infinite variance. However, he does not give a statistical analysis to indicate when
the DGP has an infinite variance. Despite this we find that his statement is quite
intuitive and study along this line serves our purpose to distinguish finite variance
models and infinite variance models. In other words, the statistical properties of the
relative magnitude of the sample standard deviation with the sample interquartile range

should be investigated.

Suppose {X;}7, be a sequence of observations with common distribution function




F(z), common density function f(z), mean u and variance o2. Let

be the sample variance, where fi is the sample mean. Denote the quantile process by
(. (t) (see Chapter 6, Csorgé and Horvath (1993)). The proposed test statistic is then

defined as,
Sn

500 = g a8 -~ @ow &y

where 0 < 8y < 0.5. Hence the denominator is the fy-quartile range and indeed the

interquartile range when = 0.25. Therefore, T,(0.25) is basically the ratio of the
sample standard deviation and sample interquartile range.

It seems natural to use sample variance or sample standard deviation to discriminate
between finite-variance distributions and infinite-variance distributions. Unfortunately,
the power based on the sample variance or sample standard deviation may not be
good since a finite-variance distribution can generate a larger sample variance than a
distribution with an infinite variance can even when the sample size is large. By taking
the ratio of two dispersion parameters, however, the proposed test can be standardized
or at least reduced the dispersion of any finite-variance distribution. This is because
when the true DGP has a finite variance, less observations come from the tails and
hence s, — o. Since both @,(0.75) and (,(0.25) are finite for any n, T, converges
to a finite number as n — oo. Consequently, it is reasonable to believe that a large
T, comes from a DGP with infinite variance rather than a DGP with finite variance.
On the other hand, if the true DGP has an infinite variance, more observations must
be [rom the tails and s, — oo as n — oco. This implies the unboundness of T, (0.25).

Thus we set up the hypothesis as the following,

Hy: DGP is a certain finite variance distribution,

H,: DGP is a certain infinite variance distribution.

If Hy is rejected, the model in H should not be used as a candidate model.




In this subsection we assume X;, X5, ..., X,, to be iid random variables. The prop-

erties of T,, are established in this section. Their proofs are found in Appendix A.
Proposition 2.1 T, is invariant for a scale-location fam:ly.

This is an indeed appealing property. For a scale-location family, no matter how big
the scale is, the expectation of the statistic always takes the same value. In other
words, if we think of 7}, as a measure of risk, the risk associated with a scale-location
family is a constant. Because of this property, any scale-location family can be treated

as one model.

Proposition 2.2 If 0? < +oo, and Q(t) is continuous at 0y and 1 — 0y, then

T, =T =

<00 a.s., (2.3)
q1— Qo

where g1 = Q(1 — 8y), qo = Q(bp) with Q(t) = inf{z : F(z) > t}.

This result is very intuitive since it says that 7}, converges almost surely to its popula-
tion counterpart. According to this proposition, if the model in Hy has good descriptive

power, it must yield a value of T" which is close to the empirical T,,.

Proposition 2.3 Assume that
(i) flg1) >0, f(g) > 0.

(ii) f(x) is continuous in a neighbarhood of q; and gp.

If E|X,|! < oo, then,

VT, — T) & N(0,52), (2.4)
that 1s,
22
Tn 2 *N(Tv _)’ (25)
)
where

2 ()t gl (7 90) e o oK) > @i}~ 6) o(I{X) < g0} —60) |
R e )




The asymptotic distribution in Proposition (2.3) is the main result of the paper since
it provides the basis for a large sample test procedure. Although 7;, is invariant for a
scale-location family, it is important to note that in general both 7" and X2 depend on
f and hence Hy. Therefore in general our statistic cannot be used to test the following

hypothesis,

Hy: DGP is any finite variance distribution, (2.6)
H,;: DGP is any infinite variance distribution. -

Instead 7;, can be used as a non-nested test of a specific finite variance distribution
against a specific infinite variance distribution, where the distribution along with the
parameters in both Hy and H; have to be specified except for the scale and location

parameters. Hence the test bears some resemblance to misspecification test statistics.

Proposition 2.4 Under assumptions of the proposition (2.3), if f is symmetric, then

K-1 " 290(1 — 200) 9061 — (]. - 0062)
4a? a*h? 2a3h ’

where K s the kurtosis of X, a = £,b = of(q),c1 = JA (52 f(x)dz, and ¢; =
(554)%f (z) dz.

¥2 =

(2.7)

q1

Power is certainly an important aspect of any test. Proposition (2.5) below estab-

lishes consistency of the proposed test against distributions with infinite variance.

Proposition 2.5 IfQ(t) is continuous at 8y and 1—8,, the test “Reject Hy if T), > C”,

for some 0 < C' < 400, 15 consistent against H;.

This is a valuable result, because the property guarantees a good power of the proposed
test statistic when the number of observations is big enough, provided the assumption

in the theorem is satisfied.

3 Candidate Models for Daily Stock Returns

In this section we introduce the most well-known time-independent models for daily

stock returns, briefly review the properties of the candidate models, and discuss the
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relevant estimation method and numerical algorithm if necessary. In the finite-variance
family, the normal distribution, the Student t distribution, the mixture of normals,
mixed diffusion-jump model, the compound log-normal and normal model. and the
Weibull distribution arc presented, while the Stable distribution represents infinite-
variance family. Note that we are not able to cover all the candidates in the literature
since some new distributions are still being created. However, we believe that our test,

can be used in the same way for these distributions.

3.1 Normal Distribution

The first model used in the literature to describe daily stock returns is the normal
distribution proposed by Bachelier (1900) and extended by Osborne (1959). Black and
Scholes (1973) provide a formula to price a option assuming the normality of under-
lying asset. Although the assumption of normality greatly simplified the theoretical
modelling, many empirical studies have shown evidence against it (see Blattberg and
Gonedes (1974), Clark (1973), Kon (1984) and Niederhoffer and Osborne (1966)). For
example, empirical daily stock returns exhibit fatter tails and greater kurtosis than the
normal distribution. Despite this evidence, in this paper we still choose it as a compet-
ing model because we want to check the validity of this assumption by using our test
statistic. Observe that all moments for the normal distribution exist and the kurtosis
for the normal family is three. Furthermore, since the normal distribution belongs to a
scale-location family, T, is invariant to both z and o2 and hence parameter estimation

1s not necessary.

3.2 Student Distribution

The Student distribution is first proposed to model the stock returns by Blattberg and
Gonedes (1974). Its density is,

_ [ +v)/2w*VH

9(z) v+ H(z — m)? "D, (3-8)

T(1/2)T(/2)




where v > 2, and H,m, v are the scale parameter, location parameter, and degrees-
of-freedom parameter. Therefore, 7;, is invariant to both H and m, but depends on
v. Furthermore, when v > 4 the Student distribution has a finite fourth moment and
hence the C.L.T. in Section 2 can be applied. The model is estimated by the maximum

likelithood method using a Quasi-Newton algorithm.?

3.3 Mixture of Normals

Kon (1984) proposes to use the mixture of normals to model stock returns, i.e., the
stock return X, come from N{y;, crjz-) with probability «; and oy + -+ = 1. A
characteristic of this model is that it can capture the structural change. The density

function is,

o) = oy exp {—@;’;‘)—2} - (3.9)
j=1 \/27T—U]2- 20.7'

All moments exist for the mixture of normals. However, in this paper we only consider
the mixture of two normals due to two reasons. Firstly, Tucker (1992) found the
mixture of two normals has the greatest descriptive power among the family of the
mixture of normals. Secondly, we want to avoid a model with too many parameters.
The parameters for the mixture of two normals are o, py, 9, 0%, 05 and T}, depends on
all of them. The maximum likelihood method is employed using a Newton-Raphson

algorithm.

3.4 Mixed Diffusion-Jump Process

Press (1967) and Merton (1976) propose a process which mixes Brownian motion and

a compound Poisson process to model the movement of stock prices,

dP(t) = aP(t)dt + apP(t)dB(t) + P(t)(exp(Q) — 1)dN(t). (3.10)

2With little effort, we can show that iy = L 5% X;. Therefore, only parameters H and v arc
n i=1
considered in the numerical algorithm.




where B(t) is a standard Brownian motion (BM). N(¢) is a homogeneous Poisson
process with parameter A. () is a normal variate with mean sz and variance o3,
Using Ito’s Lemma, we can solve the stochastic differential equation (3.10) for the
stock return X (¢)(= log(P(t)/P(t — 1))),
AN

X(t) = pup +opB(1 Z @, (3.11)

2
where pup = o — 5211 The density function for the process is,

X e (x — up — npg)? 1
glz) = exp ( - ) . 3.12
() nz::[) n! 2(ch +noj) \/ZW(UZD + nod) (3.12)

All moments are finite for this density and 7, depends on all five parameters up, 03, jig,

o% and A. The maximum likelihood estimates are found by using a Quasi-Newton
algorithm. However, to numerically maximize the likelihood, we have to truncate the
infinite sum in the equation (3.12) after some value of N. In practice, we choose N = 11

which provides satisfactory accuracy.

3.5 Compound Log-normal and Normal

This model is first proposed by Clark (1973). Instead of modelling returns as drawn
from a single distribution or a mixture of two distributions, Clark (1973) assumes the
returns to be conditional normal, conditional on a variance parameter which is itself
stochastic. To be more specific, he assumes X;|Z ~ N(0, Zo}) and log(Z) ~ N(a, o3).
The density is then,

(logz — a)?

———exp(— )}{ exp(—~ g
/ \/ 27w z0? 2ZC’l 24/2m03 203

It is easy to show that « and ¢? can be only identified jointly. See Appendix B for

)} dz. (3.13)

the proof. Consequently, we assume X;|Z ~ N(0, Zo?) and log(Z) ~ N(0,03). The

density is then,

1 (log z)

)} dz. (3.14)

9<$)*/0m{mexp( 2wl)}{ Mg xp(~
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All moments exist for this density and T,, is invariant to . The estimates are obtained

by the maximum likelihood method using a Quasi-Newton algorithm.

3.6 Weibull Distribution

Mittnik and Rachev (1993) first propose to use the Weibull distribution to model stock
daily returns. The Weibull distribution is attractive since it is one type of min-stable
distribution. More specifically, suppose m, = min{X;,---, X, }, where X,,---, X,
are iid. If, for some constants ¢, > 0 and d, € R, c,m, + d, Y Z, where Z is
a random variable with non-degenerate distribution function m, then m could be a
Weibull distribution.

The density function for the Weibull distribution is,

0 ifx <b
a(z=b)a—loxp(_(2=£)a} ifg > b

a

f@) =

where « is the index parameter, 6 is the location parameter and a is the scale parameter
and thus 7}, is invariant to both ¢ and 4. Furthermore, the density has finite all order of
moments, for example, E(X) = al'(2 +1) +b, Var(X) = aZ{F(% +1)— (F(é + 1))2}.
The estimates are obtained by the maximum likelihood method using a Quasi-Newton

algorithm.

3.7 Stable Distribution

Mandlebrot (1963) is the first person who proposes the Stable distribution to model
stock returns. The Stable distribution is usually characterized by the characteristic

function. The characteristic function of the general Stable distribution is given by,

c(t) = exp{iat — c[t]®[1 + 1[3%1&:171(?)]}, (3.15)

where index(a), skewness(43), scale(c), and location(a) are parameters. Therefore, T,

1s invariant to both ¢ and a. If 1 < @ < 2, which is the case for almost every financial
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series, the tails of the stable are fatter than those of the normal and the variance is
infinite. Unfortunately, the density function has no closed form for 1 < « < 2. The
maximum likelihood method is difficult to implement. Instead in this paper we obtain

the estimates of the model by using the method proposed by McCulloch (1986).

4 Implementation, Simulation and Application

The dataset we use is daily returns for the Standard and Poor 500 (S&P500) stock
market composite raw index. We consider three different periods. The first one is
pre-crash sample covering the period from January 1976 to March 1985 with 2,400
observations. The sccond one also has 2,400 observations but covers the period after
the crash from May 1988 to July 1997. The entire sample from January 1976 to July
1997 with 5,614 observations is also examined. Table 1 reports T}, with 8, = 0.25 for
these three samples. We note that the post-crash sample shows a larger value of 7T},
than the pre-crash sample. Furthermore, since the entire sample includes October,
1987 — stock-market crash days, it is not surprising that the associated 7, is largest.

As we argued before, the hypothesis we are going to test is the one given by (2.2).
Since all the competing models except the Stable distribution have finite variance, we
set Hy to be one of finite-variance models and f; to be a Stable distribution. When
T, is parameter {ree under Hy, we can choose Hy to be one distribution family, such as
the normal family. Unfortunately, in most cases 7, is not completely parameter free.
Consequently, H, has to be a certain model with parameters specified.® Furthermore,
since H; is the Stable distribution with ¢ and a being the scale-location parameters,
only parameters oo and § have to be specified. Therefore, to implement the test,
we have to first fit the models in both Hy and H; to the data sets. The relevant
estimation method for cach candidate model was presented in Section 3. After setting

up the hypothesis, we can obtain the asymptotic means and asymptotic variances for

3Actually only those parameters on which T, depends are nceded to be specified.
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T, based on Proposition (2.3). The p-values are then calculated.

In Table 2 we report the estimates of all competing models for each data set. Since
Ty, is invariant to 4,0 in the normal distribution, H,m in the Student distribution,
o? in the compound log-normal and normal model, a,b in the Weibull distribution,
and a, c in the Stable distribution, the estimates of these parameters are not reported.
Moreover, the estimates of v in the Student model are less than 4 for both the post-
crash sample and the entire sample, the asymptotic distribution of T}, is not applicable
in either situation. Table 3 reports the asymptotic distributions and Table 4 shows the
associated p-values.

It is also interesting to consider the finite sample performance of the test, such as
finite sample distributions and size distortions. Consequently, a Monte Carlo study is
presented to obtain the finite sample distribution of 7},. 3,000 replications are generated
under Hy and H, respectively according to the estimates reported in Table 2. T), is
calculated for cach replication and thus the finite sample distributions of T}, under H,
and H, are obtained. Using the finite sample distributions, we calculate critical values
and powers of the test. In Table 5 we present the finite sample distributions of 7},
under Hy for all three samples. We report the 95% critical value in Table 6 and the
power of the test in Table 7. We also perform a Monte Carlo study to obtain the real
sizes of the test in finite samples and compare them with the nominal sizes. 3,000
replications are generated under Hy according to the estimates reported in the second
column of Table 2 and each replication has 2,400 observations. The nominal sizes are
chosen to be 0.1%, 0.5%, 1%, 5%, 10%, 20% and 50%. The sizcs are reported on Table
& and plotted in Figure 1.

A detailed examination of Table 3 and Table 5 reveals that the asymptotic distri-
bution of 7, is very close to the finite sample distribution of T}, across all three samples
and all finite-variance distributions. Not surprisingly, therefore, we end up the same

conclusions from Table 4 and Table 6. Table 4 indicates that, for all three samples,
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the normal distribution can be easily rejected by the proposed test statistic, consistent
with empirical results when some other test statistics, such as the sample kurtosis, are
used. Furthermore, for both the pre-crash sample and the post-crash sample, most
finite variance distributions can not be rejected. For example, for the pre-crash sample
the Student distribution, the mixture of normals, the mixed diffusion-jump process and
the compound log-normal and normal model can not be rejected at 5% significant level.
For the post-crash sample the mixture of normals, the mixed diffusion-jump process
and the compound log-normal and normal model can not be rejected at 5% significant
level. This finding is consistent with what is normally found in most of the recent
literature; see Tucker (1992), Kon (1984), Blattberg and Gonedes (1974). However,
for the entire sample all the finite-variance models are rejected at 5% or even smaller
significant levels. The finding is very interesting and suggests that when the value of
15, gets bigger and bigger, it is harder and harder for the data to be modeled by the ex-
isting finite-variance models. The result is not surprising since a finite-variance model
1s prone to generate a value of 7' which is not large enough to match the empirical
T,. If we interpret T, as a measure of risk, the above finding means that the existing
finite-variance models have difficulties to explore the high risk that the actual stock
markets have. Finally, Table 7 provides the evidence that in finite samples our test
still has good power. From Table 6 and Figure 1, we note that in terms of the size of
the test, it works quitc well for the normal distribution, the Student t distribution, the
mixture of normal distribution, the compound log-normal and normal model, and the
Weibull distribution. Although the size distortions are larger for the mixed diffusion

jump model, the biases suggest underrejection of the model and hence support our

finding of rejection of all finite-variance distributions in the above empirical study.




5 Conclusions

This paper has considered a test for the competing models for daily stock returns with
particular concern about the variance behavior. In the recent literature, the likelihood
ratio test and the Komogorov-Smirnov test are used to compare the descriptive power
of the competing models. Both tests suggest that distributions with finite variance
outperform the distribution with infinite variance. A common feature for these two
tests is that all the observations receive the same weight. Model selection criterion,
such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),
shares the same spirit although they are used infrequently in this context. Qur test
statistic, however, assigns different observations different weights. Obviously in our
test statistic more extreme observations receive larger weight than less extreme ones.
Consequently, our test statistic prefers a distribution whosc tail behavior is closer to
the empirical distribution to a distribution whose near-origin behavior is closer to the
cmpirical distribution. Although some finite variance models have good descriptive
power for both pre-crash sample and after-crash sample, they do not perform well
for the entire sample. Therefore, our empirical results suggest cither direction. This
finding is different from what has been discovered in the recent literature where the
finite-variance distributions are found to dominate the Stable distribution (see Tucker
(1992), Akgiray and Booth (1987}, Lau, Lau and Wingender (1990)).

It is important to stress that the purpose of the proposed test is not to choose one
out of a fixed set of models as the ”"best” one and hence different from model selection
criteria. Instead our test could serve as pretest or diagnostic checking in order to decide
not to use models which appear to be incompatible with the data.

We must also point out that one can generalize the test into the dependent case
which would be possibly reported by authors in a separate paper. The generalization

will enable us to include into the hypothesis the time-dependent model such as ARCH-
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type models (see Bollerslev, Chou and Kroner (1992)), stochastic volatility models (see
Ghysels, Harvey, and Renault (1996)).

Our test is directly motivated from modelling stock returns, however, it can be
also used under other circumstances. One possible area to use the test is the noise
behavior in regression models. While classical estimation procedures such as QLS
usually perform well and conventional test procedures such as Durbin-Waston test are
valid under some moment conditions, serious problems may be encountered in the cases
where the variance of the noise is infinite. Our test can be used in this context to check
the validity of the finite-variance distribution of the disturbance, and hence serve to

select appropriate tools of estimation and inference.
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Appendix A
Proof of Proposition 1
Since the random variable X belongs a scale-location family, we assume that

F(z) = G(—£),

a

where F is the distribution function of X, p is the location of X, and o is the scale
of X. Define V = , then G{y) is the distribution function of Y. With the new

notations, we have,

s2(X) = Yo)?

—1

i=1

= o5, (Y),

and

S
iR
~_
fvu
[=)
p
il

inf{z:F(m)>90}

= inf{z:G. (2 * - 2y > 05
— inf{oy: Galy) > o}
= oG B).

Therefore,

sn{X)
F (1= o) — Fi7H{0)
osp(Y)
oG (1 —0y) — oG 1(6)
= T.(Y,6).

Tn(Xa 00) -

Proof of Proposition 2

The proposition follows immediately from the strong law of large number, since S, —
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o a.s. and Qu(1—6y) — Qn(t) =+ ¢1 — g0 a.s..

Proof of Proposition 3

Letting ¢1 0 = g1 — go, note that

Sn o a — q1,05n B U(Qn(l B 90) - QR(HU) (A 1)
Qn(l - 90) - Qn(oﬂ) q1 — qo (Qn(l - 90) - Qn(go))(h,o )
and
n 1/2
Sn = (n i 1{2(& —u)? —n(X - H)z}) (A2)
— 2 (X u)? = v
- 0{1 02 Z{ — - a?} - (n—1)o? }
_ n(X — pu)? - o®
= a{1+ 2 2Z{X s 20— D)o? }
1 n) |, (X —p? -\’
((a? e )
= 2n Z — ) — o*} + Op(1/n).
Therefore,
q1,08n — U(Qn(l — o) — @n(th)) (A.3)
= o Z{ W7 = 0% = 7 {Qul1 = 86) = Qulbo) — quo} + Op(1/n)
According to the Bahadur representation (see Chapter 3, Csorg8 and Horvath (1993)),

we have
Q1) - = g{f{xi <k = (1= 00)} + op(n /%)
and
1

Zn:{I{Xi < qo} - 6o)} + op(n~1?)

- nf{qo) i=1




Putting the above statements together yields

Vi (108n — 0(Qn(1 = 60) = Qu(6h))) (A4)
_ nf{qz—o S - )
+f(cj]1) z‘Z:{I{Xi Sqf—(1-6)}- %q())é{f{){i < q} - 90)}} + op(1)
_ n/Z {«121_5((& o a(f{xifiqf;} ) _ a(f{xif?qz)o} - %)} +on(l)

This proves (2.4). (2.5) simply follows (2.4).

Proof of Proposition 4

Expanding the expression for 2, we have,

2 = (=) 2 -0 T (e * )
e P )t 0y -]

(
A B e < e o)

(fh - Q’O)S.f(QO)
20262

(1 — Qo)‘lf(%)f((h)'

o

Since f is symmetric about p, we have f(q) = f(¢1). A simplification of above

expression gives us (2.7).

Proof of Proposition 5
Define A, = [T, > C|H; is true] for some 0 < C < 4oc. Provided H; is true,
T, — +ooa.s.. Therefore,

A, = da.s.

This implies
Pr{A,) = 1.
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Appendix B
In this appendix we prove that o and ¢f can be only identified jointly in (3.13). Ac-

cording to the assumption, we have
Z ~ oxp(N(a, 03)) = explar + N(0,02)) = e exp(N(0, 02)).

Therefore,

Xi|Z ~ N(0, ZU%) = N(0, 0% expN(Oﬂgg))_

Obviously, @ and ¢% can not be identified separately.
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Table 1

T,, in the Empirical Samples

Sample 1: 76-85

Sample 2: 88-97

Sample 3: 76-97

T (80 = 0.25)

0.8406

0.9694

1.0174

Table 2

Estimates of the Competing Models

Sample 1: 76-85

Sample 2: 88-97

Sample 3: 76-97

Student | v = 6.3879 v = 3.9942 v = 3.9382
MN | gy = 25873 x 107* | p; = 6.2079 x 10°* | 4y = 5.0964 x 10~
pa =1.3990 x 1073 | pup =3.758 x 10™* | py = —1.3989 x 10—°
o1 =6.1653 x 107 | gy =4.2105 x 1073 | oy = 7.2094 x 103
o3 =1.1670 x 1072 | 3 = 1.0351 x 102 | 0 = 2.6493 x 102
a = 0.6736 o = 0.5674 o = 0.9528
LN | 0% =10.4576 o2 = (.8811 o2 = 0.9063
MDJ | p=-3732x10"% |p=47576 x 107" | 4 =5.168 x 10~*
o = 7.06 x 10~* po =306 x10°°% | pp=—2.047 x 10~*
0% =259 x 107° 0? =7.42 x 1078 0% =2.527 x 107°
04 =4.73 x 1075 05 =3.72x107° |05 =925%x10"?
A = 0.92847 A =1.2796 A = 0.5157
Weibull | o = 5.0693 o = 9.0062 o = 20.3287
Stable | o = 1.6980 o = 1.5018 o = 1.5473
8 =10.2133 8 = —0.01665 3 =0.0591




Table 3

Asymptotic Distribution of T,, under H,

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97
Normal | N(0.7413,1.97 x 107%) | N(0.7413,1.97 x 10~%) | N(0.7413,8.42 x 10°%)
Student | N(0.8440,4.50 x 10~%) Not Applicable Not Applicable
MN | N(0.8402,3.25 x 107%) | N(0.9802,5.57 x 10~4) | N(0.8953,4.18 x 10~*)
LN | N(0.8543,4.11 x 107%) | N(0.9688,8.01 x 10~%) | N(0.9754,3.34 x 10~*)
MDJ | N(0.8511,2.75 x 107%) | N(0.9648,4.32 x 10~) | N(0.9425,1.57 x 10~%)
Weibull | N(0.7307,1.86 x 10™*) | N(0.7569,2.35 x 10™1) | N(0.7854,1.31 x 10™%)

Table 4

p-values of the Test

Sample 1: 76-85 | Sample 2: 88-97 | Sample 3: 76-97
Normal 0 0 0
Student 0.5628 Not Applicable | Not Applicable
LN 0.7512 0.4915 0.0116
MN 0.4907 0.6757 0
MDJ 0.7368 0.4120 0
Weibull 0 0 0
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Table 5

Finite Sample Distribution of 7;, under H,

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97
Normal | (0.7420,1.96 x 107%) | (0.7420,1.96 x 10~%) | (0.7418,8.98 x 10~5)
Student | (0.8442,4.44 x 107%) Not. Applicable Not Applicable
MN | (0.8316,3.46 x 107*) | (0.9760,5.76 x 1074) | (0.8990,4.30 x 10~*)
LN | (0.8551,4.10 x 107*) | (0.9691,8.07 x 10°*%) | (0.9759,3.52 x 10~%)
MDJ | (0.8520,3.92 x 107*) | (0.9663,6.18 x 10™*) | (0.9434,2.38 x 10 %)
Weibull | (0.7313,1.92 x 107*) | (0.7575,2.40 x 107%) | (0.7855,1.26 x 10™%)
Table 6
Critical Value of the Finite Sample Distribution
Sample 1: 76-85 | Sample 2: 88-97 | Sample 3: 76-97
Normal 0.7653 0.7653 0.7577
Student 0.8814 Not Applicable | Not Applicable
MN 0.8622 1.0155 0.9331
LN 0.8905 1.0182 1.0065
MDJ 0.8837 1.0071 0.9692
Weibull 0.7543 0.7837 0.8035
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Table 7

Power of the Test

Sample 1: 76-85 | Sample 2: 88-97 | Sample 3: 76-97
Normal 1 1 1
Student 1 Not Applicable | Not Applicable
MN 1 1 1
LN 1 1 1
MDJ 1 1 1
Weibull 1 1 1
Table 8
Size of the Test
Nominal size | 0.001 | 0.005 | 0.01 0.05 0.1 0.2 0.5
Normal | 0.003 | 0.009 | 0.012 | 0.056 | 0.114 | 0.223 | 0.507
Student | 0.002 | 0.0067 | 0.0110 | 0.065 | 0.107 | 0.192 | 0.484
MN | 0.001 | 0.0077 | 0.0117 | 0.0517 | 0.096 | 0.196 | 0.490
LN | 0.0 |0.0087 }0.0197 | 0.0637 | 0.112 | 0.193 | 0.501
MDJ | 0.007 | 0.0217 § 0.0250 | 0.0937 | 0.1450 | 0.257 | 0.513
Weibull { 0.001 | 0.006 { 0.0137 | 0.062 | 0.114 | 0.218 | 0.519




Real Size

0.0 0.1 0.2 0.3 0.4 0.5
o
S
| |
ARNERl
— =
Soz= a3
o o< 33
T 1= p5
= D
J1
Q
c
-~
=3 ()
S ] —
z -
g )
5 N
” [}
5 =
o —
w =5
@
—
@
0
—
o |
I
o
o

25




References

[1] Akgiray, V. and G. Booth. (1987). Compound distribution of models of stock

returns: An empirical comparison. Journal of Financial Research. 10 269-280.
[2] Bachelier, L. (1900). Theorie de la Speculation. Gauthier-Villars, Paris.

[3] Black, F. and M. Scholes. (1973). The pricing of options and corporate liabilities.
Journal of Political Economics. 81 637-653.

[4] Blattberg, R. and N. Gonedes. (1974). A comparison of stable and student
distribution. Journal of Business. 47 244-280.

[5] Bollerslev, T., R.Y. Chou, and K.F. Kroner. (1992). ARCH modeling in finance:

A review of the theory and empirical evidence. Journal of Econometrics. 52 5-59.

[6] Clark, P.K. (1973). A subordinated stochastic process model with finite variance

for speculative prices. Econometrica. 41 135-155.

[7] Csorgs, M. and L. Horvath. (1993). Weighted approzimations in probability and
statistics. Wiley, New York.

[8] DuMouchel, W.H. (1973). On the asymptotic normality of the maximum-
likelihood estimate when sampling from a stable distribution. The Annals of

Statistics. 1 948-957.
9] Fama, E. (1965). The behavior of stock prices. Journal of Business. 47 244-280.

[10] Ghysels, E., A.C. Harvey, and E. Renault. (1996). Stochastic Volatility. In
Handbook of Stististics-14.

(11} Kon, S. (1984). Model of stock returns-a comparison. Journal of Finance. 39
147-165.

26




[12] Lau, A. and H. Lau andJ. Wingender. (1990). The distribution of stock returns:
New evidence against the stable model. Journal of Business and Economic Statis-

tics. 8 217-223.

[13] Mandelbrot, B. (1963). The vatiations of certain speculative prices. Journal of
Business. 36 394-419.

114} McCulloch, J. (1978). Continuous time processes with stable increments. Journal

of Business. 51 601-619.

[15] McCulloch, J. (1986). Simple consistent estimators of stable distribution param-
eters. Comm. Stotist. B-Simulation Comut. 15 1109-1136.

[16! Merton, R. (1976). Option pricing when underlying stock returns are discontinu-

ous. Journal of Financial Economics. 3 125-144.

[17] Mittnik, S. and S.T. Rachev. (1993). Modeling asset returns with alternative
stable distributions (disc: P331-389). Econometric Reviews. 12 261-330.

[18] Niederhoffer, V. and M.F.M. Osborne. (1966). Market making and reversal on
the stock exchange. Journal of the American Statistical Association. 61 897-916.

[19] Osborne, M. (1959). Brownian motions in the stock market. Operation Research.

7 145-173.

[20] Press, S.J. (1967). A compound events models of security prices. Journal of
Business. 40 317-335.

[21] Tucker, A. (1992). A reexamination of finite- and infinite-variance distributions

as models of daily stock returns. Journal of Business and Fconomic Statistics. 10

73-81.

27




