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ABSTRACT

A technique has been developed that allows the gasification reaction rates of
representative samples of carbon-carbon composite materials to be examined. The
technique involves heating the sample in a controlled and monitored environmsnl; ths
product gases of the reaction are then analysed by a mass spectrometer, allowing their
identification and quantification. The technique was used to characterise the

oxidation reactions of cathode carbons. These materials are composites and so the

oxidation reactions of their constituent raw materials were also examined. Surface

area was detemrined for each sample, allowing specific rates of reaction to be

determined, normalising surface area effects.

The anodes, cathodes and sidewalls of aluminium smelting cells are made of
composite carbon materials comprising filler materials (such as coke, anthracite and

graphite) and a binder (almost exclusively coal tar pitch). Whilst the oxidation of
anode carbons has received extensive study the oxidation reactions of cathodes have

been neglected largely because they have not been a cause of smelting cell failure.

However, with the longer lives now being achieved from smelting cells the long term

degradation reactions, such as oxidation, will have to be considered. Oxidation of
cathodes in the area of the collector bar will increase resistance and affect the heat

balance of the cell.

Gasification reactions of carbon materials are frequently characterised using

techniques such as thennal gravimetric analysis (TGA). These techniques are

accurate for examining such reactions when the sample is of small size and a single

carbon t1pe. To characterise composite carbons correlations have been made between

the overall oxidation resistance (determined by weight loss) and the ignition
temperature of one of the constituent materials (determined by TGA).

The results obtained using the new technique of product gas analysis (pGA)
revealed an exponential dependence of oxidation rate on temperature for the carbons

examined. At higher rates the limiting condition appeared to be mass fransfer

through the pores of the sample. Arrhenius plots of reaction rates allowed the

activation energy of oxidation to be determined for each material. When the rate was

controlled by the chemical reactivity of the material the activation energies determined

agreed well with values obtained from the literature.
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The two graphites examined had activation energies of 164 and 183 kJ.mol-r,

Ea of graphite has been measured in the range 175-281kJ.mol-I, the latter figure being
for a highly pure graphite. For the two anthracites Ea was ll3 and llg kJ.mol-I,

literature values have it between 100 and l5l kJ.mol-t. Th" pitches, used as binders

of cathode carbons, had Ea equal to I 12 and 123 kJ.mol l, values from the literanre
range from 121-165 kJ.mol-r.

Activation energies were determined for the cathode materials, and were

clearly influenced by the reactivity of the constituent materials. An amorphous

cathode carbon, having nominally 30% graphite, had an activation energy of IZL
kJ.mol-r. A semigraphitic cathode material comprisin g 100% graphite in a pitch

binder had an activation energy of I23 kJ.mol-r. The similarity of these values to
those for Ea of the pitch and anthracite indicates that the binder phase is having a

strong influence on cathode reactivity. These values of Ea accord well with values

determined for similar samples, reported in the literature ranglng from l 14 to l3g
kJ.mol-r. A semigraphitised cathode material had an activation energy of 176 kJ.mol-r

in the same range as that of graphite. This sample oxidised significantly less rapidly
at all temperatures.

The variation in reactivity of the constituent materials of cathode carbons

accounts for the highly selective oxidation behaviour observed in these materials.

Porosity development is rapid as binder matrix is preferentially oxidised, leading to an

acceleration of oxidation rate with increasing burnoff. The rate begins to decelerate

once all the binder matrix has been oxidised, the residue being less reactive than the

starting material.

The structure of the materials was quantified using X-ray diffraction pGD).
A peak ratio method was employed, comparing the intensify of the 4oz peaks of
cathode carbons and a standard electrographite. Once effects of cathode porosity had

been normalised an excellent correlation between increasing peak intensity ratio and

increasing oxidation resistance was found.
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Figure A4.14: Arrhenius plot of Zone I oxidation rate data for cathode type BN,

showing 95% confidence intervals.

Figure 44.15: Arrhenius plot of Zone II oxidation rate data for cathode type 5BDN,

showing 95% confidence intervals.
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Figure A4.16: Arrhenius plot of Zone II oxidation rate data for cathode type SBGN,

showing 95% confidenoe intervals.

Fignre A4.17: Arrhenius plot of Zone tr oxidation rate data for cathode tlpe BN,

showing 95% confidence intenrals.

Figure 46.01: Samples of resin bound ramming paste before and after oxidation.

Figure A6.02: Typical gas analysis for resin bound sample. Temperature profile is

also shown (hold temperature is 594"C).

Figure A6.03: Variation of rate of oxidation with temperature for resin bound

rammingpaste.

Figure 46.04: Arrhenius plot of oxidation rates of resin bound carbon ramning paste.
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Abbrertiations

ABBREVIATIONS

)(RD X-ray diftaction

SEM Scanning electron microscopy

EDX Energy dispersive analysis of X-rays

l, Wavelength

d Spacing of crystal planes

e Angle

B X-ray diftaction peak broadening

B X-ray di{fraction peak broadening due to fini1s crystallite size

b X-ray diffraction peak broadening due to instnrmental factors

E Average crystallite size

L Crystallite stack height

L Crystallite stack width

p Proportion of disorientated graphite layers in a carbonaceous material

G Degree of graphitisation of a carbonaceous material

P Pressure

Po Saturated vapourpressure

V Volume

t- Langmuir constant

Vrono Amount of gas required to form a monolayer

A Area

A, Projected area

TSA Total surface area

ASA Active surface area

C exp[(AHa- AHL)/RT]

AHa Heat of adsorption

AHr- Heat of liquefaction

R Gas Constant,8.3l J.Icr.mol-r

N, Avogadro's number, 6.02x1023 mol-l

r Radius

y Surface tension



Abbraiations

r Tortuosity

D Difrrsivity

t' Rate

X Burnoff, (mass of carbon reacted/original mass) x 100%

t Time

& Intrinsie reactivity

ki Intrinsic rate coe{ficient

p(x) Partial pressure of gas species x

n(x) Mole fraction of species x

m Reaction order

p Densrty

q Characteristic size

V Mass transfer coefticient

ARR Air reactivity residue

ARD Air reactivrty dust

ARL Air reactivity loss

I Current

IvIr Molar mass

0 Flow

V'n Molargasvolume,24.465l l.mol I

o Standard deviation

k,io The ratio of intensity of a sample XRD peak to a standard )RD peak

Ea ,A.ctivation energy

tl Linear absorption coefficient

Np Mass absorption coefficient

)ou




