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Abstract

Least squares bias in autoregression and dynamic panel regression is shown to be ex-
acerbated in case of cross section dependence. The bias is substantial and is shown to
have serious effects in applications like HAC estimation and dynamic half-life response es-
timation. To address the bias problem, this paper develops a panel approach to median
unbiased estimation that takes into account cross section dependence. The new estimators
given here considerably reduce the effects of bias and gain precision from estimating cross
section error correlation. The paper also develops an asymptotic theory for tests of co-
efficient homogeneity under cross section dependence, and proposes a modiÞed Hausman
test to test for the presence of homogeneous unit roots. An orthogonalization procedure
is developed to remove cross section dependence and permit the use of conventional and
meta unit root tests with panel data. Some simulations investigating the Þnite sample
performance of the estimation and test procedures are reported.
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1 Introduction

This paper studies pooled least squares and proposes new median unbiased estimators (MUE�s)
for dynamic (autoregressive) panel models under conditions that include cross sectional depen-
dence. The well known bias of ordinary least squares (OLS) in a Þrst order autoregression is
shown by simulation and by large cross section (N)/Þxed time series (T ) asymptotics to be
exacerbated in panels with cross section dependence, making the need for procedures that
correct for bias more urgent in panel estimation. To address this problem, the paper intro-
duces some new panel estimation procedures that are based on the idea of median unbiased
estimation (Lehmann, 1959; Andrews, 1993). The methods developed here include a pooled
median unbiased estimator (MUE), a pooled feasible generalized MUE, and a seemingly unre-
lated regression (SUR) MUE. A large T/Þxed N asymptotic theory is given for the SUR-MUE
procedure which is useful in testing homogeneity across section.

The problem of small sample bias in the least squares estimation of the coefficients in
an autoregression has a long history, two important early contributions being Hurvicz (1950)
and Orcutt (1948). In simple autoregressions, asymptotic formulae for the small sample bias
(hereafter, SB) were worked out by Kendall (1954) and Marriot and Pope (1954). Orcutt
(1948) showed that Þtting an intercept in an autoregression produced an additional source of
bias that can exacerbate the SB problem, and this was conÞrmed in a later simulation study
by Orcutt and Winokur (1969). The point was echoed in Andrews� (1993) more recent study,
which provided further simulations that included the case of a Þtted linear trend and explored
the alternate procedure of using median unbiased estimation along lines that were suggested
originally by Lehmann (1959).

In dynamic panel models with Þxed time dimension T and cross section dimension N ,
Nickell (1981) showed that the presence of heterogeneous intercepts (Þxed effects) causes the
OLS estimator of a common autoregressive coefficient to be inconsistent as N →∞ for Þxed T.
Nickell computed an expression for the bias under the assumption of cross section independence.
The existence of this bias in panel regressions is now well known, but it is often neglected or
assumed to be of minor importance in empirical studies. A recent discussion of some of the
issues in the context of growth rate convergence applications is given by Nerlove (2000). The
present paper shows how this bias is exacerbated when there is cross section dependence or
when there is unit root nonstationarity, it derives new asymptotic formulae for these cases
and it gives some numerical examples to illustrate how the bias can make a huge difference in
estimation and testing.

First, a common feature of recent work on the estimation of long run and HAC variances
(e.g., Andrews, 1991, Andrews and Monahan, 1992, den Hann and Levin, 1996, Lee and
Phillips, 1994) is the use of simple prewhitening Þlters like AR(1) or VAR(1) regressions. Such
Þlters will also suffer from SB bias problems when the methods are used in a panel context
and a homogeneous (common) long run variance is assumed (e.g. Hadri, 2001). In such
situations, the SB problem can cause serious bias in the estimation of the long run variance
and statistical tests that rely on these estimates will, in turn, suffer size distortions. Some
calculations illustrating how large these effects can be are given in Table 1.

Second, the availability of panel data has tempted empirical macroeconomists (eg, Frankel
and Rose, 1996, Evans and Karras 1996, and Papell and Murray, 2001) to implement pooling
methods to obtain more precise estimates of dynamic response times by imposing a homogene-
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ity restriction on the autoregressive parameter in the estimation of the half-life of dynamic
responses. Again, ignoring the SB problem in autoregressive estimation can lead to serious
problems of bias in half-life response time estimation. For example, computations show that
when the true half-life is 69 years (for an autoregressive coefficient of 0.99 and where the SB is
only -0.066) the estimated median half-life is as low as 8 years when there are 20 cross sectional
units and 50 time series observations. Moreover, the upper 95% of the estimated half-life dis-
tribution is still less than 17 years, revealing an extraordinary level of bias in panel estimation.
Some further illustrations of the potential effects of bias in dynamic panel regressions are given
below in Table 1 of Section 2.

To address the SB bias problem in dynamic panel estimation and the difficulties that can
arise from it, this paper proposes some panel MUE�s that follow the approach taken by Andrews
(1993) in the time series case. Our work is also related to some recent independent work by
Cermeno (1999). Using simulation methods, Cermeno investigates the use of MUE estimation
in a dynamic panel regression with Þxed effects, a common time effect and homogeneous trends.
Our framework extends Cermeno�s study by developing a class of panel MUE�s that address a
more general case of cross section dependence and that enable tests of homogeneity restrictions
on the dynamics, including the important case of unit root homogeneity. We also provide an
asymptotic analysis of the SB bias problem under cross section dependence and an asymptotic
theory for the estimators and homogeneity tests that are proposed here, including the panel
unit root tests.

Our starting point is a panel version of the MUE of Andrews in which the innovations in the
panel are assumed to be free of cross sectional dependence and the autoregressive coefficient
is assumed to be homogenous across cross sectional units. Since both these assumptions are
strong and are unlikely to be satisÞed in empirical work, we explore the consequences of relaxing
these assumptions and develop some alternate MUE procedures that are more suitable in that
event.

First, we consider the case where cross sectional dependence occurs but is ignored in the
panel regression analysis. We Þnd that in this case the pooled OLS estimator provides little
gain in precision compared to single equation OLS. Pooling GLS (which takes account of the
dependence) reduces variance, but the pooled GLS estimator suffers from downward bias. To
deal with these effects of cross section dependence, we develop a panel generalized MUE and
Þnd that this procedure restores the precision gains from pooling in the panel and largely
removes the bias in GLS. Next, we consider the more realistic case in empirical research where
there is cross sectional dependence among the innovations and heterogeneity in the autore-
gressive coefficients. In this case, we provide a seemingly unrelated MUE that deals with
heterogeneity and cross section dependence in much the same way as the conventional SUR
estimator, while also addressing the SB bias problem.

In panel applications it is often of interest to test whether the data support homogeneity
restrictions on the coefficients, an important example being that of panel unit roots. In view of
the potential gains from pooling and the changes in the limit theory in the nonstationary case,
homogeneity of the autoregressive coefficients in a panel is an important restriction in dynamic
panel models. In developing tests of such restrictions in dynamic panels it is particularly
important in empirical applications to allow for cross section dependence. To this end, the
present paper investigates the properties of Wald and Hausman-type tests of homogeneity
under cross section dependence and proposes a modiÞed Hausman test procedure that helps to
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deal with the effects of such dependence in testing for the presence of homogeneous unit roots.
An orthogonalization procedure1 is developed, which enables the development of a general
class of unit root tests for panel models when there is cross section dependence.

The remainder of the paper is organized as follows. The next section shows how even a
small time series SB can make a large difference in estimation and testing in the context of
panel pooling. Section 3 studies the invariance properties of the panel MUE under the as-
sumption of cross sectional independence. Since invariance breaks down under cross sectional
dependence, this section also investigates alternative invariance properties that hold in the
presence of cross section dependence and proposes two new estimators for this case � a pooled
feasible generalized MUE and a seemingly unrelated MUE. Section 4 considers the asymptotic
properties of Wald and Hausman tests for homogeneity under cross section dependence and
develops some alternate procedures that offer advantages, especially in the case of unit roots.
In section 5, we report the results of a simulation experiment examining the bias and efficiency
of the various panel estimators and the performance of the tests of cross section homogene-
ity. Section 6 provides an empirical application of the estimators to the growth convergence
problem. Section 7 concludes. Derivations and some additional technical material are given in
the Appendices: A derives some invariance results; B provides extensions of the Nickell (1981)
bias formula to cases where there is cross section dependence, unit root nonstationarity and
heterogeneous errors; C develops limit theory for the stationary and unit root nonstationary
cases; D provides an algorithm for estimating the cross section dependence coefficients.

2 Dynamic Panel Models and Bias Illustrations

2.1 Model DeÞnition

Three basic models are considered. These are panel versions of the models in Andrews (1993).
As in that work, Gaussianity is assumed in order to construct the median unbiased estimator.
Each of the basic models involves a latent panel {y∗i,t : t = 0, 1, ...T ; i = 1, ..., n} that is
generated over time as an AR(1) with errors that are independent across section. The more
complex case of cross section error dependence is taken up in Section 3.2 and allowance for
more general time series effects is considered in Section 4.3.

The model for y∗i,t is

y∗i,t = ρy
∗
i,t−1 + ui,t, for t = 1, · · · , T, and i = 1, · · · ,N, where ρ ∈ (−1, 1]. (1)

ui,t ∼ iid N(0,σ2i ) over t and ui,t is independent of uj,s for all i 6= j and for all s, t

y∗i,0 ∼
(
N(0,

σ2i
1−ρ2 ) ρ ∈ (−1, 1)

Op (1) ρ = 1
.

When ρ ∈ (−1, 1), y∗i,t is a zero mean, Gaussian panel that follows an AR(1) structure over
time and that is independent over i.When ρ = 1, y∗i,t is a Gaussian panel random walk starting
from a (possibly random) initialization y∗i,0 (not necessarily Gaussian) and that is independent

1When this paper was in the Þnal stages of completion, the authors learnt that Moon and Perron (2001)
have independently proposed the same procedure for unit root testing in the context of dynamic panels with
multiple factors.
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over i. The observed panel data {yi,t : t = 0, 1, ...T ; i = 1, ..., n} are deÞned in terms of y∗i,t as
follows:

M1: yi,t = y∗i,t for t = 0, · · · , T and i = 1, · · · ,N . and ρ ∈ (−1, 1)
M2: yi,t = µi + y∗i,t for t = 0, · · · , T, i = 1, · · · , N , µi ∈ R and ρ ∈ (−1, 1]
M3: yi,t = µi + βit+ y∗i,t for t = 0, · · · , T, i = 1, · · · ,N , µi,βi ∈ R, and ρ ∈ (−1, 1].

In each case, there is an equivalent dynamic panel representation in terms of yi,t :

M1 yi,t = ρyi,t−1 + uit for t = 1, · · · , T, i = 1, · · · , N , and ρ ∈ (−1, 1)
M2 yi,t = µi + ρyi,t−1 + uit for t = 1, · · · , T, i = 1, · · · , N , with µi = µi(1− ρ) and ρ ∈ (−1, 1]
M3 yi,t = µi+βit+ρyi,t−1+uit for t = 1, · · · , T, i = 1, · · · ,N , with µi = µi(1−ρ)+ ρβi,βi =

βi(1− ρ), and ρ ∈ (−1, 1].

In M1-M3, the initialization yi,0 ∼ N(0,σ2i /(1− ρ2)) when ρ ∈ (−1, 1) and yi,0 = Op(1) when
ρ = 1.

Denote the pooled panel least squares (POLS) estimator of ρ by �ρpols in each of the three
models M1, M2 and M3. In M2, for instance, �ρpols has the form

�ρpols =

PN
i=1

PT
t=1(yit−1 − yi.−1)(yit − yi.)PN

i=1

PT
t=1(yit−1 − yi.−1)2

, where yi. = T−1
TX
t=1

yit, and yi.−1 = T−1
TX
t=1

yit−1.

(2)
The exact quantiles of �ρpols were computed by simulation using 100,000 replications for a
selection of N, T , and ρ values and for σ2i = 1. We report some summary statistics here
(detailed results are available upon request) and make the following general observations: (i)
the median values of the pooled OLS estimators are less than the true values for all models
and all cases; (ii) the difference between the median value and the true value (which we call
the median bias) is increasing as the true value of ρ increases for all conÞgurations of (N,T ).

Table 1 shows the bias of the POLS estimator for each model when ρ = 0.9. For model
M1, the bias of the OLS estimator vanishes for moderate sizes of N and T . For example, the
median values of �ρpols are 0.88 for N=1,T=50, 0.89 for N=1,T=100 and 0.90 for N=10,T=50.
Also, the empirical distribution of �ρpols becomes tighter as N increases. In contrast to model
M1, �ρpols suffers from substantial SB in model M2 even when N or T are moderately large.
But, as in Model M1, the distribution of �ρpols concentrates quickly as N increases. In several
cases, the bias and concentration of the POLS estimator are such that the true value of ρ
lies almost completely outside the empirical distribution for moderate N . For example, for
T = 50, the upper 95% points of �ρpols are 0.94, 0.89, 0.88 and 0.85 for N= 1, 10, 20, and 30,
respectively when ρ = 0.9. This problem becomes more severe for model M3, where the upper
95% points of �ρpols are 0.904, 0.843, 0.831 and 0.825 for N= 1, 10, 20, and 30.
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Table 1: Downward Bias in Dynamic Panel Estimation
Part A: Quantiles of �ρpols for ρ = 0.9

Sample Model M1 Model M2 Model M3
5% 50% 95% 5% 50% 95% 5% 50% 95%

N=1, T=50 0.710 0.883 0.962 0.628 0.830 0.937 0.548 0.772 0.904
N=1, T=100 0.787 0.891 0.948 0.749 0.868 0.935 0.713 0.842 0.920
N=1, T=200 0.829 0.896 0.938 0.814 0.885 0.931 0.798 0.874 0.924
N=10, T=50 0.858 0.898 0.928 0.799 0.850 0.889 0.735 0.795 0.843
N=10, T=100 0.874 0.899 0.920 0.847 0.877 0.902 0.820 0.853 0.882
N=10, T=200 0.882 0.900 0.915 0.870 0.890 0.906 0.858 0.879 0.897
N=20, T=50 0.872 0.899 0.921 0.816 0.850 0.880 0.755 0.796 0.831
N=20, T=100 0.882 0.900 0.915 0.857 0.878 0.896 0.830 0.854 0.874
N=20, T=200 0.888 0.900 0.911 0.876 0.890 0.902 0.864 0.878 0.892
N=30, T=50 0.878 0.900 0.917 0.824 0.851 0.875 0.763 0.796 0.825
N=30, T=100 0.885 0.900 0.913 0.861 0.878 0.893 0.835 0.853 0.870
N=30, T=200 0.890 0.900 0.909 0.879 0.890 0.900 0.868 0.879 0.890

Part B: Quantiles of bh when ρ = 0.9 and h = 6.579
N=1, T=50 2.027 5.569 18.036 1.487 3.709 10.730 1.153 2.685 6.905
N=1, T=100 2.890 6.029 13.034 2.403 4.895 10.393 2.051 4.033 8.342
N=1, T=200 3.704 6.303 10.783 3.366 5.670 9.698 3.071 5.130 8.734
N=10, T=50 4.532 6.465 9.244 3.086 4.250 5.897 2.248 3.024 4.071
N=10, T=100 5.130 6.502 8.332 4.184 5.293 6.753 3.487 4.362 5.518
N=10, T=200 5.524 6.549 7.764 4.995 5.921 7.041 4.520 5.352 6.364
N=20, T=50 5.073 6.479 8.454 3.407 4.257 5.422 2.462 3.033 3.745
N=20, T=100 5.530 6.550 7.799 4.477 5.310 6.305 3.717 4.377 5.164
N=20, T=200 5.831 6.557 7.410 5.254 5.922 6.689 4.745 5.348 6.042
N=30, T=50 5.313 6.556 8.019 3.573 4.306 5.171 2.561 3.046 3.614
N=30, T=100 5.698 6.554 7.617 4.645 5.321 6.095 3.847 4.372 4.973
N=30, T=200 5.957 6.573 7.242 5.391 5.934 6.555 4.882 5.360 5.920
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Part C: Quantiles of clrvlrv when ρ = 0.9 and lrv = 100
N=1, T=50 0.113 0.763 7.047 0.064 0.339 2.580 0.040 0.182 1.091
N=1, T=100 0.206 0.863 3.880 0.147 0.575 2.501 0.109 0.403 1.643
N=1, T=200 0.337 0.918 2.608 0.282 0.753 2.127 0.235 0.616 1.726
N=10, T=50 0.501 0.965 1.933 0.235 0.425 0.810 0.129 0.220 0.390
N=10, T=100 0.620 0.986 1.565 0.420 0.656 1.035 0.292 0.449 0.696
N=10, T=200 0.717 0.994 1.385 0.587 0.810 1.137 0.489 0.669 0.928
N=20, T=50 0.615 0.981 1.596 0.281 0.432 0.670 0.152 0.223 0.331
N=20, T=100 0.711 0.988 1.382 0.478 0.658 0.908 0.333 0.449 0.616
N=20, T=200 0.791 0.996 1.264 0.649 0.815 1.029 0.537 0.670 0.845
N=30, T=50 0.671 0.990 1.479 0.307 0.435 0.626 0.164 0.225 0.309
N=30, T=100 0.759 0.993 1.302 0.510 0.663 0.866 0.352 0.453 0.587
N=30, T=200 0.824 0.993 1.201 0.678 0.814 0.986 0.557 0.670 0.810

The bias and concentration of the pooled estimator �ρpols are pertinent in applications
where they inßuence the distribution of derived statistics such as impulse responses, cumulative
impulse response functions, the half-life of a unit shock (h) and the long run variance (lrv). We
provide some brief illustrations of these effects in the case of h and lrv. In the panel AR models
above, the h and lrv estimates based on �ρpols are bh = ln 0.5/ ln �ρpols and clrv = 1/(1− �ρpols)2.
As is apparent from Tables 1(B) and 1(C), even a small SB can have large effects on these
derived functions in the panel case because of the concentration of the estimate �ρpols and the
nonlinearity of the functions. As discussed in the last paragraph, the upper 95% point of
the distribution of �ρpols is smaller than ρ when N is moderately large, and then 95% of the
distribution of bh is less than the true half-life h. In model M3, for example, when ρ = 0.9,
N = 10 and T = 100, 95% of the distribution of bh is less than 5.518, whereas the actual half-life
is h = 6.597. Similarly, for the same model and parameter values, 95% of the distribution ofclrv/lrv lies below 0.696. Even for N = 30, T = 200, 95% of the distribution of clrv/lrv lies
below 0.89. Table 1(C) shows how serious the bias in clrv can be. When T = 50 and N = 1,
the median value of clrv for model M2 is about 76% of the true lrv. For model M3, it is less
than 20% of the true value when T = 50 and N = 1, and still less than 45% when T = 100
and N = 30. Thus, when estimation of the lrv is based on panel data with Þtted Þxed effects
or individual trends, the estimated lrv suffers from serious downward bias. We can expect test
statistics that rely on these lrv estimates to be correspondingly affected.

3 Panel Median Unbiased Estimation

This section proposes three panel median unbiased estimators. The Þrst estimator is a panel
exactly median unbiased (PEMU) estimator, constructed under the assumptions of a homoge-
nous AR(1) parameter and cross sectional independence. This estimator is a panel version
of Andrews� exactly median unbiased estimator in the time series case. It is of interest to
see how this procedure is affected by panel observations. As mentioned in the introduction,
Cermeno (1999) has independently proposed the use of a PEMU estimator for dynamic panel
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models with a common time effect and homogeneous trends and shows in simulations that the
approach can work well in models of this type.

The PEMU estimator is based on the assumption of cross section independence (or the
presence of a common time effect) which will often be too strong in practical work, particularly
with macroeconomic panels. In such applications, PEMU is likely to be less relevant than our
second and third estimators, which are designed to take account of cross section dependence
that is more general than a common time effect. We will calibrate the performance of the
new median unbiased estimators against that of the conventional POLS estimator in cases
where there is cross sectional dependence amongst the regression errors. This comparison will
highlight the gains of working with median unbiased estimators in the panel context, especially
when there is cross section dependence.

3.1 Panel Exactly Median Unbiased Estimation

As discussed in Andrews (1993), it is useful in the construction of median unbiased estimators
for the distribution of the least squares estimator to be invariant to scale and other nuisance
parameters. It is well known (e.g. Dickey and Fuller, 1979) that least squares estimates of
the autoregressive coefficient in pure time series versions of models 1,2 and 3 satisfy such
distributional invariance properties. These invariance results extend to the pooled panel forms
of the least squares estimators in models 1,2 and 3 under certain conditions, which we now
provide. The following property is a panel version of the property given in Andrews (1993)
for the time series case. As before, the POLS estimator of ρ is generally denoted by �ρpols for
each of the three models M1, M2, and M3; but when there is possible ambiguity, we use an
additional subscript and write �ρpolsj for the POLS estimator of ρ in model j.

Invariance Property IP1: Under the assumption of cross section independence, the distri-
bution of �ρpolsj depends only on ρ when model j is correct and the error variance σii = σ

2 for
all i. When yit is stationary, it does not depend on the common variance σii for model M1,
or (σii, µi) for model M2, or (σii, µi,βi) for model M3, nor on the value of yi0 when ρ = 1
and yit is non-stationary.

The common variance condition in IP1 is a strong one and will be inappropriate in many ap-
plications. It may be relaxed by allowing the individual error variances σ2i to be iid draws from a
distribution with common scale. For example, if σ2i /σ

2 are iid χ21, then uit/σ = (uit/σi)(σi/σ),
which is independent of nuisance parameters. The numerator and denominator of �ρpols may
then be rescaled by 1/σ2 and it is apparent that IP1 continues to hold, as shown in the Ap-
pendix. For more general cases of variation in σ2i over i, we may use weighted least squares
in the construction of the panel estimator �ρpols. This extension and other generalizations of
�ρpols that are better suited to empirical applications are discussed later. For the time being,
we conÞne our discussion to the estimator �ρpols and those cases where property IP1 holds.

Property IP1 enables the construction of a panel version of the exactly median unbiased
estimator(PEMU) in Andrews (1993). We start by noting that �ρpols has a median function
m(ρ) =mT,N(ρ) which simulation shows to be strictly increasing2 in ρ on the parameter space

2An analytic demonstration of this property would be useful but is not presently available either in the panel
or the pure time series case (Andrews, 1993). The simulation evidence is strongly conÞrmatory at least for
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ρ ∈ (−1, 1]. Using this function (which depends on T and N), the panel median-unbiased
estimator �ρpemu can be deÞned as follows;

bρpemu =


1
m−1(�ρpols)

−1

if
if
if

�ρpols > m(1),
m(−1) < �ρpols ≤ m(1),

�ρpols ≤ m(−1),
(3)

where m(−1) = limρ→−1m(ρ) and m−1 is the inverse function of m(·) = mT,N (·) so that
m−1(m(ρ)) = ρ. Furthermore, a 100(1-p)% conÞdence interval for ρ in model j can be con-
structed as follows. Let qL(·) and qU (·) be the lower and upper quantile functions for �ρpols.
DeÞne

bcLPU =


1
q−1U (�ρpols)
−1

if
if
if

�ρpols > qU (1),
qU (−1) < �ρpols ≤ qU (1),

�ρpols ≤ qU (−1),
(4)

bcUPU =


1
q−1L (�ρpols)
−1

if
if
if

�ρpols > qL(1),
qL(−1) < �ρpols ≤ qL(1),

�ρpols ≤ qL(−1),
(5)

Then, bcUPU and bcLPU provide upper and lower conÞdence limits and the 100(1− p)% conÞdence
interval for ρ is {ρ : bcLPU ≤ ρ ≤ bcUPU}. This construction follows Andrews (1993). The intervals
are obtained in precisely the same way as in that paper, but use tables of the quantiles of the
panel estimator �ρpols.

3.2 Panel Feasible Generalized Median Unbiased Estimator

The assumption of no cross sectional correlation among the regression residuals is a strong one
and is unlikely to hold in many applications. When the structure of cross sectional dependence
among the regression errors is completely unknown, it is generally infeasible to deal with
the correlations because of degrees of freedom constraints. Hence, it is common to assume
some simplifying form of dependence structure. The most conventional way to handle cross
section dependence has been to include a common time dummy in the panel regression. The
justiÞcation for the common time effect is that certain co-movements of multivariate time series
may be due to a common factor. For example, in cross country panels it might be argued that
the time dummy represents a common international effect (e.g. a global shock or a common
business cycle factor), or in a panel study of purchasing power parity it may represent the
numeraire currency.

The model we use here allows for a common time effect that can impact individual series
differently. SpeciÞcally, the model for the regression errors has the form

uit = δiθt + εit, θt ∼ iid N(0, 1) over t, (6)

in which θt is a common time effect, whose variance is normalized to be unity for identiÞcation
purposes and whose coefficients, δi, may be regarded as �idiosyncratic share� parameters that

values T ≥ 20 and N ≥ 5. There seems to be some evidence from simulations that the property fails for small
T when N = 1. Andrews (1993, fn. 4) reports that the 0.95 quantile function appears to dip slightly for values
of ρ close to unity for small values of T .
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measure the impact of the common time effect on series i. The δi are assumed to be non-
stochastic and we let δ = (δ1, ..., δN). In (6) the general error component εit is assumed to
satisfy

εi,t ∼ iid N(0,σ2i ) over t, and εi,t is independent of εj,s and θs for all i 6= j and for all s, t.

In this formulation, the source of the cross sectional dependence is generated from the common
stochastic series θt and the extent of the dependence is measured by the coefficients δi. In
particular, the covariance between uit and ujt (i 6= j) is given by

E(uitujt) = δiδj. (7)

There is no cross sectional correlation when δi = 0 for all i, and there is identical cross sectional
correlation when δi = δj = δ0 for all i and j. Thus, the degree of cross sectional correlation
is controlled by the components of δ. Setting ut = (u1t, ..., uNt)

0 we have the conditional
covariance matrix

Vu = E
³
utu

0
t|σ21, ...,σ2N

´
= Σ+ δδ0, Σ = diag

³
σ21, ...,σ

2
N

´
. (8)

The model (6) can be regarded as a single factor model in which θt is the common factor and
δi is the factor loading for series i. More general versions of this model that allow for weakly
dependent time series effects and multiple factors have been considered in recent work by Bai
and Ng (2001) and Moon and Perron (2001) that concentrates on model determination issues
relating to the number of factors and panel unit root testing. The models used by these authors
are more complex than (6), especially with regard to time series properties. Nonetheless, (6)
is general enough to allow for interesting cases of high and low cross sectional dependence and
yet simple enough to enable us to develop good procedures for bias removal in dynamic panel
regressions where cross section dependence arises. In the panel unit root case, we show later in
the paper that time series effects in εit can be treated by a simple augmented dynamic panel
regression and that time series effects in θt can be treated simply by projecting on the space
orthogonal to δ.

As in the earlier case with cross sectional independence, it will be convenient in what
follows to assume that the individual error variances σ2i are iid draws from a distribution
with common scale. More particularly, we assume that τ i = σ2i /σ

2 are iid draws from an
independent distribution with density f(τ) that does not involve further nuisance parameters
and whose Þrst moment is Þnite. Then, the standardized error component

uit
σ
= δiθt +

εit
σi

σi
σ
,

where δi = δi/σ, has unconditional variance matrix

E

µ
utu

0
t

σ2

¶
=

Z ∞

0

£
τI + δδ0

¤
f (τ)dτ = E (τ) IN + δδ

0.

with δ = δ/σ.
With this formulation for the error variances, the numerator and denominator of �ρpols may

be rescaled by 1/σ2, giving some invariance characteristics to the panel estimator �ρpols and
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stronger invariance properties to the panel generalized least squares estimator �ρpgls deÞned by

�ρpgls =

PT
t=1 by0t−1V −1u bytPT
t=1 by0t−1V −1u byt−1 , (9)

where byt = (by1t, ..., byNt)0 and where byit denotes yit or demeaned or detrended yit, respectively
for Models M1,M2 and M3. In particular, we have the following property.

Invariance Property IP2: Under cross sectional dependence of the form (6), the distrib-
ution of �ρpolsj depends only on (ρ, δ = δ/σ) when model j is correct and the error variance
ratios τ i = σ2i /σ

2 are iid draws from an independent distribution with density f(τ) that does
not involve further nuisance parameters. Further, the distribution of the panel GLS estimator
�ρpgls depends only on ρ when model j is correct. When ρ = 1 and yit is non-stationary, the
distributions of �ρpols and �ρpgls for models 2 and 3 do not depend on the value of yi0.

According to this proposition, the bias of �ρpols depends on the nuisance parameters δi that
bring cross sectional dependence to the data. On the other hand, the panel GLS estimator
depends only on ρ. Accordingly, we propose an iterative procedure that involves the use of a
feasible GLS estimator, bρpfgls, whose form is speciÞed below in (10). Our objective is to reduce
the SB bias problems of these least squares procedures by constructing a feasible generalized
version of the PMU estimator of ρ.

The Þrst stage in this iteration uses the residuals from a panel regression in which we use
our median unbiased estimator �ρpemu rather than OLS to reduce the SB bias problems in this
primary stage. Simulations we have conducted that are reported below (see Fig.2) indicate that
use of the PMU estimator in the Þrst stage helps to remove bias and improve estimates of the
error variance matrix even in the presence of cross section dependence. The next stage of the
iteration involves the construction of a panel feasible generalized median unbiased (PFGMU)
estimator that utilizes this estimated error covariance matrix. In this construction, we use the
median function m(ρ) = mT,N(ρ) of the estimator bρpfgls, which simulations show to be strictly
increasing in ρ on the parameter space ρ ∈ (−1, 1]. Using this median function (which depends
on T and N), the panel feasible generalized median-unbiased estimator, bρpfgmu, can be deÞned
as in (3). The process can be continued, revising the estimate of the error covariance matrix
in each iteration.

To Þx ideas, the steps in the iteration are laid out as follows:

Step 1: Obtain the estimator �ρpemu and using the residuals from this regression construct the
error covariance matrix estimate bVpemu.

Step 2: Using bVpemu, perform panel generalized least squares as in (9) and obtain the PFGLS
estimate of ρ deÞned by

�ρpfgls =

PT
t=1 by0t−1 bV −1pemubytPT
t=1 by0t−1 bV −1pemubyt−1 . (10)

11
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Figure 1: Empirical Distributions of Single OLS, POLS and PEMU under No Cross-sectional
Dependence (N=20,T=100, and ρ = 0.9)

Step 3: The panel feasible generalized median-unbiased estimator (PFGMU) is now calculated
as bρpfgmu = m(bρpfgls)−1 just as in (3) but using the median function m(ρ) = mT,N(ρ) of
the estimator bρpfgls.

Step 4: Repeat Steps 1-3 (using updated estimates of ρ in the Þrst stage rather than �ρpemu)
until bρpfgmu converges.

Fig. 1 displays a kernel estimate of the distribution of POLS based on 100,000 replications
with N = 20, T = 100, ρ = 0.9 when there is no cross sectional dependence. Apparently, the
POLS estimator �ρpols is more concentrated than single equation OLS (which does not use the
additional cross section data) but is badly biased biased downwards. The bias is sufficiently
serious that almost the entire distribution of �ρpols lies below the true value of ρ.

Fig. 2 shows the distributions of the POLS and PMU estimators for the same parameter
conÞguration as Fig. 1 and based on the same number of replications, but with high cross
sectional correlation 3. As shown in Appendix A, the POLS bias in the case of cross section
dependence always exceeds the bias in the cross section independent case. However, as is
apparent from Fig. 2, the main effect of the cross sectional dependence is to increase the
variation of both the POLS and PMU estimators. In fact, in the displayed case (where the
average cross section correlation is around 0.9) the POLS and PMU estimators show only a
slight gain in concentration over single equation OLS. In other words, if there is high cross
sectional correlation, there is not much efficiency gain from pooling in the POLS estimator.

3When δi ∈ (1, 4) in (6), the average cross-sectional correlation is around 0.82.
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Figure 2: Empirical Distributions of POLS, PFGLS, and PFGMU under High Cross-sectional
Dependence( N=10,T=100 and ρ = 0.9.)

Apparently, the PMU estimator still seems to be quite effective in removing the bias of POLS
even under cross section dependence.

One might conjecture that, since the POLS and PMU estimators have little efficiency gain
over OLS from pooling due to the presence of cross sectional dependence, there should be an
advantage to the use of feasible GLS methods. In particular, one might expect the PFGLS
estimator bρpfgls to restore some of the advantages of pooling over single OLS. Fig. 2 also
displays the distribution of bρpfgls. Evidently, PFGLS does restore much of the original gains
from pooling in terms of variance reduction that were apparent in Fig. 1 for �ρpols. But, as is
also apparent from Fig. 2, the distribution of bρpfgls is seriously downward biased. Use of the
PFGMU median unbiased procedure described above now corrects for this bias while retaining
the concentration of the GLS estimator. In particular, Fig. 2 shows that the distribution ofbρpfgmu is well centered about the true value and has concentration close to that of the median
unbiased estimator �ρpemu under cross sectional independence (Fig. 1).

3.3 Seemingly Unrelated Median Unbiased Estimation

The results above indicate that, if we are to gain from panel estimation by pooling cross section
and time series information when there is cross section dependence, we need to take account of
the dependence in estimation. In contrast, most empirical studies that utilize dynamic panels
in the international Þnance and the macroeconomic growth literatures tend to ignore issues
of cross sectional dependence when pooling. Our results indicate that there is information in
cross sectional correlation that is valuable in pooled estimation and that it can be accounted
for, at least in situations where the cross section sample size N is not too large. Moreover,
one can utilize this information and at the same time deal with SB bias problems in dynamic
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panel estimation.
Notwithstanding these potential advantages of pooling dependent data and adjusting for

bias in dynamic panels, perhaps the most important issue in pooled regressions relates to the
justiÞcation of the homogeneity restriction on the autoregressive coefficient ρ. In the absence
of this restriction, it might be thought that there would be little gain from pooling time series
and cross section data. However, because of cross section dependence, there are advantages to
pooling panel data even in the estimation of heterogeneous coefficients. The reasoning is the
same as that of a conventional seemingly unrelated regression (SUR) system. But in a dynamic
panel context there are still SB bias problems that need attention. This section shows that
these can be addressed using a SUR version of the panel median unbiased procedure.

An additional advantage to performing heterogenous coefficient estimation is that it fa-
cilitates testing of the homogeneity restriction. Therefore, this section also proposes a test
for homogeneity that is based on the seemingly unrelated panel median-unbiased (SUR-MU)
estimator.

We start the discussion by combining Models M1,M2 and M3 with the following heteroge-
nous autoregressive panel model for the latent panel variable y∗it :

y∗it = ρiy
∗
it−1 + uit, for t = 1, · · · , T, and i = 1, · · · ,N, (11)

in which the regression errors

ut ∼ iid N(0, Vu), for t = 1, · · · , T, (12)

where ut = (uit,..., uNt)
0. This formulation allows for a general form of cross section error

correlation as well as the more speciÞc set up (6). The same range of ρ values as before is
permitted for each of the models.

When |ρi| < 1 for all i, the cross section error correlations are higher than the cross section
correlations among the regressors yit−1. To see this, note that the correlation between yit and
yjt is given by

γyi,j =
E (yityjt)n

E
¡
y2it
¢
E
³
y2jt

´o1
2

= γij

p
1− ρi2

q
1− ρj2

1− ρiρj
< γij, (13)

where γij = E(uitujt)/{E(u2it)E(u2jt)}
1
2 . We might therefore anticipate the potential gains

from SUR estimation to be substantial - the regressors are different and less correlated across
individual equations in the panel for which the errors are more correlated. In consequence, we
propose a SUR-MU estimator based on the following iteration.

Step 1: Obtain the time series panel median unbiased estimates �ρiemu for each series i =
1, ...,N (and the appropriate model) and use the regression residuals to construct the
error covariance matrix estimate bVEMU .

Step 2: Using bVEMU perform a conventional seemingly unrelated regression on the panel and
obtain the SUR estimates of the ρi, bρisur .
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Step 3: The panel seemingly unrelated median unbiased (SUR-MU) estimator is now cal-
culated as bρisurmu = m(bρisur)−1 just as in (3) but using the median function m(ρ) =
mT,N (ρ) of the estimator bρisur for each i.

Step 4: Repeat steps 1-3 until bρisurmu converges.
4 Testing Homogeneity Restrictions

Using unrestricted estimates of the coefficients ρi in the heterogeneous dynamic panel model
(11), Wald tests can be constructed to test the homogeneity restriction H0 : ρi = ρ for all i.
It is well known that in Þnite samples, Wald tests suffer from size distortion that is sometimes
serious even in simple univariate regressions. For the panel regression case here we have found
that the size distortion of Wald tests becomes even more serious as the cross section sample
size N increases. This section Þrst investigates the asymptotic properties of Wald tests based
on the SUR approach in both the stationary and nonstationary cases and shows how cross
section dependencies affect the asymptotic theory under nonstationarity. We then propose
an alternative Wald procedure for testing homogeneity that utilizes the structure of the cross
section dependence in the construction of the Wald statistic.

4.1 The Wald Test and its Asymptotic Properties

The Stationary Case

Using the unrestricted estimates bρisurmu of the coefficients ρi in the heterogeneous dynamic
panel model (11), Wald tests can be constructed to test the homogeneity restriction H0 :
ρi = ρ for all i. More speciÞcally, let bρsurmu = (bρisurmu) be the SUR-MU estimate of the vector
ρ= (ρ1, ..., ρN)

0 and write the restrictions in H0 as Dρ = 0 where D = [iN−1,−IN−1] and iA
has A unit elements. Under Gaussianity and in the stationary case where |ρi| < 1 for all i, the
SUR-MU estimator bρsurmu is asymptotically (T →∞, N Þxed) equivalent to the unconstrained
maximum likelihood estimate4 of ρ. In that case, standard stationary asymptotics and some
algebraic manipulations (outlined in Appendix C) lead to the limit theory

√
T
³bρ
surmu

− ρ
´
→d N (0, VSUR) , (14)

where
V −1SUR =

·³
viju E (yityjt)

´
ij

¸
= V −1u ∗E ¡yty0t¢ . (15)

In (15) the operator ∗ is the Hadamard product, viju is the ij�th element of V −1u , where Vu =
E(utu

0
t) = Σ+ δδ

0 as in (8), and

E (yityjt) =


δiδj
1−ρiρj i 6= j
σ2i+δ

2
i

1−ρ2i
i = j

,

4Note that the median function m (·) is asymptotically (T → ∞, N Þxed) the identity function and the
SUR estimator of ρ is the Gaussian maximum likelihood estimators of the autoregressive coefficients in the
unconstrained models.
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so that
E
¡
yty

0
t

¢
=
¡
Σ+ δδ0

¢ ∗R, where R = (rij) and rij =
1

1− ρiρj
. (16)

From (15) and (16) it is apparent that the covariance matrix VSUR depends on both ρ and δ
as well as Σ. When H0 holds, E (yty0t) =

¡
Σ+ δδ0

¢
/(1 − ρ2) and VSUR has a simpler form in

which
V −1SUR =

1

1− ρ2V
−1
u ∗ Vu, (17)

which depends on the common ρ and again on the cross section dependence parameter δ.
The Wald statistic for testing H0 is

Wsurmu = bρ0
surmu

D0
h
D bVSURMUD0i−1

Dbρ
surmu

,

where

bVSURMU =
"
TX
t=1

Z0t bV −1u Zt

#−1
,

in which Zt = diag(y1t−1, ..., yNt−1) and bVu is an estimate of the error covariance matrix
Vu computed from the SUR-MU regression residuals. Under H0 and in the stationary case,
it is straightforward to show that traditional chi-squared limit theory for Wsurmu holds, i.e.
Wsurmu → χ2N .

The Unit Root Case

In the nonstationary ρ = 1 case, the asymptotic results depend, as might be expected,
on whether M1, M2 or M3 is employed in estimation and also on the boundary condition
that arises in the transition from the SUR estimator to SUR-MU - c.f. (3). In addition, the
asymptotic theory for the SUR estimator is more complex than that of a traditional unit root
model when there is cross section dependence. For instance, when model M1 is used and the
null hypothesis H0 : ρi = 1 ∀i holds, derivations (outlined in Appendix C) using unit root limit
theory deliver the limit distribution of the SUR estimator bρsur. This estimator is deÞned as

bρ
sur
=

Ã
TX
t=1

Z
0
t
bV −1u Zt

!−1Ã TX
t=1

Z
0
t
bV −1u yt

!
,

where bVu is an estimate of Vu based on residuals from a Þrst stage regression. We Þnd the
following asymptotic distribution for bρ

sur

T
³bρ
sur
− iN

´
d→
·
V −1u ∗

Z 1

0
BB0

¸−1 ·Z 1

0
B ∗

³
V −1u dB

´¸
= ξ, (18)

where B is vector Brownian motion with covariance matrix Vu. It is clear from (??) that
the limit distribution of T

³bρ
SUR

− iN
´
depends on the cross section dependence parameter δ

even in the homogeneous case where ρi = 1 ∀i. Correspondingly, the asymptotic distribution
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of bρsurmu in the unit root case also depends on cross section dependence and error variance
nuisance parameters. The Wald statistic, Wsur, for testing H0 is given by

Wsur = bρ0
SUR

D0
h
D bVSURD0i−1

Dbρ
SUR

d→ ξ0D
0
"
D

µ
V −1u ∗

Z 1

0
BB0

¶−1
D

0
#−1

Dξ. (19)

where

bVSUR =
Ã
TX
t=1

Z
0
t
bV −1u Zt

!−1
.

The limit distribution (19) also depends on nuisance parameters.
By contrast, in the unit root case where homogeneity of ρ across i is imposed, the pooled

GLS estimator of ρ is

bρ = Ã
TX
t=1

y
0
t−1V

−1
u yt−1

!−1Ã TX
t=1

y
0
t−1V

−1
u yt

!
,

with a corresponding feasible SUR version. By straightforward derivation (see Appendix C),
we Þnd that

T (bρ− 1) d→
R 1
0 W

0dWR 1
0 W

0W
=

PN
i=1

R 1
0 WidWiPN

i=1

R 1
0 W

2
i

, (20)

where W = (Wi) is standard Brownian motion with covariance matrix IN . The limit (20) here
depends only on the cross section sample size N.

4.2 Hausman and ModiÞed Hausman Tests under Cross Section Depen-
dence

The Stationary Panel Case: H0 : ρi = ρ

The main problem with the conventional Wald test, as mentioned above, is that size dis-
tortion can be serious and it typically increases with the number of restrictions. Also, the
Wald test based on SUR or SUR-MU estimation requires N < T and is heavily inßuenced
by the nuisance parameters of cross section correlation. This section proposes an alternate
procedure for dealing with cross section dependence that takes into account the structure of
the dependence.

Start by writing the model M1 (with suitable adjustments for models M2 and M3) in vector
form as

yt = Ztρ+ ut, Zt = diag (y1t−1, ..., yNt−1) , ρ = (ρ1, ..., ρN)
0 . (21)

Let �ρi (respectively bρ) be the OLS estimate of ρi (ρ) Then
bρ = Ã TX

t=1

Z
0
tZt

!−1Ã TX
t=1

Z
0
tyt

!
.
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Let bρ
emu

be the corresponding vector of median unbiased estimates of ρi. Under the null
hypothesis of homogenous autoregressive coefficients ρi = ρ ∀i, we have

√
T (�ρi−ρ)→d N(0, 1−

ρ2) for models M1, M2 and M3, with the same result for the median unbiased estimators bρiemu.
Under cross section independence and for Þnite N , we have

NX
i=1

√
T (�ρi − ρ)p
1− ρ2 →d N(0,N).

On the other hand, if there is cross section dependence of the form implied by (6), then in
the stationary case for model M1 we have

yit =
∞X
j=0

ρj (δiθt−j + εit−j) = δi
∞X
j=0

ρjθt−j +
∞X
j=0

ρjεit−j = δiµt + ηit, say.

It follows that the asymptotic covariance between �ρi and �ρj is given by

acov
³
�ρi, �ρj

´
=
1

T

(δiδj)
2 ¡1− ρ2¢³

δ2i + σ
2
i

´³
δ2j + σ

2
j

´ = 1

T

v2ij
viivjj

³
1− ρ2

´
,

where vij is the ij�th element of Vu = Σ + δδ0. Setting �ρ = (�ρ1, ..., �ρN)0 and letting iN be an
N− vector with unit elements, we Þnd that standard derivations lead to the following limit
theory

√
T
³
�ρ− ρiN

´
=

Ã
1

T

TX
t=1

Z
0
tZt

!−1Ã
1√
T

TX
t=1

Z
0
tut

!
→ d N

³
0, D−1y

£
Vu ∗E

¡
yty

0
t

¢¤
D−1y

´
= N(

³
0,
³
1− ρ2

´
RV ∗RV

´
, (22)

where Dy = diag(E(y21t), ..., E(y
2
Nt)) and the matrix RV has ij�th element vij/{viivjj}1/2. It

follows that
NX
i=1

√
T (�ρi − ρ)p
1− ρ2 →d N(0, i

0
N (RV ∗RV ) iN ).

The same result applies when the median unbiased estimates bρiemu are used in place of �ρi.
We propose to construct an estimate of the matrix RV that appears in the asymptotic

covariance matrix of (22) and use this estimate to develop an alternate test ofH0. The following
moment based procedure may be used5.

Moment Based Estimation of (δ,Σ)
5Apendix D gives an algorithm for Gaussian maximum likelihood estimation of the cross section coefficients.

Simulation results indicate that the moment based method described here gave superior results, especially for
large N.
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Step 1: Estimate the ρi by using OLS or EMU and obtain the regression residuals �uit =
yit − bρiyit−1, which are asymptotically equivalent to OLS residuals and consistent (as
T →∞, N Þxed) for uit. In particular,

�uit = uit + (ρi − bρi)yit−1 = uit + op(1)
in both stationary and nonstationary cases.

Step 2: Construct the moment matrix of residuals MT =
1
T

PT
t=1 �ut�u

0
t, which is a consistent

(as T →∞, N Þxed) estimate of Vu. Let mTij be the ij�th element of MT .

Step 3: Estimate the cross section coefficients δ and the diagonal elements of Σ using the
following moment procedure that Þnds the least squares best Þt to the matrix MT , that
is ³bδ, bΣ´ = argmin

δ,Σ
tr
h¡
MT −Σ− δδ0

¢ ¡
MT −Σ− δδ0

¢0i
. (23)

The solution of (23) satisÞes the system of equations

�δ = (MT
�δ −Σ�δ)/�δ0�δ, �σ2i =MTii − �δ2i , i = 1, ..., N

and this can be solved using the iteration

δ(r) = (MT δ
(r−1) −Σδ(r−1))/δ(r−1)0δ(r−1),

σ
(r)2
i =MTii − δ(r)2i , (24)

starting from some initialization δ(0) (such as the largest eigenvector of MT ) until con-
vergence. Since MT →p Vu = Σ + δδ0 as T → ∞, it follows that (bδ, bΣ) →p (δ,Σ) as
T →∞, with N Þxed. Since bΣ→p Σ > 0 as T →∞, bΣ will be positive deÞnite for large
enough T.

Step 4: Construct the variance matrix estimate bVu = bΣ+ bδbδ0. Let bvij be the ij�th element ofbVu and construct the estimate bRV whose ij�th element is bvij/{bviibvjj}1/2.
Since bVu →p Vu, we have bRV →p RV as T → ∞. Now let eρ be the PFMGU estimate of

ρ under the assumption of homogeneity. Under H0, the pooled estimate eρ is asymptotically
equivalent to GLS and then by standard limit theory

√
T (eρ− ρ) = Ã

1

T

TX
t=1

y
0
t−1V

−1
u yt−1

!−1Ã
1√
T

TX
t=1

y
0
t−1V

−1
u ut

!
→d N

µ
0,
n
trace

h
V −1u E

¡
yty

0
t

¢io−1¶
.

Since
E
¡
yty

0
t

¢
=
³
Σ+ σ2δδ0

´
∗R = Vu ∗R = 1

1− ρ2Vu,

under H0, we end up with the simple result

√
T (eρ− ρ)→d N

Ã
0,
1− ρ2
N

!
.
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Next consider the asymptotic covariance

Acov

Ã
1√
T

TX
t=1

Z
0
tut,

1√
T

TX
t=1

y
0
t−1V

−1
u ut

!

=
1

T

TX
t=1

Z
0
tE
¡
utu

0
t

¢
V −1u yt−1 =

1

T

TX
t=1

Z
0
tyt−1 →


E
¡
y21t
¢

E
¡
y22t
¢

...
E
¡
y2Nt

¢

 = DyiN ,
from which we deduce that

Acov
³√
T
³
�ρ− ρiN

´
,
√
T (eρ− ρ)´

= D−1y [DyiN ]
n
trace

h
V −1u E

¡
yty

0
t

¢io−1
= iN

³
1− ρ2

´
. (25)

Our test statistic for H0 is based on the difference between the estimates
√
T
³
�ρ
emu

− eρiN´ = √T ³�ρemu − ρiN´−√T (eρ− ρ) iN ,
and from (22), (25) and joint convergence we Þnd that

√
T
³
�ρ
emu

− eρiN´q
1− eρ2 =

√
T
³
�ρ
emu

− ρiN
´

q
1− eρ2 −

√
T (eρ− ρ)q
1− eρ2 iN →d N(

µ
0, RV ∗RV − 1

N
iN i

0
N

¶
.

(26)
It follows that we may construct the Hausman-type test statistic

G =
T

1− eρ2
³
�ρ
emu

− eρiN´0½h bRV ∗ bRV i−1 − 1

N
iN i

0
N

¾³
�ρ
emu

− eρiN´ , (27)

which is based on the difference between the robust-to-heterogeneity estimate �ρ
emu

of ρ and the
efficient estimate eρ of ρ under the null, and which uses the moment based procedure outlined
above to construct estimates of Vu and RV . We use the notation Gpfmgu to indicate that the
pooled estimate eρ in (27) is the PFMGU estimate of the (common) ρ. Then, in view of (26)
and the consistency of bRV , we have

Gpfmgu → χ2N , as T →∞. (28)

One practical difficulty that can arise with (27) is that the variance matrix
h bRV ∗ bRV i−1 −

1
N iN i

0
N is not necessarily positive deÞnite and, in our simulations negative values of G have

occasionally occurred when N and T are small (N = 10, T = 50).

The Panel Unit Root Case: Ho : ρi = 1, ∀i
As shown in Appendix C, the Hausman test has a limit distribution in the unit root (ρi = 1,
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∀i) case that is dependent on the cross section nuisance parameters. It is therefore unsuitable
for testing homogeneity. However, there is a simple way of constructing a modiÞed test that
is free of nuisance parameters, which we now describe.

Under the null hypothesis, we have as in (62)

1√
T
y[Tr] =

1√
T

[Tr]X
t=1

ut →d B (r) = BM (Vu) .

Note that we can decompose B into component Brownian motions as follows

B (r) = δBθ (r) +Bε (r) , (29)

where
1√
T

[Tr]X
t=1

θt →d Bθ (r) = BM
³
σ2
´
, and

1√
T

[Tr]X
t=1

εt →d Bε (r) = BM (Σ) .

Let δ⊥ be an N × (N − 1) matrix that spans the orthogonal complement of the vector δ. Thenh¡
δ0⊥Σδ⊥

¢−1/2
δ0⊥
i 1√

T
y[Tr] →d

¡
δ0⊥Σδ⊥

¢−1/2
δ0⊥B (r) =

¡
δ0⊥Σδ⊥

¢−1/2
δ0⊥Bε (r) =W⊥ (r) ,

(30)
where W⊥ (r) = BM (IN−1) , or (N − 1) - vector standard Brownian motion. The transforma-
tion matrix that appears in (30) can be estimated by implementing the following modiÞcation
of our earlier procedure.

Orthogonalization Procedure (OP)

Step 1: Construct the moment matrix of differences (for models M1 and M2) or demeaned
differences (for model M3) which we write as MT =

1
T

PT
t=1 �ut�u

0
t. As in the stationary

case, MT is a consistent (as T → ∞, N Þxed) estimate of Vu. Again, let mTij be the
ij�th element of MT .

Step 2: Estimate the cross section coefficients δ and Σ by moment based optimization as in
(23) leading to (bδ, bΣ). As before, (bδ, bΣ) →p (δ,Σ) as T → ∞, with N Þxed, and bΣ is
positive deÞnite for large enough T.

Step 4: Using bΣ and bδ, construct6 bδ⊥ and bFδ = ³bδ0⊥bΣbδ⊥´−1/2 bδ0⊥. Clearly,
bFδ = ³bδ0⊥bΣbδ⊥´−1/2 bδ0⊥ →p

¡
δ0⊥Σδ⊥

¢−1/2
δ0⊥, (31)

as T →∞.
Using bFδ we transform the data yt (or demeaned/detrended data in the case of models M2

and M3) giving y+t = bFδyt. As is apparent from (30), the transformation bFδ asymptotically
6The orthogonal complement matrix bδ⊥ can be constructed by taking the eigenvectors of the projection

matrix P�δ = I − �δ(�δ
0�δ)−1�δ

0
corresponding to unit eigenvalues.
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removes cross section dependence in the panel and y+t is asymptotically cross section indepen-
dent as T → ∞. Using y+t we may now construct estimates of the autoregressive coefficients.
Let �ρ+i (respectively bρ+) be the OLS estimate of ρi = 1 (ρ = iN−1). Then, in an obvious
notation,

bρ+ = Ã
TX
t=1

Z+
0

t Z
+
t

!−1Ã TX
t=1

Z+
0

t y
+
t

!
.

Let bρ+
emu

be the corresponding vector of median unbiased estimates of ρi. Similarly, let eρ+ be
the PFMGU estimate of ρ obtained from the transformed data y+t under the assumption of
homogeneous unit roots. The modiÞed Hausman statistic is deÞned as

G+H = T
2
³
�ρ+
emu

− eρ+iN−1´0 ³�ρ+emu − eρ+iN−1´ , (32)

As shown in Appendix C
G+H →d Ξ

0
N−1ΞN−1 (33)

where

ΞN−1 =


hR 1
0 W

2
⊥,1
i−1 hR 1

0 W⊥,1dW⊥,1
i
−
hR 1
0 W

0
⊥W⊥

i−1 hR 1
0 W⊥0dW⊥

i
...hR 1
0 W

2
⊥,N−1

i−1 hR 1
0 W⊥,N−1dW⊥,N−1

i
−
hR 1
0 W

0
⊥W⊥

i−1 hR 1
0 W⊥0dW⊥

i
 , (34)

and where theW⊥,i are theN−1 components of vector standard Brownian motionW⊥ Clearly,
G∗H is free of nuisance parameters in the limit and is suitable for testing the null H0 : ρi = 1
∀i.

An alternate approach is to construct panel unit root test statistics directly by taking the
sum of the differences between the estimates �ρ+i , �ρ

+
i,emu and their limits under the null, viz.

G+ols =
N−1X
i=1

�ρ+i − iN−1
�σ�ρ+

(35)

G+emu =
N−1X
i=1

�ρ+i,emu − iN−1
�σ�ρ+i,emu

(36)

In contrast to (32), the test statistics (35) and (36) do not involve a pooled estimate of the
homogeneous unit root parameter. As shown in Appendix C, for Þxed N we have the following
limit theory for these statistics as T →∞

G+ols,→d

N−1X
i=1

ξi, ,G+emu →d

N−1X
i=1

ξ−i (37)

where ξi = (
R 1
0 W

2
i )
−1(

R 1
0 WidWi) and

ξ−i =
(
ξi ξi < 0
0 ξi ≥ 0
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The limits in (37) depend only on N. Both G+ols,G
+
emu are therefore suitable for testing the

null H0.
Note that there are only N − 1 elements in (34) - (36). This is because the panel system

has been transformed to dimension N − 1 in Step 4 above in order to remove the effects of
cross section dependence in the limit.

The tests (35) and (36) have the advantage that they lend themselves to simple large N
asymptotics. In particular, the means and variances

E (ξi) , E
³
ξ−i
´
= µξ, µξ− Var(ξi),Var(ξ

−
i ) = σ

2
ξ ,σ

2
ξ−

can be computed and, noting that ξi, ξ
−
i are iid over i, we have the large N limit theory

1√
N

N−1X
i=1

³
ξi − µξ

´
→d N

³
0,σ2ξ

´
,

1√
N

N−1X
i=1

³
ξ−i − µξ−

´
→d N

³
0,σ2

ξ−
´

It follows that in sequential asymptotics (see Phillips and Moon, 1999) as (T,N →∞)seq

G++ols =
1√
Nσξ

PN−1
i=1

·
�ρ+i −iN−1
�σ�ρ+

− µξ
¸

G++emu =
1√
Nσξ−

PN−1
i=1

"
�ρ+i,emu−iN−1
�σ
�ρ+
i,emu

− µξ−
#
→d N (0, 1) .

All of these procedures are easy to implement. Their Þnite sample performance is assessed in
Section 6 below. As shown in the next section, once the OP procedure has been applied to the
data, a wide class of panel unit root and stationarity tests become applicable.

4.3 Dynamic AR(p) Panels with Cross Section Dependence

The procedures outlined above for panel unit root testing under cross section dependence may
be applied to cases of higher order panel dynamics and cases where the common factor com-
ponent θt is weakly dependent. SpeciÞcally, consider a panel of dynamic panel autoregressions
with (possibly) heterogenous lag orders pi for each i and allow for cross section dependence of
the same form as (6) above. The model is written in augmented format as

∆yit = µi + βit+ (ρ− 1)yit−1 +
piX
j=1

φij∆yit−j + uit. (38)

The OP procedure leading to (31) above is the same as that laid out above except for the
Þrst step. Here, instead of using the moment matrix of differences or demeaned differences,
one simply uses the moment matrix of the regression residuals �uit obtained under the (null
hypothesis) restriction ρ = 1 in (38).

Since the transformed data y+it are asymptotically uncorrelated across i, regressions like (38)
of y+it on y

+
it−1 and the lagged differences∆y

+
it−j do not suffer (asymptotically) from cross section

dependence. Importantly, this will be so even when the common time series factor θt is weakly
dependent rather than uncorrelated over time. This is because the transformation procedure
leading to (31) continues to eliminate the contribution of the common factor component θt to
the limit Brownian motion in (29). It follows that several existing panel unit root tests that
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were designed to work with data that are independent across section can now be applied to
test for panel unit roots when there is cross section dependence. Accordingly, we consider here
two broad types of panel unit root tests.

Meta-Analysis Tests for Panel Unit Roots and Stationarity under Cross Section
Dependence

The Þrst type of test is based on meta-analysis, wherein the p-values of tests for each cross
section individual i are combined to construct a new test. Tests of this type were suggested
in Choi (2001a) and Maddala and Wu (1999) for use in testing unit roots with panel data
under cross section independence.7 These tests apply here under cross section dependence
after our OP orthogonalization procedure has been implemented. Choi (2001a) provides a full
discussion of tests of this type and his simulation results suggest use of the three tests that we
concentrate on here.

Let pi be the p-value of a unit root test associated with cross section element i. DeÞne

P = −2
N−1X
i=1

ln(pi), (39)

Pm = − 1√
N

N−1X
i=1

[ln(pi) + 1] (40)

Z =
1√
N

N−1X
i=1

Φ−1 (pi) (41)

The P test is called the inverse chi-square test or Fisher test after Fisher (1932). The Pm test
statistic is a centered and normalized version of P that is useful for large N. The Z test is
called the inverse normal test, following Stouffer et al. (1949). As discussed in Choi (2001),
we have the following limit distributions for P and Z as T →∞

P →d χ
2
2(N−1), Z →d N(0, 1) for Þxed N, (42)

leading to the following sequential limit theory as (T,N →∞)seq
Pm, Z →d N(0, 1). (43)

Each of these tests and the limit theory applies under the null hypothesis to dynamic panel
autoregressions like (38) with cross section dependence after the OP procedure has been im-
plemented.

Other Tests for Panel Unit Roots

In fact, after transforming the data using the OP procedure, we can apply most other
methods for testing panel unit roots that are valid under cross section independence. Baltagi

7Choi (2001b) considers several statistics based on meta-analysis with random individual and time effects in
(1).

24



(2001) provides a recent discussion and overview of these tests, which generally take the form
of cross section averages of time series test statistics and have the generic form

Gτ =
1

N − 1
N−1X
i=1

τ i,

where τ i stands for an individual unit root test statistic. This class of tests can also be extended
by using the bias reduction techniques discussed earlier in present paper. For instance, we
could use an ADF-t statistic based not on OLS estimation but instead on EMU estimation as
explained earlier (c.f. Andrews and Chen, 1994).

Im, Pesaran and Shin (1997, IPS) use two cross-sectional average tests constructed like
Gτ and study their small sample properties using simulations. Without modiÞcation, this
type of test typically suffers from serious size distortion in small samples due to SB bias. IPS
use simulation to calculate the mean and variance of the Gτ statistics and they employ bias
correction in the implementation of these procedures. However, in the dynamic panel AR(p)
case, the means and variances of the Gτ statistics heavily depend on the nuisance parameters
that arise in the augmented dynamic terms. Tanaka (1984) and Shaman and Stine (1988)
provide formulae for the mean bias for cases up to an AR(6) for Model 1 and 2. For example,
for an AR(2), the OLS estimator of ρi in (38) will be biased downward when the true coefficient
on y+it−2 is negative, while it will be biased upward when the true coefficient on y

+
it−2 is large

and positive. IPS also found that the size distortion problem of their Gτ tests heavily rely on
the sign of the true coefficient on y+it−2. Since their Monte Carlo studies are based on AR(2)
process, their size distortion corrections are based on the sign and magnitude of the coefficient
on y+it−2. For general dynamic panel AR(p) processes, the size of the Gτ test will depend on
all the nuisance parameters arising in the augmented terms and, in the absence of analytic
formulae, extensive simulations are needed to make the appropriate corrections in such cases.

The Þnite sample performance of these panel unit root tests and, more generally, tests of
homogeneity are considered in the simulation experiments reported in Section 6 below.

5 Simulation Experiments

This section consists of three parts. First, we report the Þnite sample performance of the three
panel median unbiased estimators. Second, we show the Þnite sample performance of the Wald
statistic Wsurmu, and the Gpfmgu statistic. Finally, we examine the small sample performance
of the panel unit root tests G++emu, G

++
ols , Pm, and Z, and show how well the orthogonalization

procedure for handling cross-sectional dependence works.

5.1 Design of Data Generating Process

The data generating process for the Þrst two parts is given by

yit = ρiyit−1 + uit, (44)

uit = δiθt + εit, (45)

where εit ∼ iid N (0, 1) over i and t, θt ∼ iid N (0, 1) over t, and for (ρi, δi) parameter selections
that are detailed below. The primary distinction is between the homogeneous case where ρi = ρ
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for all i and the heterogeneous case where the ρi differ across individuals i.We also distinguish
cases of high and low cross section dependence according to the value of δi. Estimation is based
on the following two regression models that involve a Þtted mean and trend:

yit = ai + ρiyit−1 + uit for Model M2
yit = ai + bit+ ρiyit−1 + uit for Model M3

Panel data are generated under four speciÞcations which differ according to their degree of the
cross sectional dependence and whether or not the homogeneity restriction is imposed on ρ.
These speciÞcations are as follows:

Case I: (Homogeneity and Low Cross-sectional Dependence) The homogeneity restriction is
imposed and we set ρ1 = ρ2 = · · · = ρN = 0.9, and allow low cross sectional dependence
by setting δi ∼ U [0, 0.2], where U [a, b] represents the uniform distribution over the in-
terval [a, b]. In this experiment, the average error (uit) cross sectional dependence has
correlation coefficient around 0.03.

Case II: (Homogeneity and High Cross-sectional Dependence) Again, we set ρi = 0.9 for all
i and δi ∼ U [1, 4]. Here, the lowest error (uit) cross sectional correlation is around 0.52,
the median is around 0.82, and the highest is around 0.94.

Case III: (Heterogeneity and Low Cross-sectional Dependence) Here, ρi ∼ U [0.7, 0.9], and
δi ∼ U [0, 0.2].

Case IV: (Heterogeneity and High Cross-sectional Dependence) Here ρi ∼ U [0.7, 0.9], and
δi ∼ U [1, 4].

Case V: (Testing Homogeneity under Stationarity) Under the null hypothesis of homogeneity
of ρ, we set ρi = 0.8 for all i to investigate test size. Under the alternative, we set
ρi ∼ U [0.7, 0.9] and consider test power.

Each experiment involves 5,000 replications of panel samples of (N, T ) observations. We use
N = 10, 20, 30 and T = 50, 100, 200.

The third part of the simulation has two sections. In the Þrst section the Þtted models
have intercepts and trends (as in M2 and M3) and the DGP is based on (45) and (46) with
the following parameter settings:

Case VI: (Testing Panel Unit Roots under Cross-sectional Dependence). Here, ρi = 1.0 for
all i under the null, and we set δi ∼ U [1, 4] for high cross-sectional dependence. We use
ρi ∼ U [0.8, 1.0] as the alternative hypothesis to calculate the power of the tests.

In the second section, the Þtted models again have intercepts and trends (as in M2 and
M3) and the DGP is based on

yi,t = ρiyi,t−1 + vi,t,
vit = φivit−1 + uit AR(1) errors (46)

vit = κiuit−1 + uit MA(1) errors (47)

uit = δiθt + εit,
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with the following parameter settings:

Case VII: (Testing Panel Unit Roots under Cross-sectional Dependence and Weak Depen-
dence). As in Case VI, ρi = 1.0 for all i under the null, δi ∼ U [1, 4] for high cross-sectional
dependence and ρi ∼ U [0.8, 1.0] is used as the alternative hypothesis. In addition the
parameters of the time series models in (46) and (47) are set as follows:

φi ∼ U [0, 0.4] AR(1) errors
κi ∼ U [0, 0.4] MA(1) errors, κi > 0
κi ∼ U [−0.4, 0] MA(1) errors, κi < 0

5.2 Finite Sample Properties

Table 2 reports mean square errors (MSE�s) of the POLS, PFGLS, and PFGMU estimators.
The Þrst column shows the MSE×102 of the POLS estimator, and the second and third columns
show the ratios of the MSE of the other estimators to that of the POLS estimator. When the
degree of cross sectional dependence is low, the PFGLS estimator becomes less efficient than
the POLS since the MSE ratio is greater than one in all these cases. Surprisingly, two panel
median unbiased estimators have much better MSE�s than POLS even for low degrees of cross
sectional dependence. The ordering among the estimators in terms of MSE performance (higher
is better) is PFGLS < POLS < PFGMU for both models M2 and M3. When there are high
degrees of cross sectional dependence, the performance ordering changes to POLS < PFGLS
< PFGMU. The performance of the PFGMU estimator is substantially better than POLS in
all cases, yielding MSE�s that are 5 to 20 times better than POLS.

Table 3 shows the average MSE of the OLS, EMU, SUR, and SUR-MU estimators over
N . When the degree of cross sectional dependence is low (Case III), the order among the
estimators in terms of MSE performance (again, higher is better in what follows) is SUR <
OLS < SUR-MU < EMU. When there are high degrees of cross sectional dependence, this
ordering changes to OLS < EMU < SUR < SUR-MU. Overall, the SUR-MU estimator has
MSE performance that is 5 times better than that of the OLS estimator and twice as good as
that of the SUR estimator.

Table 4 displays Þnite sample properties of the Wald test for dynamic homogeneity, i.e.
H0 : ρi = ρ for all i with ρ = 0.7 (Case V). As mentioned earlier, the size distortion of the
Wald test is substantial and the distortion gets larger and becomes very serious as the number
of cross-sectional units increases. Even for large values of T the size distortion is considerable.
It is also worse for the Þtted trend case. Interestingly, the size distortion is worse under low
cross sectional dependence than it is under high dependence. We deduce that the Wald test
for homogeneity in dynamic panels is very unreliable and not to be recommended.

In contrast, Table 5 shows much more reasonable Þnite sample performance of the G
statistic in the stationary case. As N becomes large for small T , the size of the G test
increases, due to reduced degrees of freedom. But for moderate T, the G test suffers only mild
size distortion and the size is conservative for larger T. Moreover, the size adjusted power of
the G test is nearly unity in all the cases considered.

Table 6 deals with the panel unit root case and shows the size and size adjusted power
of the IPS, G++ols , G

++
emu, P, and Z tests in respective columns. Overall, G++emu shows better
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performance than G++ols in terms of both size and power comparisons. The P and Z tests are
in turn superior to the G tests and have considerably greater power. All of these tests outrank
the IPS test, which shows considerable size distortion as well as lower power. Generally, the
power of the tests for model M2 (the Þtted intercept case) is higher than that for model M3
(Þtted constant and linear trend). The results for the P and Z tests are particularly good and
indicate that these panel unit root tests work well in the presence of cross section dependence.

Tables 7 and 8 report further results for the P, Z and IPS tests in the case where the
model has AR(1) and MA(1) errors, respectively. Apparently, both P, Z tests work very well
in terms of size and power for AR(1) errors. This is not unexpected given that the ADF
procedure is used to obtain estimates of the errors in the Þrst stage of the procedure leading
to these tests. On the other hand, neither the P nor Z tests work well for MA(1) errors, both
tests showing size distortion in this case. Similar results were obtained for the case of MA(1)
errors with negative coefficients but these are not reported here. An alternative approach to
removing serial dependence, such as the nonparametric adjustments used in Phillips (1987),
may be more successful in this case, although we have not implemented that procedure in the
present work. The IPS test shows substantially greater size distortion in all cases and generally
seems to be inferior to the other tests.

6 Concluding Remarks

Panel models with dynamic autoregressive components are now extensively used in empirical
research. These models seem particularly well suited to studying issues such as the potential
for growth convergence across economic regions and nation states. By providing a mechanism
for pooling time series information across section, they also offer the opportunity for improved
estimation of such quantities as the half-life of dynamic response times and long run variance
parameters. In all these cases, there is substantial interest in the estimation of autoregressive
coefficients. The bias in the estimation of these parameters from least squares regression has
long been recognised as a problem in time series analysis and in dynamic panels with Þxed
effects. The present paper shows that this bias problem is substantially exacerbated when
there is cross section dependence. It is, in fact, so serious that the empirical distribution of
pooled least squares estimates all but excudes the true autoregressive coefficient in many cases.
Hence, there is an urgent need for corrective action that allows for models and data sets where
there is cross sectional dependence.

The solutions offered in the present paper largely involve the use of median unbiased estima-
tion procedures for estimation, testing and conÞdence interval construction. On the whole, the
new estimation methods work very well in correcting for bias and accounting for cross section
dependence in conditions (viz. correct speciÞcation and Gaussianity) that might be described
as �ideal� for these methods. On the other hand, Wald tests for homogeneity (just like those
that are based on least squares procedures in conventional regression models) show evidence of
unacceptable size distortion even under ideal conditions, including stationarity. We therefore
propose a modÞed Hausman test for homogeneity that utilizes a pooled panel MUE estimator
that is asymptotically efficient under the null, in conjuction with MUE estimates that are ro-
bust to heterogeneity and moment based estimates of the cross section dependence parameters.
Simulations indicate that this homogeneity test, whose limit distribution is chi-squared, works
very well except in cases where N and T are both small.
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In the important case of tests for homogeneous panel unit roots, we utilize the same moment
based approach to estimation of the cross section dependence parameters δ and use these
estimates to project on the space orthogonal to the common time effect in the panel. After
this data transformation, it becomes possible to employ conventional panel unit root tests that
have been developed under the assumption of independence. Simulations reveal that there are
major differences between test procedures in practice, with some procedures (like the IPS test
of Im, Pesaran and Shin, 1997) suffering serious size distortion. The p-value based meta Z test
of Choi (2001) is found to work particularly well with stable size and good power and is easy
to compute and apply in practice. Moon and Perron (2001) have independently suggested a
related procedure for panel unit root testing that involves principal components estimation.
They show that the approach may be used in dynamic panels with multiple factors in which
the rank of the factor space itself has to be estimated.
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Table 2: Monte Carlo Performance of POLS, PFGLS, and Panel FGMU Estimators under
Homogenous ρ (Cases I & II): MSE and MSE Ratios

Sample Size Only Constant Constant and Trend
MSE MSE Ratio MSE MSE Ratio
POLS PFGLS PFGMU POLS PFGLS PFGMU

Low Cross-sectional Dependence: Case I

N=10,T=50 0.372 1.294 0.331 1.282 1.336 0.183
N=20,T=50 0.306 1.725 0.208 1.174 1.719 0.137
N=30,T=50 0.279 2.136 0.177 1.140 2.017 0.168
N=10,T=100 0.082 1.161 0.401 0.269 1.189 0.189
N=20,T=100 0.067 1.360 0.261 0.247 1.414 0.106
N=30,T=100 0.060 1.581 0.208 0.233 1.636 0.081
N=10,T=200 0.025 1.070 0.544 0.063 1.086 0.252
N=20,T=200 0.016 1.182 0.393 0.052 1.208 0.151
N=30,T=200 0.016 1.261 0.302 0.052 1.309 0.110

High Cross-sectional Dependence: Case II

N=10,T=50 1.210 0.515 0.139 2.585 0.779 0.113
N=20,T=50 1.224 0.730 0.188 2.654 1.033 0.143
N=30,T=50 1.172 1.013 0.318 2.583 1.299 0.238
N=10,T=100 0.368 0.324 0.108 0.668 0.544 0.085
N=20,T=100 0.327 0.379 0.092 0.626 0.648 0.070
N=30,T=100 0.340 0.465 0.121 0.623 0.790 0.090
N=10,T=200 0.124 0.216 0.103 0.192 0.370 0.081
N=20,T=200 0.120 0.202 0.066 0.191 0.381 0.050
N=30,T=200 0.118 0.214 0.059 0.180 0.437 0.048
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Table 3: Monte Carlo Performance of OLS, MU, SUR, and SUR-MU Estimators
under Heterogeneous ρi (Cases III & IV): MSE and MSE Ratios

Sample Size Constant Constant and Trend
MSE MSE Ratio MSE MSE Ratio
OLS MU SUR SUR-MU OLS MU SUR SUR-MU

Low Cross-sectional Dependence: Case III

N=10,T= 50 1.691 0.812 1.134 1.028 2.827 0.660 1.108 0.846
N=20,T= 50 1.740 0.807 1.212 1.351 2.923 0.654 1.153 1.114
N=30,T= 50 1.727 0.806 1.222 1.827 2.876 0.650 1.130 1.453
N=10,T=100 0.610 0.856 1.066 0.936 0.858 0.717 1.057 0.796
N=20,T=100 0.603 0.856 1.144 1.079 0.870 0.715 1.121 0.930
N=30,T=100 0.601 0.859 1.195 1.217 0.863 0.717 1.168 1.062
N=10,T=200 0.242 0.921 1.044 0.966 0.302 0.803 1.039 0.845
N=20,T=200 0.241 0.919 1.079 1.002 0.302 0.800 1.070 0.878
N=30,T=200 0.239 0.922 1.117 1.048 0.299 0.806 1.106 0.925

High Cross-sectional Dependence: Case IV

N=10,T= 50 1.734 0.815 0.484 0.308 2.856 0.658 0.584 0.355
N=20,T= 50 1.736 0.801 0.530 0.353 2.916 0.642 0.599 0.506
N=30,T= 50 1.732 0.813 0.617 0.616 2.913 0.656 0.632 0.793
N=10,T=100 0.633 0.863 0.383 0.265 0.900 0.726 0.458 0.229
N=20,T=100 0.613 0.866 0.381 0.248 0.861 0.730 0.462 0.221
N=30,T=100 0.606 0.873 0.413 0.259 0.853 0.729 0.488 0.242
N=10,T=200 0.241 0.925 0.349 0.284 0.302 0.813 0.400 0.246
N=20,T=200 0.242 0.915 0.317 0.244 0.303 0.798 0.373 0.213
N=30,T=200 0.249 0.922 0.305 0.228 0.311 0.805 0.361 0.202
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Table 4: Wald Test for Homogeneity (Case V)
H0 : ρi = ρ = 0.7

Cross-Sectional Correlation (min= 0.52, med= 0.82, max=0.94)-

Sample Size Constant Constant and Trend
size(5%) size(2.5%) size(5%) size(2.5%)

Low Cross-sectional Dependence

N=10,T=50 0.466 0.369 0.571 0.474
N=10,T=100 0.185 0.123 0.225 0.153
N=10,T=200 0.103 0.051 0.115 0.059
N=20,T=50 0.983 0.973 0.982 0.971
N=20,T=100 0.584 0.488 0.653 0.555
N=20,T=200 0.253 0.174 0.285 0.198
N=30,T=50 1.000 1.000 0.998 0.996
N=30,T=100 0.906 0.781 0.937 0.855
N=30,T=200 0.433 0.207 0.478 0.251

High Cross-sectional Dependence

N=10,T=50 0.351 0.263 0.522 0.440
N=10,T=100 0.155 0.107 0.176 0.120
N=10,T=200 0.096 0.059 0.101 0.063
N=20,T=50 0.873 0.820 0.959 0.938
N=20,T=100 0.421 0.341 0.464 0.377
N=20,T=200 0.226 0.153 0.236 0.163
N=30,T=50 1.000 0.995 0.979 0.968
N=30,T=100 0.703 0.503 0.742 0.558
N=30,T=200 0.337 0.159 0.341 0.162
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Table 5: G-Test for Homogeneity (Case V) H0 : ρi = ρ = 0.8 with Cross-Sectional
Correlation (min= 0.52, med= 0.82, max=0.94).

Size
Model 2 Model 3

Sample 1% 2.5% 5% 10% 1% 2.5% 5% 10%
N=10,T= 50 0.028 0.043 0.065 0.092 0.027 0.046 0.068 0.089
N=20,T= 50 0.051 0.075 0.100 0.136 0.047 0.069 0.094 0.126
N=30,T= 50 0.082 0.110 0.136 0.172 0.071 0.092 0.114 0.140
N=10,T=100 0.017 0.032 0.050 0.080 0.019 0.030 0.052 0.077
N=20,T=100 0.015 0.027 0.045 0.069 0.017 0.035 0.048 0.076
N=30,T=100 0.025 0.039 0.056 0.085 0.028 0.043 0.055 0.086
N=10,T=200 0.003 0.014 0.024 0.043 0.004 0.014 0.024 0.043
N=20,T=200 0.008 0.015 0.028 0.044 0.008 0.016 0.028 0.051
N=30,T=200 0.008 0.016 0.024 0.046 0.008 0.016 0.027 0.046

Size Adjusted Power
Model 2 Model 3

Sample 1% 2.5% 5% 10% 1% 2.5% 5% 10%
N=10,T= 50 0.981 0.972 0.959 0.920 0.972 0.959 0.944 0.906
N=20,T= 50 0.990 0.984 0.978 0.968 0.991 0.985 0.980 0.964
N=30,T= 50 0.999 0.998 0.997 0.995 0.999 0.997 0.996 0.996
N=10,T=100 0.988 0.979 0.961 0.941 0.984 0.972 0.952 0.924
N=20,T=100 0.994 0.987 0.979 0.968 0.995 0.989 0.978 0.969
N=30,T=100 0.999 0.999 0.998 0.998 0.999 0.999 0.999 0.998
N=10,T=200 0.997 0.993 0.987 0.978 0.978 0.966 0.957 0.932
N=20,T=200 0.995 0.992 0.989 0.981 0.995 0.992 0.988 0.982
N=30,T=200 0.999 0.998 0.997 0.996 0.999 0.999 0.997 0.996
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Table 6: Tests for Homogeneous Panel Unit Roots under Cross-Section Dependence (Case
VI): Cross-Sectional Correlation (min= 0.52, med= 0.82, max=0.94) -

Panel A: Model M2 - Fitted Intercept Case
Size: 5%

Sample IPS G++ols G++emu P Z

N=10,T= 50 0.257 0.052 0.052 0.044 0.046
N=20,T= 50 0.353 0.061 0.046 0.044 0.050
N=30,T= 50 0.367 0.061 0.041 0.044 0.049

N=10,T=100 0.263 0.047 0.063 0.045 0.047
N=20,T=100 0.333 0.051 0.055 0.044 0.049
N=30,T=100 0.376 0.054 0.057 0.039 0.048

N=10,T=200 0.242 0.046 0.054 0.041 0.047
N=20,T=200 0.337 0.043 0.049 0.044 0.044
N=30,T=200 0.391 0.049 0.047 0.046 0.049

Size Adjusted Power
Sample IPS G++ols G++emu P Z

N=10,T= 50 0.247 0.252 0.270 0.997 0.996
N=20,T= 50 0.223 0.329 0.330 0.988 0.974
N=30,T= 50 0.256 0.519 0.532 0.978 0.969

N=10,T=100 0.646 0.687 0.739 1.000 1.000
N=20,T=100 0.627 0.692 0.779 0.997 0.993
N=30,T=100 0.587 0.811 0.866 0.991 0.987

N=10,T=200 0.991 0.970 0.983 1.000 1.000
N=20,T=200 0.989 0.934 0.968 0.999 0.998
N=30,T=200 0.986 0.975 0.988 1.000 0.999
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Panel B: Model M3 - Fitted Intercept and Trend
Size: 5%

Sample IPS G++ols G++emu P Z

N=10,T= 50 0.278 0.077 0.072 0.043 0.048
N=20,T= 50 0.366 0.086 0.073 0.044 0.049
N=30,T= 50 0.390 0.098 0.067 0.046 0.052

N=10,T=100 0.280 0.062 0.073 0.049 0.052
N=20,T=100 0.357 0.064 0.063 0.044 0.047
N=30,T=100 0.379 0.078 0.068 0.049 0.053

N=10,T=200 0.260 0.049 0.062 0.046 0.049
N=20,T=200 0.313 0.044 0.056 0.042 0.045
N=30,T=200 0.363 0.047 0.055 0.042 0.046

Size Adjusted Power
Sample IPS G++ols G++emu P Z

N=10,T= 50 0.122 0.086 0.088 0.985 0.983
N=20,T= 50 0.142 0.097 0.095 0.969 0.947
N=30,T= 50 0.133 0.158 0.160 0.960 0.943

N=10,T=100 0.349 0.342 0.380 0.998 0.996
N=20,T=100 0.350 0.413 0.435 0.990 0.975
N=30,T=100 0.344 0.558 0.609 0.981 0.971

N=10,T=200 0.885 0.853 0.890 1.000 1.000
N=20,T=200 0.881 0.815 0.878 0.999 0.994
N=30,T=200 0.886 0.892 0.938 0.998 0.993
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Table 7: Tests for Homogeneous Panel Unit Roots under Cross-Section Dependence &
AR(1) Errors (Case VII). Cross-Sectional Correlation (min= 0.52, med= 0.82, max=0.94)-

Panel A: Fitted Intercept
Size

Sample IPS P Z

5% 10% 5% 10% 5% 10%
N=10,T= 50 0.202 0.272 0.056 0.112 0.057 0.111
N=20,T= 50 0.329 0.381 0.057 0.110 0.055 0.113
N=30,T= 50 0.374 0.412 0.066 0.117 0.064 0.115

N=10,T=100 0.188 0.256 0.047 0.094 0.046 0.099
N=20,T=100 0.315 0.364 0.047 0.099 0.049 0.100
N=30,T=100 0.363 0.402 0.047 0.094 0.048 0.095

N=10,T=200 0.198 0.261 0.042 0.093 0.047 0.095
N=20,T=200 0.330 0.382 0.040 0.091 0.049 0.100
N=30,T=200 0.373 0.412 0.043 0.088 0.046 0.092

Power
Sample IPS P Z

5% 10% 5% 10% 5% 10%
N=10,T= 50 0.294 0.415 0.993 0.997 0.992 0.998
N=20,T= 50 0.225 0.343 0.984 0.991 0.979 0.986
N=30,T= 50 0.199 0.325 0.981 0.989 0.981 0.988

N=10,T=100 0.632 0.763 1.000 1.000 0.999 1.000
N=20,T=100 0.592 0.706 0.998 0.999 0.995 0.997
N=30,T=100 0.539 0.689 0.997 0.999 0.995 0.997

N=10,T=200 0.984 0.994 1.000 1.000 1.000 1.000
N=20,T=200 0.967 0.987 1.000 1.000 1.000 1.000
N=30,T=200 0.967 0.987 1.000 1.000 1.000 1.000
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Panel B: Fitted Intercept and Trend
Size

Sample IPS P Z

5% 10% 5% 10% 5% 10%
N=10,T= 50 0.218 0.279 0.051 0.100 0.050 0.096
N=20,T= 50 0.327 0.372 0.049 0.096 0.049 0.098
N=30,T= 50 0.382 0.414 0.054 0.107 0.056 0.104

N=10,T=100 0.205 0.259 0.047 0.091 0.050 0.098
N=20,T=100 0.319 0.366 0.049 0.092 0.051 0.100
N=30,T=100 0.360 0.393 0.048 0.094 0.053 0.100

N=10,T=200 0.193 0.254 0.039 0.084 0.042 0.085
N=20,T=200 0.312 0.355 0.037 0.083 0.044 0.093
N=30,T=200 0.365 0.402 0.040 0.086 0.045 0.091

Power
Sample IPS P Z

5% 10% 5% 10% 5% 10%
N=10,T= 50 0.168 0.259 0.976 0.987 0.973 0.985
N=20,T= 50 0.143 0.229 0.953 0.978 0.938 0.960
N=30,T= 50 0.116 0.206 0.955 0.973 0.938 0.961

N=10,T=100 0.400 0.535 0.993 0.997 0.988 0.995
N=20,T=100 0.353 0.477 0.986 0.991 0.970 0.984
N=30,T=100 0.334 0.467 0.988 0.993 0.974 0.983

N=10,T=200 0.890 0.940 1.000 1.000 1.000 1.000
N=20,T=200 0.831 0.903 1.000 1.000 0.997 0.998
N=30,T=200 0.813 0.895 1.000 1.000 0.998 0.999
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Table 8: Tests for Homogeneous Panel Unit Roots under Cross-Section Dependence &
MA(1) Errors (Case VII). Cross-Sectional Correlation (min= 0.52, med= 0.82, max=0.94)-

Panel A: Fitted Intercept
Size

Sample IPS P Z

5% 10% 5% 10% 5% 10%
N=10,T= 50 0.247 0.323 0.083 0.150 0.084 0.151
N=20,T= 50 0.371 0.421 0.090 0.173 0.089 0.163
N=30,T= 50 0.421 0.466 0.108 0.192 0.110 0.193
N=10,T=100 0.235 0.315 0.072 0.131 0.071 0.137
N=20,T=100 0.344 0.404 0.083 0.159 0.086 0.161
N=30,T=100 0.430 0.467 0.100 0.173 0.101 0.169
N=10,T=200 0.242 0.305 0.066 0.131 0.073 0.134
N=20,T=200 0.366 0.414 0.081 0.153 0.090 0.161
N=30,T=200 0.409 0.450 0.092 0.170 0.103 0.177

Power
Sample IPS P Z

5% 10% 5% 10% 5% 10%
N=10,T= 50 0.284 0.433 0.998 1.000 0.998 0.999
N=20,T= 50 0.233 0.367 0.988 0.993 0.982 0.987
N=30,T= 50 0.246 0.359 0.993 0.997 0.987 0.992
N=10,T=100 0.695 0.821 1.000 1.000 1.000 1.000
N=20,T=100 0.639 0.773 0.999 1.000 0.997 0.998
N=30,T=100 0.590 0.723 1.000 1.000 0.997 0.999
N=10,T=200 0.998 1.000 1.000 1.000 1.000 1.000
N=20,T=200 0.987 0.996 1.000 1.000 1.000 1.000
N=30,T=200 0.986 0.996 1.000 1.000 1.000 1.000
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Panel B: Fitted Intercept and Trend
Size

Sample IPS P Z

5% 10% 5% 10% 5% 10%
N=10,T= 50 0.290 0.358 0.087 0.164 0.088 0.158
N=20,T= 50 0.387 0.431 0.111 0.206 0.107 0.198
N=30,T= 50 0.458 0.492 0.155 0.253 0.152 0.250
N=10,T=100 0.280 0.336 0.087 0.164 0.090 0.165
N=20,T=100 0.390 0.434 0.111 0.201 0.121 0.207
N=30,T=100 0.460 0.495 0.143 0.234 0.155 0.248
N=10,T=200 0.257 0.325 0.082 0.150 0.086 0.163
N=20,T=200 0.384 0.430 0.099 0.189 0.111 0.197
N=30,T=200 0.438 0.474 0.131 0.225 0.142 0.239

Power
Sample IPS P Z

5% 10% 5% 10% 5% 10%
N=10,T= 50 0.131 0.225 0.990 0.996 0.990 0.994
N=20,T= 50 0.123 0.217 0.958 0.976 0.939 0.959
N=30,T= 50 0.130 0.215 0.969 0.984 0.952 0.971
N=10,T=100 0.406 0.528 1.000 1.000 1.000 1.000
N=20,T=100 0.361 0.506 0.985 0.990 0.970 0.978
N=30,T=100 0.349 0.481 0.992 0.996 0.980 0.986
N=10,T=200 0.934 0.974 1.000 1.000 1.000 1.000
N=20,T=200 0.853 0.928 0.999 1.000 0.995 0.997
N=30,T=200 0.849 0.931 1.000 1.000 0.999 0.999
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7 Appendix A

Proof of Property IP1 For model M1, the result follows directly by scaling. For model
M2, we have

�ρpols2 =

PN
i=1

PT
t=1(yit−1 − yi.−1)(yit − yi.)PN

i=1

PT
t=1(yit−1 − yi.−1)2

, (48)

Now, yit = µi+y
∗
it = µi+

P∞
j=0 ρ

jui,t−j and so yit−yi. = y∗it−y∗i. and yit−1−yi.−1 = y∗it−1−y∗i.−1
are both invariant to µi. Also

yit−1 − yi.−1
σ

=
yit−1 − yi.−1

σi

σi
σ
,

whose factors are invariant to µi, σi and σ. For model M3, we have in the stationary case

yit = µi + βit+ y
∗
it = µi + βit+

∞X
j=0

ρjui,t−j .

When we regress yit and yit−1 on x0t = (1, t) for t = 1, .., T, the residuals are linear functions
of the y∗it and are invariant to (µi,βi). Let Qt be the orthogonal projection matrix onto the
othogonal complement of the space spanned by the matrix X = [x1, ..., xT ]

0 and let yi =
(yi1, ..., yiT )

0, yi,−1 = (yi0, ..., yiT−1)0, with a corresponding notation for y∗i and y∗i,−1. The
residual vectors from these detrending regressions are

byi = Qtyi = Qty∗i = by∗i ,
and byi,−1 = Qtyi,−1 = Qty∗i,−1 = by∗i .
The POLS estimator in Model M3 is

�ρpols3 =

PN
i=1

PT
t=1 byit−1byitPN

i=1

PT
t=1 by2it−1 =

PN
i=1

PT
t=1 by∗it−1by∗itPN

i=1

PT
t=1 by∗2it−1 (49)

=

PN
i=1

PT
t=1

by∗it−1by∗it
σ2i

σ2i
σ2PN

i=1

PT
t=1

by∗2it−1
σ2i

σ2i
σ2

,

and invariance to (µi,βi,σ
2) is clear. Proofs for the nonstationary case (ρ = 1) for Models

2 and 3 carry over in a similar fashion using y∗it − y∗i0 =
Pt−1
j=0 ui,t−j and the fact that y

∗
i0 is

removed by the demeaning and detrending Þlters.

Proof of Property IP2 Invariance to (µi,βi,σ
2) follows precisely as in the proof of Property

IP1. From (1) and (6) we have, in the stationary case,

y∗it
σ

=
∞X
j=0

ρj
ui,t−j
σ

=
∞X
j=0

ρj
·
δi
σ
θt−j +

εit−j
σi

σi
σ

¸

= δi

∞X
j=0

ρjθt−j +
∞X
j=0

ρj
εit−j
σi

σi
σ

∼
Z ∞

0
N

Ã
0,
τ + δ2i
1− ρ2

!
f (τ)dτ ,
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with a similar expression for y∗it/σ, so that both depend only on (ρ, δi). It follows that the
POLS estimator depends on (ρ, δ1, ..., δN) in each of the Models 1-3.

Next, let y∗t = (y∗1t, ..., y∗Nt)0, by∗t = (by∗1t, ..., by∗Nt)0 where by∗it denotes y∗1t or demeaned or
detrended y∗it, respectively for Models M1,M2 and M3, with corresponding notation for yt andbyt. Let Dτ = diag (τ1, ..., τN) and let Ω be the matrix whose ij�th element is ρ|i−j|/(1− ρ2).
Note that

y∗t
σ
,
y∗t−1
σ

∼
Z ∞

0
...

Z ∞

0
N

µ
0,

1

1− ρ2
£
Dτ + δδ

0¤¶ f (τ1) ...f (τN) dτ1...dτN ,
and, vectorizing Y ∗/σ = [y∗1, ..., y∗T ] /σ by columns, we have

vec (Y ∗/σ) ∼
Z ∞

0
..

Z ∞

0
N
¡
0,Ω⊗ £Dτ + δδ0¤¢ f (τ1) ...f (τN )dτ1...dτN ,

which depends on (ρ, δ). Now bY = Y Qt = Y ∗Qt and vec(bY ) = (Qt ⊗ I)vec(Y ) and so
vec

³bY /σ´ ∼ Z ∞

0
..

Z ∞

0
N
¡
0,QtΩQt ⊗

£
Dτ + δδ

0¤¢ f (τ1) ...f (τN )dτ1...dτN .
Similarly, if ut = (u1t, ..., uNt)0 and U = [u1, ..., uT ] , we have

vec (U/σ) ∼
Z ∞

0
N
¡
0, I ⊗ £τI + δδ0¤¢ f (τ)dτ .

As in (8), set

V = E
³
utu

0
t|σ21, ...,σ2N

´
= Σ+ δδ0 = σ2

£
Dτ + δδ

0¤ := σ2Vτ .
The GLS estimator of ρ then has the form

�ρpgls =

PT
t=1 by0t−1V −1bytPT
t=1 by0t−1V −1byt−1 =

1
σ2
PT
t=1 by∗0t−1V −1τ by∗t

1
σ2
PT
t=1 by∗0t−1V −1τ by∗t−1 ,

which depends only on ρ.
Again, proofs in the nonstationary case (ρ = 1) for Models 2 and 3 carry over in a similar

fashion using y∗it − y∗i0 =
Pt−1
j=0 ui,t−j and the fact that y

∗
i0 is removed by the demeaning and

detrending Þlters.

8 Appendix B

Extensions of the Nickell Bias Formula

This section provides some analytic extensions of the Nickell (1981) bias formula to cases
where there is error heterogeneity, cross section dependence and unit root dynamics.
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Stationary, Cross Section Independent Case First consider the homogeneous sta-
tionary case where ρi = ρ and |ρ| < 1 and where there is no cross section dependence. It is
not necessary to assume that the errors uit = εit are iid(0,σ2). Instead, we assume that the εit
have zero mean, Þnite 2 + 2ν moments for some ν > 0 and are independent over i and t with
E(ε2it) = σii for all t. We also assume that

lim
N→∞

1

N

NX
i=1

σii = σ̄. (50)

Then, the ε2it − σii are independent with mean zero and Þnite 1+ ν moments, and we have by
standard theory (e.g., the Markov law)

1

N

NX
i=1

³
ε2it − σ2i

´
→p 0, plimN→∞

1

N

NX
i=1

ε2it = σ
2.

We develop a formula for the bias in large cross section (N) asymptotics, as in Nickell
(1981), for the pooled least squares estimate. To illustrate, we work with model M2 where the
estimate has the form

�ρ = ρ+

PT
t=1

PN
i=1(yit−1 − yi·−1)(uit − ui·)PT
t=1

PN
i=1(yit−1 − yi·−1)2

= ρ+
ANT
BNT

= ρ+
1
NANT
1
NBNT

, (51)

where yi·−1 = 1
T

PT
t=1 yit−1, and ui· =

1
T

PT
t=1 uit. Without loss of generality, set µ = 0 in M2

so that yit =
P∞
j=0 ρ

juit−j . Some calculations analogous to those in Nickell (1981) show that
the probability limits of the numerator and denominator in (51) as N →∞ with T Þxed are

plimN→∞
1

N
ANT = −σ

2

T

1

1− ρ

"
T − 1− ρ

T

1− ρ

#
, (52)

and

plimN→∞
1

N
BNT = σ

2 T − 1
1− ρ2

(
1− 1

T − 1
2ρ

1− ρ

"
1− 1

T

1− ρT
1− ρ

#)
. (53)

Combining (52) and (53) we get

plimN→∞
1
NANT
1
NBNT

= − 1 + ρ
T − 1

"
1− 1

T

1− ρT
1− ρ

#(
1− 1

T − 1
2ρ

1− ρ

"
1− 1

T

1− ρT
1− ρ

#)−1
= − 1 + ρ

T − 1 +O
µ
1

T 2

¶
,

the formula given in Nickell (1981) for the homogeneous case.
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Unit root, Cross Section Independent Case The case ρ = 1 can be handled in
the same way, although this case was not considered by Nickell (1981). Using Ei to signify
expectations with respect to the probability measure for individual i, and setting yi0 = ui0 = 0,
we get:

plimN→∞
1

N
ANT = − 1

T
Ei

"
TP
t=1
(
t−1P
j=0
uit−j−1)

TP
t=1
uit

#

= −σ
2

T
[1 + 2 + 3 + · · ·+ T − 1]

= −σ
2

T

T−1X
i=1

t = −σ
2

2
(T − 1),

and

plimN→∞
1

N
BNT = Ei

TP
t=1
(yit−1 − yi·−1)(yit−1 − yi·−1)

= Ei
TP
t=1
(yit−1 − 1

T

TP
t=1
yit−1)(yit−1 − 1

T

TP
t=1
yit−1)

= Ei

 TP
t=1
(
t−1P
j=0
uit−j−1)2 − 1

T

Ã
TP
t=1
(
t−1P
j=0
uit−j−1)

!2
= BaT −BbT ,

where

BaT = Ei

"
TP
t=1
(
t−1P
j=0
uit−j−1)2

#

=
TP
t=1
Ei(

t−1P
j=0
uit−j−1)2

=
TP
t=1
Ei
h
(uit−1 + uit−2 + · · ·+ ui0)2

i
= σ2

TP
t=1
(t− 1) = σ2T (T − 1)

2
,

and

BbT =
1

T
Ei

Ã
TP
t=1
yit−1

!2
= Ei (yi0 + · · ·+ yiT−1)2

=
1

T
Ei

Ã
TP
t=1
y2it−1 + 2

T−1P
t=1

yit−1yit + 2
T−2P
t=1

yit−1yit+1 + · · ·+ 2
1P
t=1
yit−1yiT−1

!

=
σ2

T

"
TP
t=1
(t− 1) + 2

T−1P
t=1

(t− 1) + 2
T−2P
t=1

(t− 1) + · · ·+ 2
#
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=
σ2

T

"
T (T − 1)

2
+ 2

T−2P
s=1

sP
s=0
r

#
=
σ2

T

"
T (T − 1)

2
+ 2

T−2P
s=1

s (s+ 1)

2

#

=
σ2 (T − 1) (2T + 3)

6
.

Hence

plimN→∞
1

N
BNT = σ2

T (T − 1)
2

− σ
2 (T − 1) (2T + 3)

6

= σ2
(T − 1) (T − 3)

6
,

and so the bias in the unit root case is

plimN→∞
1
NANT
1
NBNT

= − 3

T − 3 ,

which exceeds the bias in the stationary, cross section independent case.

Stationary, Cross Section Dependent Case Let |ρ| < 1 and suppose (50) holds and the
δi satisfy limN→∞ 1

N

PN
i=1 δ

2
i = µδ2. Proceeding as above, we Þnd

plimN→∞
1

N
ACNT = plimN→∞

1

NT

NP
i=1

TP
t=1
(yit−1 − yi·−1)(uit − ui·)

= plimN→∞
1

N

NP
i=1

"
TP
t=1
(
∞P
j=0
ρjuit−j−1)uit − 1

T

TP
t=1
(
∞P
j=0
ρjuit−j−1)

TP
t=1
uit

#

= −plimN→∞ 1

N

NP
i=1

1

T

TP
t=1
(
∞P
j=0
ρjuit−j−1)

TP
t=1
uit

= −plimN→∞ 1

N

NP
i=1

Ã"
δ2i
T

TP
t=1
(
∞P
j=0
ρjθt−j−1)

TP
t=1
θt

#
+

"
1

T

TP
t=1
(
∞P
j=0
ρjεit−j−1)

TP
t=1
εit

#!
Using (50) and

T−1X
t=1

tρt =
ρ
³
1− ρT−1

´
(1− ρ)2 − (T − 1)ρ

T

1− ρ , (54)

we obtain

plimN→∞
1

N

NP
i=1

"
δ2i
T

TP
t=1
(
∞P
j=0
ρjθt−j−1)

TP
s=1
θs

#
= µδ2

1

T

TP
t=1
(
∞P
j=0
ρjθt−j−1)

TP
s=1

θs

= µδ2
1√
T

TP
t=1
(
∞P
j=0
ρjθt−j−1)

1√
T

TP
s=1

θs

→ dµδ2ξθηθ (55)

as T →∞, where by standard central limit theory"
1√
T

PT
s=1 θs

1√
T

PT
t=1(

P∞
j=0 ρ

jθt−j−1)

#
→d

"
ξθ
ηθ

#
= N

0,
 σ2θ σ2θ

1−ρ
σ2θ
1−ρ

σ2θ
1−ρ2

 . (56)
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By suitable augmentation of the probability space and embedding arguments, we may write
the convergence in (56) as an almost sure convergence and then we may write (55) as

plimN→∞
1

N

NP
i=1

"
δ2i
T

TP
t=1
(
∞P
j=0
ρjθt−j−1)

TP
s=1
θs

#
= µδ2ξθηθ + oa.s (1) .

where the Þnal term is oa..s. (1) as T →∞. By similar augmentation of the space and embedding
we get " 1√

T

PT
s=1 εis

1√
T

PT
t=1(

P∞
j=0 ρ

jεit−j−1)

#
→a.s.

"
ξi
ηi

#
= N

Ã
0,

"
σii

σii
1−ρ

σii
1−ρ

σii
1−ρ2

#!
,

and then

plimN→∞
1

N

NP
i=1

"
1

T

TP
t=1
(
∞P
j=0

ρjεit−j−1)
TP
s=1
εis

#

= plimN→∞
1

N

NP
i=1
[ξiηi + oa..s. (1)]

= plimN→∞
1

N

NP
i=1

σii
1− ρ + plimN→∞

1

N

NP
i=1

·
ξiηi −

σii
1− ρ + oa..s. (1)

¸
=

σ̄

1− ρ + oa..s. (1) .

Hence

plimN→∞
1

N
ACNT = −µδ2ξθηθ −

σ̄

1− ρ + oa..s. (1)

Note that the leading term in this limit is a random quantity.
Similary

plimN→∞
1

N
BCNT = plimN→∞

1

N

NP
i=1

TP
t=1
(yit−1 − yi·−1)(yit−1 − yi·−1)

= plimN→∞
1

N

NP
i=1

 TP
t=1
(
∞P
j=0
ρjuit−j−1)2 − 1

T

Ã
TP
t=1
(
∞P
j=0
ρjuit−j−1)

!2
= plimN→∞

1

N

NP
i=1
δ2i

 TP
t=1
(
∞P
j=0
ρjθt−j−1)2 − 1

T

Ã
TP
t=1
(
∞P
j=0
ρjθt−j−1)

!2+
plimN→∞

1

N

NP
i=1

 TP
t=1
(
∞P
j=0
ρjεit−j−1)2 − 1

T

Ã
TP
t=1
(
∞P
j=0
ρjεit−j−1)

!2 .
Setting Zθt =

P∞
j=0 ρ

jθt−j−1 and letting T →∞ we have

1

T

 TP
t=1
(
∞P
j=0
ρjθt−j−1)2 − 1

T

Ã
TP
t=1
(
∞P
j=0

ρjθt−j−1)
!2 = 1

T

TP
t=1

¡
Zθt − Z̄θ

¢2 →a.s. E
³
Z2θt

´
=

σ2θ
1− ρ2 ,
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and then

plimN→∞
1

N

NP
i=1
δ2i

 TP
t=1
(
∞P
j=0
ρjθt−j−1)2 − 1

T

Ã
TP
t=1
(
∞P
j=0
ρjθt−j−1)

!2 = T "µδ2 σ2θ
1− ρ2 + oa.s. (1)

#
.

Next, let Zit =
P∞
j=0 ρ

jεit−j−1 and letting T →∞ we have

1

T

 TP
t=1
(
∞P
j=0
ρjεit−j−1)2 − 1

T

Ã
TP
t=1
(
∞P
j=0
ρjεit−j−1)

!2 = 1

T

TP
t=1

¡
Zit − Z̄i.

¢2 →a.s. E
³
Z2it

´
=

σii
1− ρ2 ,

so that

plimN→∞
1

N

NP
i=1

 TP
t=1
(
∞P
j=0

ρjεit−j−1)2 − 1

T

Ã
TP
t=1
(
∞P
j=0
ρjεit−j−1)

!2 = T · σ̄

1− ρ2 + oa.s. (1)
¸
.

Hence

plimN→∞(�ρpols − ρ) = plimN→∞
1
NA

C
NT

1
NB

C
NT

= − µδ2ξθηθ +
σ̄
1−ρ + oa..s. (1)

T

·
µδ2

σ2
θ

1−ρ2 +
σ̄

1−ρ2 + oa.s. (1)
¸

= − 1
T

(1 + ρ) + µδ2
σ̄ ξθηθ

1 + µδ2
σ̄ σ

2
θ

+ oa.s.

µ
1

T

¶

= − 1
T

(1 + ρ) + µδ2
σ̄

σ2
θ

1−ρ
1 + µδ2

σ̄ σ
2
θ

− 1
T

µδ2
σ̄

1 + µδ2
σ̄ σ

2
θ

[ξθηθ −E (ξθηθ)] + oa.s.
µ
1

T

¶
(57)

where

E (ξθηθ) =
σ2θ
1− ρ .

Note that the probability limit (57) is a random variable whose second term has expectation
zero, so that the bias to O

¡
T−1

¢
is given by the Þrst term. It is easily seen that for all

ρ ∈ (−1, 1)
(1 + ρ) + µδ2

σ̄

σ2θ
1−ρ

1 + µδ2
σ̄ σ

2
θ

> 1 + ρ,

so that the POLS bias in the case of cross section dependence always exceeds the bias in the
cross section independent case.
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9 Appendix C

Derivation of SUR Limit Theory

Stationary Case We use the heterogeneous model for SUR estimation with yit = y∗it
(i.e. model M1)

y∗it = ρiy
∗
it−1 + uit, for t = 1, · · · , T, and i = 1, · · · ,N, (58)

in which the regression errors are from (6)

uit = δiθt + εit, θt ∼ iid N(0,σ2) over t, (59)

and

εi,t ∼ iid N(0,σ2i ) over t, and εi,t is independent of εj,s and θs for all i 6= j and for all s, t.
(60)

The proof in the case of models M2 and M3 is a straightforward extension. From (59) and
(60)

ut ∼ iid N(0, Vu), for t = 1, · · · , T,
where, as in (8), we have

Vu = E
³
utu

0
t|σ2,σ21, ...,σ2N

´
= Σ+ σ2δδ0, Σ = diag

³
σ21, ...,σ

2
N

´
.

Now write (58) in vector form as

yt = Ztρ+ ut, Zt = diag (y1t−1, ..., yNt−1) , ρ = (ρ1, ..., ρN)
0 (61)

Then the GLS estimate is

bρ = Ã
TX
t=1

Z
0
tV

−1
u Zt

!−1Ã TX
t=1

Z
0
tV

−1
u yt

!

and the SUR estimate is simply a feasible version of this estimate with Vu estimated by a
consistent estimate. GLS and SUR are obviously asymptotically equivalent.

Under stationarity |ρi| < 1 for all i we have by standard theory that
√
T
³bρ− ρ´→d N (0, VSUR)

with

VSUR = p lim
T→∞

Ã
1

T

TX
t=1

Z
0
tV

−1
u Zt

!−1
.

We can calculate the inverse of this matrix as follows. Note that

p lim
T→∞

Ã
1

T

TX
t=1

Z
0
tV

−1
u Zt

!
=

·³
viju E (yityjt)

´
ij

¸
,
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where viju is the ij�th element of Vu, so that

V −1SUR =

·³
viju E (yityjt)

´
ij

¸
= V −1u ∗E ¡yty0t¢ .

Next note that

E (yityjt) = E

 ∞X
s=0

ρsiuit−s
∞X
p=0

ρpjujt−p


=

E (uitujt)

1− ρiρj
=

σij + σ
2δiδj

1− ρiρj
,

so that
E
¡
yty

0
t

¢
=
³
Σ+ σ2δδ0

´
∗R,

with R = [(rij)] and rij = 1
1−ρiρj . Note that

V −1u = Σ−1 − σ
2Σ−1δδ0Σ−1

1 + σ2δ0Σ−1δ
.

The same result holds for models M2 and M3 in the stationary case as trend elimination does
not affect the limit theory.

Unit Root Case When ρi = 1 for all i, we have the functional law

1√
T
y[Tr] =

1√
T

[Tr]X
t=1

ut →d B (r) = BM (Vu) . (62)

Setting iN to be vector with N unit components, the centred GLS and feasible SUR estimates
have the form

bρ
sur
− iN =

Ã
TX
t=1

Z
0
tV

−1
u Zt

!−1Ã TX
t=1

Z
0
tV

−1
u ut

!
.

Now

1

T 2

TX
t=1

Z
0
tV

−1
u Zt =

Ãviju 1

T 2

TX
t=1

yit−1yjt−1

!
ij

→d

"µ
viju

Z 1

0
BiBj

¶
ij

#

= V −1u ∗
Z 1

0
BB0,

and

1

T

Ã
TX
t=1

Z
0
tV

−1
u ut

!
=

 NX
j=1

viju
1

T

TX
t=1

yit−1ujt


i

→d

 NX
j=1

viju

Z 1

0
BidBj


i


=

Z 1

0
B ∗ V −1u dB.
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This gives the stated limit result

T
³bρ
sur
− iN

´
→d

·
V −1u ∗

Z 1

0
BB0

¸−1 ·Z 1

0
B ∗ V −1u dB

¸
= ξ.

Note that the quadratic variation process of the stochastic integral
R r
0 B ∗ V −1u dB is·Z r

0
B ∗ V −1u dB

¸
r
= V −1u ∗

Z r

0
BB0,

so the matrix V −1u ∗ R 10 BB0 is a suitable metric for R 10 B ∗V −1u dB. The joint Wald test for unit
roots is

WSUR =
³bρ
sur
− i
´0 " TX

t=1

Z
0
tV

−1
u Zt

#³bρ
sur
− i
´

→ d

·Z 1

0
B ∗ V −1u dB

¸0 ·
V −1u ∗

Z 1

0
BB0

¸−1 ·Z 1

0
B ∗ V −1u dB

¸
,

which appears to be dependent on nuisance parameters. Also, if we were to test homogeneity
using the SUR estimate bρ, then noting that

D
³bρ
sur
− iN

´
= Dbρ

sur

we would have the statistic

WDsur = bρ
sur

0
D0
h
D bVSURD0i−1

Dbρ
sur

→ d ξ
0D

0
"
D

µ
V −1u ∗

Z 1

0
BB0

¶−1
D

0
#−1

Dξ.

Next consider the pooled estimate of ρ when H0 holds. In this case, we have

bρ = Ã
TX
t=1

y
0
t−1V

−1
u yt−1

!−1Ã TX
t=1

y
0
t−1V

−1
u yt

!

and by straightforward derivation

1

T 2

TX
t=1

y
0
t−1V

−1
u yt−1 →d

Z 1

0
B0V −1u B =d

Z 1

0
W 0W =

NX
i=1

Z 1

0
W 2
i ,

1

T

TX
t=1

y
0
t−1V

−1
u ut →d

Z 1

0
B0V −1u dB =d

Z 1

0
W 0dW =

NX
i=1

Z 1

0
WidWi

and so

T (bρ− 1)→d

R 1
0 W

0dWR 1
0 W

0W
=

PN
i=1

R 1
0 WidWiPN

i=1

R 1
0 W

2
i

, (63)

where W = (Wi) is standard Brownian motion with covariance matrix IN . Hence, the limit
distribution of T (bρ− 1) is free of nuisance parameters.
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Hausman Test Limit Theory (Unit Root Case) The Hausman statistic relies on the
difference √

T
³
�ρ
emu

− iN
´
=
√
T
³
�ρ
emu

− iN
´

From (63) we have

T (eρ− 1)→d

R 1
0 W

0dWR 1
0 W

0W
,

and

T
³
�ρ
emu

− iN
´

= T
³
�ρ− iN

´
+ op (1)

=

Ã
1

T 2

TX
t=1

Z
0
tZt

!−1Ã
1

T

TX
t=1

Z
0
tut

!

→ d

·Z 1

0
DB2

¸−1 ·Z 1

0
DBdB

¸

=


hR 1
0 B

2
1

i−1 hR 1
0 B1dB1

i
...hR 1
0 B

2
N

i−1 hR 1
0 BNdBN

i
 , (64)

where DB2 = diag
³
B1 (r)

2 , ..., BN (r)
2
´
, DB = diag (B1 (r) , ..., BN (r)) . In view of the

correlation between the Brownian motions {Bi : i = 1, ..., N} the limit distribution (64) is
dependent on nuisance parameters arising from the cross section dependence.

We also have the joint convergence

"
T
³
�ρ
emu

− iN
´

T (eρ− 1)
#
→d


hR 1
0 DB2

i−1 hR 1
0 DBdB

i
hR 1
0 B

0B
i−1 hR 1

0 B
0dB

i


and then

T
³
�ρ
emu

− iN
´

d→


hR 1
0 B

0B
i−1 hR 1

0 B
0dB

i
...hR 1
0 B

0B
i−1 hR 1

0 B
0dB

i
 ,

Again, this limit distribution is dependent on nuisance parameters arising from cross section
dependence. Thus, the Hausman statistic has a limit theory that depends on nuisance para-
meters in the unit root case.

ModiÞed Hausman and Panel Unit Root Tests Limit Theory First note that we have
the joint convergence

"
T
³
�ρ+
emu

− iN−1
´

T
¡eρ+ − 1¢

#
→d


hR 1
0 DW2

⊥

i−1 hR 1
0 DW⊥dW⊥

i
hR 1
0 W

0
⊥W⊥

i−1 hR 1
0 W⊥0dW⊥

i

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which is free of nuisance parameters. Then

T
³
�ρ+
emu

− eρ+iN−1´ → d

·Z 1

0
DW2

⊥

¸−1 ·Z 1

0
DW⊥dW⊥

¸
−
·Z 1

0
W 0
⊥W⊥

¸−1 ·Z 1

0
W⊥0dW⊥

¸
iN−1

=


hR 1
0 W

2
⊥,1
i−1 hR 1

0 W⊥,1dW⊥,1
i
−
hR 1
0 W

0
⊥W⊥

i−1 hR 1
0 W⊥0dW⊥

i
...hR 1
0 W

2
⊥,N−1

i−1 hR 1
0 W⊥,N−1dW⊥,N−1

i
−
hR 1
0 W

0
⊥W⊥

i−1 hR 1
0 W⊥0dW⊥

i


: = ΞN−1, (65)

and it follows that the modiÞed Hausman test has the following limit

G+H = T
2
³
�ρ+
emu

− eρ+iN−1´0 ³�ρ+emu − eρ+iN−1´→d Ξ
0
N−1ΞN−1.

Similarly, the modiÞed unit root tests have the limit

G+ols, G
+
emu →d

N−1X
i=1

·Z 1

0
W 2
i

¸−1/2 ·Z 1

0
WidWi

¸
, for Þxed N
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10 Appendix D

Algorithm for MLE Estimation of Cross Section Dependence Coefficients We de-
velop here an iterative procedure for estimating the cross section dependence coefficient vector
δ using maximum likelihood. As above, we work with model M1 and make suitable adjust-
ments in the case of models M2 and M3. Write the model in vector form as in (21) above,
viz.

yt = Ztρ+ ut, Zt = diag (y1t−1, ..., yNt−1) , ρ = (ρ1, ..., ρN)
0 ,

with errors ut that are iid N(0, Vu) where Vu = Σ + δδ0 and Σ = diag(σ21, ...,σ
2
N). The log

likelihood function has the form

`NT (ρ,Σ, δ) = −NT
2
log 2π − T

2
logVu − 1

2

TP
t=1

³
yt − Ztρ

´0
V −1u

³
yt − Ztρ

´
= −NT

2
log 2π − T

2
logVu − T

2
tr
h
V −1u MT

i
,

where MT

³
ρ
´
= 1

T

PT
t=1

³
yt − Ztρ

´³
yt − Ztρ

´0
. First order conditions for maximization of

`NT (ρ,Σ, δ) lead to

bρ = Ã
TX
t=1

Z
0
t
�V −1u Zt

!−1Ã TX
t=1

Z
0
t
�V −1u yt

!
, (66)

and
tr
h³
�V −1u − �V −1u MT

�V −1u
´
dVu

i
= 0, (67)

where �Vu = �Σ+�δ�δ
0
, �Σ = diag(�σ21, ..., �σ

2
N) and dVu = dΣ+ dδδ

0+ δdδ0. Expanding (67) leads to
the following system of equations

�σ2i

1− �δ
2
i /�σ

2
i

1 + �δ
0�Σ−1�δ

 = "e0i − �δi�δ
0�Σ−1

1 + �δ
0�Σ−1�δ

#
MT

³bρ´"ei − �Σ−1�δ�δi
1 + �δ

0�Σ−1�δ

#
, i = 1, ...,N (68)

�δ =
MT

³bρ´ �Σ−1�δ
1 + �δ

0 �Σ−1�δ
, (69)

which we may solve by the following iteration

�σ
2(j)
2

1−
µ
�δ
(j−1)
i

¶2
/�σ

2(j−1)
i

1 + �δ
(j−1)0 ³�Σ(j−1)´−1 �δ(j−1)


=

e0i − �δ
(j−1)
j

�δ
(j−1)0 ³�Σ(j−1)´−1

1 + �δ
(j−1)0 ³�Σ(j−1)´−1 �δ(j−1)

MT

³bρ´
ei −

³
�Σ(j−1)

´−1
�δ
(j−1)�δ

(j−1)
i

1 + �δ
(j−1)0 ³�Σ(j−1)´−1 �δ(j−1)

 ,

�δ
(j)
=

MT

³bρ´³�Σ(j−1)´−1 �δ(j−1)
1 + �δ

(j−1)0 ³�Σ(j−1)´−1 �δ(j−1) ,
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which we continue until convergence. For starting values we may choose �Σ(0) = �σ2IN where

�σ2 = 1
N tr [MT ] and �δ

(0)
is the largest eigenvector of MT . In place of the the residual mo-

ment matrix, MT

³bρ´ , from maximum likelihood estimation that appears in (68) and (69), we

propose that the matrix MT

³
�ρ
emu

´
corresponding to the median unbiased estimates �ρ

emu
be

used.
Note that in the special case where Σ = σ2IN , the Þrst order equations lead to the following

system simplifying (68) and (69)

�σ2
"
N −

�δ
0�δ

�σ2 + �δ
0�δ

#
= tr

"Ã
IN −

�δ�δ
0

�σ2 + �δ
0�δ

!
MT

³bρ´ÃIN − �δ�δ
0

�σ2 + �δ
0�δ

!#
,

and

�δ =
MT

�δ

�σ2 + �δ
0�δ
.
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