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Abstract 

Diffuser Augmented Wind Turbines (DAWTs) are one of many concepts to have been 

proposed to reduce the cost of renewable energy. As the most commercially viable, they 

have been the focus of numerous theoretical, computational, and experimental 

investigations. Although intimated in these studies to be able to augment the power 

output of a wind turbine, the extent of this power increase, or augmentation, the factors 

influencing DAWT performance, the optimal geometric form and their economical 

benefit remained unanswered. It is these issues that have been addressed in this 

investigation. 

In reviewing historic investigations on DAWTs it has been identified that excessive wind 

tunnel blockage, inappropriate measurement technique, varied definitions of 

augmentation, and the inclusion of predicted performance based on incorrect 
assumptions have in general led to the overstatement of DAWT performance in those 

studies. In reassessing the performance of the most advanced of those DAWT designs, 

Grumman's DAWT 45, it has been calculated that the actual performance figures for the 

2.62 exit-area-ratio and 0.488 length-to-diameter ratio DAWT were an available 

augmentation of 2.02, a shaft augmentation of 0.64 and a diffuser efficiency of 56%. 

By contrast, the development of the Mo multi-slotted DAWT in this investigation has 

yieIded a design whose shaft augmentation of 1.38 was achieved by a diffuser with exit- 

area-ratio of only 2.22 and overall length-to-diameter ratio of 0.35. 

Such performance improvement has been obtained by gaining both an understanding of 

the flow characteristics of DAWTs and the geometric influences. More specifically it has 

been shown that: the velocity across the blade-plane is greater than the free-stream 

velocity and increases towards the rotor periphery; that the rotor thrust or disc loading 

impacts upon diffuser performance by altering the flow behaviour through it; and that 

DAWTs are able to maintain an exit pressure coefficient more negative than that 

attainable by a conventional bare turbine. The net result is that DAWTs encourage a 
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greater overall mass-flow as well as extract more energy per unit of mass-flow passing 

through the blade-plane than a conventional bare turbine. 

The major drivers of DAWT performance have been shown to be the ability of the design 

to maximise diffuser efficiency and produce the most sub-atmospheric exit pressure 

possible. Parametric investigation of the various DAWT geometric components has 

shown peak performance to be obtained when: the external flow is directed radially 

outward by maximising the included angle of the externaI surface in conjunction with a 

radially orientated exit flap; by applying boundary-layer control to a trumpet shaped 

diffuser via a pressurised cavity within the double-skin design of the multi-slotted 

DAWT; having an exit-area-ratio of the order of 2.22; and by employing an inlet 

contraction with inlet-area-ratio matched to the mass-flow passing through the DAWT 

under peak operating conditions. 

To translate the available augmentation into shaft power a modified blade element 

method has been developed using an empirically-derived axial velocity equation. The 

resulting blade designs whose efficiencies reached 77%, twice those of Grumman, 

highlight the accuracy of the modified blade element method in calculating the flow 

conditions at the blade-plane of the multi-slotted DAWT. It was also noted that the rotor 

efficiencies remain below 'best practice' and therefore offer the potential for further 

increases in shaft augmentation. However, in order to achieve such gains, a number of 

limitations present in the current method must be addressed. 

In assessing the likely commercial suitability of the multi-slotted DAWT a number of 

real-world influences have been examined. Shown to have little if any effect on DAWT 

performance were Reynolds number, ground proximity and wind shear. Turbulence in 

the onset flow on the other hand had the beneficial effect of reducing separation within 

the diffuser. Finally, DAWT performance was assessed under yaw misalignment where 

it was shown that the multi-slotted DAWT performed favourably in comparison to that 

associated with a conventional bare turbine. 

The major drawback identified in the DAWT concept by this investigation was its drag 
loading and the fact that drag and augmentation were interdependent. The result is that 

the cost of a conventional DAWT is dictated by the necessity to withstand an extreme 

wind event despite the fact that augmentation is only required up to the rated wind 

speed. The overall conclusion drawn was that in order to optirnise a DAWT design 

economically, and therefore make the DAWT concept a commercial reality, a creative 

solution that minimises drag under an extreme wind event would be required. 
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