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Abstract

For a range of models in population genetics, we demonstrate that moments of the

stationary distribution can be obtained without knowing the stationary distribution itself,

using the diffusion approximation. We introduce the maximum entropy principle to use

these acquired moments to reconstruct the density of the stationary distribution. This

procedure is illustrated by reconstructing the stationary distribution for a two-locus model

with linkage and recurrent mutation. Using the reconstructed stationary distribution, the

mean and the variance of a linkage disequilibrium measure r2 are evaluated for the model.

We then propose a novel method for reconstructing unknown distributions analytically

based on the maximum entropy principle. Given a sequence of moments expressed in

terms of the underlying population parameter, this new method offers a likelihood function

for parameter estimation by expressing the density of observable quantities as an explicit

function of the data and the parameter.
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1
Introduction

1.1 Motivation

This PhD project was motivated by a recent development in the use of the diffusion

approximation. Song and Song (2007) proposed an elegant procedure to compute the

expectation of a common linkage disequilibrium (LD) measure r2 at steady state. The LD

measure r2 is defined as

1



2 Introduction

r2 =
D2

p(1− p)q(1− q)
, (1.1)

where p and q are frequencies of alleles A1 and B1 at diallelic loci labelled A and

B respectively, and D = p1 − p2
1 − p1p2 − p1p3 − p2p3 is the usual coefficient of linkage

disequilibrium, with p1, p2 and p3 being the frequencies of gamete-types A1B1, A1B2, and

A2B1.

In Song and Song (2007)’s paper, they describe a method of finding relevant moments

of the stationary distribution of (p, q, D) using the diffusion approximation, without first

finding the stationary distribution itself. Their work generated a lot of interest, both in

the results for E (r2) that they obtained and in the elegance of the method that they used.

This PhD project was initially intended to investigate estimation of effective population

size in extant populations, but it assumed a life of its own. We were initially interested in

obtaining reliable estimates of effective population size Ne to aid conservation of endangered

species. It was thought that the poor performance of a common estimator for Ne was a

direct consequence of an ill-approximated functional link between E (r2) and Ne. Therefore,

this PhD project initially planned to study the method of diffusion approximation in

population genetics, in particular the method proposed by Song and Song (2007). We

aimed to extend their ideas in order to derive a better functional link between E (r2) and

Ne, using genotype data instead of the gametic data required by Song and Song (2007),

which is not commonly available in the conservation context. Ultimately, we aimed to

propose a better estimator for Ne.

During the early stages of our research we identified that the poor performance of the

current estimator for Ne is largely due to the sample size being too small relative to the
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population size (Russell and Fewster, 2009), and not to the link between E (r2) and

Ne as originally thought. However, studying Song and Song (2007)’s general approach

became a goal in itself, and we became interested in the possibilities for extending or

generalising their method.

1.2 Purpose

We were largely interested in the demonstration by Song and Song (2007) that infor-

mation contained in a finite sequence of moments from an unknown distribution can be

used to compute other properties of the distribution, E (r2) in their case. Their method

is very specific for calculating E (r2) from a particular model, and it cannot easily be

extended to evaluate other expectations which do not resemble E (r2) in a linear way. For

example, the variance V (r2) cannot readily be evaluated using their method. We decided

to investigate whether we could develop a method that uses the information contained in

a finite sequence of moments of an unknown distribution to evaluate any expectation or

other property of that distribution.

The original Wright-Fisher model in population genetics is ultimately guaranteed to

reach fixation, hence the primary interests are in the probability of extinction (or fixation)

of a certain allele, the expected time to this extinction (or fixation), and the rate of

loss of genetic variability. However, for other Wright-Fisher-type models which exhibit

a steady state other than fixation, the interest centres on the stationary distribution of

allele frequencies.

It is many years since the stationary distribution for single locus models was first

found using the diffusion approximation. However, to the best of our knowledge, there

is no general approach to the present day for obtaining the stationary distribution for
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multiple locus models with recombination. Our aim is to determine a general method for

reconstructing an unknown distribution from a finite sequence of its moments. Using such

a method, the stationary distribution can be reconstructed for the model in Song and

Song (2007), hence the variance of the LD measure V (r2) as well as its mean E (r2) can

be evaluated and studied in terms of recombination and mutation. We will only consider

the original Wright-Fisher model and its generalisations under ideal breeding conditions,

so we will not make any distinction between effective and census population size in this

thesis.

1.3 Aims

The moments found by Song and Song (2007) using the diffusion approximation are

given in terms of p, q and D. The parametrisation p, q and D is obtained by transforming

the original diffusion approximation which is specified in terms of gametic frequencies

(p1, p2 and p3). The parametrisation p, q and D is convenient to work with when we are

dealing with D. However, it is not convenient when we are reconstructing the distribution,

because p, q and D have an irregular support set. Reconstructing a distribution on a

regular region, such as that underlying p1, p2 and p3, is much simpler.

Therefore we first need to study the diffusion approximation, which makes it possible

to find moments without first finding the stationary distribution. Then we need to find

the stationary moments in the original parametrisation (p1, p2 and p3). Finally, we need to

find or derive a method of reconstructing the stationary distribution using the information

contained in the stationary moments.
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1.4 Outline

This thesis is organised as follows. In Chapter 2, we discuss some stochastic models in

population genetics and show some preliminary results in terms of finding their stationary

distributions. We provide a review of the diffusion approximation and an example derivation

of a diffusion operator in Chapter 3. In Chapter 4, we first derive the moments needed

for a two-locus model with linkage, using the diffusion approximation. We then introduce

the maximum entropy principle and the traditional procedure of applying it. We show that

the maximum entropy principle enables us to replicate Song and Song (2007)’s results

for E (r2), and supply new results for V (r2), up to a limit of computational tractability.

At the end of Chapter 4, we propose a novel method of analytically reconstructing an

unknown distribution if a finite sequence of its analytic moments is available. We complete

the thesis with some discussion of the new method and some suggestions for future work

in Chapters 5 and 6.
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2
Preliminaries: Wright-Fisher Models

In this chapter, we first discuss one of the most important stochastic models for genetic

drift in population genetics, namely the Wright-Fisher model. Later, we describe some

standard generalisations of it to incorporate mutation, selection, and recombination as

well as genetic drift. Migration will not be explicitly mentioned, however it can be easily

incorporated by modelling it in a similar fashion to mutation. The primary reason for the

discussion of these models is to give notation and state some relevant results for later usage.

These models are standard and the relevant results are well known; we do not introduce

7



8 Preliminaries: Wright-Fisher Models

anything novel here. In the second half of this chapter, we show preliminary results on

some direct methods of finding the stationary distribution for generalised Wright-Fisher

models.

2.1 Models and Notation

2.1.1 Wright-Fisher model

We consider three stochastic models of reproduction, all of which are standard generalisa-

tions of the original Wright-Fisher model. The original Wright-Fisher model describes the

process of genetic drift in a finite population and it is the most popular stochastic model

for reproduction in population genetics, despite it being highly idealised. See standard

textbooks such as Crow and Kimura (1970), Nei (1987) and Ewens (2004) for

a detailed discussion of stochastic models in population genetics. In this section, we

provide only essential details pertaining to both the original Wright-Fisher model and its

generalisations, in which some assumptions are relaxed.

The original Wright-Fisher model was used implicitly by Fisher (1930) and explicitly

by Wright (1931) to model genetic drift. Biologically, the original Wright-Fisher model

considers a monoecious diploid population with N individuals in an isolated colony. Every

individual effectively has an infinite capacity to produce gametes, and each has an equal

chance of contributing successful gametes to the next generation. Conceptually, an infinite

number of juveniles are considered to be produced for every generation, but only N

juveniles are kept in the colony to populate the next generation. Therefore, at any given

time there are N individuals in the colony. The original Wright-Fisher model assumes

neutrality (no selective differences between alleles) and no mutation. Its key assumptions

are summarised in Table 2.1, some of which are far from realistic. Despite this, even in
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its original form, the Wright-Fisher model succeeds in capturing the essence of genetic

inheritance.

Table 2.1: Assumptions of the Wright-Fisher Model.

1. Diploid
2. Monoecious reproduction with an infinite number of gametes
3. Non-overlapping generations
4. Random mating
5. Finite and constant population size
6. No selection
7. No mutation

Diploid means that the organism has two matching sets of chromosomes, and so they

possess two alleles at every locus. Monoecious means that the organism can produce

zygotes with any individual of the population; there is no clear female/male distinction

during reproduction, and the two gametes which form the zygote may even be from the

same individual.

Mathematically, although Fisher and Wright did not use this terminology, the stochastic

process they defined through this model is a Markov chain; the transition probability of

genetic composition changing from the current generation t to the next generation t + 1

does not depend on the changes made in previous generations (t− 1, t− 2, . . . , 2, 1, 0).

In the simplest case, given there exist only two alleles (A1 and A2, say) at locus A, the

transition probability of going from x copies of A1 at generation t to y∗ copies of A1 at

generation t+1 is given by the binomial probability distribution Y ∗ | X ∼ Bin (2N, ϕ∗(x)),

where ϕ∗(x) is the expected proportion of A1 in the generation t + 1. Let P ∗ denote the

transition matrix of probabilities of going from state x to state y∗ in one generation.

The superscript ∗ is used for the quantities that do not involve mutation. This is

to distinguish them from similar quantities for models that do involve mutation. This
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notation will be used consistently throughout the thesis unless specified otherwise.

Given that x is the number of copies of A1 in the current generation, the expected

proportion of A1 in the next generation is equal to the number of copies of A1 in the

current generation divided by the total number of gametes. Hence ϕ∗(x) is given by,

ϕ∗(x) =
x

2N
. (2.1)

Equation 2.1 is a direct result of assumptions 2 and 4 in Table 2.1; it can be

considered that gametes are sampled randomly and independently with replacement to

form the zygotes at the time of conception under these two assumptions. These are the

essential assumptions of the Wright-Fisher model, which we assume without relaxing

throughout the entire thesis. These two assumptions guarantee that the transition matrix

is given by binomial probability mass functions with an appropriate expected proportion, or

multinomial probability mass functions with an appropriate vector of expected proportions.

Therefore, working out the expected proportion, or the vector of expected proportions,

gives us the transition matrix for the corresponding model that we are to consider.

For the original Wright-Fisher model, the transition matrix P ∗ is given by,

p∗xy = P (Y ∗ = y∗ | X = x)

=

(
2N

y∗

)(
ϕ∗(x)

)y∗(
1− ϕ∗(x)

)2N−y∗

, (2.2)

where ϕ∗(x) is given by Equation 2.1 , Y ∗ is the number of copies of A1 in generation

t + 1, and X is the number of copies of A1 in generation t. The Markov chain is time-

homogeneous so we omit subscripts t and t + 1 to avoid notational clutter. The letters
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x and y will be used to distinguish the current and the next generation unless specified

otherwise.

It can be deduced from P ∗ that there are two absorbing states, 0 and 2N . Therefore

fixation is guaranteed ultimately under the original Wright-Fisher model.

We focus on three generalised Wright-Fisher models, where mutation and selection are

considered. All three models are standard generalisations of the Wright-Fisher model; we

are not going to extend them but merely use the three generalisations to demonstrate

our approach. We will refer to them as the s ingle locus model with mutation (SLM), the

s ingle locus model with mutation and selection (SLS) and the two-locus d iallelic model

with mutation and recombination (TLD) respectively.

Table 2.2: Three generalised Wright-Fisher models.

Name Abbreviation

1. Single locus model with mutation SLM
2. Single locus model with mutation and selection SLS
3. Two-locus diallelic model with mutation and recombination TLD

In the next three subsections, each of the three models will be made more explicit.

In particular, the type of mutation and selection will be made clear for each. Some key

features of the three generalised Wright-Fisher models are summarised in Table 2.3.

Table 2.3: Basics of SLM, SLS and TLD.

Abbreviation # Loci # Alleles Mutation Selection Recombination
SLM Single Multiallelic Equal No No
SLS Single Diallelic Non-Equal Yes No
TLD Two Diallelic Equal No Yes
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2.1.2 Single locus model with mutation, SLM

Firstly, we consider k rather than just two distinct allelic types present at locus A, where

2 ≤ k < ∞. Let A1, A2, . . . , Ak denote the corresponding allelic types at locus A, and

suppose the population consists of N individuals. The current genetic composition at

locus A can be described by a k-dimensional vector x = (x1, x2, . . . , xk), where xi is the

number of copies of allelic type Ai, and by definition,

x1 + x2 + x3 + · · ·+ xk = 2N .

Let y∗ denote the genetic composition at locus A in the next generation, where y∗ is a

k-dimensional vector with its element y∗i being the number of copies of allelic type Ai in

the next generation. Let ϕ∗i (x) denote the expected proportion of allelic type Ai in the

next generation, and ϕ∗(x) denote the vector (ϕ∗1(x), ϕ∗2(x), · · · , ϕ∗k(x)).

So far this is just a multi-dimensional generalisation of the original Wright-Fisher

model. With the same argument that gives us Equation 2.1 , ϕ∗i (x) is given by,

ϕ∗i (x) =
xi

2N
. (2.3)

Let P ∗ denote the transition matrix of going from x to y∗ in one generation. P ∗ is

given by multinomial, rather than the aforementioned binomial, mass functions. Hence,
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p∗xy∗ = P (Y ∗ = y∗ | X = x)

=
(2N)!

y∗1! · · · y∗k!

(
ϕ∗1(x)

)y∗1
(

ϕ∗2(x)

)y∗2

· · ·
(

ϕ∗k(x)

)y∗k

, (2.4)

where ϕ∗i (x) is given by Equation 2.3 .

Suppose now there is a reversible recurrent mutation force acting on the population

after the formation of the zygotes, such that any allelic type Ai might mutate to any of

the remaining k − 1 allelic types with known mutation probabilities. For k distinct allelic

types at locus A, we need a k-by-k matrix U in general to define the mutation structure,

where the element uij is the probability of allelic type Ai mutating to Aj.

We consider an equal (or symmetric) mutation model in which uij = u ∀ i, j where

i 6= j, so that the mutation matrix defined in Equation 2.5 describes the mutation

structure for the current model.

U =



1− (k − 1) u u . . . u

u 1− (k − 1) u . . . u

...
...

. . .
...

u u . . . 1− (k − 1) u


. (2.5)

By definition a probability is between 0 and 1 inclusive, and each row of U must sum to

1. Hence the probability of a certain allelic type Ai remaining unmutated is 1− (k − 1) u,

and therefore 0 < u ≤ 1
k−1

.

Given the mutation force defined by U , we will have a new transition matrix P instead

of P ∗.
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Let y denote the genetic composition for the population in the next generation in the

presence of this mutation force, where y is a k-dimensional vector with its element yi being

the number of copies of allelic type Ai in the next generation. Let ϕi(x) be the expected

proportion of allelic type Ai in the next generation in the presence of this mutation force,

and ϕ(x) denote the vector (ϕ1(x), ϕ2(x), · · · , ϕk(x)).

Then ϕi(x) has the following forms :

ϕi(x) =

Ai stays as Ai︷ ︸︸ ︷
{1− (k − 1) u} xi

2N
+

Aj mutates to Ai︷ ︸︸ ︷∑
i6=j

u
xj

2N

=
xi

2N
− (k − 1) u

xi

2N
+ u

(
1− xi

2N

)
=

xi

2N
(1− ku) + u . (2.6)

Hence the transition probabilities of going from x to y in the next generation are given

by the following,

pxy = P (Y = y | X = x)

=
(2N)!

y1! · · · yk!

(
ϕ1(x)

)y1
(

ϕ2(x)

)y2

· · ·
(

ϕk(x)

)yk

, (2.7)

where ϕi(x) is given by Equation 2.6 .

The transition matrix P defines this generalised Wright-Fisher model, and we will refer

to this model as the single locus model with mutation (SLM) for the rest of the thesis.

The SLM model corresponds to an irreducible and aperiodic Markov chain, hence there

exists a unique stationary distribution. We include this model mainly to demonstrate the



2.1 Models and Notation 15

performance of our method when the underlying stationary distribution is multivariate.

2.1.3 Single locus model with mutation and selection, SLS

For this model, we consider a diallelic locus where selection occurs in addition to mutation.

Suppose there are N individuals and there are allele types A1 and A2 at locus A. Let x

denote the number of copies of allelic type A1 just before conception. Under assumptions

2 and 4 in Table 2.1, gametes are not only sampled randomly and independently with

replacement, but chosen gametes are also combined randomly and independently to form a

zygote at the time of conception for the next generation. Hence the probability of having

a certain zygote Ai/Aj is equal to

P(Ai/Aj) =


(

P (Ai)

)2

for i = j,

2 P (Ai) P (Aj) otherwise.

Without a selection force, it is taken that only N zygotes are formed. The expected

zygotic proportions of A1/A1, A1/A2 and A2/A2 at the time of conception are given by

the following:

P (A1/A1) =
( x

2N

)2

(2.8)

P (A1/A2) = 2
( x

2N

)(
1− x

2N

)
(2.9)

P (A2/A2) =
(
1− x

2N

)2

. (2.10)

It can be considered that all N zygotes survive to reach maturity and have an equal

chance to populate the next generation.
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In the presence of a selection force, it can be understood conceptually that an infinite

number of zygotes are formed according to the expected zygotic proportions in Equations

2.8–2.10, but not all of them survive until the next breeding season, at which time only

N of them are selected to populate the next generation.

Let a selection force act on the population such that the ratio of A1/A1, A1/A2 and

A2/A2 surviving zygotes is given by,

Surviving Ratio = (1 + s1) : (1 + s2) : 1 , (2.11)

where s1 and s2 are known as selection coefficients.

Mathematically, s1 and s2 are bounded between −1 and ∞, where 0 indicates selectively

neutral and −1 indicates complete lethality. Approaching infinity indicates an extremely

high selective advantage. However, the biologically plausible range is usually in the order

of 1× 10−4 to 1× 10−3.

Let ϕ∗(x) denote the expected proportion of allelic type A1 at the next conception

time. With the above selection scheme, ϕ∗(x) is given by,

ϕ∗ (x) =

Homozygote︷ ︸︸ ︷
(1 + s1)

( x

2N

)2

+

Heterozygote︷ ︸︸ ︷
(1 + s2)

( x

2N

)(2N − x

2N

)
(1 + s1)

(
x

2N

)2
+ 2 (1 + s2)

(
x

2N

) (
2N−x

2N

)
+
(

2N−x
2N

)2
=

(1 + s1) x2 + (1 + s2) x (2N − x)

(1 + s1) x2 + 2 (1 + s2) x (2N − x) + (2N − x)2 . (2.12)

Now, let us also consider a reversible recurrent mutation force that acts in addition
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to the selection force on the population between two consecutive breeding seasons. Let

A1 mutate to A2 with probability u2, and an opposite mutation force act simultaneously

which turns A2 to A1 with probability u1:

A1
u2−→ A2 , A2

u1−→ A1 .

The corresponding mutation matrix U is given by:

U =

1− u2 u2

u1 1− u1

 . (2.13)

Let ϕ (x) denote the expected allele proportion of A1 at locus A at the next conception

time in the presence of this mutation force. Then ϕ (x) is given by the following,

ϕ (x) = (1− u2) ϕ∗ (x) + u1 (1− ϕ∗ (x))

= (1− u1 − u2) ϕ∗ (x) + u1 , (2.14)

where ϕ∗ (x) is defined in Equation 2.12 .

Let y denote the number of copies of A1 in the population in the presence of selection

and mutation after conception in the next generation. The transition probabilities of going

from x to y in a generation are given by,
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pxy = P (Y = y | X = x)

=

(
2N

y

)
(ϕ (x))y (1− ϕ (x))2N−y , (2.15)

where ϕ (x) is defined by Equation 2.14 .

The above transition matrix P defines this model, which we refer to as the single

locus model with mutation and selection (SLS) for the rest of the thesis. The SLS model

corresponds to an irreducible aperiodic Markov chain, hence there exists a unique stationary

distribution. We include this model mainly to demonstrate the performance of our method

for a stationary distribution which depends on selection as well as mutation.

2.1.4 Two-locus diallelic model

with mutation and recombination, TLD

Finally, and most importantly, we consider two diallelic loci A and B, at which there are

alleles A1, A2 and B1, B2 respectively. There are thus four possible types of gamete, A1B1,

A1B2, A2B1 and A2B2, and we will refer to these as types 1 to 4 respectively. Suppose the

population size is N , and let vector x denote the genetic composition of the population in

the current generation, where its elements x1, x2, x3 and x4 are the number of gametes of

types 1 to 4 in the current generation as shown in Table 2.4.

By definition:

x1 + x2 + x3 + x4 = 2N.
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Table 2.4: Possible types of gamete for two diallelic loci.

Type of gamete Current count

1. A1B1 x1

2. A1B2 x2

3. A2B1 x3

4. A2B2 x4

We again consider the case that gametes are chosen randomly and independently. In

the absence of recombination and mutation, the expected proportions of gametes of types

1 to 4 in the next generation are given by the following:

x1

2N
,

x2

2N
,

x3

2N
and

x4

2N
. (2.16)

There are ten possible genotypes and each genotype has been given an index in

Table 2.5. Let vector g = (g1, g2, . . . , g10), where gi denotes the number of copies of

genotype i in the current generation.

By definition:

g1 + g2 + · · ·+ g10 = N .

The gametic and the genotype counts are genetic descriptions of the same population,

so they must match for every generation. Given our definitions of x and g, the identities

between gametic and genotype counts can be identified; see Table 2.6.

Gametes are sampled randomly and independently with replacement to form zygotes
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Table 2.5: Possible genotypes for two diallelic loci.

Index Genotype Count, gt Type of zygote E
(
gt+1

)
1 A1B1/A1B1 g1 Homozygous x1

2N
x1

2N

2 A1B1/A1B2 g2 Heterozygous 2 x1

2N
x2

2N

3 A1B1/A2B1 g3 Heterozygous 2 x1

2N
x3

2N

4 A1B1/A2B2 g4 Heterozygous 2 x1

2N
x4

2N

5 A1B2/A1B2 g5 Homozygous x2

2N
x2

2N

6 A1B2/A2B1 g6 Heterozygous 2 x2

2N
x3

2N

7 A1B2/A2B2 g7 Heterozygous 2 x2

2N
x4

2N

8 A2B1/A2B1 g8 Homozygous x3

2N
x3

2N

9 A2B1/A2B2 g9 Heterozygous 2 x3

2N
x4

2N

10 A2B2/A2B2 g10 Homozygous x4

2N
x4

2N

where E
(
gt+1

)
denotes expected genotype proportion in the

next generation without recombination and mutation.

Table 2.6: Identities between gamete type frequencies and genotype frequencies.

x1 = 2g1 + g2 + g3 + g4

x2 = 2g5 + g6 + g7 + g2

x3 = 2g8 + g9 + g6 + g3

x4 = 2g10 + g9 + g7 + g4

at the time of conception for the next generation. Without recombination and mutation,

the expected genotype proportions in the next generation are therefore gained from the

product of the corresponding expected gametic proportions in the next generation. This

leads to Equation 2.17 .
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P (AiBj/AmBn) =


{P (AiBj)}2 for i = m and j = n,

2 P (AiBj) P (AmBn) otherwise.

(2.17)

Therefore it is sufficient to consider gametic counts x1, x2, x3 and x4. In the absence

of recombination and mutation, the expected genotype proportions can be expressed in

terms of the current gametic counts x1, x2, x3 and x4, see Table 2.5.

Now let us consider recombination. Recombination, also known as crossover, is a

process of exchanging alleles between two uniting gametes during meiosis. In the presence

of recombination, the two uniting gametes AiBj and AmBn might lead to a zygote of the

type AiBn/AmBj as well as a zygote of the type AiBj/AmBn, where the possibility of

having AiBn/AmBj is due to crossover. Recombination is a relative phenomenon between

two or more loci, hence it is only meaningful when we are considering more than one

locus. Recombination may happen more than once at the same locus for the same pair of

gametes. Only an odd number of crossovers at the same locus on the same pair of gametes

will change the genetic composition.

The recombination fraction between two loci, that is to say the probability of there

being an odd number of crossovers between them, is defined as C. Biologically, C is

bounded between 0 and 0.5. Two loci effectively become one locus when the lower bound

C = 0 is achieved (complete linkage). The upper bound C = 0.5 is achieved if the loci are

unlinked, for example they are on a different pair of chromosomes.

For the next generation, let ϕ∗1 (x), ϕ∗2 (x), ϕ∗3 (x) and ϕ∗4 (x) denote the expected

proportions of gametes of types 1 to 4 in the presence of recombination but not yet

mutation. We need to consider the expected genotype proportions in order to work out
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ϕ∗i (x). The expected gamete type frequency ϕ∗1 (x) consists of four parts. Part 1 in

Equation 2.18 represents individuals that are homozygous in both loci and both of their

gametes are A1B1; this part is not affected by crossover. Part 2 represents individuals that

are homozygous in exactly one locus and have exactly one gamete being A1B1; this part is

also not affected by crossover. Part 3 represents individuals that would have one gamete

of A1B1 given that an even number of crossovers occurred. Part 4 represents individuals

that would have one gamete being A1B1 given that an odd number of crossovers occurred.

Collecting all these contributions gives us ϕ∗1 (x):

ϕ∗1 (x) =



part 1︷ ︸︸ ︷
2
( x1

2N

)2

N +

part 2︷ ︸︸ ︷(
2

x1

2N

x2

2N

)
N +

(
2

x1

2N

x3

2N

)
N

2N



+


part 3︷ ︸︸ ︷

(1− C)
(
2

x1

2N

x4

2N

)
N +

part 4︷ ︸︸ ︷
C
(
2

x2

2N

x3

2N

)
N

2N

 (2.18)

=
( x1

2N

)2

+
x1

2N

x2

2N
+

x1

2N

x3

2N
+ (1− C)

x1

2N

x4

2N
+ C

x2

2N

x3

2N
. (2.19)

Given that x1 + x2 + x3 + x4 = 2N , Equation 2.19 can be simplified to :

ϕ∗1 (x) =
x1

2N
− C


part 1︷ ︸︸ ︷
x1

2N

x4

2N
−

part 2︷ ︸︸ ︷
x2

2N

x3

2N

 . (2.20)

Part 1 and part 2 in Equation 2.20 represent respectively the loss and gain of A1B1
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due to crossover.

The quantity
( x1

2N

x4

2N
− x2

2N

x3

2N

)
is usually known as the coefficient of linkage disequi-

librium. D is a function of the gametic proportions, so we will write
( x1

2N

x4

2N
− x2

2N

x3

2N

)
as D(x) to emphasise the dependency.

Note that

x4

2N
= 1− x1

2N
− x2

2N
− x3

2N
,

so

D (x) =
x1

2N
−
( x1

2N

)2

− x1

2N

x2

2N
− x1

2N

x3

2N
− x2

2N

x3

2N
. (2.21)

Using similar working, ϕ∗1 (x), ϕ∗2 (x), ϕ∗3 (x) and ϕ∗4 (x) are given by,

ϕ∗1 (x) =

(
x1

2N
− CD(x)

)
(2.22)

ϕ∗2 (x) =

(
x2

2N
+ CD(x)

)
(2.23)

ϕ∗3 (x) =

(
x3

2N
+ CD(x)

)
(2.24)

ϕ∗4 (x) =

(
x4

2N
− CD(x)

)
. (2.25)

Now suppose there are reversible recurrent mutation forces present at both loci in

addition to recombination. Let us consider the same equal mutation structure we considered
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for the SLM model in subsection 2.1.2 for both loci, and let us assume the mutation

probabilities are u for both loci.

A1
u−−−−⇀↽−−−−
u

A2 , B1
u−−−−⇀↽−−−−
u

B2 .

Therefore both loci have the same mutation matrix U defined by Equation 2.26 .

U =

(1− u) u

u (1− u)

 , (2.26)

where u is the mutation probability.

Let ϕ1 (x), ϕ2 (x), ϕ3 (x) and ϕ4 (x) denote the expected proportions of gametes of

types 1 to 4 respectively in the presence of recombination and the equal mutation structure

defined by U . Then we have,

ϕ1 (x) = ϕ∗1 (x) (1− u)2 + ϕ∗2 (x) u (1− u) + ϕ∗3 (x) u (1− u) + ϕ∗4 (x) u2

=
x1

2N
(1− u)2 +

( x2

2N
+

x3

2N

)
u (1− u) +

x4

2N
u2 − CD(x) (1− 2u)2 , (2.27)

where ϕ∗1 (x), ϕ∗2 (x), ϕ∗3 (x) and ϕ∗4 (x) are defined by Equations 2.22–2.25.

Similarly, ϕ2 (x), ϕ3 (x) and ϕ4 (x) can be given by,
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ϕ2 (x) =
x2

2N
(1− u)2 +

( x1

2N
+

x4

2N

)
u (1− u) +

x3

2N
u2 + CD(x) (1− 2u)2 (2.28)

ϕ3 (x) =
x3

2N
(1− u)2 +

( x1

2N
+

x4

2N

)
u (1− u) +

x2

2N
u2 + CD(x) (1− 2u)2 (2.29)

ϕ4 (x) =
x4

2N
(1− u)2 +

( x2

2N
+

x3

2N

)
u (1− u) +

x1

2N
u2 − CD(x) (1− 2u)2 . (2.30)

Let the vector y denote the genetic composition of the population in the next generation

in the presence of recombination and mutation, where the elements y1, y2, y3 and y4 are the

number of copies of gametes of types 1 to 4 in the next generation. Hence the transition

probabilities of going from x to y are given by the multinomial probability distribution

defined by,

pxy = P (Y = y | X = x)

=
(2N)!

y1!y2!y3!y4!

(
ϕ1 (x)

)y1
(
ϕ2 (x)

)y2
(
ϕ3 (x)

)y3
(
ϕ4 (x)

)y4

, (2.31)

where ϕ1 (x), ϕ2 (x), ϕ3 (x) and ϕ4 (x) are defined by Equations 2.27–2.30.

The above transition matrix P defines this model, which we will refer to as the two-

locus diallelic model with mutation and recombination (TLD) for the rest of the thesis.

The TLD is an irreducible aperiodic Markov chain, so there exists a unique stationary

distribution. We include this model mainly to demonstrate that our method can be used

to compute an analytic approximation for stationary distributions in models where no

analytic approaches are available.
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2.2 Stationary Distributions for Discrete Processes

In this section, we study some methods of directly obtaining the stationary distribution of

the discrete generalised Wright-Fisher models without using the diffusion approximation.

We will show preliminary results for each method, outline when these approaches are

adequate, and discuss their limitations.

2.2.1 Analytic computation

Analytically, for extremely small N , the stationary distributions for the generalised Wright-

Fisher models can be found element-wise as rational functions of population parameters

by solving the stationary conditions directly using the corresponding transition matrix.

For example, let us consider the SLS model for an extremely small population of just

two individuals (N = 2) in the case where the mutation forces are equal (u1 = u2 = u)

and there is no selection force (s1 = s2 = 0). See Tables 2.2 and 2.3 for a short summary

of the SLS model, and see Equation 2.15 for the general form of the transition matrix.

There are only five possible states for this model; there could be either 0, 1, 2, 3 or 4

copies of A1 at locus A. The corresponding transition matrix for the model is therefore,

P =



(1−u)4 4u(1−u)3 6u2(1−u)2 4u3(1−u) u4

( 3
4
− 1

2
u)

4
4( 1

4
+ 1

2
u)( 3

4
− 1

2
u)

3
6( 1

4
+ 1

2
u)

2
( 3

4
− 1

2
u)

2
4( 1

4
+ 1

2
u)

3
( 3

4
− 1

2
u) ( 1

4
+ 1

2
u)

4

1
16

1
4

3
8

1
4

1
16

( 1
4
+ 1

2
u)

4
4( 1

4
+ 1

2
u)

3
( 3

4
− 1

2
u) 6( 1

4
+ 1

2
u)

2
( 3

4
− 1

2
u)

2
4( 1

4
+ 1

2
u)( 3

4
− 1

2
u)

3
( 3

4
− 1

2
u)

4

u4 4u3(1−u) 6u2(1−u)2 4u(1−u)3 (1−u)4


, (2.32)

where u is the probability of mutation between A1 and A2.
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Let π denote the stationary distribution, which can be found by solving the stationary

condition,

πT (P − I) = 0 ,

where I denotes the identity matrix and 0 denotes a vector of zeros.

We obtain the following stationary distribution using Maple:

π =

(
1

Λ

)


1
2(16u4−32u3+72u2−56u+29)

−32u(u−1)(4u2−4u+5)

12u(u−1)(48u4−96u3+88u2−40u−9)

−32u(u−1)(4u2−4u+5)

1
2(16u4−32u3+72u2−56u+29)


, (2.33)

where Λ = 576u6 − 1728u5 + 1968u4 − 1056u3 − 132u2 + 372u + 29.

It appears to be impossible to obtain the stationary distribution in a single closed

expression for all elements. Analytic formulae, such as Equation 2.33 , can be obtained

for most of the generalised Wright-Fisher models, but as N increases such formulae rapidly

become too computationally expensive to find, even with a computer algebra system

such as Maple. The analytic form also becomes so vastly complicated that it has little

additional benefit over an accurate numerical solution.
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2.2.2 Numerical computation

We have the option to solve the stationary condition numerically instead of symbolically.

Numerical solutions allow us to deal with more complex generalised Wright-Fisher models,

including those with much larger N .

Figure 2.1: Numerical stationary distributions of the SLS model.
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When N is in the hundreds, we can numerically solve the stationary condition almost



2.2 Stationary Distributions for Discrete Processes 29

instantaneously. Figure 2.1 shows four stationary distributions that are numerically

determined. All four are solutions to the SLS model, but with different sets of population

parameters. It can be seen that the stationary distributions for such models are highly

variable even with only recurrent reversible mutation. When plausible, numerical solutions

have the advantage of being simple and quick, and neither approximations nor simulations

are necessary. These solutions are useful when we want to study the effect of changing

population parameters on the corresponding stationary distributions.

However, there still exists a limit, in terms of the size of N , beyond which solving the

transition matrices numerically becomes computationally infeasible due to the discrete

nature of the problem, especially when dealing with high dimensions. For the TLD model,

the support of the stationary distribution is a three-dimensional simplex grid. There are(
2N+4−1

3

)
possible states for N individuals, so for the specific case of 10 individuals there

are 1771 possible states. It is clearly inefficient and problematic to solve the stationary

condition with thousands of rows for a population of just a few individuals. Therefore we

need further tools to study the case where N is arbitrarily large.

2.2.3 Normal approximation

There are special cases for which it is possible to find the exact mean and variance of

a stationary distribution without knowing the exact form of the stationary distribution

itself. For these special cases, a normal approximation might be adequate: in other words,

to approximate the stationary distribution using a normal distribution with the correct

mean and variance. Let us again consider the SLS model: see Tables 2.2 and 2.3 for

a short summary of SLS and see Equation 2.15 for the general form of the transition

matrix. We will use πT = (π0, π1, π2, . . . , π2N) to denote the stationary distribution. At

stationarity:
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πT = πTP , (2.34)

where P is the transition matrix defined by Equation2.15 .

Let µ be the mean of the stationary distribution and ξ be a vector containing values

for all the possible states, that is, ξT = (0, 1, 2, 3, . . . , 2N). Therefore, by definition µ is

given by:

µ = πTξ

= πTPξ . (2.35)

Each row of P is given by the binomial distribution in Equation 2.15 for a specific

value of x, where x is the number of copies of allele type A1 in generation t. Hence each

component of the vector Pξ is the mean of the binomial distribution for the corresponding

x. The vector Pξ is therefore given by :
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Pξ =



2N∑
y=0

y

(
2N

y

)
{ϕ (0)}y {1− ϕ (0)}2N−y

2N∑
y=0

y

(
2N

y

)
{ϕ (1)}y {1− ϕ (1)}2N−y

...
2N∑
y=0

y

(
2N

y

)
{ϕ (2N)}y {1− ϕ (2N)}2N−y



=



2Nϕ (0)

2Nϕ (1)

...

2Nϕ (2N)


, (2.36)

where ϕ (x) is defined by Equation 2.14 .

When there is no selection pressure (s1 = s2 = 0), then :

2Nϕ (x) = x (1− u2) + (2N − x) u1 . (2.37)

Hence combining Equations 2.35–2.37, we obtain,



32 Preliminaries: Wright-Fisher Models

µ = πTPξ

=
2N∑
x=0

πx {x (1− u2) + (2N − x) u1}

= (1− u2)
2N∑
x=0

xπx − u1

2N∑
x=0

xπx + 2Nu1

2N∑
x=0

πx

= (1− u2) µ− u1µ + 2Nu1 . (2.38)

By collecting µ we obtain,

µ =
2Nu1

u1 + u2

. (2.39)

Let σ2 and ν denote respectively the variance and the second moment of the stationary

distribution, and let ζT =
(
02, 12, 22, 32, . . . , (2N)2). Using a similar argument we can

derive,

ν = πTPζ

=
2N∑
x=0

πx

[
2Nϕ (x) {1− ϕ (x)}+ {2Nϕ (x)}2]

=
(2N − 1) (1− u1 − u2)

2

2N
ν

+ (1− 2u1 + 4Nu1) (1− u1 − u2) µ

+ 2Nu1 (1− u1 + 2Nu1) . (2.40)
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We are able to calculate the variance σ2 by combining Equations 2.39–2.40:

σ2 = ν − µ2

=
4N2u1u2

(u1 + u2)
2 {2N − (2N − 1) (1− u1 − u2)

2} . (2.41)

The mean µ and the variance σ2 in Equations 2.39 and 2.40 essentially agree with

the derivation by Ewens (1969), in which the same mean and a formula based on a few

initial terms of a Taylor series expansion for the variance were given. We choose to use

the exact variance instead of its approximation by a Taylor series.

Using these expressions for the mean and the variance of the stationary distribution, we

investigated the possibility of approximating the underlying stationary distribution using

a normal distribution. This clearly is not a good idea for non-symmetric distributions

such as three of those shown in Figure 2.1 . However, we found that for a given set of

population parameters, the stationary distribution becomes more and more symmetric

and bell-shaped as N increases. Figure 2.2 shows such a pattern.

The stationary distributions in Figure 2.2 are numerically determined. All four cases

have the same mutation probabilities (u1 = 0.01 and u2 = 0.005), but N increases from 50

to 500 from the top left to the bottom right. For this set of mutation probabilities, the

stationary distribution becomes approximately symmetric and bell-shaped for N as small

as 500.
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Figure 2.2: Shape of the stationary distribution of the SLS model as N increases, for fixed
values of u1, u2, s1, and s2.
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Figure 2.3: Normal approximation for the SLS model in the absence of selection when N = 500.
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The normal approximation is not valid for moderate N , but it might be adequate for

large N where we have difficulties with obtaining a numerical solution. Figure 2.3 shows

both the numerically calculated and normal approximation of the stationary distribution

for N = 500. If we take the numerical solution to be the true solution, the normal

approximation manages to capture the shape, but slightly underestimates the true solution

at the peak, for N as small as 500.

The performance of the normal approximation depends on the size of the population

parameters relative to the population size N . If the mutation rates u1 and u2 are equal or

close, creating a reasonably symmetric stationary distribution, the normal approximation

gives a reasonable approximation for N as small as 50. Figure 2.4 shows a normal

approximation against a symmetric stationary distribution for N = 20. A reasonable
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approximation is achieved even for this very small value of N .

Figure 2.4: Normal approximation for the SLS model in the absence of selection when N = 20.
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Without knowing an explicit expression for the underlying discrete stationary distribu-

tion, it is only possible to determine the mean and variance for cases where the expected

frequency of y is a linear function of x. In the presence of selection, the expected frequency

of y becomes a rational function of x, therefore it is difficult to derive the mean and the

variance in the same way.

The normal approximation is only a special tool for simple models with relatively large

N . However, it shows that knowledge of just two moments of the stationary distribution

could lead to a viable approximation to the whole distribution under certain conditions.

We will pursue this idea further in the later chapters, where more than two moments are

used to reconstruct the stationary distribution.
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2.3 Summary

For various generalisations of Wright-Fisher models, solving the stationary conditions

analytically can only be done when N is very small. The complexity of the analytic

expression for the stationary distribution, as well as the computational cost of obtaining

it, grow quickly as N increases. Therefore, this method is neither practical nor useful in

general.

For reasonably large N , numerical routines can be used to solve the stationary conditions

directly. This offers simple and useful output for investigating the effects of population

parameters on the stationary distribution. However, as N increases to become arbitrarily

large, numerical solutions gradually lose both accuracy and efficiency. They are particularly

problematic for the stationary distribution of a k-dimensional random variable, where

the number of possible states grows rapidly in an exponential fashion as N and k both

increase.

For arbitrarily large N , the normal approximation offers a simple solution for some

models where the two previous approaches cease to be feasible. However, the normal

approximation is not feasible for all models, and its performance varies from case to case.

Fortunately there exists a general approach for an arbitrarily large N , which proves to

be adequate for a wide range of models in population genetics. This involves approximating

the discrete process of genetic drift by a continuous-time continuous-space diffusion process.

It has proved to be a robust approach for many models and has been widely used. We

will provide a literature review on this subject in the next chapter.
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3
Diffusion Approximation

In this chapter, we first provide a history of the development of diffusion theory in

population genetics. We then outline its fundamental idea and state the stationary

condition under the diffusion approximation. We show an intuitive derivation of some

relevant diffusion operators in the subsequent section. In the later sections of this chapter,

we provide a literature review of stationary distributions of diffusion processes. Finally,

we describe a relevant recent development in diffusion theory.

39
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3.1 Basics

3.1.1 A brief history

The mathematics of the discrete Wright-Fisher processes can be greatly simplified by

considering their continuous counterparts. The discrete random process of genetic drift in

finite populations due to sexual reproduction was first approximated mathematically using

a continuous random process by Fisher et al. (1922, 1930). A differential equation,

later known as the Kolmogorov equation or the diffusion equation, was introduced to

describe the continuous random process. This continuous process, later named the diffusion

process, was further studied by Wright (1931, 1945) to obtain stationary distributions,

and he laid the foundations for further usage of the diffusion process in population genetics.

Diffusion theory in population genetics was substantially extended and many results

were verified by Motoo Kimura. For a summary paper see Kimura (1964), and see

Watterson (1996) for a detailed review of Kimura’s contribution. After his pioneering

work in the 1950s, there was a series of papers on single locus models by himself and

others, see Kimura (1962), Kimura and Crow (1964), Ewens (1964a), Kimura

and Ohta (1969) and Ewens (1972). Later Kimura and his student Ohta focused on

multiple loci and the interaction between them, see Ohta and Kimura (1969a, 1969b,

1970, 1971).

Besides aiding study of important quantities in single locus and multiple locus models,

such as the fixation probabilities, the expected time to fixation, the degree of polymorphism

supported by mutation, linkage disequilibrium, and so on, the diffusion approximation

also allows stationary and transient distributions to be recovered for various models in

population genetics. For transient distributions under diffusion, see Kimura (1955a,

1956), Ewens (1963a, 1963b, 1964b) and Griffiths (1979, 1980, 1981). To avoid
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duplication we provide a literature review on stationary distributions in the later Section

3.2.

3.1.2 Intuition

In population genetics, the rationale behind the diffusion approximation is based on three

observations. Firstly, when considering the process of genetic sampling for a species from

one mating season to another on an evolutionary time scale, the time interval between two

mating seasons seems infinitesimal compared with time frame of its existence. Therefore

time can be treated as a continuous variable, and there is no concept of generation needed

mathematically.

Secondly, we can choose to measure time in units that relate to the population size

N , because the time can be treated as a continuous variable. The purpose of this will be

clear shortly.

Lastly, when the population size N is small, there is only a small number of possible

allele frequencies
x

2N
can take between 0 and 1. However as N increases to be arbitrarily

large, the gaps between possible values of
x

2N
become arbitrarily small. Therefore allele

frequency can be approximated as a continuous quantity for large N .

The diffusion approximation can be understood and constructed by studying the

diffusion process through the Kolmogorov equations. There exists a substantial and

rigorous theory of diffusion processes, however we are interested only in one particular

area of its application, namely the expectations of functions of diffusion variables. Hence

we only include a brief explanation of the relevant results and assume without derivation

the existence and the uniqueness of the relevant diffusion process itself.

The Wright-Fisher model and its generalisations are discrete-time discrete-space Markov

chains. The diffusion approximation for these models uses the three observations above to
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approximate a discrete-time discrete-space Markov chain by a continuous-time continuous-

space process. In terms of the expectations of functions of diffusion variables, the key results

can be understood and derived by rescaling the time and the space axes of the original

discrete Markov chain, and making a link between the time units and the population size.

For our purpose, the diffusion approximation provides a so-called master equation,

which states that the expectation of a diffusion operator L acting on any well-behaved

function Φ of the diffusion variables is always zero at stationarity (also known as being at

equilibrium or in a steady state). That is to say, the expectation of the special quantity

L{Φ (p)} is always zero with respect to the stationary distribution of the diffusion variable

p. We will derive this stationary condition in the next section. A master equation has the

following form:

E [L{Φ (p)}] = 0 , (3.1)

where the diffusion variable p is defined as:

p = lim
N→∞

x

2N
.

To derive a diffusion operator L, and hence the master equation for any particular

model, we need to consider the original discrete Markov chain as N approaches infinity.

3.1.3 Diffusion operator

There are many references regarding the derivation of the diffusion approximation. Kimura

et al. (1955b) gives an elementary derivation based on the geometric interpretation of the
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process involved, and a more mathematical version in terms of the Kolmogorov equation

is given by Kimura (1964). A series of papers, Ethier and Nagylaki (1980, 1988,

1989), give a more general and rigorous treatment. Ewens (2004) also provides an

intuitive derivation, but many details are omitted.

Here, we follow the approach in Ewens (2004), however we provide some additional

details to clarify and explain the derivation. The SLS model is used to demonstrate the

derivation of the corresponding diffusion operator given the discrete transition matrix.

Using this derivation, we hope to illustrate that deriving and applying the diffusion

approximation can be quite simple and requires only limited mathematics, and the reason

for the stationary condition in Equation 3.1 is intuitive.

The SLS model defines a Markov chain with discrete state space {0, 1, 2, . . . , 2N} over

time space {0, 1, 2, . . .}. Let x0, x and y denote the initial state at time 0, intermediate

state at time t, and final state at time t + 1 respectively. Let us rescale the state space by

a factor of (2N)−1, which gives the new variables p0, p and δp defined as,

p0 =
x0

2N
(3.2)

p =
x

2N
(3.3)

p + δp =
y

2N
. (3.4)

Now let us rescale the time space by the same factor of (2N)−1, and consider a new

Markov chain evolving over time points {0δt, 1δt, 2δt, . . . , t− δt, t, t + δt, . . .}, where

δt =
1

2N
. (3.5)
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We will later consider p0, p, p + δp and δt as N → ∞, but they remain discrete for

now.

Let h (t; p0) denote the expectation of Φ (p) at time t given the initial state p0, where

Φ (p) is any well behaved function which depends only on p. Thus we have the following:

h (t; p0) =
∑

p

P (p | p0, t) Φ (p) (3.6)

= Ep {Φ (p)} , (3.7)

where P (p | p0, t) denotes the probability of being at state p at time t given the initial

state being p0 at time 0, and Ep denotes the corresponding expectation with respect to p.

Notice that we omit p0 and t from the notation in Equation 3.7 , to avoid notational

clutter. The function Φ (p) depends on neither the time t nor the initial state p0, but the

probability P (p | p0, t) does, and therefore h (t; p0) depends on the time and the initial

state. Therefore this notation is not to indicate that time is not relevant, but merely for

notational convenience.

Now let us consider the function h at the time t + δt. An increment in terms of time

δt induces an increment in state of δp and hence we have the following,

h (t + δt; p0) = Ep,δp {Φ (p + δp)} . (3.8)

If we separate the jump into an intermediate step p and a final step δp, then we can

use the law of total expectation to give:
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h (t + δt; p0) = Ep

[
Eδp|p {Φ (p + δp)}

]
. (3.9)

Suppose N is very large, and thus δp would almost be continuous around zero. Therefore,

we can approximate Φ (p + δp) using a Taylor series expansion centered at the point of

origin δp = 0,

h (t + δt; p0) = Ep

[
Eδp|p

{
Φ (p) + δpΦ′ (p) +

1

2
(δp)2 Φ′′ (p) + R2 (δp; p)

}]

= Ep

[
Φ (p) + Eδp|p (δp) Φ′ (p) +

1

2
Eδp|p

{
(δp)2}Φ′′ (p)

]
+ Ep,δp {R2 (δp; p)} ,

(3.10)

where R2 (δp; p) is the remainder term for the second-order Taylor series expansion.

We need to evaluate the conditional expectations Eδp|p (δp) and Eδp|p
{
(δp)2}. Applying

the standard formula for the mean of a binomial distribution, and using Equations 3.2–

3.4, we have the following,

Eδp|p (δp) =
1

2N
Ey|x (y)− p

= ϕ (x)− p , (3.11)

where ϕ (x) is defined by Equations 2.12 and 2.14.

Rewriting Equations 2.12 and 2.14 to give ϕ (x) in terms of p, Eδp|p (δp) is,
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Eδp|p (δp) = (1− u1 − u2)
(1 + s1)p

2 + (1 + s2)p(1− p)

1 + s1p2 + 2s2p(1− p)
+ u1 − p. (3.12)

We can use the Taylor series expansion again, this time on Eδp|p (δp) centered at the

point of zero for all the population parameters (u1 = 0, u2 = 0, s1 = 0 and s2 = 0). This

gives the following,

Eδp|p (δp) = (1− p) u1 − pu2 + p2 (1− p) s1

+ p (1− p) (1− 2p) s2 + O

(
1

N2

)
(3.13)

where O(z) is the usual big O notation (Landou notation). We note that Maple is

used to do Taylor series expansions and most of the algebraic manipulations in this thesis.

The population parameters u1, u2, s1 and s2 are generally assumed to be O
(

1
N

)
. Thus

higher order terms in the Taylor series in Equation 3.13 are denoted by O
(

1
N2

)
. This

relationship between the population parameters and N is artificial: it is a result of linking

time δt and the population size N together, that is,

1

2N
= δt .

Biologically, a link between the time per generation and the parameters, u1, u2, s1

and s2, seems more sensible than this link with N ; more time per generation means more

chance for mutation and selection forces to act on the population during each generation.

Let θ1 and θ2 denote the scaled mutation rates and α1 and α2 give the scaled selection
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rates, where θ1 = 2Nu1, θ2 = 2Nu2, α1 = 2Ns1 and α2 = 2Ns2. The expectation Eδp|p (δp)

is given by,

Eδp|p (δp) =
{(1− p) θ1 − pθ2}

2N

+
p (1− p) {pα1 + (1− 2p) α2}

2N
+ O

(
1

N2

)
. (3.14)

Similarly, we can approximate Eδp|p
{
(δp)2} using a Taylor series expansion. If we take

the standard formula for the variance of the binomial distribution, and rearrange for p,

this expansion around the origin is given by,

Eδp|p
{
(δp)2} =

(
1

2N

)2 [
Vary|x (y) +

{
Ey|x (y)

}2
]
− p

N
Ey|x (y) + p2

=
p (1− p)

2N
+

s1

2N
(1− 2p) p2 (1− p) +

s2

2N
(1− 2p)2 (1− p)

+
u1

2N
(1− 2p) (1− p)− u2

2N
(1− 2p) p2 + R2 (u1, u2, s1, s2; p) (3.15)

Again, population parameters u1, u2, s1 and s2 are assumed to be O
(

1
N

)
, thus terms

involving u1

2N
, u2

2N
, s1

2N
and s2

2N
or higher order terms are O

(
1

N2

)
. Therefore, we have the

following,

Eδp|p
{
(δp)2} =

p (1− p)

2N
+ O

(
1

N2

)
(3.16)
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Now, substituting Eδp|p (δp) in Equation 3.14 and Eδp|p
{
(δp)2} in Equation 3.16

into Equation 3.10 , we get,

h (t + δt; p0) = Ep {Φ (p)}+
1

2N
Ep

[{
M(p) + O

(
1

N

)}
Φ′ (p)

]

+
1

2N
Ep

[{
1

2
V (p) + O

(
1

N

)}
Φ′′ (p)

]
+ Ep,δp {R2 (δp; p)} , (3.17)

where M(p) and V (p) are given by Equation 3.18–3.19.

M(p) = {(1− p) θ1 − pθ2}+ p (1− p) {pα1 + (1− 2p) α2} , (3.18)

V (p) = p (1− p) . (3.19)

The term M(p) is known as the drift coefficient or the mean of the diffusion variable,

and the term V (p) is known as the diffusion coefficient or the variance of the diffusion

variable.

In general, it is assumed that the higher order moments of δp approach zero as N →∞.

More precisely, the following is assumed,

Eδp|p

(
|δp|i

)
= o

(
1

N

)
, where i ≥ 3. (3.20)

Because the remainder term Ep,δp {R2 (δp; p)} is a polynomial of the higher order

moments with the derivatives of Φ (p), which are functions only of p, the following must
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be true:

Ep,δp {R2 (δp; p)} = O

(
1

N

)
. (3.21)

Simplifying and rearranging Equation 3.17 gives,

h (t + δt; p0)− Ep {Φ (p)}
1

2N

= Ep

{
M(p)Φ′ (p) +

1

2
V (p)Φ′′ (p)

}
+ O

(
1

N

)
, (3.22)

where M(p) and V (p) are defined by Equations 3.18–3.19.

By definition, Ep {Φ (p)} = h (t; p0) and 1
2N

= δt, and so,

h (t + δt; p0)− h (t; p0)

δt
= Ep

{
M(p)Φ′ (p) +

1

2
V (p)Φ′′ (p)

}
+ O

(
1

N

)
, (3.23)

where M(p) and V (p) are defined by Equations 3.18–3.19.

Now let consider N → ∞, so δt → 0. Then the limit of the left hand side of

Equation 3.23 is,

lim
δt→0

h (t + δt; p0)− h (t; p0)

δt
=

dh (t; p0)

dt
.

As N →∞, the higher order terms on the right hand side disappear. Thus we have

the following,
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dh (t; p0)

dt
= Ep

{
M(p)Φ′ (p) +

1

2
V (p)Φ′′ (p)

}
, (3.24)

where M(p) and V (p) are defined by Equations 3.18–3.19.

Equation 3.24 actually means the following in a more explicit notation:

dh (t; p0)

dt
=
∑

p

P (p | p0, t)

{
M(p)Φ′ (p) +

1

2
V (p)Φ′′ (p)

}
. (3.25)

We have omitted t and p0 from the notation for convenience, because they do not affect

any of the expansions or orders of approximation in the previous derivation. However, it

is important to note that t and p0 do affect the distribution with respect to which Ep is

calculated. This dependency on t is actually the reason that we can reach Equation 3.24,

which is certainly not true if t and p are discrete. However, as N →∞ and thus δt → 0,

the distribution gradually changes and approaches a continuous distribution which makes

Equation 3.24 exact. This is the reason why other authors use the term “the diffusion

limit of a certain model” for the diffusion approximation of the model.

We only consider processes that admit a stationary distribution, in which case an

important observation to make is that the rate of change of the expectation of any well-

behaved function of the random variable with respect to time must be zero at stationarity.

That is,

dh (t; p0)

dt
= 0 . (3.26)
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This completes the derivation of the diffusion operator L for the SLS model:

L = M(p)
∂

∂p
+

1

2
V (p)

∂2

∂p2
, (3.27)

where M(p) and V (p) are defined by Equations 3.18–3.19.

Therefore, the master equation for the SLS model is,

Ep

{
M(p)

∂Φ (p)

∂p
+

1

2
V (p)

∂2Φ (p)

∂p2

}
= 0 , (3.28)

where M(p) and V (p) are defined by Equations 3.18–3.19, and Φ (p) is any well-

behaved function of p only.

Other models possessing a single diffusion variable p will have a master equation of

the same form, but with different M(p) and V (p).

A generalisation of the master equation for a multi-dimensional diffusion variable is

straightforward. For linearly independent random variables x1, x2, . . ., xk−1, it has the

following form:

Ep

{
k−1∑
i=1

Mi(p)
∂Φ (p)

∂pi

+
1

2

k−1∑
i=1

Vi(p)
∂2Φ (p)

∂p2
i

+
k−2∑
i=1

k−1∑
j>i

Wij(p)
∂2Φ (p)

∂pi∂pj

}
= 0 , (3.29)

where p is a vector of the diffusion variables pi for the corresponding discrete random

variable x, and Mi(p), Vi(p) and Wij(p) are the mean, the variance and the covariance of

the corresponding diffusion variables respectively.

The master equation for the SLM model and the TLD model both have the above form,
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but each incorporates a different set of Mi(p), Vi(p) and Wij(p), and p has a different

biological meaning in each case. Terms Mi(p), Vi(p) and Wij(p) can be determined from the

corresponding conditional expectations Eδp|p (δpi), Eδp|p
{
(δpi)

2}, and Eδp|p (δpiδpj). See

Appendix A.1 for the corresponding conditional expectations of SLM, and Appendix

A.2 for TLD.

For the SLM model, we have the following,

Mi(p) = θ (1− kpi) (3.30)

Vi(p) = pi(1− pi) (3.31)

Wij(p) = −pipj , (3.32)

where k is the number of distinct allelic types, and θ is the scaled mutation rate

(θ = 2Nu). The terms p1, p2, . . ., pk−1 are the corresponding diffusion variables for the

discrete random variables x1, x2, . . ., xk−1. In this case, the discrete random variables x1,

x2, . . ., xk−1 are defined as allele type counts for alleles A1, A2, . . ., Ak−1 respectively in

Subsection 2.1.2.

For the TLD model, we have the following,

M1(p) = −2θp1 + θp2 + θp3 − ρD (p) (3.33)

M2(p) = θ − 3θp2 − θp3 + ρD (p) (3.34)

M3(p) = θ − θp2 − 3θp3 + ρD (p) (3.35)

Vi(p) = pi(1− pi) (3.36)

Wij(p) = −pipj , (3.37)
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where θ is the scaled mutation rate (θ = 2Nu) and ρ is the scaled recombination

rate (ρ = 2NC). The terms p1, p2 and p3 are the corresponding diffusion variables for

the discrete random variables x1, x2 and x3. In this case, the discrete random variables

x1, x2 and x3 are defined as gamete type counts for A1B1, A1B2 and A2B1 respectively

in Subsection 2.1.4. Here, D (p) is the usual coefficient of linkage disequilibrium,

D (p) = p1−p2
1−p1p2−p1p3−p2p3, corresponding to Equation 2.21 in the discrete case.

The random variable x4 for gamete type A2B2, and its counterpart p4, is not included

because x4 = 1− x1 − x2 − x3.

Traditionally, the diffusion approximation for the TLD model is transformed from p1,

p2 and p3 into p, q and D, where

p = p1 + p2

q = p1 + p3

D = p1 − p2
1 − p1p2 − p1p3 − p2p3 .

Here, p and q are the continuous allelic frequencies for A1 and B1 at loci A and B

respectively, and D is the usual coefficient of linkage disequilibrium.

Initially, Ohta and Kimura (1969a) used this transformation to obtain the variance

of D. Most recently Song and Song (2007) used the same transformation to evaluate the

expectation of r2. The parametrisation p, q and D is convenient to work with when we are

dealing with D, but it is not convenient when we are reconstructing the distribution. This

is because p, q and D together have an irregular support. Reconstructing a distribution on

a regular region, such as the support of p1, p2 and p3, is usually much simpler. Therefore

we will use the original parametrisation p1, p2 and p3 instead of the usual parametrisation
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p, q and D for the TLD model under the diffusion approximation.

3.2 Stationary Distribution

3.2.1 Classical approach

For a single locus model, a series of papers by Wright (1931, 1937, 1945) and Kimura

(1964) provide a general approach for finding the stationary distribution of allele propor-

tions under the diffusion approximation. They show that the stationary distribution π (p)

under the diffusion approximation has the form,

π (p) =
1

ΛV (p)
exp

(
2

∫
M(p)

V (p)
dp

)
, (3.38)

where Λ denotes a normalising constant, which is generally unknown in closed form, and

M(p) and V (p) are the mean and the variance of the diffusion variable under consideration.

The continuous distribution π (p) is an approximation to the discrete π in Chapter 2,

but it is the exact solution under the diffusion approximation. That is, π (p) is the exact

solution to the Kolmogorov equation or the diffusion equation at steady state.

Using M(p) and V (p) in Equations 3.18–3.19, the stationary distribution for SLS

under the diffusion approximation is given by,

π (p) =
1

Λ
p2θ1−1(1− p)2θ2−1 exp

(
2α2p + (α1 − 2α2) p2

)
, (3.39)

where Λ is determined such that

∫ 1

0

π (p) dp = 1.
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The stationary distribution for the SLM model under the diffusion approximation has

the following form; see Wright (1968) for more details:

π (p) =
Γ (2kθ)

{Γ (2θ)}k

k∏
j=1

p2θ−1
j . (3.40)

Hence, π (p) is a symmetric Dirichlet distribution Dir (2θ) for the SLM model under

the diffusion approximation.

For multiple-locus models, in which all loci are unlinked, the stationary distribution

under the diffusion approximation for the diallelic case is given by Wright (1937), and

for the multiallelic case by Wright (1949). Diffusion theory for multiple loci was also

studied by Kimura et al. (1955b) and Ethier (1979), but for many years no stationary

distribution under the diffusion approximation was found for models involving linked loci

such as the TLD model.

Although the stationary distribution was not found, some other important quantities

were evaluated for multiple loci in the meantime, such as the variance of linkage disequilib-

rium D for the TLD model at steady state by Ohta and Kimura (1969a), and fixation

times and probabilities for an independent-locus model by Littler and Good (1978).

The first result for the stationary distribution of linked-locus models under the diffusion

approximation occurred ten years later, when Ethier and Nagylaki (1989) obtained

the stationary distribution for two models of linked loci under certain conditions. However,

there still exists no general approach for models involving multiple linked loci.
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3.2.2 Recent developments

The diffusion approximation has seen a recent resurgence in popularity: see Cherry

and Wakeley (2003), Song and Song (2007), Jenkins and Song (2009), and most

recently Etheridge and Lemaire (2011). This PhD project was initiated by one of

these developments. Song and Song (2007) proposed an elegant procedure to compute

the expectation of the linkage disequilibrium coefficient r2 for the TLD model at steady

state. We were largely inspired by their idea of breaking r2 into an infinite series of

monomials, and evaluating the expectation of each using the diffusion approximation:

r2 =
D2

p (1− p) q (1− q)

= 4
∞∑

m=0

∞∑
n=0

D2pmqn , (3.41)

where p and q are the allelic frequencies for allele type A1 and B1 at locus A and B

respectively,

p = p1 + p2 , q = p1 + p3 ,

and D is the usual coefficient of linkage disequilibrium,

D = p1 − p2
1 − p1p2 − p1p3 − p2p3 .

Partial fraction decomposition, convergent series expansion, and the symmetry of the
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TLD model are used to reach the expansion in Equation 3.41; see Song and Song

(2007) for details. Therefore their method is very specific for evaluating E (r2), and it

cannot be easily extended to evaluate other expectations. However, the idea behind their

method can be generalised.

In Song and Song (2007), the expectation of r2 at steady state is evaluated without

first finding the stationary distribution. Intuitively, each moment E (D2pmqn) provides

a small piece of information regarding the stationary distribution, and the infinite series

provides the information regarding r2 (a complicated function of genetic composition).

Putting these together gives the expectation of r2 at steady state. The method treats the

diffusion approximation as a tool for evaluating expectations, rather than a description of

the continuous reproduction process.

The motivation behind our approach is that a series of expectations may contain all the

information we require to compute the entire stationary distribution. Whereas Song and

Song (2007) need a series of expectations to evaluate the expectation of a complicated

function of genetic composition, we shall attempt to reconstruct the entire stationary

distribution using a similar series of expectations.
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4
Method for Reconstructing

Distributions

In this chapter, we first describe a method for finding expectations in analytic form using

the diffusion approximation without first finding the stationary distribution, for models in

population genetics. We then study methods of reconstructing a density function using

a sequence of its moments. Next we focus on one of the methods of reconstructing a

density function, namely the maximum entropy principle (Maxent). In the final section,

59
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we propose a new method of reconstructing a density function to incorporate not only

numerical values of its expectations but also analytic formulae of its expectations, therefore

obtaining the analytic form of the density function in terms of the random variable and

its parameter.

4.1 Stationary Moments

4.1.1 Single locus model

The method of finding relevant expectations at stationarity using the diffusion approxima-

tion without first finding the stationary distribution was pioneered by Ohta and Kimura.

The idea is to choose a few relevant functions Φ (p) intelligently, so that applying the

master equation with these functions generates a solvable system of linear equations in

terms of the desired expectations. See Ohta and Kimura (1969a, 1969b, 1970, 1971)

for details.

Taking the SLS model as an example, substituting Φ (p) = pn into the master equation

Equation 3.28 gives the following recursive relationship regarding expectations at steady

state:

n (2α2 − α1) E
(
pn+2

)
+ n (α1 − 3α2) E

(
pn+1

)
= n

(
θ1 + θ2 − α2 +

n

2
− 1

2

)
E (pn)− n

(
θ1 +

n

2
− 1

2

)
E
(
pn−1

)
,

(4.1)

where n takes an integer value.
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If selection forces are absent (α1 = α2 = 0), Equation 4.1 immediately reduces to,

E (pn) =
2θ1 + n− 1

2θ1 + 2θ2 + n− 1
E
(
pn−1

)
. (4.2)

As E (p0) = 1,

E (p) =
θ1

θ1 + θ2

,

where θ1 and θ2 are the scaled mutation rates.

Solving the recursion relation in Equation 4.2 gives the following equation for the

SLS model without selection at steady state:

E (pn) =
Γ (2θ1 + n) Γ (2θ1 + 2θ2)

Γ (2θ1 + 2θ2 + n) Γ (2θ1)
, (4.3)

where Γ (z) is the usual Gamma function.

If the mutation forces are equal (θ1 = θ2 = θ), in addition to selection forces being

absent (α1 = α2 = 0), the SLS model reduces to the diallelic SLM model (k = 2). Using

Equation 4.3 , we obtain the following equation for the diallelic SLM model at steady

state:

E (pn) =
Γ (2θ + n) Γ (4θ)

Γ (4θ + n) Γ (2θ)
. (4.4)

Let mi denote the ith stationary moment,
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mi = E
(
pi
)

=

∫ 1

0

piπ(p)dp , (4.5)

where π(p) is the corresponding stationary distribution. Let Mn denote the sequence

of stationary moments up to and including the nth stationary moment,

Mn = {mi : i = 0, 1, 2, . . . , n} , (4.6)

where the first element of the sequence, m0, is always 1 by definition. The sequence

Mn for the SLS model in the absence of selection can be generated using Equation 4.3 ,

and the sequence Mn for the diallelic SLM model can be generated using Equation 4.4 .

4.1.2 Two-locus model

It may also be possible to find the moments of a multivariate diffusion variable at steady

state using a similar method. Song and Song (2007) recover the stationary moments in

terms of p, q and D for the TLD model, where p and q are continuous allelic frequencies,

and D is the usual coefficient of linkage disequilibrium. We now show how to recover the

stationary moments in terms of p1, p2 and p3 for the TLD model, where p1, p2 and p3

are continuous gametic frequencies. See Equation 3.29 and 3.33 for the TLD master

equation in terms of p1, p2 and p3.

Let pi denote the following monomial,
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pi = pi1
1 pi2

2 pi3
3 , (4.7)

where i = (i1, i2, i3), and i1, i2 and i3 can only take non-negative integer values.

Let P d denote the sequence of monomials of degree up to and including d, that is,

P d =
{

pi : i1 + i2 + i3 ≤ d
}

, (4.8)

where d can only take non-negative integer values, and the elements of the sequence

P d follow a graded lexicographic order. First, the monomials are ordered based on the

degree (the sum of all exponents). Any ties are broken by comparing the first exponent of

p1. If these are also equal, exponents of p2 are compared, and so on. We refer to P d as a

sequence of monomials of order d.

The expectation of the monomial pi at steady state gives the stationary moments for

the TLD model. Let mi denote the following stationary moments,

mi =

∫
∆3

piπ (p) dp , (4.9)

where

∫
∆3

dp denotes the multiple integral over the standard 3-simplex region. The

standard simplex region is defined as the following:

∆3 =

{
(p1, p2, p3) ∈ R3 :

3∑
i=1

pi ≤ 1 and pi ≥ 0 for i = 1, 2, 3

}
.
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The sequence given by the expectation of each element in the sequence P d at steady

state represents a sequence of stationary moments for the TLD model following a graded

lexicographic order. Let M d denote the sequence of stationary moments of order up to

and including d, that is,

M d =
{

mi : i1 + i2 + i3 ≤ d
}

. (4.10)

The number of monomials of the same degree i in the trivariate case is given by the

binomial coefficient,

(
2 + i

i

)
.

Therefore the total number of elements in the sequence P d is,

nd =
d∑

i=0

(
2 + i

i

)
.

The sequence M d corresponds to P d, thus it has the same number of elements.

Using Maple, we identified that the master equation defined by Equations 3.29 and

3.33 can be used to find analytic formulae for mi for any i. By analytic, we mean that

mi is expressed in terms of the population parameters θ and ρ. When a monomial of

degree d is substituted as Φ (p) into the master equation, it leads to a linear equation

in terms of stationary moments of the orders d + 1, d and d− 1 in general. If we use a

number of different monomials, we obtain a system of linear equations.
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By examining the linear system using Maple, we identified that the system of linear

equations constructed by putting every element of the sequence P 2(d+1) as Φ (p) in the

master equation, is partially solvable up to and including mi of the order of d. That is,

all the stationary moments of the sequence M d can be determined by considering all the

monomials of the sequence P 2(d+1) in the master equation. The TLD model is symmetric

in the sense that the two loci are under the same mutation force, so some moments are

equal. This symmetry is used while solving the system of equations. For example, the first

order stationary moments for the TLD model are equal, because there is no force favouring

any one gamete type (e.g. A1B1) over any of the others (A1B2, A2B1, or A2B2). Thus:

E (p1) = E (p2) = E (p3) =
1

4
. (4.11)

Similarly, using Maple, we have the following for the second order stationary moments.

The three expectations E (p2
1), E (p2

2) and E (p2
3) are equal and have the following forms:

4096θ4 + 1536θ3ρ + 128θ2ρ2 + 4352θ3 + 1216ρθ2

4Λ

+
64ρ2θ + 1568θ2 + 304ρθ + 8ρ2 + 216θ + 26ρ + 9

4Λ
.

The two expectations E (p1p2) and E (p1p3) are equal and have the following form:

θ (1024θ3 + 384ρθ2 + 32ρ2θ + 704θ2 + 192ρθ + 8ρ2 + 144θ + 26ρ + 9)

Λ
.
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The expectation E (p2p3) has the following form:

8θ2 (128θ2 + 48ρθ + 4ρ2 + 72θ + 14ρ + 9)

Λ
.

The term Λ for the three expressions of the second order moments is the same and has

the following form:

Λ = (8θ + 1)
(
2048θ3 + 768ρθ2 + 64ρ2θ + 1280θ2 + 304ρθ + 8ρ2 + 216θ + 26ρ + 9

)
.

Recall that θ is the scaled mutation rate, and ρ is the scaled recombination rate.

Notice that E (p1p2) = E (p1p3) 6= E (p2p3). The terms p1p2 and p1p3 represent the

proportions of individuals that are heterozygous at exactly one locus, respectively with

genotypes A1B1/A1B2 and A1B1/A2B1. By contrast, p2p3 represents individuals that

are heterozygous at both loci with genotype A1B2/A2B1, so this quantity has a different

expectation. These both differ from the expectations of p2
1, p2

2 and p2
3, which represent

individuals that are homozygous at both loci.

See Table B.1 for additional moments of the TLD model. In general, we have observed

that moments of TLD are rational functions of the scaled mutation rate θ and the scaled

recombination rate ρ. However, a general closed formula for E
(
pi
)

in terms of θ, ρ, i1, i2

and i3 has not been found.

A summary of the procedure for finding the stationary moments of the TLD model in

terms of p1, p2 and p3 is given in Table 4.1.
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Table 4.1: Procedures for determining the stationary moments for the TLD model.

1 Consider all monomials Φ(p) = pi for i1 + i2 + i3 ≤ 2(d + 1), and insert
each in the master equation E [L{Φ (p)}] =0. Obtain a n2(d+1)×n2(d+1)

linear system A involving mi of order up to and including 2d + 2.

2 Use the symmetry in the TLD model to reduce the number of unknowns
in A.

3 Solve the reduced A to obtain all of the moments mi of order up to
and including d.

4.2 Moment Problem

The problem of reconstructing a density function using knowledge of its moments is a

special case of the problem of inverting an integral transform. Questioning the existence

and the uniqueness, as well as finding such a density, is known as the moment problem, see

Shohat and Tamarkin (1943). In terms of our setting, it is known as the Hausdorff

moment problem, because the underlying distribution is defined on a bounded simplex

region.

Consider first a univariate probability density function π(p), and a finite sequence of

its moments

Mn = {mi : i = 0, 1, 2, . . . , n} ,

where mi is defined in Equation 4.5 .

We do not aim to recover the true underlying π (p), but seek a general method of
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finding an approximation π̃n (p) which matches the first n moments,

mi =

∫ 1

0

piπ̃n (p) dp for i = 0, 1 . . . , n . (4.12)

We also require π̃n to converge weakly to π as n →∞, that is,

lim
n→∞

∫ p

0

π̃n (z) dz =

∫ p

0

π (z) dz , (4.13)

for all points p ∈ (0, 1) at which

∫ p

0

π (z) dz is continuous.

There are several possibilities for reconstructing such a π̃n (p). The first possibility is

to use a certain type of orthogonal polynomial expanding π (p),

π (p) = λ0b0(p) + λ1b1(p) + λ2b2(p) + · · · ,

where b0(p), b1(p), . . . are members of some orthogonal polynomial basis and λ0, λ1, . . .

are expansion coefficients.

The series is then truncated at n+1 terms, and the expansion coefficients are determined

by solving the system of linear equations specified by the first n moment constraints; see

Kendall, Stuart and Ord (1991). The rate of convergence of π̃n(p) to π(p) is largely

affected by the choice of weight function with respect to which the orthogonal polynomial

basis is defined,
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0 =

∫ 1

0

bi(p)bj(p)w(p)dp ,

where w(p) is the weight function.

In practice, the selection of a weight function that allows for efficient and stable

convergence is rather difficult in the absence of any additional knowledge regarding the

unknown distribution π (p). An inadequate choice of weight function leads to a poor choice

of orthogonal polynomial, and in turn may lead to a highly oscillating approximation,

non-positive measure or even a singular linear system.

Another alternative is the Padé approximation, which is widely used in the fields of

physics and engineering to solve moment problems. Our understanding is that it is more

powerful than the previous method, and has a stable convergence. See Amindavar and

Ritcey (1994) for an application of the Padé approximation. The Padé approximation

has been used very recently in the field of population genetics by Jenkins and Song

(2009), Jenkins and Song (2011), and Bhaskar and Song (2011).

4.2.1 Maximum entropy principle

A different and competitive approach, the maximum entropy principle, is considered in this

thesis. It has gained attention in recent years in various scientific fields (Tagliani (1999);

Wu (2003); Abramov (2009)), but it has not previously been used in population

genetics, as far as we know. It is regarded as the least-biased solution to the moment

problem in terms of entropy. The maximum entropy principle and its generalisation

(Kullback’s minimum cross entropy principle) has been developed in areas of statistical

mechanics, computer science, economics, and finance. See Mead and Papanicolaou
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(1984) and Borwein and Lewis (1991) for some results on the convergence of the

maximum entropy (Maxent) approach.

The entropy of a distribution is understood to be a measure of uncertainty or ignorance.

The fundamental idea of the maximum entropy principle is that the distribution with the

maximum amount of uncertainty is the most honest choice after all constraints have been

taken into account. See Appendix C for an intuitive discussion of entropy, its rationale,

and the theory behind the maximum entropy principle.

Mathematically, the maximum entropy (Maxent) distribution π̃n (p) is the distribution

that maximises the expectation of the negative logarithm of its own density function

while satisfying all of the moment constraints. This gives rise to the following variational

problem:

Maximise I [π̃n] = −
∫ 1

0

π̃n (p) ln π̃n (p) dp ,

Subject to mi =

∫ 1

0

pi π̃n (p) dp for i = 0, 1 . . . , n . (4.14)

The corresponding Lagrange function is

L = −
∫ 1

0

π̃n (p) ln π̃n (p) dp−
n∑

i=0

λi

(∫ 1

0

piπ̃n (p) dp−mi

)
. (4.15)

Substituting this into the Euler-Lagrange equation allows the Maxent distribution

π̃n (p) to be solved. In terms of our formulation, it leads to the univariate distribution
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π̃n (p) = exp
(
λ0 + λ1p + λ2p

2 + λ3p
3 + · · ·+ λnp

n
)

, (4.16)

where the λis are Lagrange multipliers and are obtained by solving the following

unconstrained minimisation problem,

arg min
λ

{∫ 1

0

exp

(
n∑

i=0

λip
i

)
dp−

n∑
i=0

λimi

}
, (4.17)

where mi is the ith order moment of π (p) and λ is the vector containing values of λi.

Equation 4.16 is the general solution of Maxent given a sequence of moments of a

univariate distribution. The Maxent solution π̃n (p) can be generalised to cover multivariate

cases. For multivariate π̃d (p), the sequence of univariate monomials in Equations 4.16

and 4.17 is replaced by a sequence of multivariate monomials, and the univariate moments

are replaced by the necessary multivariate moments.

Given a sequence of trivariate moments of order up to and including d defined previously

in Section 4.1 for the TLD model,

M d =
{

mi : i1 + i2 + i3 ≤ d
}

,

the Maxent solution π̃d (p) has the form

π̃d (p) = exp

(
d∑

j=0

j∑
i1=0

j−i1∑
i2=0

j−i1−i2∑
i3=0

λ(i1,i2,i3)p
i

)
, (4.18)
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where pi is defined by Equation 4.7 and the λ(i1,i2,i3)s are obtained by solving the

unconstrained minimisation problem

arg min
λ

{∫
∆3

π̃d (p) dp−
d∑

j=0

j∑
i1=0

j−i1∑
i2=0

j−i1−i2∑
i3=0

λ(i1,i2,i3)m
i

}
, (4.19)

where mi is defined by Equation 4.9 and λ denotes the vector containing values of

λ(i1,i2,i3).

Let π̃n (p) and π̃d (p) denote respectively the univariate and the multivariate Maxent

distribution for the rest of the thesis.

4.3 Numerical Maximum Entropy Solution

We have sequences of stationary moments in analytic form for the SLS model in the

absence of selection, for the diallelic SLM model, and for the TLD model, see Section 4.1.

We refer to these sequences as sequences of analytic moments, and sequences of moments

evaluated at a specific population parameter are referred to as sequences of numerical

moments.

Often in physics and engineering, where the Maxent principle is traditionally used,

only sequences of numerical moments are available from experimental data. Hence,

λ in Equation 4.16 is typically determined by numerically solving the optimisation

problem in Equation 4.17 . See Poland (2000) for an example where the maximum

entropy principle is used successfully to reconstruct a molecular energy distribution from

experimental data.

In this section, we first show the traditional method of solving the optimisation defined
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by Equation 4.17 . We then show some results on the application of the maximum entropy

principle for the SLS model and the TLD model under the diffusion approximation, using

their sequences of numerical moments. We refer to these solutions as numerical maximum

entropy solutions. We will propose a novel method of incorporating a sequence of analytic

moments in the next section. When a sequence of analytic moments is considered using

the maximum entropy principle, we shall refer to the solution as an analytic maximum

entropy solution.

4.3.1 Gaussian quadrature

The integral inside the objective function in Equations 4.17 and 4.19 is not available

in closed form. Being part of an objective function, this integral needs to be evaluated

many times with high accuracy for numerical optimisation. Gaussian quadrature has been

proposed for evaluating the integral by various authors since the earliest application of the

Maxent method. We found that Gaussian-Legendre quadrature provides a satisfactory

solution in the univariate case.

The usual Gaussian-Legendre quadrature is over the interval [−1, 1]. However, all of

the problems we consider involve proportions, and hence a quadrature over the interval

[0, 1] is needed. Using the standard technique of interval shifting and scaling, we can

obtain the appropriate nodes zj and weights wj:

∫ 1

0

f (z) dz =
1

2

∫ 1

−1

f

(
1

2
z +

1

2

)
dz

≈ 1

2

∑
j

w∗
jf

(
1

2
z∗j +

1

2

)
, (4.20)
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where z∗j and w∗
j are the usual Gaussian-Legendre nodes and weights respectively; see

Hildebrand (1987) for a derivation of the Gaussian-Legendre nodes and weights. We

thus have the following Gaussian-Legendre nodes and weights for the integral over the

interval [0, 1]:

zj =
1

2

(
z∗j + 1

)
wj =

1

2
w∗

j .

Let pi
j denote p to the power of i evaluated at the jth node. Applying the Gaussian-

Legendre quadrature to Equation 4.17 , the optimisation problem reduces to

arg min
λ

{∑
j

wj exp

(
n∑

i=0

λip
i
j

)
−

n∑
i=0

λimi

}
. (4.21)

Similarly, the multivariate case in Equation 4.19 can be reduced to

arg min
λ

{∑
l

wlπ̃d (pl)−
d∑

j=0

j∑
i1=0

j−i1∑
i2=0

j−i1−i2∑
i3=0

λ(i1,i2,i3)m
i

}
, (4.22)

where wl is the weight of a multidimensional Gaussian cubature for the corresponding

lth node on the simplex region ∆3. Determining the nodes and the weights of an efficient

Gaussian cubature on the simplex is rather difficult. We converted a procedure originally

written by Greg von Winckel in Matlab to generate the necessary nodes and weights.

It appears to be highly accurate and efficient with all the examples we examined. The
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corresponding algorithm for the procedure is briefly described in his recent paper Clason

and von Winckel (2011).

When the objective function involves a high dimensional integral, however, it is

unrealistic to expect an evaluation method to be both efficient and accurate if the

dimension keeps increasing. This is the weakness of the maximum entropy approach: it

severely suffers from the curse of dimensionality. In terms of our problem, this means

that there is little chance of accurately reconstructing any stationary distribution of more

than three variables with current computing power. Special treatment of the integral

is needed for high dimensional cases. We will not consider this issue in this thesis, and

restrict ourselves to three variables at most. Indeed, even with three variables, the integral

is barely evaluated to a satisfactory level of accuracy with current computing power.

4.3.2 Chebyshev form

In the above discussion of the maximum entropy solution for the stationary distribution,

the univariate density π̃n (p) is in the form of a power function, with terms involving

pi for i = 0, 1, . . . , n .

The trivariate density π̃d (p) has monomial terms:

pi1
1 pi2

2 pi3
3 for {i1, i2, i3 ∈ Z≥0 : i1 + i2 + i3 ≤ d} .

These forms are due to the fact that we started with the corresponding power moments,
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mi = E
(
pi
)

for i = 0, 1, . . . , n ,

and the corresponding monomial moments

mi = E
(
pi1

1 pi2
2 pi3

3

)
for {i1, i2, i3 ∈ Z≥0 : i1 + i2 + i3 ≤ d} .

These are natural and simple forms for the Maxent distribution: we will refer to them

as the original forms of the Maxent distribution. However, this is not the best form to

work with numerically. The optimisation in Equation 4.21 and Equation 4.22 using

power moments leads to an ill-posed numerical problem. This is because we are interested

in proportions, 0 ≤ p ≤ 1, so the power function pi becomes extremely small as i becomes

large. Therefore the contributions from high order power moments need many significant

digits to capture. The level of machine precision puts a limit on how many high-order

power moments can be considered, and any higher order power moments past this level

are redundant.

By contrast, Chebyshev polynomials are more stable to compute numerically. The

maximum entropy approach using Chebyshev moments (the expectation of Chebyshev

polynomials) is better conditioned as there is no redundancy. See Wheeler, Prais and

Blumstein (1974) for a study of power moments and modified moments, where modified

moments refer to the expectation of polynomials in general. In particular, Silver and

Röder (1997) found that the Hessian for the optimisation has a much flatter eigenvalue

spectrum when using Chebyshev moments than when power moments are used. See

Bandyopadhyay, Bhattacharya, Biswas and Drabold (2005) and Biswas and
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Bhattacharya (2010) for studies of Maxent using Chebyshev polynomials to reconstruct

various densities.

In terms of our problem, for a univariate model we need to consider the shifted

Chebyshev polynomials of the first kind, T ∗
i (p), of degree i up to and including n:

T ∗
i (p) = Ti (2p− 1) for i = 0, 1, . . . , n , (4.23)

where Ti is the usual Chebyshev polynomial of the first kind of degree i; see Appendix

D for details of Chebyshev polynomials.

The reason for considering T ∗
i instead of Ti is to adjust the interpolation domain from

the interval (−1, 1) to (0, 1). The support of p is (0, 1), so the adjustment is needed to

avoid using only half of the interpolation domain and to avoid having to accommodate a

discontinuity at p = 0. This adjustment allows us to access the full interpolation power of

Chebyshev polynomials. Hence, information recovered is at the greatest possible level for

a fixed number of moments.

Let mc
i denote the expectation of T ∗

i (p):

mc
i = E {T ∗

i (p)} .

We will refer to mc
i as the shifted Chebyshev moment of order i. Let M c

n denote the

sequence of shifted Chebyshev moments of order up to and including n:

M c
n = {mc

i : i = 0, 1, 2, . . . , n} .
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Given a sequence of power moments Mn, the corresponding sequence of shifted Cheby-

shev moments M c
n can be identified easily by the simple linear transformation,



mc
0

mc
1

...

...

mc
n


=



a00 a01 · · · · · · a0n

a10 · · · · · · · · · · · ·
...

. . . . . . . . .
...

...
. . . . . . . . .

...

an0 · · · · · · · · · ann





m0

m1

...

...

mn


, (4.24)

where aij is the coefficient for the term pj in T ∗
i (p). For example, for i = 0 we have,

T ∗
0 (p) = T0 (2p− 1)

= 1 for 0 ≤ p ≤ 1 ,

thus a00 = 1 and a0j = 0 for j = 1, 2, . . . , n. For i = 1,

T ∗
1 (p) = T1 (2p− 1)

= 2p− 1 for 0 ≤ p ≤ 1 ,

so a10 = −1, a11 = 2 and a1j = 0 for j = 2, 3, . . . , n. For i = 2,
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T ∗
2 (p) = T2 (2p− 1)

= 2 (2p− 1)2 − 1

= 8p2 − 8p + 1 for 0 ≤ p ≤ 1 ,

so a20 = 1, a21 = −8, a22 = 8 and a2j = 0 for j = 3, 4, . . . , n.

The remaining elements in the matrix in Equation 4.24 can be calculated in a similar

fashion. Let A be the matrix containing these values. Notice that A is a lower triangular

matrix, so the linear transformation can be done quickly by direct forward substitution.

With this new sequence of moments, {mc
i : i = 0, 1, 2, . . . , n}, we have the following

modified optimisation problem instead of the one defined by Equation 4.21 :

arg min
λc

{∑
j

wj exp

(
n∑

i=0

λc
i T ∗

ij

)
−

n∑
i=0

λc
im

c
i

}
, (4.25)

where λc is the vector containing values λc
i and T ∗

ij = T ∗
i (pj) denotes the shifted

Chebyshev polynomial of the first kind of degree i evaluated at the jth quadrature node.

The vector λc forms a new set of Lagrange multipliers corresponding to the following

Maxent distribution π̃c
n (p):

π̃c
n (p) = exp (λc

0 + λc
1T

∗
1 (p) + λc

2T
∗
2 (p) + λc

3T
∗
3 (p) + · · ·+ λc

nT
∗
n (p)) . (4.26)

The densities π̃c
n (p) and π̃n (p) in Equation 4.16 specify the same distribution in two

different forms. λ is a linear transformation of λc. Given λc, λ is given by
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λ = ATλc , (4.27)

where AT is the transpose of the matrix A in Equation 4.24 .

Given a sequence of power moments up to order n, we first determine the corresponding

sequence of Chebyshev moments using Equation 4.24 . Then we can find λc by solving

the optimisation problem in Equation 4.25 . Lastly, we back-transform λc into λ using

Equation 4.27 and obtain the Maxent density function in the original form.

For multivariate cases, a similar approach can be implemented by using an appropriate

multi-dimensional Chebyshev polynomial. For the 3-variable TLD model, this is T ∗
(i1,i2,i3).

Given the specific form of T ∗
(i1,i2,i3), the corresponding matrix A and thus the corresponding

sequence of Chebyshev moments in three dimensions is readily obtained, and hence the

optimisation in Equation 4.22 can be replaced by a more stable optimisation with

respect to λc
(i1,i2,i3). Solving this leads to λ(i1,i2,i3) as well as λc

(i1,i2,i3) by a similar back

transformation using the corresponding AT. We simply use the product of multiple

univariate Chebyshev polynomials of the first kind as the T ∗
(i1,i2,i3):

T ∗
(i1,i2,i3) (p) = Ti1 (2p1 − 1) Ti2 (2p2 − 1) Ti3 (2p3 − 1) . (4.28)

This T ∗
(i1,i2,i3) is known as the tensor product of univariate Chebyshev polynomials of

the first kind; see Barthelmann, Novak and Ritter (2000) for more details.
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4.3.3 Trust region optimisation

Solving the optimisation problem in Equation 4.25 is the key step to gaining a Maxent

solution π̃n(p), and deserves a brief discussion. Although the chance of finding the optimal

λ is greatly improved by putting the problem in the Chebyshev form and solving λc instead,

different optimisation algorithms perform quite differently. We will use the univariate case

to make a few points, but they apply to multivariate cases as well.

Let f denote the objective function for the optimisation problem,

f =
∑

j

wj exp

(
n∑

i=0

λc
iT

∗
ij

)
−

n∑
i=0

λc
i mc

i . (4.29)

The gradient g is a vector with n + 1 components of the following form:

g =



∑
j

wjT
∗
0jπ̃

c
n (pj)−mc

0∑
j

wjT
∗
1jπ̃

c
n (pj)−mc

1

...

...∑
j

wjT
∗
njπ̃

c
n (pj)−mc

n


, (4.30)

where π̃c
n (pj) = exp

(∑n
i=0 λc

iT
∗
ij

)
.

Notice that setting the gradient to zero implies
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mc
i =

∑
j

wjT
∗
ijπ̃

c
n (pj) for i = 0, 1, . . . , n

≈
∫ 1

0

T ∗
i (p)π̃c

n(p) dp . (4.31)

The quality of the approximation in Equation 4.31 depends on the accuracy of the

quadrature. It also determines how well the moment constraints are satisfied. Therefore,

the accuracy of the quadrature affects the quality of any optimisation procedure.

The Hessian matrix H is a symmetric (n + 1)× (n + 1) matrix of the following form:

H =



∑
j

wjT
∗
0jT

∗
0jπ̃

c
n (pj) · · · · · · · · ·

∑
j

wjT
∗
0jT

∗
njπ̃

c
n (pj)∑

j

wjT
∗
0jT

∗
1jπ̃

c
n (pj)

. . . . . . . . .
...

...
. . . . . . . . .

...

...
. . . . . . . . .

...∑
j

wjT
∗
0jT

∗
njπ̃

c
n (pj) · · · · · · · · ·

∑
j

wjT
∗
njT

∗
njπ̃

c
n (pj)


. (4.32)

Again, the quality of the Hessian depends on the accuracy of the quadrature.

In general, gradient based optimisation algorithms that incorporate both the gradient

and the Hessian tend to perform better than other algorithms. However, in our case, the

Hessian matrix is very expensive to compute. The Hessian matrix has many elements, each

of which is a sum of many terms. Alternative algorithms that allow for simple computation

but take a large number of iterations to converge are not suitable here.

We used a trust region algorithm, as discussed by Fletcher (1987) and Nocedal and

Wright (1999), and implemented in R by Geyer (2008). Trust region optimisation is a
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gradient based algorithm considered to be slower than line search algorithms in general

as the trust region subproblem within each iteration is harder to solve than the line

search subproblem. Usually a line search algorithm takes many more iterations to solve a

given problem, but each iteration takes much less time. However, using the trust region

algorithm for our problem, we found that the time saved from computing extra iterations

outweighs the time lost for each iteration. The trust region algorithm outperformed all

other optimisation algorithms we tested, and is the only algorithm that provides both the

stability and the speed needed for all the Maxent problems we considered.

The main idea of trust region optimisation is that the gradient and the Hessian are

used to build up a quadratic approximation for a region of the objective function around

the initial value. If the initial value is in a region where the objective function is adequately

approximated, then a direction is chosen according to the approximation to move the initial

value to an improved value within the region and the region is expanded so that a big

step might be taken later. Otherwise the region is contracted and the optimisation stays

at the initial value. Because of the extra computation needed when deciding whether to

move or to stay, trust region optimisation is considered to be conservative in its decision to

stay. See Fletcher (1987) and Nocedal and Wright (1999) for a more mathematical

discussion of the trust region algorithm.

4.3.4 Results for the SLS model

We consider two models, the SLS model and the TLD model, for which to apply the

numerical Maxent approach. The example of the SLS model is mainly to demonstrate the

performance of Maxent, because the underlying stationary distribution for the diffusion

process is available; see Equation 3.39 . The TLD model is considered because we are

interested in E (r2) and V (r2) at steady state for various values of θ and ρ.
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We first show the results for the SLS model. In the presence of selection, the analytic

moments for the SLS model are not available by solving the recursion in Equation 4.1 .

However, the underlying stationary distribution π (p) for the SLS model under the diffusion

approximation is known up to a normalisation constant, see Equation 3.39 . Given the

values of its scaled selection rates (α1 and α2) and scaled mutation rates (θ1 and θ2), π (p)

for SLS can be normalised and its power moments can be obtained by numerical integration

of the corresponding power function pi and the density function in Equation 3.39 .

For the set of population parameters

α1 = 1 , α2 = 2 , θ1 = 1 , θ2 = 1 ,

the normalisation constant Λ is 0.5175441583467, and hence π (p) is

π (p) =
1

0.5175441583467
p(1− p) exp

(
4p− 3p2

)
, (4.33)

and the corresponding sequence of shifted Chebyshev moments of order up to and

including 8 is

M c
8 = {1, 0.084090111,−0.652777967,−0.120800686, 0.159699910,

0.038372820,−0.010044775,−0.002712854, 0.001985952} .

The distribution in Equation 4.33 is taken to be the true π (p), and we use its

sequence of numerical moments to reconstruct it using Maxent. The Maxent distribution,



4.3 Numerical Maximum Entropy Solution 85

π̃n (p) for n = 2, 4, 6, 8, is plotted against the true distribution π (p) in Figure 4.1 . In

this case, π̃n (p) converges quickly to π (p); with the first eight moments, π̃8 (p) differs only

slightly from π (p).

In Figure 4.2 , log {π̃n (p)} is plotted against log {π (p)} to magnify the differences,

from which it can be seen that the Maxent method performs worst near the boundaries of

the interval. Modern computing power allows us to include more moments beyond the

first eight in the optimisation. Using the first 50 moments, π̃50 (p) does not differ markedly

from π (p) even on the logarithmic scale; see Figure 4.3 .

The convergence rate in terms of the number of moments needed is largely dependent

on the shape of the underlying π (p). A fairly symmetric and smooth π (p), such as that

in the example above, requires fewer moments to reconstruct to a given level of accuracy

than a highly asymmetric or spiked π (p).

For the SLS model with the same scaled selection rates (α1 = 1, α2 = 2), but different

mutation rates (θ1 = 0.4 and θ2 = 0.6), π (p) has an irregular shape (Figure 4.4 ),

and requires a greater number of moments to reconstruct. In practice, an underlying

distribution that is sharp at the boundaries is generally the hardest shape to reconstruct,

besides a highly oscillatory π (p). When π (p) is difficult to reconstruct, a higher order

quadrature (more nodes) as well as a higher order sequence of moments is needed to

provide the extra accuracy to capture the sharpness at the boundaries or the fluctuations in

π (p). This is because Gaussian quadrature of order n gives an exact result for polynomials

of degree up to 2n− 1. We are of course not considering an integral of polynomials, but

the general idea still applies: a quadrature of a higher order is needed as the integrand

becomes more complex, for the accuracy of the quadrature to remain at the same level.
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Figure 4.1: Maxent densities π̃2(p), π̃4(p), π̃6(p) and π̃8(p) for the SLS model with equal
mutation shown with the known true density π(p).
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Figure 4.2: The Maxent density using moments up to order 8, plotted with the known true
density. π̃8(p) is shown on the left panel, and log {π̃8 (p)} is shown on the right
panel.
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Figure 4.3: The Maxent density using moments up to order 50, plotted with the known true
density. π̃50(p) is shown on the left panel, and log {π̃50 (p)} is shown on the right
panel.
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Figure 4.4: Maxent densities π̃10(p), π̃20(p), π̃30(p) and π̃50(p) for the SLS model with unequal
mutation rates, shown with the known true density π(p).
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4.3.5 Expectation and variance of r2 in the TLD model

The numerical stationary moments for the TLD model are obtained by evaluating the ana-

lytic stationary moments at various θ and ρ. See Table 4.1 for the procedure of recovering

the analytic stationary moments for the TLD model under the diffusion approximation.

After transforming to the shifted Chebyshev moments, we apply the numerical Maxent

approach for the TLD model, and we determine its Maxent π̃d (p) at steady state for each

pair of θ and ρ using a sequence of moments of order up to and including 8. With the

Maxent densities, π̃d (p), we compute the following integral numerically and obtain a table

of E (r2), the expected linkage disequilibrium measure r2,

E
(
r2
)

=

∫
∆3

r2(p)π(p) dp

≈
∫

∆3

r2(p)π̃d(p) dp , (4.34)

where r2 is a function of p, q and D, which are, in turn, functions of p1, p2 and p3:

r2 =
D2

p (1− p) q (1− q)
, (4.35)

where p, q and D are

p = p1 + p2

q = p1 + p3

D = p1 − p2
1 − p1p2 − p1p3 − p2p3 .
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Similarly, we compute the following integral numerically and obtain a table of V (r2),

the variance of the linkage disequilibrium measure r2,

V
(
r2
)

=

∫
∆3

{
r2(p)− E

(
r2
)}2

π(p) dp

≈
∫

∆3

{
r2(p)− E

(
r2
)}2

π̃d(p) dp , (4.36)

where E (r2) is obtained from the computation in Equation 4.34 .

We compare our evaluation of the expectation of r2 against the evaluation by Song

and Song (2007). There, the authors produced a table of the expectation of the linkage

disequilibrium measure r2 for the TLD model at steady state across a range of values for

scaled mutation θ and scaled recombination ρ.

It can be seen in Table 4.2 that the Maxent computation of E (r2) and that in Song

and Song (2007) are generally identical when θ is large, but differences become obvious

as θ decreases. These differences are due to the fact that the shape of π (p) becomes

extremely sharp close to the boundary of the simplex region as θ decreases. In terms

of population genetics, fixation becomes more imminent as θ decreases, the underlying

stationary distribution becomes closer to degeneracy, and our computation becomes less

accurate as this happens. This is due to the fact that the method of Maxent is not

equipped to reconstruct degenerate distributions.

We show the Maxent marginal density of a single gamete type pi as θ decreases in

Figure 4.5 . The Maxent solution provides the joint density π̃d (p), and the marginal

density of p1 is determined by numerically integrating out p2 and p3. The TLD model is

symmetric in the sense that p1, p2, and p3 have the same marginal distribution, so only

one marginal distribution is plotted in Figure 4.5 . The plots show the spiked nature of
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Table 4.2: Comparison of r2 between the Maxent method, Song & Song’s method and coalescent
simulations performed by Song and Song (2007).

ρ θ

0.0125 0.0250 0.0500 0.0750 0.1000 0.1250 0.2500 0.5000 0.7500 1.0000 1.2500

(a) Maxent method using moments up to 8th order for π̃d(p) and E[r2] derived numerically with 216 million nodes

0.00 0.016 0.036 0.065 0.083 0.094 0.101 0.105 0.081 0.063 0.051 0.042
0.25 0.011 0.025 0.048 0.063 0.076 0.083 0.092 0.075 0.059 0.048 0.041
0.50 0.008 0.019 0.040 0.053 0.063 0.071 0.082 0.069 0.056 0.046 0.039
1.25 0.005 0.012 0.026 0.036 0.044 0.050 0.062 0.056 0.047 0.040 0.035
2.50 0.004 0.008 0.018 0.025 0.030 0.035 0.045 0.043 0.038 0.033 0.030
5.00 0.002 0.006 0.012 0.019 0.020 0.023 0.029 0.030 0.027 0.025 0.023

(b) Song and Song (2007) computation of E[r2]

0.00 0.008 0.024 0.056 0.079 0.094 0.103 0.106 0.081 0.063 0.051 0.042
0.25 0.006 0.018 0.043 0.062 0.076 0.085 0.093 0.075 0.059 0.048 0.041
0.50 0.005 0.014 0.035 0.052 0.064 0.072 0.083 0.069 0.056 0.046 0.039
1.25 0.003 0.009 0.024 0.036 0.045 0.052 0.063 0.056 0.047 0.040 0.035
2.50 0.002 0.006 0.016 0.025 0.031 0.036 0.045 0.043 0.038 0.033 0.030
5.00 0.001 0.004 0.011 0.016 0.020 0.023 0.030 0.030 0.027 0.025 0.023

(c) Average r2 from Song and Song (2007) coalescent simulations, with no restriction on segregation

0.00 0.013 0.033 0.069 0.095 0.102 0.111 0.105 0.077 0.057 0.050 0.040
0.25 0.009 0.024 0.056 0.075 0.088 0.095 0.091 0.072 0.056 0.045 0.039
0.50 0.007 0.019 0.046 0.063 0.075 0.080 0.085 0.067 0.053 0.044 0.038
1.25 0.005 0.014 0.032 0.044 0.057 0.059 0.067 0.056 0.047 0.040 0.035
2.50 0.003 0.009 0.023 0.032 0.039 0.043 0.050 0.045 0.039 0.034 0.031
5.00 0.002 0.006 0.015 0.022 0.026 0.029 0.034 0.033 0.030 0.027 0.026

(d) Average r2 from Song and Song (2007) coalescent simulations, conditioned on segregation at both sites

0.00 0.131 0.128 0.126 0.125 0.121 0.119 0.106 0.077 0.057 0.050 0.040
0.25 0.093 0.093 0.097 0.099 0.102 0.103 0.095 0.072 0.056 0.045 0.039
0.50 0.076 0.078 0.081 0.082 0.088 0.091 0.084 0.067 0.053 0.044 0.038
1.25 0.051 0.052 0.057 0.059 0.062 0.066 0.067 0.056 0.047 0.040 0.035
2.50 0.037 0.038 0.041 0.042 0.046 0.048 0.051 0.045 0.039 0.034 0.031
5.00 0.024 0.026 0.028 0.029 0.031 0.032 0.035 0.033 0.030 0.027 0.026
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π (p) close to pi = 0 as θ becomes small. A subsidiary peak near pi = 1 can also be seen

in the last panel.

Figure 4.5: Maxent marginal density of a single gametic frequency pi for the TLD model as θ
decreases. 600 quadrature nodes in one dimension corresponds to a total of 216
million nodes in three dimensions.
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Taking E (r2) computed by Song and Song (2007) to be the true values, we show plots

of our computation of E (r2) as we use an increasing number of moments in Figure 4.6 .
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It can be seen that our computation becomes closer to the true value as the number

of moments increases. This suggests that accuracy in our method is primarily limited

by computer power, which restricts the number of moments it is feasible to use. With

unlimited computer power the trends suggest that the Maxent method could be very

accurate.

Figure 4.6: Maxent computation of E
(
r2
)

for various θ and ρ as the number of moments
increases.

●

●
●

● ● ●

2 3 4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

Maxent with No. Moments = 2, 3, 4, 5, 6, 8

The number of moments

E
(r2 )

 ( ρ = 0.5 )  ( θ = 0.1 ) 

● ● ● ● ● ●

●

●

True
Maxent

●

●

●

●
●

●

2 3 4 5 6 7 8

−
0.

1
0.

0
0.

1
0.

2
0.

3

Maxent with No. Moments = 2, 3, 4, 5, 6, 8

The number of moments

E
(r2 )

 ( ρ = 0 )  ( θ = 0.0125 ) 

● ● ● ● ● ●

●

●

True
Maxent

●

●
● ● ● ●

2 3 4 5 6 7 8

−
0.

05
0.

00
0.

05
0.

10
0.

15

Maxent with No. Moments = 2, 3, 4, 5, 6, 8

The number of moments

E
(r2 )

 ( ρ = 2.5 )  ( θ = 1.25 ) 

● ● ● ● ● ●

●

●

True
Maxent

●

●

● ● ● ●

2 3 4 5 6 7 8

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Maxent with No. Moments = 2, 3, 4, 5, 6, 8

The number of moments

E
(r2 )

 ( ρ = 5 )  ( θ = 0.25 ) 

● ● ● ● ● ●

●

●

True
Maxent



94 Method for Reconstructing Distributions

We can compute V (r2) using Equation 4.36 . Table 4.3 gives V (r2) for a range of θ

and ρ values computed using π̃d(p) of order d = 8.

Our computation of V (r2) shows that it is a strictly decreasing function of ρ, but it is

more complicated as a function of θ. It initially increases as θ increases from zero, but

starts to decrease after reaching a certain maximum point. This maximum point of θ after

which V (r2) starts to decrease depends on the ρ value of the underlying system.

In the same way that large numbers of moments are needed to reconstruct densities

with sharp edges in the univariate case, a sequence of moments of high order is required

to achieve the accuracy needed to match the computation in Song and Song (2007) for

small θ. Using a sequence of moments up to order 8 is apparently not enough for very

small θ. However, demands on computer power increase rapidly for multivariate cases as

the order increases.
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4.4 Analytic Maximum Entropy Solution

4.4.1 Derivation

For models such as the SLS model in the absence of selection, the SLM model and the

TLD model, where the sequence of stationary moments in analytic form is available in

terms of population parameters, we propose a method of obtaining the analytic forms

of π̃n (p) and π̃d (p) in terms of the population parameters and the random variable by

extending the numerical Maxent approach. We shall use the diallelic SLM to outline this

method.

We showed in Section 4.2 that the univariate π̃n (p) has the following general form,

π̃n (p) = exp
(
λ0 + λ1p + λ2p

2 + λ3p
3 + · · ·+ λnp

n
)

, (4.37)

where the λis are Lagrange multipliers and are obtained by solving the following

unconstrained minimisation problem:

arg min
λ

{∫ 1

0

exp

(
n∑

i=0

λip
i

)
dp−

n∑
i=0

λimi

}
. (4.38)

Equations 4.37 and 4.38 determine the Maxent stationary distribution of the diallelic

SLM model given its numerical sequence of moments at stationarity. In Section 4.1, the

moments of the diallelic SLM model were shown to have the following form:



4.4 Analytic Maximum Entropy Solution 97

E (pn) =
Γ (2θ + n) Γ (4θ)

Γ (4θ + n) Γ (2θ)
. (4.39)

Each of the individual moments depends on θ, so the sequence of analytic moments,

Mn, depends on θ. This sequence solely determines the values of the λis through the

optimisation. Thus the λis can be considered as functions of θ for the SLM model. We

shall write λi (θ) rather than just numerical λi when the sequence of analytic moments is

available, where λi (θ) denotes the unknown function in terms of θ for i = 0, 1, 2, . . . , n.

The form of the function λi (θ) is likely to be different for different i, so n + 1 unknown

functions need to be determined instead of n + 1 unknown coefficients. We have the

following for π̃n (p; θ):

π̃n (p; θ) = exp

(
n∑

i=0

λi (θ) pi

)
. (4.40)

For the diallelic model, this leads to moment constraints of the following forms,

mj (θ) =

∫ 1

0

pj exp

(
n∑

i=0

λi (θ) pi

)
dp for j = 0, 1 . . . , n , (4.41)

where mj (θ) =
Γ (2θ + j) Γ (4θ)

Γ (4θ + j) Γ (2θ)
.

Differentiating both sides of Equation 4.41 with respect to θ, we have
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m′
j (θ) =

∂

∂θ

[∫ 1

0

pj exp

{
n∑

i=0

λi (θ) pi

}
dp

]
, (4.42)

where m′
j (θ) denotes the derivative of mj (θ) with respect to θ, and j = 0, 1, 2 . . . , n.

We assume that

{
pj exp

(
n∑

i=0

λi (θ) pi

)}
is a well behaved function of p and θ, so we

can differentiate with respect to θ under the integral sign:

m′
j (θ) =

∫ 1

0

∂

∂θ

{
pj exp

(
n∑

k=0

λk (θ) pk

)}
dp

=

∫ 1

0

n∑
i=0

λ′i (θ) pi+j exp

(
n∑

k=0

λk (θ) pk

)
dp , (4.43)

where λ′i (θ) denotes the derivative of λi (θ) with respect to θ. Notice that λi (θ) is not

a function of p, thus

m′
j (θ) =

n∑
i=0

λ′i (θ)

∫ 1

0

pi+j exp

(
n∑

k=0

λk (θ) pk

)
dp . (4.44)

Notice that

∫ 1

0

pi+j exp

(
n∑

k=0

λk (θ) pk

)
dp is actually the (i + j)th moment mi+j (θ),

therefore Equation 4.44 reduces to

m′
j (θ) =

n∑
i=0

λ′i (θ) mi+j (θ) for j = 0, 1 . . . , n . (4.45)

Therefore we have the following system of linear equations in the λ′i (θ)s,
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m0 (θ) m1 (θ) m2 (θ) m3 (θ) · · · mn (θ)

m1 (θ) m2 (θ) m3 (θ) · · · · · · mn+1 (θ)

m2 (θ)
. . . . . . . . . . . .

...

...
. . . . . . . . . . . .

...

mn (θ) · · · · · · · · · · · · m2n (θ)





λ′0 (θ)

λ′1 (θ)

...

...

λ′n (θ)


=



m′
0 (θ)

m′
1 (θ)

...

...

m′
n (θ)


. (4.46)

We will refer to this linear system of equations as the first order derivative condition.

The matrix in Equation 4.46 is a Hankel matrix, which is a square matrix with constant

skew diagonals:



a b c d e

b c d e f

c d e f g

d e f g h

e f g h i


. (4.47)

A linear system given by a n× n Hankel matrix only has 2n + 1 degrees of freedom, as

opposed to n2 in general, and can be solved in O (n2) time, as opposed to O (n3) for the

general case. See Freund and Zha (1993) for a discussion of Hankel matrices and an

algorithm for solving the associated linear systems.

The analytic form of m′
j (θ) can be determined through direct differentiation of Equa-

tion 4.4 ,
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m′
j (θ) =

2Γ (2θ + j) Γ (4θ)

Γ (4θ + j) Γ (2θ)

{
Ψ (2θ + j) + 2Ψ (4θ)−

(
2Ψ (4θ + j) + Ψ (2θ)

)}
, (4.48)

where Ψ denotes the digamma function (Abramowitz and Stegun 1964, Section

6.3.6).

Therefore the function λ′i (θ) can be obtained in the form of a rational function of θ by

solving the first order derivative condition in Equation 4.46 . For example, with the first

two moments (n = 2), using Maple, we obtain the λ′i (θ)s in the following form:


λ′0 (θ)

λ′1 (θ)

λ′2 (θ)

 =



−2 (4θ + 3)

4θ + 1

2 (4θ + 3)

θ

−2 (4θ + 3)

θ


. (4.49)

By integrating each λ′i (θ) with respect to θ, we have λi (θ) up to a constant of

integration, which depends neither on p nor θ. Let us define λ̃i (θ) in the following way:

λi (θ) =

∫
λ′i (θ) dθ

= λ̃i (θ) + ci , (4.50)

where ci is the constant of integration.

For the λ′i (θ)s in Equation 4.49 , the corresponding λ̃i (θ)s have the following form:
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λ̃0 (θ)

λ̃1 (θ)

λ̃2 (θ)

 =


−2θ − ln (4θ + 1)

8θ + 6 ln (θ)

−8θ − 6 ln (θ)

 (4.51)

In general, we have the following π̃n (p; θ) in terms of λ̃i (θ),

π̃n (p; θ) = exp

(
n∑

i=0

(
λ̃i (θ) + ci

)
pi

)
, (4.52)

where the cis are the only unknown quantities that need to be determined.

We compute the constants ci by using the numerical Maxent approach in the last

section for a sensible value of θ. We shall discuss the choice of θ shortly. For the present

denote this value of θ by θ∗.

For a chosen θ∗, the constant of integration is given by

ci = λi (θ
∗)− λ̃i (θ

∗) , (4.53)

where λi (θ
∗) is obtained by using the numerical Maxent approach described in Section

4.3, and λ̃i is the analytic function obtained by performing the indefinite integration in

Equation 4.50 .

This completes the analytic form for π̃n (p; θ) in Equation 4.52 , which is now an

analytic density for the random variable p in terms of the parameter θ. We refer to this

analytic form as the Maxent distribution centred at θ∗, and refer to the specific choice of

parameter θ∗ as the centre of the approximation or simply the centre.
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4.4.2 Example using the first two moments

As an example, when the number of moments is 2 (n = 2) and the centre is chosen to be 1

(θ∗ = 1), the analytic Maxent distribution π̃2 (p; θ) takes the following form:

π̃2 (p; θ) = exp
[
c0 − 2θ − ln (4θ + 1) + {c1 + 8θ + 6 ln (θ)} p + {c2 − 8θ − 6 ln (θ)} p2

]
,

(4.54)

where we obtain by numerical computation:

c0 = 2.2244121 (4.55)

c1 = −0.5031736 (4.56)

c2 = 0.5031736 . (4.57)

Simplifying Equation 4.54 , we have:

π̃2 (p; θ) =
θ6p(1−p)

4θ + 1
exp

{
c0 − 2θ + {c1 + 8θ} p + {c2 − 8θ} p2

}
, (4.58)

where c0, c1 and c2 are given in Equations 4.55–4.57.

Figure 4.7 shows the likelihood function π̃2 (θ; p̂) of Equation 4.58 plotted against

the true likelihood function π (θ; p̂) of Equation 3.40 under the diffusion approximation

for an observed value p̂ = 0.2. Only two moments are used here to showcase the analytic

form. In practice, a larger number of moments would be used to reconstruct the underlying

distribution to a reasonable degree of accuracy.
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Figure 4.7: Likelihood function derived from π̃2 (p; θ) centred at θ∗ = 1 against the true
likelihood function for p̂ = 0.2.

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No. Moments = 2 ; No. Nodes = 100 

θ

π~ 2(θ
, p̂

) ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

p̂ = 0.2  ;  The Centre of Approximation = 1 

●

●

True
Maxent

4.4.3 The centre of the approximation

As the name suggests, the analytic Maxent distribution centred at θ∗ depends on the

choice of θ∗. We first investigate the effect of different centres θ∗ on the shape of π̃n (p)

with the same θ. We then investigate the performance of analytic Maxent π̃n (p) as we

change θ, given a sensible choice of θ∗.

When a small number of moments is used, the choice of the centre affects the shape

of π̃n (p; θ) and thus the quality of the approximation. Figure 4.8 shows the shape

of the analytic π̃8 (p; θ) for a single parameter value θ = 0.4 but at different centres

θ∗ ∈ {0.1, 0.4, 1, 5}. With a moment sequence up to only order 8, the shape of the

distribution differs greatly with different centres.
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Figure 4.8: The shape of analytic Maxent distributions, π̃8 (p; θ), centered at different θ∗ using
a sequence of moments up to and including order 8.
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However, the choice of θ∗ becomes less important as the number of moments increases,

as shown in Figure 4.9 . When only three moments are used, and the true θ = 0.4, the

choice of θ∗ = 1 affects the analytic Maxent π̃n (p; θ) greatly, and we do not have a good

approximation. However, by the time we reach 20 moments, the choice of θ∗ becomes less

influential, and we have a reasonable approximation using θ∗ = 1, see the bottom right
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panel of Figure 4.9 .

Figure 4.9: Convergence of the analytic Maxent distribution, π̃n (p; θ), with a fixed centre
θ∗ = 1, as the number of moments used increases, n ∈ {3, 8, 15, 20}.
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With a chosen centre of θ∗ = 1 and sufficiently many moments, only 8 moments in

this case, Figure 4.10 shows that the analytic π̃n (p; θ) successfully captures the shape

of π (p; θ) for various parameter values θ ∈ {0.1, 0.4, 1, 5}. The approximation gradually

worsens as the parameter θ moves further away from the center θ∗. This is more apparent
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when approximating a distribution that is sharp at the boundaries.

Figure 4.10: The shape of analytic Maxent distributions π̃8 (p; θ) centred at θ∗ = 1, for different
values of θ, using a sequence of moments up to and including order 8.
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There is a limit to the number of moments we can include, due to the need for

calculating λi (θ
∗) as in Section 4.3. The choice of centre θ∗ is important to achieve the

best approximation for a wide range of θ values. In terms of the SLM model, using a small

value for θ∗ requires our numerical procedure to reconstruct a distribution that is sharp
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at the boundaries, which is hard in general for the numerical procedure to do accurately

as we indicated previously. Very large values of θ∗ create spikes, and lead to numerical

problems in a similar way. Therefore a sensible choice of θ∗ is a moderate value close to

the range of θ that we are interested in. We have used θ∗ = 1 for most of our examples for

the SLM model, and it gives a satisfactory outcome.

4.4.4 Summary

The performance of the analytic Maxent method at the centre of approximation will be

identical to that of the numerical Maxent method. As we move away from the centre, the

approximation worsens, similar to the way in which a Taylor series approximation worsens

as we move away from the centre of the expansion. Adding more moments improves the

range of approximation, so that the approximation can be trusted for a wider range of θ.

Our analytic Maxent approach offers an approximation to π (p; θ), as does the numerical

Maxent method, but in addition to numerical approximation the analytic method offers

a closed form density of the random variable in terms of the parameter θ. It achieves

the analytic form by trading accuracy for tractability as we move away from the centre.

Therefore it can implemented as a piecewise approximation for π (p; θ) if a grid of choices

for the centre of approximation θ∗ is considered. The analytic form may be useful for

estimation of θ, because it enables us to construct a likelihood or piecewise likelihood

function.
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5
Discussion

In this chapter, we first introduce some possible generalisations of the analytic Maxent

approach, namely: analytic Maxent solution for multivariate random variables; analytic

Maxent solution with multiple parameters; and analytic Maxent solution with higher order

derivative conditions. We outline how each of these generalisations can be performed,

and point out some issues regarding them. In the subsequent section, we briefly discuss

the adequacy of the diffusion approximation for Wright-Fisher type models. In the final

section, we discuss the possibility of applying the Maxent method without using the

109
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diffusion approximation.

5.1 Generalisations of the Analytic Maxent Method

5.1.1 Analytic Maxent solution for multivariate p

Let us consider a multivariate random variable p ∈ ∆n instead of a univariate variable p,

where we assume for now that the underlying distribution for this p still depends only

on a single parameter θ. Suppose that a sequence of analytic moments is known. The

method of Section 4.4 can be applied to derive the analytic Maxent distribution π̃d(p)

centred at any value θ∗, where d is the maximum order of moments used. In the bivariate

case, π̃d(p; θ) has the following form similar to Equation 4.52 :

π̃d(p; θ) = exp

[
d∑

j=0

j∑
i1=0

j−i1∑
i2=0

{
λ̃(i1,i2)(θ) + c(i1,i2)

}
pi1

1 pi2
2

]
, (5.1)

where the λ̃(i1,i2)(θ)s are determined in exactly the same way as in Section 4.4. The

only difference arises during the numerical computation of λ(i1,i2) (θ∗) from which the

constants c(i1,i2) are determined as in Equation 4.50 . As seen in Equation 4.19 , a

multiple integral instead of a univariate integral needs to be computed.

The analytic Maxent method in dimension n > 1 has the same problem that the

numerical Maxent method has, namely the evaluation of a high dimensional integral. The

constant terms c become harder to compute as the dimension n of the random variable p

increases. Therefore the analytic Maxent method as well as the numerical Maxent method

is most applicable for low dimensional random variables.
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5.1.2 Analytic Maxent with multiple parameters

Suppose now that p ∈ (0, 1), but the distribution π (p; θ) depends on more than one

parameter. There are now multiple derivatives for each moment, unlike what we had in

Equation 4.42 and 4.45. For example, suppose that π (p; θ) depends on two parameters,

θ1 and θ2; then we have the following equations instead of Equation 4.42 :

∂mj

∂θ1

(θ1, θ2) =
∂

∂θ1

[∫ 1

0

pj exp

{
n∑

i=0

λi (θ1, θ2) pi

}
dp

]
(5.2)

∂mj

∂θ2

(θ1, θ2) =
∂

∂θ2

[∫ 1

0

pj exp

{
n∑

i=0

λi (θ1, θ2) pi

}
dp

]
, (5.3)

for j = 0, 1, 2, . . . , n.

Equation 5.2 leads to a system of linear equations in terms of the
∂λi

∂θ1

(θ1, θ2) and

Equation 5.3 leads to a different system of linear equations in terms of the
∂λi

∂θ2

(θ1, θ2),

for i = 0, 1, 2, . . . , n:

∂mj

∂θ1

(θ1, θ2) =
n∑

i=0

∂λi

∂θ1

(θ1, θ2)mi+j(θ1, θ2) (5.4)

∂mj

∂θ2

(θ1, θ2) =
n∑

i=0

∂λi

∂θ2

(θ1, θ2)mi+j(θ1, θ2) , (5.5)

for j = 0, 1, 2, . . . , n.

The partial derivatives
∂λi

∂θ1

(θ1, θ2) and
∂λi

∂θ2

(θ1, θ2), for i = 0, 1, 2, . . . , n, can be obtained

by solving the two linear systems defined by Equation 5.4 and 5.5. Therefore, ideally

λi(θ1, θ2) can be recovered up to a constant ci since both partial derivatives
∂λi

∂θ1

(θ1, θ2)

and
∂λi

∂θ2

(θ1, θ2) are available.
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However, in general, the two linear systems defined by Equation 5.4 and 5.5 might

not be consistent, in such a way that:

∂

∂θ2

(
∂λi

∂θ1

)
(θ1, θ2) 6=

∂

∂θ1

(
∂λi

∂θ2

)
(θ1, θ2) for i = 0, 1, 2, . . . , n , (5.6)

where
∂λi

∂θ1

(θ1, θ2) and
∂λi

∂θ2

(θ1, θ2) are solutions of the two linear systems.

A example of this can be provided by considering the SLS model with unequal mutation

rates (θ1 and θ2) in the absence of selection (s1 = s2 = 0). Using the corresponding analytic

moments in Equation 4.3 , and applying Equation 5.4 and Equation 5.5 with the first

2 moments, we have the following
∂λi

∂θ1

s and
∂λi

∂θ2

s:


∂λ0

∂θ1

∂λ1

∂θ1

∂λ2

∂θ1

 =


− (θ1+θ2+1)(6θ1+6θ2+1)

(θ1+θ2)(2θ1+2θ2+1)

4(θ1+θ2+1)
θ1

− (θ1+θ2+1)(2θ1+2θ2+3)
θ1(2θ1+1)

 (5.7)


∂λ0

∂θ2

∂λ1

∂θ2

∂λ2

∂θ2

 =


−

θ1(θ1+θ2+1)(4θ2
1−4θ1θ2−8θ2

2−2θ2−1)
(θ1+θ2)(2θ1+2θ2+1)(2θ2+1)θ2

2(θ1+θ2+1)(2θ1+1−2θ2)
(2θ2+1)θ2

− (θ1+θ2+1)(2θ1+2θ2+3)
(2θ2+1)θ2

 . (5.8)

Notice that if we differentiate Equation 5.7 with respect to θ2 and differentiate

Equation 5.8 with respect to θ1, none of the resulting second order partial derivatives

matches, so they all display the inconsistency in Equation 5.6 .

This inconsistency leads to multiple analytic Maxent solutions, two solutions π̃θ2
n (p; θ1, θ2)

and π̃θ1
n (p; θ1, θ2) for the above example, at a single centre of approximation θ∗. In general,
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we would hope that
∂

∂θ2

(
∂λi

∂θ1

)
and

∂

∂θ1

(
∂λi

∂θ2

)
converge to the same function as the

number of moments n increases, and so the two distinct analytic Maxent solutions would

converge to the same π(p; θ) as the number of moments n increases. However, a detailed

investigation of this problem and providing a proof of this exceeds our current goals.

5.1.3 Analytic Maxent with higher order derivatives

We finally return to the case of univariate p and univariate θ. The analytic Maxent

distribution, π̃n (p; θ), satisfies all of the moment constraints and the first order derivative

conditions in Equation 4.42 by formulation. For completeness, let us consider higher

order derivative conditions for the analytic Maxent distribution. For example, we wish to

consider whether π̃n (p; θ) satisfies the following second order derivative conditions,

m′′
j (θ) =

∂2

∂θ2

[∫ 1

0

pjπ̃n (p; θ) dp

]
for j = 0, 1, 2 . . . , n , (5.9)

where m′′
j (θ) denotes the second derivative of the known analytic expression mj(θ)

with respect to θ.

Higher order derivatives are iterative, thus Equation 5.9 is equivalent to

∂

∂θ

(
∂mj

∂θ

)
=

∂

∂θ

[
∂

∂θ

[∫ 1

0

pj exp

{
n∑

i=0

λi (θ) pi

}
dp

]]
for j = 0, 1, 2 . . . , n . (5.10)

Equation 5.10 is true if:
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∂mj

∂θ
=

∂

∂θ

[∫ 1

0

pj exp

{
n∑

i=0

λi (θ) pi

}
dp

]
for j = 0, 1, 2 . . . , n , (5.11)

which are exactly the first order derivative conditions we impose on the analytic Maxent

distribution π̃n (p; θ) in Equation 4.42 .

Thus, the analytic Maxent distribution π̃n (p; θ) satisfies the second order derivative

conditions and indeed any higher order derivative conditions. This can be proved using

mathematical induction. Therefore higher order derivative conditions are redundant for

determining the analytic Maxent distribution π̃n (p; θ).

5.2 Adequacy of the Diffusion Approximation

We used the diffusion approximation to recover the necessary moments for both our

numerical Maxent procedures and our analytic Maxent procedures. We chose to use

the diffusion approximation mainly because it provides tractable analytic moments at

steady state. However, this adds an extra layer of approximation error in addition to the

approximation of using the maximum entropy procedures to recover a distribution from

its moments.

The performance of the diffusion approximation as a method for capturing the behaviour

of population genetics models was studied some decades ago. Ewens (1963c) gave a

numerical study, while Watterson (1962) and Ewens (1965) gave some mathematical

justifications for using the diffusion approximation for various models. However, a recent

study by Parsons, Quince and Plotkin (2010) showed that the diffusion approximation

can lead to erroneous and even contradictory results in some scenarios. Their study was

done using microbes, and involved violation of many assumptions. We think the poor
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performance seen in their study was due to the violation of assumptions rather than

inherent problems with the diffusion approximation.

The adequacy of the diffusion approximation can be judged using the investigation

of Watterson (1962) and Moran (1962), who point out that the limiting argument of

the diffusion approximation is very sensitive to the rate with which various population

parameters change as N →∞. Therefore the performance of the diffusion approximation

depends on the so-called balance of the relevant population parameters.

Figure 5.1: Performance of the diffusion approximation with N = 500.
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Using the numerical method of finding the stationary distribution for the original

discrete process, which we used in Subsection 2.2.2, we can compare the true stationary

distribution generated by the diffusion approximation against the true stationary distribu-

tion of the original discrete process, for models where both of these are available. We find
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that there are cases where the diffusion approximation can achieve a reasonable level of

accuracy for N as small as 500. In Figure 5.1 , the diffusion approximation represents

Equation 3.39 which is the analytic solution for the diffusion equation of the SLS model

at steady state. However, N much bigger than 500 is needed in general. For a further

discussion on this topic, and an error estimation of the diffusion approximation, see Ethier

and Norman (1977), who examine the diffusion approximation for the Wright-Fisher

model in mathematical detail.

Because we used moments generated by the diffusion approximation, the performance

of our Maxent computation of the stationary distribution as an approximation of the

original discrete process can only be as good as the diffusion approximation itself. The

performance of the diffusion approximation for describing a real population, in turn, can

only be as good as the original discrete model. If many assumptions of the Wright-Fisher

model are violated, as in the case pointed out by Parsons, Quince and Plotkin (2010),

our end product can be a very poor description of reality.

5.3 Maxent without the Diffusion Approximation

We are aware of numerical methods for solving a partial differential equation such as the

Kolmogorov equation. Numerical stationary distributions under the diffusion approxi-

mation could therefore be obtained from the solution of the partial differential equation.

For example, Boitard and Loisel (2007) propose a numerical method based on finite

differences for solving the Kolmogorov equation corresponding to a two-locus Wright-Fisher

model under the diffusion approximation.

However, our approaches of both numerical and analytic Maxent are more general, in

the sense that we do not need to rely on the diffusion approximation. The numerical and
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analytic Maxent methods can be applied to other sources of moments. For example, the

numerical Maxent method could incorporate numerical moments from accurate coalescent

simulations to reconstruct the underlying distribution. The analytic Maxent method

can work with any source of analytic moments, such as the analytic moments of the

original discrete process gained in Subsection 2.2.3 for the SLS model. In fact, we

have already shown an example of this under the guise of the normal approximation in

Subsection 2.2.3 for the SLS model. It can be shown that applying Maxent using the

first two moments only, namely mean and variance, leads to a normal distribution for

π̃2(p). Therefore, the normal approximation is in fact a special case of Maxent using only

the first two moments. In Figure 5.1 , the normal approximation that uses the moments

of the original discrete process, not moments from the diffusion approximation, is plotted

along with the diffusion approximation and the numerical solution of the discrete process.

All our examples of the numerical and analytic Maxent methods have been shown in

terms of reconstructing a stationary distribution of a genetic process. However, the same

methods can also be used to incorporate numerical and analytic moments from any other

distribution. The methods can be applied in any situation where an approximation of an

underlying distribution is needed, given a sequence of its moments.
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6
Conclusions and Future work

6.1 Conclusions

For a range of genetic models, we have demonstrated that the analytic stationary moments

can be obtained without first finding the stationary distribution, using the diffusion

approximation. In Section 4.1, we illustrated this procedure for the SLS model without

selection, the SLM model with two alleles, and the TLD model. For the two-locus model

with linkage (TLD), we derived the analytic stationary moments in terms of three gametic
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frequencies (p1, p2 and p3), instead of using two allelic frequencies (p and q) and the

coefficient of linkage disequilibrium D.

In Section 4.2, we introduced the maximum entropy principle to reconstruct distribu-

tions in population genetics from their numerical or analytic moments. In Section 4.3,

we successfully reconstructed the stationary distribution for the two-locus model with

linkage (TLD) using its numerical moments under the diffusion approximation. Using the

stationary distribution, we computed the expected linkage disequilibrium E (r2) and the

variance V (r2) for a range of scaled mutation rates θ and scaled recombination rates ρ.

Our computation of E (r2) agrees with the recent computation of E (r2) by Song and

Song (2007), except for very small θ for which the density is very spiked and hard to

reconstruct. Our computation of V (r2) shows that it is a strictly decreasing function of ρ,

but it is more complicated as a function of θ. It initially increases as θ increases from zero,

but starts to decrease after reaching a certain maximum point. This maximum point of θ

after which V (r2) starts to decrease depends on the ρ value of the underlying system.

In Section 4.4, we proposed a general method of reconstructing a continuous density

function from its analytic moments. This method offers a new approach for solving

problems where the likelihood function is not available but the corresponding analytic

moments are. This opens the possibility of estimating the parameter of an underlying

population where only data and theoretical moments are available but not the likelihood

function. The diallelic SLM model is used to show that this method is accurate and simple

to apply.
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6.2 Future Work

Following the investigations described in this thesis, a number of further projects could

be undertaken. There are two main goals: firstly, to further improve the stability and

efficiency of our Maxent approach, and secondly to apply our method to a wider range of

problems in population genetics and other fields. The first two subsections discuss the

first goal, and the final subsection discusses the second goal.

6.2.1 Multivariate Chebyshev polynomials

We have programmed the numerical Maxent approach in R and Fortran. It is both fast

and accurate in univariate cases. However, its efficiency decreases quickly as the dimension

of the random variable p increases. It takes more than a day to reconstruct the trivariate

distribution for the TLD model on a supercomputer with 40 CPUs for just one value of

(θ, ρ).

We have identified that the slowness is a result of an inefficient usage of moments.

Currently, the available power moments are put into multivariate Chebyshev polynomials,

which are constructed using tensor products of the shifted univariate Chebyshev polyno-

mials as in Equation 4.28 , and the multivariate distribution is constructed using these

multivariate Chebyshev polynomials. This procedure is described in Section 4.3.2.

The multivariate Chebyshev polynomials constructed as tensor products of univariate

Chebyshev polynomials are optimal for problems on a cubic region,

{(p1, p2, p3, . . . , pn) ∈ Rn : 0 ≤ pi ≤ 1 for i = 1, 2, . . . , n} .

In population genetics, we are often interested in frequencies, which lead to problems



122 Conclusions and Future work

defined on standard simplexes,

{
(p1, p2, p3, . . . , pn) ∈ Rn :

n∑
i=1

pi ≤ 1 and pi ≥ 0 for i = 1, 2, . . . , n

}
.

Using multivariate Chebyshev polynomials constructed specifically for standard sim-

plexes would greatly improve the performance of our method. However, to the best of our

knowledge, multivariate Chebyshev polynomials defined on standard simplexes are not

readily available. Very recently Ryland and Munthe-Kaas (2011) developed a method

for constructing multivariate Chebyshev polynomials on a triangular domain. This new

development might be what we need, and is worthwhile investigating. Also see Farouki,

Goodman and Sauer (2003) for a recent discussion on orthogonal polynomials for a

simplex domain. A successful adoption of multivariate Chebyshev polynomials defined on

standard simplexes would allow us to achieve the same level of accuracy with far fewer

moments, hence greatly alleviate the numerical difficulties in multivariate cases.

6.2.2 Cubature and modern computing methods

Computing a high dimensional integral using Gaussian cubature many times is the second

source of numerical difficulty that we experience in the multivariate cases. It demands a

huge memory and 40 CPUs to evaluate the integral in Equation 4.19 using a parallel

computing array to bring our method for the 3-dimensional TLD model to a acceptable

speed. An investigation of methods of adaptive numerical integration might lead to a more

efficient evaluation of the integral; see Genz and Cools (2003) for an example of such

adaptive algorithms.

Numerical integration using quadrature is a highly parallelisable computing problem.
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We have implemented our method in Fortran in a traditional parallel environment using

CPUs. A very recent advance in computing is the use of accelerators with different

computer architectures from the CPU, and this has offered new possibilities in the past 5

years. See Gillan, Steinke, Bock, Borchert, Spence and Scott (2012) for a further

discussion of modern computing methods for high dimensional numerical integrations.

Even a small improvement in the evaluation of the integral will lead to a big improvement

in terms of the overall efficiency of our method, because the integral is evaluated many

times during the optimisation.

6.2.3 Coalescent simulations and Maxent

Traditionally, physicists and engineers use the numerical Maxent approach to reconstruct

distributions from numerical sequences of sample moments that are available from ex-

perimental data. See Miller and Liu (2002) for a convergence result for the Maxent

approach when sample moments are used. However, most scientific fields do not have the

data quality and quantity that is available for these problems in physics and engineering.

In population genetics, we might not have sufficient data quality and quantity to

use sample moments from data. However, coalescent simulations have become widely

acceptable, and the sample moments from coalescent simulations could provide a valid

source of information for the numerical Maxent procedure to operate with. This would

return an explicit density function of the distribution underlying the coalescent simulations.

Therefore the performance of the numerical Maxent method with sample moments from

coalescent simulations is worthwhile investigating.
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A.1 Conditional Expectations for the SLM Model

For the SLM model, the conditional expectations are symmetric. Expanding the conditional

expectations using Taylor series, we have the terms in Table A.1, where u is the mutation

probability, k is the number of distinct allelic types, and p1, p2, . . ., pk−1 are the diffusion

variables for allele types A1, A2, . . ., Ak−1 at locus A.
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Table A.1: Taylor series expansion for the conditional expectations of the SLM diffusion process.

Eδp|p (δpi) = (1− kpi) u + R2 (u; p)

Eδp|p
{
(δpi)

2} =
pi (1− pi)

2N
+

u

2N
(kpi − 1) (2pi − 1) + R2 (u; p)

Eδp|p (δpiδpj) = −pipj

2N
+

u

2N
{pi (kpj − 1) + pj (kpi − 1)}+ R2 (u; p)

A.2 Conditional Expectations for the TLD Model

For the TLD model, the conditional expectations are not entirely symmetric. Expanding

the conditional expectations using Taylor series, we have the first order terms in Table A.2

and the second order terms in Table A.3, where u is the mutation probability, C is the

recombination fraction between the two loci, and p1, p2, p3 are the diffusion variables for

the possible gamete types 1, 2 and 3.

Eδp|p (δp1) = −2up1 + up2 + up3 − CD + R2 (u, C; p)

Eδp|p (δp2) = u− 3up2 − up3 + CD + R2 (u, C; p)

Eδp|p (δp3) = u− up2 − 3up3 + CD + R2 (u, C; p)

Table A.2: Taylor series expansion for the conditional expectations of the first order terms of
the TLD diffusion process.
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Eδp|p
{
(δp1)

2} =
p1 (1− p1)

2N
+

u (−2p1 + p2 + p3) (1− 2p1)

2N

+
C (2p1 − 1) D

2N
+ R2 (u, C; p)

Eδp|p
{
(δp2)

2} =
p2 (1− p2)

2N
+

u (1− 3p2 − p3) (1− 2p2)

2N

+
C (2p1 − 1) D

2N
+ R2 (u, C; p)

Eδp|p
{
(δp3)

2} =
p3 (1− p3)

2N
+

u (1− p2 − 3p3) (1− 2p3)

2N

+
C (2p3 − 1) D

2N
+ R2 (u, C; p)

Eδp|p (δp1δp2) = −p1p2

2N
+
−u {p1 (1− 3p2 − p3) + p2 (−2p1 + p2 + p3)}

2N

+
C (p1 + p2) D

2N
+ R2 (u, C; p)

Eδp|p (δp1δp3) = −p1p3

2N
+
−u {p1 (1− p2 − 3p3) + p3 (−2p1 + p2 + p3)}

2N

+
C (p1 + p3) D

2N
+ R2 (u, C; p)

Eδp|p (δp2δp3) = −p2p3

2N
+
−u {p2 (1− p2 − 3p3) + p3 (1− 3p2 − p3)}

2N

+
C (p2 + p3) D

2N
+ R2 (u, C; p)

Table A.3: Taylor series expansion for the conditional expectations of the second order terms
of the TLD diffusion process.
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C.1 Entropy

The term entropy was first introduced in the field of thermodynamics more than a hundred

years ago. It has since penetrated many disciplines, but takes various meanings in different

fields. The idea of entropy flourished after the development of the maximum entropy

principle about fifty years ago. The maximum entropy principle is a powerful tool for

recovering an unknown distribution from limited information. In this section we first use
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an intuitive example to explain what entropy is and why it is of interest to us. In the

subsequent subsection, we discuss Shannon’s entropy and its special properties. We then

give a mathematical justification of the maximum entropy principle.

C.1.1 Information, uncertainty, and probability

Entropy is a measure of organisation at a molecular level in physics, and it is often

envisaged as a measure of probabilistic uncertainty in statistics. The latter is the idea we

shall use, often referred to as information entropy.

For a stochastic system, information entropy is a measure of the average missing infor-

mation regarding the predictability of the future of the system. A large information entropy

is attached to a relatively unpredictable system, as it means we need a relatively large

amount of information before removing all the uncertainty in the system. A deterministic

system has zero information entropy because its future outcomes are predictable in the

absence of any further information. Uncertainty and information are opposite sides of the

same coin; having more of one means having less of the other, and therefore entropy is

often regarded as a measure of uncertainty.

A probability distribution can also be considered as a description of uncertainty, so it is

reasonable to consider that every probability distribution has an entropy level attached to

it. Therefore, choosing a probability distribution to model a stochastic system inevitably

assigns a certain entropy level to the system.

To give an intuitive reason as to why we require the concept of information entropy,

let us imagine a forgetful politician promoting his policies in five cities before an election.

Every day his limo takes him to the city of his choice. Being a forgetful politician, he

cannot remember the cities he has visited previously, and so he chooses the next city

impulsively and unpredictably. For simplicity, let us imagine that he chooses the next city
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independently from his previous choices, so he may end up making numerous visits to the

same city.

If no information (data or prior knowledge) is available regarding the politician’s

long-term subconscious preferences, we should not be eager to make a guess as to where

he will end up next. However, if we are forced to say something about the likelihood of

his future choices, the best we can say without being unsound is that he is equally likely

to visit each city.

Mathematically the equally-likely model can be summarised as shown in Table C.1.

Table C.1: Discrete Uniform distribution for the Politician example.

City A B C D E
x 1 2 3 4 5

Equally-likely Model Pr (X = x) 0.2 0.2 0.2 0.2 0.2

If we are forced to choose a solution to a problem about which we have little or no

information, it is natural to choose the most conservative option. That is, if all solutions

appear to be equally correct with respect to the information we possess, our choice should

be the one that is the least radical or extreme. This is the rationale behind choosing

the Equally-likely Model in Table C.1. Any other choice of distribution, with unequal

probabilities, would imply that we somehow have additional insight into the politician’s

choices. This principle was initially considered by Jacob Bernoulli and Pierre Simon

Laplace, and later called the principle of indifference.

Unfortunately, the principle of indifference is almost as far as intuition can carry us.

Being provided with further information, it often becomes unclear which of the possible

distributions is the most conservative choice. Let us consider a second scenario. Imagine

that we have been given the long term average of the politician’s visiting preferences
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regarding the five cities.

Mathematically, suppose we have the knowledge

E (X) = 2.5 .

This provides a constraint and gives us additional information about the politician’s

distribution. This constraint narrows down our choices, but it does not present us with a

unique distribution. For example, both Model 1 and Model 2 in Table C.2 satisfy the

constraint in the second scenario.

Table C.2: Two of many possible distributions for the Politician example.

City A B C D E
E (X)

x 1 2 3 4 5

Model 1 Pr (X = x) 0.325 0.2 0.2 0.2 0.075 2.5
Model 2 Pr (X = x) 0.1 0.6 0.1 0.1 0.1 2.5

In order to choose the most conservative model for the second scenario, we need to

understand the relationship between uncertainty and probability distributions in terms

of our problem. If there were fewer cities, then the level of uncertainty would be lower.

Clearly, there would be no uncertainty if there was only one city for the politician to

choose from. Secondly, if he showed a strong preference for particular cities then there

would also be a lower degree of uncertainty. Visiting the same city 99 times in 100 days is

hardly unpredictable. Hence, intuitively, the level of uncertainty depends on the size of

the sample space and on how the probabilities are allocated. Distributions with a larger

support or a greater dispersion are associated with greater uncertainty. A sensible measure

of uncertainty should reflect these, as well as other, basic properties. Variance is a measure

of dispersion or variation, and in some sense variance is a measure of uncertainty as well.
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In the next subsection, we will see that certain properties of information entropy make it

a better measure of uncertainty than other quantities such as variance.

Returning to the politician’s second scenario, Model 1 and Model 2 in table C.2 have

the same support, but it can be seen in Figure C.1 that Model 2 is more informative and

has less uncertainty.
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Figure C.1: Different distribution shapes, hence different levels of dispersion and entropy.

Adopting a model with an excessively low level of uncertainty is equivalent to claiming

information or knowledge that we do not possess. In terms of our second scenario, once we

have used all of the available information by imposing the constraint E(X) = 2.5, we have

no information left to justify choosing a distribution other than that with the maximum

level of uncertainty.

If information entropy is adopted as a measure of uncertainty, then the most conservative

model in terms of information or uncertainty is the maximum entropy solution. It is

intuitively clear that the Equally-likely Model in Table C.1 should be the maximum

entropy solution in the first scenario, however it is not clear which model should be the
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maximum entropy solution for the second scenario. To determine the maximum entropy

solution, we need to define information entropy mathematically.

C.1.2 Shannon’s entropy

Information entropy or Shannon’s entropy is an uncertainty measure introduced by Shan-

non and Weaver (1948) for discrete distributions. Useful properties of Shannon’s

entropy make it a widely accepted uncertainty measure.

Let H [fX ] denote Shannon’s entropy for a discrete random variable X, which has

probability mass function fX . The Shannon’s entropy is defined as a functional of the

probability mass function; it is not a function of the random variable X.

Let fX(xi) = pi for i = 0, 1, 2, . . . , n, where x0, x1, x2, . . . , xn are all the values that X

takes with nonzero probability. If this notation is used, then Shannon’s entropy H [fX ]

can be viewed as a real-valued function h(p0, p1, p2, . . . , pn). Specifically,

h : ∆n → R ,

where ∆n denotes the standard n-simplex,

∆n =

{
(p0, p1, p2, . . . , pn) ∈ Rn+1 :

n∑
i=0

pi = 1 and pi ≥ 0 for i = 0, 1, . . . , n

}
.

With this notation, Shannon’s entropy has the form
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H [fX ] = h (p0, p1, p2, . . . , pn)

= −K

n∑
i=0

pi logb pi , (C.1)

where K and b are positive constants, which merely determine the choice of a unit of

measure. For the sake of a simpler notation, let us set K = 1 and b to be Euler’s number

e = 2.71828 . . . . These two specifications do not affect any properties of Shannon’s entropy

that are of interest to us. Hence,

H [fX ] = h (p0, p1, p2, . . . , pn)

= −
n∑

i=0

pi ln pi .

Shannon and Weaver (1948) derived this measure by demanding three reasonable

properties, and they also proved that this is the only measure that possesses all three

properties. See also Shannon (2001) for a reprinted version with corrections. The three

properties are listed in Table C.3.

The continuity property in Table C.3 is clearly needed for any sensible uncertainty

measure. The monotonic increasing property in Table C.3 can be understood in terms of

the politician example: more cities create greater uncertainty if all cities have an equal

chance of being visited.

The property of strong additivity in Table C.3 requires additional explanation. Every

joint distribution can be decomposed into a marginal distribution and a conditional

distribution. The rationale behind strong additivity is that the level of uncertainty for
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Table C.3: Three important properties of Shannon’s Entropy

1. Continuity :

h(p0, p1, p2, . . . , pn) is a continuous function of p0, p1, p2, . . . , pn .

2. Monotonic increasing :

If fn
X is a discrete uniform function on n + 1 distinct support points,

then H [fn
X ] increases monotonically as n increases.

3. Strong additivity :

Given discrete random variables Q and W such that,

fQ,W (q, w) = fQ(q)fW |Q(w; q) ,

then H [fQ,W ] = H [fQ] + EQ

(
H
[
fW |Q

])
,

where fQ,W is the joint probability mass function of Q and W ,
fQ is the marginal probability mass function of Q,
fW |Q is the conditional probability mass function of W given Q.

the joint distribution must be the sum of the uncertainty contribution from the marginal

distribution and the weighted uncertainty contribution from the conditional distribution.

The uncertainty should be neither increased nor decreased by the decomposition.

Taking Model 2 in Table C.2 as an example, a possible decomposition is illustrated

as a tree diagram on the right in Figure C.2 , while the original Model 2 is on the left.

Intuitively, Figure C.2 represents the scenario that the politician has two decisions to

make instead of just one. He first chooses the province of the city that he wants to

visit. Then he chooses an individual city within the selected province. The decision is

decomposed into two decisions, but the outcomes and probabilities are the same as those

under the original model.
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Figure C.2: Decomposition of the politician’s choice.
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Hence the two models in Figure C.2 are essentially the same model represented in

two different ways, so they should be associated with the same degree of uncertainty.

Any other decompsition should also give the same uncertainty. In terms of Model 2 and

Figure C.2, strong additivity means :

Total Uncertainty︷ ︸︸ ︷
H [0.1, 0.6, 0.1, 0.1, 0.1]

= H [0.8, 0.2]︸ ︷︷ ︸
Contribution

from the marginal

+

0.8H [0.125, 0.75, 0.125] + 0.2H [0.5, 0.5]︸ ︷︷ ︸
Contribution

from the conditional

(C.2)

Shannon’s entropy also has other desirable properties as an entropy measure, such as
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non-negativity and symmetry. See Kapur and Kesavan (1992) for a brief summary,

and Aczél, Forte and Ng (1974), Aczél and Daróczy (1975), Mathai and Rathie

(1975) for more detailed discussion of its properties.

C.1.3 Differential entropy

So far we have considered entropy measures for discrete distributions. Shannon’s entropy

can be generalised to continuous intervals or continuous regions by replacing the summation

in EquationC.1 with an integral. The continuous counterpart for Shannon’s entropy is

called either continuous entropy or differential entropy:

H[fX ] = −
∫

A

fX(x) ln fX(x) dx , (C.3)

where fX is the density function of X and A is the entire support of X.

Although the differential entropy defined in EquationC.3 seems to be a natural

extension of Shannon’s entropy, it lacks some desirable properties that Shannon’s entropy

holds. An example is that, in some cases, it can take negative values. Consider the uniform

distribution on the interval [a, b]:

fX(x) =
1

b− a
for a < x < b .

The differential entropy defined in EquationC.3 for the uniform distribution evaluates

to ln (b− a), which is negative if (b− a) < 1.

An entropy measure that can be negative is hard to interpret, because uncertainty

would seem to be non-negative. However, it does make sense for the difference between two
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distinct uncertainties to be negative. We interpret the differential entropy of a distribution

to be the relative entropy between the distribution under consideration and the uniform

distribution on the same support.

The uniform distribution for any support is considered to be the most conservative

model in terms of entropy for that support. A distribution that is close to the uniform

distribution in terms of a statistical distance is more conservative than a distribution that

is further away from the uniform distribution. Minimising the distance from the uniform

distribution is equivalent to finding the most conservative model in terms of entropy.

Let us select the Kullback-Leibler divergence by Kullback and Leibler (1951) for

our measure of statistical distance, and suppose we have two probability density functions,

fX and gX . Then the distance between fX and gX is

δ (fX , gX) =

∫
A

fX(x) ln

{
fX(x)

gX(x)

}
dx , (C.4)

where δ (fX , gX) is the Kullback-Leibler divergence between fX and gX .

If gX is the uniform distribution and A is the interval [a, b], then the Kullback-Leibler

divergence δ (fX , gX) gives the distance of fX from the uniform distribution. In this case,

the Kullback-Leibler divergence δ (fX , gX) turns out to be

δ (fX , gX) = ln(b− a) +

∫ b

a

fX(x) ln fX(x) dx . (C.5)

The differential entropy defined by EquationC.3 and the Kullback-Leibler divergence

in EquationC.5 differ only by a negative sign and an additive constant. Therefore,

differential entropy can be thought of as a special case of Kullback-Leibler divergence. The
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theory behind Kullback-Leibler divergence helps us to justify the use of differential entropy.

Maximising the differential entropy is equivalent to minimising the Kullback-Leibler

divergence from the uniform distribution on the same support.

The discussion above gives our justification for finding the most conservative model by

solving the following variational problem:

Maximise I [fX ] = −
∫

A

fX(x) ln fX(x) dx ,

Subject to mi =

∫
A

xifX(x) dx for i = 0, 1 . . . , n , (C.6)

where the mis are constants with respect to X.

The solution to EquationC.6 is the density function fX with the largest differential

entropy that satisfies all of the constraints. This criterion is formally known as the

maximum entropy principle. See Jaynes (1982) and Cover and Thomas (2004) for

further detailed discussion of the use of differential entropy and the maximum entropy

principle.
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D.1 Chebyshev Polynomials of the First Kind

D.1.1 Definition

The Chebyshev polynomials of the first kind are defined as the following:

Tn(x) =

(
x−

√
x2 − 1

)2
+
(
x +

√
x2 − 1

)2
2

. (D.1)
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They can also be defined using trigonometric functions,

Tn(x) = cos (n arccos x) . (D.2)

D.1.2 Recurrence relation

The Chebyshev polynomials of the first kind satisfy the following recurrence relation,

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x) for x ∈ [−1, 1] . (D.3)

D.1.3 Orthogonality

The Chebyshev polynomials of the first kind Tn form a sequence of orthogonal polynomials

with respect to the weight function,

1√
1− x2

, (D.4)

on the interval [−1, 1], that is,
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∫ 1

0

Ti(x)Tj(x)√
1− x2

dx =


0 for i 6= j ,

π for i = j = 0 ,

π

2
for i = j 6= 0 ,

(D.5)

where π is the transcendental number 3.141592653589793 . . ..
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