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AbstractAbstractAbstractAbstract    
 

With the increasing use of multicore and distributed computing platforms, software 

systems are becoming more and more complex and as such require tremendous design 

effort. They are also very difficult to debug and guarantee for correct functionality.  In 

the case of embedded systems, ideally, software development could proceed in parallel 

with the development of the target hardware if this is not known in advance. 

This thesis addresses complex software systems development which can be 

underpinned by formal models of computation and which use some kind of operating 

system to abstract the hardware platform from system developers.  Two specific models 

of computation, synchronous reactive and asynchronous, combined into a Globally 

Asynchronous Locally Synchronous (GALS) model are used as the underlying formal 

model of the target systems. A set of tools to implement the GALS model in traditional 

programming languages, C and C++, is used to enable re-use of huge legacy codes. The 

tools consist of libraries and run-time support that allow the design of two types of 

GALS systems for the range of target platforms: (1) static systems with a fixed number 

of concurrent processes and (2) dynamic GALS (DGALS) systems where the number of 

processes varies during system life. The implemented libraries and run-time support 

depend only minimally on the operating system, since they use a very primitive 

synchronization mechanism in the form of semaphores, and are ported to a number of 

non-real-time and real-time operating systems with identical application programming 

interface (API).  

A specific version of API is developed for the development of static GALS systems 

in system-level design language SYSTEMC, which allows system designers to model 

both hardware and software within the same system model, thus developing software 

before the actual hardware is available. 

The developed APIs are in compliance with the GALS model of computation 

(MoC), opening the possibilities for formal verification of designs or their parts, or of 

the use of the API in conjunction with programming languages based on GALS MoC. 
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1. 1. 1. 1. IntroductionIntroductionIntroductionIntroduction    

    
The development of computer systems is driven by technology advancements. New 

application requirements, particularly those that can be classified as embedded systems, 

are becoming very challenging due to increased system complexity. The large number 

of concurrent behaviors that are implemented in combination with hardware and 

software components require us to change traditional design practices to reflect these 

new realities. The development of systems is typically divided into phases of system 

specification, system verification, component partitioning, simulation, implementation, 

and validation, before the delivering of the final product. 

1.1 Problems in design of computer systems 

Designing computer systems requires sophisticated techniques to overcome 

constraints caused by the complexities of the systems under design. It is expected that 

complex system design requires much time. However, to ensure that products will be on 

the shelves on time, extra effort must be spent within the time available for product 
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release. There are methodologies and remedies to address the underlying issues, for 

example design-gap, by adopting the use of advanced system modeling and synthesis 

techniques. System models often include models of embedded and/or real-time 

operating systems (OSs), to estimate and mimic dynamic behaviors in the final systems. 

Because of the ever-increasing application domains of computer systems and time-

to-market constraints, and in order to maintain maximum productivity, current design 

methodologies focus on how to achieve the final implementation in the shortest time 

with the minimum resources. There are many kinds of computer systems, performing 

different dedicated operations. For example, automation (in manufacturing), 

transportation (automotive applications and traffic control), communications (e.g. 

mobile phones and internets), and healthcare (electronic aids and life support) are 

typical applications of computer systems. The design approaches and tools available are 

often application-field specific. Such approaches sometimes come from experience; i.e. 

they are heuristic. Designs following such methodologies may work without any 

problem for long periods of time, but because of a lack of theoretical background and 

support for analysis, hidden problematic issues are hard to detect and locate when error 

occurs. Safety and liveness are two important aspects of critical systems; such systems 

need to be designed with care and should be tolerant to unforeseen events (fault 

tolerant). Without proper theoretical-based reasoning, designing critical systems may be 

just like filling visible holes which is an unreliable approach. For instance, thread-based 

designs in software programming are error prone [Oracle, 1999], [Lee, 2006], and 

difficult to program [Serrano et al., 2004] because they rely on the experience and care 

of the designer. 

Furthermore, as technologies advance, the performance of processing units (i.e. 

processors) and available connectivity (e.g. high speed networks) are widely available. 

The scope of a system under design is no longer a single chip or computer but also 

networks of distributed computational nodes. The size of each computational node 

varies according to its requirements and the operations that it performs. However, the 

design still depends on the background of the designer, so that one may not have the full 

picture of the system under design, and the coverage of the thinking is just not wide 
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enough. The consequences may not be just the failure of the system, but also of 

unpredicted design time and financial losses. 

1.2 Tools based on theory to provide correct designs 

Tools and methodologies based on theories have been proposed and developed 

widely to provide designers peace of mind when carrying out design tasks and decisions. 

The approaches are mostly application-specific, similar to heuristic methods but better 

in the sense that potential problems can be found with given limitations and 

requirements. Limitations in methodological approaches are not necessarily drawbacks 

for the designs, but can sometimes be ground rules to prevent incorrect plans and 

strategies which may lead to a disaster in the design process. 

The focus of this thesis is to address the issues and to provide the tools with 

theoretical basis to design concurrent systems with less design effort to ensure both the 

safety and the correctness of the design. It is also to enable the linkage of such tools to 

other application domains with concurrency. Such tools are also suitable but not limited 

to system-level design, containing components that are executed concurrently. 

Existing theoretical methodologies for designing systems with concurrency are 

based on various models of computations (MoCs). MoCs such as synchronous 

languages (ESTEREL [Berry & Gonthier, 1988], LUSTRE [Caspi et al., 1987], and SIGNAL 

[Benveniste et al., 1985]), process calculi (e.g. Communicating Sequential 

Processes/CSP [Hoare, 1978]) and networks (e.g. KPN [Kahn, 1974]), globally 

asynchronous and locally synchronous (GALS [Chapiro, 1984]) systems, and process 

mobility (such as pi-calculus [Milner, 1999] for dynamic systems) have been proposed 

and developed. Some of these approaches, such as process calculi and networks, are 

purely theoretical and lack support in design systems. On the other hand, system level 

design languages (SLDLs), such as SYSTEMC [OSC Initiative, 1999], have a limited 

level of support for formal MoC, i.e. they are based on the discrete event MoC which 

does not guarantee determinism. However, they are widely used in the design 

community and also serve as an industrial standard. 
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Languages such as SystemJ [Malik et al. 2010] and DSystemJ [Malik et al., 2010] 

consider both the theoretical and the practical features of designed systems and cover a 

vast range of emerging systems. However, the requirement of using the Java virtual 

machine as their target narrows down the door to using them in systems with limited 

resources. Furthermore, existing SLDLs are closely related to programming languages 

used in embedded platforms, such as C/C++, which makes the integration between 

SLDLs and SystemJ/DSystemJ less straightforward.  

1.3 Motivation 

From current application trends and available design and implementation 

approaches, it would be desirable to have a set of tools which are able to handle 

concurrency based on theoretical foundations, but at the same time work closely with 

existing tools to carry out system design. In order to extend the domain where current 

tools can be applied effectively it is necessary to address a range of issues. A non-

exclusive list of these issues follows: 

  

The need for tools to support formal MoC. 

Synchronous languages are not suitable for a distributed platform due to the 

overheads to maintaining a global sense of instance/tick. Asynchronous languages and 

libraries are error prone for programming concurrency. The path adopted in this thesis is 

to use the GALS MoC as the basic formal model that underpins the design approach and 

tools. 

 

The need for tools to design both control- and data-dominant systems. 

Concurrency exists in the realms of both control and data domains. Handling 

multiple events at the same time correctly and efficiently is required in complex reactive 

systems. At the same time, multiple data streams are being processed concurrently 

through the uses of multicore/multiprocessor architectures. Moreover, computer systems 

(applications) are heterogeneous and consist of a mix of control and data parts.  
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The need for bridging hardware and software via extensions to operating systems. 

Operating systems play the role of bridging between hardware and software 

components within systems. Device drivers and firmware are parts of the operating 

systems to control hardware peripherals around the processor. Extensions to the 

operating systems are necessary to enable hardware/software co-design and co-synthesis 

where functionalities implemented either in hardware or software are relevant to the 

operating systems running between them. 

 

Integration to current system level design language (SLDL) to help the design process. 

As mentioned before, existing SLDLs lack support for formal MoCs but are popular 

in both industry and academia. Developing a set of new tools does not imply re-

inventing the wheel. The proposed tools can be used to describe software behaviors and 

should be able to link with current state of the art SLDLs with minimal effort. 

 

Support for distributed and dynamic systems with a small footprint in mind. 

The concept of distributed systems is not new. It is desirable to have concurrent 

programming suitable for distributed systems while   a specific MoC is followed. 

DSystemJ and X10 [Charles et al., 2005] aim for distributed computing, yet both require 

JVM, which implies higher performance underlying execution platforms. In this thesis, 

a library-based framework that extends C language is proposed, implemented, and 

experimentally verified, and considered as a potential solution.  

 

Single-language approach is used to improve productivity. 

Designing a system in a single language frees the designer from interfacing 

components described in different languages which can be prone to mistakes. 

Synchronous languages such as ESTEREL are difficult for describing software algorithms 

and require significant efforts for either hardware or software implementation. Because 

of such limitations, algorithms that perform data computations are implemented in the 

other host languages such as C/C++ and  are linked with the compiled synchronous 

programs. Approaches such as ECL [Lavagno & Sentovich, 1999] and JESTER 
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[Antonotti et al., 2000] attempted to achieve a single language environment. However, 

source codes are still required to be generated to backend ESTEREL language where 

debugging is carried out. 

Simulink [MathWorks, 2011] based on MatLab language, is able to provide code 

generations and is very flexible for system modeling. However, it is used mainly for 

system simulation. 

Thus the required tools should be based on a single language. However, such a 

language should still be able to provide interface to bind with other languages to ensure 

interoperability. The C language is chosen as the lowest-level common denominator and 

used to implement the required libraries and tools in this thesis. 

 

Create an extension, in the form of a library, to support MoC of existing languages: 

Instead of proposing another language, a library-based extension of existing 

programming language is proposed and introduced. Such an extension is able to fulfill 

and support the semantics of GALS and DGALS MoC, which have been provided in 

languages such as SystemJ [Malik et al. 2010], DSystemJ [Malik et al., 2010], and other 

related languages such as synchronous languages ESTEREL [Berry & Gonthier, 1988]. 

By following specific MoC, the behaviors of systems modeled in the proposed 

extension will be deterministic and predictable. 

1.4 Research contributions 

The research contributions of this thesis are illustrated as two layers of the inner 

circles in  

Figure 1.1The innermost circle in Figure 1.1 represents the key developments of 

language extensions that enable a design underpinned by a GALS MoC, as well as the 

methodology to include operating system models in more complex designs.  The second 

layer extends and utilizes the results of the inner layer to create frameworks to improve 

design productivity in a complex system design. The outer layer presents the 

fundamental concepts and related approaches that are analyzed and combined into the 

results of the thesis. 
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OS modeling is first carried out to pinpoint the required services and programming 

support for synchronous languages in system level design, and which consider both 

software and hardware components in the system. Derived and developed from these 

concepts, libGALS is implemented as a library, based on the basic services provided by 

the underlying operating system. The DesignGALS framework merges the works of 

both OS modeling and libGALS to perform system-level design. Similarly, libDGALS, 

which is a further enhancement and extension of libGALS, supports programming of 

dynamic GALS systems and provides the mechanisms to model and design distributed 

systems in a higher level of abstraction.  

 

libGALS

DGALS 

Framework

DesignGALS

Framework

OS

Modeling

libDGALS

System

Level

Design

and

Modeling

Synchronous

Languages

GALS

MoC

Dynamic Systems 

and Process Mobility

 

 

Figure 1.1: Contributions of this thesis in relation to other work 
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1.5 Thesis organization 

The rest of the thesis is organized as follows:  

Chapter 2 gives an overview of the related work. It introduces the motivation, 

contribution and the structure of the thesis. Underlying theoretical and practical 

concepts relevant to the thesis are given in this chapter. An overview of basic and 

essential background along with related works is given in Chapter 2, so that the reader 

can understand the context in which the thesis was written. 

Chapter 3 introduces the basic principles of developing computer systems in a 

staged design flow; collection of design models used in different design phases is 

presented. SYSTEMC is used as the main system-level design language (SLDL) 

throughout this chapter and this thesis. Methodologies of modeling software 

concurrency are also discussed and investigated. A system model that consists of 

software processes, OS, and hardware components such as data memory and peripherals 

is proposed. The behaviors of processors in the system under design are presented in a 

higher level of abstraction through the models of software processes and OS, in contrast 

to a lower level description such as RTL or simulation performed by ISS. The OS model 

is the main focus and is used to explore possible run-time supports to describe 

synchronous concurrency, the basic building blocks of GALS systems.  

The findings in Chapter 3 lead to the development of libGALS detailed in Chapter 

4, where a library-based approach to describe GALS programs, libGALS, as the run-

time support to OSs, is presented. The application programming interface (API) and the 

internal data structure of libGALS are detailed in this chapter. Examples of constructing 

a GALS program are given, followed by the experiments and results obtained by 

comparing libGALS to SystemJ, a language and compiler-based approach for designing 

GALS systems.   

Chapter 5 presents a framework that integrates libGALS and SYSTEMC, called 

GALS-Designer. GALS-Designer enables the system designer to describe the overall 

system consisting of GALS software and hardware components in the same SYSTEMC 

model. How libGALS is integrated with SYSTEMC is detailed in this chapter. System 
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models constructed using GALS-Designer benefit from using a multicore host to obtain 

simulation speed-up compared to conventional system models in pure SYSTEMC. 

GALS-Designer allows the instantiation of multiple libGALS programs in a system. 

Because simulations of GALS programs can be un-timed functional or approximate-

timed by having timing annotations, GALS-Designer is suitable in various design 

phases of the design flow. Case studies of using GALS-Designer are presented and are 

followed by evaluations of the GALS-Designer. 

Based on the introduction to libGALS in Chapter 4, Chapter 6 presents its extension 

to libDGALS, that clock domains can be created dynamically in distributed networks. 

This extension to libGALS requires dynamic library-loading and the ability to operate 

over a network, available in modern operating systems. The libDGALS is implemented 

according to the Dynamic GALS (DGALS) MoC, and is the backbone of the 

DynamicGALS framework. The internals of libDGALS will be addressed in Chapter 6, 

along with case studies and comparisons with other relevant approaches. Corresponding 

to GALS-Designer in Chapter 5, in which libGALS programs are instantiated statically 

in the elaboration phase of the SYSTEMC simulation, clock domains in libDGALS 

programs are created dynamically at run-time. 

  With Chapter 7, the thesis concludes by summarizing the advantages of the overall 

framework built around the libGALS library and run-time support to C language. Future 

directions are also presented. 
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2. 2. 2. 2. BackgroundBackgroundBackgroundBackground    and related worksand related worksand related worksand related works    

    
Background information required for a clear view of this thesis is provided in this 

chapter. A general overview is given to understand the later chapters. Section 2.1 gives 

brief descriptions of concurrency in computer system design. Typical elements of 

computer systems are briefly described in Section 2.2. Concurrencies of computer 

systems are detailed in Section 2.3. This is followed by discussions of models of 

computations (MoCs), languages, and libraries for system design in Section 2.4. 

Sections 2.5 to 2.13 give further insights into the current state of the art, leading to the 

approach taken in this thesis, briefly detailed in Section 2.14. 

2.1 Types of computer systems 

Computer systems come with different flavors according to different characteristics 

of their requirements. They can be categorized as ‘transformational systems’, ‘reactive 

systems’ [Harel & Pneuli, 1985], and ‘interactive systems’ [Raymond et al., 1998] 

according to how they behave in relation to the external environment. 
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Transformational systems, also known as data-dominated systems, operate at their 

own speeds, which can be periodic or aperiodic. These systems usually have data 

arriving at regular intervals and the information they carry is more critical than their 

time of arrival. Signal processing is an example of such systems. A compiler can be 

seen as an example of an aperiodic transformational system. The time that a 

transformational system takes to complete given tasks depends on the complexity of the 

computation and how powerful the underlying computer system.  

Reactive systems, on the other hand, operate at the speed of the environment, 

having to respond to events from the environment continuously and fast enough, i.e. 

before the next event occurs. Being control-dominated, they are suitable for control-

based applications such as automotive systems, robots and many other systems. 

Therefore logical (how to behave) and temporal (when and how fast to behave) 

correctness of such systems is important.  

Interactive systems respond to the environment similarly to reactive systems, but 

perform at their own speed as transformational systems. Personal computers are 

examples of interactive systems, where users can be seen as the environment which 

provides inputs; the outputs (e.g. display and sound) are produced when the 

computation is finished depending on how fast the systems are. 

A computer system can have characteristics from a mixture of these three types of 

systems. Heterogeneous systems are typically named after the combination of control-

dominated and data-dominated systems [Radojevic et al., 2006]. 

2.1.1 Embedded systems 

Embedded systems are computer systems which deal with externally or internally 

generated events, similar to reactive systems, in synchronous or asynchronous fashion. 

Events can occur either externally, such as a temperature variation detected by the 

dedicated sensor, or internally, such as generated time-outs. Embedded systems usually 

perform in an interchangeable and non-terminating fashion. The major markets of 

embedded systems include applications in automotive control (steering control, brakes 

control, radio navigation, doors control, and suspension control, etc.), communications, 

handheld devices, or aerospace applications [Stepner et al., 1999]. 



Chapter 2. Background and related works 13 

 

2.1.2 Real-time systems 

Computer systems that require attention to complete given tasks within pre-

determined timing constraints are real-time systems. These are further categorized into 

two groups: (1) hard real-time systems and (2) soft real-time systems [Lab, 1999]. 

Timing constraints must be fulfilled precisely at all times to prevent system failure in 

hard real-time systems. Concurrent behaviors within hard real-time systems are crafted 

carefully with approaches to ensure that critical timing requirements are met. 

Applications of hard real-time systems include safety-critical systems such as air-bags 

used in automobiles. 

In contrast, soft real-time systems may not fail or can recover if failing to respect 

the timing specification. Applications requiring actions taken in a timely manner, such 

as the temperature adjustment of air-conditioning systems, are categorized as soft real-

time systems. 

2.2 Hardware and software in computer systems 

Computer systems are becoming very complex and challenging to design, and the 

process is spread over a number of stages, such as specifying systems, design 

exploration, implementation, and verification. Because computer systems are often a 

composition of concurrent behaviors, these behaviors are represented in different forms 

at each design stage. 

A computer system is generally implemented as a combination of hardware (HW) 

and software (SW). Concurrency of such systems is also implemented in both domains. 

Hardware circuits are concurrent in nature, while software concurrency is achieved 

through the uses of compile-time techniques or run-time support from operating systems 

(OS). 

Having concurrency in mind in designing computer systems is a must. Concurrency 

enables designers to modularize a system to carry out designs in a systematic and 

hierarchical manner. However, handling interactions between concurrent behaviors can 

be sometimes tedious, especially when the number of behaviors increases. For example, 
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each behavior, created to achieve a specific goal of the system requirements, may 

conflict with other behaviors of the same system. Even if all behaviors can co-exist, the 

timing, i.e. the order of the behaviors to perform, may lead to unwanted results which 

violate the system requirements. Furthermore, behaviors created in the early design 

stages may not be realistic in the implementation stage. For example, a very fine grain 

of concurrency in software may introduce a heavy overhead of context switching which 

impacts the performance of the system. However, coarse-grain concurrency is often 

identified in the specifications (can be formal or informal). Dependencies may occur 

between behaviors so that in an extreme case every behavior is dependent on another in 

the system. Therefore real parallelism does not exist to assist the designer in exploring 

the maximum benefit of platforms such as multicore or distributed architectures. 

Methodologies have been introduced to help designers to define and implement 

concurrency of computer systems in an appropriate manner. Related theories and 

concepts of these methodologies are detailed in the following sections. 

To understand the methodologies of designing computer systems, one must know 

how computer systems are constructed. Their elements in computer systems can be 

categorized into software and hardware. Functionalities, according to their nature, are 

mapped to software or hardware taking into account several considerations such as 

performance and available resources. 

2.2.1 Hardware in computer systems 

Having hardware components in computer systems is obvious, since a computer is 

itself hardware. A hardware component can be implemented in analog or digital fashion. 

The latter is the focus in this thesis. Hardware components in computer systems can be 

‘general purpose’ or ‘application specific’. General purpose hardware components are 

those common in most systems, and follow various interfacing standards so that they 

can be integrated with minimal effort. Application-specific hardware components, 

which perform required specific functionalities, are integrated according to the systems' 

needs. 

Processors, sometimes called ‘processing elements’ (PEs), are examples of 

hardware components. Therefore PEs can be categorized as general purpose, such as 
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embedded processors, and application specific, such as digital signal processing (DSP) 

processors; they differ by the computations performed. PEs can be facilitated with 

specialized functionalities, in the form of built-in hardware or ‘co-processors’, to 

enhance processing power, e.g. multicore architecture and floating point units. 

Directions of how computations are performed within processors are stored as software 

components, which will be detailed in the next section. Processors can be considered as 

the middle layer between other hardware and software components. 

There are a number of ways to design hardware components. As technology 

advances, hardware design strategies evolve so that designers can describe hardware in 

less complex ways. Digital hardware systems are described nowadays using higher level 

languages called ‘hardware description languages’ or HDLs, such as VHDL [Lipsett et 

al., 1986][IEEE, 2000] and Verilog [IEEE, 2001]. Each hardware component has its 

dedicated behavior which can sometimes be further refined into sub-behaviors. A 

functionality of behaviors can be sequential or concurrent. In this thesis, behaviors and 

sub-behaviors are considered hierarchical and mostly concurrent, and are generally 

called ‘hardware process(es)’ in HDLs. 

2.2.2 Software in computer systems 

The cost of the development of embedded-systems software has an increasing trend 

with the evermore significant contribution to the total cost of system development 

[Allan et al. 2002]. Sequential behaviors are realized in software components, or 

software, and are executed by PEs. Software is described by using programming 

languages which can be high level such as Java [Arnold et al., 2000] and C [Ritchie et 

al., 1975] / C++ [Stroustrup, 2003], or low level such as assembly, in the form of 

‘software source codes’. These latter are compiled into ‘software programs’ (or binaries) 

which are usually instructions of the PEs or virtual machines (e.g. JVM of JAVA). A 

software program that resides in storage such as hard-drives or memories can be 

accessed, loaded, and executed by the PE, as a ‘software process’, or just ‘process’ for 

short. The actual execution of a software process, in PE, can be out-of-order or parallel 

depending on features of the PEs. However, in this thesis, it is considered that a 

software process is executed sequentially, yet this does not stop multiple software 
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processes being executed at the same time. Parallelism, or rather concurrency, of such 

processes is achieved via the use of operating systems (OSs). 

2.2.3 Software concurrency and operating systems 

Having multiple software processes running on the same processor is not new. 

Similar concepts appeared as early as the 50’s when multiprogramming systems were 

developed [Rochester, 1955]. The software that coordinates multiple programs running 

together is known as an operating system (OS). OSs came with very basic 

functionalities in the earlier years, such as support for creation and deletion of software 

processes, and were later enhanced with other features to provide services, e.g. 

communication and synchronizations between software processes. 

There are many flavors of OSs, characterized according to target applications 

requirements; for example timing constraint (required to finish a specific computation 

with given time, also known as ‘real-time’), size (the available storage for both 

programs and the OS), and available executing platform (single or multiple processor 

architectures).  

With respect to the timing aspect, OSs are differentiated by how software processes 

are dispatched by the schedulers. These follow different scheduling policies and 

implementation so that the OSs can be cooperative (processes release use of the 

processor voluntarily), pre-emptive (execution of software processes can be interrupted 

by the OS), and real-time (process executions are constrained by given times). 

Executions of some real-time systems are supported by real-time OS, or ‘RTOS’. An 

OS scheduler can be equipped with more than one scheduling policy, such as earliest 

deadline first (EDF), rate monotonic (RM), round robin (RR), and cooperative 

scheduling, to achieve higher adaptivity.  

In terms of size, ‘embedded OSs’ are used in the embedded applications in which 

storage is usually limited. To achieve a smaller size, these OSs can be modular (can be 

stripped down) and/or statically linked variants of general OSs, for example eCOS 

[Massa, 2003] (in relation to Linux).  

The number of software processes running in a truly parallel manner depends on the 

target execution platforms on which suitable OSs are used. For single processor 
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architecture, software processes are scheduled to obtain virtual parallelism to achieve 

better responsiveness and better use of inputs and outputs (I/Os). When multiple cores 

or processors are available, the underlying OS is then able to dispatch multiple 

processes running at the same time (true parallelism) to achieve performance gain. 

Communication and synchronization are also managed by the operating systems to 

handle dependencies of software processes running in parallel. 

Even though OSs and the categories to which they belong are different, this does 

not infer that the types of OSs have to be exclusive. For instance, an embedded OS does 

not necessarily need to be a real-time OS. Similarly, a desktop OS, such as Linux, 

provides real-time scheduling mechanism when required by the applications. 

Each software process can be further composed from a number of threads, which 

are concurrent. Threads are light-weight processes [Bovet et al., 2002] which usually 

share the same address spaces; i.e. they operate in the same area of memories, in 

contrast to processes which have their own memory spaces. Threads can be seen as a 

fine-grain of concurrency within coarse-grain concurrent software processes. Executions 

of threads are different from one implementation of OS to another. Threads can be 

implemented at kernel-level or user-level. The former are mapped to processes managed 

by the OS scheduler, while user-level threads are mapped to a single process whose 

internal scheduler is governed by specific libraries, or implemented by the designer. For 

instance, pthread [POSIX, 2009] is a library implemented by using kernel-level thread; 

on the other hand, GNU pth [Engelschall & Pth, 2006] operates at user level. 

In some embedded OSs, such as MicroC/OS-II [Labrosse, 2002], the term ‘task’ is 

used to describe an execution entity. Tasks can be considered as either processes or 

threads, again depending on how the OSs are implemented, i.e. tasks to share a global 

address space or not. Throughout the thesis, the terms ‘process’ and ‘threads’ are used 

to differentiate the memory model of the concurrent execution entities. 

Hence, important concepts to provide software concurrency by OSs are as follows: 

1. Critical section (CS) - also known as a critical region where a process will 

not be interrupted when entering the CS. 
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2. Multitasking and scheduling - the scheduling is to provide concurrent 

process executions to prevent monopoly over, or starvation of, resources. 

3. Context switching and interrupt – context is the snapshot of the processor 

state, which represents the status of the current executing processes. Context 

switching is required when process scheduling/switching occurs. 

Conventional processor provides an interrupt mechanism to store process 

context, where OS is responsible to arrange the location where the process 

context is saved. 

4. Communication and synchronization – since processes are not only 

independent of each other but most often heavily interdependent, features 

like communication and synchronization are required. 

 

Other OSs can be further application specific, such OSEK/VDK for automobiles 

[OSEK, 1997]. Further details of OSs can be found in classical texts such as 

[Silberschatz & Galvin, 1998]. 

Concurrent software behaviors may be sequentialized into a static single thread 

with dependencies between processes resolved in advance. One such approach is used 

in synchronous languages, e.g. ESTEREL [Berry & Gonthier, 1988]. In this case 

operating systems are not required for handling concurrency but may still be required 

for interactions with I/Os [Andre & Péraldi, 1993]. 

Software concurrency with the help of the OS plays an important role in this thesis. 

The libGALS and libDGALS, presented in Chapter 4 and 6 respectively, are libraries 

implemented using features (locking and scheduling) provided by the OS and benefiting 

from the multicore/multiprocessor architecture when supported by the OS. 

2.3 Concurrency in system design  

Designing systems start from specifications at a coarse-grain level of details, to a 

fine-grain level in implementation. A list of the characteristics of a system, e.g. how it 

behaves, is given in the specification of each system. Behaviors specified in this level of 

abstraction are not finalized and are implementation dependent. As an example, if two 
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behaviors are concurrent, how they are scheduled is based on which scheduling policy 

to use, is unknown in the specification. Therefore, concurrency in the specification is 

‘partially ordered’; that is, the order of the behaviors may be neither deterministic nor is 

final. 

For example, in systems with a single processing unit, and making use of OSs, each 

behavior is ordered individually. The scheduling of behaviors sequentializes the 

activities of behaviors. Such sequences of how behaviors are scheduled may vary from 

one OS to another, or even in different scenarios with the same OS. In multicore 

systems, behaviors with dependencies still have a partially ordered relationship, while 

the independent computation will have no order at all. 

Partial order of concurrency gives expressiveness to system specification, so that it 

is more flexible to laying out concurrent behaviors in a system under design. Behaviors 

at specification level can be later refined by following specific rules to achieve 

deterministic results. These rules, known as ‘model of computation’ (MoC), will be 

described in the later sections. Note that it is desired to still have non-deterministic 

concurrency in the implementation for the following reasons: 

1. Limitation by the architecture: components in a system running in 

distributed networks act independently in general, and communicate with 

each other when required. These components do not share a global view of 

the system, to reduce unnecessary overheads in maintaining such a view. 

2. To achieve dynamicity: a system may react to the environment or make a 

request to the environment to have behaviors activated at run-time. That is, 

the number of behaviors running at a given time is not fixed and not 

predictable. This enables systems to have both dynamicity and robustness. 

The GALS-Designer framework detailed in Chapter 5, empowered by the libGALS 

library and SYSTEMC system level designing language (SLDL), provides the means of 

describing software concurrency in Globally Asynchronous Locally Synchronous 

(GALS) MoC (from libGALS) with the ability to specify partial concurrency (from 

SYSTEMC). The DynamicGALS framework in Chapter 6 further provides the ability to 

program distributed systems. 
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2.4 Model of computation, languages, and libraries 

2.4.1 Model of computation  

‘Model of computation’, or ‘computational model’, describes how behaviors are 

performed and how they communicate with each other in a system (composition of 

behaivors). Aspects of MoC include computational complexities, compatibilities, and 

language semantics. MoCs are not limited to being described in a purely mathematical 

manner. Various languages are proposed to work with dedicated MoCs to describe 

systems. ‘Formal languages’ are based on rigorous mathematical models, and therefore 

analysis can be made to explore their characteristics. On the other hand, ‘informal 

languages’ do not follow specific MoCs and extra effort is required to ensure the 

correctness of the designs. MoCs can be heterogeneous, i.e. merging concepts of various 

MoCs and presented in a unified view as in [Lee & Sangiovanni-Vincentelli, 1998]. 

2.4.2 Languages as design tools: concepts and backgrounds 

Languages can also be ‘implemental’ or ‘theoretical’. Implemental languages, such 

as programming languages and hardware description languages, have compiler support 

to generate implementation in software or hardware from the source codes (or the 

source descriptions) of the design. In contrast, theoretical languages can only be 

expressed in a textual manner, but have a solid theoretical background to analyze the 

designed systems. Note that theoretical and implemental languages are not mutually 

exclusive; that is, compilers can be implemented for a theoretical language to make it an 

implemental one. Languages can be seen as tools to help system design, and are 

represented in many forms: 

1. Mathematical formalism: alphabets (symbols) and strings of the language 

are defined, along with a set of the fundamental (kernel, or logical axioms) 

of the language. The fundamentals are further extended (or substituted) in a 

logical and mathematical manner to form a complete syntax of the language, 

for instance, functional programming languages, which are based on λ-

calculus [Church, 1932]. Examples of such languages include ML (e.g. 
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STANDARDML [Milner, 1997]) and HASKELL [Jones, 2003]. Languages like 

ESTEREL [Berry & Gonthier, 1988], LUSTRE [Caspi et al., 1987], and SIGNAL 

[Benveniste et al., 1985] follow ‘synchronous formalism’, which is closely 

related to the GALS MoC used in this thesis.  

2. Graphical representation: a set of graphical elements, such as nodes 

(vertices), arcs (edges), and labels, are used to construct a language. The 

rules of connecting these graphical elements are defined as the syntax of the 

language. Examples of languages with graphical representations are 

STATECHARTS [Harel, 1987], Kahn process network (KPN) [Kahn, 1974], 

and Petri nets [Petri, 1962]. 

3. Programming languages: can be general or application specific. General 

programming languages, such as C (which is an ‘informal language’), are 

suitable to describe systems in various application domains. Application-

specific languages are designed for particular domains. For instance, 

synchronous language ESTEREL targets reactive systems. 

Compiler/translator application-specific languages may generate codes in 

general programming languages which often have portability in mind. 

Programming languages also come with different flavors, e.g. ‘imperative’ 

(closely related to state-based formalism, such as C/C++ and JAVA ), ‘data-

flow’ (used in signal processing, such as SIMULINK ), and ‘functional’ (as 

afore- mentioned, e.g. HASKELL). 

 

Languages can be presented in combinations of forms. For instance, SIGNAL is 

based on synchronous formalism, and can be presented in a graphical manner as data-

flow, relational, and declarative [Le Guernic et al., 1991]. SIGNAL  is implemental and its 

compiler generates codes in C, FORTRAN, and OCCAM [Benveniste & Berry, 1991].  

With the help of ‘compilers’ and ‘translators’, the source code in one representation 

can be used to produce the resulting code in another. The differences between compilers 

and translators can be summarized in the following: 
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1. A compiler parses the source codes of a specific language, and uses an 

intermediate format to store the parsed result. The structure of the 

intermediate format is different from the source code, e.g. imperative style 

source codes are stored in a tree-structured control-flow representation. 

Instead of using the term ‘compiler’, ‘synthesizer’ is used in digital 

hardware development, which translates higher-level description of 

hardware to lower-level implementations on FPGAs/ASICs. 

2. A translator provides direct mapping from the source language to the 

destination language. When direct mapping is not available, substitutions or 

macros from destination languages are used. 

2.4.3 Library based approach 

Software libraries, or ‘libraries’, are implemented at the top of the programming 

languages. Libraries take advantage of the existing language so that it is not necessary 

to design a new compiler. Run-time supports provided by libraries have more 

flexiblility than static checking in a language-based approach. It is also possible to bind 

(obtain help) with other libraries to merge different designing concepts. A library can be 

implemented according to a specific MoC or multiple MoCs. Even though libraries do 

not enforce designers to construct a correct program as a compiler does, they are still 

able to offer extra features, in terms of programming constructs, to reduce designers’ 

efforts in describing systems in raw source codes which are error prone.  

2.4.4 Current state of the art and approaches 

MoCs, languages, and libraries have been proposed and developed to cope with 

concurrency in designing hardware, software, and overall systems. Some examples of 

MoCs and corresponding developments are as follows: 

1. Discrete event (DE): this is generally used in hardware description 

languages (HDLs), and will be detailed in Section 2.5. 

2. System-level design languages (SLDLs): these are dicussed in Section 2.6 

and can be used to describe systems in different levels of abstractions. It is 

also possible to generate software and hardware from SLDLs.  
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3. Process calculi and process networks: these are used to describe 

relationships between concurrent processes and will be described in Section 

2.7. 

4. Actor-based models: that describe autonomous concurrent entities and the 

interactions between them. They may or may not follow a MoC but are 

widely used in different fields, as described in Section 2.8. 

5. General programming languages with support to describe concurrent 

processes: these are made as built-in constructs to the language itself, or 

libraries of existing languages to provide concurrency. Some of the 

programming languages borrow the concepts of other MoCs as part of their 

features. See Section 2.9. 

6. Synchronous and reactive MoCs (S/R): these target reactive and time-

critical systems. Determinism is a key factor of these MoCs. Extensions and 

relaxations to them have been proposed for wider uses. S/R MoCs and 

developments are detailed in Section 2.10. 

7. Globally asynchronous locally synchronous (GALS): this is used in both 

hardware and software domains. GALS can be seen as a close relative to the 

S/R MoC, and will be presented in Section 2.11. 

8. Dynamic GALS (DGALS): this is a newly proposed MoC which merges 

concepts from the Actor-based model and the GALS model. A brief 

description of DGALS is in Section 2.12. 

In this thesis, libGALS and libDGALS are libraries implemented by following 

GALS and Dynamic GALS (DGALS) MoCs to enrich general programming language 

(in this case, C). 

2.4.5 Synchronous versus asynchronous 

The terms ‘synchronous’ and ‘asynchronous’ are used widely in the field of 

designing computer systems and MoCs. In this section, the terms are further described 

and are used throughout the thesis to prevent ambiguity. These terms have been adopted 

in various scenarios: 
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1. How concurrent behaviors are carried out: e.g. synchronous concurrency 

and asynchronous concurrency. In synchronous concurrency, concurrent 

behaviors follow the same logical time reference, similar to clocks in digital 

hardware design. Synchronous languages are developed to target 

synchronous concurrency and are detailed in Section 2.10; asynchronous 

concurrency is more general. Most of operating systems, programming 

languages, and libraries which offer process creations and support threading 

follow the model of asynchronous concurrency. In this thesis, synchronous 

and asynchronous are used to present concurrency in MoCs. 

2. How communications are made: e.g. synchronous send-and-receive in 

contrast to asynchronous send-and-receive. Synchronous communication 

can sometimes be referred to rendezvous, where both the sender and 

receiver are blocked until the ealier communication has been completed. 

Asynchronous communication, which incorporates the uses of buffers, may 

not stop (block) the sender and receiver during the communication. There 

are variants of asynchronous communication; for example the sender and 

receiver may be blocked when the buffer is full and empty respectively. The 

‘send-and-forget’ model does not block the sender at all, nor does guarantee 

that the data sent will be received.  

3. How function calls are issued: e.g. synchronous function call and 

asynchronous function call. Synchronous function calls will block the 

execution of the caller until the results of the call are returned. General 

programming languages implement synchronous function calls to 

immediately evaluate the outcome so that the next operations, which may 

rely on the outcome, can proceed. On the other hand, the caller continues to 

run after issuing the asynchronous function call. The caller may be blocked 

in the future when the return value of the function call is required. 

Asynchronous function calls are often adopted in the distributed computing 

environment. An asynchronous function call is close to the concepts of 

‘future and promises’ [Liskov & Shrira, 1988]. The difference between 
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(a)synchronous communication and function calls is that communications 

are performed by both parties without a given order and can be active, while 

the called party (the function or the required service) is passive. 

 

Models of concurrency, communication, and function calls may not be directly 

related. For example, in synchronous computation, communications are achieved 

through signal/event broadcasting, which is neither synchronous nor asynchronous, but 

governed by the MoC so that the dependencies occurring between communications are 

resolved.  

2.5 The discrete event MoC and HDLs 

Hardware description languages are used to specify digital hardware at a higher 

level to reduce the effort of designers in constructing large digital systems. Higher level 

descriptions are synthesized to lower-level logic and bit-streams that will be used to 

create the actual design on digital hardware including FPGA and ASIC. The level of 

describing hardware components depends on the requirement of the design stages. This 

enables designers to have abstract views of the system before implementing them fully, 

although not every model described at a higher level is synthesizable. 

Verilog [IEEE, 2001] and VHDL [Lipsett et al., 1986] are well known HDLs and 

standards in the industry. The discrete event (DE) MoC is adopted by HDLs, in which 

concurrent behaviors of hardware processes are represented as events and governed 

according to the DE MoC. 

The events are chronometric [Le Guernic et al., 2003], which means that the time of 

the occurrence is attached to each event. Events are queued upon on their generation, 

and are dispatched by the simulation kernel which can be made generically or to 

specified target hardware. The simulation kernel has a sense of time steps. The 

simulation kernel scans through the event queue to dispatch the events whose time of 

occurrence matches the time steps. Further events can be populated by the dispatched 

events. The dispatcher of the simulation kernel scans the queue until there is no event of 
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the current time step left or populated, when the simulation kernel will carry out the 

next time step. 

DE MoC provides a way to handle concurrency. However, interleaving execution 

of behaviors leads to non-determinism [Benveniste et al., 2003]. This makes DE 

sometimes not suitable for modeling of critical systems.  

2.6 System-level design languages 

2.6.1 The need for system-level design languages 

Complexities of a system can be due to interactions between behaviors and how to 

implement behaviors in HW/SW components (e.g. new designs or existing intellectual 

properties, IP). Other important factors in designing a system include constraints such as 

the availability of resources. With the growth of design complexity of computer systems, 

various approaches are proposed to increase the designers’ productivity and shorten the 

time and effort between the specification and implementation of such systems. 

Programming languages such as C/C++ and Java are also used for specification due 

to their flexibility in describing functionalities, their data abstraction abilities, and their 

huge support in the form of software libraries. At the early design stage, components 

(both hardware and software) of the final system implementation might not be identified 

without taking consideration of different aspects such as performance evaluation. 

Similarly, hardware description languages lack the support of describing software 

components of the system. It is not easy to model software concepts such as data 

structure and algorithms that include recursive functions in HDLS. 

Single language specification is also a need in conquering the system design 

[Lavagno & Sentovich, 1999]. This leads to the requirement for a language to bridge the 

design in software and hardware, as well as to have a higher level of abstraction; in 

design, in this case, system-level design languages (SLDLs) are proposed. 

2.6.2 System-level design languages based on existing languages 
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SLDLs such as SYSTEMC [OSC Initiative, 1999] and SPECC [Gajski et al., 2000] 

are proposed. SystemC is a library extension to C++, which provides a set of classes and 

macros to empower the developer with the mechanisms to describe hardware (close to 

what hardware description languages do) and software systems in a single model. 

Similarly, SPECC facilitates constructs to describe systems at an earlier design phase for 

both specification and system level synthesis. Differences between SYSTEMC and 

SPECC are described in [Cai et al., 2003]. SLDLs come in different flavors, unlike 

SYSTEMC and SPECC which are based on imperative languages; BLUESPEC is based on 

Haskell and can provide different levels of abstraction. 

System-level languages such as SYSTEMC and its simulation kernel follow DE MoC, 

and hence it is possible to have non-deterministic behaviors between simulation runs. 

However, as mentioned previously, such non-determinism also allows the model to be 

described in a more flexible manner as a trade-off. 

Other tools in industry adapt the single language approach to system design, such as 

Synphony C from Synopsys. Synphony C is based on C/C++, by use of which 

descriptions of the system are made and are compiled via the Synphony C compiler to 

generate hardware in RTL and software in C. 

System-level design, which relies on SLDLs, is carried out with various proposed 

methodologies, detailed in Chapter 3. Descriptions of SLDLs in higher-level 

abstractions are further refined, manually and/or automatically, towards the 

implementation. Because SLDLs are based on existing programming languages, 

interfacing between existing software libraries and other programs is viable. Simulation 

approaches, which make use of simulation kernels of SLDLs and other existing 

simulators, are proposed. Some commercial simulators, such as ModelSim, have the 

ability to perform mixed language simulations, by having components modeled in 

different languages such as SLDLs and HDLs. 

2.7 Process calculi and process networks 

Describing concurrency in a mathematical fashion has been developed. CSP [Hoare, 

1978] and CCS [Milner et al., 1980] are two of the most notable examples of process 
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calculi, which express how concurrent processes (in an abstract form, can be hardware 

or software) evolve. Communication between processes is also presented in process 

calculi, such as rendezvous in CSP. Process calculi are primitive and insufficient for an 

implemental language. However, they are often implemented as features in 

programming languages. 

Process networks are also used to address the concurrency and interactions of 

processes/behaviors (again, does not have to be a hardware or software process). Petri-

Net (PN) [Petri, 1962] and Kahn process networks (KPN) [Kahn, 1974] are examples of 

such networks. Both PN and KPN are presented graphically. PN is described as a 

composition of places (conditions) and transitions (or events, which are concurrent 

processes). KPN is presented as concurrent processes which produce and consume 

tokens to/from the unbounded FIFO buffer inbetween. PN is used to described control 

(can be used to describe data) and can be non-deterministic, while KPN is for data and 

is deterministic. Despite the difference in how concurrent processes are described using 

PN and KPN, these process networks are based on a concept: tokens are generated by 

the producers, and when enough tokens have been gathered (conditions fulfilled), the 

consumer of the token will proceed (or fire).  

Restrictions are made on these process networks so that they can be implemented. 

For example, PN can be restricted and converted to FSM for deterministic analysis 

[Peterson, 1977]. Statically schedulable data-flow (SSDF) [Lee & Neuendorffer, 2005], 

previously SDF (Synchronous data-flow) [Lee & Messerschmitt, 1987], restricts the 

size of the FIFO buffer in KPN so that the rate of the processes can be solved as linear 

equations.  

Both PN and KPN are graphical formalism, which is intuitive. However it is 

difficult  to manage for large scale programs [Jose et al., 2009]. Programming languages 

such as LUSTRE [Halbwachs et al., 1991], Synchronous KPN [Caspi & Pouzet, 1996], 

and libraries such as NRP [Boussinot, 1992] are proposed and are inspired by the KPN 

with the concepts of synchrony.  

2.8 Languages based on Actor-based models 
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The Actor model was proposed in the 80s as another model of concurrency [Agha, 

1985]. Actors perform at their own rate, and communicate asynchronously with each 

other through sending messages that are buffered in mailboxes [Boussinot et al., 1996]. 

Mobile agent platforms such as JADE [Bellifemine et al., 2005], enable agents to 

operate in an autonomous manner, with the ability of migration, similar to Actor-based 

models. The Actor model has been implemented as programming languages, and 

libraries supporting the operations of actors. Axum [Microsoft Corporation, 2008], 

based on the Actor MoC, is a programming language as a part of the .Net framework. 

Active Object [Lavender & Schmidt, 1995] implements the Actor model using C++. 

Detailed comparisons of various related models can be found in [Nikaein, 1999]. MoC 

related to the Actor-based model offers the following: 

1. Asynchronous executions of actors. Each actor generally operates 

independently. 

2. Asynchronous and synchronous communications. There are many choices 

of communication models for an actor to choose from. 

3. Mobility of actors. An extension of the Actor model, actors/agents are able 

to migrate to the required computation node to perform actions. 

Actors/agents which are able to migrate are called mobile agents. 

2.9 Programming languages with concurrency 

General programming languages like C, C++, and Java are used to describe 

transformational systems. Algorithms which are computational behaviors are specified 

using general programming languages. Concurrent behaviors of transformational 

systems are supported by the built-in constructs of the programming languages or other 

means such as uses of (real-time) operating systems. Processes/threads are used to 

represent the corresponding concurrent behaviors of the software. For example, user-

typed class implements Java Runnable class will be viewed as a thread to the underlying 

Java program. Similarly, threads or processes (of programs) can be implemented in C 

and are governed by the operating systems. Communications between concurrent 



Chapter 2. Background and related works 30 

 

threads and processes are achieved using shared variable or inter-process 

communications (IPC), which can be both asynchronous and synchronous. 

Programming languages are implemented based on different conceptual models. As 

an example, general programming languages (C/C++/Java) follows the implicit ‘state-

based imperative’ style. Functional languages, such as Haskell and ML, are influenced 

heavily by the λ-calculus. The concurrency provided by programming languages does 

not necessarily follow any aforementioned model of concurrency; some may follow but 

may not be restricted. Threads created using pthread library (or user threads available in 

the ML) do not follow any MoC, and are controlled by the operating systems. This 

creates a scenario that even if the program is correct, i.e. a race condition never happens, 

the execution outcome may differ due to the scheduling policy which might be affected 

by the load of the machine at various times. In this case, MoCs are enforced through 

programmers’ efforts or the uses of libraries that provide programming interfaces to 

ease the load of the designer. 

Some programming languages are built on top of existing ones through adding 

constructs of concurrency, which introduce new syntax to the base language, to support 

the desired MoCs. Compilers then map the introduced construct to codes in the base 

language or to other languages. For instance, Scala [Odersky et al., 2004] which 

provides the flavor of functional programming based on imperative Java language, 

which supports concurrency in the Actor model and CSP. In contrast, Erlang 

[Armstrong et al., 1993], which is also based on the Actor model and CSP MoC, is not 

based on any language. 

2.10 Synchronous MoC and approaches 

2.10.1 Introduction of synchronous and reactive programming 

Non-determinism, which can be observed in concurrent software, can be caused by 

temporal logics [Berry & Gonthier, 1988] and race conditions [Lee, 2006], which are 

introduced with uses of operating systems. Implementations of synchronous languages 

do not rely on conventional mechanisms such as operating systems, but respect the 
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‘synchrony hypothesis’ to ensure determinism. Software development benefits from 

synchrony hypothesis, implemented through uses of synchronous languages, are 

summarized in [Benveniste & Berry, 1991], [André, 1996], [Halbwachs, 1998], 

[Benveniste et al., 2003], and [Potop-Butucaru et al., 2005]. 

In synchrony hypothesis, input events are gathered at the beginning of each tick of 

logical time and corresponding outputs are generated in ‘zero-time’. Concurrent 

behaviors of synchronous systems are carried out in a number of discrete steps, called 

reactions, instants, or ticks. Barrier synchronizations are exercised by each concurrent 

behavior at every tick. Communications between behaviors are via ‘signal (or event) 

broadcastings’. Pre-emption is one of the key control mechanisms within concurrent 

behaviors. Throughout this thesis, tick, signal, and pre-emption will be used as the 

major terminologies with respect to the synchronous languages and S/R MoC. Mealy 

machine and digital circuits generated from synchronous languages are based on 

mathematical models which are deterministic and can be verified by using the technique 

described in [Clarke, 1997]. 

Synchronous languages ESTEREL [Berry & Cosserat, 1984], LUSTRE [Halbwachs et 

al., 1986], and SIGNAL [Benveniste et al., 1985] are the classical synchronous languages 

that were built in the styles of imperative, data-flow, and relational languages 

respectively. They are proposed to target the real-time systems by applying synchronous 

hypothesis. Such a concept is closely related to that of reactive systems [Harel & Pneuli, 

1985] to design systems with real-time characteristics. 

Reactive languages, closely related to synchronous languages, relax the synchrony 

hypothesis so that the absence of signals/events is known at the next instant/tick 

[Boussinot & Dabrowski, 2006]. Reactive approaches further enhance synchronous 

languages with the ability to create concurrent behaviors at run-time and to enable 

distributed reactive systems dynamically. 

A comprehensive, but in complete list of other synchronous/reactive families 

includes: ATOM [Hawkins, 2011], ARGOS [Maraninchi, 1991], Distributed reactive 

machines (DRM) [Susini et al., 1998], FAIRTHREADS [Boussinot, 2002], FUNLOFT 

[Boussinot & Dabrowski, 2007], ICOBJ [Boussinot, 1996], JUNIOR [Hazard et al., 1999], 
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LOFT [Boussinot, 2005], Lucid Synchrone [Caspi et al., 2007], Nets of reactive 

processes (NRP) RC [Boussinot, 1992], POR (Programming of reactive object) 

[Doumenc & Boussinot, 1991], QUARTZ [Schneider, 2009], RAMA (Reactive 

Autonomous Mobile Agent) [Nikaein, 1999], REACTIVE C (RC) [Boussinot, 1991], 

REACTIVE ML  [Mandel & Pouzet, 2005], Reactive Object Model [Boussinot et al., 

1996], REACTIVE SCRIPTS [Boussinot & Hazard, 1996], REACTIVE SML [Pucella, 1998], 

REJO/ROS (Reactive Java Object) [Acosta-Bermejo, 1999], SL [Boussinot & De 

Simone, 1996], SUGARCUBES [Boussinot & Susini, 1997], and SYNCCHARTS [André, 

1995]. 

2.10.2 SW and HW implementations of S/R approaches 

Software implementation of synchronous languages can be categorized by how 

synchronous programs result from the original system descriptions in synchronous 

languages: (1) language-based, and (2) library-based. In language-based approaches, 

synchronous descriptions are compiled into several intermediate representations which 

are used to generate software source codes in host languages such as C, or directly to 

the platform assembly or machine codes. Host language source codes are then compiled 

into synchronous programs through use of the compiler for the target platform. On the 

other hand, library-based approaches are supported by the available primitive constructs 

provided by existing programming languages, and are added as the extensions to these 

languages in the form of function calls (or macros) as interfaces. Synchronous 

descriptions using these interfaces are compiled and are linked with the library to 

produce the target binaries. 

As an example of compiler-based language, ESTEREL has a number of developed 

compilers with different compilation techniques such as ESTEREL v3 compiler [Berry & 

Gonthier, 1988], v4 [Berry, 1999], v5 [Berry, 2000], Columbia Esterel Compiler (CEC) 

[Edwards, 2002], SAXO-RT [Closse et al., 2002], and Potop-Butucaru’s compiler 

[Potop-Butucaru & De Simone, 2003], to sequentialize the concurrent behaviors of 

ESTEREL description into a static single-thread program. 

Examples of library-based approaches are REACTIVE C, JUNIOR, and SUGERCUBES. 

REACTIVE C provides extensions to C to model synchrony. Concurrency within 
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REACTIVE C is sequentialized in the textual order of the system under design [Boussinot, 

1991]. SL can be firstly translated to REACTIVE C then translated to C. Similarly, 

JUNIOR extends Java with dedicated JUNIOR kernel to support reactivity and synchrony. 

SUGARCUBES is close to JUNIOR, comprising a set of JAVA  class to program 

synchronous reactive systems in JAVA . 

Implementing graphical synchronous languages via intermediate representations or 

through extensions to existing programming languages exercises the mixture of 

compiler-/translator- and library- based approaches. For example, SYNCCHARTS is 

translated to ESTEREL [André, 2003] and then compiled into C [von Hanxleden, 

2009][Traulsen et al., 2011]. ICOBJ is implemented based on SUGARCUBES/JUNIOR and 

REACTIVE SCRIPTS. 

In order to execute synchronous software programs more efficiently, hardware 

enhancements and specialized processors are proposed such as REFLIX [Salcic et al., 

2004], REMIC [Salcic et al., 2005], EMPEROR [Dayaratne, 2004][Yoong et al., 2006], 

KEP3a [Li et al., 2006], BAL virtual machine [Plummer et al., 2006][Edwards & Zeng, 

2007], and STARPro [Yuan et al., 2009] for executing ESTEREL. Entities described in 

synchronous languages can be compiled into digital circuits based on techniques 

presented in [Berry, 1992], [Berry, 1999], [Malik, 1994], [Shiple et al., 1996], 

[Schneider, 2000], and [Edwards, 2003]. Hardware and software co-synthesis of 

ESTEREL also exists such as [Gädtke et al., 2007] where hardware implementation of 

synchronous reactions communicate with software implementing counterparts executed 

in the KEP processor. 

The concepts of synchrony and reactivity have been used in fields such as 

multimedia and graphical system design. Examples include: Audio language CHUCK 

[Wang et al., 2003], Reactive animation [Efroni et al., 2005] with frontend of Flash and 

backend of RHAPSODY [Gery et al., 2002] which is based on STATECHARTS. 

2.10.3 Other related approaches  

ECL [Lavagno & Sentovich, 1999] and JESTER [Antonotti et al., 2000] are 

ESTEREL–like extensions to C and Java, respectively. Use of translators is adopted to 

separate the computational and the reactive parts to C/Java and ESTEREL. Single 
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language approaches help the designer to concentrate on programming instead of 

interfacing components in different languages. However, debugging process on reactive 

parts will be working on the generated ESTEREL codes which may not be easy. Proposed 

support of asynchrony is via support of RTOSs and POLIS [Balarin et al., 1997], 

respectively. 

Because synchronous languages can be used to describe software and hardware, 

using synchronous language as the backbone of the system-design framework has been 

developed. For instance, a system-design framework Polychrony [Le Guernic et al., 

2003] is based on the multiclock feature of the synchronous language SIGNAL. 

Systems which have components running at different clock speeds, such as 

distributed systems, are also addressed in the research community. Synchronous 

programs running on distributed network communicate with weak synchrony in CoReA 

[Boniol & Adelantado, 1993], that is, communications via signals are delayed for one 

instant, so that the overall program can be analyzed. A de-synchronization of 

synchronous programs in OC (object code) format with uses of FIFO buffers is 

presented in [Caspi & Girault, 1995]. De-synchronized program will be divided into 

distributed components. The overall behavior of the distributed program is the same as 

the original. Further discussions on distributing synchronous programs are detailed in 

[Girault, 2005]. 

Other reactive approaches which do not follow synchronous MoC exist. Reactive 

Java [Passerone et al., 1998] and Triveni [Colby et al., 1998] provide support to 

program reactive systems. However, without enforcement of the synchronous MoC, the 

designs will suffer in the same way as the conventional thread-based programs. SML 

(state machine language) [Browne & Clarke, 1985] and CSML (compositional SML) 

[Clarke Jr et al., 1991] are based on FSM to support reactive software and hardware; 

however, the ability of handle data computation is absent. 

2.11 The GALS MoC and related developments 

2.11.1 The concept of GALS 
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Globally asynchronous and locally synchronous (GALS) MoC have been proposed 

in [Chapiro, 1984]. In the sophisticated computer systems, or heterogeneous systems, 

there can be a number of processing units, such as processors integrated and interacting 

with each other. For instance, System-on-a-Chip (SoC) consists of processors running at 

different speeds of computation and communication [Potop-Butucaru & Caillaud, 2007]. 

To achieve global synchrony is impractical because the fast processor will have to wait 

for the slower one to achieve barrier synchronization. 

The concept of GALS is originally incorporated for use in hardware design. The 

complexity and size of chip increases along with the operational frequency and 

introduces problems such as higher power consumptions and clock skew of single clock 

domain digital hardware. A GALS digital system is composed of different sub-systems 

(clock domains) which are running at their own speeds. Examples of communication 

and synchronization between sub-systems include stretched clocks, uses of FIFO buffer, 

and a specialized synchronization mechanism, which are discussed in [Krstić et al., 

2007]. 

As mentioned in Section 2.4.5, the terms synchronous and asynchronous have been 

used in different contexts and with different meanings, and hence there are variants of 

GALS definitions. The concept of GALS in TinyGALS [Cheong et al., 2003], is based 

on the concepts of asynchronous and synchronous function-calls. Function calls at a 

global level in TinyGALS are performed through asynchronous message passing, while 

intra-component communications are through synchronous function calls as in 

programming languages. X10 [Charles et al., 2005], a distributed programming 

language, follows the same GALS strategy as in TinyGALS.  

In this thesis, the definition of GALS is based on the co-existence of synchronous 

and asynchronous concurrency. The communication between asynchronous entities may 

or may not follow a specific model of communication. Asynchronous communications 

in GALS systems follow a deterministic model, such as CSP rendezvous, which can be 

analyzed along with each synchronous compartment, as the key benefit of using the 

GALS MoC.  

2.11.2 GALS in the software domain 
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The synchronous subsets of the systems benefit from the existing synchronous 

languages emphasizing determinism. On the other hand, an asynchronous model is 

suitable for distributed networks [Berry & Sentovich, 2000]. Languages and compilers 

following the GALS concept have been utilized in software domain. 

Language approaches to describe GALS systems are extensions of existing 

synchronous languages, such as Communicating Reactive Process (CRP) [Berry et al., 

1993], Communicating Reactive State Machines (CRSM) [Ramesh, 1998], Multiclock 

Esterel (MCEsterel) [Rajan & Shyamasundar, 2000], or as a new languages such as 

SHIM [Edwards & Tardieu, 2006] and SystemJ [Malik et al. 2010]. 

SHIM [Edwards & Tardieu, 2006] is proposed to program asynchronous systems in 

which Khan network's channels with CSP rendezvous are used. The compilation process 

of SHIM ensures a single writer to a variable at a time to prevent data races. 

Synchronous systems can also be modeled with SHIM with suggested approaches in 

[Edwards & Tardieu, 2006]. 

SystemJ [Malik et al. 2010] merges ESTEREL for synchrony and reactivity, CSP for 

asynchronous communication, and JAVA  for data computations as a whole. SystemJ 

does not rely on the existing ESTEREL compiler, as ECL and JESTER do, and enriches the 

Java language with programming constructs to design GALS systems. Synchronous 

concurrency in SystemJ is described through reactions within clock domains, where 

they are asynchronous. Communication between asynchronous clock domains is 

through point-to-point channels following CSP rendezvous. As a language-based 

approach, a SystemJ program that is correct with regard to a specification will also be 

compiled to a correct implementation. 

2.11.3 System-level design based on GALS 

GALS approaches are also adopted in system-level design. POLIS [Balarin et al., 

1997] has been developed as a HW-SW co-design framework. The framework is 

composed of CFSMs, co-design finite state machines, which are synchronous entities. 

Thus each CFSM can be translated into synchronous languages, in this case, ESTEREL, 

and can be verified [Berry & Sentovich, 2000]. CFSMs are connected to an 

asynchronous network, which categorizes POLIS as a member of the GALS family.  
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DFCharts [Radojevic et al., 2006] merges the concepts of SDF and hierarchical 

FSM to have the capability of designing control- and data-dominated systems. DFCharts 

adopts the GALS MoC where communication of asynchronous elements in DFCharts 

follows the CSP rendezvous. Descriptions made in SLDL such as SYSTEMC and 

synchronous language ESTEREL can be mapped to DFCharts [Radojevic et al., 2006] 

which is formal and intuitive. 

2.12 Dynamic GALS MoC 

Dynamic GALS MoC, as a further extension to the GALS MoC, incorporates the 

concept of pi-calculus [Milner, 1999], that is, behaviors are able to migrate from one 

computational node to another, similar to mobile agents. ULM [Boudol, 2004] presents 

a programming model to describe GALS systems with mobility in theory. Dynamic 

Synchronous Language (DSL) [Attar et al., 2011] is proposed based on the existing 

reactive approaches such as SugarCubes, ReactiveML, and FunLOFT. Synchronous 

behaviors can be dynamically created on distributed sites. However, communication 

between behaviors of different sites is not clearly defined. 

DSystemJ [Malik et al., 2010] applies to the concept of dynamic systems which 

introduce process mobility to SystemJ, so that asynchronous clock domains and 

channels can be created at different computational nodes at run-time. In contrast to DSL, 

the formal semantics of clock domain migration and channel communications are given. 

The DSystemJ is followed to a large extent in this thesis when specifying dynamic 

GALS systems and libDGALS library in Chapter 6. 

2.13 The library-based GALS/DGALS frameworks 

Figure 2.1 illustrates the relationships between the MoCs (in rounded rectangles) 

and examples of related approaches (in ellipses). The DGALS MoC, which is 

surrounded by the related MoCs, particularly GALS MoC, and its use in supporting 

standard programming language C in this case, will be the focus in this thesis. 
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Figure 2.1: Relationships between MoC and approaches 

 

In the next chapter, the SYSTEMC SLDL is used to model software concurrency by 

incorporating models of operating systems and software processes. The model of the OS 

consists of services to support general asynchronous concurrency and communication, 

as well as the dedicated service to support synchronous concurrency in the synchronous 

language. libGALS, a library-based approach that can be used to both describe and 
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realize GALS systems in C is then introduced in Chapter 4. As a further development, 

libGALS is merged with SYSTEMC to enable modeling of entire systems that include 

both models of hardware and GALS software, and this is presented in Chapter 5. This 

enables the design of GALS systems in SYSTEMC. Finally, libGALS are extended with 

features of dynamic creation, termination and migration of asynchronous behaviors into 

the DynamicGALS framework, which enables the design of dynamic GALS systems. 

The approach is detailed in Chapter 6. 
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A large number of computer systems have software implementation of concurrency 

with support from operating systems (OS). Many of those systems do not require full 

OS, but a reduced functionality that can be implemented in software, hardware or their 

combination. In order to model such systems it is not only necessary to provide OS 

functionality, but also the mechanisms to support software concurrency as well as 

interactions with hardware. Such a model is required to be suitable in different levels of 

abstraction in the early phase of design to explore the suitability of hardware/software 

partitioning and implementation. This chapter presents a methodology of modeling 

complete computer systems that include OS with basic functionality and extensions to 

ensure safe concurrency as the center of the system model. The approach is illustrated in 

comprehensive example. 

The proposed modeling and design framework enables embedded software, which 

includes software processes and the OS, and hardware components, to be described and 

simulated together. This methodology, described in this chapter, also provides 

anexploration of features of the OS. The model can be further mapped on 
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standard/customized OSs whose performance can be evaluated. Hardware/software 

implementation can be achieved according to such evaluations which determine the 

trade-off option. The proposed model is based on the use of SYSTEMC as its backbone. 

But the methodology allows the inclusion of models developed in other languages. For 

example, hardware components may have already been developed in hardware 

description languages (HDLs). 

This chapter is organized as follows: in Section 3.1 approaches to system level 

design are discussed. This is followed by detailing the design stages in Section 3.2. 

Section 3.3 introduces the concept and existing approaches of OS modeling in system 

design, as well as the hardware support for OSs. It is followed by the proposed system 

model with OS modeling detailed in Section 3.4. The modeling of OS and software 

processes is introduced in Section 3.5 and 3.6, respectively. A framework adapting the 

uses of OS and the processes model to explore the possibilities of customization of OS 

is presented in Section 3.7. A case study where an application originally modeled in 

ESTEREL is mapped on the SYSTEMC based new framework is described and analyzed in 

Section 3.8. 

3.1 Approaches to staged system level design 

Approaches in system-level design are iterative, a step-based design with feedbacks 

from each step being taken and refinements made from the feedbacks. Iterative steps are 

carried out at higher levels of abstraction, to prevent unnecessary effort on details at 

lower abstraction levels. Design ideas, performance evaluation, architectural feasibility, 

component selections, and system integrations are taken into account to give feedback 

for the refinements. Figure 3.1 illustrates how system-level design is carried out. The 

horizontal axis of Figure 3.1 represents the design stages of the earliest specification-

capturing at the beginning, which is at the left end of the axis. Levels of abstraction used 

in the design, from the most abstract, such as untimed functional, to the most detailed 

cycle-accurate level, are represented by the vertical axis. System-level design methods 

can be categorized into three groups according to how the overall system is constructed, 

and are described in [Cesário et al., 2002], and later in [Cai et al., 2003]. They are 
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identified as ‘system-level synthesis’, ‘component-based design’, and ‘platform-based 

design’.  

Entry points of these approaches, shown in italics in Figure 3.1, demonstrate the 

relative timeline and level of abstraction where these approaches are carried out. For 

instance, system-level synthesis starts from the top-left corner of Figure 3.1 and 

illustrates such approach starts at the highest abstraction, i.e. untimed function, while 

component-based design performs the selection of existing components, which are 

modeled or implemented in the cycle-accurate fashion. 

 

Figure 3.1: Staged system-level design 

3.1.1 System-level synthesis 

System-level synthesis follows a top-down approach, where implementation details 

are not known and will be derived from the specification of system behavior. During the 

refinement process of the system specification, software/hardware portioning is 

performed, followed by the software and hardware synthesis at the end. This 
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methodology is adopted to explore the best configuration of the system components 

possible. 

Specification of a system is first made informally, then transformed to a more 

formal representation/model, resulting in an executable on the host machine when using 

SLDL such as SYSTEMC. Behaviors of the systems are identified at this stage. This 

procedure is made at the earliest design stage shown as the entry point of system-level 

synthesis in Figure 3.1. The executable is used to validate the correctness of the model 

with the given specification. The execution model can be used to validate both the 

implementation of the final design and identified functional specification at the 

beginning of the design phases. Feedbacks are given to correct the modeled design, or to 

report if the specification is not feasible. Once the end of feedback-refinement iterations 

is reached, the ‘architecture exploration’ will be performed. 

 During architecture exploration, behaviors in specification are mapped to hardware 

and software components, known as hardware/software (HW/SW) partitioning in 

‘architecture refinement’, according to characteristics of behaviors and constraints such 

as available resources. A number of ‘virtual platforms’ are obtained in architecture 

refinements performed iteratively, similar to specification validation. The hardware 

model at a higher level of abstraction, and the software model comprising processes and 

the OS model are integrated and communicate with each other through a bus. Note that 

the models of hardware and software are still abstract and can be replaced 

interchangeably. It is also possible to use implemented components in the architecture 

exploration. Interfaces will be required to adapt the uses of existing components. In this 

stage, communication and computation are modeled in various levels of abstraction, 

which provide more information to the designers towards the final architecture/platform. 

Information such as timing is obtained through various approaches and added 

(annotated) to the virtual platform to evaluate overall performance as feedbacks for 

better partitioning.  

At the end of the refinement iterations, the final platform is determined. Such an 

optimal platform is also known as the ‘golden model’  [Black et al., 2008] or ‘golden 

architecture’ [Cesário et al., 2002]. Because hardware and software development of the 
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golden platform start simultaneously and are generally carried out at different speeds, 

techniques to use models at different levels of abstractions are adopted again in 

hardware/software co-simulations to test the unit under design, which can be either 

software or hardware components. Various co-simulation techniques have been 

introduced and investigated. Finally the verified hardware and software are merged to 

the final product as the end of design. 

3.1.2 Component-based design 

Component-based design [Cesário et al., 2002] is a bottom-up strategy in which a 

platform is constructed with interconnecting available components. An entry point of 

the component-based design is shown in Figure 3.1. Existing components are used to 

construct the virtual platform and feedbacks are given to perform re-selection on 

components to establish the golden platform. Components can be hardware and 

software IPs. Interconnects between hardware IPs, also called buses, can either be 

selected from available implementations, or generated as wrappers. Similarly, the OS 

that manages the software processes, is selected, or generated as software wrappers. 

Once the golden model is formed, the development will be carried out as the system-

level synthesis. 

3.1.3 Platform-based design 

Platform-based design [Sangiovanni-Vincentelli & Martin, 2002] is considered a 

special case of the top-down design approach [Cai et al., 2003]. It is also a special case 

of component-based design where hardware platforms (sets of components) may be pre-

determined. In this case, software development may be based on the existing libraries. 

Generally, the skeleton of the platform, for instance the hardware bus, is predetermined. 

As illustrated in Figure 3.1, the entry point of platform-based design is close to the 

golden model. The platform can be customized by selecting suitable hardware 

components. Different sets of configurations of platforms are called ‘platform instances’. 

Standardizing interfaces such as PCI/Express provides connectivity to other components 

facilitating video and audio features of the system. Platform instances of each desktop 
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computer may differ and the optimal platform depends on the target usage of such 

systems, e.g. graphical design or networking servers. 

 

3.2 Stages in system-level design 

Different levels of abstraction are based on the degree of accuracy of the underlying 

model. Various levels of precision have been used in different dimensions when 

applying different accuracy on the system models. These dimensions include data 

granularity and timing in communication [Ghenassia, 2005], timing computation 

(functionality) and communication [Cai et al., 2003], and abstractions of interfaces for 

co-simulation [Yoo & Jerraya, 2005]. Aspects of modeling at different levels of 

accuracy, from the most abstract to detailed, are listed as follows: 

1. Data granularities in communication: application packet, bus packet, and bus 

size [Ghenassia, 2005]. 

2. Timing accuracy in communication: untimed, approximately-timed, cycle-

accurate [Cai et al., 2003] and [Ghenassia, 2005]. 

3. Timing accuracy in computation follows the preceding case [Cai et al., 2003]. 

4. Hardware interfaces in different abstraction: cycle accurate, transfer level, 

transaction level, and message level [Yoo & Jerraya, 2005]. 

5. Software interfaces: instruction set architecture (ISA) level, device-driver level, 

and OS level [Yoo & Jerraya, 2005]. 

 

Modeling approaches are based on two major properties: communication and 

computation. Communication specifies how one component interacts with others. 

Computation specifies the way an algorithm is carried out in a software and hardware IP. 

Both communication and computation comprise co-relevant features: timing accuracy 

and data granularity.  

In hardware/software co-design, communication is modeled between 1) hardware 

components, 2) software components, and 3) software and hardware components. 

Timing accuracy in modeled communication is categorized as follows: 
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1. Untimed: no timing information is in the model. 

2. Time approximate: timing information is included. Timing information is 

obtained via design experience or the given properties of the modeled IP. 

3. Cycle approximate: the details of modeling are in the level of clock cycles. 

However, the number of clock cycles may differ from the actual 

implementation. Details such as pipeline stages when executing software are not 

considered. Clock cycles of software may be obtained by running each software 

process individually without the presence of operating systems. 

4. Cycle accurate: very accurate instruction set simulator (ISS) or the actual RTL 

design of the processor model or hardware IP is used to execute software and to 

simulate hardware components. 

Cycle accurateCycle approximateTime approximateUn-timed
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Figure 3.2: Modeling approaches at different accuracy levels 
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Data granularity in communication differs in how information is exchanged 

between components. The scenarios, from the most abstract to detailed are in the 

following: 

1. Software to software: from unmanaged shared memory, to message-passing 

mechanism governed by the OS. 

2. Hardware to hardware: from point to point channels, to packets transferred on a 

bus modeled without protocol but with an arbitrator, and to bit-true data transfer 

with dedicated bus protocol. 

3. software to hardware: from modeled software that communicates directly with 

modeled hardware to using a device driver managed by OS to access hardware 

components from software processes. 

 

Timing accuracy is co-related to data granularity in communication modeling. For 

instance, a functional bus model which operates according to a specified protocol 

synchronizing with a dedicated clock is modeled in a cycle-accurate manner.  

Timing accuracy of computation is achieved in the same fashion as in 

communication. Data granularity used in modeling computation relies on co-simulation 

requirements and design refinements. The simulation speed benefits from the abstract 

computation model and is important in the early design phases. On the other hand, 

detailed data representation will be required for the implementation model. Hardware 

and software models exhibit different data granularity, from abstract to detailed, as 

follows: 

1. Hardware: from functional description to RTL behavior model, and to cycle-

accurate model or actual implementation 

2. Software: from algorithm (or communicating behaviors, CB), to processes 

supported by OS (operating system level, OSL), to instruction level (IL), and to 

bit-streams of codes executed by the RTL processor models or real PEs 

(processor register transfer level, P-RTL) 
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Similarly, timing accuracy and data granularity in computation influence each other, 

as in communication models. Modeling approaches based on different levels of 

accuracy are illustrated and proposed in Figure 3.2, and called a ‘modeling graph’. 

Timing accuracy is used to represent abstractions of communication, as the horizontal 

axis of Figure 3.2. The vertical axis represents the data granularity at different degrees 

of accuracy.  
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Figure 3.3: Coverage of transaction-level modeling 
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A single modeling technique is not sufficient to cover the whole design space. [Cai 

& Gajski, 2003] present models which are discretely distributed according to the levels 

of accuracy. Eight modeling approaches are illustrated in Figure 3.2: specification 

model, functional model, component-selection model, bus-architecture model, bus-

functional model, behavior model, cycle-accurate model, and implementation model. 

The development path, shown as the grey arrow, originates from the specification model 

from the bottom left corner of Figure 3.2 and finishes in the implementation model at 

the top right of Figure 3.2. The path taken from the specification model to the 

implementation varies between different design approaches. 

Transaction-level modeling (TLM) enables communication and computation to be 

modeled separately [Ghenassia, 2005]. TLM is used with other benefits such as: 1) early 

performance estimation in the timed model, and 2) higher simulation speed due to the 

higher level of abstraction. TLM provides a set of modeling approaches, which have 

been discussed in [Grötker et al., 2002], [Haverinen et al., 2002], [Connell, 2003], 

[Ghenassia, 2005], [Yoo & Jerraya, 2005], and [Black et al., 2008]. Different levels of 

abstractions in TLM are identified in different approaches as follows: 

1. The modeling approaches are first grouped to ‘untimed’ and ‘timed’. Timed 

modeling is generally evolved from the untimed model by adding timing 

information. The untimed model includes a programmer view (PV), while timed 

models consist of a programmer view with timing (PVT), cycle callable (CC) 

[Connell, 2003]. 

2. Based on the communication layers [Haverinen et al., 2002], from abstract to 

detailed: message layer (L-3), transaction layer (L-2), transfer layer (L-1), and 

RTL layer (L-0). 

 

The above approaches shared common features and are grouped and illustrated in 

Figure 3.3, which is based on Figure 3.2, presenting applicable TLM for staged design 

models. PV, PVT, CC, and RTL are names used to address the underlying models. TLM 

focuses on the communication between modeled components. Therefore the modeling 
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graph is partitioned horizontally according to the characteristics of different TML 

approaches. 

The system under design evolves from the specification model to implementation 

through communication and computation refinements. Descriptions of refinements in 

each model, along with the use of the TLM, are detailed in the following sections. 

3.2.1 Specification model 

The specification model is established with informal system descriptions. It does 

not contain any algorithms of the system under design, but consists of the requirements 

and constraints of the system. Examples of requirements are features such as what the 

inputs to the systems will be and how the system output is going to be displayed. 

3.2.2 Functional model 

The functional model is constructed from the specification model through the 

‘specification capture’, as shown in Figure 3.1. The functional model is the executable 

version of the specification, in which behaviors (and possibly sub-behaviors within 

behaviors) of the system are identified. Behaviors are modeled as algorithms (an aspect 

of computation) which need not be detailed and used in the final implementation, but 

are sufficient to capture the corresponding activities of the behaviors. The functional 

model is usually single-threaded, in that concurrent behaviors are not yet identified. 

Behaviors and sub-behaviors are in the form of function calls. Communication between 

behaviors is via variables and argument-passing of function calls; hence the untimed 

nature of the model. The functional model is also called ‘SoC functional view’ 

[Ghenassia, 2005]. TLM-PV and/or L-3 are used in the functional model. 

3.2.3 Component selection model 

The component selection model is close to ‘IP-assembly model’ [Cai et al., 2003], 

‘component assembly model’ [Ghenassia, 2005], and ‘SoC architecture view’ 

[Ghenassia, 2005]. Components in this model are mapped from behaviors identified 

from the functional model. Components can be existing software or hardware IPs, or IPs 

which will be designed manually or synthesized automatically in the later design stages. 
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Existing IPs can be either proprietary or from sources (or hardware descriptions in 

HDLs) available. Proprietary IP models may be at different levels of abstraction in both 

computations and communications. Therefore the component selection model covers 

computations modeled from functionality to detailed software library codes and RTL 

hardware, with both untimed and time-approximate communication. Since 

communications in the component selection model are point-to-point linkages, there is 

no presence of a bus in this model. Timing estimation can be annotated to mimic delays. 

TLM PV (L-3) and/or PVT (L-2) are used to describe communications. The component-

selection model is the starting point of architecture exploration. [Séméria & Ghosh, 

2000] 

3.2.4 Bus architecture model 

Further down from the component selection model, the bus architecture model 

presents a primitive description of a bus model hosting the interconnections between 

components. In this model, components which share information are coupled with the 

same bus. The architecture exploration is carried out to obtain optimal configurations 

between components-to-use and how connections between components are established 

by the means of a bus. In this model the bus will be refined to a hardware bus or a 

mechanism provided by OS for software processes, to communicate. Flexibility of this 

model is required to perform efficient architecture exploration; the protocols of buses 

are therefore absent. The bus architecture model is adopted by both system-level 

synthesis and component-based design to find the ‘golden model’, and the coverage of 

abstractions in both communication and computation is therefore vast. TLM PV, PVT 

and CC techniques are used in communications between components of all degrees of 

accuracy. The bus architecture model is similar to the ‘bus arbitration model’ [Cai & 

Gajski, 2003], and the ‘SoC architecture view’ in [Ghenassia, 2005]. 

3.2.5 Behavior model 

The behavior model (BM) emphasizes the descriptions of components and the 

buses interfacing them. Descriptions are pin-accurate, and operations of components 

and buses are based on clock cycles. Since clock cycles in the behavior model are not as 
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accurate as those in the cycle-accurate and implementation models, communications are 

modeled cycle-approximately. Clock cycles in BM are used mainly to activate state 

transitions of the components and the buses. Therefore the behavior model is suitable 

for refining the components and protocols of the bus. Computations in this model can be 

behavior descriptions of hardware components in RTL, or different software pieces 

running in an instruction set simulator (ISS) without the presence of OS to evaluate the 

performance of each process. Cycle callable (CC, L-1) of TLM is used in this model. 

3.2.6 Bus functional model 

The bus functional model (BFM) is equipped with a cycle-accurate bus model with 

specific protocol. Bus functional model evolves from the bus architecture model where 

the golden model of platform has been obtained. In the BFM, components interact based 

on the given protocol. Computation refinements of components are performed at this 

stage. Components at different refinement iterations are at different levels of 

abstractions. Techniques of inserting adapters, wrappers, and converters between the 

components and the bus are used to bridge the differences such as timing accuracy. 

Communications of BFM focus on cycle-accurate descriptions as illustrated in Figure 

3.2, where CC (L-1) and RTL (L-0) are used to model communications. Computations 

of BFM are across a wide spectrum as shown in Figure 3.3, representing the refinements 

of components. 

3.2.7 Cycle-accurate model 

The cycle-accurate (CA) model is a pin-accurate and timing-precise model. 

Hardware components are modeled in synthesizable RTL and software processes are 

executed on the prototyped platform such as the one crafted in FPGA or the pre-existing 

development board, or the processors modeled in the RTL. Communication between 

components can be cycle-approximate in communication, and thus modeled with the 

TLM CC (L-1), if computations are verified on platforms differing from the final 

implementation. For example, a dedicated bus is required to link the FPGA-based 

processor model to the RTL hardware simulator to perform co-verification. Similarly, a 

fully accurate communication and computation model using RTL (L-0) will be adopted 
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when the system under design is close to the final implementation, presented with the 

implementation model in the next section. 

3.2.8 Implementation model 

The implementation model is the last stage towards the final product of the system 

under design. Both communication and computation are modeled in the most detailed 

manner. Software is executed on the finalized platform for verification. Designers 

generally do not work directly at this level because the SW and HW components are 

compiled and synthesized from higher-level description unless specified in the design.  

3.3 Operating systems in system-level design 

3.3.1 System modeling with operating systems 

With ever-increasing use of software in computer systems, OSs play an important 

role in a large class of computer systems. Characterization, and modeling, of the OS 

before carrying out the actual software implementation are essential for system 

development. Modeling OS as a part of the overall system model thus becomes essential. 

In order to estimate system performance, system designers should be able to model an 

entire system with the existence of an OS model prior to system implementation. 

Since performance and the ability to meet time constraints of process execution rely 

not only on the processor power but also on how processes are managed by the OS, 

well-performed design of the OS becomes important. Strategies and mechanisms 

provided by OS must be taken into consideration when designing (or choosing) an OS. 

Introducing specific services to the OS can provide more efficient application 

development and can lead to more rational and ‘build-by-correctness’ designs. 

Operating systems are introduced to system modeling because: 

1. They provide interfaces for software processes communication and 

synchronization. 

2. Access to hardware is provided as device drivers built-in or constructed on top 

of the OS. 
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3.  Behaviors of software processes, such as execution order, are heavily 

influenced by the scheduling policy provided by the OS. 

 

Figure 3.4: OS and software processes modeling in system design 

 

Introducing OS to system design means having software processes implemented by 

using services provided by the OS. However, the process/thread-based software model 

does suffer for a variety of  reasons, e.g. the race condition which is an obvious example 

of indeterminism introduced by software [Lee, 2006]. System models consisting of OS 

and process models thus inherit the same problems. Synchronous languages are 

proposed to resolve such problems, but have poor interactions with other software 
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components and do not integrate well with the existing SLDL-based HW/SW co-design 

environment. 

There are approaches which model software concurrency without having OS in 

mind but make use of the underlying simulation kernel. A modeling strategy that maps 

concurrent behaviors to processes/tasks is demonstrated in [Tomiyama et al., 2001]. The 

processes/tasks are assigned with fixed priorities, higher priority processes pre-empting 

those of lower priority. Pre-emptions are achieved by placing processes functions in a 

specific order in the system description. This approach limits the supported scheduling 

policy and the scalability of the model. Omitting the OS model in the software 

simulation does not provide sufficient information for OS mapping in the later design 

stage. 

Simulation is one of the features benefitting from the OS model. It is possible to 

map the OS models to the existing OSs, or to generate customized OSs according to the 

application requirements. For example, automatic generation of RTOS proposed in 

[Gauthier et al., 2002] provides options such as processes communication, 

synchronization, and hardware requests to construct a customized RTOS. Such 

anapproach prevents unnecessary effort for RTOS porting between different 

applications and hardware architectures. 

OS models, which are used in different design stages, are described in different 

levels of abstractions according to the modeling requirements of the development 

phases, as shown in Figure 3.4. As mentioned before, OS and software processes as 

components of a system, are well fitted into the staged system design.  

OS and software processes can be modeled in a functional manner, and are refined 

in the final implementation. An OS model can be un-timed, for example, providing 

functionality to schedule processes to obtain software concurrency, regardless of the 

timing requirement. It can also be modeled in a timed fashion, where scheduling 

policies to achieve ‘real-timeness’ are modeled. In terms of modeling accuracy, an OS 

can be described in source code form of the SLDL, or the actual OS source can be used 

if available, depending on the simulation requirement. If the OS is available only in 

binary form (e.g. binary library for the simulation host or target platform), the OS 
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library is linked with other software components, and is simulated as a host process or 

within the instruction set simulator (ISS).  

When OS modeling is adopted in system design, various combinations of 

interactions between components exist. Software portions of the system are often 

divided into processes and OS, and  such simulations have been carried out, such as 

processes/tasks modeling in [Poplavko et al., 2003], along with RTOS modeling in 

[Madsen et al., 2004] and [Gerstlauer et al., 2003]. Interactions between software 

programs and hardware devices are presented in [Honda & Takada, 2003] and 

[Formaggio et al., 2004]. 

3.3.2 Existing approaches of OS modeling  

Techniques of modeling general OS, embedded OS, and RTOS have been discussed 

in [Yoo et al., 2002] as follows: 

1. Mapping processes of the target platform to processes of the simulation host, 

also known as native simulation. For example, [Bouchhima et al., 2004] focus 

on the HW/SW co-simulations on arbitrary levels of abstraction, where 

interfaces/adapters are dedicated between software and hardware components in 

the model. µVirtualChoices presented in [Tan et al., 1995] is a simulation 

environment for the kernel µChoices on the Unix-based hosts. Emulating 

interrupts as UNIX signals is one of the approaches which maps hardware-

dependent OS codes to resources available on the host OS. The rest of the OS 

codes are linked with the host OS counterparts to perform native simulation. 

The software processes are mapped to user-level threads of the host kernel 

where simulation is carried out.  

2. Compiling the target software sources with the OS to an executable of the host 

platform. In [Yoo et al., 2002], the (RT)OS simulation model is generated from 

the actual (RT)OS. Software processes are modeled using threads of host OS 

and they communicate with each other through remote procedure calls (RPC). 

Hardware is also described in SYSTEMC. Estimation of software execution times, 

on the targeted (RT)OS, are annotated to the simulation model. This model 

evolves in [Yoo et al., 2003] so that time-delay functions are used to 
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synchronize both software and hardware simulation. Simulation of software 

works either with OS codes or scheduling mechanism provided by SYSTEMC. 

This approach requires the actual (RT)OS that is not suitable for design space 

exploration (DSE) where the (RT)OS selection may not be final.  

3. Executing software processes with support of the virtual OSs. A virtual OS is 

the functional and abstract model of the real OS, and is intended to validate and 

simulate with the other software and hardware components. Virtual OS needs to 

provide the following: 

a. Interfaces to access features provided by the (RT)OSs. Interfaces can be 

in the form of function calls, signals, and events to the (RT)OS model. 

Interfaces remain while the underlying (RT)OS model can be inter-

changed with other (RT)OS models, both at simulation and 

implementation. 

b. Essential features of (RT)OS, or acting as an intermediate layer to the 

existing (RT)OS codes. 

 

As an example, [Zabel et al., 2009] present an abstract RTOS library, called 

aRTOS, which provides a set of interfaces to model processes and interrupt 

service routines (ISRs) using SC_THREAD of SYSTEMC. The designer can 

replace internals such as scheduling policy to mimic behaviors of different 

(RT)OS. In [Tan et al., 1995], the object-oriented µChoices is modeled as a set 

of objects which interact with each other, where a lower level nano-kernel is 

mapped to a host process. [Desmet et al., 2000] present SoCOS, a C++ based 

simulation environment that facilitates functionalities of (RT)OS. On top of 

SoCOS, OsAPI provides a generic interface for software to access the (RT)OS 

functions. OsAPI remains in the final implementation where SoCOS is replaced 

by the actual (RT)OS. Virtual OS simulation is to achieve performance speed-

up comparable to simulating software in ISS. It also enables (RT) OSs to be 

modeled at different levels of abstraction. How processes are modeled depends 
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on the features provided by the (RT)OS model. [Desmet et al., 2000], [Yoo et 

al., 2002], [Zabel et al., 2009] fall into this category. 

 

Processes are mapped to constructs provided by the modeling language. For 

example, SC_THREAD from SYSTEMC is used to model processes in [Le Moigne et al., 

2004]. A hardware/software modeling framework in [Chevalier et al., 2006] provides 

‘swappable’ software and hardware partitioning at the early design stage by using a 

layer between the user module and the RTOS to simulate software and hardware 

interactions. However, the real RTOS has to be ported to a particular (target or 

simulation) platform. [Madsen et al., 2004] provides extensions made to SYSTEMC 

primitives to describe RTOS behaviors. 

In [Le Moigne et al., 2004] the RTOS is modeled along with processes using two 

approaches: (1) both the RTOS and processes are modeled as threads in SYSTEMC and 

(2) the RTOS is described as a set of functions which will be used in actual programs of 

processes. In [Gerstlauer et al., 2003], interface of the RTOS model focuses on process 

creation and management, event handling, and time modeling. A process has to 

explicitly declare behaviors like fork and join through the process management interface. 

Process synchronization is implemented via channels between processes. Efforts are 

required to create dedicated channels whose number may eventually become very large 

and hard to organize. Moreover, resource sharing, an important feature of the RTOS, is 

not clearly presented. 

Code generation for (RT)OS is also developed. [Gauthier et al., 2002] presents a 

methodology to generate an application-specific OS based on the requirements of the 

underlying application. Services provided by (RT)OS are differentiated and are stored in 

the form of source-code libraries. Existing (RT)OS requires effort to be merged into the 

library. Porting is still necessary for different target architectures. 

3.3.3 Modeling OS with hardware involvement and support 

SLDLs provide the means of hardware/software co-design and co-simulation in 

various levels of abstraction. Approaches to interface hardware and software, and 

refinements of interfaces towards the final implementations, are also proposed. 



Chapter 3. System design with OS modeling 60 

 

[Bouchhima et al., 2004] focus on the HW/SW co-simulations on arbitrary levels of 

abstraction, where interfaces/adapters are dedicated between software and hardware 

components in the model. The software processes are mapped to user-level threads of 

the host kernel where simulation is carried out. 

Various approaches to implement part(s) of the RTOS in hardware or with 

hardware support are proposed. Most of them are in the form of add-ons to the platform 

processor(s). A high-performance communication manager in hardware cooperates with 

the on-chip processor in [Shalan & Mooney III, 2002]. [Lee et al., 2003] proposes a 

mechanism to synchronize critical sections of the executed code. A RTM (Real-time 

Task Manager) proposed in [Kohout et al., 2004] is an example of co-processor 

hardware support to achieve more efficient process scheduling. [Nakano et al., 2002] 

describes STRON-I, a design flow to migrate event flags, semaphores, timer, scheduler, 

and the interrupt mechanisms, to hardware. As an extreme, [Adomat et al., 2002] 

proposes RTU as an external hardware dedicated to perform RTOS functions in 

hardware. However these approaches are based on existing RTOSs or platform 

architectures, where modeling these components in higher levels of abstraction, which 

is important in the early design phase, is not presented. 

3.4 The proposed system model with OS modeling 

SYSTEMC is used as the backbone of the proposed modeling framework. The main 

reasons for using SYSTEMC are (1) it allows the modeling of system components 

regardless of hardware or software implementation and (2) it allows mixing with 

components developed in other specification languages, particularly HDLs. 

The current version of SYSTEMC lacks support for OS features. Besides that, using 

an existing OS implementation (where porting is required when running simulation on a 

host) in the early design phase would be overly complex and result in longer simulation 

time because of the execution of the OS code. Also, this approach is not flexible since 

some features, such as context switching, used by the OS are always platform dependent.  

The OS modeling technique should enable both software (processes and the OS) 

and hardware components to be described and simulated together. The methodology 
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introduced in this chapter also provides exploration of features of the OS. The essential 

features of this model should support the following: 

1. Concurrent software processes are modeled in different SYSTEMC modules. 

Having all processes modeling in the same SYSTEMC module requires all of 

the relevant sub-functions to become member functions of the same module. 

This leads to poorly organized module description. 

2. The OS needs to be modeled as a process in a dedicated module. OS can be 

seen as a program whose execution masters the overall software execution 

on its resident processor. Therefore OS can act as the bridge to the processor 

and other hardware components. Parts of the OS, such as services provided, 

are executed concurrently, if allowed by the platform. Furthermore, 

interrupts, which are handled first by the OS, can be modeled as the input to 

the OS which will trigger actions performed by the OS. 

3. Hence, dedicated ports/interfaces of the OS module must be provided, to 

allow communication and synchronization between the OS module and other 

system components, e.g. programming interfaces for software processes and 

signals for hardware. 

4. Internally to the software running on the same processor, generic interfaces 

of OS must be provided to elaborate process modeling/implementation with 

the least dependency on a specific OS. 

5. The OS module should be a composition of sub-modules modeled as 

services or extensions based on the core-functionality (as another sub-

module) provided by the OS. 

6. The internal behavior of the OS, such as the scheduling policy, can be 

changed with no substantial effort to provide OS exploration in system 

design. 

7. This model should be generic and thus able to be further mapped on 

standard/customized OSs whose performance can be evaluated.  
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The OS and software processes which are modeled as different design entities 

(SYSTEMC modules) are detailed in this chapter. The OS model receives events via 

different signals and reacts differently to each of them, indicating that the signals are the 

key object for the proposed OS modeling at the higher level of abstraction. Contexts of 

processes are stored within the body of the software process module, which enables 

shorer simulation times than simulating the actual context switch at a lower level. 

Processes are dispatched by notification from the OS model. Details of the software 

model will be described in later sections. 

3.5 Service-based OS modeling with reactivity 

In this section, an OS model which provides a set of services is presented, shown in 

Figure 3.5. OS services are accessed through application programming interface (API) 

by software. Proposed ‘signal-operation services’, which carry out operations on signals, 

are used to model synchronous models of computation. Also, the modular OS model 

allows substitution/support of its functionalities by specialized hardware.  

The OS model consists of the following components, as illustrated in Figure 3.5: 

1. Interface of the OS to communicate with software processes or the external 

environment, in the form of API (to handle requests from processes) or 

signal handler (for external signals) 

2. A set of services with their own data structures. The current OS model has a 

set of core services (in the rounded rectangle) which consists of four main 

services (in rectangles). Data structures, shown in dashed rectangles, are 

used and managed by corresponding services. 

 

Services provided by the OS utilize corresponding data structures, which 

collectively represent the current state of the OS. OS data structures consist of a number 

of queues, condition flags, tables, and counters. OS services are divided into four 

categories: 

1. Resource management, which models mechanisms like semaphore used to 

lock and protect shared resources. 
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2. Timing control, to perform functionality such as the pausing of a process for 

a specified time. 

3. Signal operation, to support reactivity. 

4. Process scheduling, which works as a core service closely related to the 

other services. Features such as process creation belong to this category. 

 

Groups of the OS services are formed hierarchically, and are able to perform 

independently as sub-modules within the OS. 

 

Figure 3.5: OS model including services provided and data structures 

 

As an illustration, examples of the OS services for signal operations required in 

reactive systems are given in Table 3.1: 
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Table 3.1: API to perform signal operation 

API Descriptions 
Signal_Await_Reg Wait for presence of a designated signal. 
Signal_Emit Emit a signal to the other process or external environment. 

Signal_Abort_Reg 
Monitor a signal and jump to a specified address when the 
corresponding signal is present (implements pre-emption). 

Signal_Monitor_Reg Wait on the change of monitored signal. 
Signal_Present Check the status of a signal. 
Signal_Value Obtain the value of a signal. 

Each group of services is supported by dedicated data structures. For example, 

signal-operation services are supported by data structures listed in Table 3.2: 

 

Table 3.2: Data structure used by the signal-operation services 

Data structures Descriptions 
Signal await queue A list of suspend processes due to awaiting a signal. 
Signal monitor table A look-up table for monitored signals. 
Signal abort queue A list of pre-empted processes. 
Signal status and values The current status (absent or present) and value of a signal. 
Signal emitter table A list of processes associate with potentially emitting signals 

 

Two methodologies of modeling the interconnections between the OS and other 

software components are presented in this chapter. One is pin-accurate modeling, the 

other is the transaction-level modeling (TLM).  

Programmers obtain detailed views of software interactions in the pin accurate 

approach, where SYSTEMC primitive input and output signals are used. From the OS 

point of view, an incoming API call consists of the API type and arguments that are 

treated as input signals, whereas processes notification signals, which consist of 

process-ID and process-new-status, are considered as outputs, as shown in Listing 3.1. 

 

Listing 3.1: Interfaces of process model at pin accurate level 

1 
2  
3  
4  
5  
6  
7 
8 

#define ProcNum 16 
#define API_Word_Width 16 
#define API_Args_Width 16 
#define Process_State 2 
SC_MODULE(OSModel) { 
  // Interfaces for accessing services – from proce sss 
  sc_in<sc_lv<API_Word_Width> > process_API[ProcNum ]; 
  sc_in<sc_lv<API_Word_Width> > process_API_Argumen t[ProcNum]; 
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9 
10 
11 
12 
13 
14 
15 

  sc_in<sc_logic> process_API_Last_Argument[ProcNum ]; 
  // Interfaces for notifying processes 
  sc_out<sc_lv<sc_logic> > process_Notification[Pro cNum]; 
  sc_out<sc_lv<Process_State> > process_New_Status[ ProcNum]; 
  // Rest of the OS model 
  ...... 
} 

 

API provided by the OS to processes can be divided into two groups: blocking and 

non-blocking. Processes will give the control to the OS or obtain control from the OS 

once the API calls are issued. Thus the APIs calls, as function invocations, are the 

linkage between the OS and processes. This is similar to transaction-level modeling 

(TLM). Both blocking and non-blocking interfaces are available in TLM and can be 

used to model API to access features of OSs. In this approach, the OS will be modeled 

as a SYSTEMC channel (a specialized module) which implements the interface (API 

provided) as services. Some of the OSs offer features such as modularity to include the 

essential mechanisms and services. Such OSs are generally modeled as hierarchical 

channels, the provided services being modeled as sub-modules within the channel 

representing the OS. 

An API call with more than one argument in a pin-accurate approach consumes 

many clock cycles during simulation resulting in lower simulation speed. This is 

countered by introducing TLM, where the steps of passing API type and arguments to 

the OS are encapsulated within a single transaction. Interfaces of the OS model are bi-

directional blocking interfaces, implemented in the OS as a SYSTEMC channel. Data 

types (classes) are created for service requests and OS responses, shown in Listing 3.2 

with interface declaration. 

Listing 3.2: Interfaces of the OS model in TLM 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 

class OSAPI_if : public virtual sc_interface { 
public: 
  virtual NOTIFY service_request(const REQ&) = 0; 
}; 
class REQ { 
private: 
  unsigned int API_TYPE; 
  unsigned int *API_Arguments; 
  unsigned int API_Arguments_Num; 
  ...... 
}; 
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12 
13 
14 
15 
16 
17 

class NOTIFY { 
private: 
  unsigned int Process_ID; 
  unsigned int Process_New_Status; 
  ...... 
}; 

 

Services are modularized according to the categories to which they belong. To 

achieve higher simulation speed, communications of grouped services are also 

described with TLM as shown in Figure 3.6. 

 

 

Figure 3.6: OS model in TLM 

 

The OS model reacts to its inputs (service requests from processes) according to its 

state. The OS state transitions are illustrated in Figure 3.7 and Table 3.3. The OS state is 

part of the data structures governed by the ‘process scheduling services’, which 

coordinate the overall behaviors of the processes. 
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Table 3.3: State descriptions of the OS model 

State Description 
a Power up of system 
b Completion of the OS initialization 
c No ready process to release and no process activation signal is presented 
d Presence of a process activation signal or a ready process 
e A process is released 
f Neither an event nor an API call is detected 
g Receive an API call from a process, or a monitored signal presents 
h Finish updating data structure as preparation for scheduling 

 

 

Figure 3.7: State transitions of the OS model 

3.6 Describing software processes with the OS model 

3.6.1 Mechanism available in SYSTEMC to model processes 

SYSTEMC provides processes (to differentiate from software processes in view of 

OS, it is called ‘SYSTEMC process’ in this thesis), namely SC_METHOD and 

SC_THREAD, which are scheduled in a co-operative manner. In other words, neither 
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SC_METHOD nor SC_THREAD are pre-emptive. SC_METHOD is suitable in 

modeling behaviors of a finite state machine (FSM), where each execution of 

SC_METHOD represents the activities performed in a specific/current state. On the 

other hand, SC_THREAD, is suitable for modeling software processes with numbers of 

segments formed by using wait statements provided in SYSTEMC. The wait statements 

are used to return the control back to the SYSTEMC simulation kernel manually so that 

SC_THREADs are scheduled co-operatively. SC_METHOD is used to model one 

software process, so that the process model can inherit the properties from the 

specification which can be described with formal MoC such as FSM. This approach also 

enables possible verification and linkage between other FSM based formal languages 

(such as ESTEREL).  

3.6.2 Internals of the process module 

A process modeled as a SYSTEMC module is called a ‘process module’. It is 

specified with the process interface (to connect with the OS module), behavior (an 

SC_METHOD which contains the algorithms that describe reactions to various input 

events) of a process, a process state, process state transitions, context of the process, and 

an execution-control variable (called process-execution segment ID). The process 

module requests OS services by sending API calls and required arguments to the OS 

module via the communication channel which exists between the OS and each process. 

The communication channel is modeled as an un-timed TLM function call, for faster 

simulation, or timed (cycle- and pin-accurate) depending on the required accuracy. The 

OS notifies (through signaling) a process module to change its state. A process state 

indicates the current state of a process as illustrated in Figure 3.8 and whose state 

transitions are detailed in Table 3.4.  

By encapsulating a process context within the process module as member variables 

of the process module, minimal or no effort is needed to model the context switching. 

The process module includes the declaration of the module and the process body as 

shown in Listing 3.3 and illustrated in Figure 3.9. The process body is modeled by using 

SC_METHOD. A segment of the process body behaves according to the current state of 

the process module and the current position (point) of the execution (control) flow. This 
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state-machine based approach enables (1) a structured description of the process 

behavior and (2) a straightforward mapping from state-oriented system specifications. 

 

 

Figure 3.8: FSM of the process model 

 

Table 3.4: State descriptions of the process model 

State Description 
a Power up of the system 
b End of process initialization, process starts immediately 
c End of process initialization, process waits to be activated by signal 
d Process activation signal is present 
e OS signals the process to be released or scheduled 
f OS signals the process to pause due to signal pre-emption or scheduling 
g An OS service is requested 
h Completion of a service call 
i Process termination 

 

Listing 3.3: The SYSTEMC template of a process module 

1 
2  
3  
4  

SC_Module(Process_Module) 
{ 
  // Process module interface declarations 
  Declarations of input ports; 
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5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

  Declaration of output ports; 
  Declarations of data structures including process  context; 
  Declarations of process simulation body function;  
  SC_CTOR(Process_Module) 
  { 
    Assigning sensitivity list to the simulation bo dy function; 
    SC_METHOD(simulation_body); 
    Initialization of data structures; 
  } 
} 
void simulation_body() 
{ 
  Process state transitions model 
  // Process execution controls 
  if ( process_execution_segment_ID = = segment1) 
    Running process execution segment1; 
  else if ( process_execution_egment ID = = segment 2) 
    Running process execution segment2; 
    ...... 
    ...... 
  else if ( process execution_segmentID = = segment N) 
    Running process execution segmentN; 
} 

 

 

Figure 3.9:  The internals and interface of a process module 

 

3.7 Proposed co-design framework 

3.7.1 The overview of the framework 

The framework divides the design process into four stages as shown in Figure 3.10. 

At the first, a system is specified by using any available SLDL. System verification is 

then carried out to ensure correctness of the specification. The last step of the first stage 

is to analyze system behaviors and map behaviors to components. The HW/SW 
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partitioning at this stage can be achieved by employing the designer's experience. There 

is no need for optimization since implementation details are not present in these HW or 

SW components (known as modules in the next design phase). During the second stage, 

embedded software is further refined into process modules and the OS module which is 

an abstract model without implementation details (such as disabling/enabling interrupts 

for critical sections, which are target-platform dependent). In this stage, exploration of 

HW/SW partitioning of the OS itself may be conducted. The hardware portion of the 

OS, along with the other hardware modules, including the processor module, memory 

modules, and other peripheral modules, is simulated (un-timed, or cycle accurate) with 

process modules and the software portion of the OS module. 

 

 

Figure 3.10: Modeling framework and staged design approach 

 

Once the partitioning of embedded software and hardware devices is confirmed, the 

design process moves to the third stage, the implementation stage. Here implementation 
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of processes and the selection of the OS are accomplished. The processor module is 

customized and integrated with the hardware portion of the OS.  

Modeling of the dynamic behaviors such as the execution of concurrent processes is 

essential in the system model. Without adapting the OS in system models, different 

systems are modeled according to the underlying semantics of the used specification 

language. Simulators of the used languages will be required and will increase the 

complexity of the model. In contrast, if an OS model is used to control dynamic 

behaviors by providing semantic-preserving services, the system model is simplified.  

Introducing the OS model into the framework can be seen as a bridge between the 

design and implementation phases, where communication and synchronization 

mechanisms are extracted from the behaviors in the specification stage and included in 

the OS model. In the rest of this chapter the focus is on the shaded area in Figure 3.10 (a) 

to explore the possible implementations with OS in the later stages. Process execution, 

which relies on support provided by the OS, is modeled as a process in SYSTEMC 

module. It is simulated together with the OS module. Information shared between 

processes is stored in the data memory described within another SYSTEMC module, 

which is also modeled in this stage. 

3.7.2 Integration with the OS and process modules 

This proposed OS and the process modules are integrated to represent the overall 

software components of the system. Co-simulations with hardware components and 

further refinements on components are in accordance with the aforementioned 

methodology. For example, programmers are interested primarily in communication 

between processes and their interaction with the OS, whereas system architects need a 

view from which to explore possible hardware/software alternatives. Figure 3.11 and 

Figure 3.12 illustrate two different approaches with the proposed OS and process 

models. During the early design phase, processes are modeled at the functional level 

(refer to Section 3.2.2), and executed with support provided by the OS through API 

calls, as shown in Figure 3.11. For example, API Signal_Monitor_Reg is used to 

monitor input signals. As an execution result, process switching would be required if a 

certain signal were present, where the scheduler takes the place of selecting the next 
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process. Data memory, which is a functional model, provides temporary storage for 

process modules and the OS. 

  

Figure 3.11: OS module with functional modeled processes 

 

To explore OS with application-specific customization, an OS with different 

configurations (to provide different sets of services or to adopt different scheduling 

policies) is modeled. Simulation of pre-compiled processes is done by the ISS, as shown 

in Figure 3.12. This type of OS model enables designers to evaluate the OS design. 

Processes are first compiled with the skeleton of the OS library, which provides API 

only. Object codes of the compiled processes are stored in the functional model of the 

program memory, which fetches instructions to the ISS and the OS module. Before an 

instruction is loaded to the ISS, the program memory model checks whether the 

instruction is an API request. If this is the case, the request will be passed to the OS 

module instead of to the ISS. Once the request is carried out, the scheduler of the OS 

module notifies the program memory either to continue fetching instructions from the 

calling process (process continues to execute), or to load instructions from another 

location (as another process is released). Prior to the release of the scheduled process, a 

sequence of instructions is fetched to the ISS to simulate the context switching. The 

process contexts are stored in the data memory belonging to the processes. Data 

memory connects with the OS module, whereas device drivers, as a part of the OS, 

require memory access to control memory-mapped devices. 
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Figure 3.12: The OS module with compiled program 

3.7.3 Communication between modules and environment 

Communication and synchronization of the process modules is managed through 

services provided by the OS. By adopting the use of the OS module, the number of 

communication links between the processes is reduced since the processes are 

communicating in a centralized fashion. Moreover, signals, which are used in many 

SLDLs and synchronous languages, are introduced as the basic communication 

mechanism to ease the transition between system specification and implementation. In 

this approach a process communicates with another process via internal signals (SN) and 

with the external environment via external signal (ESM) with OS support, as shown in 

Figure 3.13. 

 

Figure 3.13: Interactions between processes/external environments 
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3.7.4 HW/SW partitioning and HW support of OSs 

A composition of processes and the OS is generally and commonly seen as software 

components of the embedded systems. In implementations, OS is presented in the form 

of libraries, which are used in compilation with process source codes to embedded 

software. Device drivers as parts of the OS libraries are provided to control devices, and 

thus the OS bridges the processes and hardware devices. It is also possible to implement 

partial OS functionalities in hardware to achieve higher performance, as described in 

Section 3.3.3 and this is why OS can be considered a mixture of hardware and software. 

To describe the behaviors within OS and explore HW/SW trade-offs in its 

implementation, the OS is modeled at the functional level with the aim of enabling co-

simulations with other system components modeled in different levels of abstraction. 

In the proposed system model, most of the components are described as modules in 

SYSTEMC, while others, for instance the processor, are either modeled in the register 

transfer level through hardware description languages (HDLs) or is presented through 

an instruction set simulator (ISS). Figure 3.14 illustrates how system components 

interconnect. The hardware/software composed OS connects to most of the other system 

components. Processor, memories, and devices communicate through a functional bus 

model. The processor model connects with the OS model, because the OS provides a 

platform-dependent layer such as drivers. Because OS functions implemented in 

hardware are integrated with the processor as functional units, the interconnections are 

presented. Program memory model connects to the OShardware to provide information for 

executions of functional units. OSsoftware processes service requests from compiled 

software processes, which are stored in the program memory. Data memory stores 

information which is manipulated by the OS and processes. Processes operate with 

support and services provided by the OS. Since data memory is modeled functionally, 

the details of timing in the memory model are not taken into account; the memory 

model can still be refined with further accuracy by back-annotating timing 

characteristics. 
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Figure 3.14: Hardware-supported OS in the system model with other HW components 

 

The OS model is used to encapsulate the details of communication and 

synchronization between processes, whereas software developers need not to be 

concerned with how to maintain links between processes and other external devices. 

The OS model is close to the virtual OS simulation concept: a set of system services, 

available to processes through application programming interface (API) calls. 

Validation of the OS is achieved by examining interactions between the OS and other 

system components, and mapping applications on different OS configurations (with 

different services or HW/SW partitions) makes the approach independent of the target 

platform. 

Data memory in this system model is currently modeled to store variables shared by 

the processes and values of memory-mapped signal values (a valued signal has status 

and value when it is present). Data memory is described as a SYSTEMC module with 

interface to allow reading from and writing to an array whose size equals the 

addressable memory space of the target processor. A data-memory module connects 



Chapter 3. System design with OS modeling 77 

 

with process modules in the system model. It is also used to provide information on 

process activities such as the use of shared resources. 

 

 

Figure 3.15: Processor model with RFU support 

 

The proposed system model in this chapter allows (1) mapping of application 

specifications to software processes and (2) exploration of hardware/software (HW/SW) 

trade-offs in implementation of the OS. It also allows mapping on existing OSs and 

extending them with new signal-operation services. Based on the simulation results, 

possible and preferred configuration (HW/SW partitioning) of the OS implementation 

can be obtained. Hardware support to the OS can be integrated with the processor in the 

form of functional units. As an example, a Reactive processor [Salcic et al., 2005] 

contains RFU (reactive functional unit) to perform reactive operations on signals. 

The OS model can thus provide us insight into migration services, in this example 

signal operations, from software to hardware, and model them as a hardware unit as 

shown in Figure 3.15. This model is derived from Figure 3.12 by introducing the RFU 

as a support to the OS. Instructions identified as signal operations, are fetched to the 
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RFU module. RFU is responsible for informing the OS model whether a process-

scheduling is required at the end of a requested signal operation. RFU is connected with 

the data memory where process contexts relevant to the RFU can be saved/restored 

during the process switching. 

 

 

Figure 3.16: A model of processor: OS with hardware support 

 

Figure 3.16 further details the processor model, which covers the overall software 

running on the processor and hardware enhancements to the processor itself. API calls 

to the OS are done by signaling, described in a later section. The API, OSSW (which 

represents the software implemented part of the OS), device drivers, hardware 

abstraction layer (HAL), and processes are implemented in software which is compiled 

and stored in the program memory. Results of computation performed by the processes 

and the OS are stored in the data memory. The processes are allowed to perform 

operations on memory-mapped input/output signals via the support of OS. 
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3.7.5 Mapping of SW models to implementations 

The proposed approach for modeling reactive embedded systems with an OS model 

can be easily extended to a real (target) OS by properly mapping signal operations on 

the services of the existing OS. For that purpose special signal-oriented data structures 

have been introduced. Each signal-operation service can be refined into two stages: (1) 

accessing and updating the semantics-related data structures (those preserving semantics 

of e.g. ESTEREL) and (2) calling other services provided by the target OS to explicitly 

trigger process-scheduling, if required. To fulfill these requirements, the target OS must 

provide the following services:  

Entry and exit of a critical section – these are used to operate on the signal data 

structures, where operations should be carried out by one signal-operation service at a 

time. This requirement can be achieved also by using a binary semaphore which 

protects the data structure.  

Blocking the process execution with time-out support – this can be a binary or 

counting semaphore, whereas the time-out feature is required to achieve exception/error 

handling such as a recovering from a signal non-presence within the specified time 

period.  

As an example, two existing OSs have been used as the target OS: µC/OS-II and 

FreeRTOS. The templates of the signal-operation services for these two OSs are 

illustrated in Listing 3.4 and Listing 3.5, respectively. Note that the variable name 

timeOutLength is used to achieve the above-mentioned time-out. 

In this model, the term ‘logical tick’ is adopted from the synchronous MoC, as the 

synchronization barrier of behaviors in the program execution. It is different from the 

standard OS ticks which are based on actual time (or clock cycles), and it is of different 

length in terms of execution time. Logical ticks are used to handle incoming events in a 

deterministic manner. 
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Listing 3.4: The template of signal-operation service for µC/OS-II 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

UserDefined_OS_Signal_Operation_Name (...) 
{ 
  // Stage 1: Computation on data strucuture (DS) 
  int blockingRequired = 0;  
  // 0:non-blocking, 1:blocking due to signal, 2;bl ocking due to tick 
  // obtaining the access of the DS 
  OS_ENTER_CRITICAL();  
  // Processing the DS, e.g. signal presence table,  tick table, etc. 
  blockingRequired = 0; // or 1 or 2 according to t he computation results 
  // release the lock to the DS 
  OS_EXIT_CRITICAL(); 
  // Stage 2: Block the process execution if requir ed 
  if (blockingRequired == 1)  
    OSSemPend( semaphore_for_signalS_of_procN, time OutLength, err_code ); 
  else if (blockingRequired == 2)  
    OSSemPend( semaphore_for_tick_of_procN, timeOut Length, err_code ); 
  // arriving here when the blocking is not require d or finished 
  blockingRequired = 0;  
} 

 

Listing 3.5: The template of signal-operation service for FreeRTOS 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

x_UserDefined_Signal_Operation_Name (...) 
{ 
  // Stage 1: Computation on data strucuture (DS) 
  int blockingRequired = 0;  
  // 0: non-blocking, 1: blocking due to signal, 2: blocking due to tick 
  // obtaining the access of the DS 
  xSemaphoreTake( semaphore_for_data_structure, por tMAX_DELAY ); 
  // Processing the DS, e.g. signal presence table,  tick table, etc. 
  blockingRequired = 0; // or 1 or 2 according to t he compuation results 
  // release the lock to the DS 
  xSemaphoreGive( semaphore_for_data_structure ); 
  // Stage 2: Block the process execution if requir ed 
  if (blockingRequired == 1)  
    xSemaphoreTake( sem_for_signalS_of_procN, ( por tTickType )timeout ); 
  else if (blockingRequired == 2)  
    xSemaphoreTake( sem_for_tick_of_procN, ( portTi ckType )timeout ); 
  // arriving here when the blocking is not require d or finished 
  blockingRequired = 0;  
} 

3.8 Case study: lift controller 

A lift system from [Berry, 2004] was originally specified in ESTEREL. The system 

consists of a lift cabin, a set of sensors, a timer, three motors, few push buttons, a 

number of indicators (lamps), and a system controller. To map the specification to 
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processes, primitive behaviors are first extracted from the system specification. Two 

large behaviors (call handling and cabin door activities) from the ESTEREL specification 

are decomposed into eight primitive behaviors and dependencies between behaviors 

identified as illustrated in Figure 3.17. 

The primitive behaviors are mapped to 8 processes, where 17 existing dependencies 

(possibly require 17 communication channels if the OS is not used) are modeled with 8 

communication channels connected to the OS module (un-timed). The processes are 

described using the timed model from Section 3.4. Example of mapping an ESTEREL 

description to the corresponding process segment is shown in Listing 3.6 and  

Listing 3.7. 

 

 

Figure 3.17: Primitive behaviors and dependencies extracted from the specification 

 

Listing 3.6: Behavior described in ESTEREL 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 

if (not StoppedAtFloor) then 
  emit { 
    PendingCabinCall <= CabinCall or ...... 
    PendingUpCall <= UpCall ...... 
    PendingDownCall <= DownCall ...... 
    PendingCall <= PendingCabnCall or 
                   PendingUpCall or 
                   PendingDownCall 
  } 
end if 

 

Listing 3.7: Behavior description in SystemC 
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1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

// Checking the presence of the following signals 
int sStoppedAtFloor = Signal_Present(StoppedAtFloor ); 
int vCabinCall = Signal_Value(CabinCall); 
int vUpCall = Signal_Value(UpCall); 
int vDownCall = Signal_Value(DownCall); 
int vPendingCabinCall = 0; 
int vPendingUpCall = 0; 
int vPendingDownCall = 0; 
int vPendingCall = 0; 
...... 
if(sStoppedAtFloor == 0) { 
  vPendingCabinCall = vCabinCall ......; 
  vPendingUpCall = vUpCall ......; 
  vPendingDownCall = vDownCall ......; 
  vPedingCall = vPendingCabinCall | vPendingUpCall |  
                vPendingDownCall; 
  Signal_Emit(PendingCabinCall, vPendingCabinCall . .....); 
  Signal_Emit(PendingUpCall, vPendingUpCall); 
  Signal_Emit(PendingDownCall, vPendingDownCall); 
  Signal_Emit(PendingCall, vPendingCall); 
}  

 

Figure 3.18 illustrates the model of the lift controller, where an additional process is 

introduced to function as the test-bench and simulates the external environment. The 

test-bench emits signals to the other processes through API calls, where emitted signals 

emulate inputs from the external environment. In order to observe the advantages of a 

modularized OS model, where services can be introduced and removed as the 

application requires, signal-operation services are removed from the OS model in order 

to analyze OS models with and without signal services. Two lift systems with the same 

functionalities were modeled and simulated. The first system model (Model A) achieves 

process communication and information broadcasting based on the use of semaphores. 

The second system model (Model B) is supported by signal operations provided within 

the OS. 

Two models are simulated with 72 events (which may consist of more than one 

input occurrence) provided by [Berry, 2004]. Events are generated at random intervals. 

Simulation results are shown in Figure 3.19, where the bold line indicates the result 

generated from Model B, which has an average speed-up of 28.46 times in simulating 

clock cycles. 
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Figure 3.18: System model of the lift controller example 

 

Figure 3.19: Simulation results for two system models 

 

In Model A, synchronization occurs when a process releases a semaphore (use of a 

particular signal) where notification is sent to other processes. However, processes are 

notified regardless of the status or value of a signal. Checking of signal values happens 

each time the corresponding semaphore is obtained by the process. This creates a 

scenario where processes are polling signal values in a loop. In contrast to this, 

synchronizations occur through signal operations in Model B, where processes are 

notified when signal values change. The response times of Model A vary with event 

intervals, which are shown as multiple traces in Figure 3.19, whereas the response times 

of Model B are fixed in every simulation. 
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3.9 Summary 

This chapter presents an approach to modeling the OS for reactive embedded 

systems. The abstraction level of the OS itself can be chosen depending on the need of 

the computer system designer. The OS model is modular and described in SYSTEMC, 

and gives opportunities for exploration of hardware/software trade-offs in 

implementations of the OS. The proposed signal operations in the form of OS services 

provide a mechanism to produce a relatively straightforward transformation of 

ESTEREL-like specification to processes, thus bridging the system specification and the 

design phase. 

The processor model can be introduced into the system model in the form of an ISS 

or a low-level RTL model. Evaluation of performance or other aspects of the OS 

implementation in different configurations will be investigated. The future goal is to use 

the developed modeling methodology to explore OS customization for specific reactive-

embedded applications. 

The advantage of mapping dedicated services to support reactive systems has been 

presented in the case study. This was the stepping stone to the design and 

implementation of more powerful mechanisms for grouping of software processes in the 

form of a library, libGALS, which is built on top of the underlying OS and is presented 

in Chapter 4. 

 



 

4444    
4444. . . . libGALS: a library for GALS system designlibGALS: a library for GALS system designlibGALS: a library for GALS system designlibGALS: a library for GALS system design    

    
libGALS is a library and run-time environment that extends operating systems (OSs) 

to support the design of Globally Asynchronous Locally Synchronous (GALS) software 

systems and models. libGALS provides an application programming interface (API) 

that enables the designer to describe concurrent libGALS programs and reactivity in 

sequential programming languages. Moreover, it facilitates the interface between the 

GALS concurrent program and other processes through the services provided by the 

host OS. libGALS is also suitable as a target for code generation from GALS and 

synchronous concurrent languages. At the end of this chapter, experiments demonstrate 

code size and run-time gains when compared with other approaches to implement 

GALS systems. 

4.1 Programming with a formal model of computation 

The last decade has seen a huge growth in the complexity of software systems, 

which, due to the drawbacks of programming languages, usually do not follow any 
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formal model of computation (MoC) and are therefore difficult not only to design but 

also to validate and verify. Programming languages like C/C++ and Java provide 

inadequate facilities to describe important behaviors of complex systems like 

concurrency, determinism and interaction with the environment. They require the use of 

operating system mechanisms that are available through the OS API, which require the 

designer to delve into low-level details instead of concentrating on the system design at 

hand. Since these mechanisms are not guided by any formal model, space it left to the 

making of erroneous designs. Synchronous languages like ESTEREL [Berry, 2000] and 

GALS system-level languages like SystemJ [Malik, 2010] have been shown to increase 

designer productivity when designing large and complex systems. They provide an 

abstract way to model concurrency and communication with the environment, besides 

being formally verifiable. However, they also have certain drawbacks such as: 

1. Large generated code size. 

2. Mapping of the concurrent programs onto single threads in the targeted OS 

environment. Current synchronous language compilers compile away the 

concurrency to produce a single-threaded C code. This generated code is unable 

to take advantage of the multicore processors, its large size and single-threaded 

nature slowing down the execution speed of the designed systems. 

3. Lack of a formal communication model between the designed system and other 

parts of the system, which are asynchronous in nature (e.g. the device drivers 

which co-exist within the system). 

4. Existing synchronous languages are too hardware-like for most software 

programmers. Interaction of a synchronous program with the environment is not 

addressed in a general way and the programmers must deal with it on case-by-

case basis using low-level language abstractions. 

 

In this chapter a software library and run-time environment for the execution of 

GALS systems, called libGALS, is presented. Concurrent behaviors are implemented as 

task-based software processes around an operating system, and they comply with the 

GALS MoC. libGALS provides a layer atop the host OS and/or a threading library such 
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as pthread [IEEE, 2008]. It can be used to program concurrent systems following the 

formal GALS MoC as a safer alternative to conventional threading approaches. 

libGALS can also be used as a target for compilation of specifications in languages such 

as ESTEREL and SystemJ. Porting libGALS is easy and can be done for almost any 

existing OS. libGALS can then be used from sequential programming languages 

through a set of proposed API. The main novel features provided by libGALS, which 

also affect the way concurrent programs are written in sequential programming 

languages, are: 

1. Ability to extend sequential programming languages such as C (through 

available language bindings) to specify synchronous type concurrency with 

simple mechanisms for communication and synchronization between 

synchronous processes using signals. Communication and synchronization 

between asynchronous processes are through channels implementing message-

passing with rendezvous. Signals and channels can be created dynamically. 

2. Ability to dynamically create processes and define their relationship with 

already existing processes (synchronous or asynchronous), as well as to 

dynamically schedule these processes. libGALS allows designers to create 

processes either dynamically or statically depending upon application 

requirements. In a safety-critical or sensitive application it would be prudent to 

create all processes at startup. The static creation of processes would allow the 

designed system to be analyzed for predictability and timing performance. 

3. Provision of interface to the external environment through signal abstraction and 

to other OS processes through host OS services. 

4. Achievement of higher responsiveness and reduced response times compared 

with current language approaches to GALS and synchronous concurrency. 

5. Smaller memory footprint compared with other GALS approaches, thereby, 

making it also suitable for embedded systems. 

6. Ability to define simulation model for modeling and simulation of complex 

system designs. 
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libGALS is entirely written in C and as such has great degree of portability to 

practically any host operating system. The first implementation presented in this chapter 

targets Linux, although there have already been ports to some other common OSs. 

Throughout this chapter, the term OS is used to represent common operating systems 

with sufficient features to support libGALS such as, but not limited to, Linux. 

The rest of this chapter is organized as follows. Section 4.2 presents related work. 

Principles of operation and implementation of libGALS are given in Section 4.3. An 

example of GALS design is given to illustrate both specification and implementation 

features of libGALS. Section 4.4 presents performance comparisons with the GALS 

language SystemJ to indicate potentials of the proposed approach, not only as an 

alternative, but also as the way to merge those two approaches, using the GALS 

language on specification and the libGALS approach on the implementation level. 

Discussion and conclusions are given in Section 4.5.  

4.2 Approaches in programming concurrency 

4.2.1 Concurrent behaviors in software systems 

Specification and run-time execution of concurrent processes are supported using 

different mechanisms. In an OS, concurrency is implemented in the form of multiple 

processes (sometimes called tasks) supported by a scheduler implementing switching 

between these processes to better use the processor and to provide faster response to the 

events from the environment. However, multiple processes require mechanisms for 

synchronization, communication and mutual exclusion for the protection of shared 

resources. OS [Silberschatz & Galvin, 1998] provides this support in the form of 

traditional API to programming languages. These mechanisms must be used by system 

programmers with due care to prevent non-deterministic or non-desired behavior and 

traditional pitfalls such as deadlock or race conditions [Silberschatz & Galvin, 1998]. 

Java provides native multithreading support, but the programmer is responsible for 

correctness of the program as it does not follow any formal MoC. Also, its concurrency 
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is non-deterministic. Recently, OSs have been extended to support execution and 

concurrency in symmetric and asymmetric multiprocessor systems.  

 

4.2.2 Limitation of single-threaded specification models 

In system-level languages concurrency is described and dealt with using language 

features. When compiled, concurrent behaviors in synchronous and asynchronous 

languages are most often sequentialized and scheduled to be executed as a single thread 

[Edwards et al., 2006]. Single-threaded implementations of concurrent system level 

languages have many drawbacks. For example, if the executing thread has to wait for an 

external event to occur, it blocks the other concurrent behaviors of the program, which 

do not depend on that event at all. This becomes an even bigger bottleneck if the 

computation contains heavy data-driven parts. Also, a single thread cannot take any 

advantage of underlying multiple processors. 

4.2.3 Library-based approaches 

libGALS is not the first attempt at providing a library-based approach to implement 

concurrent systems. There are a number of other libraries such as TReK [Gruian et al., 

2006], JESTER [Antonotti et al., 2000], JUNIOR [Hazard et al., 1999] and SUGARCUBES 

[Boussinot & Susini, 1998], which provide support for concurrency. JESTER implements 

the synchronous MoC, while TReK supports the GALS MoC. Both these approaches 

rely on a Java Virtual Machine (JVM) and may have low execution speed. They also 

lack support for important reactive constructs. For example, JESTER does not support 

deterministic concurrent-exception mechanisms (parallel trap-exit statements), while 

TReK does not support strong signal-based pre-emptions like abort and suspend. JUNIOR 

and its derivative SUGARCUBES both follow a completely different semantics [Boussinot 

et al., 1999]. The JUNIOR reactive kernel implements non-deterministic concurrency, 

which can lead to undefined behaviours, a problem for mission-critical systems. 

SUGARCUBES implements logical parallelism, which is mapped to a single threaded 

implementation. 
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The libGALS approach combines library and run-time (OS) approach and indirectly 

supports the language-based approach. It has sequential threads as its basic concurrent 

units, which are managed by a host operating system that allows the designer to specify 

concurrent behaviors in a much safer way and guarantee a formal relationship between 

those behaviors. 

The synchronous behaviors can also communicate with each other or with their 

environment using signals as in synchronous programming languages [Berry, 

1993][Boussinot et al., 1999]. Synchronous reactions are implemented as threads in a 

libGALS program. Behaviors in conventional synchronous programs are sequentialized 

hence only one behavior is performed at a time. In contrast, reaction threads in libGALS 

execute concurrently and synchronize with each other at lock-steps according to the 

GALS MoC. Concurrent behaviors in libGALS programs are mapped to threads 

supported by the OS following the GALS MoC, and run in true parallel fashion when 

the underlying platforms allow. Execution times are thus shortened with increasing 

processor utilization. 

4.3 libGALS fundamentals 

In this section the concepts and model of computation (MoC) of the libGALS are 

introduced. Four basic building blocks provided by libGALS, those of clock domain 

(CD), reaction, signal, and channel, are provided to the designer to construct GALS 

systems. The concept of logical time (tick) which is used within clock domains is 

detailed in this section. 

4.3.1 Model of computation of libGALS 

libGALS extends sequential programming language based on concurrent GALS 

MoC. The terminology related to GALS is adopted from that used in SystemJ language, 

because libGALS uses the same semantics described in [Malik, 2010]. A program 

which utilizes libGALS to model GALS systems is referred to as a libGALS program. 

Four entities are defined in libGALS: clock domain, reaction, signal, and channel. At 

the top level, a libGALS program is a composition of one or more asynchronous 
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concurrent entities, which are called clock domains. Communication between clock 

domains is implemented using channels similar to CSP [Hoare, 1978]. Reactions are 

behaviors within one clock domain and are synchronous to each other. Synchronous 

reactions follow the same semantics as ESTEREL [Berry, 2000] and synchronous part of 

SystemJ [Malik, 2010]. That is, communication between reactions within one clock 

domain is via signals.  

4.3.2 Clock domain: top-level synchronous entity 

A clock domain is a top-level entity in a libGALS program. A clock domain itself 

consists of one or more synchronous behaviors called reactions. Inter-clock domain 

communications, which occur between reactions belonging to two different clock 

domains, are implemented using channels. Clock domains execute asynchronously to 

other clock domains, i.e., at their own logical clocks whose unit is called a ‘tick’. Clock 

domains are containers where reactions reside. Functionalities of clock domains are 

defined only in reactions, not in clock domains. 

4.3.3 Reaction: behavior of a clock domain 

Each reaction can be a composition of further reactions, thus allowing synchronous 

and hierarchical behavioral concurrency. Reactions are implemented as ‘threads’ which 

can be created by using the API provided by the underlying operating system. Besides 

using any of the usual sequential programming language constructs, reactions are also 

allowed to use a number of control and reactive statements which are available in 

libGALS. Control and reactive statements enable communication between reactions, as 

well as with the external environment.  

Reactions in the same clock domain are executed in lock-step and are synchronized 

by a logical tick. Reactions react to environment inputs simultaneously and 

instantaneously. Outputs are computed and emitted in zero logical time 

(instantaneously). The reactions of different clock domains communicate with each 

other through the use of channels, which will be detailed in Section 4.3.5 and 4.5.8. 

Reactions on each side of the channel work on different copies of the message. 
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4.3.4 Logical tick in libGALS 

A logical tick (different from a tick in the host OS kernel) is used to represent a 

discrete time instant for a clock domain and all its synchronous reactions, where 

reactions in each clock domain are executed at its own logical tick. Management of 

execution of the reactions within each clock domain, and communication with the 

external environment, are carried out by a helping thread named ‘Synchronizer’ (see 

Section 4.5.3). The time between two logical ticks, unlike that between two real clock 

ticks, has variable duration. The tick boundary is determined by various libGALS API 

calls such as ‘pause’, ‘await’, ‘sustain’, and ‘suspend’. The usage of libGALS API will 

be detailed in Section 4.4.1. 

4.3.5 Signals and traps for communication and synchronization  

Signals are the main communication primitives between reactions within clock 

domains. Communications between reactions and their external environment are also 

made via signals. Signals can be divided into two major categories: (1) interface signals, 

used for communication between reactions and the environment and (2) local signals, 

used for broadcast-based communication between reactions. Signals can be further 

divided into ‘pure’ and ‘valued’ signals. Pure signals have only a Boolean status 

(present or absent). Valued signals are a composition of a Boolean status and a value, 

which can be of any type (void pointers are used in the current implementation). The 

status of pure and valued signals can be altered with signal emission, which is achieved 

by calling ‘emit’. The status can be checked using functions like ‘present’ and ‘await’. 

Similar to reactive languages [Boussinot & Dabrowski, 2006], absence of the signals 

can be detected only in the next tick. The value of valued signals is persistent over ticks 

and can be checked via calling ‘value’. Traps are a special kind of signal, used to 

monitor a specified scope within a reaction body. When executions of reactions are not 

in the scopes of traps, these traps are not effective. Status of traps can be: 

1. Monitoring. Execution of a reaction is still within the scope of a trap. The scope 

of a trap is bounded by the ‘setTrap’ and ‘endTrap’ calls. 
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2. Activated to exit. Similar to signal emission, a trap is exited through ‘exitTrap’ 

call. 

3. Not valid. The execution is out of a trap’s scope and the trap is no longer 

effective. 

4.3.6 Channels: communication between clock domains 

Channels are the only means of communication between reactions belonging to 

different clock domains. Channels are point-to-point, unidirectional, and use rendezvous, 

i.e. blocking send and receive, to guarantee data delivery between reactions. A sender 

reaction uses the send function and the receiver waits for the data using the receive 

function. Channels in libGALS operate similarly to CSP of [Hoare, 1978], the sending 

and receiving sides working on different copies of the message. Invisible delays occur 

between input and output in the form of empty ticks while waiting for rendezvous in the 

CSP MoC. In each empty tick, the ‘send’ or ‘receive’ call only ‘pause’, invisible to the 

programmer at that instance. Empty ticks enable clock domains to still carry out ticks 

when reactions within are waiting for the channel communication. 

4.3.7 libGALS and other software components 

Figure 4.1 illustrates relationships between libGALS and other software processes. 

libGALS is a library implemented at the top of the host OS and requires host OS 

services including: (1) thread creation and deletion, and (2) semaphore manipulation, 

which are all available in almost any OS.  

 

Figure 4.1: libGALS and other software component 
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Reactions and Synchronizers are implemented as OS threads. Reactions 

communicate with other application processes and user-defined drivers through input 

and output functions of the underlying clock domains. Input and output functions can be 

implemented using inter-process communication (IPC) of the host OS.  

4.4 Specifying a design with libGALS 

In this section the application programming interface (API) of libGALS is 

presented. libGALS API is used to construct libGALS programs. An example of 

alibGALS program, a kite controller used for wind and water surfing, is modeled by 

using the provided API. The kite controller will be used in a later chapter to demonstrate 

the linkage between the internals of libGALS with libGALS programs. 

4.4.1 libGALS API and libGALS programs 

The designer commences the design by dividing the concurrent behaviors into 

reactions and clock domains. Reactions can then be decomposed into further (child) 

reactions. The reactions are defined as usual the C functions with a few restrictions 

which include: (1) use signals instead of shared variables to prevent the use of 

semaphores, thus avoiding possibility of deadlock and (2) make temporal infinite loops 

by using at least one statement (function) that consumes logical ticks, i.e. ‘pause’ and 

‘await’. The body of the reaction function consists of computational and reactive 

statements. Computational statements are those of the host programming language 

(C/C++ in this case), while reactive statements are specified by the libGALS API calls. 

The comprehensive list of reactive statements with short explanations of their 

functionality is shown in Table 4.1. 

libGALS API calls are categorized into three groups for (1) construction of GALS 

systems, (2) modeling synchronous behaviors within reactions, and (3) asynchronous 

communication between clock domains. Groups of API calls are shaded to show 

differentiation in Table 4.1.  
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Table 4.1: Application programming interface of libGALS 

API Description 
createlibGALSprogram Initialize a libGALS program 
createClockDomain Create a clock domain  
createReaction Create a reaction within a clock domain 
create[Signal | Trap] Create an instance of a signal or a trap 
createChannel Create a channel connecting two clock domains 
startClockDomain Activate running a clock domain 
startlibGALSprogram Start libGALS program and activated clock domains 
initReaction/ 
endinitReaction 

Initialize a reaction and end initialization of the reaction 

getArgument Get an argument passed to the reaction 
register[Emitter|Trap] Register a process as a signal emitter or a trap thrower 
emit | sustain Emit/broadcast (or sustain) a signal  
present Check if a signal is present 
pause Enforce end of tick for a reaction 
await Wait for the presence of a signal 
[strong|weak] 
abort/endAbort 

Start and end of a pre-emption block. Pre-empt if monitored 
signals are present 

suspend/endSuspend Suspend a reaction by one tick if a monitored signals are 
present  

setTrap/endTrap Set and end the scope of the trap 
exitTrap Exit the trap, the reaction will jump to the end of the trap 

scope 
fork/join Fork out child reactions and wait for joining of the child 

reactions 
AND,OR,NOT,REP Form a combined signal expression from presences of 

signals: 
AND: logical AND  
OR: logical OR 
NOT: logical NOT 
REP: will return true when a signal emission occurs n times 
consecutively 

value Acquire the value of a signal  
pre[Value] Get the presence status and value of a signal in the previous 

tick  
endReaction End a reaction, called if the reaction is not a child reaction  
send/receive Send and receive data between reactions in different clock 

domains via a channel 
 

API calls in the first group are used to initialize a libGALS program and to create 

essential compartments of a libGALS program. Clock domains, reactions, signals, traps 

(special type of signal), and channels are created via this kind of API calls. libGALS 
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program and created clock domains are activated through calling this group of API calls 

also. Synchronous reactions are described using the second group of the API calls that 

act as reactive statements. Finally, channel communications between the reactions of 

clock domains, ‘send’ and ‘receive’ are used as the asynchronous group of the libGALS 

API calls. 

4.4.2 Kite controller: an example of a libGALS program 

libGALS enables modular design and re-usability of code in describing GALS 

systems. For example, the code definition of a reaction, also known as ‘reaction 

function’, can be used to implement multiple numbers of the actual instantiated reaction 

threads. Signals and channels used in the reaction functions are mapped to actual 

instances when a reaction is created. A power-kite controller is depicted in Figure 4.2 

and its equivalent libGALS program is presented in Listings Listing 4.1 and Listing 4.2, 

respectively. The power-kite controller consists of three clock domains, which include 

‘CDKiteControl’, ‘CDGetWindInfo’, and ‘CDGetKiteInfo’. Speed and heading of the 

wind and the kite are collected using sensors running at different sampling rates (hence 

the different clock domains). Collected samples are passed to the ‘rReceiveWindData’ 

and ‘rReceiveKiteData’ reactions running in parallel synchronously within the clock 

domain CDKiteControl through channels ‘cWind’ and ‘cKite’, respectively. This clock 

domain computes the value of the output signals that control the kite heading and speed, 

based on this received data. Once calculated, the computed values are emitted via 

signals to the actuators that stabilize the power kite. libGALS also enables designers to 

specify test-benches that generate stimuli for testing and validation of the designed 

system. For example, reactions ‘rSimulateWindData’ and ‘rSimulateKiteData’ generate 

stimuli that behave as input signals from the environment. 

A libGALS program consists of definitions of reactions and a description of the 

system, which are shown in Listings Listing 4.1 and Listing 4.2, respectively. The 

definitions of reactions (Listing 4.1) include the definition of user-typed data (lines 2-6) 

used as arguments in the reactions, the clone function of the user-typed data (lines 7-13), 

and the body of the reaction functions (lines 14-76). Data sent in both channels cWind 

and cKite are user-defined type called ‘measurements’, which consists of two 
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components, the heading angle and the speed. The ‘clone function’ measurements_clone 

is used to duplicate the user-typed data for channel communications to work on 

different copies of the messages. Lines 14-40 of Listing 4.1 demonstrate how a reaction 

is defined. A reaction function ‘KiteControl’ is defined with the 

‘REACTION_FUNCTION’ macro (line 14). The body of a reaction is divided into two 

parts, the initializations and the behavior of the reaction. The initialization of the 

reaction starts with the API call ‘initReaction’ and ends with the API call 

‘endInitReaction’ as shown on lines 16 and 30, respectively. Within the scope of the 

initialization, the arguments passed to create a reaction can be extracted by calling 

‘getArgument’ (lines 18 to 25). Signals that will be emitted by this reaction are 

registered by calling ‘registerEmitter’ (line 28) in the initialization phase. Variables 

used in the reaction can also be declared in the initialization scope. The behavioral 

description of a reaction is written after the ‘endInitReaction’ API call. The reaction’s 

behavior consists of the control part and computational part (data-driven 

transformations), which are tightly integrated with each other (lines 31-45). Control 

parts of the reaction are modeled with the libGALS API calls, while computational parts 

are expressed in the host programming language. To illustrate the hierarchical design in 

libGALS programs, KiteControl forks out and then waits for joining of child-reactions 

‘rReceiveKiteData’ and ‘rReceiveWindData’ with fork and join API calls (lines 32-33). 

The ‘fork’ and ‘join’ API calls together coordinate the synchronous concurrency model 

within a clock domain. A reaction can initialize multiple synchronous reactions (called 

child reactions) concurrently using the ‘fork’ API calls, which instantiate the child 

reactions. Once the child reactions are initialized the parent waits for their completion 

before proceeding further. This is done by calling the blocking ‘join’ API call. 

Computational parts are carried out to determine whether the bearing and speed of the 

kite need to be increases or reduces. Emission/broadcasting of the signal 

‘sIncreaseKiteVelocity’ with an ‘emit’ API call (line 41) is performed to maintain the 

course of the kite. 

Asynchronous communications through channels are carried out with ‘send’ and 

‘receive’ API calls on lines 71 and 54, respectively. Both send and receive calls require 
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the name of channel, the data to transfer, and the type of the data. In this case, data 

typed measurements is used. The behavioral description of a reaction ends with the 

‘endReaction’ API call (such as line 46). 

The GALS system (Listing 4.2) instantiates the clock domains using the 

‘createClockDomain’ API calls (lines 5-10). These API calls take the input and output 

functions that act on the interface input and output signals as arguments. Input and 

output functions allow the inputs to the clock domain to be read at the beginning of 

every tick and the output signals to be emitted at the end of every tick. ‘createChannel’ 

is used to instantiate channels for communication between the sending and receiving 

clock domains, along with the name of the channel, which are arguments to this 

function (lines 11-16). Signals used within the clock domain are created by calling 

‘createSignal’ whose argument is the clock domain where the signal operates (lines 18-

29). The reactions are instantiated via the ‘createReaction’ API call. The required 

arguments to create a reaction include: 

1. The clock domain where the reaction resides; each created reaction acts 

synchronously with other reactions created in the same clock domain. 

2. The reaction function which hooks with this reaction instance. Each reaction is 

associated with a reaction function. More than one reaction can refer to the 

same reaction functions but with no shared context. 

3. The activation status of the reaction (activated or dormant); an activated status 

is of value 1 and 0 otherwise. Child reactions are dormant before being forked 

from the parent reaction. For instance, ‘rReceiveWindData’ and 

‘rReceiveKiteData’ are dormant (lines 33 and 40)) and wait for activation from 

‘rKiteControl’, which is activated initially (line 47). 

4. The number of arguments passed to the reaction function (lines 34, 41, 48, 61, 

69, 76, 83, and 90). 

5. The actual arguments are provided as arguments. For instance, the creation of 

reaction ‘rKiteControl’ (line 44) indicates the reaction will be active upon the 

creation. Furthermore, eight arguments will be passed to the reactions, which 

include two child reactions, four output signals, and two input channels.  
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Note that two instances of the reaction function ‘ReadData’ are created on line 59 

and 88, which demonstrates the modularity and code re-usability provided by libGALS. 

The clock domains are started using the ‘startClockDomain’ API calls (lines 96-98). 

Finally the GALS system starts with the ‘startlibGALSProgram’ (line 99). 

Synchronizers are programmer-invisible threads to manage activities of each clock 

domain. 

 

 

Figure 4.2: Power kite control system abstract representation 

 

Listing 4.1: Definition of reaction functions 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

#include “libGALS.h” 
typedef struct measurements {  
// Definition of User Types 
  int heading;  
  int speed; 
} measurements; 
measurements* measurements_clone(measurements* orig inal) { 
  measurements * newMeasurements = 
      malloc(sizeof(measurements)); 
  newMeasurements->heading = original->heading; 
  newMeasurements->speed = original->speed; 
  return newMeasurements; 
} 
REACTION_FUNCTION(KiteControl) { 
  // Initialize data structure used by the reaction  
  initReaction(); 
  // Obtain arguments passed to this reaction 
  reaction rReceiveKiteData = (reaction)getArgument (1); 
  reaction rReceiveWindData = (reaction)getArgument (2); 
  signal sIncreaseKiteBearing = (signal)getArgument (3); 
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21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

  signal sIncreaseKiteVelocity = (signal)getArgumen t(4); 
  signal sReduceKiteBearing = (signal)getArgument(5 ); 
  signal sReduceKiteVelocity = (signal)getArgument( 6); 
  signal sWindData = (signal)getArgument(7); 
  signal sKiteData = (signal)getArgument(8); 
  ....... 
  // Register the output signals of this reaction 
  registerEmitter(IncreaseKiteVelocity); 
  ...... // Declare variable used within the reacti on 
  endInitReaction(); 
  while(1) { 
    fork(rReceiveKiteData); fork(rReceiveWindData);        
    join(rReceiveKiteData); join(rReceiveWindData);        
    crossWind = sin(sWindData->heading-sKiteData->h eading)* 
                    sWindData->speed; 
    // cross_wind within limits 
    if(abs(CrossWind) < MAX_CROSS_WIND) { 
      headwind = cos(sWindData->heading-sKiteData-> heading)* 
                     sWindData->speed; 
      if (headWind>0&& head_wind < MAX_HEAD_WIND){              
        emit(sIncreaseKiteVelocity, 0); 
      } 
      ...... 
    ...... 
  } 
  endReaction(); 
} 
REACTION_FUNCTION(ReceiveData) { 
  initReaction(); 
  channel cData = (channel)getArgument(1); 
  signal sData = (signal)getArgument(2);  
  ...... 
  ChannelDataType *data; 
  receive(cData, data, ChannelDataType); 
  emit(sData, data); 
  ...... 
} 
REACTION_FUNCTION(GetSpeed) { ...... } 
REACTION_FUNCTION(ReadSpeed) { ...... } 
REACTION_FUNCTION(SendData) { 
  initReaction(); 
  signal sData = (signal)getArgument(1);  
  channel cData = (channel)getArgument(2); 
  ...... 
  // Await and store sData to headingData and speed Data 
  ... 
  ChannelDataType *data =(ChannelDataType*)malloc( 
      Sizeof(ChannelDataType)); 
  data->heading = headingData; 
  data->speed = speedData; 
  send(cData, data, ChannelDataType); 
  ...... 
} 
// TestBench Reaction 
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75 
76 

REACTION_FUNCTION(SimulateKiteData) { ...... } 
REACTION_FUNCTION(SimulateWindData) { ...... } 

Listing 4.2: Definition of the GALS system 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

#include “libGALS.h” 
#include “ReactionFunctions.h” 
int main(void) { 
  createlibGALSProgram(); 
  clockdomain CDKiteControl = createClockDomain(Inp utC0,                          
                                                Out putC0); 
  clockdomain CDGetWindInfo = createClockDomain(Inp utC1,  
                                                Out putC1); 
  clockdomain CDGetKiteInfo = createClockDomain(Inp utC2,  
                                                Out putC2); 
  channel cWind = createChannel(CDGetWindInfo,          
                                CDKiteControl, 
                                “cWind”); 
  channel cKite = createChannel(CDGetKiteInfo,  
                                CDKiteControl, 
                                “cKite”); 
  // Signals for clock domain CDKiteControl 
  signal sIncreaseKiteBearing = createSignal(CDKite Control); 
  signal sIncreaseKiteVelocity = createSignal(CDKit eControl); 
  signal sReduceKiteBearing = createSignal(CDKiteCo ntrol); 
  signal sReduceKiteVelocity = createSignal(CDKiteC ontrol); 
  signal sWindData = createSignal(CDKiteControl); 
  signal sKiteData = createSignal(CDKiteControl); 
  // Signals for clock domain CDGetWindInfo 
  signal sWindHeading = createSignal(CDGetWindInfo) ; 
  signal sWindSpeed = createSignal(CDGetWindInfo); 
  signal sWindDataToSend = createSignal(CDGetWindIn fo); 
  // Signals for clock domain CDGetKiteInfo 
  ......  
  reaction rReceiveKiteData = createReaction( 
      CDKiteControl,    // Clock domain that reacti on is in 
      ReceiveData,  // Reaction function 
      0,                // Set Active status to dor mant 
      2,                // Number of argument(s) 
      cKite,            // Pass cKite as the argume nt 
      sKiteData);       // Used to pass data to rKi teControl 
  reaction rReceiveWindData = createReaction( 
      CDKiteControl,  
      ReceiveData,  
      0,  
      2,  
      cWind, 
      sWindData); 
  reaction rKiteControl = createReaction( 
      CDKiteControl, 
      KiteControl, 
      1, 
      8, 
      rReceiveKiteData, 
      rReceiveWindData, 
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51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

      sIncreaseKiteBearing, 
      sIncreaseKiteVelocity, 
      sReduceKiteBearing, 
      sReduceKiteVelocity, 
      sWindData, 
      sKiteData); 
  reaction rReadWindData = createReaction( 
      CDGetWindInfo,  
      ReadData, 
      1, 
      3, 
      sWindSpeed, 
      sWindHeading, 
      sWindDataToSend); 
  reaction rSendWindData = createReaction( 
      CDGetWindInfo,  
      SendData, 
      1, 
      2, 
      sWindDataToSend, 
      cWind); 
  reaction rGatherWindData = createReaction( 
      CDGetWindInfo,  
      GatherData,  
      1,  
      2,  
      rReadWindData,  
      rSendWindData); 
  reaction rSimulateWindData = createReaction( 
      CDGetWindInfo,  
      SimulateWindData, 
      1, 
      2, 
      sWindSpeed, 
      sWindHeading); 
  reaction rReadKiteData = createReaction( 
      CDGetKiteInfo,  
      ReadData, 
      1, 
      4, 
      sKiteSpeed, 
      sKiteHeading, 
      sKiteDataToSend, 
      kiteSamplingPeriod); 
  ...... // creation of other reactions 
  startClockDomain(CDKiteControl); 
  startClockDomain(CDGetWindInfo); 
  startClockDomain(CDGetKiteInfo);  
  startlibGALSProgram(); 
} 
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4.5 libGALS internals 

Internal representations of clock domain, reaction, signal, and channel are detailed 

in this section. Concepts such as the helping thread and the scheduling policy used to 

govern internals of libGALS are described in the following text. 

4.5.1 Overview of the libGALS data structure 

Each libGALS program works on a programmer-invisible data structure, which is 

illustrated in Figure 4.3. API calls within reactions operate on the underlying data 

structure. Information within such data structure is used to book-keep status of the 

libGALS program.  

 

Figure 4.3: Data structure of a libGALS program 



Chapter 4. libGALS: a library for GALS system design 104 

 

‘SystemData’ holds a list of clock domains and channels in the ‘globally 

asynchronous’ realm. Clock domains and channels are stored in link-lists and 

SystemDataLock is a semaphore-typed lock to ensure data consistency when adding 

clock domains and channels to a libGALS program. ClockDomainRR is used only when 

the underlying OS does not provide suitable scheduling policy to prevent starvation of 

clock domains. 

Data structures of reactions, signals, and pre-emptions of different clock domains 

are managed independently and shown as shaded in Figure 4.3. They are linked with the 

corresponding clock domain data structure. Traps use the data structure of a signal since 

traps are special cases of signals. 

4.5.2 Clock-domain data structure 

Each clock domain operates on its own data structure whose fields are listed in 

Table 4.2. Notice that each clock domain has a ‘clockDomainDataLock’ which is 

similar to SystemDataLock of SystemData, for data integrity within each clock domain. 

 

Table 4.2: Fields of ClockDomain data structure 

Field Name Description 
clockDomainID The ID of the clock domain. The ID is issued based on the 

order of clock domain creation 
clockDomainName The name of the clock domain. It is used to identify sending 

and receiving sides of a channel 
clockDomainDataLock This is used to ensure the data consistency within the clock 

domain when calling API which operates on reactions and 
signals of the underlying clock domain 

numberOfReactions The number of reactions in the clock domain 
numberOfSignal The number of signals in the clock domain 
reactionList A pointer to a link list of data structure ReactionNode. The list 

contains the information of reactions resided in the clock 
domain 

signalList Similar to reactionList, signalList is a pointer to a link list of 
data structure SignalNode representing the list of used signals 
in the clock domain 

preemptionList A list of the PreemptionNodes, which is monitored in the 
current tick. Pre-emptions are used at the beginning and end of 
ticks to perform strong and weak pre-emptions 

tickTable Records the tick status of each reaction in the clock domain 



Chapter 4. libGALS: a library for GALS system design 105 

 

emitTable/ 
preEmitTable 

To record the status and values of the signals in the current tick 
and previous tick 

resolutionTable A table whose rows and columns are equal to 
NumberOfReaction and NumberOfSignal respectively. This 
table is used to dynamically resolve signal dependencies at 
run-time 

forkAndJoinTable A table whose rows and columns are equal to 
NumberOfReaction. It is used to maintain fork-and-join 
activities between parent and child reactions 

inputFunction/ 
outputFunction 

These are two function pointers pointing to user-defined 
functions to communicate with the environment 

previousCD/nextCD Points to the previous and next instance of clock domain in the 
libGALS program 

Synchronizer Points to a Synchronizer function, which manages ticks and 
signal resolutions in a clock domain 

 

4.5.3 Synchronizers  

Synchronizers are helping threads within a libGALS program. A synchronizer is 

created whenever a new clock domain is created. The services provided by 

Synchronizer are: (1) dynamic resolution of signal dependencies, (2) synchronization of 

reactions at the clock-domain tick boundaries, (3) maintenance of internal data 

structures for the new tick, such as book-keeping of the previous status and values of 

signals, (4) call of the input and output functions to communicate with the environment 

and (5) update of channels’ status to implement rendezvous between reactions 

belonging to different clock domains. The implementation of Synchronizer is simply an 

infinite loop, which provides services when all the other reactions in the same clock 

domain are blocked. In priority based OSs, such as µCOS-II, Synchronizers is 

implemented as the thread with the lowest priority, compared to reaction threads, to 

prevent taking up control of the processor. 

4.5.4 Reaction internals 

Synchronous reactions are implemented as threads whose execution bodies are 

defined as reaction functions. ‘ReactionNode’ is used as the data structure to represent 

the status of a reaction and to relate the reaction to the other components within a clock 
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domain, such as pre-emption and signals. The fields of ‘ReactionNode’ are shown in 

Table 4.3. The behavior of a reaction is described by a finite state machine illustrated in 

Figure 4.4. State transitions are resulted from libGALS API calls or actions of the 

Synchronizer and are listed in Figure 4.4. A tick of a reaction can span over one or more 

FSM states depending on the interaction with other reactions.  

 

Table 4.3: Feilds of ReactionNode data structure 

Field Description 
reactionID The ID of the reaction 
reactionName The name of the reaction 
reactionFunctionPointer Points to reaction function as the execution body 
pendChildReactionID The reaction ID of the child reaction which is awaited by 

the parent reaction, it is used by the join API call 
parentReaction Pointer to the parent reaction, if there is any 
elderSiblingReaction/ 
youngerSiblingReaction 

Pointers to reactions that share the same parent reaction 

childReaction Pointer to the first child reaction if there is any 
reactionState An enumeration showing the current reaction state, as 

shown in Figure 4.4. 
emitterChecking It is used for signal resolutions 
preemptionList Pointer to the innermost pre-emption scope in the reaction. 

The underlying pre-emption scope is also located in the list 
of pre-emptions of the resident clock domain 

ticked Indicate if a reaction has finished its tick 
terminationCode The status of the reaction. It is set to 1 at the end of tick, 

values greater than 1 if the reaction is ended due to pre-
emption, -1 if it is checking the presence of the signal, and 0 
if it is not active or running computational statements or 
non-blocking libGALS API 

childrenTerminationCode Present the returning status of the child reactions. This 
structure guarantees that the current reaction will proceed 
further with execution only once all the children have 
finished executing 

endTickLock It is used to signal Synchronizer that the end of tick of the 
reaction has reached 

newTickLock It is signaled by Synchronizer to information the reaction to 
start a new tick 

 

Forking of a reaction will establish interconnect between the parent and child 

reactions. Figure 4.5 illustrates one of the relationships of the nodes in the power kite 
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controller shown in Figure 4.2. Note that ‘childReaction’ of rKiteControl points to the 

first child (rReceiveKiteData) that it forks out. Sibling relationships are formed between 

the rReceiveKiteData and rReceiveWindData reactions. reactionFunctionPointer of both 

rReceiveKiteData and rReceiveWindData refer to reaction function ReceiveData. 

 

 

Figure 4.4: Finite state machine of a reaction 
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Table 4.4: State transition of a reaction 

State 
transition 

Description 

a End of reaction initializations 
b Forked by parent reaction or activated while created 
c libGALS API such as endAbort indicates the end of a pre-emption 

scope 
d Pre-emption scope removed, return from libGALS API 
e Encounter tick boundary, eg a ‘pause’ call 
f No weak pre-emption is activated 
g All active reactions reach the end of tick 
h Start new tick, jump to continuation address if strong pre-emption is 

activated 
i Strong pre-emption set by parent reaction is activated 
j Weak pre-emption set by parent reaction is activated 
k Reach end of the reaction or join the parent reaction 
l Weak pre-emption activated 
m Wait to be activated by a parent reaction 
n Blocking caused by the operating system service requested by libGALS 

when processing API call 
o Unblocking from the previous blocked libGALS API call 
p Transfer control to other reactions or processes due to the scheduling 

policy of underlying operating system 
q Control of the processor transferred from other reactions or processes 

due to operating system scheduling 
 

 

Forking and joining are managed through forkAndJoinTable as shown in Figure 4.6. 

It is a two-dimensional structure where each row-to-column element is directly mapped 

to a parent-to-child reaction relationship. For instance, the element located at the 

intersection of the first row, second column, indicates that the first reaction of the clock 

domain is the parent reaction to the second reaction of the clock domain. Each element 

is a node and contains two binary semaphores. These semaphores are used for activation 

and resumption of the parent and child threads. Both the number of rows and columns 

of the table structure are equal to the number of reaction threads. To conserve the run-

time memory, memory for each element is only allocated when there is a ‘fork’ call. 

The allocation of the element is freed once the corresponding parent and child reaction 

threads finish the fork and join phases. 
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Figure 4.5: Interconnection of ReactionNodes after forking 

 

 

Figure 4.6: Data structures used to achieve fork and join of reactions 

4.5.5 Scheduling of reactions within clock domains 

The scheduling of reactions is handled by the host OS scheduler. This scheduling 

mechanism works closely with Synchronizers and the internal data structures of a 

libGALS program. If a reaction is blocked due to a libGALS API call, control is 

transferred to another reaction that is ready for execution. The interleaving of reaction 

execution and transfer of control from one reaction to another are governed by the 

scheduling policy of the host OS. For instance, the libGALS Linux implementation 

adopts the use of POSIX threads and, the scheduling decisions are thus made by the 

Linux scheduler. However, the reaction cannot be scheduled unless it has the permission 

of its clock domain Synchronizer, which enforces lock-step execution of reactions. 
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Scheduling strategies on different operating systems affect only the execution sequence 

of reactions which do not have mutual signal dependencies. A reaction in one clock 

domain can be executed in parallel with reactions in other clock domains if the 

execution platform allows it (for example on a multiprocessor or multicore platform). 

Figure 4.7 illustrates an example of three reaction threads where Reaction 2 and 

Reaction 3 depend on the emission of signal A, and the sequence of execution is such 

that Reaction Thread 1 takes the first step. Once the signal A is emitted, all three 

reactions can run in parallel depending on the number of available processing units.  

 

 
Figure 4.7: True parallelism of reaction threads on multiprocessing cores 

 

 

Another example of libGALS implementation is in the embedded operating system, 

µCOS-II [Labrosse, 2002], which features pre-emptive scheduling. Scheduling 

strategies on different operating systems will affect only the execution sequence of 

independent micro steps of reaction threads. Dependencies such as checking on 

presence of signals and conditions of pre-emptions are handled by the libGALS library 

and the behavior of the reactive program is still deterministic. 

4.5.6 Signal representation and resolution 

Signals in the libGALS are represented by ‘SignalNode’ data structure. A 

SignalNode is positioned in signalList of the clock domain that utilizes such signal. 

Fields in SignalNode are listed in Table 4.5.  
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Table 4.5: Fields of SignalNode data structure 

Field Description 
signalID The ID of the signal 
signalName The name of the signal 
clockDomain The clock domain that the signal is created in 
signalType The type of the signal: 

0: signal created by using createSignal API call 
1: signal created by using AND 
2: signal created by using OR 
3: signal created by using NOT 
4: signal created by using REP 

level The level of the signal starts from 1 indicating the 
SignalNode is created by using createSignal API call. 
Otherwise the SignalNode is created by other means. 

presence The status of the signal 
previousSignal/ 
nextSignal 

Used by signalList of the underlying clock domain. Point to 
the previous and next signalNode in the list 

childSignal1/ 
childSignal2 

Point to SignalNodes which are used as arguments of singal 
combination API calls such as AND and OR 

 

 
Figure 4.8: Interconnection of signal nodes 

 

A signal node (implemented by using SignalNode data structure) can represent a 

single signal or an operation on a signal (such as NOT), or logical combinations of 

signals (such as AND between two signal status). A SignalNode is created when 

corresponding libGALS API calls are made. For instance, AND(A,B) will operate over 
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three SignalNodes (one created for AND, two existing for signals A and B) and will 

form an ‘and’ relationship of signals A and B. The interconnections between the signal 

nodes are illustrated in Figure 4.8. 

API call AND(A,B) established a SignalNode whose SignalID is 3. childSignal1 

and childSignal2 of such SignalNode point to signals A and B, respectively. Both 

signals A and B are created by calling createSignal, therefore levels of these signals are 

1 with signalType of 0. Subsequently, SignalNode AND(A,B) are assigned with level 2 

and signalType 1. 

The presence of a signal (or their logical combination) also determines the 

dependencies between reactions. For instance, a ‘present’ statement in one reaction 

cannot proceed until the signal, which is checked for presence, is emitted or ruled out by 

control flow in this logical tick, otherwise the ‘present’ will execute the wrong control 

branch. A ‘resolutionTable’ is created in each clock domain to comply with this signal 

broadcast MoC as detailed in Figure 4.9. Each element of the resolution table, called 

resolutionNode, indicates the relationship between a signal and a reaction in the clock 

domain. Fields of resolutionNode are detailed in Table 4.6. Synchronizer carries out the 

resolution process of a signal according to the internal status of the resolutionNodes. 

Synchronizer has a global view of the resolution table, where dependencies can be 

detected and resolved. Example of strategies of signal resolutions include but are not 

limited to: 

1. Resolve a signal if the emitter reaction thread has finished its tick. 

2. Resolve a signal if the emitter reaction thread is not active and does not wait for 

the joining of any child-reaction threads. 

 

 
Figure 4.9: Data structures used to resolve signals 
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The ‘emitTable’ created in each clock domain stores the status (emitted member of 

the emitNode structure) and the values of signals. A signal is identified as emitted when 

it is fully resolved and has been emitted by one of the reaction threads, which are the 

emitters. The ‘preEmitTable’ stores the status and values of signals in the previous tick, 

which is used by the ‘pre’ and ‘preValue’ API calls. 

Figure 4.10, Figure 4.11, and Figure 4.12 illustrate how signals are resolved in the 

scenario presented in Figure 4.7. In each resolutionNode, status such as resolutionType, 

resolved, and resolutionLock are shown. Firstly, reactions 2 and 3 are blocked due to 

checking the presence of signal A as shown in Figure 4.10. resolutionLocks of blocked 

reactions are in a pending status. Signal A is then emitted (shown in emitTable) and 

resolved (resolved = 3 for signal A, in resolutionTable), which leads to the releases of 

resolutionLocks, as illustrated in Figure 4.11. Reactions 2 and 3 continue to be executed. 

Finally, signals B and C are emitted in Figure 4.12. 

 

Table 4.6: Fields of resolutioNode 

Field Description 
resolutionType Indicates the relationship between the signal and the 

reaction: 
0: No relationship 
1: The reaction is currently blocked due to checking the 
presence of the signal 
2: The reaction has been registered as an emitter of the 
signal 

resolved The presence of the signal has been resolved or not 
signal Pointer to the SignalNode 
reaction Pointer to the ReactionNode 
resolutionLock A lock to block execution of the reaction. It is pending when 

resolutionType is 1 and is signaled to release when the 
signal is resolved 

 

Exits of traps are implemented in a manner similar to signal emissions. However, 

the available operation on traps is limited to checking the status of the trap. Traps share 

the resolution table with signals. 
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Figure 4.10: Reactions 2 and 3 are blocked 

 

 

Figure 4.11: Signal A is emitted and reactions 2 and 3 are released 

 

 

Figure 4.12: Signal B and C are emitted 
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4.5.7 Pre-emption representation and activation 

A pre-emption scope in a reaction is represented by a data structure called 

‘PreemptionNode’ illustrated in Figure 4.13. Figure 4.14 details the interconnections of 

the PreemptionNode and ReactionNode resulting from Listing 4.3. When a reaction 

enters a scope of a monitored pre-emption, such as ‘StrongAbort’, the PreemptionNode 

of the corresponding pre-emption scope is created. When a monitored PreemptionNode 

is detected to be active, the execution will be pre-empted from the tick boundary and 

carried out from the ‘continuationScope’, which is the end of the underlying pre-

emption scope. The member ‘preemptionList’ of a reaction points to the innermost 

PreemptionNode resident in the reaction. Note that the innermost pre-emption scope 

will take a lower precedence than the outer pre-emption scope(s). Nested pre-emption 

scopes are assigned with different ‘preemptionLevels’. 

 

 
Figure 4.13: Preemption Node 

 

  
Figure 4.14: Relationships between pre-emption nodes and reaction thread node 
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Note that ‘traps’ and ‘suspends’ are special cases of pre-emptions. Traps are similar 

to weak pre-emptions (aborts). The PreemptionNode of a trap is activated when 

‘exitTrap’ is called. ‘suspend’ is similar to strong abort. Instead of redirecting the 

reaction thread to the continuationScope, a tick is delayed when the condition of 

suspension is true. Thus, the PreemptionNode of a suspend statement lacks the 

continuationScope. 

 

Listing 4.3: Nested pre-emptions 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 

void ExampleReaction(void *data) { 
  ...... // other statements 
  StrongAbort(Signal_A, AbortName1) { 
    StrongAbort(Signal_B, AbortName2) { 
      StrongAbort(Signal_C, AbortName3) { 
        ...... // Other statements         
      } 
      EndAbort(AbortName3); 
    } 
    EndAbort(AbortName2); 
  } 
  EndAbort(AbortName1); 
} 

 

4.5.8 Channel communication internals 

A channel data structure is created when ‘createChannel’ is called. Both sending 

and receiving reactions of different clock domains operate on the same instance of 

Channel. Fields of Channel are detailed in Table 4.7. The ‘state’ variable of Channel is 

used to identify the status of the data transfer. Figure 4.15 illustrates a Moore-type finite 

state machine of a channel. The states and the transitions of states are described in Table 

4.8 and Table 4.9, respectively. 

For each user-typed data used in channel communication, a clone function is 

required. The name of the clone function for data-typed ‘dataTyped’ is in the form of 

‘dataTyped_clone’. The input argument is the original data and the output of the 

function is the new instance of the data which is a duplication of the original. The 

output of the clone function is then pointed to by the ‘data’ field in Channel. This 
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enables channel communications to work on different copies of the messages. The clone 

function is called along with the ‘send’ API call.  

 

Table 4.7: Fields of channel 

Field Description 
state The state of the channel. Details of states are listed in Table 

4.8 
channelDataLock This is used to keep the consistency of the channel data, 

because channel data are accessed by two reaction threads, 
that is, the sending and receiving reactions 

channelName The name of the channel 
senderCDName The clock domain name where send is called 
receiverCDName The clock domain name where receive is called 
data A pointer points to the duplicated version of the original 

data for receiver to read 
previousChannel/ 
nextChannel 

Point to the previous and next instance channel in the 
libGALS program 

 

 

Figure 4.15: Finite state machine of channel communications 
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Table 4.8: States of a channel 

States 
Description of activates 

Sending side Receiving side 
0 Channel is ready Channel is ready 

1 
Calling clone function to duplicate 
original data. Assign result to ‘data’ 
field of the channel 

 

2 
 Read data field of the channel and 

return to the receive call 
 

Table 4.9: State transitions of a channel 

State 
transitions 

Description 

a ‘creatingChannel’ is called 
b ‘send’ is called 
c ‘receive’ is called 
d Returned from the receive call, received data is assigned to the destination 

4.6 Applications and ports of libGALS  

4.6.1 Mapping GALS/synchronous models to libGALS programs 

As libGALS provides all mechanisms to implement the GALS MoC, it also gives 

the opportunity to implement existing GALS and synchronous languages using 

concurrent processes. 

SystemJ [Malik, 2010] is a GALS language which can be implemented by using 

libGALS. The SystemJ statements can be directly compiled onto libGALS API calls. 

Examples of a few mappings are provided in Table 4.10.  

 

Table 4.10: Examples of mapping from SystemJ to libGALS 

SystemJ Statements Mappings with libGALS 
present S { … } Present(S) { … } 
emit S; emit(S); 
pause; pause(); 
abort (S) { … } strongAbort(S, AbortName) { 

  …… 
} 
endAbort(S, AbortName); 
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4.6.2 Porting libGALS 

libGALS has been ported to general operating systems such as Linux and Windows 

via POSIX interface, where the pthread library is used in implementation. Both of these 

operating systems offer scheduling mechanisms to provide high fairness between 

processes and threads, and hence the high response times. Reactions in libGALS do not 

necessarily require special care to change attributes of the mapped threads/processes, 

such as priority. 

Ports of embedded and real-time operating systems (RTOS) are similarly available. 

Since libGALS requires only features such as task creation/deletion and semaphore, 

effort in porting libGALS to different operating systems is minimal. Existing libGALS 

ports on RTOS include eCos [Massa, 2003], RTEMS[RTEMS, 2003], FreeRTOS[Barry, 

2008], and µCOS-II [Labrosse, 2002]. Since eCos and RTEMS provide POSIX 

interface and cooperative scheduling policy, they are very close to the Linux port of 

libGALS. FreeRTOS and µCOS-II provide sufficient APIs for libGALS implementation, 

and the used API calls are listed in Table 4.11. Note that the semaphore mechanism in 

FreeRTOS is based on message queue, and because of the lack of semaphore deletion 

API call, vQueueDelete is known as the function to call to delete the created semaphore. 

Table 4.11: APIs used to implemented libGALS 

Operating system 
features 

POSIX based FreeRTOS µµµµCOS-II 

Task creation pthread_create xTaskCreate OSTaskCreate 
Task deletion pthread_exit vTaskDelete OSTaskDelete 
Semaphore type sem_t* xSemaphoreHandle OS_EVENT 
Semaphore pending sem_wait xSemaphoreTake OSSemPend 
Semaphore signaling sem_post xSemaphoreGive OSSemPost 
Semaphore creation sem_init xSemaphoreCreateCounting OSSemCreate 
Semaphore deletion sem_destroy vQueueDelete OSSemDel 

 

Because µCOS-II does not allow multiple tasks with the same priority, reactions of 

clock domains are divided into different priority groups. This leads to the issue that one 

of the clock domains may have monopoly over processor time and not ever give control 

to the other reactions of other clock domains. This is resolved by introducing member 
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‘ClockDomainRR’ in SystemData data structure mentioned in section 4.5.1. 

ClockDomainRR is implemented as a counting semaphore that forces clock domains to 

take their turns of execution or be scheduled in a specific ratio of executions. 

The Synchronizer task of a clock domain can be seen as the lowest priority task, 

providing services when all the reaction threads of the clock domain are blocked. 

4.7 Experiments and results 

In order to demonstrate performance of the libGALS programs, they are compared 

with SystemJ programs that implement the same functionality, since SystemJ is 

practically the only GALS language with an available compiler. All examples are with 

mixed data-driven and control-driven operations. A frequency relay (FR) has been used 

as an example and is illustrated in Figure 4.16. 

 

 

Figure 4.16: Frequency relay implemented as a GALS system with two clock domains 
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Frequency relay consists of two major parts, data sampling and relay control [Salcic 

& Mikhael, 2000]. In data sampling, signal processing algorithms are performed. 

Sampled power signal waveform is processed in an averaging filter by using a moving 

window concept. It is followed by the symmetry function calculation to simplify the 

procedure of finding peak points of the waveform instead of zero-crossings, carried out 

later in the peak detection function. Time periods between peaks are obtained to allow 

calculation of frequencies. The rate of change of frequency is also computed. To 

maintain a stable power network, working frequencies and rate of change of frequency 

must be within a specified range. If they are out of range, the loads will be shed from 

the network. This is carried out by the switching facilities and relay control part. 

The frequency relay is partitioned to two clock domains, ‘DataSampling’ and 

‘RelayControl’. The DataSampling clock domain consists of four reactions: the parent 

reaction, reaction ‘Sampling’, forks out reaction ‘Averaging’, reaction ‘Symmetry 

detection’ and reaction ‘Peak detection’. Clock domain RelayControl is a composition 

of two larger reactions: reaction ‘Calculation’ and reaction ‘Switching’. Both reactions 

have two child-reactions. ‘Frequency calculation’ and ‘Rate of change calculation’ are 

child reactions of reaction Calculation, delivering essential information to ‘Switch 

control’ reaction under reaction ‘Switching’ to perform load shedding, if necessary. 

Reaction ‘Configuration’ is the other child reaction of reaction Switching, which 

provides parameters of the frequency relay to reaction Switch control. These two clock 

domains communicate through ‘SampleCount' channel. 

Table 4.12: Comparisons between SystemJ and libGALS 

Example 
Average tick time (µs) Code Size (Bytes) 

libGALS SystemJ libGALS SystemJ 
2CD Frequency Relay 27.67 75.23 33,865 101,469 
2CD KiteController 11.37 27.16 9,431 59,296 
2CD Async Proto 48.37 16.25 13,078 52,800 
2CD Data Comp 18.23 26.37 865 10,920 
3CD Data Comp 17.72 39.28 975 11,944 
4CD Data Comp 17.43 56.62 1,085 13,010 
*Note that the code size of libGALS is 33K Bytes. 
 

SystemJ examples are compiled with the latest SystemJ compiler to generate single-

threaded Java source code, which is compiled by the Java compiler version 6.0 and then 



Chapter 4. libGALS: a library for GALS system design 122 

 

run on a JVM. The equivalent libGALS examples are compiled with gcc-4.3.1. 

Experiments were carried out on Intel Core 2 Quad 2.4GHz with 4GB of RAM with 

Linux 2.6.29.6 as the host OS. Results are shown in Table 4.12. 

The libGALS approach consistently results in smaller object code size, because the 

single-threaded SystemJ code emulates both synchronous- and asynchronous- 

concurrency with switch-case statements. On the other hand, libGALS implements 

concurrency with threads. Note that the code size of the SystemJ implementation does 

not include the code size of the JVM, which is larger than the standard C run-time 

library. Execution speed has been compared through an average-tick execution-time of 

one million ticks. The libGALS approach shows advantages if the data computations are 

heavier. The ‘3CD Data Comp’ and ‘4CD Data Comp’ consist of three and four clock 

domains, respectively. In these cases libGALS takes advantage of multicore processing. 

SystemJ is advantageous if clock domains are highly control-dominated as in the 2CD 

Async Proto example. 

4.8 Summary 

In this chapter a run-time library approach, libGALS, for extension of the 

sequential programming language (C/C++, for instance) to enable specification of 

GALS concurrent systems is proposed. libGALS provides an application programming 

interface (API) that enables the designer to describe GALS programs in these sequential 

programming languages. This enables efficient integration of control-driven and data-

driven components of a design. 

The approach is based on the features of a host OS, made available to the 

programmer via a set of API. Programs designed with libGALS comply with the GALS 

MoC and thus provide a much safer programming approach compared with the use of 

traditional threading libraries. libGALS implements GALS concurrency by using 

multiple processes or threads, unlike the current system-level languages that compile the 

specification into a single-threaded code. This not only improves responsiveness of the 

resulting programs, but also offers the advantage of executing such programs on 

multiprocessor and multicore systems. Because of this, libGALS opens a new path 
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towards the compilation of GALS languages, as well as of synchronous languages as 

their subset. The other advantage of libGALS programs is their ability to interface with 

other tasks and drivers in the host with minimal effort. This allows major future 

development, targeting the dynamic creation of clock domains, synchronous reactions 

and whole GALS programs, thus supporting software system run-time adaptation and 

reconfiguration, as will be described in Chapter 6. 
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GALS-Designer is a framework for the design of software systems which comply 

with formal globally asynchronous locally synchronous model of computation (GALS). 

The framework integrates the libGALS library for writing libGALS programs and 

SYSTEMC. In Chapter 4, a library called libGALS to model GALS systems as libGALS 

programs has been introduced. GALS systems may consist of single or multiple 

libGALS programs and their immediate environment, which can be other programs and 

any other modules described in SYSTEMC. It enables modeling and simulation of single 

and multiple libGALS programs within the single SYSTEMC executable model on the 

host (simulation) operating system. The same libGALS programs then can be run 

without SYSTEMC on a target operating system for which the libGALS run-time library 

is available.  

The use of the GALS-Designer is demonstrated on an example of a complex 

embedded system. As libGALS can ultilize multiprocessor platforms, both simulation 

and target models of the GALS system can take advantage of multiprocessor and 
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multicore systems, which is not possible when using standard SYSTEMC. Results of 

running simulation models of libGALS programs demonstrate simulation performance 

improvement when performing on multicore platforms. 

5.1 Introduction 

In this chapter the GALS-Designer, the marriage between libGALS and SYSTEMC 

in the single design framework, is presented. GALS-Designer enables the modeling of 

complex systems that include hardware and other concurrent components, e.g. models 

of the physical world and the environment, along with software-system components that 

are represented by libGALS programs. In the proposed approach, libGALS is used to 

specify libGALS programs, which are then wrapped into SYSTEMC modules and can be 

simulated together with other SYSTEMC modules within the same SYSTEMC execution 

model. Simulation of such a multicomponent system can be carried out with different 

timing granularities, depending on the current development phase of the overall system, 

so the designer can use trade-offs between faster simulation and more accurate timing 

behavior of the system. libGALS programs, once simulated within a SYSTEMC model 

can be translated to the implementation code which will be executed on a target 

operating system. SYSTEMC is chosen as the basis because of its ability to (1) model 

hardware, software and environment of the designed system with different levels of 

abstraction and timing granularity, (2) result in hardware and software synthesis, (3) 

cooperate with models made in other languages which can be linked with the SYSTEMC 

library to obtain the host simulating executable and (4) model the interaction with the 

environment, thus effectively providing test benches, which is essential for validation of 

design through simulation.  

This chapter is organized as follows. Section 5.2 presents the related work and 

positions the contributions. In Section 5.3, principles of the GALS-Designer are 

introduced. Integration of libGALS and SYSTEMC is given in Section 5.4, followed by 

the programming model used in GALS-Designer in Section 5.5. Using GALS-Designer 

in system level design is presented in Section 5.6. A case study and the results of using 
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the proposed approach are given in Section 5.7, followed by a summary of this chapter 

in Section 5.8.  

5.2 Related works and fundamentals 

5.2.1 Synchronous and GALS system models 

Linkage between SYSTEMC and synchronous languages such as Esterel was 

explored and presented previously. Brandt and Schneider demonstrated that a set of 

Esterel programs can be translated to SYSTEMC with certain limitations [Brandt & 

Schneider, 2008]: (1) programs respond to delayed actions, i.e. signals emitted in the 

previous clock cycle, and (2) pre-emptions are not modeled. Sun et al. present a case 

study on how to convert an Esterel program into SYSTEMC description simulated with 

the abstract RTOS model [Sun & Salcic, 2007]. In [Radojevic et al., 2006], both Esterel 

and SYSTEMC are used to model systems described in DFCharts. Significant effort is 

required to manually translate an ESTEREL program to SYSTEMC, with numerous 

restrictions on the use of SYSTEMC constructs. An automatic generation of SYSTEMC 

model from COLA is presented in [Wang et al., 2008], where COLA follows the perfect 

synchrony semantics. However, it produces only a simulation model. 

Furthermore, in synchronous languages like Esterel compiler resolves causality 

problems of signal dependencies, which is not possible in the library-based approach 

used in SYSTEMC. Other synchronous languages such as SL [Boussinot & De Simone, 

1996], JESTER [Antonotti et al., 2000], JUNIOR [Hazard et al., 1999] and SUGARCUBES 

[Boussinot & Susini, 1997] provide support for concurrency. However they do not 

support the GALS MoC. TReK [Gruian et al., 2006] and SystemJ [Malik, 2010] provide 

GALS MoC for software systems, but do not allow simulation of interaction between 

SystemJ program and other components in the system, particularly those describing 

hardware. Also, since SystemJ programs require Java virtual machine (JVM), it is not 

suitable for real-time applications. 
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5.2.2 Modeling software concurrency with SYSTEMC 

Concurrent software is often implemented as a collection of processes, or threads, 

governed by an operating system. Modeling of (real-time) operating systems, (RT)OS, 

in SYSTEMC is not new. A summary of modeling strategies is presented in [Posadas et 

al., 2005]. (RT)OS model often provides information in different timing granularities, 

from untimed to timed, with different resolutions, especially for the task scheduling. 

(RT)OS modeling in SYSTEMC can be categorized as follows: 

1. Model a target processor in SYSTEMC. The processor will read the 

executable target binary from the modeled memory. The target binary is 

obtained by linking concurrent software tasks with OS. The modeled 

processor (sometimes called ‘emulator’) behaves as the real processor but 

internal details of the processor are abstracted for the faster simulation speed. 

2. Execute target binary on the simulation host through the instruction set 

simulation (ISS). The ISS either could communicate with the SYSTEMC 

simulation kernel through inter-process communication (IPC) with the host, 

or be linked with the SYSTEMC simulation kernel. 

3. Software tasks are executed in the ISS, and they interact with the OS model 

described in SYSTEMC. Communication between the ISS and the OS model 

follows the previous category. [Krause et al., 2008] demonstrates such kind 

of modeling strategy. 

4. The proprietary OS simulator is provided in a library form. The developer 

can choose to link the task codes with the OS library and then simulate with 

SYSTEMC as in point number 2. 

5. An OS model described in SYSTEMC provides a set of application 

programming interface (API), which is the same as that of the original (real) 

OS, linked with the task codes and SYSTEMC library. The OS model can be 

from very abstract to very detailed. 

6. Both OS and the tasks are modeled in SYSTEMC, communication and 

synchronization between the tasks and between the tasks and the OS are via 

SYSTEMC constructs. However, the underlying model of computation might 
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be different from the original SYSTEMC description to the final embedded 

software because of different scheduling policies of different targeted OS. 

Even when support for the OS modeling is once introduced to SYSTEMC 

version 3, the inconsistency with the MoC will still remain when a different 

OS is used. Furthermore, the nature of the SYSTEMC simulation kernel 

determines that only one host process is used to execute the simulation 

executable regardless of the number of concurrent processes in a SYSTEMC 

module. 

 

Herrera et al. present how embedded software can be generated from SYSTEMC 

descriptions through the use of concurrent threads managed by an OS [Herrera et al., 

2003]. Few restrictions are set when describing a concurrent software process in 

SYSTEMC, such as using channels for inter-process communication instead of using 

shared member-variables in a SYSTEMC module. Inasmuch channels and process 

management are mapped onto services such as mutex and thread management, provided 

by the underlying RTOS, they do not follow any formal MoC. Various (RT)OSs behave 

differently over similar sets of APIs, i.e. the implementation will be different from the 

simulation model. SoCOS presents a framework to model dynamicity and concurrency 

of software through the use of C++ [Desmet et al., 2000]. Focusing on simulation it 

proposes a library-based approach to support the execution of generated software on an 

OS. Posadas et al. present a POSIX model in SYSTEMC [Posadas et al., 2005] and its 

implementation with an OS compatible with the POSIX standard; however, it limits the 

selection of the target OS. 

Based on previous work and known constraints, a modeling technique is presented 

to integrate programs that use GALS MoC, libGALS programs, with SYSTEMC 

components by using GALS-Designer framework. The major contributions of this 

approach and work are: 

1. It enables a developer to describe a concurrent application software system 

that complies with the formal GALS MoC, and simulate its execution 

together with other SYSTEMC components on a host OS. The same libGALS 
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program can be executed on the target platform OS with almost no 

modification (the modification is done by a simple text parser that removes 

simulation-related parts). 

2. It enables the use of different timing granularities in simulation models. 

Details such as execution times can be annotated in dedicated hook-

functions which will be introduced in Section 5.5 and 5.6. With designers 

able to choose between faster simulation and higher accuracy, depending on 

the requirements, GALS-Designer can be used in different design stages. 

3. It supports scalability by enabling the use of multiple libGALS programs 

with any number of asynchronous behaviors (clock domains), as well as any 

number of synchronous behaviors inside each of the asynchronous 

behaviors in the same model, as is explained in more detail in Section 5.3. 

4. It enables faster and more efficient simulation by enabling the use of a 

multithreaded multicore execution platform, not practicable with usual 

SYSTEMC models. 

5.3 Overview of GALS-Designer 

5.3.1 Integration of libGALS and SYSTEMC 

GALS-Designer is a framework for designing GALS software systems, which may 

consist of single or multiple libGALS programs. GALS-Designer uses SYSTEMC and 

libGALS as the backplane for system models. Both SYSTEMC and libGALS are libraries 

built on top of the C++ and C, respectively, as shown in Figure 5.1 (a). They both 

provide interfaces to access the library and generate executables with which to be linked. 

Systems modeled in SYSTEMC can use libGALS to describe libGALS programs as a 

part of an overall system model. The executable model that combines parts described 

with libGALS and SYSTEMC runs on the host OS, as shown in Figure 5.1 (b). The 

execution is started as a SYSTEMC executable, which is governed by the SYSTEMC 

simulation kernel. When the modeled libGALS programs start executing, threads 

mapped from reactions are spawned. These threads are managed by the libGALS with 
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the aid of the OS, and are executed concurrently with the SYSTEMC simulation kernel. 

libGALS programs synchronize and communicate with other hardware and software 

(HW/SW) components modeled using SYSTEMC. 

Once the designer switches from the simulation to the implementation phase, 

SYSTEMC library is removed, and the translation from libGALS program models to their 

implementation version is performed. The resulting libGALS program is then linked 

with the version of the libGALS for the target execution platform and target OS, which 

may be different from the one used in simulation, but with identical API. This situation 

is illustrated in Figure 5.1 (c). 

SYSTEMC provides to libGALS the necessary modeling mechanisms for the 

description of the environment in which the libGALS programs will run. This enables 

modeling of inputs/outputs (such as user-inputs and sensor data), other software 

components in the system and hardware components communicating with the libGALS 

programs. 

 

 

Figure 5.1: Relationships between libGALS and SYSTEMC 

 

Each libGALS program is described and modeled in a single SYSTEMC module. A 

libGALS program model can communicate with other SYSTEMC modules as to its 

environment through communication constructs provided by SYSTEMC, as shown in 

Figure 5.2. libGALS programs can also communicate with each other through modeled 

channels. These are abstracted and may have different underlying implementations such 

as sockets and network-communication links, inter-process communication (IPC) 

mechanism, etc. 

As detailed in Chapter 4, each libGALS program consists of a number of 

asynchronous concurrent behaviors called clock domains, which communicate with 
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each other using rendezvous-based channels. The name clock domain is used to 

emphasize the fact that it may consist of a number of synchronous concurrent behaviors, 

called reactions, which execute in lock-step with a logical clock called ‘tick’ and 

follows the rules of the synchronous-reactive model of computation [Berry & Gonthier, 

1988].  

 

 

Figure 5.2: Communications of libGALS program and other SYSTEMC components 

 

 

5.3.2 Linkage between libGALS programs and SYSTEMC 

Figure 5.3 illustrates how libGALS and SYSTEMC mechanisms are used to form a 

SYSTEMC module representing a libGALS program which is specified by using 

mechanisms provided within the libGALS. In addition, the libGALS program uses hook 

functions to communicate with the external environment of the libGALS program, in 

this case other modules of the SYSTEMC model. A clock domain in a libGALS program 

communicates with its environment synchronously through a sampling process. This 

process receives information from the environment either periodically (e.g. using the 

clock) or by an event-driven pre-emption mechanism (e.g. using interrupts). 

Synchronizing functions are introduced to model this. Synchronizing functions can be 

triggered by either external clock (synchronously) or other signals when input data is 

ready (asynchronously), and are synchronized again with hook functions through 

‘SyncNodes’ when input data is required by the libGALS program. Outputs from the 

libGALS program to other SYSTEMC modules are implemented using the same concept.  
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Figure 5.3: A SYSTEMC module wrapping a libGALS program model 

 

 

Figure 5.4: Synchronizations between libGALS-SYSTEMC and other SYSTEMC modules 

 

The synchronization between the libGALS program and its environment through 

SyncNodes takes the following forms (as illustrated in Figure 5.3): 

1. A clock domain inside a libGALS program, i.e. CD1 in Figure 5.4 (a), is 

synchronized with the environment by an external clock clk1. The clock 

domain finishes its logical tick before the tick of the external clock arrives. 

2. Figure 5.4 (b) illustrates how a clock domain synchronizes with the 

environment in multirate fashion through the external clock. For example, 
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the hook function of the clock domain synchronizes with the synchronizing 

functions every three logical clock ticks. 

3. A clock domain synchronizes with the environment when signal s is valid to 

read.  

4. Signal s is activated by other SYSTEMC modules as shown in Figure 5.4 (c).

  

In the next section it is shown how libGALS and SYSTEMC are combined into 

GALS-Designer, where they collaborate in modeling complex systems. 

5.4 Integration of libGALS and SYSTEMC 

To enable interoperability and integration of libGALS and SYSTEMC, some aspects 

need to be addressed: 

1. libGALS and SYSTEMC are implemented in C and C++, respectively, which 

requires resolution of compatibility between the two libraries. 

2. GALS programs execute at logical ticks, with different logical clocks for 

each clock domain, in contrast to SYSTEMC models, which can be simulated 

at different levels of time granularity. Synchronizations between libGALS 

programs and SYSTEMC modules need to be established, as discussed in 

Section 5.3. 

3. Since the libGALS program is used not only in simulation but also in the 

implementation, interfaces provided by libGALS to describe libGALS 

programs should be preserved in both simulation and implementation. This 

way the libGALS can be used in different phases of the system-design cycle. 

 

Because libGALS is a C library, in order to use it together with SYSTEMC, which is 

an extension of C++, programs written in C have to be used in C++ with the ‘extern C 

{ … }’ construct. This construct is utilized in this approach as the glue mechanism 

between libGALS programs and SYSTEMC descriptions. 
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Since SYSTEMC is used to model the environment of the libGALS programs, the 

libGALS program is ‘wrapped’ into a SYSTEMC module that provides interface to other 

SYSTEMC modules. A SYSTEMC module generally consists of the following: 

1. Interfaces of the module. 

2. Member variables representing the attributes and the structure of the module. 

3. Member functions, which can either be used as concurrent processes, or can be 

private functions to carry out algorithms. In libGALS programs, clock domains 

and reactions, channels, and signals are modeled as member variables of the 

module. Interfaces of the wrapping module are also member variables. 

 

As mentioned previously, libGALS programs are running at the pace of their clock 

domain logical ticks, which are different to a SYSTEMC simulation clock, and thus 

synchronization between a libGALS program and other SYSTEMC modules is required. 

Furthermore, since the input and output functions of a libGALS program operate on a 

libGALS signal object and are thus not able to access member variables of the wrapping 

module, a set of member functions to the wrapping module is introduced, called 

‘interfacing functions’. As interfacing functions are responsible for the communication 

and synchronization between the libGALS program and its wrapping SYSTEMC module, 

they need to be recognized by both. Because interfacing functions are member functions, 

they can access the member variables such as the module interfaces and signals of the 

libGALS program. It would, moreover, be inefficient to check whether a tick of the 

libGALS program has elapsed by using polling, and, even more important, it is also 

possible to miss a libGALS program ticks, since threads from the libGALS program are 

running at speeds different from the SYSTEMC simulation. Therefore, interfacing 

functions must be registered with the libGALS program so that they can be activated 

when a tick completes. 

Interfacing functions are categorized into (1) tick-hook functions and (2) 

synchronizing functions. Tick-hook functions are registered with clock domains and 

reactions of a libGALS program, and the synchronizing functions are defined as 

processes in the wrapping module. The tick-hook functions are non-static in order to 



Chapter 5. GALS-Designer: A design framework for GALS software systems 136 

 

enhance the re-usability of the libGALS-SYSTEMC module. It means that if there is 

more than one instance of the same module, the static functions of all these instances 

would operate on the same data set, which is impractical and error prone. However, in 

C++ (hence in SYSTEMC) only static functions are allowed to create the 

threads/processes which are essential to libGALS programs. Therefore a dedicated 

static-function wrapper is introduced to wrap each non-static member function to 

become a static function. When a clock domain or a reaction is created in the wrapping 

module, the static-function wrapper is passed as the tick-hook function. The static-

function wrapper takes an argument, called SyncNode, implemented as a data structure 

which contains a pointer to the actual tick-hook function. 

The SyncNode data structure maintains the link between the hook functions and 

synchronizing functions. SyncNodes are member variables of the wrapping module and 

are instantiated when a ‘tick-hook and synchronizing functions’ pair is required. Figure 

5.5 illustrates the SyncNode structure and its operations. A SyncNode consists of (1) a 

function pointer that points to a tick-hook function of a clock domain or a reaction, (2) 

synchronization constructs: the current implementation in Linux uses two semaphores 

from pthread and (3) a set of member functions to perform handshaking. The SyncNode 

contains two semaphores, which are used by the tick-hook function and the 

synchronizing function to implement the handshaking.  

 

 

Figure 5.5: Synchronization steps between tick hook and synchronizing function 
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To abstract the details of synchronization during the handshaking, four member 

functions are introduced to SyncNodes: 

1. signalSC – the tick-hook function requests to synchronize 

2. pendSC – the synchronizing function is ready to synchronize 

3. signallibGALS – the synchronizing function accepts the synchronization 

4. pendlibGALS – the synchronization is finished 

 

When a SyncNode is created, a corresponding tick-hook function is first registered 

with the SyncNode. The SyncNode is then passed as an argument to a static-function 

wrapper acting as the tick-hook function when a clock domain (or a reaction) is created. 

When a clock domain tick elapses, the actual tick-hook function pointed by the 

SyncNode is then activated. Tick-hook functions and synchronizing functions carry out 

the handshaking procedures. Finally, the data read by the wrapping module are passed 

to the libGALS program wrapped in the SYSTEMC module.  

Figure 5.6 illustrates the chronological steps taken in synchronization between the 

libGALS program and the other SYSTEMC modules. Details of each step are described 

further in Table 5.1. The figure has been divided into two parts, the upper part 

representing activities carried out in libGALS program, and the lower governed by the 

SYSTEMC simulation kernel. Note that due to the single-thread simulation model of 

SYSTEMC, each module and the synchronizing function (which is in the libGALS-

SYSTEMC module) take turns to be excuted. The libGALS program, which is running in 

other threads, is executed in parallel.  

 

 

Figure 5.6: Timing diagram of libGALS-SYSTEMC synchronization 
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Table 5.1: Activites of libGALS-SYSTEMC synchronization 

Stage Description 

A 
Create SyncNode, initialize data structure of SyncNode, and register the tick 
function. 

B Clock domain reaches tick boundary (end of tick). 

C 
TickHook function is called by the libGALS. Outputs from the libGALS 
program have been generated to be used by other SYSTEMC modules. Time 
annotations of reactions are inserted here. 

D 
‘signalSC’ is called by the tick function to signal the signaling semaphore 1, 
that the tick-hook function is ready to synchronize with the synchronizing 
function. ‘pendSC’ is called to wait synchronizing function to reply. 

E 
Synchronizing function is activated by the clock signal from the SYSTEMC. 
Communications with other SYSTEMC modules are carried out.  

F 

‘signallibGALS’ is called by the synchronizing function to resume TickHook 
function. Inputs from other SYSTEMC modules are ready for the libGALS 
program. ‘pendGALS’ is called to await the next synchronization from the 
TickHook function. 

G 
TickHook function resumes, inputs to libGALS programs are registered. Start 
a new libGALS tick. 

H Clock domains/reactions start activities in the new tick (beginning of tick). 
I When SYSTEMC clock reaches the edge again. Refer to E. 
J Refer to F. 
K Refer to G. 
L Refer to H. 

 

5.5 Programming model of GALS-Designer 

A libGALS program is illustrated in Figure 5.7 to demonstrate how to integrate a 

libGALS program within the GALS-Designer. This example also shows that there is no 

need for extensive code modification between a libGALS model and GALS-Designer 

SYSTEMC modules. This enables automatic wrapping of the existing libGALS program 

into GALS-Designer modules. 

The libGALS program is a composition of one or more asynchronous concurrent 

clock domains, illustrated as rounded rectangles (CD1 and CD2) in Figure 5.7. Each 

clock domain can include one or more synchronous concurrent behaviors/programs. 

These reactions are shown as rectangles (CD1_R1, CD1_R2, CD1_R3, and CD2_R1) 

within clock domains. To enable hierarchical design, each reaction can be further 
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decomposed into child reactions. Such relationships are shown in Figure 5.7, where 

CD1_R1 and CD1_R2 are child reactions to CD1_R3. 

 

 

Figure 5.7: A libGALS program example 

 
Communication between reactions of the same clock domain is via signals CD1_S1. 

Signals are also used for the interaction of reactions with the external environment to a 

libGALS program, e.g. CD1_S2 and CD2_S1. Reactions in different clock domains in 

the same libGALS program communicate through message passing over channels 

cCD1toCD2. 

Listing 5.1 and Listing 5.2 are segments of a libGALS program which describes the 

GALS system illustrated in Figure 5.7. Listing 5.1 consists of the definitions of user-

typed data (lines 2-5), clone function of the user-typed data (lines 6-11) and reaction 

functions (lines 12-65). User-typed data are used (1) in internal algorithms, (2) to define 

the value type of a signal and (3) to define the value type passed by a channel. In this 

example, data type of ‘customedType’ is used in the channel cCD1toCD2. Definitions 

of reactions represent the bodies of reactions which will be instantiated in clock 

domains. A definition of a reaction starts with the name of the reaction with the 

keyword REACTION_FUNCTION. Line 12 illustrates the starting point of defining 
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ReactionCD1R1. The body of a reaction is composed of the initialization and the 

behavior of the reaction. The initialization of a reaction starts with the API call 

‘initReaction’ and ends with the API call ‘endInitReaction’ as shown on lines 13 and 17, 

respectively. Reactions are created with arguments and can be extracted by using 

‘getArgument’ API call (lines 14 and 15). Channel is used to send and receive messages 

between reactions of different clock domains (lines 48 and 60, respectively). Signals 

emitted by a reaction are registered (line 16 and line 56). The code representing 

description of the behavior of a reaction is written after the ‘endInitReaction’ API call. 

Besides using any usual C sequential programming language constructs, reaction 

behavior can use a set of additional libGALS control statements to model flow control 

and reactivity in the form of API calls. The behavior of a reaction consists of arbitrarily 

mixed sequences of libGALS reactive and standard C statements (e.g. lines 18 to 22). 

Examples of libGALS control statements include: 

1. ‘emit’ for broadcasting the presence of a signal, lines 19 and 62, to all 

reactions within the same clock domain. 

2. ‘pause’ to explicate end of tick, as shown in lines 14 and 16. 

3. ‘await’ to wait on the presence of a signal, lines 24 and 26. 

4. ‘fork’ and ‘join’ to fork out and then wait for the joining of child reactions, 

lines 43 and 44. A parent reaction can proceed only if all of its forked child 

reactions have joined. 

 

Details of available libGALS API calls can be found in Chapter 4. Reactions in 

different clock domains communicate through channels. A sending reaction has to 

prepare a message to send by creating the message (lines 45-47) followed by a ‘send’ 

(line 48) API call, which takes arguments including the instance of the channel, the 

message, and the type of the message. At the receiving side, a place-holder of the 

receiving message needs to be declared (line 59) prior to the ‘receive’ API call (line 60). 

‘endReaction’ API call (lines 23, 34, 50, and 64) is used to denote the end of the 

behavioral description of reaction. 

 



Chapter 5. GALS-Designer: A design framework for GALS software systems 141 

 

Listing 5.1: Definition of user-defined data types and reaction functions 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

#include “libGALS.h” 
typedef struct customedType {  
  // Definition of User Types 
  int val; 
} customedType; 
customedType *customedType_clone(customedType* orig inal) { 
  customedType* newData =  
      (customedType*)malloc(sizeof(customedType)); 
  newData->val = original->val; 
  return newData; 
} 
REACTION_FUNCTION(ReactionCD1R1) { 
  initReaction(); 
  signal CD1_S1 = (signal)getArgument(1); 
  signal CD1_S2 = (signal)getArgument(2); 
  registerEmitter(CD1_S1); 
  endInitReaction(); 
  ...// Computational segments 
  emit(CD1_S1, 0); 
  pause(); 
  ... // Computational segments 
  pause(); 
  endReaction(); 
} 
REACTION_FUNCTION(ReactionCD1R2) { 
  initReaction(); 
  signal CD1_S1 = (signal)getArgument(1); 
  signal CD1_S2 = (signal)getArgument(2); 
  endInitReaction(); 
  await(CD1_S1); 
  ... // computational segments 
  await(CD1_S2); 
  ... // computational segments 
  endReaction(); 
} 
REACTION_FUNCTION(ReactionCD1R3) { 
  initReaction(); 
  reaction CD1_R1 = (reaction)getArgument(1); 
  reaction CD1_R2 = (reaction)getArgument(2); 
  channel cCD1toCD2 = (channel)getArgument(3); 
  endInitReaction(); 
  while(1) { 
    fork(CD1_R1); fork(CD1_R2);       
    join(CD1_R1); join(CD1_R2); 
    customedType *dataToSend = 
        (customedType *)malloc(sizeof(customedType) ); 
    dataToSend->val = success; 
    send(cCD1toCD2, dataToSend, customedType);       
  } 
  endReaction(); 
} 
REACTION_FUNCTION(ReactionCD2R1) { 
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53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  initReaction(); 
  signal CD2_S1 = (signal)getArgument(1); 
  channel cCD1toCD2 = (channel)getArgument(2); 
  registerEmitter(CD2_S1); 
  endInitReaction(); 
  while(1) { 
    customedType *dataToReceive; 
    receive(cCD1toCD2, dataToReceive, customedType) ; 
    if (dataToReceive->val == success) 
      emit(CD2_S1, 0); 
  } 
  endReaction(); 
} 

 

Entities and objects of the libGALS programs, including clock domains, reactions, 

signals and channels, are created in Listing 5.2. Firstly, a libGALS program is created 

with ‘createlibGALSProgram’ call (line 4). Clock domains are instantiated by using 

‘createClockDomain’ API call (lines 5-10). Channels, signals, and reactions have to be 

instantiated as arguments before being used to create other reactions. The channel 

cCD1toCD2 are created through the use of ‘createChannel’ API call (line 15), which 

takes the sending and receiving clock domains as arguments. Instantiation of signal 

objects is via ‘createSignal’ API call (lines 16-18). Reactions are then created with 

‘createReaction’ API call (lines 19-55). Note that tick-hook function and its argument 

for both creations of clock domains and reactions are optional, that is, they can be 

substituted as 0 (or NULL) when calling the creation functions. Tick-hook functions can 

be used to synchronize with the other software components, such as SYSTEMC modules, 

as described initially in Section 5.3 and with more detailed description in the following 

sections. Clock domains are activated by using ‘startClockDomain’ API calls (line 56-

57). Finally the libGALS program starts via calling ‘startlibGALSProgram’ in line 58. 

 

Listing 5.2: libGALS program that creates CDs, channels, signals and reactions 

1 
2  
3  
4  
5  
6  
7 
8 
9 

#include “libGALS.h” 
#include “ReactionFunctions.h” 
int main(void) { 
  createlibGALSProgram(); 
  clockdomain CD1 = createClockDomain( 
      InputC1,          // Input function to clock domain 
      OutputC1,         // Output function to clock  domain 
      CD1TickHook,      // Tick-hook function, call ed every tick 
      CD1TickHookArgs); // Arguments to tick-hook f unction 



Chapter 5. GALS-Designer: A design framework for GALS software systems 143 

 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

  clockdomain CD2 = createClockDomain( 
      InputC2,  
      OutputC2,  
      CD2TickHook,  
      CD2TickHookArgs); 
  channel cCD1toCD2 = createChannel(CD1, CD2, “cCD1 toCD2”); 
  signal CD1_S1 = createSignal(CD1); 
  signal CD1_S2 = createSignal(CD1); 
  signal CD2_S1 = createSignal(CD2); 
  reaction CD1_R1 = createReaction( 
      CD1,              // Clock domain that the re action is in 
      ReactionCD1R1,    // Reaction function 
      0,                // Active status 
      CD1R1TickHook,    // Tick-hook function, call ed every tick 
      TickHookArgs,     // Arguments to tick-hook f unction 
      2,                // Number of arguments to t he reaction 
      CD1_S1,           // First argument 
      CD1_S2);          // Second argument 
  reaction CD1_R2 = createReaction( 
      CD1,  
      ReactionCD1R2,  
      0,  
      0,  
      0,  
      2,  
      CD1_S1,  
      CD1_S2); 
  reaction CD1_R3 = createReaction( 
      CD1,  
      ReactionCD1R3,  
      1,  
      0,  
      0,  
      3,  
      CD1_R1,  
      CD1_R2,  
      cCD1toCD2); 
  reaction CD2_R1 = createReaction( 
      CD2,  
      ReactionCD2R1,  
      1,  
      0,  
      0,  
      2,  
      CD2_S1,  
      cCD1toCD2); 
  startClockDomain(CD1);  
  startClockDomain(CD2); 
  startlibGALSProgram(); 
} 
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The forming of a libGALS-SYSTEMC module from wrapping a libGALS program is 

presented in Listing 5.3. This demonstrates a SYSTEMC description, which wraps up the 

libGALS program shown in Listing 5.2 into a libGALS-SYSTEMC module. Note that 

most of the original libGALS program, as from Listing 5.1, remains untouched, and it 

requires minimal effort to implement a libGALS-SYSTEMC module. A diagram 

representing this module is illustrated in Figure 5.8. The programming interface of 

libGALS and reactions declarations are included with the above mentioned ‘extern C 

{ … }’ construct (lines 2-5, Listing 5.3). In line 6, a header file, libgals_sc.h, is included 

to provide macros and data structures which are parts of the libGALS-SYSTEMC 

compartments. 

The transformation from an existing libGALS model to a GALS-Designer module 

is as follows. A SYSTEMC module named GALS_PROG is created (line 7) with a set of 

its member variables and functions (lines 9-27). Firstly, member variables representing 

a set of input and output signals are declared. Declared signals include the clock signals 

for each clock domain (line 9), and interfacing signals (lines 10 and 11). Member 

variables, such as clock domains, channels, signals, and reactions are also declared 

(lines 12-15). ‘SyncNodeParser’ (line 16) is the macro to create the static function 

wrapper. ‘SyncNodes’ are declared through ‘NewSyncNode’ macro (lines 17-19). 

Within the constructor of GALS_PROG (lines 26-47), SyncNodes are created through 

‘createSyncNode’ (lines 29-31), providing arguments including the name of the 

libGALS-SYSTEMC module and the actual tick-hook function pointed by the SyncNode. 

‘createlibGALSProgram’ (line 32) is still required to establish data structures to execute 

the libGALS components. Upon the creation of the clock domains and reactions, a 

‘SyncNodeHook’ macro is used as the static function wrapper, providing the 

SyncNodes as the argument (lines 36, 41, and 49) which can be applied to both clock 

domains and reactions. The creations of other clock domains, channels, signals, and 

reactions are the same as in the original libGALS program. Activations of clock 

domains and libGALS programs (lines 56-58) are essential to enable the libGALS part 

of libGALS-SYSTEMC module to be up and running. Synchronizing functions are 

registered (lines 59-64) with the clock signals to the corresponding clock domains. 
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Examples of a tick-hook function for clock domain CD1, listed in lines 67-71, consist of 

handshaking operations and evaluations of interfacing signals. A corresponding 

synchronization function (lines 78-79) implements the counterparts of the handshaking 

to the tick-hook function. Note that in Listing 5.3, line 69, scCD1_S2 is a SYSTEMC 

signal and CD1_S2 is of type libGALS signal. The interfacing between the two kinds of 

signals is carried out within the hook function. Input signals to a SYSTEMC module are 

first checked and then emitted to the libGALS program (line 69). Similarly, output 

signals are written when they are present in the libGALS program (line 74). 

Synchronization between a tick-hook function and a synchronizing function is presented 

as the grey area in the Figure 5.8 and detailed in Section 5.3. 

 

Listing 5.3: SYSTEMC module resulted from the libGALS program 

1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

#include "systemc.h" 
extern "C" { 
  #include "syncapi.h" 
  #include "ReactiveFunction.h" 
} 
#include "libgals_sc.h" 
SC_MODULE(GALS_PROG) { 
public: 
  sc_in<bool> clk_CD1, clk_CD2;    
  sc_in<bool> scCD1_S2; 
  sc_out<bool> scCD2_S1; 
  clockdomain CD1, CD2;  
  channel cCD1toCD2;    
  signal CD1_S1, CD1_S2, CD2_S1; 
  reaction CD1_R1, CD1_R2, CD1_R3, CD2_R1; 
  SyncNodeParser(GALS_PROG); 
  NewSyncNode(GALS_PROG, snCD1); 
  NewSyncNode(GALS_PROG, snCD2); 
  NewSyncNode(GALS_PROG, snCD1_R1);    
  // Tick-hook functions 
  void CD1_TickHook();   
  void CD2_TickHook (); 
  void CD1_R1_TickHook(); 
  // Synchronization functions 
  void CD1_Sync();  
  void CD2_Sync(); 
  void CD1_R1_Sync();    
  SC_CTOR(GALS_PROG) { 
    snC1 = createSyncNode(GALS_PROG, CD1_TickHook);  
    snC2 = createSyncNode(GALS_PROG, CD2_TickHook);  
    snCD1_R1 = createSyncNode(GALS_PROG, CD1_R1_Tic kHook); 
    createlibGALSProgram(); 
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33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

    clockdomain CD1 = createClockDomain( 
        InputC1,  
        OutputC1,  
        SyncNodeHook(GALS_PROG), 
        snCD1);                                        
    clockdomain CD2 = createClockDomain( 
        InputC2,  
        OutputC2, 
        SyncNodeHook(GALS_PROG), 
        snCD2); 
    // The same as lines 15 to 19 in Listing 5.2 
    // to create channels and signals 
    reaction CD1_R1 = createReaction( 
        CD1,  
        ReactionCD1R1,  
        0,  
        SyncNodeHook(GALS_PROG),  
        snCD1_R1,  
        2,  
        CD1_S1,  
        CD1_S2); 
    // The same as lines 28 to 55 in Listing 5.2 
    // to create reactions 
    startClockDomain(CD1);  
    startClockDomain(CD2); 
    startlibGALSProgram(); 
    SC_METHOD(CD1_Sync); 
    sensitive << clk_CD1.pos(); 
    SC_METHOD(CD2_Sync); 
    sensitive << clk_CD2.pos();       
    SC_METHOD(CD1_R1_Sync); 
    sensitive << clk_CD1.pos();       
  } 
}; 
void GALS_PROG::CD1_TickHook() { 
  snCD1->signalSC(); 
  if(scCD1_S2.read()) emit(CD1_S2); 
  snCD1->pendlibGALS();  
} 
void GALS_PROG::CD2_TickHook() { 
  snCD2->signalSC(); 
  scCD2_S1.write(present(CD2_S1)); 
  snCD2->pendlibGALS(); 
} 
void GALS_PROG::CD1_R1_TickHook() { ... } 
void GALS_PROG::CD1_Sync(void) { 
  snCD1->pendSC(); snCD1->signallibGALS(); 
} 
void GALS_PROG::CD2_Sync(void) { ... } 
void GALS_PROG::CD1_R1_Sync(void) { ... } 
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Figure 5.8: Integration of libGALS program into a SYSTEMC module 

 

In the libGALS-SYSTEMC module, reactions are still executed in the same fashion 

as in the libGALS program. However, contrary to the conventional simulation of a 

SYSTEMC executable which is single-threaded, the executables consisting of libGALS-

SYSTEMC modules are multithreaded and can take advantage of being executed on 

multicore systems. Tick-hook function also enables the modeling of further details of 

communication and synchronization between the libGALS programs and the SYSTEMC 

wrapping module. For example, timing annotations can be inserted into tick-hook 

functions and then used for architecture exploration and performance evaluation, as 

detailed in Section 5.7. 

5.6 GALS system design using GALS-Designer 

Figure 5.9 illustrates design flow in which the GALS-Designer is used. Solid lines 

represent the flow between design stages. Dashed lines represent the communications 

between components. GALS-Designer is utilized in stages shaded in grey. After system 

specification capture, hardware/software partitioning is performed. Software and 

hardware components can be categorized into two groups: existing components or those 

needed to implement. libGALS programs, which are derived from identified 

asynchronous and synchronous behaviors, are wrapped to become SYSTEMC modules 
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that are integrated to a SYSTEMC simulation model of the designed system, which 

communicates with hardware/software simulators and performs the entire system 

simulation. As refinements of the design are carried out along with simulations and 

validations, the results lead to the final implementation of the system. libGALS 

programs and other software applications are executed with the support of operating 

systems on the same designated platform. 

 

 

Figure 5.9: GALS-Designer in system development 

 

libGALS requires standard features provided by the operating systems, in that it 

guarantees the same behavior and outputs regardless as to which operating system is 
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used. This simplifies the SYSTEMC simulation model, which does not require a target 

OS model. However, the target OS model can be included for fine-grained simulation. 

For example, when OS API calls are made by the libGALS, the required information 

can be passed to the OS model through the synchronizing function. 

The concept of the libGALS enables the developer to describe GALS systems in a 

simple manner, without putting effort into how actual communication and 

synchronization between reactions and clock domains are carried out. These details are 

hidden by using libGALS, which guarantees the compliance of the designed system 

with the GALS MoC. Because the libGALS library is written in C, it is highly portable 

and has been ported to a range of operating systems, from non-real-time to real-time, 

such as Linux, Windows, uCOS-II, FreeRTOS, eCOS, and RTEMS, as detailed in 

Chapter 4. On the other hand, SYSTEMC allows modeling at different levels of 

abstraction, which makes it suitable as a development framework, demonstrated by 

many previous research and development efforts. SYSTEMC also enables designing 

systems using either top-down (system-level design) or bottom-up (component-based 

design) approaches according to the specific requirements of the applications [Cai & 

Gajski, 2003]. Both libGALS and SYSTEMC can be used to describe a system in 

different design phases that include: (1) specification, (2) modeling and analysis, and (3) 

implementation phase. The GALS-Designer development framework, which supports 

the design process in different design phases, is illustrated in Figure 5.10.  

 

Figure 5.10: Development framework of the libGALS-SYSTEMC model 
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In the specification phase, libGALS is used to identify essential clock domains and 

concurrent reactions of a GALS system. Reactions within a clock domain do not need to 

be modeled with details of its actual implementations; i.e. clock domains can contain a 

single reaction (which can be refined into multiple reactions later) and such libGALS 

program can be referred to as a ‘simplified libGALS program’. In this phase simplified 

libGALS programs are wrapped into SYSTEMC modules as described in the previous 

section. An overall system can consist of one or more libGALS programs and other 

components (hardware descriptions or software modules). Other system components, 

which do not follow the GALS MoC, are specified using SYSTEMC or other 

specification methodologies that can be incorporated within SYSTEMC. 

At the next modeling and analysis phase, descriptions of SYSTEMC components are 

further refined into more concrete models of hardware and software. Models of these 

components can be at different levels of abstraction depending on what intellectual 

property (IP) vendors and designers have provided. Simplified libGALS programs are 

refined with more synchronous reactions, where reactions are described in further detail 

including:  

1. Identification of concurrent behaviors within a clock domain that are 

modeled as separate reactions. 

2. Introduction of the algorithms that perform data transformations in each of 

these reactions. 

3. Specification of control and dependencies between reactions that are 

achieved via signal emit/await and fork/join API calls.  

 

The number of clock domains that libGALS can support is practically unlimited 

(assuming the memory to store clock domain data structure is sufficient), and are bound 

by the underlying OS features. Grouping of clock domains into different libGALS-

SYSTEMC modules (i.e. libGALS programs) is the designer’s decision and is illustrated 

in Figure 5.11.  

Each libGALS-SYSTEMC module represents a possible mapping to a separate 

processor or a libGALS program running on the target OS. This approach enables the 
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implementation of heterogeneous systems, which include different processors with 

different computing power and therefore can execute clock domains of different 

complexities and different speeds. An example is shown in Figure 5.11 (a), where all 

clock domains are modeled and implemented on a single processor, as clock domains 

communicate with other SYSTEMC modules through necessary mechanisms. If a faster 

execution speed is required, clock domains can be mapped to separate processors as 

Figure 5.11 (b). 

 

 

Figure 5.11: Clock domains mapped to different libGALS-SYSTEMC modules 

 

Models of libGALS-SYSTEMC modules can be described as untimed or with 

different timing granularities by annotating timing for accurate simulation. Timing 

annotations can be made at clock domain level, reaction level, and operating system 

level. Execution times can be obtained, for example, through profiling and using 

instruction set simulators (ISS). At the clock-domain level, times are annotated within 

the tick-hook functions of the clock domains. This gives the designer information as to 

how the clock domains perform on different configurations of processors, enabling 

architecture exploration. To obtain higher accuracy, timing information can be further 
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inserted to tick-hook functions of reactions. Other works have modeled and described 

abstract OSs which provide APIs that can be used by the application models and enable 

timing analysis as in [Posadas et al., 2005]. Similarly, libGALS is implemented by 

using common (RT)OS services whose models are already available. Because timing 

information can be annotated when simulating with libGALS and abstract OS APIs, 

more accurate simulations are possible. Modeling with different timing granularities 

enables trade-offs between the simulation performance and accuracy. As one extreme, 

an ISS can be used to execute libGALS programs to obtain the most accurate execution 

time, but with the slowest simulation speed. 

Finally, at the implementation level, SYSTEMC modules are mapped to synthesized 

hardware or software generated automatically or manually as presented in [Cesario et al., 

2002] and [Posadas et al., 2005]. libGALS-SYSTEMC modules are mapped (translated 

by a text parser) to libGALS programs for specific selected operating system used on 

the target processor(s).  

5.7 Case studies and results of using GALS-Designer 

To demonstrate the use of the GALS-Designer approach and how libGALS-

SYSTEMC modules can be integrated with other SYSTEMC modeled components, an 

Internet-enabled frequency relay (IEFR) has been used, as illustrated in Figure 5.12. A 

similar model without network support [Radojevic et al., 2006] has presented the major 

components of the frequency relay in SYSTEMC. In Chapter 4, the libGALS model of 

the frequency relay was introduced. The frequency relay measures frequency in the 

electrical power system and the rate of its change, and switches on and off the loads in 

order to help maintain overall system frequency within the specified range. The IEFR is 

formed by coupling a frequency relay with a simple web server. IEFR enables 

communication with a Web Browser via the Internet to configure settings of the 

frequency relay, as well as to display status of its operation. 

Clock domain and reaction partitioning are based on the characteristics of the relay. 

Four clock domains have been identified: data sampling, relay control, web service, and 

status gathering. Clock domains can be instantiated in different libGALS programs 
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because of the requirements of the system or the capability of the execution platform. 

For example, a platform might not be powerful enough to host all four clock domains 

because the data sampling and relay control have high computational demand. To 

demonstrate that clock domains can be further allocated to different libGALS programs, 

data sampling and relay control are grouped in one libGALS-SYSTEMC module, as an 

example of the design decision. The other module contains the remaining IEFR 

functionalities. Note that the allocation of clock domains to the libGALS programs is 

driven by the characteristics of the application and based on the design analysis. 

 

 

Figure 5.12: Internet-enabled frequency relay modeled with libGALS-SYSTEMC 

 

Communication between clock domains ‘DataSampling’ and ‘RelayControl’ in 

module ‘FrequencyRelay’ are via channel ‘SampleCount’. Similarly, ‘WebServer’ and 

‘StatusGathering’ of module ‘RemoteService’ exchange information through channels 

‘Status’ and ‘Configuration’. Inter-module clock domains communicate with each other 

through SYSTEMC signals or channels, named ‘CalculationResult’ and ‘Parameter’ 

which can be modeled as the environment to the corresponding clock domains, or can 

be described as libGALS channels if GALS MoC is required. To simulate the overall 

system, inputs and outputs are provided and collected by SYSTEMC modules. Input 

stimulus, which is the digitized electric power signal waveform, is described in the 
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module named ‘Stimulus’. Outputs, which are signals controlling the switches, are 

modeled in the SYSTEMC module called ‘Switches’. Interconnection between SYSTEMC 

modules is achieved through SYSTEMC signals. The simulation model of IEFR is 

performed on the Linux, where two libGALS programs communicate with each other 

through SYSTEMC channels. The corresponding implementation of such a model uses 

inter-process communication (IPC) of the host operating system.  

Standard SYSTEMC executable is a single-threaded program, which cannot take 

advantage of using the state of the art multiprocessor platforms that are readily available. 

On the other hand, the libGALS-SYSTEMC model can take advantage of multiple 

processors or cores. The simulation speed can be increased and this can be demonstrated 

by simulating the libGALS-SYSTEMC models with a different number of processor 

cores. The results of simulation of the FrequencyRelay module from the IEFR, along 

with a number of other examples, are shown in Figure 5.13. The name of the example 

also indicates the number of clock domains in the model, for instance, ‘2CD FreqRelay’ 

represents a FrequencyRelay modeled with two clock domains. 

Data Comp examples are synthetic examples, which consist of one or more clock 

domains as indicated by their names. Each clock domain consists of two reactions, one 

performing heavy computation within each tick and the other having the communication 

function of sending out results to the other clock domains through channels. They are 

designed in such a way as to present the performances of heavy data-driven 

computations with low data dependencies between clock domains.  

Such examples are typical for video encoding and decoding applications, which 

include both audio and video parts. ‘3CD Kite Controller’, detailed in Chapter 4, 

consists of three clock domains that have a mix of data computations and control found 

in typical heterogeneous embedded systems. ‘2CD AsyncProto’ [Lavagno & Sentovich, 

1999] is described by two clock domains. Experimental runs were carried out on an 

Intel Core 2 Quad 2.4GHz with 4GB of RAM with Linux 2.6.29.6 as the host OS. A 

different number of cores are set and made available to the OS by providing maxcpus=n, 

n = 1-4, as the argument to Linux kernel during the boot process. Average tick times (in 

µs) for all clock domains are obtained by running all programs for at least 10 million 
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ticks. Simulations of pure SYSTEMC models, in which the same functionalities would be 

achieved without libGALS, are not carried out because of the following: 

1. Noticeable modeling effort is required to implement the GALS MoC in SYSTEMC, 

since one might eventually implement functionality close to libGALS. 

2. SYSTEMC does not provide certain control statements such as explicit pre-

emption construct, and libGALS does. Models that use pre-emption statements 

would lose the abstraction intended by libGALS. 

3. SYSTEMC kernel does not support simulations by employing by multicore 

simulation hosts. 

 

 

Figure 5.13: Simulation execution results of libGALS-SYSTEMC models 

 

The simulation runs have shown that, in general, libGALS-SYSTEMC models 

perform faster when using more cores, with performance increasing as the number of 

clock domains and cores increases. Computations in ‘Data Comp’ are with low data 

dependencies and make use of parallelism to demonstrate the advantage of running on 

0

10

20

30

40

50

60

70

80

90

2CD FreqRelay 1CD Data Comp 2CD Data Comp 3CD Data Comp 4CD Data Comp 3CD KiteController 2CD AsyncProto

Average tick
length (us) 1 Core 2 Cores 3 Cores 4 Cores



Chapter 5. GALS-Designer: A design framework for GALS software systems 156 

 

the multicore systems. 2CD FreqRelay, 3CD Kite Controller, and 2CD AsyncProto 

when executed on four cores, do not achieve performance gain as would be expected, 

because reactions of the same clock domain are distributed on different processors, 

which, in turn, results in overheads of synchronizations and program migrations 

between processors. Such a situation appears more obviously if two clock domains are 

highly dependent on each other (with frequent exchange of data), as is the case in 2CD 

AsyncProto example. That is, one clock domain is the sender and the other is the 

receiver. Both sender and receiver are blocked when waiting for the rendezvous in 

channel communication. The blocking-releasing order of both clock domain executions 

will result in only one thread running at a time while the other thread from the other 

clock domain is waiting for the communication to occur. This leads to the 

sequentialization of the activities of communicating clock domains and reduces the 

benefit of the multicore platform.  

5.8 Summary 

In this chapter, a new design framework, GALS-Designer, for the design of 

complex GALS software models in C programming language using libGALS library, as 

well as their integration with other components described in SYSTEMC, is introduced. 

libGALS models wrapped into SYSTEMC modules, called libGALS-SYSTEMC modules, 

are capable of communication with other SYSTEMC modules. libGALS-SYSTEMC 

modules can use different levels of abstraction in different design phases and with 

different timing granularities. Taking advantage of the libGALS multithreaded 

implementation, such modules can execute on multiprocessor and multicore platforms, 

opposite to standard SYSTEMC models which are single threaded.  

Furthermore, as libGALS has been ported to a number of OSs, as detailed in 

Chapter 4, the same libGALS program, with practically no modifications, can be used in 

the simulation on one (host) and can be later implemented on the target OS with 

minimal efforts. This demonstrated the use of the approach on a complex embedded 

systems design. As a case study, the model of Internet-enabled frequency relay was first 

constructed and was then implemented as a libGALS program. Finally, the simulation 
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performance of a number of examples has been analyzed when using a computer with 

different numbers of cores. It was shown the libGALS-SYSTEMC approach can take 

advantage of those cores, which is not possible when using standard SYSTEMC. 

 

 

 

 

  



Chapter 5. GALS-Designer: A design framework for GALS software systems 158 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

6666    
6. 6. 6. 6. DDDDynamic systemynamic systemynamic systemynamic system    designsdesignsdesignsdesigns    in in in in DynamicGALS DynamicGALS DynamicGALS DynamicGALS     

    
This chapter presents the DynamicGALS framework, which enables the design of 

Dynamic Globally Asynchronous Locally Synchronous (DGALS) systems in the C 

programming language. A DGALS system consists of multiple DGALS programs and 

can be executed on platforms ranging from a single-processor to multicore and 

distributed systems. A DGALS program itself consists of a variable number of 

concurrent asynchronous behaviors at the top level of program hierarchy, which run on 

a single or multicore computational node. Each asynchronous process can be naturally 

composed of a number of synchronous concurrent processes. The mechanism for 

creation, termination, and mobility of asynchronous behaviors allows any existing 

behavior to create other asynchronous behaviors in their own or any other DGALS 

programs, regardless of their location. In this way, the overall system adapts to changes 

in the environment and the execution platform dynamically. 

The DynamicGALS framework consists of a library named libDGALS, which also 

provides a run-time support for execution of DGALS programs. Features of libDGALS 

are available in the form of application programming interface (API) to the software 
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designers. libDGALS, which is an extension of libGALS and can be built on top of 

almost any operating system, is highly portable and has low run-time memory 

requirements. In contrast to the GALS-Designer approach in Chapter 5 that systems of 

multiple GALS programs are modeled statically, DGALS programs in DynamicGALS 

framework are instantiated dynamically. 

6.1 The need for framework to design dynamic systems 

An increasing number of computing applications connect the computing world with 

the physical world, creating a single system, often called a cyber-physical system (CPS) 

[Krogh et al., 2008]. Most CPSs have some common features: (1) a distributed 

execution environment with computation nodes and their interfaces with the physical 

world connecting or disconnecting from the system at any time, (2) system functions are 

implemented as concurrent behaviors that may be synchronous or asynchronous each to 

the other, and (3) functions and behaviors have a lifetime and can be created and 

terminated dynamically. The goal is to allow the execution of such systems with high 

autonomy and cater for dynamic changes in both the physical world and the execution 

platform itself. Such CPSs need a high degree of run-time adaptivity, to enable them to 

survive situations such as a loss (or addition) of a computation node; loss (or addition) 

of interfaces to the physical world; variations in frequency and nature of requests for 

computation on any node; the ability to react in time on important events regardless of 

the current system load; etc. An example of such a CPS is a security surveillance and 

access-control system installed over large areas like cities, airports, commercial centers, 

etc, consisting of a huge number of disparate sensors connected with computers into 

sensor nodes, each capturing information in real-time and collaborating to achieve the 

final goal of object tracking and threat detection.  

Such a complex CPS is difficult to design and implement because of the concurrent 

and asynchronous execution of various sensor nodes, synchronization and transfer of 

data between the nodes, fault tolerance and recovery, and finally the utilization of 

heterogeneous execution and communication architectures (e.g. combination of 

distributed and shared memory) as the execution platform. Obviously, such systems 
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have a high degree of inherent non-determinism, so controlling this non-determinism 

and providing a consistent behavior in different scenarios would indeed be an ideal goal. 

Yet, this is difficult to achieve with current programming languages and practice.  

On the one hand, sequential programming languages, such as C and C++, which are 

most often used in the implementation of current CPSs, lack the ability to program basic 

safe concurrent behaviors with the proper level of determinism and reactivity to the 

events from the physical world. Applying a formal Model of Computation (MoC) to 

CPS designs allows one to validate and even possibly verify the correctness of the 

critical components of these systems. A correctly chosen formal MoC also allows the 

designing of a complex system by composing simpler parts. For instance, the GALS 

[Chapiro, 1984] MoC, which describes concurrent asynchronous and synchronous 

behaviors, lends itself well to a significant number of complex CPSs. ‘Asynchronous 

concurrency’ is suitable for programming behaviors that run at their own pace, 

controlling their respective sensors, and communicating occasionally. ‘Synchronous 

concurrency’ might be a better choice for programming concurrent behaviors that are 

running on a single computation node to reduce overheads, as they communicate more 

frequently with each other, and at the same time guarantee key system properties such 

as deterministic behavior.  

However, the GALS MoC lacks the ability to describe the dynamic nature of the 

majority of CPSs, such as creating behaviors at the other computational node at run-

time. This leads towards evolving the GALS MoC from the static to the dynamic case, 

called ‘Dynamic GALS’ or ‘DGALS’. A framework approach is needed for both the 

design of CPSs and run-time support for dynamics of the CPSs by honoring the DGALS 

MoC. The DynamicGALS framework is proposed for such needs and is detailed in the 

following sections. 

Related works and approaches are presented in Section 6.2. In Section 6.3 an 

abstract design is used as an example to underpin the principles behind the 

DynamicGALS framework and its features. A more complex example of a DGALS 

system which is both dynamic and distributed is demonstrated in Section 6.4. Section 

6.5 presents the internal implementation details of the DynamicGALS framework, while 
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Section 6.6 then provides the benchmarking results when libDGALS was used in a 

number of other applications. Finally, a summary of this chapter is provided in Section 

6.7. 

6.2 Related works and the DGALS approach 

Adequate frameworks provide a means for designing systems, and support the 

execution of deployed systems. Libraries that provide programming interfaces, and 

languages that provide essential constructs, are used to describe systems under design. 

To support the deployment and execution of both prototyped and final implementations 

of these systems, run-time environments are essential. Frameworks targeted at the 

design of complex systems need to meet a number of requirements to be effectively 

used by system designers. What follows is a comprehensive, but in no way exclusive list 

of the requirements that need to be satisfied by any framework that supports 

programming complex dynamic systems:  

1. Behavior and internal encapsulation: The programming framework should 

allow the decomposition of the system into smaller manageable behaviors 

and the easy composition of these behaviors into an overall system. Also, 

the framework needs to support static (at design time) and dynamic (at run-

time) instantiation of these concurrent behaviors.  

2. Safe communication: Concurrent behaviors need to communicate. Safe 

mechanism for synchronization and communication between concurrent 

entities should be a primitive construct in the framework. Communication 

between concurrent entities should hide the details of the underlying 

communication layer, i.e., some concurrent entities in the system might be 

running in a distributed memory environment, while others might be 

running in a shared memory environment, but the higher-level programming 

abstractions used should be the same. 

3. Location transparency and mobility: The designer should have no need to 

change the designed system behaviors, when the underlying infrastructure 

changes, or the required changes should be at least minimal. This is known 
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as location transparency. The ability of behaviors to move from one 

physical location (computational node) to another is essential in dynamic 

systems. For example, some piece of code not available on a computation 

node might be obtained from a code repository at run-time and activated as 

needed. 

4. Fault tolerance and possible recovery: A large complex dynamic system is 

bound to have failures. Any design framework geared towards such systems 

needs to provide built-in, error-tolerance capabilities and possibly recovery. 

5. Automated formal validation and possible verification: The design of 

complex systems needs to be approached from a system-level design 

perspective rather than a programming perspective. The framework should 

support a formal MoC, which, as mentioned previously, allows system 

designers to formally validate and possibly verify certain critical aspects of 

the designed systems. 

6. Reactivity and abstract data fusion: Every incoming event to the designed 

systems needs to be responded to. Programming such ‘reactive’ [Harel & 

Pneuli, 1985] behaviors can be made easy by providing programming 

paradigms especially suited for data fusion from multiple sensors or other 

sources. 

7. Ability to take advantage of the heterogeneous execution and 

communication platforms: The physical infrastructure (i.e. targeted 

processor architectures, or computing platforms) that the software system 

are executed on might consist of a heterogeneous set of computational 

elements, each element can be implemented by using single-processor and 

multicore CPUs and GPUs. Even the communication layer (i.e. adaptors and 

buses) is to be heterogeneous. The underlying physical infrastructure and 

the designed system behaviors should be separate, and the framework 

should allow the change of one, without affecting the other. This improves 

the overall reliability, portability, and flexibility of the designed system. 
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8. Ability to accommodate legacy code: There are large software applications, 

which have been written in traditional programming languages like C/C++, 

so any new programming framework should be able to accommodate and 

interface with these software applications with minimal or no changes at all. 

 

Not many programming languages and frameworks excel in all the aforementioned 

requirements. Traditional programming languages like C, C++, and Java lack either the 

basic mechanisms to describe concurrency and/or safe communication between 

behaviors implemented using threads [Lee, 2006]. Recently, a number of programming 

frameworks and languages that target dynamic system development have been proposed. 

All these have advantages and drawbacks. 

Integrating asynchronous concurrent behaviors into bigger systems is also known in 

the world of ‘actors’ [Hewitt et al., 1973][Clinger, 1981], where asynchronous actors 

communicate with each other using message-passing mechanisms. There are a number 

of implementations in the form of libraries or frameworks added to existing 

programming languages such as Actor Foundry [Astley, 1999], Scala Actors [Haller & 

Odersky, 2009] (both implemented using Java and running on JVM), or included into 

new concurrent languages Erlang [Armstrong et al., 1993]. However, message passing 

between actors is sometimes implemented as passing-by-reference (rather than creating 

a deep copy of the object to pass), which violates the semantics of the Actor model. 

Passsing-by-reference will not work in distributed-memory architecture because 

referencing to memory at a remote site is not possible. Also, the Actor-based systems 

provide a general asynchronous model, which is essential for majority of clustered 

distributed dynamic systems. However the Actor model does not allow explicit 

grouping of actors or internal concurrent behaviors within an actor that would perform 

synchronously. Finally, and most importantly, they lack the ability to react to events in 

the environment. A similar case can be made for multi-agent systems, such as JADE 

[Bellifemine et al., 2005], which provide for reactivity, but at the expense of huge 

execution overhead (i.e., large run-time library) on computation nodes. 
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There are approaches to create languages to implement formal MoC to describe 

concurrency and communication between asynchronous behaviors, as the remedies to 

general thread programming. For instance Occam [Galletly, 1990] implements the CSP 

[Hoare, 1978] MoC. However, both of the above mentioned approaches lack a support 

for mobility of behaviors. Extensions to support mobility have been made to Occam, 

resulting in Occam-pi [Welch & Barnes, 2005]. However, these languages lack the 

constructs to describe complex data structures and algorithms. To resolve this problem, 

as an example, CSP has been implemented in software libraries of general programming 

languages, such as JCSP [Welch et al., 2002], CTJ [Hilderink et al., 1999], and Scala 

[Odersky et al., 2004] (on the top of the Actor-based model) in Java, and CCSP [Moores, 

1999] in C, but mobility is not supported in these languages. [Barnes, 2005] presents a 

technique to interfacing both Occam-pi and C, to obtain both mobility and support for 

data-driven computations. However, it complicates the design process without having a 

single-language environment.  

Some attempts with the tools and frameworks are centered on the concepts of 

distributed systems, such as X10 [Charles et al., 2005]. In X10, asynchronous behaviors 

are called ‘activities’ running on distributed ‘places’. However, X10 is not based on a 

formal MoC. Other languages, such as Axum [Microsoft Corporation, 2008], take into 

account current languages and legacy codes, but also rely on powerful and heavy virtual 

machines (the .NET framework), which abstract away the underlying platform to 

enforce heterogeneity of the execution environment. 

Languages and platforms which emerge from the synchronous/reactive MoC 

[Benveniste & Berry, 1991][Boussinot, 1996] and the mobile agent-based approach 

[Fuggetta et al., 1998] also exist, such as RAMA  [Nikaein, 1999], and REJO [Acosta-

Bermejo, 1999] along with its platform ROS [Acosta-Bermejo, 2000]. They provide 

mobility and reactivity, but not one provides constructs for asynchrony of behaviors and 

communication between behaviors, which is required and natural in the distributed 

systems. They also lack the features for communication and interaction of groups of 

synchronous agents. 
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One example of a systematic approach, which merges synchrony with asynchrony 

in a formal GALS model, to the design of complex static systems, is shown in [Gruian 

et al., 2006] and [Malik et al., 2010] where the language called ‘SystemJ’ was 

introduced. Such an approach contributes to fast and reliable design of software systems. 

Yet the SystemJ approach suffers from a number of limitations: (1) concurrent 

asynchronous and synchronous behaviors, called clock domains and reactions in 

SystemJ programs, respectively, are compiled to sequential and static codes; i.e., a 

designer cannot instantiate new clock domains at run-time. Therefore one cannot design 

dynamic systems. (2) SystemJ, which extends the Java language and uses the Java 

Virtual Machine (JVM), is far too abstracted from the underlying platform to properly 

utilize heterogeneous execution architectures. For example, a designer is unable to 

assign processor affinities to the clock domains, thus leaving this as the decision of the 

underlying JVM and the operating system. Accessing hardware features still requires 

programming in different host languages to cooperate with the JVMs. (3) Finally, 

SystemJ does not provide a suitable and efficient mapping on multicore execution 

targets and does not provide inherent support for programming distributed architectures 

(e.g., networked systems). 

An extension of SystemJ, called Dynamic SystemJ (DSystemJ), which supports 

DGALS MoC, has been recently proposed [Malik et al., 2010]. It extends SystemJ with 

behavior creation and termination mechanisms and weak mobility (behavior migrations 

without state capture), but still inherits the dependency on the JVM. 

Other approaches such as MPI [Gropp et al., 1999] and OpenMP [Dagum & Menon, 

2002] are based on the use of C/C++, but are limited to static systems (MPI-1 and 

OpenMP), or to dynamic systems, but lacking process mobility (MPI-2) and reactivity. 

Finally, both these approaches (MPI and OpenMP) lack an all-encompassing formal 

MoC. 

Almost all of the above mentioned approaches, except SystemJ and DSystemJ, are 

based on a single level of concurrency in the form of either asynchrony (such as 

processes in CSP, and Actor model) or synchrony (e.g. RAMA and REJO/ROS); some 

of them do not follow any formalism (e.g. OpenMP and MPI).  
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The formal DGALS MoC, extended and benefited from GALS MoC, covers the 

required features to program complex real-world dynamic systems. The DynamicGALS 

framework based on the DGALS MoC, provides libDGALS, a library for programming 

DGALS systems, as well as run-time support. libDGALS builds on the libGALS library 

introduced in Section 4 used for designing static GALS systems. While preserving 

features of libGALS with minor modifications, libDGALS significantly enhances the 

power and applicability of the design framework.  

6.3 Overview of the DynamicGALS framework 

From the discussion in the previous section, the DynamicGALS framework, which 

follows the DGALS MoC, should support the following features as guidelines: 

1. There are both synchronous and asynchronous behaviors which are 

available in the conventional GALS MoC. Concurrent synchronous 

behaviors communicate with each other through signal broadcasting, so that 

all synchronous behaviors will have the same view of the signals. When 

asynchronous behaviors communicate with each other, there should be no 

shared data between them. Message passing should comply with pass-by-

value semantics, which implies copying of messages. Synchronous 

behaviors within the same asynchronous behavior interact with each other 

by obeying the synchronous reactive MoC as in ESTEREL [Berry et al., 1983] 

and SystemJ that provide reactivity. The composition of asynchronous and 

synchronous behaviors is based on GALS MoC as used in CRP [Berry et al., 

1993] and SystemJ. 

2. A DGALS system can be distributed on networks of computational nodes. 

Asynchronous behaviors, which are not as tightly related as synchronous 

behaviors, can migrate within the DGALS system, according to the concept 

of weak mobility in DGALS MoC. Mobility also provides DGALS systems 

capability of fault tolerance and recovery, such as re-activating the backup 

asynchronous behavior at the same node or other nodes. 
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3. The DynamicGALS framework will provide programming interface, as part 

of the libDGALS, along with the run-time environment, to support 

communication, activations, and termination of asynchronous behaviors. 

4. The libDGALS will be implemented in general programming languages, C 

in the current implementation, to support legacy code compatibility. 

5. Last but not least, being based on formal MoC, the DynamicGALS 

framework opens the door to verifying DGALS systems with techniques 

used in the adopted MoCs including the synchronous reactive model, CSP, 

GALS model, and pi-calculus [Milner, 1999]. 

 

In the following, general features of the libDGALS are presented by a few small 

examples to illustrate the main properties of the DynamicGALS framework. 

6.3.1 From libGALS to libDGALS 

The static GALS systems created using libGALS can exploit only multicore 

processors and do not support distributed platforms. DynamicGALS framework, which 

is centered on libDGALS, evolves to allow exploiting both multicore and large 

distributed architectures. The static GALS systems in libGALS lack properties such as 

fault tolerance, mobility of code, and dynamic creation of behaviors, which essentially 

makes them very domain-specific. The libDGALS approach extends the static libGALS 

API (available in Chapter 4) with the goal that the DynamicGALS framework would 

make a good alternative to the general purpose concurrent libraries (such as pthreads). 

libDGALS inherits basic design entities and objects introduced in the libGALS, 

including ‘clock domain’ (CD, as a group of synchronous behaviors, each CD is 

asynchronous to other CDs), ‘reactions’ (synchronous behaviors), ‘signals’ (means of 

communication between reactions in the same CD), and ‘channels’ (used for 

communications between reactions of different CDs). These elements are basic building 

blocks used to construct DGALS systems. 
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6.3.2 Structure of DGALS systems in the framework 

The DynamicGALS framework allows the design of ‘DGALS systems’ that consist 

of multiple ‘DGALS programs’, which run on any core or computation node in a 

distributed (networked) system. A DGALS program can consist of one or more clock 

domains, which can be static (permanent for the system lifetime) or dynamic (non-

permanent). Dynamic creation of CDs is supported through ‘CD plug-ins’, or ‘plug-ins’ 

for short. CD plug-ins encapsulate the body of the clock domains, reactions, channels, 

signals, and all other information necessary to create a CD and  are instantiated upon 

activation. A plug-in is basically a library that can support ‘dynamic loading’, for 

example, a shared object (.so files) on Linux (or Unix-like) systems and a dynamic 

linking library (.dll files) on a Windows system. A plug-in must be defined and 

initialized before it can be used to create a new instance of the CD. Furthermore, a CD 

plug-in can be subsequently used to instantiate one or more CDs. Each CD created from 

the same plug-in can be customized according to ‘CD configurations’.  

A designer defines the DGALS system, its DGALS programs, CDs and reactions, 

using the libDGALS API. Some of these API calls establish run-time data structures, 

while others are used to implement creation of new CDs, communication between CDs, 

as well as CD mobility.  

6.3.3 Programming interface provided by libDGALS 

Table 6.1 shows the descriptions of the programming interface that support 

dynamic features. Static systems can still be created with the programming interface 

inherited from libGALS. A DGALS program must be initialized by using the 

createDGALSProgram, and must be started by using startDGALSProgram. The 

CDPlugin macro is used to define the scope of a CD plug-in, and initPlugin is used for 

initializing the required data structure before the CD is instantiated. CD configurations, 

such as an identifier given to a newly activated CD, can be created with 

createCDConfiguration and extended via addCDConfiguration. Arguments passed to 

the activated CD, which are used to perform computations, can be similarly created and 

extended by using createCDArgument and addCDArgument, respectively. Other 
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available functions, getCDArgumentNum, checkCDArgument, and getCDArgument, 

are used within reactions to obtain the arguments passed to the CD. Both configurations 

and arguments are used by activateCD to activate an instance of a CD plug-in on the 

destination machine. Any active CD can be terminated by using the terminateCD. 

 

Table 6.1: API to program dynamic GALS systems 

Function name Description 
createDGALSProgram Instantiate data structures of the DGALS program 
startDGALSProgram Start the DGALS program and its Listener 
CDPlugin (macro) Start a CD plug-in definition 
initPlugin Initialize the data structure when creating an instance of a CD 

plug-in. This API is called at the beginning of the plug-in 
definition. 

createCDConfiguration 
 

Initialize a CD configuration of the new CD instance to 
customize parameters used in the CD. 
    Returns: pointer to the CD configuration 

addCDConfiguration 
 

Add an entry to the CD configuration. Arguments: 
    1. existing CD configuration 
    2. configuration entry (key) to append 
    3. the value of the configuration to append 

createCDArgument Initialize a list of arguments passed to new CD instance 
    Returns: pointer to the argument 

addCDArgument Add an argument to the list. Arguments: 
    1. argument list to append 
    2. name of the argument 
    3. type of the argument 
    4. the actual argument to pass     

getCDArgumentNum Check the number of arguments passed to the created CD 
instance 

checkCDArgument Check the availability of an argument. Argument: 
    Name of the argument 
    Returns: 1 - available, 0 - absent  

getCDArgument Obtain the argument by providing the name of the argument 
activateCD Activate a CD from a CD plug-in. Arguments: 

    1. destination DGALS program, where the CD will reside 
    2. name of the CD plug-in 
    3. configurations passed to the activated CD 

4. arguments passed to the activated CD 
Returns: success / fail to activate the CD 

terminateCD Terminate a running CD 
    Arguments: the name of the CD to terminate 
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A programmer must provide functions to serialize/de-serialize data used by a 

channel used for communication between CDs. These functions are called serialization 

and de-serialization functions. Table 6.2 lists the prototype names of these functions. 

Data to transfer are serialized/de-serialized with desired interpretations by design. 

 

Table 6.2: Serialization and de-serialization functions 

Function name Description 
serialize_data-type 
 

Serialize function to encode data to a byte stream. 
    Argument: the data to send 
    Returns: unsigned char stream 

deserialize_data-type 
 

De-serialize function to convert a byte stream to the 
typed data. 
    Argument: unsigned char stream 
    Returns: reconstructed data 

6.3.4 Simple examples to model dynamic behaviors 

This section gives simple examples to familiarize the reader with the 

DynamicGALS framework and to present the system-level design features. Figure 6.1 

and its corresponding DGALS code in Listing 6.1 show an example of CD instantiation 

and reactivity. The CD ‘cd1’ instantiates ‘cd2’ and ‘cd3’ on the ‘local DGALS program’ 

(named 192.168.1.1:1111) and a ‘remote DGALS program’ (named 192.168.1.2:1111), 

respectively, depending upon the value of the input signal cd1s1 received from the 

environment.  

In Listing 6.1, firstly the required header-file (line 1) containing all the DGALS 

function definitions is included. The data structure ‘CDInfo’ is defined (lines 2-7) to 

hold information carried by the signal ‘cd1s1’. Input and output functions used by cd1 

are defined (lines 8-9) and used to communicate with the environment to cd1. The 

‘reaction function CD1R1Reaction’, which is the functional definition of reaction 

‘cd1r1’, is declared on lines 10-25. cd1r1 firstly initializes by setting up argument (lines 

11-13), and then waits for an incoming signal cd1s1 (lines 14) and reads its value (line 

15). Next, CD configurations are buit, which include the IP addresses, CD names, etc; 

indicating where the new CDs need to be instantiated (lines 16-17). Upon the 

activateCD (lines 18 and 21), the run-time environment activates a new CD instance on 
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the correct physical machines with the CD configurations. The rest of Listing 6.1 (lines 

25-31) shows how a CD is established when being activated from a CD plug-in, starting 

from the declaration of the scope of the plug-in (line 25), initialization of the plug-in 

(lines 26-27), instantiation of the clock domain, reaction and signal (lines 27-29), and 

finally the execution of the CD (line 30). 

 

Figure 6.1: CD instantiation 

 

Listing 6.1: CD instantiation and reactivity 

1 
2  
3  
4   
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

#include "libDGALS.h" 
typedef struct CDInfo { 
  char* progName;       // destination DGALS progra m 
  char* CDName;         // CD to activate 
  char* config;         // configurations of the ac tivating CD 
  struct CDInfo *next;  // next entry 
} CDInfo; 
void IF(clockdomain CD) { ... }   // function to ob tain input 
void OF(clockdomain CD) { ... }   // function to ge nerate output 
REACTION_FUNCTION(CD1R1Reaction) { 
  initReaction(); 
  signal cd1s1 = (signal)getArgument(1); 
  endInitReaction(); 
  await(cd1s1); 
  CDInfo cds = value(cd1s1);      // read value of input signal 
  Configuration configCD2 = createCDConfiguration() ; 
  addCDConfiguration(configCD2, "CD.name;CD.rename" , cdInfo->config); 
  activateCD(cds->programName, cds->clockDomainName , configCD2, 0); 
  cds = cds->nextCD;              // read next entr y 
  .....   
  activateCD(cdInfo->programName,  
  cdInfo->clockDomainName, configCD3, 0); 
  endReaction(); 
} 
CDPlugin { 
  initPlugin(); 
  clockdomain cd1 = createClockDomain(IF, OF, "cd1" , 0, 0); 
  signal cd1s1 = createSignal(cd1); 
  reaction cd1r1 = createReaction(cd1, CD1R1Reactio n, 1, "cd1r1", 1, cd1r1); 
  startClockDomain(cd1); 
} 
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Another simple example that demonstrates fault-tolerance capabilities is shown in  

Figure 6.2 and Listing 6.2. Only the important code segments are shown. In  

Figure 6.2, there are two CDs, ‘cd4’ and ‘cd5’, running on two different physical 

machines. Reaction ‘cd4r2’ keeps a check on the health of cd5, by receiving value 

(acting as heart beats) sending from cd5 through channel ‘ch2’ (line 21), and sending 

the result through signal ‘sSenderAlive’ to reaction ‘cd4r1’ (line 22), described in 

‘CD4R2Reaction’. If cd5 dies, in the sense that sSenderAlive is not received in a certain 

time (maximum allowable number of ticks, lines 8-10), reaction cd4r1 activates a new 

instance of cd5 on the remote DGALS program (named 192.168.1.2:5555) and notifies 

cd4r2 to re-initialize (by sending sRestartRecv) the channel communication on ch2 

(lines 11 and 12 respectively). The implementation of this behavior is shown in Listing 

6.2.  

 

Figure 6.2: Fault tolerant systems designed in DGALS 

 

The two simple examples presented above can be combined in a plethora of 

different ways to allow the designing of robust systems with the ease of describing 

reactivity and communication with the physical environment, the synchronous 

(reactions) and asynchronous (clock domains) concurrency, communication between the 

concurrent entities (reaction to reaction, channel to channel), weak code mobility and 

dynamic process forking and channel instantiation. 

 

Listing 6.2: DGALS program implementing fault tolerance 
1 
2  
3  

REACTION_FUNCTION(CD4R1Reaction) { 
  initReaction(); 
  signal sSenderAlive = (signal)getArgument(1); 
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4   
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

  signal sEndRecv = (signal)getArgument(2); 
  endInitReaction(); 
  int tickCount = 0; 
  while(1) { 

if(present(sSenderAlive)) { tickCount = 0; } 
    else tickCount++; 
    if(tickCount == MAX_TICK_RESP) { 
      activateCD("192.168.1.2:5555", "cd5", 0, 0); 
      emit(sRestartRecv, 0);    // abort the curren t receive       
    } 
    pause(); 
  } 
  endReaction(); 
} 
REACTION_FUNCTION(CD4R2Reaction) { 
  while(1) { 
    strongAbort(sRestartRecv) { 
      int value2; receive(ch2, value2, int); 
      emit(sSenderAlive, 0);  // to inform cd4r1 al iveness 
    } 
    endAbort(sRestartRecv);   
    pause(); 
  } 
  endReaction(); 
} 
CDPlugin { 
  channel ch2 = createChannel("ch2", SenderCD, rece iverCD); 
  reaction cd4r1 = createReaction( /* arguments omi tted */ ); 
  reaction cd4r2 = createReaction( /* arguments omi tted */ ); 
  ..... 

6.3.5 DGALS programs and the run-time environment 

Figure 6.3 illustrates a basic view of a DGALS system consisting of three DGALS 

programs running on Machine 1 (DGALS program 1 and 2) and Machine 2 (DGALS 

program 3), respectively.  

As mentioned previously, the DynamicGALS framework provides libDGALS for 

programming, and a run-time environment for executions of the DGALS system that 

contains one or more DGALS programs. DGALS programs are responsible for: (1) 

managing the dynamic behavior of the CDs, (2) the mobility of CDs, (3) 

communication between CDs, and (4) implementing the overall DGALS MoC. Each 

DGALS program consists of the following: 

1. Static linked libraries that support execution of the DGALS program, or 

dynamic linking libraries which are available and managed by the operating 

systems (OS) on the execution platform. 
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2. A local storage area that stores CD plug-ins. Local storage is generally 

governed by the file systems of the underlying OS. 

3. Configurations of the DGALS program (or program configurations), which 

describes the location of the local storage, the list of CDs to be activated at 

startup, and the network port (a specific port number) that binds the 

essential communication to the underlying physical layer. 

4. CD Configurations of the activated CDs. The DGALS program holds 

configurations of the running CD instances to manage creations and 

terminations of CDs. 

5. Listener, which is a helping thread, and is invisible to the programmer. 

Listener is responsible for creating clock domains and channels according to 

the program configurations. Listener is also used to coordinate 

communication via channels between CDs (within the same DGALS 

program or between different DGALS programs). Mobility of CDs is also 

governed by Listener. 

 

Channels are means of communication between reactions of different CDs. To 

establish such links, handshaking is first carried out by Listener, and is implemented 

with TCP/IP illustrated as point-lines in Figure 6.3. 

Handshaking can occur on the same Listener, if both sending and receiving CDs are 

of the same DGALS program, such as the channel establishment between reactions of 

CD11 and CD12. On the other hand, different Listeners will be involved if CDs are 

within different DGALS programs (CD21 to CD12, and CD11 to CD31), regardless of 

whether DGALS programs are running on the same machine or not. 

Once the communication links are established, message passing takes place to 

perform the actual communications. There are two implementations of message passing: 

‘shared-memory’ and ‘TCP/IP’ based. When shared-memory is used, messages are deep 

copied, through provision of serialization and de-serialization functions operating on the 

shared-memory. The shared-memory approach is adopted when both parties of a 

channel are in the same DGALS program, such as CD11 and CD12. When TCP/IP is 
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used, messages are serialized and sent to the receivers which reconstruct the original 

message through de-serialization functions. This approach is used when shared-memory 

is not available between different DGALS programs. 

 

 

Figure 6.3: Channel implementation in a DGALS system 

6.4 A complete DGALS system: dynamic Sieve 

6.4.1 Dynamic sieve of Eratosthenes: prime number generation 

Figure 6.4 illustrates a dynamic sieve of Eratosthenes (dynamic Sieve, or ‘Sieve’ 

for short), which illustrates the use of the DynamicGALS framework. Sieve is a 

DGALS system, which consists of three DGALS programs to calculate all the naturally 

occurring primes. Figure 6.4 shows only the calculation of primes up to six, because this 

suffices to explain the major design concepts and paradigms. A more complex example 

could have been chosen, but that would distract from presenting the features of the 

DynamicGALS framework. 
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Sieve consists of five CDs, ‘Generator’, ‘Shifter’, ‘Popper’, ‘Filter’, and ‘Printer’ 

running concurrently and asynchronously, each at their own speeds (logical ticks). In 

Figure 6.4, Shifter consists of three synchronous reactions, ‘PrimeShifter’, 

‘ActivatePopper’, and ‘ActivateFilter’, respectively. These reactions communicate with 

each other using signals. 

 

 
Figure 6.4: Dynamic sieve of Eratosthenes designed in the DynamicGALS framework 

 

Sieve in Figure 6.4 is dynamic. At program startup, Generator and Printer are 

running, waiting for an incoming ‘start’ signal, as shown in Figure 6.4 (a), which 

determines the upper bound within which the primes need to be discovered. This bound 

is 6 in this example. Generator, upon reception of the start signal produces the set of 

natural numbers from 2 through to 6. This production is carried out using dynamic 

recursion of Generator. Each instantiation of Generator produces a natural number and 

adds it to the set ‘Numbers’, as (b). Next, Generator activates another instance of itself, 

passing the set Numbers as an argument. This dynamic recursion continues until the 

complete set of natural numbers smaller than the given upper bound is built. Generator 
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then activates Shifter, which will now iteratively find the primes from within the 

generated natural-number set, as shown in Figure 6.4 (c). Shifter itself instantiates two 

new CDs, Popper and Filter, shown in Figure 6.4 (d). The first prime from the set (in 

this case, 2) is sent to Filter and the rest are passed onto Popper. Popper communicates 

with Filter by sending one number at a time through a dedicated channel. Filter extracts 

any number which is not divisible by the current filtering prime (2, as mentioned). The 

extracted set of numbers, containing 3 and 5, is passed to Shifter through another 

channel as shown in Figure 6.4 (e). Shifter puts 3 into the list of primes, by shifting out 

the first element of the set (contains 3 and 5) received from Filter previously. A new 

pair of Popper and Filter is instantiated again, by Shifter again, for the next iteration 

until the examining set in Shifter is ‘null’. Finally, all the discovered primes are set to 

Printer, as illustrated in Figure 6.4 (f), which ‘pretty prints’ the discovered primes. Sieve 

highlights a number of features of the DynamicGALS framework:  

1. Reactivity and data fusion: first of all, the DynamicGALS framework 

provides the explicit mechanism to capture signals coming in from the 

environment (e.g., signal named ‘start’ in Figure 6.4). This attribute directly 

satisfies support for data fusion capabilities. This concept of reactivity is 

inspired by ESTEREL [Berry, 1993]. 

2. Hierarchical concurrency and safe message passing: The CDs, as 

synchronous islands, allow an easy way to express tightly coupled 

concurrent behaviors (called synchronous parallel reactions or just reactions 

in this case). Reactions in different CDs communicate with each other over 

point-to-point channels using CSP-style rendezvous [Hoare, 1978], thus the 

blocking send and receive, which in turn guarantees data delivery. 

3. Dynamic behaviors and Robustness: The DynamicGALS framework allows 

the instantiation of new CDs at run-time (dynamic creation); it also allows 

the destruction (termination) of CDs at run-time. The channels associated 

with dynamic CDs are also created at run-time. The formal DGALS MoC 

along with dynamic creation and destruction provide fault tolerance 

capabilities. For example, an error in a certain part of a large design can be 
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corrected and that portion restarted without affecting the rest of the running 

system. New physical sensors and other units can be loaded at run-time. 

4. Abstraction of execution platforms and topologies: It should be noted that 

the programs developed using the DynamicGALS framework are detached 

from the underlying physical execution layer. For example, Sieve in Figure 

6.4 is designed without any concern for the underlying execution and 

communication architecture. In fact, the same Sieve example can be 

implemented on hosts of different heterogeneous execution and 

communication platforms. This separation between design and physical 

implementation provides an abstraction layer, which essentially speeds up 

the development, because the underlying physical layer and the software 

model can be developed in parallel. More importantly, a DGALS program is 

immediately ready for execution on a single processor system, but the same 

specification can run on different execution platforms without any change. 

Also, the aforementioned separation increases fault tolerance and recovery 

capabilities, as the designed model can be changed at run-time without 

affecting the underlying physical implementation layer and vice-versa.  

 

Other features, which further enhance the design capabilities of the DynamicGALS 

programming framework such as weak code mobility, are not presented in Figure 6.4. 

Such capability, closely related to the underlying physical architecture, is explained in 

the next section. 

6.4.2 Distributed dynamic Sieve 

In this section the implementation of the dynamic Sieve model on a heterogeneous 

and distributed physical execution and communication layer is presented. The purpose 

of this description is to demonstrate the features of libDGALS on distributed 

architectures.  

Figure 6.5 is an abstract representation of the dynamic Sieve. There are three 

physical machines as computation nodes, connected via network (LAN/WAN). A single 

DGALS program runs on each of these three different machines. 
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Figure 6.5: The distributed dynamic Sieve  

 

As shown in Figure 6.5, clock domain ‘Startup’ activates Generator of the Sieve 

example on ‘DGALS program 3’ executing on ‘machine 3’. Similarly, Printer is initially 

activated on ‘DGALS program 2’ of ‘machine 2’ by Startup. Once the generation of the 

natural number set is complete through recursive self-activation of Generators, 

Generator activates Shifter on DGALS program 1 running on machine 1. Shifter then 

instantiates Popper and Filter CDs within the same DGALS program.  

Figure 6.5 shows the transfer of the CD plug-ins (Shifter, Popper, and Filter in this 

case) along with their configurations, from DGALS program 3, to Listener of the 

DGALS program 1, shown in the dotted box. Note that Generator and Printer plug-ins 

need not to be sent from the DGALS program 1 as they are available on the destination 

DGALS programs. Filter and Popper communicate with each other using channels on 

the same computation node (machine 1) via Listener, to extract the primes. Once the 

final set of primes is obtained, Shifter passes this set onto Printer to pretty print the set. 
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The data sent through channel require serialization at the sending side (Shifter) and de-

serialization at the receiving side (Printer). In  

Figure 6.5, the CDs in solid round rectangles represent the CDs instantiated at 

program startup, i.e., they represent static CD invocations, while the dotted ones show 

the CDs that are invoked at run-time. Similarly, channels created at startup and run-time 

follow the same representation. Thus, Generator and Printer are instantiated at program 

startup, while Shifter, Popper, and Filter are instantiated dynamically at run-time. 

Finally, it should be noted that while the Printer is alive throughout the application 

lifetime, the remaining CDs do not and they are terminated when they are not needed. 

6.4.3 Implementation of the dynamic Sieve 

A DGALS program can be described as shown in Listing 6.3. In practice, a DGALS 

program consists of initialization of other codes, which will be used by the DGALS 

program, e.g. device drivers. The createDGALSProgram and startDGALSProgram 

(lines 4-5) are called to initialize the essential data structures for the program and 

Listener, followed by the start of the program. 

 

Listing 6.3: A simple DGALS program 
1 
2  
3  
4   
5 
6 

#include "libDGALS.h"   // required to use the libG ALS API 
void main() { 
  ......                // initialization for non-D GALS program, e.g. driver 
  createDGALSProgram(); // setup data structures an d Listener 
  startDGALSProgram();  // start the DGALS program 
} 

 

In the DynamicGALS framework, a CD can be created dynamically only if it is 

instantiated from a CD plug-in. The construction of a CD plug-in follows a bottom-up 

strategy and consists of the following: 

1. Reaction functions, from which reactions will be instantiated, describe the 

functionalities of the reactions. One reaction function can be used to create 

more than one reaction of the same clock domain. 

2. Definition of the CD plug-in, which is composed of reactions, signals, and 

channels. When a plug-in is activated, the corresponding elements are 

instantiated in the DGALS program. 
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3. Default CD configuration of the plug-in. Parameters of the configuration 

include the names of the CD and used channels. These parameters are hard-

coded as the naming reference which will be overridden during plug-in 

activation. Reaction and signal names are encapsulated by the CD as they 

cannot be accessed by other CDs, and are thus not included in the default 

configuration. 

 

Listing 6.4 shows CD Startup, which initializes the Sieve example. In the reaction 

function ‘StartupReaction’, Startup (lines 6-10) activates Generator and Printer. 

Relationship of the ‘requester CD’ (the CD that activates the other CD, for example the 

CD Startup) and the ‘responder’ CD (the CD to be activated, such as Generator and 

Printer) are established when invoking the ‘activateCD’ (lines 8 and 9). The essential 

information to activate a CD is given as follows:  

1. The name of the destination DGALS program. A DGALS program name is 

a combination of the machine (where the DGALS program executes) name 

and the port bind to the Listener of the DGALS program. For example, 

DGALS program 3 running on machine 3 is named as ‘machine3:12222’.  

2. The name of the CD plug-in to activate. This is also the file name of the CD 

plug-in. For example, plug-in Generator will be stored in Generator.so on 

Unix-based systems. 

3. The CD configuration used for the activation. CDs and channels are means 

of describing asynchronous behaviors and communications in the DGALS 

system. Names of CDs and channels are unique to differentiate them from 

others. The configuration consists of name mappings of both CDs and 

channels, from the hard-coded reference, to the assigned unique name. 

4. The argument passed to the CD. More than one CD can be instantiated from 

the same CD plug-in. Each instance of the CD might require different 

information, depending on the nature of the computation performed by the 

CD. Such information is passed as arguments to the activated CD. The 

difference between configuration and argument to a CD is that configuration 
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over-rides the existing hard-coded information, while arguments are created 

on an as-required basis. 

 

Thus, during execution of the activateCD calls, Generator and Printer are activated 

in DGALS program 3 and DGALS program 2, respectively. A plug-in is defined within 

the scope of the macro ‘CDPlugin’ (lines 13-19). ‘initPlugin’ is called to set up data 

structures of the plug-in (line 14) followed by the creation of the CD (line 16), reaction 

(line 17), and starting of the CD (line 18).  

 

Listing 6.4: The StartupCD of dynamic Sieve 
1 
2  
3  
4   
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

#include "libDGALS.h" // required to use the libDGA LS API 
// input and output functions, to communicate with the environment 
void IFC0(void) {......} 
void OFC0(void) {......} 
// the code for the startup reaction. 
REACTION_FUNCTION(StartupReaction) { 
  ...... 
  activateCD("machine3:12222", "Generator", 0, 0); 
  activateCD("machine2:12222", "Printer", 0, 0); 
  endReaction();  
} 
// definition of the Startup CD plug-in 
CDPlugin { 
  initPlugin(); //setup data structures and Listene r 
  // elements of the plug-in 
  clockdomain Startup = createClockDomain(IFC0, OFC 0, "cdStartup", 0, 0); 
  createReaction(Startup, StartupReaction, 1, "rSta rtup", 0); 
  startClockDomain(StartupCD);  
} 

 

Listing 6.5 describes the Generator CD plug-in, which is activated in Listing 6.4. It 

follows the same design approach: to include the required header files (lines 1-3), in 

which libDGALS API, user defined data structure, and constants are available. This is 

followed by the definition of the reaction function ‘GeneratorReaction’ (lines 4-56). 

Arguments passed to a reaction can be obtained by calling ‘getArgument’ (line 6). A 

reaction function has a set of local variables (lines 8-10) for carrying out internal 

algorithms, or to hold values from signals. The value of a signal can be obtained with 

the use of ‘value’ (line 15). 
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The number of arguments passed to a CD can be accessed with 

‘getCDArgumentNum’ (line 11). A return value of zero indicates that no argument was 

passed to the plug-in. Arguments passed to an activated CD can be obtained via 

‘getCDArgument’. This takes the names of the arguments (e.g. Numbers or start) and 

the corresponding types (IntegerSet or int) as shown in lines 22-23. Arguments sent to 

CDs are constructed using ‘createCDArgument’ and ‘addCDArgument’ (lines 33-35 

and 47-49).  

Configurations provided to a CD, which are prepared through using 

‘createCDConfiguration’ and ‘addCDConfiguration’ (lines 37 and 41 respectively), are 

in the form of strings (lines 38-40). Both configurations and arguments are used when 

issuing ‘activateCD’ (line 44 and 52). 

 

Listing 6.5: The Generator of the dynamic Sieve 
1 
2  
3  
4   
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

#include "libDGALS.h" 
#include "IntegerList.h" // user defined typed used  in Sieve 
#include "Sieve.h"       // define constants such a s DGALS program name SHIFTER_DP 
REACTION_FUNCTION(GeneratorReaction){ 
  initReaction();                              // i nitializing this reaction 
  signal start = (signal)getArgument(1)        // g et argument-to-reaction 
  ...... 
  int start = 1;                               // d efault lower bound 
  int MAX = 17;                                // d efault upper bound 
  IntegerSet* Numbers = 0;                     // t he natural number set 
  if(getCDArgumentNum() == 0) { 
    // no argument is given to this plug-in instanc e,  
    // therefore it is the first Generator 
    await(start);                              // w ait for start signal 
    start = value(start);     
    start = start + 1;                         // a llocate first number to the set 
    Numbers = (IntegerSet*)calloc(1, sizeof(Integer Set)); 
    Numbers->value = start; 
  } 
  else { 
    // get arguments passed to this plug-in instanc e 
    Numbers = getCDArgument("Numbers", IntegerSet);  
    start = getCDArgument("start", int);     
    start = start + 1;  // extend the set with new numbers 
    // working on the received arguments 
    ...... 
  } 
  // pass the set of complete natural numbers to th e Shifter 
  if(start == MAX)  
  { 
    int id = 1; 
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32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

    // create arguments passed to activate Shifter 
    Argument* argsToShifter = createCDArguments(); 
    addCDArgument(argsToShifter, "Numbers", Integer Set, Numbers); 
    addCDArgument(argsToShifter, "id", int, id); 
    // create binding configuration for Shifter 
    Configuration* cfgSft = createCDConfiguration() ;     
    char* Sftrs = (char*)calloc(1, sizeof(char)*str len("Shifter;Shifter")+4); 
    sprintf(Sftrs, "Shifter;Shifter%02d", id); 
    addCDConfiguration(cfgSft,"clockdomain.name;clo ckdomain.rename",Sftrs);     
    // other configurations 
    ...... 
    // activate Shifter on DGALS program whose name  is define in SHIFTER_DP 
    activateCD(SHIFTER_DP, "Shifter", cfgSft, argsT oShifter);     
  } 
  else { 
    Argument* argsToGenerator = createCDArgument();  
    addCDArgument(argsToGenerator, "start", int, st art); 
    addCDArgument(argsToGenerator, "Numbers", Integ erSet, Numbers); 
    // configurations to name new instance of Gener ator 
    ...... 
    activateCD(GENERATOR_DP, "Generator", cfgGen, a rgsToGenerator); 
  }   
  pause();                                     // f inish a logical tick 
  endReaction();                               // e nd of the reaction 
} 
CDPlugin { 
  // similar to Listing 6.1 to create CD, reactions , signals, and channels 
  ...... 
} 

 

Listing 6.6 shows the partial implementation of Shifter and focuses on support for 

reactivity and synchronous parallel reactions within a CD. These features can be 

implemented using libGALS API, illustrating that libDGALS is compatible with 

libGALS. A reaction is initialized via the ‘initReaction’ (line 4). A reaction can obtain 

the arguments passed to it (line 5-9) by calling ‘getArgument’ It is followed by the end 

of the initialization block of the reaction function, by calling ‘endInitReaction’ (line 11). 

‘checkCDArgument’ is used to check the availability of an argument passed to this CD 

on line 14. The corresponding argument can be extracted with the ‘getCDArgument’ 

function (line 15). Thus the value of ‘id’ is obtained from the plug-in argument and is 

assigned to a valued signal (signal_id) by calling ‘emit’ (line 18), which in turn makes it 

visible to all the synchronous parallel reactions (‘ActivateFilter’ and ‘ActivatePopper’, 

which are instantiated from reaction functions ‘ActivateFilterReaction’ and 

‘ActivatePopperReaction’) running within Shifter. Child reactions can be forked (line 
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19) from the parent reaction, which will be blocked until all of its child reactions jointly 

finish execution (line 20). A reaction can communicate with other reactions in a 

different CD using ‘send’/’receive’ that operate on channels (lines 25 and 37). Child 

reactions (e.g. ActivateFilter and ActivatePopper) are able to receive signals emitted 

from the parent reaction (e.g. PrimeShifter) because both children and parent reactions 

are in the same CD. The value of a signal can be obtained by calling ‘value’ (line 46). 

Information such as the identification (names) of a channel, its sending CD, and its 

receiving CD are predetermined (as part of the default configuration of the plug-in, as 

lines 58-59) and can be re-assigned through configurations when activating the plug-in.  

 

Listing 6.6: Shifter of the dynamic Sieve 
1 
2  
3  
4  
5  
6  
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

// SHIFTER_DP, POPPER_DP, FITER_DP, and PRINTER_DP are string constants 
// representing the names (addresses with bind port s) of DGALS programs 
REACTION_FUNCTION(PrimeShifterReaction) { 
  initReaction(); 
  channel cFilterToShifter = (channel)getArgument(1 ); 
  channel cShifterToPrinter = (channel)getArgument( 2);   
  reaction rActivatePopper = (reaction)getArgument( 3);   
  reaction rActivateFilter = (reaction)getArgument( 4);   
  signal signal_id = (signal)getArgument(5); 
  ...... 
  endInitReaction();  
  ...... 
  int id = 0; 
  if(checkCDArgument("id") == 1) 
    id = getCDArgument("id", int); 
  // processing numbers to be used by Popper and Fi lter 
  ...... 
  emit(signal_id,id); 
  ...... 
  // fork 2 child reactions wait them for completio n 
  fork(rActivatePopper); fork(rActivateFilter);   
  join(rActivatePopper); join(rActivateFilter);   
  // receive from Filter via a channel 
  IntegerSet* listOfNonDivisibles = 0; 
  receive(cFilterToShifter, listOfNonDivisibles, In tegerSet); 
  // add the values from the received to gens   
  if(listOfNonDivisibles != 0) { 
    // re-iterate the process by activating another  instance Shifter until 
    // the complete set of primes is found (no non- divisibles left to process) 
    Argument* argsToShifter = createCDArgument(); 
    addCDArgument(argsToShifter, "Numbers", Integer Set, listOfNonDivisibles); 
    ...... 
    activateCD(SHIFTER_DP, "Shifter", configShifter , argsToShifter);     
  } 
  else { 
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36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

    // send the final set of primes to Printer 
    send(cShifterToPrinter, Prime, IntegerSet);     
  }     
  endReaction(); 
} 
REACTION_FUNCTION(ActivateFilterReaction) { 
  initReaction(); 
  signal signal_id = (signal)getArgument(1); 
  ...... 
  endInitReaction();   
  int id = value(signal_id); 
  ...... 
  // activating Filter with configurations and argu ments 
  activateCD(FILTER_DP, "Filter", configFilter, arg sToFilter);   
  endReaction(); 
} 
// reaction function to activate Popper 
REACTION_FUNCTION(ActivatePopperReaction) { ... } 
CDPlugin {  // definition of the CD plug-in 
  // similar to Generator 
  ......  
  // create channel to transfer non-divisibles of c urrent iteration 
  channel cFilterToShifter = createChannel( 
      SHIFTER_DP"Filter", PRINTER_DP"Shifter", "cFi lterToShifter"); 
  ...... // other channels or so 
} 

 

6.4.4 Configurations of a DGALS program 

When a CD is activated, it has to be accompanied by the ‘CD configuration’, which 

can be either ‘remote configurations’ or ‘local configurations’. The remote 

configurations are these used to activate CDs which are specified at run-time with 

‘activateCD’ calls. Local configurations, on the other hand, are created statically to 

activate CDs at the DGALS programs start up. As mentioned in Section 6.3.5, each 

DGALS program is equipped with a dedicated set of ‘program configurations’ which 

specify parameters such as the port (number) used by Listener. Local configurations of 

CDs are considered as part of the DGALS program configurations. Configurations of 

each DGALS program are loaded when the DGALS program starts, and are stored in 

the XML format. 

Listing 6.7 shows an XML configuration of DGALS program 1 on machine 1 

shown in Figure 6.5. Each key-value pair represents settings for the specified 

compartment, or a scope of a component. The <port> (line 1) indicates the port number 
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on which the Listener of this DGALS program will listen. The <timeout> node (line 2) 

is used as the time-out value for Listener when participating in channel communication, 

and plug-in activations as explained in detail in Section 6.5. The configuration of a 

statically loaded CD starts with <plugin> (line 3), along with the name of the plug-in 

(Startup, which is the name of the plug-in) to load. Each plug-in consists of one CD and 

one or more channels. The CDs and channels are visible system-wide, and each one 

needs to have a unique name. A name re-mapping of a CD from the referenced name 

(given as cdStartup in the ‘createClockDomain’ of Listing 6.4) to a globally system-

wide unique name is provided, starting with <clockdomain> (line 4). The original CD 

name (cdStartup) within a plug-in is identified through the <name> and </name> pair 

(line 5). The re-mapped name is then provided (Startup) and wrapped between 

<rename> and </rename> (line 6). The name re-mapping of a CD, which is ended with 

</clockdomain>, is followed by </plugin> as the end of the CD configuration, on lines 

7 and 8 respectively. A program configuration can have more than one plug-in section. 

 

Listing 6.7: The XML configuration of the DGALS program 1 
1 
2  
3  
4 
5 
6 
7 
8 

<port>12222</port> 
<timeout>3</timeout> 
<plugin>Startup 
  <clockdomain> 
    <name>cdStartup</name> 
    <rename>Startup</rename> 
  </clockdomain> 
</plugin> 

 

To show that CDs can be loaded statically at the beginning of the DGALS program 

in the Dynamic Sieve, CD Startup is removed from dynamic Sieve, shown in Figure 6.5, 

and the resulting dynamic Sieve in shown in Figure 6.6. In this case, both Generator and 

Printer will be required to be activated through the use of DGALS program 

configurations. In Figure 6.6, Printer is loaded on DGALS program 2 of machine 2, and 

a channel (named cShifterToPrinter, hard-coded as default configuration in Printer) is 

used to receive the resulting primes from Shifter. Thus, the DGALS program 

configurations, shown in Listing 6.8, detail the activation of Printer and the required 

name mappings of the channel used. 
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Figure 6.6: The distributed dynamic Sieve without CD Startup 

 

Listing 6.8 follows the conventions of Figure 6.6. Similarly, name re-mappings of 

the channels are given between the <channel> and </channel> tags. The name of the 

channel (from the ‘createChannel’) in the plug-in is given and is followed by the re-

mapped name of the channel. Since the sending and receiving parties of a channel are 

CDs, it is required to provide the correct CD names to link with the channel. 

<sender></sender> and <receiver></receiver> pairs are dedicated for this requirement. 

A CD name is in the format of ‘Machine:Port:CDName’, or just ‘CDNmae’ if running 

locally. For instance, ‘Machine1:12222:Shifter’ indicates that Shifter will be running 

within the DGALS program which binds port 12222 on Machine 1, whereas Printer01 

will be executed locally. The order of the re-mappings for the CD and channels is not 

important as long as they are all listed. 

 

Listing 6.8: The XML configuration of the DGALS program 2 

1 
2  
3  

<port>12222</port> 
<timeout>3</timeout> 
<plugin>Printer 
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4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

  <clockdomain> 
    <name>Printer</name> 
    <rename>Printer01</rename> 
  </clockdomain> 
  <channel> 
    <name>cShifterToPrinter</name> 
    <rename>ShifterToPrinter01</rename> 
    <sender>Machine1:12222:Shifter</sender> 
    <receiver>Printer01</receiver> 
  </channel> 
</plugin> 

 

6.5 The DynamicGALS framework implementation 

The libDGALS in the DynamicGALS framework extends the libGALS detailed in 

Chapter 4. Figure 6.7 presents a high-level view of the library and run-time system 

provided by the DynamicGALS framework. DGALS programs are positioned within its 

run-time environment and communicate with other DGALS programs, locally or over 

the network. Listener is invisible to the programmer and supports dynamic 

creation/destruction of CDs, channel-based communication, and CD mobility within a 

DGALS program. Synchronizer is responsible for lockstep execution of reactions within 

a CD. Currently, all the concurrent entities, which include Listeners, Synchronizers, and 

reactions in Figure 6.7, are mapped to POSIX threads. 

 

 

Figure 6.7: The programmers' perspective of the DynamicGALS framework 
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6.5.1 Data structures used by DGALS programs 

Each DGALS program and each activated CD operate over a special data structure 

called ‘Run-time information’, which is used to book-keep the status of the program and 

consists of two parts, ‘ProgramData’ and ‘PluginInstance’. ProgramData contains the 

global view of the DGALS program, such as the unique program name and the names 

assigned to the activated CDs. 

PluginInstance keeps a unique record of each activated CD instantiated from a CD 

plug-in. Each PluginInstance is assigned to a CD instance, and thus the CD plug-in 

allows multiple CDs instantiated from the same CD plug-in, which in turn enables code 

re-use at a coarser level of granularity. The data structures are complex and a complete 

explanation of each part is beyond the scope of this thesis. To achieve efficient 

implementation, instead of using interprocess communication (IPC) to operate on Run-

time information, reactions, Synchronizers, and Listener are implemented as threads to 

share the Run-time information.  

 

6.5.2 Reactions and Synchronizers 

Reactions and Synchronizers are implemented in libGALS and their use is extended 

to libDGALS. A reaction is implemented as a thread whose execution body is defined 

by a reaction function. Multiple reactions can be spawned from the same reaction 

function to achieve code re-use at a finer granularity. Synchronizer is a special thread 

that manages reactions within a CD. Synchronizers are programmer invisible and are 

created at run-time by libDGALS when corresponding CDs are activated. 

6.5.3 Listener 

Listener is a special and dedicated thread created for each DGALS program, in 

charge of channel communication, CD activation, and CD termination. Listeners also 

communicate with those of other DGALS programs to achieve these functionalities. 

Communication between Listeners is accomplished in two phases: first, handshaking to 

establish the link, then the transference of actual information. Both are carried out by 
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sending and receiving messages from one Listener to the other. Handshaking is via 

TCP/IP and transferring of information can be based on shared memory or TCP/IP 

depending on the topology of DGALS programs as described in Section 6.3.5. 

Messages contain ‘headers’ that include the source and destination of the DGALS 

programs, added by Listeners; Listeners can thus identify the underlying DGALS 

program as the sender or receiver of the messages by checking the headers. If a message 

is sent and received via the same Listener, this effectively implements a loopback so 

that shared memory is used to shorten the time of delivering messages. In this way, the 

programmer does not need to worry how the messages are sent and received. This, in 

turn, satisfies the requirement of ‘location transparency’. Current implementation 

divides messages operated upon by Listener into two groups: (1) those that represent 

channel communication and (2) those that represent plug-in activation/CD termination, 

respectively. Types of messages are also embedded in the headers of the messages. 

Listener spawns its own child threads to decode messages for each incoming connection 

to the DGALS program. 

6.5.4 Scheduling of reactions, Synchronizers, and Listener 

The scheduling of reactions is handled by the host operating system (OS) scheduler, 

which works closely with the Synchronizer. If a reaction is blocked due to a libDGALS 

API call, control is transferred to another reaction that is ready for execution. The 

interleaving of reaction execution and transfer of the processor control from one 

reaction to another is governed by the OS scheduler. However, a reaction cannot be 

scheduled to be executed unless it has the permission of its CD Synchronizer, which 

enforces lock-step execution of reactions, and hence the synchronous MoC within CDs. 

Scheduling strategies of different OSs only affect the execution sequence of reactions 

that do not have mutual signal dependencies. A reaction can run in parallel with 

reactions in the same CD, given that these are not blocked due to signal dependencies 

and if the execution platform allows it (e.g. on a multicore platform). Listener along its 

child threads, are scheduled by the OS in the same fashion as the asynchronous 

execution and activation of the CDs. 
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DGALS programs are multithreaded, the threads being implemented by using 

POSIX threads, i.e. pthread library [Nichols et al., 1996]. In DGALS programs, several 

kinds of threads are created as shown in Figure 6.7: (1) the main program thread, which 

in turn becomes the DGALS program, (2) reaction threads, (3) Synchronizer threads, (4) 

Listener thread, and (5) message-decoding threads for channel communications and CD 

activations/terminations. 

Each reaction maps onto a single reaction thread. For example, if there are three 

reactions in a clock domain, three reaction threads will be created. One Synchronizer 

thread will be created for each CD. The Listener thread, one for each DGALS program, 

waits for incoming messages and spawns child threads to decode the messages sent to 

the Listeners. Reaction threads are terminated when a CD is terminated. The child 

threads of Listener threads terminate when messages are decoded and actions are 

performed. Listener thread terminates only when the DGALS program terminates. 

Choosing between user-level or kernel-level threading libraries is application 

dependent. Since kernel-level threading maps each thread to processes of the OS, 

executions of these threads can benefit from the multicore architecture. This is suitable 

for parallelizing data computation in the reactions of either the same or different CDs. 

However, DGALS programs using kernel-level threading might suffer from 

performance drawback because of context switching at the kernel level, for systems 

with a minimal number of data computations. Using a user-level threading library can 

be seen as the remedy. However, such a DGALS program will not benefit from the 

multicore platform. 

6.5.5 CD activation and termination 

CD activations are governed by Listeners who start a handshaking prior to the 

instantiation of a CD plug-in. The CD activation is carried out between two CDs, which 

are called the ‘requester’ and the ‘responder’. The requester CD requires from another 

CD, the responder, to be activated by Listeners via ‘activeCD’. When one requester and 

the responder belong to the same DGALS program, it is equivalent to spawning a new 

plug-in instance locally. Listener handles the incoming messages used for the CD 

activation and changes the state of ‘PluginInstance’. A state variable in PluginInstance 
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indicates the current state of the CD activation. Figure 6.8 shows the finite state 

machine (FSM) of the requester. To simplify the data structure, state naming is shared 

between the requester and the responder. This is illustrated in Figure 6.9, the FSM of the 

responder. However, requester and responder work on different copies of 

PluginInstance. The PluginInstance at the responder side is registered and permanent, 

while that at the requester side will be eliminated once the plug-in is activated.  

 

S0 - Initialize data 

structure to activate 

CD

S1 - Check if the CD 

plug-in file is 

available on 

destination

S2 - Send 

configurations and 
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Figure 6.8: FSM of the requester 

 

The activation of a CD requires configurations of the activated CD. This 

configuration contains information such as the activated CD’s mapped name which is 

checked for any duplication by Listener. The requester will be notified if there is a 

naming conflict or the responder fails to be activated; for example if the existing name 
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of a channel has been given to a new instance. CD termination can be requested by any 

CD by calling the terminateCD. CD termination follows the same state-based approach 

as CD activation. 

 

Figure 6.9: FSM of the responder 

 

6.5.6 Channel communication and rendezvous in libDGALS 

The libDGALS in the DynamicGALS framework inherits the point-to-point, 

rendezvous-based communication mechanism from libGALS, which is semantically 

identical to one used in SystemJ [Malik et. al, 2010]. Communication in channels is 

similar in functionality to the CD activation mechanism described in Section 6.5.5, that 
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is, based on handshaking and message passing. Data sent over channels are stored in 

different copies by means of deep copying. As mentioned in Section 6.3.5, two 

implementations are available: TCP/IP and shared-memory based. 

In the TCP/IP implementation, data are serialized through the use of a serialization 

function (used by the ‘send’ API call), provided by the designer, for each data type. The 

serialized data are sent through TCP/IP as payloads along with headers inserted by 

Listeners, and are received by Listener at the DGALS program where the receiver CD 

resides. The ‘receive’ API call utilizes the de-serialization function and restores the data. 

On the other hand, in the shared-memory implementation, send API call serialized and 

de-serialize functions create a deep copy of data-to-send in the heap. A pointer to the 

copied data is used directly by the receive API call. No data transfer over the network 

stack is required in this case to reduce the workload of Listener effectively. 

6.5.7 DGALS system over distributed systems 

Different virtual topologies of CDs (not necessarily representing the underlying 

physical architecture) can be established by the designer allowing them to logically 

arrange the DGALS programs into DGALS systems based on convenience and practical 

requirements. Benchmarks in Section 6.6 present examples of partitioning strategies for 

DGALS systems into a number of DGALS programs running on different physical 

machines, effectively building virtual topologies. In general, design-space exploration is 

required to construct the most efficient topologies and partitioning of CDs. 

6.6 Experimental results 

A number of experiments with different examples and physical execution-platform 

setups to gauge the effectiveness of the DynamicGALS framework approach have been 

carried out. The benchmark set is shown in Table 6.3. 

Table 6.3 shows the name of the application, followed by the name of the CD plug-

ins used in the application. This is followed by the number of instances of those plug-ins 

created. The numbers of channels and reactions in each plug-in are also provided. The 

code size is given for each plug-in and the complete DGALS system. The Send-Receive 
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example acts as a micro-benchmark, which gauges the efficiency of the fundamental CD 

instantiation and channel communication mechanism. The Sieve, which has been used 

as a running example throughout this chapter, has been coded in two different versions. 

The dynamic version is as shown in Figure 6.6, while the static version is created from 

the dynamic version after finding the overall number of CDs and channels instantiated 

in the lifetime of the dynamic version and instantiating all as static.  

 

Table 6.3: Benchmarks selected for experimentation 

Applications CD plug-ins 
Number of 

Instances 

Number of 

channels 

Number of 

reactions 

Code Size (KB) 

Plug-ins total Size 

Send Receive                                                                                                                                                

141K 

  SendCD 1 1 1 8.8K 

  ReceiveCD 1 1 1 9.2K 

Sieve (prime < 17) static version                                                                                                                 

150K (Main program and plug-ins altogether) 

  Generator 16 2 1   

  Shifter 7 6 3   

  Popper 7 2 1   

  Filter 7 3 1   

  Printer 1 1 1   

Sieve (prime < 17) dynamic version                                                                                                         

188.3K 

  Generator 16 0 1 13K 

  Shifter 7 2 3 21K 

  Popper 7 1 1 9.7K 

  Filter 7 2 1 12K 

  Printer 1 1 1 9.6K 

*The size of libDGALS is 123K 

 

The same examples have subsequently been implemented on a heterogeneous mix 

of underlying physical execution and communication architectures. Table 6.4 shows the 

different physical implementations used, twelve groups in total. For groups E, F, K, and 

L two sub-groups are created: machines are distributed on WAN (Internet) and LAN 

(Intranet). All experimental runs were performed on Intel Core 2 Duo 2.6GHz with 8GB 

of RAM computation node with Linux 2.6.29.6 as the host OS. 10,000 runs were carried 

out for each experimental group. Average, median, mode, standard deviation, maximum, 
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and minimum execution times are logged. Average tick count and average tick length of 

each clock domain are also recorded. 

 

Table 6.4: Varying physical implementation architectures 

Experiment 

group 

Clock 

domain 

creation 

Clock domains 

created in single or 

multiple DGALS 

programs 

DGALS programs 

executed on same 

or different 

machines 

Effective channel 

implementation 

A Dynamic Single Same TCP/IP* 

B Dynamic Single Same Shared memory 

C Dynamic Multiple Same TCP/IP 

D Dynamic Multiple Same TCP/IP 

E Dynamic Multiple Different TCP/IP 

F Dynamic Multiple Different TCP/IP 

G Static Single Same TCP/IP* 

H Static Single Same Shared memory 

I Static Multiple Same TCP/IP 

J Static Multiple Same TCP/IP 

K Static Multiple Different TCP/IP 

L Static Multiple Different TCP/IP 

*Shared memory is disabled for experiment purpose 

6.6.1 The Send-Receive example discussion 

Figure 6.10 illustrates the average execution times of groups for the Send-Receive 

example. The execution time is measured as the time to complete the required 

computation. The experiments demonstrate the following: 

1. The shared-memory based channels perform better than the TCP/IP based 

counterparts by comparing B to A and H to G, respectively. 

2. The static versions of Send-Receive (groups G to L) perform better than the 

dynamic versions (groups A to F). This could be because dynamic creation 

introduces overhead, such as handshaking and decoding messages to 

activate CD. 

3. In groups with use of TCP/IP based channels, the execution times are bound 

by the communication method (underlying network). This applies to both 

static and dynamic CD creation. For instance, the WAN (Internet) versions 

of groups E and F are around 16 to 17 times slower than their LAN (Intranet) 
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counterparts. Similarly, WAN versions of groups K and L perform around 

10 times slower than their LAN versions. 

4. From groups D, J, F, and L, it can be concluded that when a system is 

distributed, i.e., implemented as multiple DGALS programs, shared 

memory is not used in the channel communication. 

5. When a DGALS system consists of multiple DGALS programs on the same 

machine, TCP/IP channels are used. The execution times of such systems 

(groups C and I) are close to a DGALS system implemented as multiple 

programs executing on different machines over Intranet (LAN versions of E, 

F, K, and L). This shows that the overhead of TCP/IP communication plays 

a significant role and makes a significant contribution to the execution time. 
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Figure 6.10: Average execution times for Send-Receive example 
 

6.6.2 Discussions of the Sieve example 

Average execution times of groups for the Sieve example are illustrated in Figure 

6.11. The experiments demonstrate the following: 
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1. Shared-memory channels perform faster, as in the Send-Receive case. 3 to 7 

times performance gain is achieved in Sieve compared to 1.33 to 1.76 times 

of gain in Send-Receive. The difference between Send-Receive and Sieve 

comes from the fact that the time taken in channel communication in Sieve 

takes a greater proportion of the overall execution time. 

2. The static versions of Sieve perform worse than the dynamic version. It was 

observed that the execution of the static versions utilize the processor (from 

processor-usage monitors) much more than the dynamic versions. It was 

also observed that the ‘system time’ of static versions takes a greater 

proportion of the execution time than the dynamic ones. This is because 

only the necessary CDs are active in dynamic sieves. However, in the static 

version, all 38 CDs are active all the time, consuming significant processor 

resources, especially with the huge number of very short ticks which occur 

during channel communication handshaking. This creates a large number of 

polling-type loops immediately, one after another, resulting in performance 

degradation. A proposed solution is provided, which adds a short time delay 

at the end of each tick boundary, explained in detail later. 

3. The bottleneck for dynamic Sieve in terms of execution times is due to the 

communication medium. Sieve using LAN (group C) is around 2.5 times 

faster than the WAN (group E) version. However, the static Sieve, even 

when implemented over a LAN (group G) connection, does not greatly 

outperform the WAN-based dynamic Sieve, thus indicating that the 

performance bottleneck is due to the nature of static CDs, as discussed 

previously. 

 

As mentioned earlier, when sending and receiving CDs wait for rendezvous over a 

channel communication, both CDs still carry out logical ticks. Many short ticks will 

occur in both sending and receiving CDs, in a scenario that both CDs have only one 

reaction, and are trying to obtain channel rendezvous. This involves continuous 
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checking of the status of the channel as illustrated in Figure 6.12 (a). The overall 

significance of long ticks decreases due to the huge number of short ticks, hence the 

reduction of average tick times to unrealistic figures in general. 
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Figure 6.11: Average execution times for Sieve examples 

 

It is possible for short ticks to create polling-like activities similar to a looped 

behavior with only one pause statement, as illustrated in Figure 6.12 (b). The general 

solutions to relieving such polling-like executions, which have been also tested, are: 

1. Use signaling such as interrupts and semaphores: Insert semaphore at the 

beginning of the input function for each CD, and signal the semaphores 

from the other thread/interrupt. When the channel is ready, Listener, which 

governs channel communication, can signal the waiting semaphore in order 

to continue execution. However, this results in violation of the semantics of 

ticks, because waiting on a semaphore is a blocking operation that blocks all 

other synchronous reactions in the same CD, which in turn prevents CDs 

continuing to carry out any ticks during channel communication. This 

results in the violation of the GALS semantics (and hence DGALS 
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semantics) in which other reactions should be able to proceed when one 

reaction is waiting for rendezvous. 

2. Add time-delay to the loop so that the loop does not iterate as frequently: 

This approach preserves the semantics but elongates the tick length (hence 

the overall execution time) by adding a short time-delay to each tick. The 

choice of time-delay is important and must be additionally investigated. 

Choosing a time-delay which is too short will introduce unnecessary 

overheads due to frequent context switching.  

 

 

Figure 6.12: A very short tick in a while-loop will form a polling-like loop 

 

A one microsecond time-delay in these experiments (this is completely heuristic 

and, obviously, application dependent) has been chosen. This way, for very short ticks 

the processor utilization was lowered by 17%. For longer ticks, the delay is only a 

fraction of the actual computational time and it does not introduce big overheads in 

timing. The time-delay is added at the beginning of the input function of each clock 

domain, which is called at each logical tick. Figure 6.13 shows the average execution 

time for Sieve examples with time-delayed ticks. A performance gain of 9.42 to 46.72 

times compared to the non-delayed versions of the Sieves is achieved. For WAN-based 

groups, performance improves by 1.24 to 1.95 times. CPU utilization is lowered from 

90% (the original Sieve implementation) to around 15%, which indicates that a great 

part of the execution time was due to the short polling-like ticks. System times also 

decrease drastically. The actual tick lengths are no longer hidden behind the 

overwhelming number of short ticks. In this case, the average tick duration is not 
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reduced by the meaningless short ticks and hence are close to the realistic and actual 

execution times of clock domains.  
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Figure 6.13: Average execution times of Sieves with inserting time-delays in ticks 
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Figure 6.14: Average execution times with time-delayed ticks (without WAN groups) 
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Figure 6.14 illustrates the execution times of Send-Receive and Sieve shown 

together for comparison purposes. The WAN-based groups are not included because 

they have much larger execution times than the other groups because of the slower 

communication layer and they thus contribute little to the discussion.  

 

In the observations, execution times from Sieve match experimental results of 

Send-Receive with the following findings: 

1. Channels perform better when using shared memory than TCP/IP due to 

communication overheads with the latter. 

2. The dynamic versions outperform static versions when computation (as 

opposed to communication) forms a significant part of the overall 

application. 

3. Communication medium limits the execution speeds. LAN-based groups 

have better results than WAN-based. 

4. Channels connecting different DGALS programs do not benefit from shared 

memory regardless of the fact that those programs run on the same 

computer. 

5. From C and I groups, it can be concluded that even though Dynamic GALS 

programs are located on the same machine, the execution bottleneck 

remains because of the use of TCP/IP connections. 

 

Experiments show that two features of libDGALS contribute to the improvement of 

execution times by having: (1) channels implemented with shared memory, and (2) 

addition of time delay at each tick boundary in order to lower processor utilization. Note 

that it would also be possible to employ other more efficient communication 

mechanisms that rely on specific architectural solutions to improve performance of 

channels, which is a topic of the future work. The static version of Sieve has a smaller 

memory footprint (150K vs 188.3K) compared to the dynamic version, but does not 

have the mobility of clock domains, and has a slower overall execution time. 
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6.6.3 Comparison with other languages and systems 

A number of experiments were carried out with different examples and physical 

execution architecture setups to gauge the effectiveness of our libDGALS approach. 

Experiments were performed on Linux kernel 2.6.33.3 running on Intel Core 2 Duo 

2.6GHz with 4GB RAM. In the distributed scenario, workstations of the same 

specifications are used. These machines have a slightly better specification than those 

used for comparison with JADE and DSystemJ reported in [Malik et al., 2010]. The 

benchmark set is shown in Table 6.5, which also shows the number of lines of source 

code for each application, together with the memory footprint (generated by the 

application and one that includes the size of the library). Lines of source code 

demonstrate the effort required to describe GALS systems and their maintainability. The 

source code size of DGALS programs is comparable to JADE. With regard to DSystemJ, 

which is a language-based DGALS approach, the difference varies from 7% for Send-

Receive to 92% for Sieve (first 3 columns of Table 6.5). It is worth noting that the 

structure of each CD plug-in, such as the CDs, channels, signals, and reactions, require 

explicit definition as compared to DSystemJ, which is a language-based GALS 

approach, where system structures are abstracted away, hence the smaller source code 

sizes.  

The memory footprint of DGALS programs is comparable to DSystemJ and JADE 

(3 middle columns of Table 6.5). Because the DGALS library is compact, in contrast to 

SystemJ and JADE libraries, its programs result in the smallest total memory footprints 

amongst the three approaches (3 final columns of Table 6.5). Since this approach does 

not require the JVM, the real memory footprint for DGALS programs is much lower.  

Table 6.6 and Table 6.7 present the execution times for three approaches: DSystemJ, 

JADE, and DGALS. Average tick times are obtained through dividing total execution 

time by the number of the ticks required to complete the required computations. It is 

obvious that DGALS programs outperform the functional equivalent models described 

in DSystemJ and JADE. For the most complex system (security surveillance), the 

DGALS programs are on average 490 times faster than DSystemJ and 5770 times faster 

than JADE. Since inter-program CD communication is based on TCP, the 
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communicating DGALS programs on the same machine have similar performance to 

DGALS programs distributed on LAN.  

DGALS programs' smaller memory footprint and much faster execution times 

through the support of libDGALS makes the DynamicGALS framework more suitable 

for designing cyber-physical systems compared to both DSystemJ and JADE.   

Table 6.5: Lines of code and memory footprint comparisons 

Example 
Lines of source code 

Generated memory footprint 
(KB) 

Total memory footprint (generated 
+ library) (KB) 

DSystemJ JADE libDGALS DSystemJ JADE libDGALS DSystemJ JADE libDGALS 
Sieve 163 267 313 99 12 65 216 2623 188 

Surveillance 
system 

125 238 216 158 14.5 33.5 265 2625.3 181 

Send 
Receive 

39 118 42 38 5.6 18 145 2616.6 141 

 

Table 6.6: Execution time comparisons (Single machine with 2 cores) 

Examples 
Run-time (ms/tick) 

DSystemJ JADE libDGALS 
Send- 

Receive 
CD1 CD2 CD1 CD2 CD1 CD2 

5 5.57 74.7 185.9 0.009 0.008 

Sieve 
CD1 CD2 CD3 CD4 CD5 CD1 CD2 CD3 CD4 CD5 CD1 CD2 CD3 CD4 
0.1 17 16.7 23.4 17 1 340 361.8 322.4 514 0.25 0.33 1.31 0.74 

 

Table 6.7: Execution time comparisons (Distributed system 2 machines 4 cores each) 

Example 
Run-time (ms/tick) 

DSystemJ JADE libDGALS 
Send 

Receive 
CD1 CD2 CD1 CD2 CD1 CD2 
20.7 22.2 86.88 470 0.009 0.01 

Surveillance 
system 

CD1 CD2 CD3 CD4 CD1 CD2 CD3 CD4 CD1 CD2 CD3 CD4 
202.7 191.4 125.1 133.7 3243.4 1498.1 1320.6 1603 0.418 0.457 0.253 0.217 

 

6.7 Summary 

This chapter describes the DynamicGALS framework designed to support 

programming of dynamic systems based on the formal Globally Asynchronous Locally 

Synchronous (GALS) Model of Computation (MoC). The DynamicGALS framework 

enables programmers to describe simple to large scale DGALS systems by using CD 

plug-ins. Dynamic creation of CDs and channels in the CD plug-in instances, along with 

‘weak’ CD mobility, are provided in an API to strengthen the design capability, thereby 

making the DynamicGALS framework suitable for implementing a wide range of 
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dynamic distributed systems. The framework also provides an abstract means of 

programming reactivity and composition of synchronous concurrent processes using 

behavioral hierarchy. The approach separates the design and modeling of the system 

from the underlying physical execution and communication layer. This allows changing 

model and physical layers independently without affecting each other. The 

DynamicGALS framework allows the utilizing of a mixture of different execution and 

communication architectures with ease and efficiency. Being based on C, it allows easy 

integration of legacy code. Future work includes graphical tools for describing DGALS 

programs and systems to reduce design effort, as well as building tools for automated 

mapping of CDs and DGALS programs to heterogeneous architectures that will enable 

creation of virtual topologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6. Dynamic system design in DynamicGALS 208 

 

 

 

 

 

 

 

 



 

7777    
7. 7. 7. 7. Conclusions and future workConclusions and future workConclusions and future workConclusions and future work    

    
With increasing complexity in system design, adopting a higher level of abstraction 

and applying design with formal models of computation reduces design effort and 

ensures the correctness of the design. Several approaches that enhance system design 

have been proposed and developed and are detailed in Chapter 2. Chapters 3 to 6 detail 

the development of a library-based approach to support both GALS and DGALS MoC 

system design from programming language C, which is still a major language in 

embedded systems design. In this chapter, a summary of the work presented in this 

thesis, as well as its conclusions, is given, along with plans for possible future works. 

7.1 Conclusions 

Discussions of system level-design are detailed in Chapter 3. System-level design, 

which can be categorized into system-level synthesis, component-based design, and 

platform-based design, are performed according to the available resources and 

knowledge of the target platform. The design that can be further divided into stages 
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consists of the specification model, the functional model, component-emergence model, 

bus-architecture model, behavior model, bus-functional model, cycle-accurate model, 

and implementation model. Software and hardware partitioning are realized throughout 

the refinements. Operating systems, used to manage software concurrency, serve as the 

bridge between software and hardware of the systems, and play an important role in the 

design of systems that include software-implemented functionalities. The modeling of 

operating systems is of interest in order to achieve a model of the whole software of the 

designed system and can be carried out in different granularities of accuracy. In Chapter 

3, an OS model has been developed in SYSTEMC. The model provides a number of 

services which can be used by application processes. Signal-operation services, which 

are described as part of the core services in the OS model, are used to support reactive 

behaviors which can be specified in synchronous/reactive language such as ESTEREL. 

Case studies have been implemented to justify the necessities of having signal-operation 

services for implementing reactive systems with conventional OS services. The 

implementation of signal-operation services can be built-in as part of a kernel or as a 

user-level library. The concept of signal-operation services is further extended and 

developed resulting in a library-based approach, libGALS, detailed in Chapter 4. 

libGALS provides a more powerful mechanism and allows both synchronous and 

asynchronous concurrency to be incorporated as a single, correct libGALS program, 

that complies with the globally asynchronous locally synchronous (GALS) MoC. 

Within a libGALS program, the overall behaviors of system are first divided into groups 

of asynchronous clock domains. Finer grain concurrency in each clock domain is 

implemented in the form of synchronous reactions, which within the same clock 

domains, are executed in logical time steps called ticks, being the same as systems 

described in synchronous languages. Synchronous reactions of the same clock domain 

communicate with each other through signal broadcasting. On the other hand, reactions 

of different clock domains send and receive information to and from each other through 

the use of channels which in libGALS programs follow the semantics of CSP 

rendezvous. libGALS is implemented based on primitive services provided by the 

operating systems, such as thread creations and semaphores. Each synchronous reaction 
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is mapped to a thread of the libGALS program, and is governed by the programmer 

invisible thread: Synchronizer. Each clock domain is equipped with one Synchronizer 

which uses semaphores, provided by the OS to resolve dependencies between reactions, 

as locks. Because of the thread-based approach, libGALS can benefit from the 

multicore/multiprocessor architecture. The libGALS approach is the first known library-

based approach that supports programming GALS systems. SystemJ, a language-based 

approach, is compared with libGALS in Chapter 4. 

libGALS enables designers to construct correct-by-design software programs given 

that the software is described correctly with regard to the specification. Behavior of 

programs can be also seen as behaviors of the underlying processor(s) in the system 

model. To present a system model with correct programs, a framework for integrating 

libGALS programs into the SYSTEMC modeling environment, called GALS-Designer, 

has been developed, as detailed in Chapter 5. libGALS programs are wrapped to 

SYSTEMC modules through the use of macros and static functions in C++. Because 

libGALS makes use of the multicore/multiprocessor of the simulation host, the 

simulation speed of libGALS-SYSTEMC modules is greatly enhanced. Therefore the 

GALS-Designer framework provides feasibilities for both describing correct software 

programs and fast simulation speed. Furthermore, GALS-Designer also enables the 

exploration of distributing GALS systems into single or multiple libGALS programs. 

The latter can be mapped into different processors locally (on the same platform) or 

different machines on distributed platforms. Communication between libGALS 

programs in GALS-Designer is achieved through the help of SYSTEMC modeling 

techniques. 

To further explore dynamicity in distributed systems, enhancements such as 

creating clock domains in run-time on different computational nodes have been added to 

libGALS, resulting in a library called libDGALS, which follows the Dynamic GALS 

(DGALS) MoC. The DynamicGALS framework, which provides both interfaces to 

program libDGALS programs and run-time support for them, is detailed in Chapter 6. 

Each libDGALS program is similar to a libGALS program, and hosts a number of clock 

domains. libDGALS program is further equipped with specialized Listener threads to 
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handle clock domain creations and communications between libDGALS programs. The 

libDGALS library, inherited from its predecessor libGALS, requires minimal support 

from the OS. In this case, thread creation, semaphore, and networking stack are the only 

requirements on the underlying OS. The code size and high performance of libDGALS 

programs are compared with the language-based counter-parts, DSystemJ at the end of 

the Chapter 6. 

7.2 Future research 

7.2.1 Hardware support for libGALS and libDGALS 

Based on the results from OS modeling and simulations, possible and preferred 

configuration (HW/SW partitioning) for the OS implementation can be obtained as 

shown in Chapter 3. Hardware support to the OS thus needs further investigation to 

support GALS MoC. The current functional unit to support reactivity is available 

through customization of processors but does not have the support from the OS which is 

required for libGALS and libDGALS. Such support can be similar to RTM proposed in 

[Kohout et al., 2004] by applying dependency resolution in the scheduling policy which 

operates in hardware. 

7.2.2 Exploration of styles of concurrent execution 

Future work will explore how to manage and achieve even higher performance 

gains by controlling processor affinity of libGALS and libDGALS. The scheduling of 

synchronous reactions is governed by the underlying scheduling policy of the operating 

systems. The operating systems generally follow either priority-based scheduling or 

fair-for-all scheduling. Priority-based scheduling is not used by synchronous reactions 

in the same clock domain, because it is not necessary; Synchronizer will handle the 

execution sequences by resolving the dependencies, executed as the lowest priority 

process. Fair scheduling is often adopted by general operating systems also, as in 

implementation of libGALS and libDGALS on these systems. However, in control-

dominated applications, performance of both libGALS and libDGALS programs might 
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suffer from unnecessary ticks while performing communications between clock 

domains. In this case, controlling processor affinity to achieve best execution 

performance of clock domains will be investigated. For example, a clock domain may 

be suspended when it is only waiting for the rendezvous on channel communication to 

prevent unnecessary ticks elapse, and thus lower the performance of the overall system. 

Such an approach can be adopted in GALS-Designer, which also relies on the execution 

model of libGALS, in order to increase the simulation speed. 

Furthermore, libDGALS is currently built with weak mobility, that is, new 

instances of clock domains are created without ‘previous memories’ (previous working 

state of the clock domain), unless giving all the required information as the argument 

upon activation of the clock domain. Investigation to include the thread/process state of 

each reaction to enable strong mobility will be carried out as future work. 

7.2.3 Designer-friendly framework 

Glue-logic such as SyncNodes in GALS-Designer is used to integrate libGALS 

programs to libGALS-SYSTEMC modules. This glue-logic is currently presented in the 

form of source codes, which are prone to programmers’ errors, such as accidental 

modification of the source code. In order to resolve this issue, parsers of a libGALS 

program can be used to generate essential parts of libGALS-SYSTEMC module, by 

checking clock domains and reactions in the program sources. On top of this approach, 

a GUI will be developed as a part of GALS-Designer. It will reduce the amount of 

textual information entered by the designers to prevent programming errors. The GUI 

will automatically generate templates of libGALS programs, and the designer will only 

need to populate algorithmic parts. 

An approach of using animation tools to model complex dynamic systems has been 

introduced in [Efroni et al., 2005]. GALS systems involve execution flows of clock 

domains, communications between clock domains, and dynamic creations of clock 

domains, which can be presented in a similar manner. Through the use of animation 

tools, along with the other graphical tools, specification of GALS systems and activities 

within can be modeled and observed in an intuitive fashion. This would also prevent 



Chapter 7. Conclusions and future works 214 

 

manual coding which leads to programmatic error due to the human factor, such as 

incorrect channel creations, i.e. sending and receiving clock domains are invalid. 

The GUI approaches can also be applied to the DynamicGALS framework. For 

example, the designer should be able to see the initial state of the DGALS systems, such 

as the available storage and resources of each computational node, to estimate if a clock 

domain can be spawned and perform correctly on the target computational node. Also, 

the default configuration should also be generated automatically to prevent 

programmers’ errors. 

7.2.4 Better support for embedded systems 

Overheads may occur when designing systems with very fine grain concurrency, as 

for instance, having many concurrent synchronous reactions with very tiny numbers of 

operations to perform. In this case, synchronization overheads may annul the actual 

performance gain from the multicore systems, because of context switching. There are 

approaches to prevent heavy context switching (or no context switching is required) on 

the operating systems level, that are adopted in researches of sensor networks. For 

instance, the operating system Contiki applies the uses of protothread [Dunkels et al., 

2006] to be executed on platforms that require low memory footprint. 

With tight merging of minimal functionalities of the operating system (particularly 

scheduling and support for dynamic loading) with a library-based approach, an 

operating system might not be required anymore. This would be suitable on bare-bone 

processors. This approach would place an abstract machine above the hardware of 

traditional processors, and would equally support language-based systems (compilers) 

and library-based systems as libDGALS.  

This research should result in an abstract machine ready to use for implementation 

of libDGALS programs on distributed platforms that include wireless sensor networks 

based on more powerful processors (e.g. ARM-type) and also open a research line 

resulting in specification of desired features of the processors that would directly 

support DynamicGALS MoC. 
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7.2.5 Provide mappings of existing MoCs 

Applying a library- and language- based approach to model process network has 

been proposed in some earlier works. For example, NRP (nets of reactive processes) 

[Boussinot, 1992] implements KPN-like systems with SUGRARCUBES (as an extension 

based on Java). Similarly, Synchronous Kahn Network [Caspi & Pouzet, 1996] is 

proposed with programming in the style of functional language, which relies on the 

support of the dedicated compiler. Synchronous Kahn Network can be seen as one of 

the solutions to KPN by applying the concepts of synchrony. 

Similarly, investigation should be carried out to map a PN/KPN-like approach to 

libGALS, or even with distributed support as presented in libDGALS. A fix-rated-based 

approach to KPN, such as SDF, can also be adopted while the rate can be computed on-

run-time as part of the investigation into scheduling policy mentioned in Section 7.2.2.  

7.2.6 Support of verification 

As a library-based approach, libGALS and libDGALS leave to the designers some 

of the responsibility of constructing correct programs. It is thus possible for a designer 

to write a compliant program, which, while not violating the syntax of the base language 

(i.e. C), does behave incorrectly. This problem does not exist in a language-based 

approach such as SystemJ and DSystemJ. Because libGALS and libDGALS share 

similar features to SystemJ and DSystemJ, it is possible to extract, or to map the control 

part of the language, to both SystemJ and DSystemJ or other similar languages to 

perform a static check, e.g. verification. Static checking on programs also opens doors 

to other verification methodologies mentioned in the dynamic languages such as DSL 

presented in [Attar et al., 2011]. 
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