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Abstract

With the increasing use of multicore and distrilbutemputing platforms, software
systems are becoming more and more complex andcasrequire tremendous design
effort. They are also very difficult to debug angagantee for correct functionality. In
the case of embedded systems, ideally, softwarela@went could proceed in parallel
with the development of the target hardware if thisot known in advance.

This thesis addresses complex software systemslogpenent which can be
underpinned by formal models of computation andctvhise some kind of operating
system to abstract the hardware platform from systevelopers. Two specific models
of computation, synchronous reactive and asynclugneombined into a Globally
Asynchronous Locally Synchronous (GALS) model aseduas the underlying formal
model of the target systems. A set of tools to en@nt the GALS model in traditional
programming languages, C and C++, is used to emahlse of huge legacy codes. The
tools consist of libraries and run-time supportt tabow the design of two types of
GALS systems for the range of target platforms:stajic systems with a fixed number
of concurrent processes and (2) dynamic GALS (DGAdyStems where the number of
processes varies during system life. The implentehitearies and run-time support
depend only minimally on the operating system, esitlcey use a very primitive
synchronization mechanism in the form of semaphaed are ported to a number of
non-real-time and real-time operating systems wd#éntical application programming
interface (API).

A specific version of API is developed for the deygnent of static GALS systems
in system-level design languages$EmMC, which allows system designers to model
both hardware and software within the same systemem thus developing software
before the actual hardware is available.

The developed APIs are in compliance with the GAn8del of computation
(MoC), opening the possibilities for formal verditton of designs or their parts, or of

the use of the API in conjunction with programmiagguages based on GALS MoC.
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Introduction

The development of computer systems is driven blgrtelogy advancements. New
application requirements, particularly those treat be classified as embedded systems,
are becoming very challenging due to increasedesystomplexity. The large number
of concurrent behaviors that are implemented in moation with hardware and
software components require us to change traditidesign practices to reflect these
new realities. The development of systems is tylyiddivided into phases of system
specification, system verification, component pigning, simulation, implementation,

and validation, before the delivering of the fipabduct.
1.1 Problemsin design of computer systems

Designing computer systems requires sophisticaezhniques to overcome
constraints caused by the complexities of the systender design. It is expected that
complex system design requires much time. Howeawgeznsure that products will be on
the shelves on time, extra effort must be spentiwithe time available for product
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release. There are methodologies and remediesdiessdthe underlying issues, for
example design-gap, by adopting the use of advasgsig@m modeling and synthesis
techniques. System models often include models mbeelded and/or real-time
operating systems (OSs), to estimate and mimicrdymbehaviors in the final systems.

Because of the ever-increasing application domafircomputer systems and time-
to-market constraints, and in order to maintain imaxn productivity, current design
methodologies focus on how to achieve the finalleamgntation in the shortest time
with the minimum resources. There are many kindsashputer systems, performing
different dedicated operations. For example, autmma (in manufacturing),
transportation (automotive applications and trafiontrol), communications (e.g.
mobile phones and internets), and healthcare (eldct aids and life support) are
typical applications of computer systems. The desigproaches and tools available are
often application-field specific. Such approachesistimes come from experience; i.e.
they are heuristic. Designs following such methodms may work without any
problem for long periods of time, but because t¢dck of theoretical background and
support for analysis, hidden problematic issueshard to detect and locate when error
occurs. Safety and liveness are two important daspccritical systems; such systems
need to be designed with care and should be tdldécarunforeseen events (fault
tolerant). Without proper theoretical-based reasgniesigning critical systems may be
just like filling visible holes which is an unretike approach. For instance, thread-based
designs in software programming are error pronead@; 1999], [Lee, 2006], and
difficult to program [Serrano et al., 2004] becatisey rely on the experience and care
of the designer.

Furthermore, as technologies advance, the perfarenan processing units (i.e.
processors) and available connectivity (e.g. higles networks) are widely available.
The scope of a system under design is no longengdeschip or computer but also
networks of distributed computational nodes. Thee sof each computational node
varies according to its requirements and the opesthat it performs. However, the
design still depends on the background of the desjgo that one may not have the full

picture of the system under design, and the coeeadghe thinking is just not wide
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enough. The consequences may not be just the dadirthe system, but also of

unpredicted design time and financial losses.
1.2 Tools based on theory to provide correct designs

Tools and methodologies based on theories have pemosed and developed
widely to provide designers peace of mind whenywagrout design tasks and decisions.
The approaches are mostly application-specificjlaimo heuristic methods but better
in the sense that potential problems can be founih \given limitations and
requirements. Limitations in methodological applrescare not necessarily drawbacks
for the designs, but can sometimes be ground raegrevent incorrect plans and
strategies which may lead to a disaster in thegdgsiocess.

The focus of this thesis is to address the issmesta provide the tools with
theoretical basis to design concurrent systems legtf design effort to ensure both the
safety and the correctness of the design. It  talsenable the linkage of such tools to
other application domains with concurrency. Suaiis@re also suitable but not limited
to system-level design, containing componentsdhaexecuted concurrently.

Existing theoretical methodologies for designingteyns with concurrency are
based on various models of computations (MoCs). 8/&ch as synchronous
languages (ETEREL[Berry & Gonthier, 1988], LSTRE[Caspi et al., 1987], and@&iAL
[Benveniste et al.,, 1985]), process calculi (e.gom@unicating Sequential
Processes/CSP [Hoare, 1978]) and networks (e.g. KR&hn, 1974]), globally
asynchronous and locally synchronous (GALS [Chapi@B4]) systems, and process
mobility (such as pi-calculus [Milner, 1999] for mgmic systems) have been proposed
and developed. Some of these approaches, sucloessprcalculi and networks, are
purely theoretical and lack support in design systeOn the other hand, system level
design languages (SLDLs), such ass&MC [OSC Initiative, 1999], have a limited
level of support for formal MoC, i.e. they are bédsm the discrete event MoC which
does not guarantee determinism. However, they adely used in the design

community and also serve as an industrial standard.
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Languages such as SystemJ [Malik et al. 2010] adgsizmJ [Malik et al., 2010]
consider both the theoretical and the practicalufes of designed systems and cover a
vast range of emerging systems. However, the reopgint of using the Java virtual
machine as their target narrows down the door toguthem in systems with limited
resources. Furthermore, existing SLDLs are closeligted to programming languages
used in embedded platforms, such as C/C++, whickemdhe integration between
SLDLs and SystemJ/DSystemJ less straightforward.

1.3 Motivation

From current application trends and available desand implementation
approaches, it would be desirable to have a sdbat which are able to handle
concurrency based on theoretical foundations, bttheasame time work closely with
existing tools to carry out system design. In oreextend the domain where current
tools can be applied effectively it is necessaryatiolress a range of issues. A non-

exclusive list of these issues follows:

The need for tools to support formal MoC.

Synchronous languages are not suitable for a loliged platform due to the
overheads to maintaining a global sense of instackeAsynchronous languages and
libraries are error prone for programming concueye he path adopted in this thesis is
to use the GALS MoC as the basic formal model timalerpins the design approach and

tools.

The need for tools to design both control- and data-dominant systems.

Concurrency exists in the realms of both controll @ata domains. Handling
multiple events at the same time correctly anctigffitly is required in complex reactive
systems. At the same time, multiple data streamsbaing processed concurrently
through the uses of multicore/multiprocessor aedtitres. Moreover, computer systems

(applications) are heterogeneous and consist akahtontrol and data parts.
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The need for bridging hardware and software via extensions to operating systems.
Operating systems play the role of bridging betwémmdware and software
components within systems. Device drivers and fiamevare parts of the operating
systems to control hardware peripherals around pfeeessor. Extensions to the
operating systems are necessary to enable hardeotivedre co-design and co-synthesis
where functionalities implemented either in hardevar software are relevant to the

operating systems running between them.

Integration to current system level design language (SLDL) to help the design process.

As mentioned before, existing SLDLs lack supportfdsmal MoCs but are popular
in both industry and academia. Developing a sehe# tools does not imply re-
inventing the wheel. The proposed tools can be tseéscribe software behaviors and

should be able to link with current state of theSitDLs with minimal effort.

Support for distributed and dynamic systems with a small footprint in mind.

The concept of distributed systems is not news Itiesirable to have concurrent
programming suitable for distributed systems whilea specific MoC is followed.
DSystemJ and X10 [Charles et al., 2005] aim fotrithsted computing, yet both require
JVM, which implies higher performance underlyingeeution platforms. In this thesis,
a library-based framework that extends C languag@roposed, implemented, and

experimentally verified, and considered as a paksblution.

Sngle-language approach is used to improve productivity.

Designing a system in a single language frees #m&gder from interfacing
components described in different languages whien t©e prone to mistakes.
Synchronous languages such ase#ReLare difficult for describing software algorithms
and require significant efforts for either hardwaresoftware implementation. Because
of such limitations, algorithms that perform datanputations are implemented in the
other host languages such as C/C++ and are limkddthe compiled synchronous

programs. Approaches such as ECL [Lavagno & Secriigvil999] and ESTER
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[Antonotti et al., 2000] attempted to achieve agranguage environment. However,
source codes are still required to be generatebatikend ETEREL language where
debugging is carried out.

Simulink [MathWorks, 2011] based on MatLab languageable to provide code
generations and is very flexible for system modgliHowever, it is used mainly for
system simulation.

Thus the required tools should be based on a siaglguage. However, such a
language should still be able to provide interfacbind with other languages to ensure
interoperability. The C language is chosen asdhest-level common denominator and

used to implement the required libraries and toothis thesis.

Create an extension, in the form of a library, to support MoC of existing languages:
Instead of proposing another language, a libragefaextension of existing
programming language is proposed and introducech &ua extension is able to fulfill
and support the semantics of GALS and DGALS MoCiclvthave been provided in
languages such as SystemJ [Malik et al. 2010], 28y$[Malik et al., 2010], and other
related languages such as synchronous languagjeERie [Berry & Gonthier, 1988].
By following specific MoC, the behaviors of systemsodeled in the proposed

extension will be deterministic and predictable.
1.4 Resear ch contributions

The research contributions of this thesis aretiiiied as two layers of the inner
circles in

Figure 1.1The innermost circle in Figure 1.1 repnes the key developments of
language extensions that enable a design underpimna GALS MoC, as well as the
methodology to include operating system models amentomplex designs. The second
layer extends and utilizes the results of the inager to create frameworks to improve
design productivity in a complex system design. Tower layer presents the
fundamental concepts and related approaches tharayzed and combined into the

results of the thesis.
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OS modeling is first carried out to pinpoint thgueed services and programming
support for synchronous languages in system leeslgd, and which consider both
software and hardware components in the systemvdieand developed from these
concepts, liIbGALS is implemented as a library, dase the basic services provided by
the underlying operating system. The DesignGALSngaork merges the works of
both OS modeling and libGALS to perform system-led@sign. Similarly, libDGALS,
which is a further enhancement and extension @AbS, supports programming of
dynamic GALS systems and provides the mechanismsotdel and design distributed

systems in a higher level of abstraction.

7 ™~
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/ DesignGALS \
/ Framework \
;'J’ // ~ \\\ \\\
| GALS / Modeling | | Level |
| AL c‘ «“ \ \ _ \
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Dynamic Systems
and Process Mobility
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Figure 1.1: Contributions of this thesis in relatio other work
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1.5 Thesis organization

The rest of the thesis is organized as follows:

Chapter 2 gives an overview of the related workinttoduces the motivation,
contribution and the structure of the thesis. Ulyiley theoretical and practical
concepts relevant to the thesis are given in thepter. An overview of basic and
essential background along with related works vemgiin Chapter 2, so that the reader
can understand the context in which the thesiswvagen.

Chapter 3 introduces the basic principles of degyalp computer systems in a
staged design flow; collection of design modelsduse different design phases is
presented. STEMC is used as the main system-level design langu&yeL)
throughout this chapter and this thesis. Methodekgof modeling software
concurrency are also discussed and investigategystem model that consists of
software processes, OS, and hardware componerttasutata memory and peripherals
is proposed. The behaviors of processors in thesysnder design are presented in a
higher level of abstraction through the modelsaffveare processes and OS, in contrast
to a lower level description such as RTL or simolaperformed by ISS. The OS model
is the main focus and is used to explore possibletime supports to describe
synchronous concurrency, the basic building blafkSALS systems.

The findings in Chapter 3 lead to the developménib&GALS detailed in Chapter
4, where a library-based approach to describe Gaitdgrams, lIbGALS, as the run-
time support to OSs, is presented. The applicagrogramming interface (API) and the
internal data structure of libGALS are detailedhis chapter. Examples of constructing
a GALS program are given, followed by the experiteeand results obtained by
comparing libGALS to SystemJ, a language and canpiased approach for designing
GALS systems.

Chapter 5 presents a framework that integratesAlt#s and &sTemC, called
GALS-Designer. GALS-Designer enables the systengdes to describe the overall
system consisting of GALS software and hardwarepmmnts in the samerSTEMC

model. How libGALS is integrated withySTEMC is detailed in this chapter. System
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models constructed using GALS-Designer benefit ftmimg a multicore host to obtain
simulation speed-up compared to conventional systeadels in pure STEMC.
GALS-Designer allows the instantiation of multidleGALS programs in a system.
Because simulations of GALS programs can be undifo@ctional or approximate-
timed by having timing annotations, GALS-Designer suitable in various design
phases of the design flow. Case studies of usingS$sBesigner are presented and are
followed by evaluations of the GALS-Designer.

Based on the introduction to libGALS in ChapteChapter 6 presents its extension
to libDGALS, that clock domains can be created dyically in distributed networks.
This extension to libGALS requires dynamic librdowding and the ability to operate
over a network, available in modern operating systerhe libDGALS is implemented
according to the Dynamic GALS (DGALS) MoC, and isetbackbone of the
DynamicGALS framework. The internals of libDGALSIbe addressed in Chapter 6,
along with case studies and comparisons with aflevant approaches. Corresponding
to GALS-Designer in Chapter 5, in which libGALS grams are instantiated statically
in the elaboration phase of the'SSEMC simulation, clock domains in lIbDGALS
programs are created dynamically at run-time.

With Chapter 7, the thesis concludes by summagithe advantages of the overall
framework built around the libGALS library and rtime support to C language. Future
directions are also presented.
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Background and related works

Background information required for a clear viewtlof thesis is provided in this
chapter. A general overview is given to understidnedlater chapters. Section 2.1 gives
brief descriptions of concurrency in computer systdesign. Typical elements of
computer systems are briefly described in Sectich Zoncurrencies of computer
systems are detailed in Section 2.3. This is fadldwby discussions of models of
computations (MoCs), languages, and libraries fgstesn design in Section 2.4.
Sections 2.5 to 2.13 give further insights into therent state of the art, leading to the
approach taken in this thesis, briefly detaile&attion 2.14.

2.1 Types of computer systems

Computer systems come with different flavors actgydo different characteristics
of their requirements. They can be categorizedraasformational systems’, ‘reactive
systems’ [Harel & Pneuli, 1985], and ‘interactivgsems’ [Raymond et al., 1998]
according to how they behave in relation to theexl environment
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Transformational systems, also known as data-ddednsystems, operate at their
own speeds, which can be periodic or aperiodic.s&hgystems usually have data
arriving at regular intervals and the informatidvey carry is more critical than their
time of arrival. Signal processing is an exampleseth systems. A compiler can be
seen as an example of an aperiodic transformatieyatem. The time that a
transformational system takes to complete givekstdepends on the complexity of the
computation and how powerful the underlying compagestem.

Reactive systems, on the other hand, operate atsghed of the environment,
having to respond to events from the environmemiicaously and fast enough, i.e.
before the next event occurs. Being control-doneidathey are suitable for control-
based applications such as automotive systems,tsrodod many other systems.
Therefore logical (how to behave) and temporal fwted how fast to behave)
correctness of such systems is important.

Interactive systems respond to the environmentlailyito reactive systems, but
perform at their own speed as transformational esyst Personal computers are
examples of interactive systems, where users casebma as the environment which
provides inputs; the outputs (e.g. display and dpuare produced when the
computation is finished depending on how fast ystesns are.

A computer system can have characteristics fromxéune of these three types of
systems. Heterogeneous systems are typically naftexdthe combination of control-

dominated and data-dominated systems [Radojet,2006].
2.1.1Embedded systems

Embedded systems are computer systems which dtalewternally or internally
generated events, similar to reactive systemsynehsonous or asynchronous fashion.
Events can occur either externally, such as a temtyre variation detected by the
dedicated sensor, or internally, such as genetatedouts. Embedded systems usually
perform in an interchangeable and non-terminatiaghion. The major markets of
embedded systems include applications in automativerol (steering control, brakes
control, radio navigation, doors control, and susp@n control, etc.), communications,

handheld devices, or aerospace applications [Steprad., 1999].
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2.1.2Real-time systems

Computer systems that require attention to comptpten tasks within pre-
determined timing constraints are real-time systerhese are further categorized into
two groups: (1) hard real-time systems and (2) sedt-time systems [Lab, 1999].
Timing constraints must be fulfilled precisely dit ttmes to prevent system failure in
hard real-time systems. Concurrent behaviors wiliaird real-time systems are crafted
carefully with approaches to ensure that criticahing requirements are met.
Applications of hard real-time systems include satzitical systems such as air-bags
used in automobiles.

In contrast, soft real-time systems may not faican recover if failing to respect
the timing specification. Applications requiringtians taken in a timely manner, such
as the temperature adjustment of air-conditioniygiesns, are categorized as soft real-

time systems.

2.2 Hardwar e and softwar e in computer systems

Computer systems are becoming very complex andecigahg to design, and the
process is spread over a number of stages, suchpedfying systems, design
exploration, implementation, and verification. Besa computer systems are often a
composition of concurrent behaviors, these behawaoe represented in different forms
at each design stage.

A computer system is generally implemented as abaaation of hardware (HW)
and software (SW). Concurrency of such systemss@implemented in both domains.
Hardware circuits are concurrent in nature, whidtvgare concurrency is achieved
through the uses of compile-time techniques ortimme-support from operating systems
(0S).

Having concurrency in mind in designing computestegns is a must. Concurrency
enables designers to modularize a system to carrydesigns in a systematic and
hierarchical manner. However, handling interactibasveen concurrent behaviors can

be sometimes tedious, especially when the numbleelodviors increases. For example,
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each behavior, created to achieve a specific gbdh® system requirements, may
conflict with other behaviors of the same systewerkif all behaviors can co-exist, the
timing, i.e. the order of the behaviors to performgy lead to unwanted results which
violate the system requirements. Furthermore, hetm\created in the early design
stages may not be realistic in the implementatiages For example, a very fine grain
of concurrency in software may introduce a heawribgad of context switching which
impacts the performance of the system. Howeverrseegrain concurrency is often
identified in the specifications (can be formalioformal). Dependencies may occur
between behaviors so that in an extreme case &edigvior is dependent on another in
the system. Therefore real parallelism does naitémi assist the designer in exploring
the maximum benefit of platforms such as multicaréistributed architectures.

Methodologies have been introduced to help destgierdefine and implement
concurrency of computer systems in an appropriassner. Related theories and
concepts of these methodologies are detailed ifotloeving sections.

To understand the methodologies of designing coenmitstems, one must know
how computer systems are constructed. Their elesmi@ntomputer systems can be
categorized into software and hardware. Functitiealiaccording to their nature, are
mapped to software or hardware taking into accaavieral considerations such as

performance and available resources.
2.2.1Hardware in computer systems

Having hardware components in computer systembvgos, since a computer is
itself hardware. A hardware component can be imphaed in analog or digital fashion.
The latter is the focus in this thesis. Hardwamsmgonents in computer systems can be
‘general purpose’ or ‘application specific’. Geneparpose hardware components are
those common in most systems, and follow variotsrfacing standards so that they
can be integrated with minimal effort. Applicatispecific hardware components,
which perform required specific functionalitieseantegrated according to the systems’
needs.

Processors, sometimes called ‘processing elemgifBs), are examples of

hardware components. Therefore PEs can be catedoag general purpose, such as
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embedded processors, and application specific, asdligital signal processing (DSP)
processors; they differ by the computations perbmrmPEs can be facilitated with
specialized functionalities, in the form of buitt-ihardware or ‘co-processors’, to
enhance processing power, e.g. multicore architecand floating point units.
Directions of how computations are performed withincessors are stored as software
components, which will be detailed in the next mectProcessors can be considered as
the middle layer between other hardware and sofwamponents.

There are a number of ways to design hardware coems. As technology
advances, hardware design strategies evolve sadsainers can describe hardware in
less complex ways. Digital hardware systems arerdexi nowadays using higher level
languages called ‘hardware description languagesidLs, such as VHDL [Lipsett et
al., 1986][IEEE, 2000] and Verilog [IEEE, 2001]. dsahardware component has its
dedicated behavior which can sometimes be furteéned into sub-behaviors. A
functionality of behaviors can be sequential oratorent. In this thesis, behaviors and
sub-behaviors are considered hierarchical and gnasthcurrent, and are generally
called ‘hardware process(es)’ in HDLs.

2.2.2Software in computer systems

The cost of the development of embedded-systentwa@f has an increasing trend
with the evermore significant contribution to thatal cost of system development
[Allan et al. 2002]. Sequential behaviors are mli in software components, or
software, and are executed by PEs. Software isridesc by using programming
languages which can be high level such as Javeo[dmt al., 2000] and C [Ritchie et
al., 1975] / C++ [Stroustrup, 2003], or low levelch as assembly, in the form of
‘software source codes’. These latter are compiiaal ‘software programs’ (or binaries)
which are usually instructions of the PEs or virtoeachines (e.g. JVM of JAVA). A
software program that resides in storage such ad-drves or memories can be
accessed, loaded, and executed by the PE, astadsefprocess’, or just ‘process’ for
short. The actual execution of a software prodesBE, can be out-of-order or parallel
depending on features of the PEs. However, in thésis, it is considered that a

software process is executed sequentially, yet dimss not stop multiple software
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processes being executed at the same time. Parallar rather concurrency, of such

processes is achieved via the use of operatingrags{OSs).
2.2.3Software concurrency and operating systems

Having multiple software processes running on thmes processor is not new.
Similar concepts appeared as early as the 50’s whdtiprogramming systems were
developed [Rochester, 1955]. The software thatdinates multiple programs running
together is known as an operating system (OS). ©&wme with very basic
functionalities in the earlier years, such as sujpfow creation and deletion of software
processes, and were later enhanced with other résatto provide services, e.g.
communication and synchronizations between softpereesses.

There are many flavors of OSs, characterized acuprtb target applications
requirements; for example timing constraint (regdito finish a specific computation
with given time, also known as ‘real-time’), sizéhd available storage for both
programs and the OS), and available executingagfatf(single or multiple processor
architectures).

With respect to the timing aspect, OSs are diffeaged by how software processes
are dispatched by the schedulers. These followemifit scheduling policies and
implementation so that the OSs can be cooperafivecésses release use of the
processor voluntarily), pre-emptive (execution oftware processes can be interrupted
by the OS), and real-time (process executions amstrained by given times).
Executions of some real-time systems are suppdayeckal-time OS, or ‘RTOS’An
OS scheduler can be equipped with more than onedstihg policy, such as earliest
deadline first (EDF), rate monotonic (RM), roundbiro (RR), and cooperative
scheduling, to achieve higher adaptivity.

In terms of size, ‘embedded OSs’ are used in theeeltled applications in which
storage is usually limited. To achieve a smallee sthese OSs can be modular (can be
stripped down) and/or statically linked variants gdgneral OSs, for example eCOS
[Massa, 2003] (in relation to Linux).

The number of software processes running in a fvahallel manner depends on the

target execution platforms on which suitable OSs ased. For single processor
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architecture, software processes are scheduletttonovirtual parallelism to achieve
better responsiveness and better use of inputoatpadits (I/Os). When multiple cores
or processors are available, the underlying OShen table to dispatch multiple
processes running at the same time (true paraflelis achieve performance gain.
Communication and synchronization are also mandgedhe operating systems to
handle dependencies of software processes runmipgrallel.

Even though OSs and the categories to which thé&yngeare different, this does
not infer that the types of OSs have to be exctudfor instance, an embedded OS does
not necessarily need to be a real-time OS. Simjlaldesktop OS, such as Linux,
provides real-time scheduling mechanism when redquy the applications.

Each software process can be further composed &ammber of threads, which
are concurrent. Threads are light-weight procefBeset et al., 2002] which usually
share the same address spaces; i.e. they operdite isame area of memories, in
contrast to processes which have their own mempages. Threads can be seen as a
fine-grain of concurrency within coarse-grain coment software processes. Executions
of threads are different from one implementationG® to another. Threads can be
implemented at kernel-level or user-level. The fermre mapped to processes managed
by the OS scheduler, while user-level threads aapp®ed to a single process whose
internal scheduler is governed by specific librari@ implemented by the designer. For
instance, pthread [POSIX, 2009] is a library impéated by using kernel-level thread,;
on the other hand, GNU pth [Engelschall & Pth, JGfj&erates at user level.

In some embedded OSs, such as MicroC/OS-Il [Lakrdd302], the term ‘task’ is
used to describe an execution entity. Tasks canobsidered as either processes or
threads, again depending on how the OSs are impkewhei.e. tasks to share a global
address space or not. Throughout the thesis, thestgrocess’ and ‘threads’ are used
to differentiate the memory model of the concurmetdcution entities.

Hence, important concepts to provide software coeogy by OSs are as follows:

1. Critical section (CS) - also known as a criticagiom where a process will

not be interrupted when entering the CS.
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2. Multitasking and scheduling - the scheduling is pvide concurrent
process executions to prevent monopoly over, ovatian of, resources.

3. Context switching and interrupt — context is themshot of the processor
state, which represents the status of the currestuging processes. Context
switching is required when process scheduling/$witg occurs.
Conventional processor provides an interrupt meshano store process
context, where OS is responsible to arrange thatilmt where the process
context is saved.

4. Communication and synchronization — since process@s not only
independent of each other but most often heavilgrdependent, features

like communication and synchronization are required

Other OSs can be further application specific, SOSEK/VDK for automobiles
[OSEK, 1997]. Further details of OSs can be foundclassical texts such as
[Silberschatz & Galvin, 1998].

Concurrent software behaviors may be sequentialintx a static single thread
with dependencies between processes resolved anaevOne such approach is used
in synchronous languages, e.gSTEREL [Berry & Gonthier, 1988]. In this case
operating systems are not required for handlingceoency but may still be required
for interactions with I/Os [Andre & Péraldi, 1993].

Software concurrency with the help of the OS playsmportant role in this thesis.
The libGALS and libDGALS, presented in Chapter 4l #respectively, are libraries
implemented using features (locking and schedulmmgyided by the OS and benefiting
from the multicore/multiprocessor architecture wisapported by the OS.

2.3 Concurrency in system design

Designing systems start from specifications at ars-grain level of details, to a
fine-grain level in implementation. A list of théaracteristics of a system, e.g. how it
behaves, is given in the specification of eachesgsBehaviors specified in this level of

abstraction are not finalized and are implemematiependent. As an example, if two
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behaviors are concurrent, how they are schedulédsed on which scheduling policy
to use, is unknown in the specification. Theref@m@currency in the specification is
‘partially ordered’; that is, the order of the beimais may be neither deterministic nor is
final.

For example, in systems with a single processingy and making use of OSs, each
behavior is ordered individually. The scheduling lo¢haviors sequentializes the
activities of behaviors. Such sequences of how \delsmare scheduled may vary from
one OS to another, or even in different scenaritth the same OS. In multicore
systems, behaviors with dependencies still havaraafly ordered relationship, while
the independent computation will have no ordetlat a

Partial order of concurrency gives expressivenesystem specification, so that it
is more flexible to laying out concurrent behaviora system under design. Behaviors
at specification level can be later refined by daling specific rules to achieve
deterministic results. These rules, known as ‘mafetomputation’ (MoC), will be
described in the later sections. Note that it isirée to still have non-deterministic
concurrency in the implementation for the followirggasons:

1. Limitation by the architecture: components in ateys running in
distributed networks act independently in geneaall communicate with
each other when required. These components dohao¢ & global view of
the system, to reduce unnecessary overheads iriaimang such a view.

2. To achieve dynamicity: a system may react to therenment or make a
request to the environment to have behaviors detivat run-time. That is,
the number of behaviors running at a given timenas fixed and not
predictable. This enables systems to have bothrdigity and robustness.

The GALS-Designer framework detailed in Chapteeripowered by the libGALS
library and SSTEMC system level designing language (SLDL), provittess means of
describing software concurrency in Globally Asymgious Locally Synchronous
(GALS) MoC (from libGALS) with the ability to spdgi partial concurrency (from
SYsTEMC). The DynamicGALS framework in Chapter 6 furtipeovides the ability to

program distributed systems.
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2.4 Model of computation, languages, and libraries

2.4.1Model of computation

‘Model of computation’, or ‘computational model' escribes how behaviors are
performed and how they communicate with each othea system (composition of
behaivors). Aspects of MoC include computationahptexities, compatibilities, and
language semantics. MoCs are not limited to beegrdbed in a purely mathematical
manner. Various languages are proposed to work daticated MoCs to describe
systems. ‘Formal languages’ are based on rigoraathematical models, and therefore
analysis can be made to explore their charactesis®n the other hand, ‘informal
languages’ do not follow specific MoCs and extréorfis required to ensure the
correctness of the designs. MoCs can be heterogenee. merging concepts of various
MoCs and presented in a unified view as in [Leeaa@@ovanni-Vincentelli, 1998].

2.4.2Languages as design tools: concepts and backgrounds

Languages can also be ‘implemental’ or ‘theoretidaiplemental languages, such
as programming languages and hardware descrigimyuhges, have compiler support
to generate implementation in software or hardwaoen the source codes (or the
source descriptions) of the design. In contraseotbtical languages can only be
expressed in a textual manner, but have a solidre¢tieal background to analyze the
designed systems. Note that theoretical and impihéanguages are not mutually
exclusive; that is, compilers can be implementedftheoretical language to make it an
implemental one. Languages can be seen as toolelf system design, and are
represented in many forms:

1. Mathematical formalism: alphabets (symbols) anthgs$r of the language
are defined, along with a set of the fundamentatr{&l, or logical axioms)
of the language. The fundamentals are further e@rjor substituted) in a
logical and mathematical manner to form a compdgteax of the language,
for instance, functional programming languages,civhare based ofn-

calculus [Church, 1932]. Examples of such languagekide ML (e.g.



Chapter 2. Background and related works 21

STANDARDML [Milner, 1997]) and HSKELL [Jones, 2003]Languages like
ESTEREL[Berry & Gonthier, 1988], USTRE[Caspi et al., 1987], and@&AL
[Benveniste et al., 1985] follow ‘synchronous fotisa’, which is closely
related to the GALS MoC used in this thesis.

2. Graphical representation: a set of graphical eléspesuch as nodes
(vertices), arcs (edges), and labels, are usednstrict a language. The
rules of connecting these graphical elements diratkas the syntax of the
language. Examples of languages with graphical esgtations are
STATECHARTS [Harel, 1987], Kahn process network (KPN) [Kahn,/4p
and Petri nets [Petri, 1962].

3. Programming languages: can be general or applicapecific. General
programming languages, such as C (which is anriné language’), are
suitable to describe systems in various applicadomains. Application-
specific languages are designed for particular diesnaFor instance,
synchronous language SEEREL  targets reactive systems.
Compiler/translator application-specific languageay generate codes in
general programming languages which often haveapiity in mind.
Programming languages also come with differentditaye.g. ‘imperative’
(closely related to state-based formalism, suc/&st+ and dvA), ‘data-
flow’ (used in signal processing, such asi®InK), and ‘functional’ (as

afore- mentioned, e.g.ASKELL).

Languages can be presented in combinations of foRos instance, IBNAL is
based on synchronous formalism, and can be present graphical manner as data-
flow, relational, and declaratijee Guernic et al., 1991].I6NAL is implemental and its
compiler generates codes in @RTRAN, and &ZCAM [Benveniste & Berry, 1991].

With the help of ‘compilers’ and ‘translators’, teeurce code in one representation
can be used to produce the resulting code in ancthe differences between compilers

and translators can be summarized in the following:
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1. A compiler parses the source codes of a specifiguage, and uses an
intermediate format to store the parsed result. Btricture of the
intermediate format is different from the sourcel&€oe.g. imperative style
source codes are stored in a tree-structured ddlivo representation.
Instead of using the term ‘compiler’, ‘synthesizes used in digital
hardware development, which translates higher-ledelscription of
hardware to lower-level implementations on FPGAIZsS

2. A translator provides direct mapping from the seutanguage to the
destination language. When direct mapping is natlalvie, substitutions or

macros from destination languages are used.
2.4.3Library based approach

Software libraries, or ‘libraries’, are implementatithe top of the programming
languages. Libraries take advantage of the exiséinguage so that it is not necessary
to design a new compiler. Run-time supports pravidey libraries have more
flexiblility than static checking in a language-bdsapproach. It is also possible to bind
(obtain help) with other libraries to merge diffetrelesigning concepts. A library can be
implemented according to a specific MoC or multiMeCs. Even though libraries do
not enforce designers to construct a correct progaa a compiler does, they are still
able to offer extra features, in terms of programgnconstructs, to reduce designers’

efforts in describing systems in raw source codeiglware error prone.
2.4.4Current state of the art and approaches

MoCs, languages, and libraries have been proposdddaveloped to cope with
concurrency in designing hardware, software, anerallvsystems. Some examples of
MoCs and corresponding developments are as follows:

1. Discrete event (DE): this is generally used in ket description
languages (HDLs), and will be detailed in Sectidn 2

2. System-level design languages (SLDLSs): these amesded in Section 2.6
and can be used to describe systems in differgptdef abstractions. It is

also possible to generate software and hardwane 8bDLs.
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3. Process calculi and process networks: these arel use describe
relationships between concurrent processes andwitlescribed in Section
2.7.

4. Actor-based models: that describe autonomous coeruentities and the
interactions between them. They may or may nobvola MoC but are
widely used in different fields, as described irci@m 2.8.

5. General programming languages with support to d®scconcurrent
processes: these are made as built-in construdisetdanguage itself, or
libraries of existing languages to provide conaucse Some of the
programming languages borrow the concepts of dtLs as part of their
features. See Section 2.9.

6. Synchronous and reactive MoCs (S/R): these targattive and time-
critical systems. Determinism is a key factor adgh MoCs. Extensions and
relaxations to them have been proposed for wides.uS/R MoCs and
developments are detailed in Section 2.10.

7. Globally asynchronous locally synchronous (GAL3iistis used in both
hardware and software domains. GALS can be searckse relative to the
S/R MoC, and will be presented in Section 2.11.

8. Dynamic GALS (DGALS): this is a newly proposed Ma@dich merges
concepts from the Actor-based model and the GALSJehoA brief
description of DGALS is in Section 2.12.

In this thesis, lIbGALS and lIbDGALS are librariésiplemented by following
GALS and Dynamic GALS (DGALS) MoCs to enrich gengreogramming language
(in this case, C).

2.4.5Synchronous versus asynchronous

The terms ‘synchronous’ and ‘asynchronous’ are usedkly in the field of
designing computer systems and MoCs. In this sgctie terms are further described
and are used throughout the thesis to prevent antpid hese terms have been adopted

in various scenarios:
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1. How concurrent behaviors are carried out: e.g. lssorous concurrency
and asynchronous concurrency. In synchronous coeray, concurrent
behaviors follow the same logical time referenamjlar to clocks in digital
hardware design. Synchronous languages are dedeldpe target
synchronous concurrency and are detailed in Se@i@f; asynchronous
concurrency is more general. Most of operating esyst programming
languages, and libraries which offer process avaatand support threading
follow the model of asynchronous concurrency. lis thesis, synchronous
and asynchronous are used to present concurreMdg@s.

2. How communications are made: e.g. synchronous ardereceive in
contrast to asynchronous send-and-receive. Synchsocommunication
can sometimes be referred to rendezvous, where th@hsender and
receiver are blocked until the ealier communicati@s been completed.
Asynchronous communication, which incorporatesubes of buffers, may
not stop (block) the sender and receiver duringctramunication. There
are variants of asynchronous communication; forgta the sender and
receiver may be blocked when the buffer is full antpty respectively. The
‘send-and-forget’ model does not block the sentletlanor does guarantee
that the data sent will be received.

3. How function calls are issued: e.g. synchronousction call and
asynchronous function call. Synchronous functiotiscavill block the
execution of the caller until the results of thdl eae returned. General
programming languages implement synchronous fumcticalls to
immediately evaluate the outcome so that the npetations, which may
rely on the outcome, can proceed. On the other,itheccaller continues to
run after issuing the asynchronous function cdtle Taller may be blocked
in the future when the return value of the functicall is required.
Asynchronous function calls are often adopted endlstributed computing
environment. An asynchronous function call is clésethe concepts of

‘future and promises’ [Liskov & Shrira, 1988]. Tldifference between



Chapter 2. Background and related works 25

(a)synchronous communication and function callshet communications
are performed by both parties without a given oatet can be active, while
the called party (the function or the required g®)yis passive.

Models of concurrency, communication, and functaaills may not be directly
related. For example, in synchronous computatiammmunications are achieved
through signal/event broadcasting, which is neiyrchronous nor asynchronous, but
governed by the MoC so that the dependencies aogusetween communications are

resolved.
2.5 Thediscrete event MoC and HDLs

Hardware description languages are used to spdaiiyal hardware at a higher
level to reduce the effort of designers in congingclarge digital systems. Higher level
descriptions are synthesized to lower-level logid dit-streams that will be used to
create the actual design on digital hardware inoydPGA and ASIC. The level of
describing hardware components depends on theresgemt of the design stages. This
enables designers to have abstract views of themylsefore implementing them fully,
although not every model described at a highed isv@/nthesizable.

Verilog [IEEE, 2001] and VHDL [Lipsett et al., 19Bére well known HDLs and
standards in the industry. The discrete event (MBL is adopted by HDLs, in which
concurrent behaviors of hardware processes aresepied as events and governed
according to the DE MoC.

The events are chronometric [Le Guernic et al. 3200hich means that the time of
the occurrence is attached to each event. Eveatguaued upon on their generation,
and are dispatched by the simulation kernel whiah be made generically or to
specified target hardware. The simulation kernet laasense of time steps. The
simulation kernel scans through the event queudiggatch the events whose time of
occurrence matches the time steps. Further evantde populated by the dispatched

events. The dispatcher of the simulation kernehs¢he queue until there is no event of
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the current time step left or populated, when tineukation kernel will carry out the
next time step.

DE MoC provides a way to handle concurrency. Howewgerleaving execution
of behaviors leads to non-determinism [Benvenigdteale 2003]. This makes DE

sometimes not suitable for modeling of criticalteyss.
2.6 System-level design languages

2.6.1The need for system-level design languages

Complexities of a system can be due to interacti@mig/een behaviors and how to
implement behaviors in HW/SW components (e.g. negighs or existing intellectual
properties, IP). Other important factors in designa system include constraints such as
the availability of resources. With the growth efstgn complexity of computer systems,
various approaches are proposed to increase tigndes productivity and shorten the
time and effort between the specification and imq@atation of such systems.

Programming languages such as C/C++ and Javasareiséd for specification due
to their flexibility in describing functionalitiegheir data abstraction abilities, and their
huge support in the form of software libraries.tAe¢ early design stage, components
(both hardware and software) of the final systempl@mentation might not be identified
without taking consideration of different aspectscts as performance evaluation.
Similarly, hardware description languages lack #upport of describing software
components of the system. It is not easy to modélvare concepts such as data
structure and algorithms that include recursivefioms in HDLS.

Single language specification is also a need inqaering the system design
[Lavagno & Sentovich, 1999]. This leads to the regjaent for a language to bridge the
design in software and hardware, as well as to lsaWgher level of abstraction; in

design, in this case, system-level design langué®jeSLs) are proposed.

2.6.2System-level design languages based on existingi&ges
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SLDLs such as ¥TEMC [OSC Initiative, 1999] and#&cC [Gajski et al., 2000]
are proposed. SystemC is a library extension to, @ich provides a set of classes and
macros to empower the developer with the mechantsnadescribe hardware (close to
what hardware description languages do) and scodtvegstems in a single model.
Similarly, SPECC facilitates constructs to describe systems aaaler design phase for
both specification and system level synthesis. dbéiices betweenySTemC and
SPECC are described in [Cai et al.,, 2003]. SLDLs comedifferent flavors, unlike
SysTEMC and $EdC which are based on imperative languagesiEBPEC is based on
Haskell and can provide different levels of abgtoec

System-level languages such ast&MC and its simulation kernel follow DE MoC,
and hence it is possible to have non-determintsticaviors between simulation runs.
However, as mentioned previously, such non-detasmiralso allows the model to be
described in a more flexible manner as a trade-off.

Other tools in industry adapt the single langugg@@ach to system design, such as
Synphony C from Synopsys. Synphony C is based dd+€/ by use of which
descriptions of the system are made and are codhpidethe Synphony C compiler to
generate hardware in RTL and software in C.

System-level design, which relies on SLDLs, is iearout with various proposed
methodologies, detailed in Chapter 3. Descriptianfs SLDLs in higher-level
abstractions are further refined, manually and/artomatically, towards the
implementation. Because SLDLs are based on exisgrmgramming languages,
interfacing between existing software libraries atiter programs is viable. Simulation
approaches, which make use of simulation kernelsSloDLs and other existing
simulators, are proposed. Some commercial simgasuch as ModelSim, have the
ability to perform mixed language simulations, bgvimg components modeled in

different languages such as SLDLs and HDLs.

2.7 Process calculi and process networks

Describing concurrency in a mathematical fashios liegen developed. CSP [Hoare,

1978] and CCS [Milner et al., 1980] are two of thest notable examples of process
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calculi, which express how concurrent processesaifimbstract form, can be hardware
or software) evolve. Communication between proessealso presented in process
calculi, such as rendezvous in CSP. Process carlprimitive and insufficient for an
implemental language. However, they are often impleted as features in
programming languages.

Process networks are also used to address the roemcy and interactions of
processes/behaviors (again, does not have to bedavare or software process). Petri-
Net (PN) [Petri, 1962] and Kahn process networkBNIK[Kahn, 1974] are examples of
such networks. Both PN and KPN are presented gralphi PN is described as a
composition of places (conditions) and transitiqos events, which are concurrent
processes). KPN is presented as concurrent pracessieh produce and consume
tokens to/from the unbounded FIFO buffer inbetwd®N.is used to described control
(can be used to describe data) and can be nonxdeistic, while KPN is for data and
is deterministic. Despite the difference in how @ament processes are described using
PN and KPN, these process networks are based oncapt: tokens are generated by
the producers, and when enough tokens have bebergdt(conditions fulfilled), the
consumer of the token will proceed (or fire).

Restrictions are made on these process networksasdhey can be implemented.
For example, PN can be restricted and converteBSbl for deterministic analysis
[Peterson, 1977]. Statically schedulable data-{®8DF) [Lee & Neuendorffer, 2005],
previously SDF (Synchronous data-flow) [Lee & Messbmitt, 1987], restricts the
size of the FIFO buffer in KPN so that the rateled processes can be solved as linear
equations.

Both PN and KPN are graphical formalism, which msuitive. However it is
difficult to manage for large scale programs [Jeisal., 2009]. Programming languages
such as USTRE [Halbwachs et al., 1991], Synchronous KPN [CaspPdéuzet, 1996],
and libraries such as NRP [Boussinot, 1992] ar@gsed and are inspired by the KPN
with the concepts of synchrony.

2.8 Languages based on Actor-based models



Chapter 2. Background and related works 29

The Actor model was proposed in the 80s as anatiogiel of concurrency [Agha,
1985]. Actors perform at their own rate, and comivate asynchronously with each
other through sending messages that are bufferathilboxes [Boussinot et al., 1996].
Mobile agent platforms such as JADE [Bellifemine at, 2005], enable agents to
operate in an autonomous manner, with the abifityigration, similar to Actor-based
models. The Actor model has been implemented agramming languages, and
libraries supporting the operations of actors. Ax{Microsoft Corporation, 2008],
based on the Actor MoC, is a programming languaga part of the .Net framework.
Active Object [Lavender & Schmidt, 1995] implemenite Actor model using C++.
Detailed comparisons of various related modelskmafound in [Nikaein, 1999]. MoC
related to the Actor-based model offers the follayvi

1. Asynchronous executions of actors. Each actor gdlgeroperates
independently.

2. Asynchronous and synchronous communications. Taeranany choices
of communication models for an actor to choose from

3. Mobility of actors. An extension of the Actor mogdattors/agents are able
to migrate to the required computation node to querf actions.

Actors/agents which are able to migrate are catiebiile agents.
2.9 Programming languages with concurrency

General programming languages like C, C++, and Jaeaused to describe
transformational systems. Algorithms which are cataponal behaviors are specified
using general programming languages. Concurrentawiets of transformational
systems are supported by the built-in constructh@fprogramming languages or other
means such as uses of (real-time) operating systBnogesses/threads are used to
represent the corresponding concurrent behaviotheofoftware. For example, user-
typed class implements Java Runnable class wilidoged as a thread to the underlying
Java program. Similarly, threads or processes f@rams) can be implemented in C

and are governed by the operating systems. Comations between concurrent
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threads and processes are achieved using sharedblgaror inter-process
communications (IPC), which can be both asynchreraod synchronous.

Programming languages are implemented based aerehitf conceptual models. As
an example, general programming languages (C/Cwa&)Jallows the implicit ‘state-
based imperative’ style. Functional languages, saschaskell and ML, are influenced
heavily by the\-calculus. The concurrency provided by programmamguages does
not necessarily follow any aforementioned modetafcurrency; some may follow but
may not be restricted. Threads created using pdHieary (or user threads available in
the ML) do not follow any MoC, and are controlleg the operating systems. This
creates a scenario that even if the program igcgrm.e. a race condition never happens,
the execution outcome may differ due to the schieguolicy which might be affected
by the load of the machine at various times. I3 tase, MoCs are enforced through
programmers’ efforts or the uses of libraries thaivide programming interfaces to
ease the load of the designer.

Some programming languages are built on top oftiegisones through adding
constructs of concurrency, which introduce new a@yrio the base language, to support
the desired MoCs. Compilers then map the introduwmatstruct to codes in the base
language or to other languages. For instance, J€udersky et al., 2004] which
provides the flavor of functional programming bassu imperative Java language,
which supports concurrency in the Actor model an8PC In contrast, Erlang
[Armstrong et al., 1993], which is also based am Alttor model and CSP MoC, is not

based on any language.

2.10 Synchronous MoC and approaches

2.10.1Introduction of synchronous and reactive prograngmin

Non-determinism, which can be observed in concusefiware, can be caused by
temporal logics [Berry & Gonthier, 1988] and raamnditions [Lee, 2006], which are
introduced with uses of operating systems. Impldatems of synchronous languages
do not rely on conventional mechanisms such asatipgr systems, but respect the
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‘synchrony hypothesis’ to ensure determinism. Safevdevelopment benefits from
synchrony hypothesis, implemented through uses yoichksonous languages, are
summarized in [Benveniste & Berry, 1991], [André996], [Halbwachs, 1998],
[Benveniste et al., 2003], and [Potop-Butucarul.e05].

In synchrony hypothesis, input events are gathateétde beginning of each tick of
logical time and corresponding outputs are gendrate ‘zero-time’. Concurrent
behaviors of synchronous systems are carried oatnamber of discrete steps, called
reactions, instants, or ticks. Barrier synchronireg are exercised by each concurrent
behavior at every tick. Communications between biehs are via ‘signal (or event)
broadcastings’. Pre-emption is one of the key abntrechanisms within concurrent
behaviors. Throughout this thesis, tick, signald gme-emption will be used as the
major terminologies with respect to the synchronlamguages and S/R MoC. Mealy
machine and digital circuits generated from synobus languages are based on
mathematical models which are deterministic andbzawerified by using the technique
described in [Clarke, 1997].

Synchronous languagesteREL [Berry & Cosserat, 1984],usTRE [Halbwachs et
al., 1986], and BNAL [Benveniste et al., 1985] are the classical syobus languages
that were built in the styles of imperative, ddtasf and relational languages
respectively. They are proposed to target thetmeed-systems by applying synchronous
hypothesis. Such a concept is closely relatedabdhreactive systems [Harel & Pneuli,
1985] to design systems with real-time characiesst

Reactive languages, closely related to synchrotemguages, relax the synchrony
hypothesis so that the absence of signals/eventsasvn at the next instant/tick
[Boussinot & Dabrowski, 2006]. Reactive approachasher enhance synchronous
languages with the ability to create concurrentabedrs at run-time and to enable
distributed reactive systems dynamically.

A comprehensive, but in complete list of other $yooaous/reactive families
includes: Arom [Hawkins, 2011] ARGOS [Maraninchi, 1991], Distributed reactive
machines (DRM) [Susini et al., 1998]AIRTHREADS [Boussinot, 2002], BNLOFT
[Boussinot & Dabrowski, 2007]cbsJ[Boussinot, 1996],UNIOR [Hazard et al., 1999],
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LOFT [Boussinot, 2005], Lucid Synchrone [Caspi ét 2007], Nets of reactive
processes (NRP) RC [Boussinot, 1992], POR (Progiamnof reactive object)
[Doumenc & Boussinot, 1991], @QRTz [Schneider, 2009], RAMA (Reactive
Autonomous Mobile Agent) [Nikaein, 1999],eRcTive C (RC) [Boussinot, 1991],
ReacTIVE ML [Mandel & Pouzet, 2005], Reactive Object Model [Bsimot et al.,
1996], REACTIVE ScRIPTS[Boussinot & Hazard, 1996],BACTIVE SML [Pucella, 1998],
REJO/ROS (Reactive Java Object) [Acosta-Bermej®@9]L9SL [Boussinot & De
Simone, 1996], SGARCUBES [Boussinot & Susini, 1997], andyScCHARTS [André,

1995].

2.10.2SW and HW implementations of S/R approaches

Software implementation of synchronous languages lia categorized by how
synchronous programs result from the original syswescriptions in synchronous
languages: (1) language-based, and (2) libraryebaselanguage-based approaches,
synchronous descriptions are compiled into sevataimediate representations which
are used to generate software source codes inldragiages such as C, or directly to
the platform assembly or machine codes. Host laggysaurce codes are then compiled
into synchronous programs through use of the cangalr the target platform. On the
other hand, library-based approaches are suppbytéite available primitive constructs
provided by existing programming languages, andadaed as the extensions to these
languages in the form of function calls (or macr@® interfaces. Synchronous
descriptions using these interfaces are compiletl @e linked with the library to
produce the target binaries.

As an example of compiler-based languagerEREL has a number of developed
compilers with different compilation techniques Iswias ESTERELV3 compiler [Berry &
Gonthier, 1988], v4 [Berry, 1999], v5 [Berry, 200@olumbia Esterel Compiler (CEC)
[Edwards, 2002], SAXO-RT [Closse et al., 2002], aAdtop-Butucaru’s compiler
[Potop-Butucaru & De Simone, 2003], to sequent@lihe concurrent behaviors of
EsSTERELdescription into a static single-thread program.

Examples of library-based approaches akad@®IvE C, LNIOR, and $IGERCUBES.

ReacTIVE C provides extensions to C to model synchrony. cOmency within
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ReAcCTIVE C is sequentialized in the textual order of theesysunder design [Boussinot,
1991]. SL can be firstly translated tce&CTIVE C then translated to C. Similarly,
JUNIOR extends Java with dedicatedNdor kernel to support reactivity and synchrony.
SUGARCUBES is close to UNIOR, comprising a set of AVA class to program
synchronous reactive systems avA.

Implementing graphical synchronous languages \ernmediate representations or
through extensions to existing programming langaageercises the mixture of
compiler-/translator- and library- based approachHes example, ®NCCHARTS is
translated to ETErReL [André, 2003] and then compiled into C [von Hanlde,
2009][Traulsen et al., 2011]coBiis implemented based ov&RCUBESJUNIOR and
REACTIVE SCRIPTS

In order to execute synchronous software prograrose nefficiently, hardware
enhancements and specialized processors are pdoposk as REFLIX [Salcic et al.,
2004], REMIC [Salcic et al., 2005],MPEROR [Dayaratne, 2004][Yoong et al., 2006],
KEP3a [Li et al., 2006], BAL virtual machine [Plunemet al., 2006][Edwards & Zeng,
2007], and STARPro [Yuan et al., 2009] for exeaytEsTEREL Entities described in
synchronous languages can be compiled into digitaduits based on techniques
presented in [Berry, 1992], [Berry, 1999], [Malil,994], [Shiple et al., 1996],
[Schneider, 2000], and [Edwards, 2003]. Hardwarel aoftware co-synthesis of
ESTEREL also exists such as [Gadtke et al., 2007] wherdwere implementation of
synchronous reactions communicate with softwardémpnting counterparts executed
in the KEP processor.

The concepts of synchrony and reactivity have based in fields such as
multimedia and graphical system design. Examplekide: Audio language HicK
[Wang et al., 2003], Reactive animation [Efronaét 2005] with frontend of Flash and
backend of RAPSODY [Gery et al., 2002] which is based orASECHARTS.

2.10.30ther related approaches

ECL [Lavagno & Sentovich, 1999] andesrer [Antonotti et al., 2000] are
EsTEREL-like extensions to C and Java, respectively. Useamslators is adopted to

separate the computational and the reactive part€/f§ava and €EREL Single
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language approaches help the designer to concendratprogramming instead of
interfacing components in different languages. Hmvedebugging process on reactive
parts will be working on the generatedTEREL codes which may not be easy. Proposed
support of asynchrony is via support of RTOSs a@lIB [Balarin et al., 1997],
respectively.

Because synchronous languages can be used tobdesoftware and hardware,
using synchronous language as the backbone ofyttens-design framework has been
developed. For instance, a system-design framewatkchrony [Le Guernic et al.,
2003] is based on the multiclock feature of theckyanous language@&vAL.

Systems which have components running at differdotk speeds, such as
distributed systems, are also addressed in theandsecommunity. Synchronous
programs running on distributed network communiedatd weak synchrony in CoReA
[Boniol & Adelantado, 1993], that is, communicatsovia signals are delayed for one
instant, so that the overall program can be andlyz& de-synchronization of
synchronous programs in OC (object code) formath wises of FIFO buffers is
presented in [Caspi & Girault, 1995]. De-synchrexizorogram will be divided into
distributed components. The overall behavior ofdistributed program is the same as
the original. Further discussions on distributiypchronous programs are detailed in
[Girault, 2005].

Other reactive approaches which do not follow symcbus MoC exist. Reactive
Java [Passerone et al., 1998] and Triveni [Colbyalet 1998] provide support to
program reactive systems. However, without enfomr@nof the synchronous MoC, the
designs will suffer in the same way as the conweaati thread-based programs. SML
(state machine language) [Browne & Clarke, 1985 @8ML (compositional SML)
[Clarke Jr et al., 1991] are based on FSM to supmarctive software and hardware;

however, the ability of handle data computatioalisent.

2.11 The GALSMoC and related developments

2.11.1The concept of GALS
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Globally asynchronous and locally synchronous (GAM®C have been proposed
in [Chapiro, 1984]. In the sophisticated computgstems, or heterogeneous systems,
there can be a number of processing units, sughogessors integrated and interacting
with each other. For instance, System-on-a-ChiCjSmnsists of processors running at
different speeds of computation and communicatRotgp-Butucaru & Caillaud, 2007].
To achieve global synchrony is impractical becausefast processor will have to wait
for the slower one to achieve barrier synchrontrati

The concept of GALS is originally incorporated fase in hardware design. The
complexity and size of chip increases along witle thperational frequency and
introduces problems such as higher power consumgptad clock skew of single clock
domain digital hardware. A GALS digital system @mposed of different sub-systems
(clock domains) which are running at their own slseedExamples of communication
and synchronization between sub-systems inclueééhtd clocks, uses of FIFO buffer,
and a specialized synchronization mechanism, whirehdiscussed in [Krstiet al.,
2007].

As mentioned in Section 2.4.5, the terms synchrerand asynchronous have been
used in different contexts and with different measi and hence there are variants of
GALS definitions. The concept of GALS in TinyGALEheong et al., 2003], is based
on the concepts of asynchronous and synchronowgidarcalls. Function calls at a
global level in TinyGALS are performed through agyronous message passing, while
intra-component communications are through syndusnfunction calls as in
programming languages. X10 [Charles et al.,, 20Gb]distributed programming
language, follows the same GALS strategy as in GilyS.

In this thesis, the definition of GALS is basedtbe co-existence of synchronous
and asynchronous concurrency. The communicatiomdsgt asynchronous entities may
or may not follow a specific model of communicatidxsynchronous communications
in GALS systems follow a deterministic model, sashCSP rendezvous, which can be
analyzed along with each synchronous compartmenthea key benefit of using the
GALS MoC.

2.11.2GALS in the software domain
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The synchronous subsets of the systems benefit framexisting synchronous
languages emphasizing determinism. On the othed,han asynchronous model is
suitable for distributed networks [Berry & Sentdvij@000]. Languages and compilers
following the GALS concept have been utilized iftware domain.

Language approaches to describe GALS systems aensgns of existing
synchronous languages, such as Communicating Redetocess (CRP) [Berry et al.,
1993], Communicating Reactive State Machines (CRf&mesh, 1998], Multiclock
Esterel (MCEsterel) [Rajan & Shyamasundar, 2000]a® a new languages such as
SHIM [Edwards & Tardieu, 2006] and SystemJ [Malilak 2010].

SHIM [Edwards & Tardieu, 2006] is proposed to paygrasynchronous systems in
which Khan network's channels with CSP rendezvoesised. The compilation process
of SHIM ensures a single writer to a variable atirae to prevent data races.
Synchronous systems can also be modeled with SHilll suggested approaches in
[Edwards & Tardieu, 2006]

SystemJ [Malik et al. 2010] mergestEREL for synchrony and reactivity, CSP for
asynchronous communication, anevd for data computations as a whole. SystemJ
does not rely on the existingsE=RELcompiler, as ECL ande3TeErRdo, and enriches the
Java language with programming constructs to de€&hS systems. Synchronous
concurrency in SystemJ is described through reagtisithin clock domains, where
they are asynchronous. Communication between asymchs clock domains is
through point-to-point channels following CSP rendmis. As a language-based
approach, a SystemJ program that is correct wijarckto a specification will also be

compiled to a correct implementation.
2.11.3System-level design based on GALS

GALS approaches are also adopted in system-leva@fjulePOLIS [Balarin et al.,
1997] has been developed as a HW-SW co-design Wwarke The framework is
composed of CFSMs, co-design finite state machiwes;h are synchronous entities.
Thus each CFSM can be translated into synchroremgublges, in this casestEREL
and can be verified [Berry & Sentovich, 2000]. CFSMre connected to an

asynchronous network, which categorizes POLISrasmber of the GALS family.
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DFCharts [Radojevic et al., 2006] merges the cotscep SDF and hierarchical
FSM to have the capability of designing controld @ata-dominated systems. DFCharts
adopts the GALS MoC where communication of asynobus elements in DFCharts
follows the CSP rendezvous. Descriptions made iISlsuch as 8STEMC and
synchronous languagesEeEREL can be mapped to DFCharts [Radojevic et al., 2006]

which is formal and intuitive.
2.12 Dynamic GALSMoC

Dynamic GALS MoC, as a further extension to the GAloC, incorporates the
concept of pi-calculus [Milner, 1999], that is, belors are able to migrate from one
computational node to another, similar to mobilerdag. ULM [Boudol, 2004] presents
a programming model to describe GALS systems withbitity in theory. Dynamic
Synchronous Language (DSL) [Attar et al., 2011pieposed based on the existing
reactive approaches such as SugarCubes, ReactivaiMl ,FunLOFT. Synchronous
behaviors can be dynamically created on distribugiéels. However, communication
between behaviors of different sites is not cleddfined.

DSystemJ [Malik et al., 2010] applies to the comcapdynamic systems which
introduce process mobility to SystemJ, so that esywnous clock domains and
channels can be created at different computatioodés at run-time. In contrast to DSL,
the formal semantics of clock domain migration ahdnnel communications are given.
The DSystemJ is followed to a large extent in tiissis when specifying dynamic
GALS systems and libDGALS library in Chapter 6.

2.13 Thelibrary-based GAL S'DGAL S frameworks

Figure 2.1 illustrates the relationships betweaen MoCs (in rounded rectangles)
and examples of related approaches (in ellipsebe DGALS MoC, which is
surrounded by the related MoCs, particularly GAL®Q®/ and its use in supporting
standard programming language C in this case pbeithe focus in this thesis.



Chapter 2. Background and related works 38

Synchrono@

Process
networks, e.g.
KPN

|

/ Lucid \
\Synchrone/

\
/

AN

/ Lustre \
\ Esterel

S

/ Signal \
N =

\\
Synchronous
MoC Reactive MoC
J
/ ugarCubeN
\\& Junior /

A\
RAMA &\

/
\\EJO/ROS%

\/\

GALS MoC
\, /

DGALS MoC

/ N
Mobile Agent

B Actor MoC k

Scala

N

Figure 2.1: Relatlonshlps between MoC and appraache

CSP

In the next chapter, therSTEMC SLDL is used to model software concurrency by
incorporating models of operating systems and sofvprocesses. The model of the OS
consists of services to support general asynchroncurrency and communication,
as well as the dedicated service to support symcu® concurrency in the synchronous
language. lIbGALS, a library-based approach that lsa used to both describe and
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realize GALS systems in C is then introduced in [@é&a4. As a further development,
lIbGALS is merged with 8sTEMC to enable modeling of entire systems that include
both models of hardware and GALS software, andithigresented in Chapter 5. This
enables the design of GALS systems ws&MC. Finally, libGALS are extended with
features of dynamic creation, termination and ntigraof asynchronous behaviors into
the DynamicGALS framework, which enables the desfnlynamic GALS systems.

The approach is detailed in Chapter 6.
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System design with OS modeling

A large number of computer systems have softwaptementation of concurrency
with support from operating systems (OS). Manylafse systems do not require full
OS, but a reduced functionality that can be implatee in software, hardware or their
combination. In order to model such systems itas anly necessary to provide OS
functionality, but also the mechanisms to suppoftwsare concurrency as well as
interactions with hardware. Such a model is reguicebe suitable in different levels of
abstraction in the early phase of design to expiloeesuitability of hardware/software
partitioning and implementation. This chapter pmsea methodology of modeling
complete computer systems that include OS withcbfasictionality and extensions to
ensure safe concurrency as the center of the systmel. The approach is illustrated in
comprehensive example.

The proposed modeling and design framework enabtdsedded software, which
includes software processes and the OS, and hardwanponents, to be described and
simulated together. This methodology, describedthis chapter, also provides

anexploration of features of the OS. The model dan further mapped on
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standard/customized OSs whose performance can &kelaeed. Hardware/software
implementation can be achieved according to sucuations which determine the
trade-off option. The proposed model is based enufe of SsTEMC as its backbone.
But the methodology allows the inclusion of mod#¢veloped in other languages. For
example, hardware components may have already ldeseloped in hardware
description languages (HDLSs).

This chapter is organized as follows: in Sectioh &proaches to system level
design are discussed. This is followed by detailimg design stages in Section 3.2.
Section 3.3 introduces the concept and existingaggmes of OS modeling in system
design, as well as the hardware support for OSs.flllowed by the proposed system
model with OS modeling detailed in Section 3.4. Thedeling of OS and software
processes is introduced in Section 3.5 and 3.pentiwely. A framework adapting the
uses of OS and the processes model to exploreogmhities of customization of OS
is presented in Section 3.7. A case study wherapghication originally modeled in
ESTERELIsS mapped on theYSTEMC based new framework is described and analyzed in
Section 3.8.

3.1 Approachesto staged system level design

Approaches in system-level design are iterativiep-based design with feedbacks
from each step being taken and refinements made thhe feedbacks. Iterative steps are
carried out at higher levels of abstraction, tovpreé unnecessary effort on details at
lower abstraction levels. Design ideas, performawauation, architectural feasibility,
component selections, and system integrationsadentinto account to give feedback
for the refinements. Figure 3.1 illustrates howtayslevel design is carried out. The
horizontal axis of Figure 3.1 represents the desigges of the earliest specification-
capturing at the beginning, which is at the left efthe axis. Levels of abstraction used
in the design, from the most abstract, such asnaaifunctional, to the most detailed
cycle-accurate level, are represented by the abréicis. System-level design methods
can be categorized into three groups accordingwothe overall system is constructed,
and are described in [Cesério et al., 2002], atet lm [Cai et al., 2003]. They are
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identified as ‘system-level synthesis’, ‘componbated design’, and ‘platform-based
design’.

Entry points of these approaches, shown in itahcEigure 3.1, demonstrate the
relative timeline and level of abstraction wheresi approaches are carried out. For
instance, system-level synthesis starts from theldft corner of Figure 3.1 and
illustrates such approach starts at the highedtaa®n, i.e. untimed function, while
component-based design performs the selection whtimx components, which are
modeled or implemented in the cycle-accurate fashio
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Figure 3.1: Staged system-level design
3.1.1System-level synthesis

System-level synthesis follows a top-down approadiere implementation details
are not known and will be derived from the speatiien of system behavior. During the
refinement process of the system specificationtwswe/hardware portioning is
performed, followed by the software and hardwaratlsgsis at the end. This
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methodology is adopted to explore the best cordijom of the system components
possible.

Specification of a system is first made informaltgen transformed to a more
formal representation/model, resulting in an exalolgt on the host machine when using
SLDL such as &TEMC. Behaviors of the systems are identified at gtege. This
procedure is made at the earliest design stagershewhe entry point of system-level
synthesis in Figure 3.1. The executable is usedlidate the correctness of the model
with the given specification. The execution modah de used to validate both the
implementation of the final design and identifiedndtional specification at the
beginning of the design phases. Feedbacks are tpvasrrect the modeled design, or to
report if the specification is not feasible. Onlke &nd of feedback-refinement iterations
is reached, the ‘architecture exploration’ will irerformed.

During architecture exploration, behaviors in sieation are mapped to hardware
and software components, known as hardware/softwEl/SW) partitioning in
‘architecture refinement’, according to characterssof behaviors and constraints such
as available resources. A number of ‘virtual platfe’ are obtained in architecture
refinements performed iteratively, similar to spieaition validation. The hardware
model at a higher level of abstraction, and thénsoe model comprising processes and
the OS model are integrated and communicate with ether through a bus. Note that
the models of hardware and software are still abstrand can be replaced
interchangeably. It is also possible to use impleee components in the architecture
exploration. Interfaces will be required to addy tises of existing components. In this
stage, communication and computation are modeledaious levels of abstraction,
which provide more information to the designersaoig the final architecture/platform.
Information such as timing is obtained through ®asi approaches and added
(annotated) to the virtual platform to evaluate ralteperformance as feedbacks for
better partitioning.

At the end of the refinement iterations, the fipdtform is determined. Such an
optimal platform is also known as the ‘golden modBlack et al., 2008] or ‘golden

architectureCesario et al., 2002]. Because hardware and sodtal@velopment of the
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golden platform start simultaneously and are gdlyecarried out at different speeds,
techniques to use models at different levels oftrab8ons are adopted again in
hardware/software co-simulations to test the unidan design, which can be either
software or hardware components. Various co-sinmratechniques have been
introduced and investigated. Finally the verifiemtdware and software are merged to

the final product as the end of design.
3.1.2Component-based design

Component-based design [Cesario et al., 2002]histeom-up strategy in which a
platform is constructed with interconnecting avalégacomponents. An entry point of
the component-based design is shown in FigureEXikting components are used to
construct the virtual platform and feedbacks areemito perform re-selection on
components to establish the golden platform. Coraptsn can be hardware and
software IPs. Interconnects between hardware IRs, @lled buses, can either be
selected from available implementations, or geeerats wrappers. Similarly, the OS
that manages the software processes, is seleategenerated as software wrappers.
Once the golden model is formed, the developmehtbaicarried out as the system-
level synthesis.

3.1.3Platform-based design

Platform-based design [Sangiovanni-Vincentelli & riftg 2002] is considered a
special case of the top-down design approach [Cali.,e2003]. It is also a special case
of component-based design where hardware platf¢sets of components) may be pre-
determined. In this case, software development beaipased on the existing libraries.
Generally, the skeleton of the platform, for ingtathe hardware bus, is predetermined.
As illustrated in Figure 3.1, the entry point ofaffbrm-based design is close to the
golden model. The platform can be customized byecselg suitable hardware
components. Different sets of configurations otfplens are called ‘platform instances’.
Standardizing interfaces such as PCI/Express peswdnnectivity to other components

facilitating video and audio features of the syst&atform instances of each desktop
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computer may differ and the optimal platform depemeh the target usage of such

systems, e.g. graphical design or networking server

3.2 Stagesin system-level design

Different levels of abstraction are based on ttgreke of accuracy of the underlying
model. Various levels of precision have been usedlifferent dimensions when
applying different accuracy on the system modelsesé dimensions include data
granularity and timing in communication [Ghenassk05], timing computation
(functionality) and communication [Cai et al., 200&8nd abstractions of interfaces for
co-simulation [Yoo & Jerraya, 2005]. Aspects of ralig at different levels of
accuracy, from the most abstract to detailed,iated as follows:

1. Data granularities in communication: applicatiorcket, bus packet, and bus

size [Ghenassia, 2005].
2. Timing accuracy in communication: untimed, approxiety-timed, cycle-
accurate [Cai et al., 2003] and [Ghenassia, 2005].

3. Timing accuracy in computation follows the precedoase [Cai et al., 2003].

4. Hardware interfaces in different abstraction: cyelecurate, transfer level,

transaction level, and message level [Yoo & Jerra9a5s].

5. Software interfaces: instruction set architectug\j level, device-driver level,

and OS level [Yoo & Jerraya, 2005].

Modeling approaches are based on two major pr@sertommunication and
computation. Communication specifies how one corspbrinteracts with others.
Computation specifies the way an algorithm is earout in a software and hardware IP.
Both communication and computation comprise coveelé features: timing accuracy
and data granularity.

In hardware/software co-design, communication islehed between 1) hardware
components, 2) software components, and 3) softvea hardware components.

Timing accuracy in modeled communication is categar as follows:
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1. Untimed: no timing information is in the model.

2. Time approximate: timing information is includediming information is
obtained via design experience or the given pregsedf the modeled IP.

3. Cycle approximate: the details of modeling arehe tevel of clock cycles.
However, the number of clock cycles may differ frothe actual
implementation. Details such as pipeline stageswexecuting software are not
considered. Clock cycles of software may be obthlmerunning each software
process individually without the presence of opagasystems.

4. Cycle accurate: very accurate instruction set saoul(ISS) or the actual RTL
design of the processor model or hardware IP id tsexecute software and to

simulate hardware components.

Implementation!
model

Cycle-accurate
model

Behavior
model

Bits & Wires

ISS &
Bus prlotocal

Bus
architecture
model

Accuracy of computation

Component
selection
model

Bus functional
model

OS level &
Bus explloration
T

Functional
model

Algorithms

| | |
I I | L
Un-timed Time approximate  Cycle approximate Cycle accurate

Accuracy of communication
Figure 3.2: Modeling approaches at different accytavels



Chapter 3. System design with OS modeling 48

Data granularity in communication differs in howfarmation is exchanged
between components. The scenarios, from the mastaab to detailed are in the
following:

1. Software to software: from unmanaged shared mentorynessage-passing

mechanism governed by the OS.

2. Hardware to hardware: from point to point channilgackets transferred on a
bus modeled without protocol but with an arbitratord to bit-true data transfer
with dedicated bus protocol.

3. software to hardware: from modeled software thabrooinicates directly with
modeled hardware to using a device driver managed® to access hardware

components from software processes.

Timing accuracy is co-related to data granulamitycommunication modeling. For
instance, a functional bus model which operaterdaty to a specified protocol
synchronizing with a dedicated clock is modeled rycle-accurate manner.

Timing accuracy of computation is achieved in thame fashion as in
communication. Data granularity used in modelingnpatation relies on co-simulation
requirements and design refinements. The simulapeed benefits from the abstract
computation model and is important in the earlyigiephases. On the other hand,
detailed data representation will be required fer implementation model. Hardware
and software models exhibit different data grantyafrom abstract to detailed, as
follows:

1. Hardware: from functional description to RTL bel@mvimodel, and to cycle-

accurate model or actual implementation

2. Software: from algorithm (or communicating behasjoCB), to processes

supported by OS (operating system level, OSL)nstruction level (IL), and to
bit-streams of codes executed by the RTL processodels or real PEs

(processor register transfer level, P-RTL)
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Similarly, timing accuracy and data granularitycomputation influence each other,
as in communication models. Modeling approachesdasn different levels of
accuracy are illustrated and proposed in Figure &2l called a ‘modeling graph’.
Timing accuracy is used to represent abstractiércommunication, as the horizontal
axis of Figure 3.2. The vertical axis represenesdhta granularity at different degrees

of accuracy.
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A single modeling technique is not sufficient toventhe whole design space. [Cai
& Gajski, 2003] present models which are discretkgributed according to the levels
of accuracy. Eight modeling approaches are illtstran Figure 3.2: specification
model, functional model, component-selection models-architecture model, bus-
functional model, behavior model, cycle-accuratedetpand implementation model.
The development path, shown as the grey arrowinatigs from the specification model
from the bottom left corner of Figure 3.2 and fireés in the implementation model at
the top right of Figure 3.2. The path taken frone tépecification model to the
implementation varies between different design apgines.

Transaction-level modeling (TLM) enables communaratand computation to be
modeled separately [Ghenassia, 2005]. TLM is usédather benefits such as: 1) early
performance estimation in the timed model, andighdr simulation speed due to the
higher level of abstraction. TLM provides a setnoddeling approaches, which have
been discussed in [Grotker et al., 2002], [Haverie¢ al., 2002], [Connell, 2003],
[Ghenassia, 2005], [Yoo & Jerraya, 2005], and [Blat al., 2008]. Different levels of
abstractions in TLM are identified in different apaches as follows:

1. The modeling approaches are first grouped to ‘uadimand ‘timed’. Timed
modeling is generally evolved from the untimed mobg adding timing
information. The untimed model includes a programwmew (PV), while timed
models consist of a programmer view with timing {BVcycle callable (CC)
[Connell, 2003].

2. Based on the communication layers [Haverinen et2802], from abstract to
detailed: message layer (L-3), transaction layeg)Ltransfer layer (L-1), and
RTL layer (L-0).

The above approaches shared common features amploanged and illustrated in
Figure 3.3, which is based on Figure 3.2, presgrdipplicable TLM for staged design
models. PV, PVT, CC, and RTL are names used taceaddhe underlying models. TLM

focuses on the communication between modeled coemienTherefore the modeling
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graph is partitioned horizontally according to tblearacteristics of different TML
approaches.

The system under design evolves from the speddicahodel to implementation
through communication and computation refinemebisscriptions of refinements in

each model, along with the use of the TLM, areittan the following sections.
3.2.1Specification model

The specification model is established with infokregstem descriptions. It does
not contain any algorithms of the system undergiediut consists of the requirements
and constraints of the system. Examples of req@nésnare features such as what the

inputs to the systems will be and how the systetpudus going to be displayed.
3.2.2Functional model

The functional model is constructed from the spe&ifon model through the
‘specification capture’, as shown in Figure 3.1eThnctional model is the executable
version of the specification, in which behaviorsidapossibly sub-behaviors within
behaviors) of the system are identified. Behavasesmodeled as algorithms (an aspect
of computation) which need not be detailed and usdtie final implementation, but
are sufficient to capture the corresponding adtigitof the behaviors. The functional
model is usually single-threaded, in that concuri@ehaviors are not yet identified.
Behaviors and sub-behaviors are in the form of tfionacalls. Communication between
behaviors is via variables and argument-passinfymdtion calls; hence the untimed
nature of the model. The functional model is alsdled ‘SoC functional view’
[Ghenassia, 2005]. TLM-PV and/or L-3 are used mftinctional model.

3.2.3Component selection model

The component selection model is close to ‘IP-abbemodel’ [Cai et al., 2003],
‘component assembly model’ [Ghenassia, 2005], af@dC’' architecture view’
[Ghenassia, 2005]. Components in this model arepetgrom behaviors identified
from the functional model. Components can be exgssoftware or hardware IPs, or IPs

which will be designed manually or synthesized m#tically in the later design stages.
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Existing IPs can be either proprietary or from sesr (or hardware descriptions in
HDLs) available. Proprietary IP models may be #&edent levels of abstraction in both
computations and communications. Therefore the comapt selection model covers
computations modeled from functionality to detaikaftware library codes and RTL
hardware, with both untimed and time-approximate mmmnication. Since
communications in the component selection modelpaigt-to-point linkages, there is
no presence of a bus in this model. Timing estiomatian be annotated to mimic delays.
TLM PV (L-3) and/or PVT (L-2) are used to descrimmmunications. The component-
selection model is the starting point of architegtexploration. [Séméria & Ghosh,
2000]

3.2.4Bus architecture model

Further down from the component selection moded, Itus architecture model
presents a primitive description of a bus modeltihgsthe interconnections between
components. In this model, components which sha#mmation are coupled with the
same bus. The architecture exploration is carrigidt@ obtain optimal configurations
between components-to-use and how connections eeta@nponents are established
by the means of a bus. In this model the bus vellréfined to a hardware bus or a
mechanism provided by OS for software processesptamunicate. Flexibility of this
model is required to perform efficient architect@seloration; the protocols of buses
are therefore absent. The bus architecture modeldapted by both system-level
synthesis and component-based design to find tleeég model’, and the coverage of
abstractions in both communication and computaisotherefore vast. TLM PV, PVT
and CC techniques are used in communications batee@ponents of all degrees of
accuracy. The bus architecture model is similath® ‘bus arbitration model’ [Cai &
Gajski, 2003], and the ‘SoC architecture view’ @hfenassia, 2005].

3.2.5Behavior model

The behavior model (BM) emphasizes the descriptioh€omponents and the
buses interfacing them. Descriptions are pin-atceurand operations of components

and buses are based on clock cycles. Since clatksin the behavior model are not as
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accurate as those in the cycle-accurate and impi&ti@n models, communications are
modeled cycle-approximately. Clock cycles in BM ariged mainly to activate state
transitions of the components and the buses. Toveré¢he behavior model is suitable
for refining the components and protocols of the.ltomputations in this model can be
behavior descriptions of hardware components in Rdn_different software pieces
running in an instruction set simulator (ISS) with¢he presence of OS to evaluate the
performance of each process. Cycle callable (CC) &f TLM is used in this model.

3.2.6Bus functional model

The bus functional modeBEM) is equipped with a cycle-accurate bus model with
specific protocol. Bus functional model evolvesnfrthe bus architecture model where
the golden model of platform has been obtainethénBFM, components interact based
on the given protocol. Computation refinements ahponents are performed at this
stage. Components at different refinement iteraticare at different levels of
abstractions. Techniques of inserting adaptersppes, and converters between the
components and the bus are used to bridge therafiffes such as timing accuracy.
Communications of BFM focus on cycle-accurate dpsons as illustrated in Figure
3.2, where CC (L-1) and RTL (L-0) are used to mam@hmunications. Computations
of BFM are across a wide spectrum as shown in Ei§u8, representing the refinements

of components.
3.2.7Cycle-accurate model

The cycle-accurate (CA) model is a pin-accurate @ning-precise model.
Hardware components are modeled in synthesizable &ifl software processes are
executed on the prototyped platform such as thecoafted in FPGA or the pre-existing
development board, or the processors modeled irRifie Communication between
components can be cycle-approximate in communicatmd thus modeled with the
TLM CC (L-1), if computations are verified on platins differing from the final
implementation. For example, a dedicated bus isiired to link the FPGA-based
processor model to the RTL hardware simulator téop@ co-verification. Similarly, a

fully accurate communication and computation madgshg RTL (L-0) will be adopted
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when the system under design is close to the fimplementation, presented with the

implementation model in the next section.
3.2.8Implementation model

The implementation model is the last stage tow#rdginal product of the system
under design. Both communication and computatiennaodeled in the most detailed
manner. Software is executed on the finalized @iatf for verification. Designers
generally do not work directly at this level becauke SW and HW components are
compiled and synthesized from higher-level desioiptinless specified in the design.

3.3 Operating systemsin system-level design

3.3.1System modeling with operating systems

With ever-increasing use of software in computesteays, OSs play an important
role in a large class of computer systems. Chaiaate®n, and modeling, of the OS
before carrying out the actual software implemenmatare essential for system
development. Modeling OS as a part of the oveyallesn model thus becomes essential.
In order to estimate system performance, systengmes should be able to model an
entire system with the existence of an OS moder poi system implementation.

Since performance and the ability to meet time waimgs of process execution rely
not only on the processor power but also on hovwgsses are managed by the OS,
well-performed design of the OS becomes import&itategies and mechanisms
provided by OS must be taken into considerationnadhesigning (or choosing) an OS.
Introducing specific services to the OS can providere efficient application
development and can lead to more rational andddutcorrectness’ designs.

Operating systems are introduced to system modbkoguse:

1. They provide interfaces for software processes comeation and

synchronization.

2. Access to hardware is provided as device driveii$-inuor constructed on top

of the OS.
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3. Behaviors of software processes, such as executier, are heavily

influenced by the scheduling policy provided by @®.
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Figure 3.4: OS and software processes modelingsies design

Introducing OS to system design means having sodftweocesses implemented by
using services provided by the OS. However, thegss/thread-based software model
does suffer for a variety of reasons, e.g. the camdition which is an obvious example
of indeterminism introduced by software [Lee, 200®}stem models consisting of OS
and process models thus inherit the same problé&yachronous languages are
proposed to resolve such problems, but have pderaictions with other software
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components and do not integrate well with the exgs6LDL-based HW/SW co-design
environment.

There are approaches which model software conawyrenthout having OS in
mind but make use of the underlying simulation kérA modeling strategy that maps
concurrent behaviors to processes/tasks is denadedtin [Tomiyama et al., 2001]. The
processes/tasks are assigned with fixed priorikiggher priority processes pre-empting
those of lower priority. Pre-emptions are achiebgdplacing processes functions in a
specific order in the system description. This apph limits the supported scheduling
policy and the scalability of the model. Omittinget OS model in the software
simulation does not provide sufficient informatitor OS mapping in the later design
stage.

Simulation is one of the features benefitting frdme OS model. It is possible to
map the OS models to the existing OSs, or to gémerstomized OSs according to the
application requirements. For example, automaticegion of RTOS proposed in
[Gauthier et al.,, 2002] provides options such asc@sses communication,
synchronization, and hardware requests to constauatustomized RTOS. Such
anapproach prevents unnecessary effort for RTOStingorbetween different
applications and hardware architectures.

OS models, which are used in different design stagee described in different
levels of abstractions according to the modelingurements of the development
phases, as shown in Figure 3.4. As mentioned he@% and software processes as
components of a system, are well fitted into tlagestl system design.

OS and software processes can be modeled in adnaktmanner, and are refined
in the final implementation. An OS model can betiamed, for example, providing
functionality to schedule processes to obtain safwconcurrency, regardless of the
timing requirement. It can also be modeled in aetinfashion, where scheduling
policies to achieve ‘real-timeness’ are modeledtehms of modeling accuracy, an OS
can be described in source code form of the SLDIthe actual OS source can be used
if available, depending on the simulation requiratndf the OS is available only in

binary form (e.g. binary library for the simulatidrost or target platform), the OS
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library is linked with other software componentsdas simulated as a host process or
within the instruction set simulator (ISS).

When OS modeling is adopted in system design, waricombinations of
interactions between components exist. Softwardiqme of the system are often
divided into processes and OS, and such simukati@ve been carried out, such as
processes/tasks modeling in [Poplavko et al.,, 208Rjng with RTOS modeling in
[Madsen et al., 2004] and [Gerstlauer et al., 2008{eractions between software
programs and hardware devices are presented ind@gdd Takada, 2003] and

[Formaggio et al., 2004].
3.3.2EXxisting approaches of OS modeling

Techniques of modeling general OS, embedded OSR@@tE have been discussed

in [Yoo et al., 2002] as follows:

1. Mapping processes of the target platform to prezesd the simulation host,
also known as native simulation. For example, [Bibuima et al., 2004] focus
on the HW/SW co-simulations on arbitrary levels albstraction, where
interfaces/adapters are dedicated between sofavaréardware components in
the model. pVirtualChoices presented in [Tan et BD95] is a simulation
environment for the kernel pChoices on the Unixeldasosts. Emulating
interrupts as UNIX signals is one of the approaciwbsch maps hardware-
dependent OS codes to resources available on g8ted% The rest of the OS
codes are linked with the host OS counterpartsetdopm native simulation.
The software processes are mapped to user-levehdrof the host kernel
where simulation is carried out.

2. Compiling the target software sources with the @& executable of the host
platform. In [Yoo et al., 2002], the (RT)OS simudex model is generated from
the actual (RT)OS. Software processes are modelied) threads of host OS
and they communicate with each other through rermpoteedure calls (RPC).
Hardware is also described inSSEMC. Estimation of software execution times,
on the targeted (RT)OS, are annotated to the stronlanodel. This model

evolves in [Yoo et al., 2003] so that time-delayndtions are used to
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synchronize both software and hardware simulat®mulation of software
works either with OS codes or scheduling mechamsovided by SsTEMC.
This approach requires the actual (RT)OS that tssndable for design space
exploration (DSE) where the (RT)OS selection mayh®ofinal.

3. Executing software processes with support of thuai OSs. A virtual OS is
the functional and abstract model of the real @f,ia intended to validate and
simulate with the other software and hardware carepts. Virtual OS needs to
provide the following:

a. Interfaces to access features provided by the (B§)Ihterfaces can be
in the form of function calls, signals, and evetatdhe (RT)OS model.
Interfaces remain while the underlying (RT)OS modah be inter-
changed with other (RT)OS models, both at simufatiand
implementation.

b. Essential features of (RT)OS, or acting as an nmegliate layer to the
existing (RT)OS codes.

As an example, [Zabel et al., 2009] present anrattsRTOS library, called
aRTOS, which provides a set of interfaces to mgutetesses and interrupt
service routines (ISRs) using SC_THREAD ofs$MC. The designer can
replace internals such as scheduling policy to mitmehaviors of different
(RT)OS. In [Tan et al., 1995], the object-orientedhoices is modeled as a set
of objects which interact with each other, wherlower level nano-kernel is
mapped to a host process. [Desmet et al.,, 2008epte50COS, a C++ based
simulation environment that facilitates functiotiak of (RT)OS. On top of
SoCOS, OsAPI provides a generic interface for safwo access the (RT)OS
functions. OsAPI remains in the final implementatishere SoCOS is replaced
by the actual (RT)OS. Virtual OS simulation is twhieve performance speed-
up comparable to simulating software in ISS. lpbaéhables (RT) OSs to be

modeled at different levels of abstraction. Howgaesses are modeled depends
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on the features provided by the (RT)OS model. [Dxseh al., 2000], [Yoo et
al., 2002], [Zabel et al., 2009] fall into this egory.

Processes are mapped to constructs provided bymibgeling language. For
example, SC_THREAD fromYSTEMC is used to model processes in [Le Moigne et al.,
2004]. A hardware/software modeling framework irhg@alier et al., 2006] provides
‘swappable’ software and hardware partitioning le early design stage by using a
layer between the user module and the RTOS to atedoftware and hardware
interactions. However, the real RTOS has to beepotb a particular (target or
simulation) platform. [Madsen et al., 2004] prowdextensions made toySremC
primitives to describe RTOS behaviors.

In [Le Moigne et al., 2004] the RTOS is modelednglavith processes using two
approaches: (1) both the RTOS and processes areledoas threads inySTEMC and
(2) the RTOS is described as a set of functionskvhiill be used in actual programs of
processes. In [Gerstlauer et al., 2003], interfaicthe RTOS model focuses on process
creation and management, event handling, and tinodehmg. A process has to
explicitly declare behaviors like fork and join dligh the process management interface.
Process synchronization is implemented via chanbeta/een processes. Efforts are
required to create dedicated channels whose numagreventually become very large
and hard to organize. Moreover, resource sharimgn@ortant feature of the RTOS, is
not clearly presented.

Code generation for (RT)OS is also developed. [@autet al., 2002] presents a
methodology to generate an application-specific @Sed on the requirements of the
underlying application. Services provided by (RT)&@&8 differentiated and are stored in
the form of source-code libraries. Existing (RT)@8uires effort to be merged into the

library. Porting is still necessary for differeatget architectures.
3.3.3Modeling OS with hardware involvement and support

SLDLs provide the means of hardware/software cagdeand co-simulation in
various levels of abstraction. Approaches to iatesf hardware and software, and

refinements of interfaces towards the final implatagons, are also proposed.
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[Bouchhima et al., 2004] focus on the HW/SW co-datians on arbitrary levels of
abstraction, where interfaces/adapters are dedida¢éween software and hardware
components in the model. The software processemapped to user-level threads of
the host kernel where simulation is carried out.

Various approaches to implement part(s) of the RTi@Shardware or with
hardware support are proposed. Most of them atfeeiiorm of add-ons to the platform
processor(s). A high-performance communication rganan hardware cooperates with
the on-chip processor in [Shalan & Mooney lll, 2DJ2ee et al., 2003] proposes a
mechanism to synchronize critical sections of tkecated code. A RTM (Real-time
Task Manager) proposed in [Kohout et al.,, 2004]ars example of co-processor
hardware support to achieve more efficient proseseduling. [Nakano et al., 2002]
describes STRON-I, a design flow to migrate evlagd, semaphores, timer, scheduler,
and the interrupt mechanisms, to hardware. As dreme, [Adomat et al., 2002]
proposes RTU as an external hardware dedicatedetforpm RTOS functions in
hardware. However these approaches are based ctingxRTOSs or platform
architectures, where modeling these componentsgimeh levels of abstraction, which

is important in the early design phase, is noteweesl.

3.4 The proposed system model with OS modeling

SysTEMC is used as the backbone of the proposed modeéintgework. The main
reasons for using YSTEMC are (1) it allows the modeling of system compasen
regardless of hardware or software implementatiod &) it allows mixing with
components developed in other specification langsagarticularly HDLs.

The current version of YSTEMC lacks support for OS features. Besides that,gusin
an existing OS implementation (where porting isuresgd when running simulation on a
host) in the early design phase would be overlymermand result in longer simulation
time because of the execution of the OS code. Algs,approach is not flexible since
some features, such as context switching, usedd®8 are always platform dependent.

The OS modeling technique should enable both sodtrocesses and the OS)

and hardware components to be described and sedutagether. The methodology
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introduced in this chapter also provides exploratd features of the OS. The essential

features of this model should support the following

1.

Concurrent software processes are modeled in diffe’'sSTEMC modules.
Having all processes modeling in the samie®vC module requires all of
the relevant sub-functions to become member funstal the same module.
This leads to poorly organized module description.

The OS needs to be modeled as a process in a titliimadule. OS can be
seen as a program whose execution masters thellsaitaare execution
on its resident processor. Therefore OS can atttealsridge to the processor
and other hardware components. Parts of the O8, asicervices provided,
are executed concurrently, if allowed by the platfo Furthermore,
interrupts, which are handled first by the OS, barmodeled as the input to
the OS which will trigger actions performed by (B8.

Hence, dedicated ports/interfaces of the OS modulset be provided, to
allow communication and synchronization betweenQgemodule and other
system components, e.g. programming interfacesdftware processes and
signals for hardware.

Internally to the software running on the same essor, generic interfaces
of OS must be provided to elaborate process maglefiplementation with
the least dependency on a specific OS.

The OS module should be a composition of sub-maedumedeled as
services or extensions based on the core-funciign@s another sub-
module) provided by the OS.

The internal behavior of the OS, such as the sdimgdpolicy, can be
changed with no substantial effort to provide O®leration in system
design.

This model should be generic and thus able to bthdu mapped on

standard/customized OSs whose performance canaheaéed.
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The OS and software processes which are modelediffasent design entities
(SysTEMC modules) are detailed in this chapter. The OSahoeceives events via
different signals and reacts differently to eachheim, indicating that the signals are the
key object for the proposed OS modeling at the énigdvel of abstraction. Contexts of
processes are stored within the body of the soétvaiocess module, which enables
shorer simulation times than simulating the actmtext switch at a lower level.
Processes are dispatched by notification from tiendel. Details of the software

model will be described in later sections.
3.5 Service-based OS modeling with reactivity

In this section, an OS model which provides a $sktovices is presented, shown in
Figure 3.5. OS services are accessed through appficporogramming interface (API)
by software. Proposed ‘signal-operation servic&hich carry out operations on signals,
are used to model synchronous models of computafitso, the modular OS model
allows substitution/support of its functionalitieg specialized hardware.

The OS model consists of the following componeass|lustrated in Figure 3.5:

1. Interface of the OS to communicate with softwarecpsses or the external
environment, in the form of API (to handle requestsn processes) or
signal handler (for external signals)

2. A set of services with their own data structurdse €urrent OS model has a
set of core services (in the rounded rectanglerkbkbnsists of four main
services (in rectangles). Data structures, showdaished rectangles, are

used and managed by corresponding services.

Services provided by the OS utilize correspondingtadstructures, which
collectively represent the current state of the OS.data structures consist of a number
of queues, condition flags, tables, and countelS. fBrvices are divided into four
categories:

1. Resource management, which models mechanismsdikahore used to

lock and protect shared resources.
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2. Timing control, to perform functionality such agtpausing of a process for
a specified time.
Signal operation, to support reactivity.
Process scheduling, which works as a core senlasely related to the

other services. Features such as process creationgato this category.

Groups of the OS services are formed hierarchicald are able to perform

independently as sub-modules within the OS.

API request from processi or

Notification to processes
or external signals

emitted signal to other devices

‘ Application programming interfaces (APIS) / Signal handler ‘
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Figure 3.5: OS model including services provided data structures

As an illustration, examples of the OS servicesdignal operations required in

reactive systems are given in Table 3.1:
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Table 3.1: API to perform signal operation

API Descriptions
Signal_Await Reg | Wait for presence of a designatgdal.
Signal_Emit Emit a signal to the other processxber@al environment.

Monitor a signal and jump to a specified addressiwie

Signal_Abort_Reg corresponding signal is present (implements pretemp

Signal_Monitor_Reg Wait on the change of monitored signal.

Signal_Present Check the status of a signal.

Signal_Value Obtain the value of a signal.

Each group of services is supported by dedicated s@uctures. For example,

signal-operation services are supported by datiatsires listed in Table 3.2:

Table 3.2: Data structure used by the signal-omeraervices

Data structures Descriptions

Signal await queue A list of suspend processesalawaiting a signal.

Signal monitor table A look-up table for monitorgidnals.

Signal abort queue A list of pre-empted processes.

Signal status and values The current status (absgmésent) and value of a signal.
Signal emitter table A list of processes assoaidtie potentially emitting signals

Two methodologies of modeling the interconnectitbe$ween the OS and other
software components are presented in this chaPiee. is pin-accurate modeling, the
other is the transaction-level modeling (TLM).

Programmers obtain detailed views of software adgons in the pin accurate
approach, whereYSTEMC primitive input and output signals are used. Fribim OS
point of view, an incoming API call consists of tA®I type and arguments that are
treated as input signals, whereas processes ditiinc signals, which consist of

process-ID and process-new-status, are considsredtputs, as shown in Listing 3.1.

Listing 3.1: Interfaces of process model at pinuaate level

#define ProcNum 16

#define API_Word_Width 16

#define API_Args_Width 16

#define Process_State 2

SC_MODULE(OSModel) {
/Il Interfaces for accessing services — from proce SSS
sc_in<sc_Iv<APIl_Word_Width> > process_API[ProcNum I
sc_in<sc_Iv<API_Word_Width> > process_API_Argumen t[ProcNum];

O~NO O WNPRE
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9 sc_in<sc_logic> process_API_Last_Argument[ProcNum 1;

10 /I Interfaces for notifying processes

11 sc_out<sc_lv<sc_logic> > process_Notification[Pro cNum];

12 sc_out<sc_lv<Process_State> > process_New_Status[ ProcNum];
13 // Rest of the OS model

14 ...

15 }

API provided by the OS to processes can be dividiedtwo groups: blocking and
non-blocking. Processes will give the control te tOS or obtain control from the OS
once the API calls are issued. Thus the APIs calisfunction invocations, are the
linkage between the OS and processes. This isasirtul transaction-level modeling
(TLM). Both blocking and non-blocking interfacesaavailable in TLM and can be
used to model API to access features of OSs. fnapproach, the OS will be modeled
as a S8sTeMmC channel (a specialized module) which implemehts ihterface (API
provided) as services. Some of the OSs offer featauch as modularity to include the
essential mechanisms and services. Such OSs aezatijgrmodeled as hierarchical
channels, the provided services being modeled asmadules within the channel
representing the OS.

An API call with more than one argument in a picwate approach consumes
many clock cycles during simulation resulting inver simulation speed. This is
countered by introducing TLM, where the steps afspag API type and arguments to
the OS are encapsulated within a single transackmerfaces of the OS model are bi-
directional blocking interfaces, implemented in 88 as a TEMC channel. Data
types (classes) are created for service requedt©&nresponses, shown in Listing 3.2

with interface declaration.

Listing 3.2: Interfaces of the OS model in TLM

class OSAPIL_if : public virtual sc_interface {
public:
virtual NOTIFY service_request(const REQ&) = 0;
h
class REQ {
private:
unsigned int API_TYPE;
unsigned int *APl_Arguments;
unsigned int APl_Arguments_Num;

P P OO ~NOOOULA, WNPE
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12 class NOTIFY {

13 private:

14 unsigned int Process_ID;

15 unsigned int Process_New_Status;
16 ..

17}

Services are modularized according to the categidoewhich they belong. To
achieve higher simulation speed, communicationsgajuped services are also

described with TLM as shown in Figure 3.6.
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Figure 3.6: OS model in TLM

The OS model reacts to its inputs (service requests processes) according to its
state. The OS state transitions are illustratdéignre 3.7 and Table 3.3. The OS state is
part of the data structures governed by the ‘pmcssheduling services’, which

coordinate the overall behaviors of the processes.
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Table 3.3: State descriptions of the OS model

)
L
@

Description

Power up of system

Completion of the OS initialization

No ready process to release and no process tamtivggnal is presented
Presence of a process activation signal or a/reamtess

A process is released

Neither an event nor an API call is detected

Receive an API call from a process, or a monit@ignal presents
Finish updating data structure as preparatiosé¢oeduling

S|KQQ|™ o |0 |T|o

Initialization

Checking for
external signal
and ready
processes

Updating data
structure

Wait on
monitored
signal or API

Figure 3.7: State transitions of the OS model

3.6 Describing softwar e processes with the OS model

3.6.1Mechanism available inYSTEMC to model processes

SysTEMC provides processes (to differentiate from sofemarocesses in view of
OS, it is called ‘S8STEMC process’ in this thesis), namely SC_METHOD and

SC_THREAD, which are scheduled in a co-operativemea In other words, neither
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SC_METHOD nor SC _THREAD are pre-emptive. SC_METHQ® suitable in
modeling behaviors of a finite state machine (FSMhere each execution of
SC_METHOD represents the activities performed ispacific/current state. On the
other hand, SC_THREAD, is suitable for modelingwafe processes with numbers of
segments formed by using wait statements provides/$TEMC. The wait statements
are used to return the control back to thrd1®@MC simulation kernel manually so that
SC_THREADs are scheduled co-operatively. SC_METH®Dused to model one
software process, so that the process model caeriinthe properties from the
specification which can be described with formal@®uch as FSM. This approach also
enables possible verification and linkage betwetieroFSM based formal languages

(such as BTEREL).
3.6.2Internals of the process module

A process modeled as arSSEMC module is called a ‘process module’. It is
specified with the process interface (to connedhwihe OS module), behavior (an
SC_METHOD which contains the algorithms that ddsenmieactions to various input
events) of a process, a process state, procesdrstasitions, context of the process, and
an execution-control variable (called process-ettenusegment ID). The process
module requests OS services by sending API caliisraquired arguments to the OS
module via the communication channel which existsvieen the OS and each process.
The communication channel is modeled as an un-tifidd function call, for faster
simulation, or timed (cycle- and pin-accurate) dejpeg on the required accuracy. The
OS notifies (through signaling) a process modulehange its state. A process state
indicates the current state of a process as itesdrin Figure 3.8 and whose state
transitions are detailed in Table 3.4.

By encapsulating a process context within the m®eeodule as member variables
of the process module, minimal or no effort is rezktb model the context switching.
The process module includes the declaration ofntbelule and the process body as
shown in Listing 3.3 and illustrated in Figure 3T®e process body is modeled by using
SC_METHOD. A segment of the process body behavesrding to the current state of

the process module and the current position (pointhie execution (control) flow. This
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state-machine based approach enables (1) a swdculescription of the process

behavior and (2) a straightforward mapping frontestaiented system specifications.

Initialization

(h)

Figure 3.8: FSM of the process model

Table 3.4: State descriptions of the process model

)
L
®

Description

Power up of the system

End of process initialization, process starts adrately

End of process initialization, process waits eécalstivated by signal
Process activation signal is present

OS signals the process to be released or sclledule

OS signals the process to pause due to signampion or scheduling
An OS service is requested

Completion of a service call

Process termination

—|IoKQQ|™ o |0 |T(o

Listing 3.3: The 8sTEMC template of a process module

SC_Module(Process_Module)
{

/I Process module interface declarations
Declarations of input ports;

A WN P
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5 Declaration of output ports;

6 Declarations of data structures including process context;
7 Declarations of process simulation body function;

8 SC_CTOR(Process_Module)

9 {

10 Assigning sensitivity list to the simulation bo dy function;
11 SC_METHOD(simulation_body);

12 Initialization of data structures;

13}

14 }

15 void simulation_body()

16 {

17 Process state transitions model
18 /I Process execution controls
19 if (process_execution_segment_ID = = segmentl)

20 Running process execution segmentl;

21 else if ( process_execution_egment ID = = segment 2)
22 Running process execution segment2;

23 ...

24 ...

25 else if ( process execution_segmentID = = segment N)
26 Running process execution segmentN;

27 1}

Notification from Process module

the OS R Signals to
Process state
access data

memory

A

N
L

API request to Process context ||
the OS

Process execution
segment ID

Figure 3.9: The internals and interface of a pgsgaodule

3.7 Proposed co-design framewor k

3.7.1The overview of the framework

The framework divides the design process into &tages as shown in Figure 3.10.
At the first, a system is specified by using angikble SLDL. System verification is
then carried out to ensure correctness of the fpetodn. The last step of the first stage

is to analyze system behaviors and map behaviorsotoponents. The HW/SW
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partitioning at this stage can be achieved by eyipipthe designer's experience. There
is no need for optimization since implementatiotade are not present in these HW or
SW components (known as modules in the next dgdigse). During the second stage,
embedded software is further refined into procesdutes and the OS module which is
an abstract model without implementation detailgljsas disabling/enabling interrupts
for critical sections, which are target-platformpdadent). In this stage, exploration of
HW/SW patrtitioning of the OS itself may be condukctédhe hardware portion of the

OS, along with the other hardware modules, inclgdhre processor module, memory
modules, and other peripheral modules, is simul@ieetimed, or cycle accurate) with

process modules and the software portion of thenogule.

‘ System Specification / Verification ‘
v System
. . N Specification,
ﬁ Functional Analysis & HWSW Partition }—l verification & 141
partition
# Software Components ;:‘ Hardware Components ’:
Hardware-
‘ ‘ 4‘; software
partitioning
OS module (a) refinement
(Functional)
A 4
Process module v
(Functional) R_T_OS_» General —
partitioning processor
module Me dule
RTOS module | | RTOSmodule | | (Functional) functional)
software part hardware part Hardware device X
(Functional) (Functional) module System Design
i (Functional) and simulation RTOS
v = partitioning
refinement
Process source CsieEEE I
Software libtary processor —
code b
( ) (Functional)
RTOShardware ISA
Binary for ISS implementation | | simulat ! 3 Component
(RTL) or design to
implementation
Hardware components (RTL
Tasl; OS;: rce Customized W P ( )
(Refined) processor (RTL)
Debugging
‘ and
refinement
Target platform Synthesis
—>  executable ¢ hardware  [*
Final
l—ﬂ Final product }4—‘ implementation

Figure 3.10: Modeling framework and staged desppr@ach

Once the partitioning of embedded software andware devices is confirmed, the

design process moves to the third stage, the ingaléation stage. Here implementation



Chapter 3. System design with OS modeling 72

of processes and the selection of the OS are adistra@. The processor module is
customized and integrated with the hardware pouiahe OS.

Modeling of the dynamic behaviors such as the ei@twf concurrent processes is
essential in the system model. Without adapting @& in system models, different
systems are modeled according to the underlyingasgos of the used specification
language. Simulators of the used languages willrdzpiired and will increase the
complexity of the model. In contrast, if an OS mlode used to control dynamic
behaviors by providing semantic-preserving servities system model is simplified.

Introducing the OS model into the framework carsben as a bridge between the
design and implementation phases, where commumicadnd synchronization
mechanisms are extracted from the behaviors irspleeification stage and included in
the OS model. In the rest of this chapter the fosus the shaded area in Figure 3.10 (a)
to explore the possible implementations with O$him later stages. Process execution,
which relies on support provided by the OS, is nedleas a process inYSTEMC
module. It is simulated together with the OS moduigormation shared between
processes is stored in the data memory describ#dnwanother 8sTEMC module,

which is also modeled in this stage.
3.7.2Integration with the OS and process modules

This proposed OS and the process modules are atégeigto represent the overall
software components of the system. Co-simulatiorth Wardware components and
further refinements on components are in accordawdé the aforementioned
methodology. For example, programmers are intedteptemarily in communication
between processes and their interaction with thevdfereas system architects need a
view from which to explore possible hardware/sofevalternatives. Figure 3.11 and
Figure 3.12 illustrate two different approacheshwihe proposed OS and process
models. During the early design phase, processesnadeled at the functional level
(refer to Section 3.2.2), and executed with suppootvided by the OS through API
calls, as shown in Figure 3.11. For example, ARJn&8i_Monitor_Reg is used to
monitor input signals. As an execution result, psscswitching would be required if a

certain signal were present, where the schedukasstthe place of selecting the next
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process. Data memory, which is a functional mogebvides temporary storage for

process modules and the OS.

Scope of the processor

Resource
management

IdvY

Timing
control

A

Process modules
OS module (Functional)

(Functional) n—>
5
2 =
Inputs and ¢ Signal operation s 4
outputs of the . services =
processor
, :

Data memory (Functional)

Figure 3.11: OS module with functional modeled psses

To explore OS with application-specific customiaati an OS with different
configurations (to provide different sets of seedcor to adopt different scheduling
policies) is modeled. Simulation of pre-compiledgesses is done by the ISS, as shown
in Figure 3.12. This type of OS model enables des® to evaluate the OS design.
Processes are first compiled with the skeletorhef ®S library, which provides API
only. Object codes of the compiled processes amedtin the functional model of the
program memory, which fetches instructions to t88 hnd the OS module. Before an
instruction is loaded to the ISS, the program memmiodel checks whether the
instruction is an API request. If this is the catbe request will be passed to the OS
module instead of to the ISS. Once the requesarised out, the scheduler of the OS
module notifies the program memory either to cargirfietching instructions from the
calling process (process continues to execute}odoad instructions from another
location (as another process is released). Pritreégelease of the scheduled process, a
sequence of instructions is fetched to the ISSirmlate the context switching. The
process contexts are stored in the data memoryng@lp to the processes. Data
memory connects with the OS module, whereas dedtiners, as a part of the OS,

require memory access to control memory-mappecddsyvi
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Scope of the processor

Program memory (Functional)
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Figure 3.12: The OS module with compiled program

3.7.3Communication between modules and environment

Communication and synchronization of the processlules is managed through

services provided by the OS. By adopting the uséhefOS module, the number of

communication links between the processes is retgiace the processes are

communicating in a centralized fashion. Moreovegnals, which are used in many

SLDLs and synchronous languages, are introducedhasbasic communication

mechanism to ease the transition between systenifispgon and implementation. In

this approach a process communicates with anotbeegs via internal signalsy)Ssand

with the external environment via external sigriagf) with OS support, as shown in

Figure 3.13.
OS module OS module
Process 1 —@ Sigr:gl T Process 2 Process S1—> Sigr:gl 7
module operation, | o module module — 52 operation, | |
4_@ eq. - @ eq. R
emission emission

(a) Inter process communication through signals

(b) Process to external environment communication

ES1
ES2

External
environment

Figure 3.13: Interactions between processes/extenvaronments
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3.7.4HW/SW partitioning and HW support of OSs

A composition of processes and the OS is genesallyfcommonly seen as software
components of the embedded systems. In implemensatOS is presented in the form
of libraries, which are used in compilation withopess source codes to embedded
software. Device drivers as parts of the OS liesadre provided to control devices, and
thus the OS bridges the processes and hardwareedetlt is also possible to implement
partial OS functionalities in hardware to achievghlkr performance, as described in
Section 3.3.3 and this is why OS can be considemmikture of hardware and software.
To describe the behaviors within OS and explore 8W/ trade-offs in its
implementation, the OS is modeled at the functidenal with the aim of enabling co-
simulations with other system components modelatiffarent levels of abstraction.

In the proposed system model, most of the compsrametdescribed as modules in
SYsTEMC, while others, for instance the processor, atteeeimodeled in the register
transfer level through hardware description langsa@iDLs) or is presented through
an instruction set simulator (ISS). Figure 3.l4ustrates how system components
interconnect. The hardware/software composed O8emis to most of the other system
components. Processor, memories, and devices cometeinhrough a functional bus
model. The processor model connects with the OSembecause the OS provides a
platform-dependent layer such as drivers. BecauSe fidhctions implemented in
hardware are integrated with the processor asifimadtunits, the interconnections are
presented. Program memory model connects to thgd{ato provide information for
executions of functional units. Qgaware Processes service requests from compiled
software processes, which are stored in the programory. Data memory stores
information which is manipulated by the OS and peses. Processes operate with
support and services provided by the OS. Since mat@aory is modeled functionally,
the details of timing in the memory model are raten into account; the memory
model can still be refined with further accuracy Hack-annotating timing

characteristics.
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Device Devices in RTL
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Figure 3.14: Hardware-supported OS in the systememoith other HW components

The OS model is used to encapsulate the detailscashmunication and
synchronization between processes, whereas softdavelopers need not to be
concerned with how to maintain links between preessand other external devices.
The OS model is close to the virtual OS simulattoncept: a set of system services,
available to processes through application progremgminterface (API) calls.
Validation of the OS is achieved by examining iat#ions between the OS and other
system components, and mapping applications orrdiift OS configurations (with
different services or HW/SW partitions) makes tippraach independent of the target
platform.

Data memory in this system model is currently medeb store variables shared by
the processes and values of memory-mapped sigha#svéa valued signal has status
and value when it is present). Data memory is desdras a STEMC module with
interface to allow reading from and writing to amay whose size equals the

addressable memory space of the target processdat@&memory module connects
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with process modules in the system model. It i® aised to provide information on

process activities such as the use of shared r@snur

Scope of the processor
Program memory (Functional)
Pr.oce.ss API Decoder
switching
Scheduler
OS module
(Functional) <
mF:)ZtJb Instruction set
(Functional) Simulator (ISS)
Inputs and >
outputs of the
processor l T L T
module Data Memory (Functional)

Figure 3.15: Processor model with RFU support

The proposed system model in this chapter allowsn{apping of application
specifications to software processes and (2) eaptor of hardware/software (HW/SW)
trade-offs in implementation of the OS. It alsocoalé mapping on existing OSs and
extending them with new signal-operation servid@assed on the simulation results,
possible and preferred configuration (HW/SW panting) of the OS implementation
can be obtained. Hardware support to the OS cantégrated with the processor in the
form of functional units. As an example, a Reactprecessor [Salcic et al., 2005]
contains RFU (reactive functional unit) to perforactive operations on signals.

The OS model can thus provide us insight into ntignaservices, in this example
signal operations, from software to hardware, amdiehthem as a hardware unit as
shown in Figure 3.15. This model is derived frorguUfe 3.12 by introducing the RFU
as a support to the OS. Instructions identifiecsigaal operations, are fetched to the
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RFU module. RFU is responsible for informing the @®del whether a process-
scheduling is required at the end of a requestgthbpbperation. RFU is connected with
the data memory where process contexts relevatiteedRFU can be saved/restored

during the process switching.

Scope of the Embedded Processor

i Process 1 Process 2 | ... Process N P.

| API

| . - | Signals to
| OSsw | Scheduling : Aooss data
Ll Device Driver, HAL J memory
1 OSuu T Data Path
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output 1 Functional —

Input and D
signals FU-1 (RTFU) Fu2 | = unit M |

associated !

with RTU 1

Specialized H/W units

,,,,,,,,,,,,,,,,,,,,,, - S———

Control Unit

Figure 3.16: A model of processor: OS with hardvsaneport

Figure 3.16 further details the processor modeickwisovers the overall software
running on the processor and hardware enhancereetite processor itself. API calls
to the OS are done by signaling, described in er Is¢ction. The API, Q% (which
represents the software implemented part of the, Q@®yice drivers, hardware
abstraction layer (HAL), and processes are impléetem software which is compiled
and stored in the program memory. Results of coatjuut performed by the processes
and the OS are stored in the data memory. The ggeseare allowed to perform

operations on memory-mapped input/output signalghe support of OS.
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3.7.5Mapping of SW models to implementations

The proposed approach for modeling reactive emlzbdggtems with an OS model
can be easily extended to a real (target) OS bgegslp mapping signal operations on
the services of the existing OS. For that purpgeeial signal-oriented data structures
have been introduced. Each signal-operation sepaoebe refined into two stages: (1)
accessing and updating the semantics-related ttatawses (those preserving semantics
of e.g. BBTERELD and (2) calling other services provided by thgea OS to explicitly
trigger process-scheduling, if required. To fulfilese requirements, the target OS must
provide the following services:

Entry and exit of a critical section — these areduto operate on the signal data
structures, where operations should be carriecbguine signal-operation service at a
time. This requirement can be achieved also bygusinbinary semaphore which
protects the data structure.

Blocking the process execution with time-out suppeithis can be a binary or
counting semaphore, whereas the time-out featunegjisired to achieve exception/error
handling such as a recovering from a signal nosemee within the specified time
period.

As an example, two existing OSs have been usebeatatget OS: uC/OS-1l and
FreeRTOS. The templates of the signal-operationvices for these two OSs are
illustrated in Listing 3.4 and Listing 3.5, respeety. Note that the variable name
timeOutLength is used to achieve the above-mentdidinge-out.

In this model, the term ‘logical tick’ is adoptexbiin the synchronous MoC, as the
synchronization barrier of behaviors in the prograxecution. It is different from the
standard OS ticks which are based on actual timeldak cycles), and it is of different
length in terms of execution time. Logical ticke arsed to handle incoming events in a

deterministic manner.
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Listing 3.4: The template of signal-operation seevior uC/OS-II

1 UserDefined_OS_Signal_Operation_Name (...)
2
3 /l Stage 1: Computation on data strucuture (DS)
4 int blockingRequired = 0;
5 // 0:non-blocking, 1:blocking due to signal, 2;bl ocking due to tick
6 /l obtaining the access of the DS
7 OS_ENTER_CRITICALY();
8 /I Processing the DS, e.g. signal presence table, tick table, etc.
9 blockingRequired = 0; // or 1 or 2 according to t he computation results
10 /I release the lock to the DS
11 OS_EXIT_CRITICALY();
12 /I Stage 2: Block the process execution if requir ed
13 if (blockingRequired == 1)
14 OSSemPend( semaphore_for_signalS_of_procN, time OutLength, err_code );
15 else if (blockingRequired == 2)
16 OSSemPend( semaphore_for_tick_of procN, timeOut Length, err_code );
17 /[ arriving here when the blocking is not require d or finished
18 blockingRequired = 0;
19 }
Listing 3.5: The template of signal-operation seevior FreeRTOS
1 x_UserDefined_Signal_Operation_Name (...)
2
3 /I Stage 1: Computation on data strucuture (DS)
4 int blockingRequired = 0O;
5 /I 0: non-blocking, 1: blocking due to signal, 2: blocking due to tick
6 /l obtaining the access of the DS
7 xSemaphoreTake( semaphore_for_data_structure, por tMAX_DELAY );
8 /I Processing the DS, e.g. signal presence table, tick table, etc.
9 blockingRequired = 0; // or 1 or 2 according to t he compuation results
10 / release the lock to the DS
11 xSemaphoreGive( semaphore_for_data_structure );
12 /I Stage 2: Block the process execution if requir ed
13 if (blockingRequired == 1)
14 xSemaphoreTake( sem_for_signalS_of_procN, ( por tTickType )timeout );
15 else if (blockingRequired == 2)
16 xSemaphoreTake( sem_for_tick_of _procN, ( portTi ckType )timeout );
17 /[ arriving here when the blocking is not require d or finished
18 blockingRequired = 0;
19 }

3.8 Case study: lift controller

A lift system from [Berry, 2004] was originally sg@ed in ESTEREL The system
consists of a lift cabin, a set of sensors, a tinkeree motors, few push buttons, a

number of indicators (lamps), and a system comirolfo map the specification to
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processes, primitive behaviors are first extradtedh the system specification. Two
large behaviors (call handling and cabin door #@ats) from the ETEREL specification
are decomposed into eight primitive behaviors aafdeddencies between behaviors
identified as illustrated in Figure 3.17.

The primitive behaviors are mapped to 8 processglsre 17 existing dependencies
(possibly require 17 communication channels if@ is not used) are modeled with 8
communication channels connected to the OS moduidified). The processes are
described using the timed model from Section 3xaniple of mapping an EEREL
description to the corresponding process segmesfitaen in Listing 3.6 and

Listing 3.7.

Elevator

Call-handling
behavior

Cabin door
activities
behavior

Signals from
users or
environment

—

Signals to

environment
— B8 —
(@)

Figure 3.17: Primitive behaviors and dependenciéseted from the specification

Listing 3.6: Behavior described irsEEEREL

1 if (not StoppedAtFloor) then
2 emit {

3 PendingCabinCall <= CabinCall or ......
4 PendingUpCall <= UpCall ......

5 PendingDownCall <= DownCall ......

6 PendingCall <= PendingCabnCall or

7 PendingUpCall or

8 PendingDowncCall

9

1

}
0 endif

Listing 3.7: Behavior description in SystemC
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1 /I Checking the presence of the following signals

2 int sStoppedAtFloor = Signal_Present(StoppedAtFloor );
3 int vCabinCall = Signal_Value(CabinCall);

4 int vUpCall = Signal_Value(UpCall);

5 int vDownCall = Signal_Value(DownCall);

6 int vPendingCabinCall = 0;

7 int vPendingUpCall = 0;

8 int vPendingDownCall = 0;

9 int vPendingCall = O;

10 ...

11 if(sStoppedAtFloor == 0) {

12 vPendingCabinCall = vCabinCall ...... ;

13 vPendingUpCall = vUpCall ...... ;

14  vPendingDownCall = vDownCall ...... ;

15 vPedingCall = vPendingCabinCall | vPendingUpCall |
16 vPendingDownCall;

17 Signal_Emit(PendingCabinCall, vPendingCabinCall . ... );
18 Signal_Emit(PendingUpCall, vPendingUpCall);

19 Signal_Emit(PendingDownCall, vPendingDownCall);

20 Signal_Emit(PendingCall, vPendingCall);

21 }

Figure 3.18 illustrates the model of the lift carflier, where an additional process is
introduced to function as the test-bench and sitesléhe external environment. The
test-bench emits signals to the other processesdhrAPI calls, where emitted signals
emulate inputs from the external environment. ldeorto observe the advantages of a
modularized OS model, where services can be intedluand removed as the
application requires, signal-operation servicesraneoved from the OS model in order
to analyze OS models with and without signal se&xidwo lift systems with the same
functionalities were modeled and simulated. Thet Bystem model (Model A) achieves
process communication and information broadcadiesged on the use of semaphores.
The second system model (Model B) is supportedidpyas operations provided within
the OS.

Two models are simulated with 72 events (which roagsist of more than one
input occurrence) provided by [Berry, 2004]. Eveats generated at random intervals.
Simulation results are shown in Figure 3.19, whtdee bold line indicates the result
generated from Model B, which has an average sppeaf-28.46 times in simulating

clock cycles.
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Figure 3.18: System model of the lift controlleaexle
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In Model A, synchronization occurs when a procetsases a semaphore (use of a
particular signal) where notification is sent that processes. However, processes are
notified regardless of the status or value of aaigChecking of signal values happens
each time the corresponding semaphore is obtairyethd process. This creates a
scenario where processes are polling signal valonea loop. In contrast to this,
synchronizations occur through signal operationdMiodel B, where processes are

Figure 3.19: Simulation results for two system nmesde

notified when signal values change. The respomsestiof Model A vary with event

intervals, which are shown as multiple traces guFe 3.19, whereas the response times

of Model B are fixed in every simulation.
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3.9 Summary

This chapter presents an approach to modeling tBefdd reactive embedded
systems. The abstraction level of the OS itself lmarchosen depending on the need of
the computer system designer. The OS model is roduid described inYSTEMC,
and gives opportunities for exploration of hardwsoéware trade-offs in
implementations of the OS. The proposed signalatjmers in the form of OS services
provide a mechanism to produce a relatively sttfogivard transformation of
ESTEREL-like specification to processes, thus bridging sistem specification and the
design phase.

The processor model can be introduced into theesystodel in the form of an ISS
or a low-level RTL model. Evaluation of performanoe other aspects of the OS
implementation in different configurations will bevestigated. The future goal is to use
the developed modeling methodology to explore Garnization for specific reactive-
embedded applications.

The advantage of mapping dedicated services toosupgactive systems has been
presented in the case study. This was the steppioge to the design and
implementation of more powerful mechanisms for ging of software processes in the
form of a library, libGALS, which is built on topf ¢the underlying OS and is presented
in Chapter 4.



libGALS: a library for GALS system design

libGALS is a library and run-time environment tlextends operating systems (OSs)
to support the design of Globally Asynchronous Wycaynchronous (GALS) software
systems and models. lIbGALS provides an applicaposgramming interface (API)
that enables the designer to describe concurre@®ALS programs and reactivity in
sequential programming languages. Moreover, itlifats the interface between the
GALS concurrent program and other processes thrdlighservices provided by the
host OS. lIbGALS is also suitable as a target fodec generation from GALS and
synchronous concurrent languages. At the end sfdi@pter, experiments demonstrate
code size and run-time gains when compared witlero#fpproaches to implement
GALS systems.

4.1 Programming with a formal model of computation

The last decade has seen a huge growth in the eaitypbf software systems,

which, due to the drawbacks of programming langsagesually do not follow any
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formal model of computation (MoC) and are therefdifficult not only to design but
also to validate and verify. Programming languaties C/C++ and Java provide
inadequate facilities to describe important behaviof complex systems like
concurrency, determinism and interaction with theimnment. They require the use of
operating system mechanisms that are availableghrthe OS API, which require the
designer to delve into low-level details insteacconcentrating on the system design at
hand. Since these mechanisms are not guided byoamal model, space it left to the
making of erroneous designs. Synchronous languldge&sTeREL [Berry, 2000] and
GALS system-level languages like SystemJ [Malikl@Chave been shown to increase
designer productivity when designing large and demsystems. They provide an
abstract way to model concurrency and communicatith the environment, besides
being formally verifiable. However, they also haestain drawbacks such as:

1. Large generated code size.

2. Mapping of the concurrent programs onto single atisein the targeted OS
environment. Current synchronous language compitsipile away the
concurrency to produce a single-threaded C codis. gdnerated code is unable
to take advantage of the multicore processordaiitgge size and single-threaded
nature slowing down the execution speed of thegdesi systems.

3. Lack of a formal communication model between thgigieed system and other
parts of the system, which are asynchronous inredeig. the device drivers
which co-exist within the system).

4. Existing synchronous languages are too hardwaee-filr most software
programmers. Interaction of a synchronous progratim tive environment is not
addressed in a general way and the programmersdaaktvith it on case-by-

case basis using low-level language abstractions.

In this chapter a software library and run-time issrvvment for the execution of
GALS systems, called libGALS, is presented. Corenirbehaviors are implemented as
task-based software processes around an operatstgns and they comply with the
GALS MoC. libGALS provides a layer atop the host &fél/or a threading library such
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as pthread [IEEE, 2008]. It can be used to progcancurrent systems following the
formal GALS MoC as a safer alternative to conveamlothreading approaches.
lIbGALS can also be used as a target for compitatibspecifications in languages such
as BSTEREL and SystemJ. Porting lIbGALS is easy and can be dor almost any
existing OS. libGALS can then be used from seqaémprogramming languages
through a set of proposed API. The main novel festyprovided by libGALS, which
also affect the way concurrent programs are writbensequential programming
languages, are:

1. Ability to extend sequential programming languagasch as C (through
available language bindings) to specify synchrontyse concurrency with
simple mechanisms for communication and synchrdioiza between
synchronous processes using signals. Communicatimh synchronization
between asynchronous processes are through champésmenting message-
passing with rendezvous. Signals and channels eandated dynamically.

2. Ability to dynamically create processes and deftheir relationship with
already existing processes (synchronous or asynohs), as well as to
dynamically schedule these processes. lIbGALS allaesigners to create
processes either dynamically or statically dependinpon application
requirements. In a safety-critical or sensitive legggion it would be prudent to
create all processes at startup. The static creafigprocesses would allow the
designed system to be analyzed for predictabifity aming performance.

3. Provision of interface to the external environmiembugh signal abstraction and
to other OS processes through host OS services.

4. Achievement of higher responsiveness and reducggbonse times compared
with current language approaches to GALS and symdus concurrency.

5. Smaller memory footprint compared with other GALBpwaches, thereby,
making it also suitable for embedded systems.

6. Ability to define simulation model for modeling arsimulation of complex

system designs.
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libGALS is entirely written in C and as such hagajrdegree of portability to
practically any host operating system. The firgplementation presented in this chapter
targets Linux, although there have already beerspimr some other common OSs.
Throughout this chapter, the term OS is used toesgmt common operating systems
with sufficient features to support libGALS such last not limited to, Linux.

The rest of this chapter is organized as followexcti®n 4.2 presents related work.
Principles of operation and implementation of libiGRAare given in Section 4.3. An
example of GALS design is given to illustrate beftecification and implementation
features of lIbGALS. Section 4.4 presents perforoeanomparisons with the GALS
language SystemJ to indicate potentials of the qweg approach, not only as an
alternative, but also as the way to merge those @pproaches, using the GALS
language on specification and the libGALS approachthe implementation level.

Discussion and conclusions are given in Section 4.5

4.2 Approachesin programming concurrency

4.2.1Concurrent behaviors in software systems

Specification and run-time execution of concurrprdcesses are supported using
different mechanisms. In an OS, concurrency is @manted in the form of multiple
processes (sometimes called tasks) supported lehedsler implementing switching
between these processes to better use the proeesbto provide faster response to the
events from the environment. However, multiple psses require mechanisms for
synchronization, communication and mutual exclusfon the protection of shared
resources. OS [Silberschatz & Galvin, 1998] prosidbis support in the form of
traditional API to programming languages. Thesehaatsms must be used by system
programmers with due care to prevent non-detertien@ non-desired behavior and
traditional pitfalls such as deadlock or race ctiads [Silberschatz & Galvin, 1998].
Java provides native multithreading support, b& pnogrammer is responsible for

correctness of the program as it does not followfarmal MoC. Also, its concurrency
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is non-deterministic. Recently, OSs have been ee@nto support execution and

concurrency in symmetric and asymmetric multipreocesystems.

4.2.2Limitation of single-threaded specification models

In system-level languages concurrency is descrametidealt with using language
features. When compiled, concurrent behaviors incsgonous and asynchronous
languages are most often sequentialized and sattiube executed as a single thread
[Edwards et al., 2006]. Single-threaded implemeamtat of concurrent system level
languages have many drawbacks. For example, éxbeuting thread has to wait for an
external event to occur, it blocks the other corenirbehaviors of the program, which
do not depend on that event at all. This becomegvaem bigger bottleneck if the
computation contains heavy data-driven parts. Ats@single thread cannot take any
advantage of underlying multiple processors.

4.2.3Library-based approaches

libGALS is not the first attempt at providing arioy-based approach to implement
concurrent systems. There are a number of othearids such as TReK [Gruian et al.,
2006], ESTER [Antonotti et al., 2000], UNIOR [Hazard et al., 1999] anduSARCUBES
[Boussinot & Susini, 1998], which provide suppat €oncurrency.ESTERIimplements
the synchronous MoC, while TReK supports the GALSBOQVIBoth these approaches
rely on a Java Virtual Machine (JVM) and may have lexecution speed. They also
lack support for important reactive constructs. Erample, BSTER does not support
deterministic concurrent-exception mechanisms (jghr&rap-exit statements), while
TReK does not support strong signal-based pre-emptike abort and suspendNIor
and its derivative SGARCUBES both follow a completely different semantics [Bsin®ot
et al., 1999]. The UNIOR reactive kernel implements non-deterministic corency,
which can lead to undefined behaviours, a problem rhission-critical systems.
SUGARCUBES implements logical parallelism, which is mappedatasingle threaded

implementation.
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The libGALS approach combines library and run-ti{@&) approach and indirectly
supports the language-based approach. It has dexjubreads as its basic concurrent
units, which are managed by a host operating sytatallows the designer to specify
concurrent behaviors in a much safer way and gteeaa formal relationship between
those behaviors.

The synchronous behaviors can also communicate edtth other or with their
environment using signals as in synchronous progragn languages [Berry,
1993][Boussinot et al., 1999]. Synchronous reastiare implemented as threads in a
lIbGALS program. Behaviors in conventional synchoos programs are sequentialized
hence only one behavior is performed at a timeolnirast, reaction threads in libGALS
execute concurrently and synchronize with eachrotihdock-steps according to the
GALS MoC. Concurrent behaviors in libGALS prograraee mapped to threads
supported by the OS following the GALS MoC, and mrirue parallel fashion when
the underlying platforms allow. Execution times dneis shortened with increasing

processor utilization.

4.3 libGAL S fundamentals

In this section the concepts and model of computafMoC) of the liIbGALS are
introduced. Four basic building blocks provided IlnGALS, those of clock domain
(CD), reaction, signal, and channel, are providedhe designer to construct GALS
systems. The concept of logical time (tick) whichused within clock domains is

detailed in this section.
4.3.1Model of computation of lIbGALS

libGALS extends sequential programming languageethasn concurrent GALS
MoC. The terminology related to GALS is adoptedrirthat used in SystemJ language,
because liIbGALS uses the same semantics descnibé¢blalik, 2010]. A program
which utilizes libGALS to model GALS systems isagkd to as a libGALS program.
Four entities are defined in libGALS: clock domataaction, signal, and channel. At
the top level, a libGALS program is a compositiohame or more asynchronous
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concurrent entities, which are called clock domai@smmunication between clock
domains is implemented using channels similar t® {iSoare, 1978]. Reactions are
behaviors within one clock domain and are synchmentm each other. Synchronous
reactions follow the same semantics asHREL [Berry, 2000] and synchronous part of
SystemJ [Malik, 2010]. That is, communication betweeactions within one clock

domain is via signals.
4.3.2Clock domain: top-level synchronous entity

A clock domain is a top-level entity in a libGALSggram. A clock domain itself
consists of one or more synchronous behaviors ccabactions. Inter-clock domain
communications, which occur between reactions lggton to two different clock
domains, are implemented using channels. Clock dwmexecute asynchronously to
other clock domains, i.e., at their own logicalakl® whose unit is called a ‘tick’. Clock
domains are containers where reactions reside.tiboabties of clock domains are

defined only in reactions, not in clock domains.
4.3.3Reaction: behavior of a clock domain

Each reaction can be a composition of further reast thus allowing synchronous
and hierarchical behavioral concurrency. Reactamesimplemented as ‘threads’ which
can be created by using the API provided by thestyithg operating system. Besides
using any of the usual sequential programming lagguconstructs, reactions are also
allowed to use a number of control and reactivéestants which are available in
lIbGALS. Control and reactive statements enableroomication between reactions, as
well as with the external environment.

Reactions in the same clock domain are executéatkastep and are synchronized
by a logical tick. Reactions react to environmemfputs simultaneously and
instantaneously. Outputs are computed and emittad zero logical time
(instantaneously). The reactions of different clatkmains communicate with each
other through the use of channels, which will béaited in Section 4.3.5 and 4.5.8.

Reactions on each side of the channel work onreéifitecopies of the message.
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4.3.4Logical tick in libGALS

A logical tick (different from a tick in the hostSkernel) is used to represent a
discrete time instant for a clock domain and al s#tynchronous reactions, where
reactions in each clock domain are executed abwits logical tick. Management of
execution of the reactions within each clock doma&nd communication with the
external environment, are carried out by a helghmgad named ‘Synchronizer (see
Section 4.5.3). The time between two logical tiakslike that between two real clock
ticks, has variable duration. The tick boundargetermined by various lIbGALS API
calls such as ‘pause’, ‘await’, ‘sustain’, and ‘sesd’. The usage of libGALS API will
be detailed in Section 4.4.1.

4.3.5Signals and traps for communication and synchroioza

Signals are the main communication primitives betweeactions within clock
domains. Communications between reactions and &eernal environment are also
made via signals. Signals can be divided into tvegomcategories: (1) interface signals,
used for communication between reactions and thea@mment and (2) local signals,
used for broadcast-based communication betweertiorac Signals can be further
divided into ‘pure’ and ‘valued’ signals. Pure sadg have only a Boolean status
(present or absent). Valued signals are a compostif a Boolean status and a value,
which can be of any type (void pointers are usethécurrent implementation). The
status of pure and valued signals can be alterd#dsignal emission, which is achieved
by calling ‘emit’. The status can be checked udunmtions like ‘present’ and ‘await’.
Similar to reactive languages [Boussinot & Dabrow&K06], absence of the signals
can be detected only in the next tick. The valueadfied signals is persistent over ticks
and can be checked via calling ‘value’. Traps argpacial kind of signal, used to
monitor a specified scope within a reaction bodyéw executions of reactions are not
in the scopes of traps, these traps are not efeecdtatus of traps can be:

1. Monitoring. Execution of a reaction is still withthe scope of a trap. The scope

of a trap is bounded by the ‘setTrap’ and ‘endTicgdls.
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2. Activated to exit. Similar to signal emission, agris exited through ‘exitTrap’
call.

3. Not valid. The execution is out of a trap’s scopwl dhe trap is no longer
effective.

4.3.6Channels: communication between clock domains

Channels are the only means of communication betweactions belonging to
different clock domains. Channels are point-to-paimidirectional, and use rendezvous,
i.e. blocking send and receive, to guarantee daligedy between reactions. A sender
reaction uses the send function and the receivéis i@ the data using the receive
function. Channels in libGALS operate similarly@sP of [Hoare, 1978], the sending
and receiving sides working on different copieshs message. Invisible delays occur
between input and output in the form of empty tieksle waiting for rendezvous in the
CSP MoC. In each empty tick, the ‘send’ or ‘recéina@l only ‘pause’, invisible to the
programmer at that instance. Empty ticks enablekctiomains to still carry out ticks

when reactions within are waiting for the chanr@hmunication.
4.3.7libGALS and other software components

Figure 4.1 illustrates relationships between lib&A&and other software processes.
lIbGALS is a library implemented at the top of thest OS and requires host OS
services including: (1) thread creation and defetiand (2) semaphore manipulation,

which are all available in almost any OS.

Reactions (synchronous threads) from CDs

£ PN
3E <A

Synchronizers .
oo {=>  1bGALS

Other (asynchronous)

i> application processes
or user-defined drivers

2 £
N N N

Host Operating System

fun;tﬁns

Input/Output

Figure 4.1: libGALS and other software component
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Reactions and Synchronizers are implemented as R®Bads. Reactions
communicate with other application processes armudl-defined drivers through input
and output functions of the underlying clock donsaimput and output functions can be

implemented using inter-process communication (I&fGhe host OS.
4.4 Specifying a design with libGALS

In this section the application programming inteefa(API) of libGALS is
presented. lIbGALS API is used to construct libGApfgrams. An example of
alibGALS program, a kite controller used for winddawater surfing, is modeled by
using the provided API. The kite controller will beed in a later chapter to demonstrate

the linkage between the internals of libGALS wittQALS programs.
4.4.11ibGALS API and libGALS programs

The designer commences the design by dividing thecurrent behaviors into
reactions and clock domains. Reactions can thedesemposed into further (child)
reactions. The reactions are defined as usual tHien€tions with a few restrictions
which include: (1) use signals instead of sharedalbfes to prevent the use of
semaphores, thus avoiding possibility of deadlauk &) make temporal infinite loops
by using at least one statement (function) thasuoores logical ticks, i.e. ‘pause’ and
‘await’. The body of the reaction function consisié computational and reactive
statements. Computational statements are thosdéeothost programming language
(C/C++ in this case), while reactive statementssaexified by the libGALS API calls.
The comprehensive list of reactive statements vatiort explanations of their
functionality is shown in Table 4.1.

libGALS API calls are categorized into three grofims(1) construction of GALS
systems, (2) modeling synchronous behaviors withactions, and (3) asynchronous
communication between clock domains. Groups of ARls are shaded to show

differentiation in Table 4.1.
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Table 4.1:

Application programming interface ofGALS

API

Description

createlibGALSprogran

Initialize a lIbGALS program

createClockDomain

Create a clock domain

createReaction Create a reaction within a clock domain
create[Signal | Trap] | Create an instance of a signal or a trap
createChannel Create a channel connecting two clock domains

startClockDomain

Activate running a clock domain

startlibGALSprogram

Start libGALS program and activated clock domains

initReaction/
endinitReaction

Initialize a reaction and end initialization of tteaction

getArgument Get an argument passed to the reaction

register[Emitter|Trap] | Register a process as aasigmitter or a trap thrower

emit | sustain Emit/broadcast (or sustain) a signal

present Check if a signal is present

pause Enforce end of tick for a reaction

await Wait for the presence of a signal

[strong|weak] Start and end of a pre-emption block. Pre-emptahitored

abort/endAbort signals are present

suspend/endSuspend Suspend a reaction by onédickanitored signals are
present

setTrap/endTrap Set and end the scope of the trap

exitTrap Exit the trap, the reaction will jump teetend of the trap
scope

fork/join Fork out child reactions and wait for jang of the child

reactions

AND,OR,NOT,REP

Form a combined signal expressiomfpresences of
signals:
AND: logical AND
OR: logical OR

NOT: logical NOT

REP: will return true when a signal emission oceutsnes
consecutively

value Acquire the value of a signal

pre[Value] Get the presence status and value igfrealsin the previous
tick

endReaction End a reaction, called if the read8arot a child reaction

send/receive Send and receive data between reactions in diffefeck

domains via a channel

API calls in the first group are used to initializdibGALS program and to create
essential compartments of a libGALS program. Cldcknains, reactions, signals, traps

(special type of signal), and channels are creaigdhis kind of API calls. libGALS
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program and created clock domains are activatedighr calling this group of API calls

also. Synchronous reactions are described usingebend group of the API calls that
act as reactive statements. Finally, channel conoations between the reactions of
clock domains, ‘send’ and ‘receive’ are used asahachronous group of the libGALS
API calls.

4.4.2Kite controller: an example of a libGALS program

libGALS enables modular design and re-usabilitycotle in describing GALS
systems. For example, the code definition of atr@ac also known as ‘reaction
function’, can be used to implement multiple nunshefrthe actual instantiatedaction
threads. Signals and channels used in the reaction fumstiare mapped to actual
instances when a reaction is created. A powerdatdroller is depicted in Figure 4.2
and its equivalent libGALS program is presentedigtings Listing 4.1 and Listing 4.2,
respectively. The power-kite controller consistshate clock domains, which include
‘CDKiteControl’, ‘CDGetWindInfo’, and ‘CDGetKitelnd’. Speed and heading of the
wind and the kite are collected using sensors ngqat different sampling rates (hence
the different clock domains). Collected samplespassed to the ‘rReceiveWindData’
and ‘rReceiveKiteData’ reactions running in padaignchronously within the clock
domain CDKiteControl through channels ‘cWind’ aruKite’, regectively. This clock
domain computes the value of the output signalsdbiatrol the kite heading and speed,
based on this received data. Once calculated, dhgputed values are emitted via
signals to the actuators that stabilize the powviter KbGALS also enables designers to
specify test-benches that generate stimuli foringsand validation of the designed
system. For example, reactions ‘rSimulateWindDatad ‘rSimulateKiteData’ generate
stimuli that behave as input signals from the esnment.

A libGALS program consists of definitions of reaxts and a description of the
system, which are shown in Listings Listing 4.1 drdting 4.2, respectively. The
definitions of reactions (Listing 4.1) include ttefinition of user-typed data (lines 2-6)
used as arguments in the reactions, the cloneifumaft the user-typed data (lines 7-13),
and the body of the reaction functions (lines 14-Dta sent in both channels cWind

and cKite are user-defined type called ‘measuresienthich consists of two
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components, the heading angle and the speed. Tdme ‘function’ measurements_clone
is used to duplicate the user-typed data for cHasoexmunications to work on
different copies of the messages. Lines 14-40 sfirhg 4.1 demonstrate how a reaction
is defined. A reaction function ‘KiteControl" is fieed with the
‘REACTION_FUNCTION’ macro (line 14). The body ofraaction is divided into two
parts, the initializations and the behavior of tleaction. The initialization of the
reaction starts with the APl call ‘initReaction’ danends with the API call
‘endInitReaction’ as shown on lines 16 and 30, eetipely. Within the scope of the
initialization, the arguments passed to create ati@n can be extracted by calling
‘getArgument’ (lines 18 to 25). Signals that wilk bemitted by this reaction are
registered by calling ‘registerEmitter’ (line 28) the initialization phase. Variables
used in the reaction can also be declared in thialipation scope. The behavioral
description of a reaction is written after the ‘BmtReaction’ API call. The reaction’s
behavior consists of the control part and componmali part (data-driven
transformations), which are tightly integrated wahch other (lines 31-45). Control
parts of the reaction are modeled with the libGAAR calls, while computational parts
are expressed in the host programming languagéluBtrate the hierarchical design in
lIbGALS programs, KiteControl forks out and thenitsdor joining of child-reactions
‘rReceiveKiteData’ and ‘rReceiveWindData’ with fodad join API calls (lines 32-33).
The ‘fork’ and ‘join’ API calls together coordinathe synchronous concurrency model
within a clock domain. A reaction can initialize hiple synchronous reactions (called
child reactions) concurrently using the ‘fork’ Alhlls, which instantiate the child
reactions. Once the child reactions are initialidtegl parent waits for their completion
before proceeding further. This is done by callig blocking ‘join’ API call.
Computational parts are carried out to determinethdr the bearing and speed of the
kite need to be increases or reduces. Emissiordbagding of the signal
‘sincreaseKiteVelocity’ with an ‘emit’ API call (e 41) is performed to maintain the
course of the kite.

Asynchronous communications through channels amgedaout with ‘send’ and

‘receive’ API calls on lines 71 and 54, respeciivéoth send and receive calls require
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the name of channel, the data to transfer, andybe of the data. In this case, data
typed measurements is used. The behavioral dasaript a reaction ends with the
‘endReaction’ API call (such as line 46).

The GALS system (Listing 4.2) instantiates the klodomains using the
‘createClockDomain’ API calls (lines 5-10). Thes®lAcalls take the input and output
functions that act on the interface input and outggnals as arguments. Input and
output functions allow the inputs to the clock dam# be read at the beginning of
every tick and the output signals to be emittethatend of every tick. ‘createChannel’
is used to instantiate channels for communicatietwben the sending and receiving
clock domains, along with the name of the chanmglich are arguments to this
function (lines 11-16). Signals used within thec&ladomain are created by calling
‘createSignal’ whose argument is the clock domamens the signal operates (lines 18-
29). The reactions are instantiated via the ‘cieedetion’ API call. The required
arguments to create a reaction include:

1. The clock domain where the reaction resides; eaeated reaction acts

synchronously with other reactions created in #maeclock domain.

2. The reaction function which hooks with this reactiostance. Each reaction is
associated with a reaction function. More than ozection can refer to the
same reaction functions but with no shared context.

3. The activation status of the reaction (activatedl@ammant); an activated status
is of value 1 and 0 otherwise. Child reactions doenant before being forked
from the parent reaction. For instance, ‘rReceiveibiata’ and
‘rReceiveKiteData’ are dormant (lines 33 and 40))l avait for activation from
‘rKiteControl’, which is activated initially (line 47).

4. The number of arguments passed to the reactiortitun@ines 34, 41, 48, 61,
69, 76, 83, and 90).

5. The actual arguments are provided as argumentsinbtance, the creation of
reaction ‘rKiteControl’ (line 44) indicates the od@n will be active upon the
creation. Furthermore, eight arguments will be pdg® the reactions, which

include two child reactions, four output signalsgd awo input channels.
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Note that two instances of the reaction functioedBData’ are created on line 59

and 88, which demonstrates the modularity and cedesability provided by libGALS.

The clock domains are started using the ‘start@ackain’ API calls (lines 96-98).

Finally the GALS system starts with the ‘startlibG&Program’

(line 99).

Synchronizers are programmer-invisible threads tmamge activities of each clock

domain.
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Figure 4.2: Power kite control system abstractesgntation

Listing 4.1: Definition of reaction functions

#include “libGALS.h”
typedef struct measurements {
/I Definition of User Types
int heading;
int speed;
} measurements;

measurements* measurements_clone(measurements* orig

measurements * newMeasurements =
malloc(sizeof(measurements));

newMeasurements->heading = original->heading;
newMeasurements->speed = original->speed;
return newMeasurements;

}

REACTION_FUNCTION(KiteControl) {
/[ Initialize data structure used by the reaction
initReaction();
/I Obtain arguments passed to this reaction
reaction rReceiveKiteData = (reaction)getArgument
reaction rReceiveWindData = (reaction)getArgument
signal sIncreaseKiteBearing = (signal)getArgument

inal) {

(1);
(2);
(3);
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49
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51
52
53
54
55
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57
58
59
60
61
62
63
64
65
66
67
68
69
70
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72
73
74

signal sincreaseKiteVelocity = (signal)getArgumen
signal sReduceKiteBearing = (signal)getArgument(5
signal sReduceKiteVelocity = (signal)getArgument(
signal sWindData = (signal)getArgument(7);
signal sKiteData = (signal)getArgument(8);
I/ Register the output signals of this reaction
registerEmitter(IncreaseKiteVelocity);
...... /I Declare variable used within the reacti
endInitReaction();
while(1) {
fork(rReceiveKiteData); fork(rReceiveWindData);
join(rReceiveKiteData); join(rReceiveWindData);
crossWind = sin(sWindData->heading-sKiteData->h
sWindData->speed;
/I cross_wind within limits
if(@abs(CrossWind) < MAX_CROSS_WIND) {
headwind = cos(sWindData->heading-sKiteData->
sWindData->speed;
if (headWind>0&& head_wind < MAX_HEAD_WIND){
emit(sincreaseKiteVelocity, 0);

endReaction();

}

REACTION_FUNCTION(ReceiveData) {
initReaction();
channel cData = (channel)getArgument(1);
signal sData = (signal)getArgument(2);
ChannelDataType *data;
receive(cData, data, ChannelDataType);
emit(sData, data);

REACTION_FUNCTION(GetSpeed) { ...... }
REACTION_FUNCTION(ReadSpeed){ ...... }
REACTION_FUNCTION(SendData) {
initReaction();
signal sData = (signal)getArgument(1);
channel cData = (channel)getArgument(2);

// Await and store sData to headingData and speed

ChannelDataType *data =(ChannelDataType*)malloc(
Sizeof(ChannelDataType));

data->heading = headingData;

data->speed = speedData;

send(cData, data, ChannelDataType);

/I TestBench Reaction

t(4);
);
6);

on

eading)*

heading)*

Data
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REACTION_FUNCTION(SimulateKiteData) { ...... }
REACTION_FUNCTION(SimulateWindData) { ...... }

Listing 4.2: Definition of the GALS system

#include “libGALS.h”
#include “ReactionFunctions.h”
int main(void) {
createlibGALSProgram();
clockdomain CDKiteControl = createClockDomain(lnp
Out
clockdomain CDGetWindInfo = createClockDomain(Inp
Out
clockdomain CDGetKitelnfo = createClockDomain(Inp
Out
channel cWind = createChannel(CDGetWindInfo,
CDKiteControl,
“cWind");
channel cKite = createChannel(CDGetKitelnfo,
CDKiteControl,
“cKite);
// Signals for clock domain CDKiteControl
signal sincreaseKiteBearing = createSignal(CDKite
signal sincreaseKiteVelocity = createSignal(CDKit
signal sReduceKiteBearing = createSignal(CDKiteCo
signal sReduceKiteVelocity = createSignal(CDKiteC
signal sWindData = createSignal(CDKiteControl);
signal sKiteData = createSignal(CDKiteControl);
/I Signals for clock domain CDGetWindInfo
signal sWindHeading = createSignal(CDGetWindInfo)
signal sWindSpeed = createSignal(CDGetWindInfo);
signal sWindDataToSend = createSignal(CDGetWindIn
/I Signals for clock domain CDGetKitelnfo
reaction rReceiveKiteData = createReaction(
CDKiteControl, // Clock domain that reacti
ReceiveData, // Reaction function

0, /I Set Active status to dor
2, /I Number of argument(s)
cKite, /I Pass cKite as the argume

sKiteData); /l Used to pass data to rKi
reaction rReceiveWindData = createReaction(

CDKiteControl,

ReceiveData,

0,

2,

cWind,

sWindData);
reaction rKiteControl = createReaction(

CDKiteControl,

KiteControl,

1,

8,

rReceiveKiteData,

rReceiveWindData,

utCo,
putCO0);
utC1,
putC1);
utC2,
putC2);

Control);
eControl);
ntrol);
ontrol);

fo);

onisin
mant

nt
teControl
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51 sincreaseKiteBearing,

52 sincreaseKiteVelocity,

53 sReduceKiteBearing,

54 sReduceKiteVelocity,

55 sWindData,

56 sKiteData);

57 reaction rReadWindData = createReaction(
58 CDGetWindInfo,

59 ReadData,

60 1,

61 3,

62 sWindSpeed,

63 sWindHeading,

64 sWindDataToSend);

65 reaction rSendWindData = createReaction(
66 CDGetWindInfo,

67 SendData,

68 1,

69 2,

70 sWindDataToSend,

71 cWind);

72 reaction rGatherWindData = createReaction(
73 CDGetWindInfo,

74 GatherData,

75 1,

76 2,

77 rReadWindData,

78 rSendWindData);

79 reaction rSimulateWindData = createReaction(
80 CDGetWindInfo,

81 SimulateWindData,

82 1,

83 2,

84 sWindSpeed,

85 sWindHeading);

86 reaction rReadKiteData = createReaction(
87 CDGetKitelnfo,

88 ReadData,

89 1,

90 4,

91 sKiteSpeed,

92 sKiteHeading,

93 sKiteDataToSend,

94 kiteSamplingPeriod);

95 ... /I creation of other reactions

96 startClockDomain(CDKiteControl);

97 startClockDomain(CDGetWindInfo);

98 startClockDomain(CDGetKitelnfo);

99 startlibGALSProgram();

100 }
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45 libGALS internals

Internal representations of clock domain, react®gnal, and channel are detailed
in this section. Concepts such as the helping thesal the scheduling policy used to

govern internals of libGALS are described in thikofeing text.
4.5.10verview of the libGALS data structure

Each libGALS program works on a programmer-invisidhta structure, which is
illustrated in Figure 4.3. API calls within reaai® operate on the underlying data
structure. Information within such data structuseused to book-keep status of the
libGALS program.

ClockDomain_1 ClockDomain_2 ClockDomain_M
dockDomand | [ -1 [ ==
™ clockD previousCD la—....— previousCD
nextCD extCD
preemptionList {— ReactionNode_1 ReactionNode 2 ReactionNode N
tickTable reactionD | [
reactionName
reso e dChildReactionlD derSivl fon | < = RIS
pendChildReaction] } ol ion 1—
forkAndJoinTable bounesShlingReacion
. " childReaction
inputFunction
outputFunction youngerSiblingReaction -
nextCD 44— ; ReactionNode_21 ReactionNode_22

Synchronizer emitterChecking | | | e _
preemptionList parentReaction parentReaction
ticked IderSiblingReacti

SystemData

terminationCode
childrenTerminationCode
endTickLock
newTickLock

st
ChannelList T——

SignalNode_1
signallD
signalName
clockDomain
sn:-’nal]T:‘gz SignalNode 2 SignalNode_3 SignalNode_O
presence

previousSi TS =
nextSignal +—| ) ignal * nextSignal— »—

childSignal1—
c]\i]dSigml]Z——‘

PremmptionNode_1 PreemptionNode_2 PreemptionNode_P

preemptionlD | | . 1 oo
preemptionLevel
ionType JderSibli ion | eee

youngerSiblingPreemption — - —m
. childPreeemption
> 21 PreemptionNode_22

repeatedTimes ‘
continuationScope parentPreemption parentPreemption

Channel_1

el
'L:‘:Lfm(gz:::: Channel 2 Channel Q
N data || e

eviousChanne previousChannel previc
nextChannel +——»| nextChannel

Figure 4.3: Data structure of a libGALS program



Chapter 4. libGALS: a library for GALS system design 104

‘SystemData’ holds a list of clock domains and cteds in the ‘globally
asynchronous’ realm. Clock domains and channels stoeed in link-lists and
SystemDatalock is a semaphore-typed lock to ensure data consistethen adding
clock domains and channels to a libGALS programcklDomainRR is used only when
the underlying OS does not provide suitable schegydolicy to prevent starvation of
clock domains.

Data structures of reactions, signals, and pre-emptof different clock domains
are managed independently and shown as shadedureM.3. They are linked with the
corresponding clock domain data structure. Trapstlus data structure of a signal since

traps are special cases of signals.
4.5.2Clock-domain data structure

Each clock domain operates on its own data strecturose fields are listed in
Table 4.2. Notice that each clock domain has ackibmmainDatalock’ which is

similar to SystemDatalLock of SystemData, for datagrity within each clock domain.

Table 4.2: Fields of ClockDomain data structure

Field Name Description
clockDomainID The ID of the clock domain. The IDissued based on the
order of clock domain creation
clockDomainName The name of the clock domain. lisied to identify sending

and receiving sides of a channel

clockDomainDatalLock This is used to ensure the dateistency within the clock
domain when calling API which operates on reactiams
signals of the underlying clock domain

numberOfReactions The number of reactions in thekctiomain

numberOfSignal The number of signals in the clookndin

reactionList A pointer to a link list of data sttue ReactionNode. The list
contains the information of reactions resided md¢lock
domain

signalList Similar to reactionList, signalList igpainter to a link list of

data structure SignalNode representing the lisisefl signals
in the clock domain

preemptionList A list of the PreemptionNodes, whiglmonitored in the
current tick. Pre-emptions are used at the beginamd end of
ticks to perform strong and weak pre-emptions

tickTable Records the tick status of each readghidhe clock domain
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emitTable/ To record the status and values of the signalsdarcurrent tick|
preEmitTable and previous tick
resolutionTable A table whose rows and columnsgtal to

NumberOfReaction and NumberOfSignal respectivelys T
table is used to dynamically resolve signal depeoi@s at
run-time

forkAndJoinTable A table whose rows and columnseapeal to
NumberOfReaction. It is used to maintain fork-aaih|
activities between parent and child reactions

inputFunction/ These are two function pointers pointing to usdireel
outputFunction functions to communicate with the environment

previousCD/nextCD Points to the previous and nestiaince of clock domain in the
libGALS program

Synchronizer Points to a Synchronizer function,chhmanages ticks and
signal resolutions in a clock domain

4.5.3Synchronizers

Synchronizers are helping threads within a libGAu®gram. A synchronizer is
created whenever a new clock domain is created. $&evices provided by
Synchronizer are: (1) dynamic resolution of sigiephendencies, (2) synchronization of
reactions at the clock-domain tick boundaries, (@intenance of internal data
structures for the new tick, such as book-keepihthe previous status and values of
signals, (4) call of the input and output functis@ascommunicate with the environment
and (5) update of channels’ status to implementdeemous between reactions
belonging to different clock domains. The implenagioin of Synchronizer is simply an
infinite loop, which provides services when all tbier reactions in the same clock
domain are blocked. In priority based OSs, suchp@&©S-Il, Synchronizers is
implemented as the thread with the lowest priortiympared to reaction threads, to

prevent taking up control of the processor.
4.5.4Reaction internals

Synchronous reactions are implemented as threadsevbxecution bodies are
defined as reaction functions. ‘ReactionNode’ isclas the data structure to represent

the status of a reaction and to relate the reattidhe other components within a clock
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domain, such as pre-emption and signals. The fiefldReactionNode’ are shown in
Table 4.3. The behavior of a reaction is descried finite state machine illustrated in
Figure 4.4. State transitions are resulted froncAbS API calls or actions of the
Synchronizer and are listed in Figure 4.4. A ti€laoeaction can span over one or more

FSM states depending on the interaction with otbactions.

Table 4.3: Feilds of ReactionNode data structure

Field Description
reactionlD The ID of the reaction
reactionName The name of the reaction

reactionFunctionPointer| Points to reaction funcasrthe execution body

pendChildReactionID The reaction ID of the childe®on which is awaited by
the parent reaction, it is used by the join API cal

parentReaction Pointer to the parent reactiomegfd is any

elderSiblingReaction/ | Pointers to reactions that share the same paractioa
youngerSiblingReaction

childReaction Pointer to the first child reactibthiere is any

reactionState An enumeration showing the curreatttien state, as
shown in Figure 4.4.

emitterChecking It is used for signal resolutions

preemptionList Pointer to the innermost pre-emp#oope in the reaction.

The underlying pre-emption scope is also locatetienist
of pre-emptions of the resident clock domain

ticked Indicate if a reaction has finished its tick

terminationCode The status of the reaction. leide 1 at the end of tick,
values greater than 1 if the reaction is endedtalyee-
emption, -1 if it is checking the presence of tigmal, and 0
if it is not active or running computational statamts or
non-blocking libGALS API

childrenTerminationCodePresent the returning status of the child reactidhss
structure guarantees that the current reactionpraiceed
further with execution only once all the childresawvk
finished executing

endTickLock It is used to signal Synchronizer tthet end of tick of the
reaction has reached
newTickLock It is signaled by Synchronizer to infation the reaction tg

start a new tick

Forking of a reaction will establish interconneatéeen the parent and child
reactions. Figure 4.5 illustrates one of the refehips of the nodes in the power kite
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controller shown in Figure 4.2. Note that ‘childRgen’ of rKiteControl points to the
first child (rReceiveKiteData) that it forks outib$ng relationships are formed between
the rReceiveKiteData and rReceiveWindData reacti@actionFunctionPointer of both

rReceiveKiteData and rReceiveWindData refer tottreadunction ReceiveData.

;

Initialization

Wait for activation

Instantaneous
reactive
statements or
computational
statements

Remove out of
scope
preemptions

Inactive
End of the reaction Check for.weak (due to OS
preemptions scheduling)

Wait for other
reactions
to finish the tick

Check for strong
preemptions

Figure 4.4: Finite state machine of a reaction
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Table 4.4: State transition of a reaction

State Description
transition

a End of reaction initializations

b Forked by parent reaction or activated while teéa

c libGALS API such as endAbort indicates the endaopre-emptior
scope

d Pre-emption scope removed, return from lIbGALS AP

e Encounter tick boundary, eg a ‘pause’ call

f No weak pre-emption is activated

g All active reactions reach the end of tick

h Start new tick, jump to continuation addresstibrsg pre-emption is
activated

i Strong pre-emption set by parent reaction isvattid

] Weak pre-emption set by parent reaction is atdiva

k Reach end of the reaction or join the parentti@ac

I Weak pre-emption activated

m Wait to be activated by a parent reaction

n Blocking caused by the operating system sen@qeested by libGALS
when processing API call

0 Unblocking from the previous blocked lIbGALS Agdll

p Transfer control to other reactions or proceskes to the scheduling
policy of underlying operating system

q Control of the processor transferred from otle&rctions or processs

S

due to operating system scheduling

Forking and joining are managed through forkAndJalsle as shown in Figure 4.6.

It is a two-dimensional structure where each rowedtumn element is directly mapped

to a parent-to-child reaction relationship. Fortamge, the element located at the

intersection of the first row, second column, iradé&s that the first reaction of the clock

domain is the parent reaction to the second reactidhe clock domain. Each element

is a node and contains two binary semaphores. Tdasaphores are used for activation

and resumption of the parent and child threadsh Bo¢ number of rows and columns

of the table structure are equal to the numbeeattion threads. To conserve the run-

time memory, memory for each element is only aliledavhen there is a ‘fork’ call.

The allocation of the element is freed once theesmonding parent and child reaction

threads finish the fork and join phases.
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rKiteControl rReceiveKiteData
parentReaction |- parentReaction

youngerSiblingReaction

reactionFunctionPointer childReaction - reactionFunctionPointer

REACTION_FUNCTION(KiteControl) rReceiveWindData

REACTION_FUNCTION(ReceiveData parentReaction  elderSiblingReaction

reactionFunctionPointer

Figure 4.5: Interconnection of ReactionNodes dfigking

forkAndJoinTable
N
forkAndJoinNode
\ 477 parentToChildLock
childToParentLock ———»

N = Number of reactions
Row = Parent reactions
Column = Child reactions

Figure 4.6: Data structures used to achieve fodkjaim of reactions
4.5.5Scheduling of reactions within clock domains

The scheduling of reactions is handled by the KfStscheduler. This scheduling
mechanism works closely with Synchronizers and ititernal data structures of a
lIbGALS program. If a reaction is blocked due tdi@GALS API call, control is
transferred to another reaction that is ready ka@cation. The interleaving of reaction
execution and transfer of control from one reactionanother are governed by the
scheduling policy of the host OS. For instance, th&ALS Linux implementation
adopts the use of POSIX threads and, the scheddkogions are thus made by the
Linux scheduler. However, the reaction cannot Iedualed unless it has the permission

of its clock domain Synchronizer, which enforcesklstep execution of reactions.
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Scheduling strategies on different operating systaffect only the execution sequence
of reactions which do not have mutual signal depantks. A reaction in one clock
domain can be executed in parallel with reactiomsother clock domains if the
execution platform allows it (for example on a nprtbcessor or multicore platform).
Figure 4.7 illustrates an example of three reactioreads where Reaction 2 and
Reaction 3 depend on the emission of signal A,taedsequence of execution is such
that Reaction Thread 1 takes the first step. Oheesignal A is emitted, all three

reactions can run in parallel depending on the rerrobavailable processing units.

Reaction 1 Reaction 2 Reaction 3
(1) p W) I N 3
Emission of A Wait on Signal A Wait on Signal A
(3) ‘ @ (3")
Computation 1 Emission of B Emission of C
Computation 2 Computation 3

Figure 4.7: True parallelism of reaction threadsraiitiprocessing cores

Another example of libGALS implementation is in tas@bedded operating system,
MCOS-II [Labrosse, 2002], which features pre-emptigseheduling. Scheduling
strategies on different operating systems will @ffenly the execution sequence of
independent micro steps of reaction threads. Depemes such as checking on
presence of signals and conditions of pre-emptazashandled by the libGALS library

and the behavior of the reactive program is sétedministic.
4.5.6Signal representation and resolution

Signals in the liIbGALS are represented by ‘Signal®lodata structure. A
SignalNode is positioned in signalList of the clod&main that utilizes such signal.
Fields in SignalNode are listed in Table 4.5.
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Table 4.5: Fields of SignalNode data structure

cal

Field Description
signallD The ID of the signal
signalName The name of the signal
clockDomain The clock domain that the signal isated in
signalType The type of the signal:
0: signal created by using createSignal API call
1: signal created by using AND
2: signal created by using OR
3: signal created by using NOT
4: signal created by using REP
level The level of the signal starts from 1 indicgt the
SignalNode is created by using createSignal API.
Otherwise the SignalNode is created by other means.
presence The status of the signal
previousSignal/ Used by signalList of the underlying clock domdpwint to
nextSignal the previous and next signalNode in the list
childSignall/ Point to SignalNodes which are used as argumergsgél
childSignal2 combination API calls such as AND and OR
SignalNode
signalType = 1 signallD = 3
signalName = AND(A,B)
level =2 occurrences =0
chiIdS/ignaH childSignal2
SignalNode SignalNode
signalType =0 signallD =1 signalType =0 signallD = 2
signalName = A signalName = B
level = 1 level =1
occurrences =0 occurrences =0

Figure 4.8: Interconnection of signal nodes

A signal node (implemented by using SignalNode d#tacture) can represent a

single signal or an operation on a signal (suctN@), or logical combinations of

signals (such as AND between two signal status)SignalNode is created when

corresponding liIbGALS API calls are made. For insegAND(A,B) will operate over
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three SignalNodes (one created for AND, two exgsfior signals A and B) and will
form an ‘and’ relationship of signals A and B. Tingerconnections between the signal
nodes are illustrated in Figure 4.8.

API call AND(A,B) established a SignalNode whosgrillD is 3. childSignall
and childSignal2 of such SignalNode point to signal and B, respectively. Both
signals A and B are created by calling createSjghatefore levels of these signals are
1 with signalType of 0. Subsequently, SignalNodeDAA,B) are assigned with level 2
and signalType 1.

The presence of a signal (or their logical comldmgt also determines the
dependencies between reactions. For instance,esept statement in one reaction
cannot proceed until the signal, which is checlegfesence, is emitted or ruled out by
control flow in this logical tick, otherwise thergsent’ will execute the wrong control
branch. A ‘resolutionTable’ is created in each kldomain to comply with this signal
broadcast MoC as detailed in Figure 4.9. Each elerokthe resolution table, called
resolutionNode, indicates the relationship between a signal anglaation in the clock
domain. Fields of resolutionNode are detailed ibl&al.6. Synchronizer carries out the
resolution process of a signal according to theridl status of the resolutionNodes.
Synchronizer has a global view of the resolutiobldawhere dependencies can be
detected and resolved. Example of strategies @fakigesolutions include but are not
limited to:

1. Resolve a signal if the emitter reaction threadftmashed its tick.

2. Resolve a signal if the emitter reaction threadosactive and does not wait for

the joining of any child-reaction threads.

preEmitTable emitTable resolutionTable
N resolutionNode
emitNode | - resoultionType
. resolved
emitted M :
signal
value )
N reaction
N is Number of Reaction Threads resolutionLock
M is Number of Signals S

Figure 4.9: Data structures used to resolve S|gnals
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The ‘emitTable’ created in each clock domain stahesstatus (emitted member of
the emitNode structure) and the values of sigiaksignal is identified as emitted when
it is fully resolved and has been emitted by onehef reaction threads, which are the
emitters. The ‘preEmitTable’ stores the statusaddes of signals in the previous tick,
which is used by the ‘pre’ and ‘preValue’ API calls

Figure 4.10, Figure 4.11, and Figure 4.12 illugtiadw signals are resolved in the
scenario presented in Figure 4.7. In each resolNbole, status such as resolutionType,
resolved, and resolutionLock are shown. Firsthactmns 2 and 3 are blocked due to
checking the presence of signal A as shown in Eigut0. resolutionLocks of blocked
reactions are in a pending status. Signal A is taitted (shown in emitTable) and
resolved (resolved = 3 for signal A, in resolutiable), which leads to the releases of
resolutionLocks, as illustrated in Figure 4.11. &eas 2 and 3 continue to be executed.

Finally, signals B and C are emitted in Figure 4.12

Table 4.6: Fields of resolutioNode

Field Description

D

resolutionType Indicates the relationship betweée signal and th
reaction:

0: No relationship

1: The reaction is currently blocked due to chegkihe
presence of the signal

2. The reaction has been registered as an emitténeo

signal
resolved The presence of the signal has been ssbolvnot
signal Pointer to the SignalNode
reaction Pointer to the ReactionNode
resolutionLock A lock to block execution of the cgan. It is pending when

resolutionType is 1 and is signaled to release wtien
signal is resolved

Exits of traps are implemented in a manner sintdasignal emissions. However,
the available operation on traps is limited to &eg the status of the trap. Traps share

the resolution table with signals.
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emitTable resolutionTable
Reactions
Signals 1 2 3
2 1 1
0 A 0 0 0

- Pending || Pending

Figure 4.10: Reactions 2 and 3 are blocked

emitTable resolutionTable
Reactions

Signals 1 2 3

2 0 0

1 A 3 3 3

- Release || Release

2
0 B 0

2

0 C 0

Figure 4.11: Signal A is emitted and reactions @ amre released

emitTable resolutionTable
Reactions
Signals ! 2 3
2 0 0
1 A 3 3 3
2
1 B 3
2
1 c 3

Figure 4.12: Signal B and C are emitted
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4.5.7Pre-emption representation and activation

A pre-emption scope in a reaction is representedabglata structure called
‘PreemptionNode’ illustrated in Figure 4.13. Fig4rd4 details the interconnections of
the PreemptionNode and ReactionNode resulting ftasting 4.3. When a reaction
enters a scope of a monitored pre-emption, su¢SteengAbort’, the PreemptionNode
of the corresponding pre-emption scope is credddten a monitored PreemptionNode
is detected to be active, the execution will be-gmgted from the tick boundary and
carried out from the ‘continuationScope’, whichtiee end of the underlying pre-
emption scope. The member ‘preemptionList’ of actiea points to the innermost
PreemptionNode resident in the reaction. Note thatinnermost pre-emption scope
will take a lower precedence than the outer pretempscope(s). Nested pre-emption

scopes are assigned with different ‘preemptionlsvel

PreemptionNode
preemptionlID(int) continuationScope
preemptionLevel(int) preemptionType(int)
-4— parentPreemption childPreemption ——m
<>—-+ associatedReaction elderSiblingPreemption ——m
occurrence(int) youngerSiblingPreemption
repeatedTimes(int)

-4—— Pointer to PreemptionNode
<>—— Pointer to ReactionTaskNode

Figure 4.13: Preemption Node

PreemptionNode PreemptionNode
StrongAbort on Signal_A StrongAbort on Signal_B
To preemptionList " - : : f i = i i | i
of clock domain preemptionLevel = 1 continuationScope - > @Line12 preemptionLevel = 2 continuationScope > @Line10
-«—— parentReaction childPreemption + t parentPreemption
associatedReaction | -Reaction
Checking youngerSiblingPreemption

PreemptionNode
StrongAbort on Signal_C

7ReactionNod_e preemptionLevel = 2 continuationScope -7 > @Line8
ExampleReaction
PreemptionList » parentPreemption

\—/ associatedReaction elderSiblingPreemption

Figure 4.14: Relationships between pre-emption s@tel reaction thread node
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Note that ‘traps’ and ‘suspends’ are special casgse-emptions. Traps are similar
to weak pre-emptions (aborts). The PreemptionNofiex drap is activated when
‘exitTrap’ is called. ‘suspend’ is similar to stprabort. Instead of redirecting the
reaction thread to the continuationScope, a tickdetayed when the condition of
suspension is true. Thus, the PreemptionNode ouspemnd statement lacks the

continuationScope.

Listing 4.3: Nested pre-emptions

1 void ExampleReaction(void *data) {

2 L /I other statements

3 StrongAbort(Signal_A, AbortName1) {
4 StrongAbort(Signal_B, AbortName2) {
5 StrongAbort(Signal_C, AbortName3) {
6 // Other statements

7 }

8 EndAbort(AbortName3);

9 }

10 EndAbort(AbortName?2);

11 }

12 EndAbort(AbortNamel);

13 }

4.5.8Channel communication internals

A channel data structure is created when ‘create@#lais called. Both sending
and receiving reactions of different clock domaoperate on the same instance of
Channel. Fields of Channel are detailed in Tabfe #ihe ‘state’ variable of Channel is
used to identify the status of the data transfiguiié 4.15 illustrates a Moore-type finite
state machine of a channel. The states and th&ttcars of states are described in Table
4.8 and Table 4.9, respectively.

For each user-typed data used in channel commiong¢aa clone function is
required. The name of the clone function for dgteet ‘dataTyped’ is in the form of
‘dataTyped_clone’. The input argument is the omfjinlata and the output of the
function is the new instance of the data which iduplication of the original. The

output of the clone function is then pointed to thg ‘data’ field in Channel. This
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enables channel communications to work on diffecepies of the messages. The clone

function is called along with the ‘send’ API call.

Table 4.7: Fields of channel

Field

Description

State

The state of the channel. Details of state$isied in Table
4.8

channelDatalLock

This is used to keep the consigtefiche channel data
because channel data are accessed by two redcteaus,
that is, the sending and receiving reactions

channelName

The name of the channel

senderCDName The clock domain name where sendlésl ca
receiverCDName The clock domain name where redsigalled
data A pointer points to the duplicated versiontteé original

data for receiver to read

previousChannel/
nextChannel

Point to the previous and next instance channethm

libGALS program

/(a)

/ state = 0\
/ Channel is
\ ready /

“ (d) | Message is sent |
‘ to channel

\ — -

l(e)

\\ / /:%tate=2\\

Message is ‘jw

ready to re
from chan y

Figure 4.15: Finite state machlne of channel conioations
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Table 4.8: States of a channel

Description of activates

States

Sending side

Receiving side

0 Channel is ready

Channel is ready

1 original data.

Calling clone function to duplicate

field of the channel

Assign result to ‘data

Read data field of the channel

a‘nd

2 return to theeceve call
Table 4.9: State transitions of a channel
State Description
transitions

a ‘creatingChannel’ is called

‘send’ is called

b
C ‘receive’is called
d Returned from the receive call, received datssgned to the destination

4.6 Applicationsand portsof lIbGALS

4.6.1Mapping GALS/synchronous models to libGALS programs

As libGALS provides all mechanisms to implement GALS MoC, it also gives

the opportunity to implement existing GALS and dymmous languages using

concurrent processes.
SystemJ [Malik, 2010] is a GALS language which tenimplemented by using
lIbGALS. The SystemJ statements can be directlypil@e onto libGALS API calls.

Examples of a few mappings are provided in Takl@ 4.

Table 4.10: Examples of mapping from SystemJ {G6AQhS

SystemJ Statements

Mappingswith libGAL S

present S{...}

Present(S){ ... }

emit S;

emit(S);

pause;

pause();

abort (S){... }

strongAbort(S, AbortName) {

endAbort(S, AbortName);
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4.6.2Porting libGALS

libGALS has been ported to general operating syst&mch as Linux and Windows
via POSIX interface, where the pthread librarysediin implementation. Both of these
operating systems offer scheduling mechanisms tvige high fairness between
processes and threads, and hence the high resjimese Reactions in libGALS do not
necessarily require special care to change atéshaf the mapped threads/processes,
such as priority.

Ports of embedded and real-time operating syst®&n©§) are similarly available.
Since libGALS requires only features such as taglaton/deletion and semaphore,
effort in porting liIbGALS to different operating ®gms is minimal. Existing libGALS
ports on RTOS include eCos [Massa, 2003], RTEMS[M$E2003], FreeRTOS[Barry,
2008], anduCOS-Il [Labrosse, 2002]. Since eCos and RTEMS pi@viPOSIX
interface and cooperative scheduling policy, theg ery close to the Linux port of
lIbGALS. FreeRTOS andCOS-II provide sufficient APIs for libGALS implemtation,
and the used API calls are listed in Table 4.1lteNbat the semaphore mechanism in
FreeRTOS is based on message queue, and becatieelatk of semaphore deletion
API call, vQueueDélete is known as the function to call to delete theated semaphore.

Table 4.11: APIs used to implemented libGALS

Operating system POSI X based FreeRTOS HCOSH I
features

Task creation pthread_create xTaskCreate OSTadkCrea
Task deletion pthread_exit vTaskDelete OSTaskDelete
Semaphore type sem_t* xSemaphoreHandle OS_EVENT
Semaphore pending sem_wait xSemaphoreTake OSSemPgnd
Semaphore signaling sem_post xSemaphoreGive OSSemPp
Semaphore creation| sem_init xSemaphoreCreateCgupntdsSemCreate
Semaphore deletion| sem_destroy vQueueDelete OSSemDe

BecausquCOS-II does not allow multiple tasks with the sgmnierity, reactions of
clock domains are divided into different priorityogps. This leads to the issue that one
of the clock domains may have monopoly over pramessie and not ever give control

to the other reactions of other clock domains. Téisesolved by introducing member
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‘ClockDomainRR’ in SystemData data structure mergm in section 4.5.1.
ClockDomainRR is implemented as a counting semagpti@t forces clock domains to
take their turns of execution or be scheduledspexific ratio of executions.

The Synchronizer task of a clock domain can be s&ethe lowest priority task,

providing services when all the reaction threadwhefclock domain are blocked.

4.7 Experiments and results

In order to demonstrate performance of the libGAdt8grams, they are compared
with SystemJ programs that implement the same ifumality, since SystemJ is
practically the only GALS language with an avaiebbmpiler. All examples are with
mixed data-driven and control-driven operationdreguency relay (FR) has been used

as an example and is illustrated in Figure 4.16.
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Figure 4.16: Frequency relay implemented as a G#ys$em with two clock domains
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Frequency relay consists of two major parts, datapding and relay control [Salcic
& Mikhael, 2000]. In data sampling, signal procegsialgorithms are performed.
Sampled power signal waveform is processed in anaging filter by using a moving
window concept. It is followed by the symmetry ftinoo calculation to simplify the
procedure of finding peak points of the waveforrstéad of zero-crossings, carried out
later in the peak detection function. Time peribgswveen peaks are obtained to allow
calculation of frequencies. The rate of change refjdency is also computed. To
maintain a stable power network, working freques@ad rate of change of frequency
must be within a specified range. If they are dutamge, the loads will be shed from
the network. This is carried out by the switchiagifities and relay control part.

The frequency relay is partitioned to two clock dons, ‘DataSampling’ and
‘RelayControl’. The DataSampling clock domain catsiof four reactions: the parent
reaction, reaction ‘Sampling’, forks out reactioAvéraging’, reaction ‘Symmetry
detection’ and reaction ‘Peak detection’. Clock @é@mRelayControl is a composition
of two larger reactions: reaction ‘Calculation’ arghction ‘Switching’. Both reactions
have two child-reactions. ‘Frequency calculationddRate of change calculation’ are
child reactions of reaction Calculation, deliveriegsential information to ‘Switch
control’ reaction under reaction ‘Switching’ to fmm load shedding, if necessary.
Reaction ‘Configuration’ is the other child reacti®f reaction Switching, which
provides parameters of the frequency relay to r@a@witch control. These two clock
domains communicate through ‘SampleCount' channel.

Table 4.12: Comparisons between SystemJ and libGALS

Example Average tick time (us) Code Size (Bytes)

liIbGALS SystemJ IIbGALS SystemJ
2CD Frequency Relay 27.67 75.23 33,865 101,469
2CD KiteController 11.37 27.16 9,431 59,296
2CD Async Proto 48.3V 16.25 13,078 52,800
2CD Data Comp 18.23 26.37 865 10,920
3CD Data Comp 17.72 39.28 975 11,944
4CD Data Comp 17.48 56.62 1,085 13,010

*Note that the code size of libGALS is 33K Bytes.

SystemJ examples are compiled with the latest Byst®mpiler to generate single-

threaded Java source code, which is compiled bydkia compiler version 6.0 and then
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run on a JVM. The equivalent libGALS examples ammpiled with gcc-4.3.1.
Experiments were carried out on Intel Core 2 QuafsRiz with 4GB of RAM with
Linux 2.6.29.6 as the host OS. Results are showmalbte 4.12.

The libGALS approach consistently results in smadlgiect code size, because the
single-threaded SystemJ code emulates both symmisenand asynchronous-
concurrency with switch-case statements. On theroband, libGALS implements
concurrency with threads. Note that the code sizbe SystemJ implementation does
not include the code size of the JVM, which is é&arghan the standard C run-time
library. Execution speed has been compared thrangaverage-tick execution-time of
one million ticks. The lIbGALS approach shows adeges if the data computations are
heavier. The ‘3CD Data Comp’ and ‘4CD Data Compnget of three and four clock
domains, respectively. In these cases lIbGALS takksntage of multicore processing.
SystemJ is advantageous if clock domains are highigrol-dominated as in the 2CD

Async Proto example.
4.8 SUmmary

In this chapter a run-time library approach, libG3Lfor extension of the
sequential programming language (C/C++, for ingano enable specification of
GALS concurrent systems is proposed. libGALS presidn application programming
interface (API) that enables the designer to deedBALS programs in these sequential
programming languages. This enables efficient natdgn of control-driven and data-
driven components of a design.

The approach is based on the features of a hostn@8le available to the
programmer via a set of API. Programs designed MatBALS comply with the GALS
MoC and thus provide a much safer programming amgiracompared with the use of
traditional threading libraries. libGALS implementSALS concurrency by using
multiple processes or threads, unlike the currgstesn-level languages that compile the
specification into a single-threaded code. Thisordy improves responsiveness of the
resulting programs, but also offers the advantafex@cuting such programs on

multiprocessor and multicore systems. Because isf tihGALS opens a new path
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towards the compilation of GALS languages, as wsllof synchronous languages as
their subset. The other advantage of libGALS progras their ability to interface with
other tasks and drivers in the host with minimdomref This allows major future
development, targeting the dynamic creation of kcldomains, synchronous reactions
and whole GALS programs, thus supporting softwastesn run-time adaptation and

reconfiguration, as will be described in Chapter 6.
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GALS-Designer: A design framework for
GALS software systems

GALS-Designer is a framework for the design of wafte systems which comply
with formal globally asynchronous locally synchrasanodel of computation (GALS).
The framework integrates the libGALS library foritivrg libGALS programs and
SYsTEMC. In Chapter 4, a library called libGALS to mod@&ALS systems as libGALS
programs has been introduced. GALS systems mayistoot single or multiple
libGALS programs and their immediate environmerttjoln can be other programs and
any other modules described insSEMC. It enables modeling and simulation of single
and multiple libGALS programs within the singleSSEMC executable model on the
host (simulation) operating system. The same libGAbrograms then can be run
without SrsTEMC on a target operating system for which the libGAwn-time library
is available.

The use of the GALS-Designer is demonstrated orexample of a complex
embedded system. As lIbGALS can ultilize multipreszar platforms, both simulation

and target models of the GALS system can take ddganof multiprocessor and
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multicore systems, which is not possible when ustapdard $sTEMC. Results of
running simulation models of lIbGALS programs destoaite simulation performance

improvement when performing on multicore platforms.

5.1 Introduction

In this chapter the GALS-Designer, the marriageveen [IbGALS and $TEMC
in the single design framework, is presented. GAl&Signer enables the modeling of
complex systems that include hardware and othecwroent components, e.g. models
of the physical world and the environment, alonthwgoftware-system components that
are represented by libGALS programs. In the progpageproach, libGALS is used to
specify libGALS programs, which are then wrapped i8rSTEMC modules and can be
simulated together with otherySTEMC modules within the sameySTEMC execution
model. Simulation of such a multicomponent system be carried out with different
timing granularities, depending on the current dgwaent phase of the overall system,
so the designer can use trade-offs between fastelagion and more accurate timing
behavior of the system. libGALS programs, once &ted within a SSTEMC model
can be translated to the implementation code whih be executed on a target
operating system.YSTEMC is chosen as the basis because of its abilifyl onodel
hardware, software and environment of the desigystem with different levels of
abstraction and timing granularity, (2) result iardware and software synthesis, (3)
cooperate with models made in other languages wdaohbe linked with theYSTEMC
library to obtain the host simulating executable #h) model the interaction with the
environment, thus effectively providing test bersshehich is essential for validation of
design through simulation.

This chapter is organized as follows. Section &sents the related work and
positions the contributions. In Section 5.3, pnhes of the GALS-Designer are
introduced. Integration of libGALS andrSTEMC is given in Section 5.4, followed by
the programming model used in GALS-Designer in i8acs.5. Using GALS-Designer

in system level design is presented in Section&.6ase study and the results of using
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the proposed approach are given in Section 5.lgwed by a summary of this chapter

in Section 5.8.

5.2 Related wor ks and fundamentals

5.2.1Synchronous and GALS system models

Linkage between ¥TEMC and synchronous languages such as Esterel was
explored and presented previously. Brandt and Sdbnelemonstrated that a set of
Esterel programs can be translated t®1@MC with certain limitations [Brandt &
Schneider, 2008]: (1) programs respond to delay#idres, i.e. signals emitted in the
previous clock cycle, and (2) pre-emptions are motleled. Sun et al. present a case
study on how to convert an Esterel program intsT@vC description simulated with
the abstract RTOS model [Sun & Salcic, 2007]. IadBjevic et al., 2006], both Esterel
and &sTeEMC are used to model systems described in DFCHaigsificant effort is
required to manually translate arsTEREL program to 8STEMC, with numerous
restrictions on the use ofySTEMC constructs. An automatic generation oS&MC
model from COLA is presented in [Wang et al., 200&ere COLA follows the perfect
synchrony semantics. However, it produces onlyraikition model.

Furthermore, in synchronous languages like Esteoehpiler resolves causality
problems of signal dependencies, which is not ptessn the library-based approach
used in 8SsSTEMC. Other synchronous languages such as SL [Bous&ife Simone,
1996], ESTER[Antonotti et al., 2000], UNIOR [Hazard et al., 1999] anduSARCUBES
[Boussinot & Susini, 1997] provide support for carmmency. However they do not
support the GALS MoC. TReK [Gruian et al., 2006¢ &ystemJ [Malik, 2010] provide
GALS MoC for software systems, but do not allow @iation of interaction between
SystemJ program and other components in the sygianicularly those describing
hardware. Also, since SystemJ programs require Viateal machine (JVM), it is not

suitable for real-time applications.
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5.2.2Modeling software concurrency withy STEMC

Concurrent software is often implemented as a cidle of processes, or threads,

governed by an operating system. Modeling of (tea¢) operating systems, (RT)OS,

in SYsTEMC is not new. A summary of modeling strategiesresspnted in [Posadas et

al., 2005]. (RT)OS model often provides informatiandifferent timing granularities,

from untimed to timed, with different resolutiorsspecially for the task scheduling.

(RT)OS modeling in 8TEMC can be categorized as follows:

1.

Model a target processor inYSTEMC. The processor will read the
executable target binary from the modeled memohe Target binary is
obtained by linking concurrent software tasks wilfs. The modeled
processor (sometimes called ‘emulator’) behavethaseal processor but
internal details of the processor are abstractethiofaster simulation speed.
Execute target binary on the simulation host thhotige instruction set
simulation (ISS). The ISS either could communicaith the SSTEMC
simulation kernel through inter-process communara(iPC) with the host,
or be linked with the &TEMC simulation kernel.

Software tasks are executed in the ISS, and theyaict with the OS model
described in 8sTEMC. Communication between the ISS and the OS model
follows the previous category. [Krause et al., J0@@monstrates such kind
of modeling strategy.

The proprietary OS simulator is provided in a Iigréorm. The developer
can choose to link the task codes with the OSrybaad then simulate with
SysTEMC as in point number 2.

An OS model described inYSTEMC provides a set of application
programming interface (API), which is the samehes 0f the original (real)
OS, linked with the task codes ands$emMC library. The OS model can be
from very abstract to very detailed.

Both OS and the tasks are modeled ¥s1&MC, communication and
synchronization between the tasks and betweeratiks and the OS are via

SysTEMC constructs. However, the underlying model of cotapon might
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be different from the original YSTEMC description to the final embedded
software because of different scheduling policiesliierent targeted OS.
Even when support for the OS modeling is once thtced to SSTEMC
version 3, the inconsistency with the MoC will Istémain when a different
OS is used. Furthermore, the nature of thesT8MC simulation kernel
determines that only one host process is used ¢éocuéx the simulation
executable regardless of the number of concurneadesses in aYSTEMC

module.

Herrera et al. present how embedded software cageherated from YSTEMC
descriptions through the use of concurrent threadsaged by an OS [Herrera et al.,
2003]. Few restrictions are set when describingoacarrent software process in
SYSTEMC, such as using channels for inter-process conuation instead of using
shared member-variables in arsS$SEMC module. Inasmuch channels and process
management are mapped onto services such as rmadkraad management, provided
by the underlying RTOS, they do not follow any falnvoC. Various (RT)OSs behave
differently over similar sets of APIs, i.e. the ilementation will be different from the
simulation model. SoCOS presents a framework toahdgnamicity and concurrency
of software through the use of C++ [Desmet et 2000]. Focusing on simulation it
proposes a library-based approach to support theutiwn of generated software on an
OS. Posadas et al. present a POSIX modelyaT/C [Posadas et al., 2005] and its
implementation with an OS compatible with the POSt&Xndard; however, it limits the
selection of the target OS.

Based on previous work and known constraints, aatmggltechnique is presented
to integrate programs that use GALS MoC, libGALSgrams, with SSTEMC
components by using GALS-Designer framework. Thgomaontributions of this
approach and work are:

1. It enables a developer to describe a concurrerltcafipn software system
that complies with the formal GALS MoC, and simalats execution

together with other & TEMC components on a host OS. The same libGALS
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program can be executed on the target platform O @aimost no
modification (the modification is done by a simpéxt parser that removes
simulation-related parts).

2. It enables the use of different timing granulasti@ simulation models.
Details such as execution times can be annotatedetficated hook-
functions which will be introduced in Section 5.5da5.6. With designers
able to choose between faster simulation and higbeuracy, depending on
the requirements, GALS-Designer can be used ierdifit design stages.

3. It supports scalability by enabling the use of nplgt IbGALS programs
with any number of asynchronous behaviors (cloakaas), as well as any
number of synchronous behaviors inside each of #@sgnchronous
behaviors in the same model, as is explained irerdetail in Section 5.3.

4. It enables faster and more efficient simulation dnabling the use of a
multithreaded multicore execution platform, not ghieable with usual

SYsSTEMC models.

5.3 Overview of GAL S-Designer

5.3.1Integration of libGALS and B8TEMC

GALS-Designer is a framework for designing GALSts@ire systems, which may
consist of single or multiple lIbGALS programs. G&dDesigner usesYSTEMC and
lIbGALS as the backplane for system models. BotaT8vC and libGALS are libraries
built on top of the C++ and C, respectively, asvaman Figure 5.1 (a). They both
provide interfaces to access the library and géeeneecutables with which to be linked.
Systems modeled inYSTEMC can use libGALS to describe libGALS programs as a
part of an overall system model. The executableahtitht combines parts described
with lIbGALS and §sTeMC runs on the host OS, as shown in Figure 5.1 T{hg
execution is started as arSEMC executable, which is governed by thes&mC
simulation kernel. When the modeled libGALS progsastart executing, threads
mapped from reactions are spawned. These threadmamaged by the libGALS with
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the aid of the OS, and are executed concurrentlly thie SsSTEMC simulation kernel.
lIbGALS programs synchronize and communicate witheo hardware and software
(HW/SW) components modeled usings$SEmMC.

Once the designer switches from the simulationh® implementation phase,
SysTEMC library is removed, and the translation from &G program models to their
implementation version is performed. The resultibgsALS program is then linked
with the version of the libGALS for the target engon platform and target OS, which
may be different from the one used in simulatiant, With identical API. This situation
is illustrated in Figure 5.1 (c).

SysTEMC provides to lIbGALS the necessary modeling medmas for the
description of the environment in which the libGAp&grams will run. This enables
modeling of inputs/outputs (such as user-inputs amdsor data), other software
components in the system and hardware componentsgaicating with the libGALS

programs.

GALS program | HW/SW
libGALS SystemC prog ‘ GALS program
model
: SystemC libGALS
libGALS
C C++ .

Host Operating System Target Operating System

(a) Extensions based on C/C++ (b) System simulation model (c) System implementation model

Figure 5.1: Relationships between libGALS ang&mC

Each lIbGALS program is described and modeled smmgle sTEMC module. A
lIbGALS program model can communicate with others®&MC modules as to its
environment through communication constructs predidy SSTEMC, as shown in
Figure 5.2. libGALS programs can also communicatlé wach other through modeled
channels. These are abstracted and may have difi@nderlying implementations such
as sockets and network-communication links, intecess communication (IPC)
mechanism, etc.

As detailed in Chapter 4, each libGALS program ¢iasof a number of

asynchronous concurrent behaviors called clock dwmavhich communicate with



Chapter 5. GALS-Designer: A design framework for GALS software systems 132

each other using rendezvous-based channels. The méwk domain is used to
emphasize the fact that it may consist of a nurobsynchronous concurrent behaviors,
called reactions, which execute in lock-step witHogical clock called ‘tick’ and
follows the rules of the synchronous-reactive marfedomputation [Berry & Gonthier,
1988].

Other SystemC
modules act as

SystemC module 1 gztléoggg?;r?s SystemC module 2

i
GALS program 1 / 7
prog % 7 GALS program 2

Modeled channel
for GALS program
communication
eg. Network link or IPC

Figure 5.2: Communications of libGALS program atidep S'STEMC components

5.3.2Linkage between libGALS programs andsSEmMC

Figure 5.3 illustrates how libGALS and'STEMC mechanisms are used to form a
SysTEMC module representing a libGALS program which iscsied by using
mechanisms provided within the libGALS. In addititime libGALS program uses hook
functions to communicate with the external envirentmof the libGALS program, in
this case other modules of thesSEMC model. A clock domain in a libGALS program
communicates with its environment synchronouslyulgh a sampling process. This
process receives information from the environmetitee periodically (e.g. using the
clock) or by an event-driven pre-emption mechanigelg. using interrupts).
Synchronizing functions are introduced to modes$.tl8ynchronizing functions can be
triggered by either external clock (synchronously)other signals when input data is
ready (asynchronously), and are synchronized agaih hook functions through
‘SyncNodes’ when input data is required by the WS program. Outputs from the

libGALS program to other %TEMC modules are implemented using the same concept.
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External clock or signal used to synchronize with the GALS program

Signals connecting to inputs of clock domains

Y Y

Clock Hook |I Synchronizing
Domains Functions |, Sy ncNodes @ Functions

libGALS

GALS program

Outputs of clock domains are
emitted through output signals _

SystemC Module
Figure 5.3: A 8STEMC module wrapping a libGALS program model
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(b) Clock domain is synchronized with external environment at a rate referred to clk1
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(c) Clock domain is synchronized with external environment freely without referring to clk1 but to signal s

Figure 5.4: Synchronizations between libGALS$MC and other 8sTEMC modules

The synchronization between the lIbGALS program #@sdcenvironment through
SyncNodes takes the following forms (as illustratefigure 5.3):

1. A clock domain inside a libGALS program, i.e. CD1 kigure 5.4 (a), is
synchronized with the environment by an externatklclkl. The clock
domain finishes its logical tick before the ticktb& external clock arrives.

2. Figure 5.4 (b) illustrates how a clock domain syodives with the
environment in multirate fashion through the exéérclock. For example,
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the hook function of the clock domain synchroniggih the synchronizing
functions every three logical clock ticks.

3. A clock domain synchronizes with the environmenewlisignal s is valid to
read.

4. Signal s is activated by other STEMC modules as shown in Figure 5.4 (c).

In the next section it is shown how liIbGALS ands®&MC are combined into

GALS-Designer, where they collaborate in modelingiplex systems.
5.4 Integration of [iIbGALS and SysTEMC

To enable interoperability and integration of libGRand SSTEMC, some aspects
need to be addressed:

1. libGALS and &sTeMC are implemented in C and C++, respectively, which
requires resolution of compatibility between the titraries.

2. GALS programs execute at logical ticks, with diéfiet logical clocks for
each clock domain, in contrast tsSSEMC models, which can be simulated
at different levels of time granularity. Synchraatibns between libGALS
programs and Y¥TEMC modules need to be established, as discussed in
Section 5.3.

3. Since the libGALS program is used not only in siati@n but also in the
implementation, interfaces provided by liIbGALS tesdribe lIbGALS
programs should be preserved in both simulationianpdementation. This

way the libGALS can be used in different phasethefsystem-design cycle.

Because liIbGALS is a C library, in order to ustodgether with 8sTEMC, which is
an extension of C++, programs written in C havédoused in C++ with the ‘extern C
{ ... } construct. This construct is utilized in thiapproach as the glue mechanism

between liIbGALS programs andt SSEMC descriptions.
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Since §sSTEMC is used to model the environment of the libGALBgoams, the
lIbGALS program is ‘wrapped’ into a¥YSTEMC module that provides interface to other
SysTEMC modules. A 8sTEMC module generally consists of the following:

1. Interfaces of the module.

2. Member variables representing the attributes aadtitucture of the module.

3. Member functions, which can either be used as aoeicuprocesses, or can be

private functions to carry out algorithms. In libG® programs, clock domains
and reactions, channels, and signals are modeledeasber variables of the

module. Interfaces of the wrapping module are alember variables.

As mentioned previously, lIbGALS programs are rmgnat the pace of their clock
domain logical ticks, which are different to as$EMC simulation clock, and thus
synchronization between a libGALS program and o8wsTEMC modules is required.
Furthermore, since the input and output functioha 6bGALS program operate on a
lIbGALS signal object and are thus not able to aseseember variables of the wrapping
module, a set of member functions to the wrappingdute is introduced, called
‘interfacing functions’. As interfacing functionsearesponsible for the communication
and synchronization between the libGALS programigadrapping SSTEMC module,
they need to be recognized by both. Because ictagfdunctions are member functions,
they can access the member variables such as thelenioterfaces and signals of the
lIbGALS program. It would, moreover, be inefficietd check whether a tick of the
lIbGALS program has elapsed by using polling, aemkn more important, it is also
possible to miss a libGALS program ticks, sincee#luls from the libGALS program are
running at speeds different from thersSEMC simulation. Therefore, interfacing
functions must be registered with the libGALS peogrso that they can be activated
when a tick completes.

Interfacing functions are categorized into (1) #wok functions and (2)
synchronizing functions. Tick-hook functions areyistered with clock domains and
reactions of a libGALS program, and the synchrawziunctions are defined as

processes in the wrapping module. The tick-hoolctions are non-static in order to
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enhance the re-usability of the libGALS<SEMC module. It means that if there is
more than one instance of the same module, thie $tgictions of all these instances
would operate on the same data set, which is inipegh@nd error prone. However, in
C++ (hence in $TEMC) only static functions are allowed to create the
threads/processes which are essential to lIbGAL&®rams. Therefore a dedicated
static-function wrapper is introduced to wrap eawn-static member function to
become a static function. When a clock domain mgaation is created in the wrapping
module, the static-function wrapper is passed astiitk-hook function. The static-
function wrapper takes an argument, called SyncNwmdelemented as a data structure
which contains a pointer to the actual tick-hookdton.

The SyncNode data structure maintains the link betwthe hook functions and
synchronizing functions. SyncNodes are member bkesaof the wrapping module and
are instantiated when a ‘tick-hook and synchromgZimctions’ pair is required. Figure
5.5 illustrates the SyncNode structure and its afp@rs. A SyncNode consists of (1) a
function pointer that points to a tick-hook functiof a clock domain or a reaction, (2)
synchronization constructs: the current implemeémain Linux uses two semaphores
from pthread and (3) a set of member functionsetdgom handshaking. The SyncNode
contains two semaphores, which are used by the-htick function and the

synchronizing function to implement the handshaking

Passed as an argument to the static SyncNode
wrapper functio
1. Registered tick hook function signal_sc()
of a clock domain/reaction o pendsc()
| signallibGALS()
pend_libGALS()
2. Point to tick .
hook function Hook Function
pointer
3. Clock domain/ 3'. Synchronizing
reaction reaches 4. signalSC( signaling Rloercech) function triggered
the tick boundary by the clock signal
3 semaphore 1 > . Y 9 Other
Clock o TickHook | Synchronizing |4—— ¢, emc
Domain / F P F i ystem
Reaction unction | g signaling unction I im control to Modules
8(- Rlet”;"d°°""_'°| semaphore 2 SystemC simulation
0 clock domain 7. pendlibGALS( ) 6. signallibGALS() kemel
or Reaction to

carry out next tick

Figure 5.5: Synchronization steps between tick heruk synchronizing function
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To abstract the details of synchronization durihg handshaking, four member
functions are introduced to SyncNodes:

1. signalSC - the tick-hook function requests to syocize

2. pendSC - the synchronizing function is ready tachyonize

3. signallibGALS — the synchronizing function accefbts synchronization

4. pendlibGALS - the synchronization is finished

When a SyncNode is created, a corresponding tick-fianction is first registered
with the SyncNode. The SyncNode is then passed aggument to a static-function
wrapper acting as the tick-hook function when akldomain (or a reaction) is created.
When a clock domain tick elapses, the actual two&khfunction pointed by the
SyncNode is then activated. Tick-hook functions apachronizing functions carry out
the handshaking procedures. Finally, the data bgaithe wrapping module are passed
to the libGALS program wrapped in the SEMC module.

Figure 5.6 illustrates the chronological steps makesynchronization between the
libGALS program and the otherySTEMC modules. Details of each step are described
further in Table 5.1. The figure has been dividetbitwo parts, the upper part
representing activities carried out in libGALS prawg, and the lower governed by the
SysTEMC simulation kernel. Note that due to the singledld simulation model of
SYsSTEMC, each module and the synchronizing function (Wwhig in the libGALS-
SysTEMC module) take turns to be excuted. The libGALSgpam, which is running in

other threads, is executed in parallel.

SyncNode @
ClockDomain/
v ] L]
TickHook C G -K
Function
\ | libGALS tick Physical
, T SystemC Clock time

Synchronizing

SystemC
module 1

SystemC
module 2

Figure 5.6: Timing diagram of libGALSYSTEMC synchronization
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Table 5.1: Activites of liIbGALS-8TEMC synchronization

Stage | Description

Create SyncNode, initialize data structure of Sywd#\ and register the tick

A function.
B Clock domain reaches tick boundary (end of tick).
TickHook function is called by the lIbGALS. Outputem the libGALS
C program have been generated to be used by o#tsge®@C modules. Time

annotations of reactions are inserted here.

‘signalSC’ is called by the tick function to sigrihk signaling semaphore 1,
D that the tick-hook function is ready to synchronigth the synchronizing
function. ‘pendSC’ is called to wait synchronizifugnction to reply.

Synchronizing function is activated by the clooyrsil from the S8sTEMC.
Communications with otheryYSTEMC modules are carried out.

‘signallibGALS’ is called by the synchronizing furan to resume TickHook
function. Inputs from otherYSTEMC modules are ready for the libGALS
program. ‘pendGALS’ is called to await the nextdyronization from the
TickHook function.

—

TickHook function resumes, inputs to libGALS pragisaare registered. Star
a new libGALS tick.

Clock domains/reactions start activities in tlegvrtick (beginning of tick).
When SsTEMC clock reaches the edge again. Refer to E.

Refer to F.
Refer to G.

X< ®

Refer to H.

5.5 Programming model of GAL S-Designer

A libGALS program is illustrated in Figure 5.7 terdonstrate how to integrate a
lIbGALS program within the GALS-Designer. This exalsalso shows that there is no
need for extensive code modification between a Ab& model and GALS-Designer
SysTEMC modules. This enables automatic wrapping of tistiag lIbGALS program
into GALS-Designer modules.

The libGALS program is a composition of one or masynchronous concurrent
clock domains, illustrated as rounded rectangle31l(@nd CD2) in Figure 5.7. Each
clock domain can include one or more synchronousweent behaviors/programs.
These reactions are shown as rectangles (CD1_R1, RRQ CD1_R3, and CD2_R1)
within clock domains. To enable hierarchical desigach reaction can be further
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decomposed into child reactions. Such relationshigs shown in Figure 5.7, where
CD1_R1 and CD1_R2 are child reactions to CD1_R3.

Inputs from the Outputs to the
Environment Environment
Environment eg. Other software CD1_s2 CD2_s1
components of the system
Clock Domain
CDI
Clock Domain
CD1_R3 CD2
CD1_$1 ;
IR 2= cpiRe | Lo SCRMOER2 o oy R Synchronizer
- process
Synchronizer
process

<—— Input/output to environment
& — — Signal within clock domains
D R Channel between clock domains

Figure 5.7: A libGALS program example

Communication between reactions of the same clockaih is via signals CD1_S1.
Signals are also used for the interaction of reastwith the external environment to a
libGALS program, e.g. CD1_S2 and CD2_S1. Reactinrdifferent clock domains in
the same |ibGALS program communicate through mesga@ssing over channels
cCD1toCD2.

Listing 5.1 and Listing 5.2 are segments of a likGAprogram which describes the
GALS system illustrated in Figure 5.7. Listing ®dnsists of the definitions of user-
typed data (lines 2-5), clone function of the usged data (lines 6-11) and reaction
functions (lines 12-65). User-typed data are ugédn(internal algorithms, (2) to define
the value type of a signal and (3) to define thieievaype passed by a channel. In this
example, data type of ‘customedType’ is used indh@nnel cCD1toCD2. Definitions
of reactions represent the bodies of reactions hwhidl be instantiated in clock
domains. A definition of a reaction starts with thame of the reaction with the
keyword REACTION_FUNCTION. Line 12 illustrates ttstarting point of defining
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ReactionCD1R1. The body of a reaction is composethe initialization and the
behavior of the reaction. The initialization of aaction starts with the API call
‘initReaction’ and ends with the API call ‘endingRction’ as shown on lines 13 and 17,
respectively. Reactions are created with argumeants can be extracted by using
‘getArgument’ API call (lines 14 and 15). Channelised to send and receive messages
between reactions of different clock domains (lid@and 60, respectively). Signals
emitted by a reaction are registered (line 16 and b6). The code representing
description of the behavior of a reaction is writegter the ‘endInitReaction’ API call.
Besides using any usual C sequential programmimguiage constructs, reaction
behavior can use a set of additional libGALS cdrgtatements to model flow control
and reactivity in the form of API calls. The behavof a reaction consists of arbitrarily
mixed sequences of lIbGALS reactive and standastafments (e.g. lines 18 to 22).
Examples of libGALS control statements include:
1. ‘emit’ for broadcasting the presence of a signaled 19 and 62, to all
reactions within the same clock domain.
2. ‘pause’ to explicate end of tick, as shown in liddsand 16.
3. ‘await’ to wait on the presence of a signal, li2dsand 26.
4. ‘fork’ and ‘join’ to fork out and then wait for thmining of child reactions,
lines 43 and 44. A parent reaction can proceed ibrally of its forked child

reactions have joined.

Details of available lIbGALS API calls can be foumd Chapter 4. Reactions in
different clock domains communicate through chasin@l sending reaction has to
prepare a message to send by creating the medsape45-47) followed by a ‘send’
(line 48) API call, which takes arguments includitige instance of the channel, the
message, and the type of the message. At the megeside, a place-holder of the
receiving message needs to be declared (line &®)tprthe ‘receive’ API call (line 60).
‘endReaction’” API call (lines 23, 34, 50, and 64)used to denote the end of the

behavioral description of reaction.
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Listing 5.1: Definition of user-defined data typesd reaction functions

1 #include “libGALS.h”

2 typedef struct customedType {

3 /I Definition of User Types

4 int val;

5 } customedType;

6 customedType *customedType_clone(customedType* orig inal) {
7 customedType* newData =

8 (customedType*)malloc(sizeof(customedType));
9 newData->val = original->val,

10 return newData;

11 }

12 REACTION_FUNCTION(ReactionCD1R1) {
13 initReaction();

14 signal CD1_S1 = (signal)getArgument(1);

15 signal CD1_S2 = (signal)getArgument(2);

16 registerEmitter(CD1_S1);

17 endInitReaction();

18 .../l Computational segments

19 emit(CD1_S1, 0);

20 pause();

21 ... Il Computational segments

22 pause();

23 endReaction();

24 }

25 REACTION_FUNCTION(ReactionCD1R2) {
26 initReaction();

27 signal CD1_S1 = (signal)getArgument(1);

28 signal CD1_S2 = (signal)getArgument(2);

29 endInitReaction();

30 await(CD1_S1);

31 ... Il computational segments

32 await(CD1_S2);

33 ... Il computational segments

34 endReaction();

35 }

36 REACTION_FUNCTION(ReactionCD1R3) {
37 initReaction();

38 reaction CD1_R1 = (reaction)getArgument(1);
39 reaction CD1_R2 = (reaction)getArgument(2);
40 channel cCD1toCD2 = (channel)getArgument(3);
41 endInitReaction();

42 while(1) {

43 fork(CD1_R1); fork(CD1_R2);

44 join(CD1_R1); join(CD1_RZ2);

45 customedType *dataToSend =

46 (customedType *)malloc(sizeof(customedType) );
47 dataToSend->val = success;

48 send(cCD1toCD2, dataToSend, customedType);
49 }

50 endReaction();

51 }

52 REACTION_FUNCTION(ReactionCD2R1) {
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53 initReaction();

54 signal CD2_S1 = (signal)getArgument(1);

55 channel cCD1toCD2 = (channel)getArgument(2);
56 registerEmitter(CD2_S1);

57 endInitReaction();

58 while(1) {

59 customedType *dataToReceive;

60 receive(cCD1toCD2, dataToReceive, customedType)
61 if (dataToReceive->val == success)

62 emit(CD2_S1, 0);

63 }

64 endReaction();

65 }

Entities and objects of the lIbGALS programs, imthg clock domains, reactions,
signals and channels, are created in Listing 5r2tl{ a libGALS program is created
with ‘createlibGALSProgram’ call (line 4). Clock dwmins are instantiated by using
‘createClockDomain’ API call (lines 5-10). Channedgynals, and reactions have to be
instantiated as arguments before being used taecraher reactions. The channel
cCD1toCD2 are created through the use of ‘creata@aAPI call (line 15), which
takes the sending and receiving clock domains genants. Instantiation of signal
objects is via ‘createSignal’ API call (lines 16}1&eactions are then created with
‘createReaction’ API call (lines 19-55). Note th@k-hook function and its argument
for both creations of clock domains and reactiores @ptional, that is, they can be
substituted as 0 (or NULL) when calling the creationctions. Tick-hook functions can
be used to synchronize with the other software arapts, such asyYSTEMC modules,
as described initially in Section 5.3 and with mdegailed description in the following
sections. Clock domains are activated by usingtGtackDomain’ API calls (line 56-
57). Finally the libGALS program starts via callitsgartlibGALSProgram’ in line 58.

Listing 5.2: libGALS program that creates CDs, aels, signals and reactions

#include “libGALS.h”
#include “ReactionFunctions.h”
int main(void) {
createlibGALSProgram();
clockdomain CD1 = createClockDomain(
InputC1, /I Input function to clock domain
OutputC1, /[ Output function to clock domain
CD1TickHook, /I Tick-hook function, call ed every tick
CD1TickHookArgs); // Arguments to tick-hook f unction

© oo ~NO O WN P



Chapter 5. GALS-Designer: A design framework for GALS software systems

143

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

clockdomain CD2 = createClockDomain(
InputC2,
OutputC2,
CD2TickHook,
CD2TickHookArgs);
channel cCD1toCD2 = createChannel(CD1, CD2, “cCD1
signal CD1_S1 = createSignal(CD1);
signal CD1_S2 = createSignal(CD1);
signal CD2_S1 = createSignal(CD2);
reaction CD1_R1 = createReaction(

CD1, /I Clock domain that the re
ReactionCD1R1, // Reaction function
0, /I Active status

CD1R1TickHook, /I Tick-hook function, call

TickHookArgs, // Arguments to tick-hook f

2, /l Number of arguments to t

CD1_S1, I First argument

CD1_S2); // Second argument
reaction CD1_R2 = createReaction(

CD1,

ReactionCD1R2,

0,

0,

0,

2,

CD1_s1,

CD1_S2);
reaction CD1_R3 = createReaction(

CD1,

ReactionCD1R3,

1,

0,

0,

3,

CD1_R1,

CD1_R2,

cCD1toCD2);
reaction CD2_R1 = createReaction(

CD2,

ReactionCD2R1,

1,

0,

0,

2,

CD2_s1,

cCD1toCD2);
startClockDomain(CD1);
startClockDomain(CD2);
startlibGALSProgram();

}

toCD2");

action is in

ed every tick
unction
he reaction
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The forming of a libGALS-8sTEMC module from wrapping a libGALS program is
presented in Listing 5.3. This demonstratesysr&vC description, which wraps up the
lIbGALS program shown in Listing 5.2 into a libGALS'STEMC module. Note that
most of the original libGALS program, as from Lig§i5.1, remains untouched, and it
requires minimal effort to implement a l[IbGALSSSTEMC module. A diagram
representing this module is illustrated in Figur8.5The programming interface of
lIbGALS and reactions declarations are includechwite above mentioned ‘extern C
{ ... } construct (lines 2-5, Listing 5.3). In lin6, a header file, libgals_sc.h, is included
to provide macros and data structures which arés pafr the lIbGALS-SSTEMC
compartments.

The transformation from an existing lIbGALS modela GALS-Designer module
is as follows. A 8STEMC module named GALS_ PROG is created (line 7) wiletaof
its member variables and functions (lines 9-27)sthi, member variables representing
a set of input and output signals are declaredldded signals include the clock signals
for each clock domain (line 9), and interfacingnsily (lines 10 and 11). Member
variables, such as clock domains, channels, sigaald reactions are also declared
(lines 12-15). ‘SyncNodeParser’ (line 16) is thecnoato create the static function
wrapper. ‘SyncNodes’ are declared through ‘NewSyadN macro (lines 17-19).
Within the constructor of GALS PROG (lines 26-43yncNodes are created through
‘createSyncNode’ (lines 29-31), providing argumeimsluding the name of the
lIbGALS-SysTEMC module and the actual tick-hook function poinligdhe SyncNode.
‘createlibGALSProgram’ (line 32) is still requiréd establish data structures to execute
the libGALS components. Upon the creation of theckldomains and reactions, a
‘SyncNodeHook’ macro is used as the static functwrapper, providing the
SyncNodes as the argument (lines 36, 41, and 4&hwian be applied to both clock
domains and reactions. The creations of other cltmkains, channels, signals, and
reactions are the same as in the original libGALSgmm. Activations of clock
domains and libGALS programs (lines 56-58) are msHeto enable the libGALS part
of libGALS-SysTEMC module to be up and running. Synchronizing fuomgi are

registered (lines 59-64) with the clock signalsthe corresponding clock domains.
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Examples of a tick-hook function for clock domaib < listed in lines 67-71, consist of
handshaking operations and evaluations of interacsignals. A corresponding
synchronization function (lines 78-79) implemeritse tounterparts of the handshaking
to the tick-hook function. Note that in Listing 5.the 69, scCD1_S2 is aySteEMC
signal and CD1_S2 is of type libGALS signal. Theeifacing between the two kinds of
signals is carried out within the hook functionpum signals to a ¥ TEMC module are
first checked and then emitted to the libGALS pamgr(line 69). Similarly, output
signals are written when they are present in theSALS program (line 74).
Synchronization between a tick-hook function arsyrchronizing function is presented

as the grey area in the Figure 5.8 and detail&eotion 5.3.

Listing 5.3: ¥sTEMC module resulted from the libGALS program

1 #include "systemc.h"

2 extern "C" {

3 #include "syncapi.h"

4 #include "ReactiveFunction.h"

5 }

6 #include "libgals_sc.h"

7 SC_MODULE(GALS_PROG) {

8 public:

9 sc_in<bool> clk_CD1, clk_CD2;

10 sc_in<bool> scCD1_S2;

11 sc_out<bool> scCD2_S1;

12 clockdomain CD1, CD2;

13 channel cCD1toCD2;

14 signal CD1_S1, CD1_S2, CD2_S1;

15 reaction CD1_R1, CD1_R2, CD1_R3, CD2_R1;
16 SyncNodeParser(GALS_PROG);

17 NewSyncNode(GALS_PROG, snCD1);

18 NewSyncNode(GALS_PROG, snCD2);

19 NewSyncNode(GALS_PROG, snCD1_R1);

20 /I Tick-hook functions

21 void CD1_TickHook();

22 void CD2_TickHook ();

23 void CD1_R1_TickHook();

24 /I Synchronization functions

25 void CD1_Sync();

26 void CD2_Sync();

27 void CD1_R1_Sync();

28 SC_CTOR(GALS_PROG) {

29 snC1 = createSyncNode(GALS_PROG, CD1_TickHook);
30 snC2 = createSyncNode(GALS_PROG, CD2_TickHook);
31 snCD1_R1 = createSyncNode(GALS_PROG, CD1_R1_Tic kHook);
32 createlibGALSProgram();
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33 clockdomain CD1 = createClockDomain(
34 InputC1,

35 OutputC1,

36 SyncNodeHook(GALS_PROG),
37 snCD1);

38 clockdomain CD2 = createClockDomain(
39 InputC2,

40 OutputC2,

41 SyncNodeHook(GALS_PROG),
42 snCD2);

43 /I The same as lines 15 to 19 in Listing 5.2
44 /I to create channels and signals

45 reaction CD1_R1 = createReaction(
46 CD1,

47 ReactionCD1R1,

48 0,

49 SyncNodeHook(GALS_PROG),
50 snCD1_R1,

51 2,

52 CD1_S1,

53 CD1_S2);

54 /l The same as lines 28 to 55 in Listing 5.2
55 /I to create reactions

56 startClockDomain(CD1);

57 startClockDomain(CD2);

58 startlibGALSProgram();

59 SC_METHOD(CD1_Sync);

60 sensitive << clk_CD1.pos();

61 SC_METHOD(CD2_Sync);

62 sensitive << clk_CD2.pos();

63 SC_METHOD(CD1_R1_Sync);

64 sensitive << clk_CD1.pos();

65 }

66 b

67 void GALS_PROG::CD1_TickHook() {
68 snCD1->signalSC();

69 if(scCD1_S2.read()) emit(CD1_S2);
70 snCD1->pendlibGALS();

71 }

72 void GALS_PROG::CD2_TickHook() {
73 snCD2->signalSC();

74 scCD2_S1.write(present(CD2_S1));
75 snCD2->pendlibGALS();

76 }

77 void GALS_PROG::CD1_R1_TickHook(){ ... }
78 void GALS_PROG::CD1_Sync(void) {

79 snCD1->pendSC(); snCD1->signallibGALS();
80 }

81 void GALS_PROG::CD2_Sync(void) { ... }

82 void GALS_PROG::CD1_R1_Sync(void){ ... }
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Figure 5.8: Integration of libGALS program into asSEmMC module

In the lIbGALS-SsTEMC module, reactions are still executed in the staskion
as in the lIbGALS program. However, contrary to ttenventional simulation of a
SYsSTEMC executable which is single-threaded, the exetegatpnsisting of libGALS-
SysTEMC modules are multithreaded and can take advaraédeeing executed on
multicore systems. Tick-hook function also enalites modeling of further details of
communication and synchronization between the lih&Arograms and theySTEMC
wrapping module. For example, timing annotations t®& inserted into tick-hook
functions and then used for architecture exploramd performance evaluation, as
detailed in Section 5.7.

5.6 GAL S system design using GAL S-Designer

Figure 5.9 illustrates design flow in which the G&IDesigner is used. Solid lines
represent the flow between design stages. Dashed fepresent the communications
between components. GALS-Designer is utilized ages shaded in grey. After system
specification capture, hardware/software partitigniis performed. Software and
hardware components can be categorized into twapgraexisting components or those
needed to implement. libGALS programs, which arerivédd from identified

asynchronous and synchronous behaviors, are wrajgpbdcome STEMC modules
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that are integrated to aySremC simulation model of the designed system, which
communicates with hardware/software simulators @edforms the entire system
simulation. As refinements of the design are cdroat along with simulations and
validations, the results lead to the final impletagion of the system. lIbGALS

programs and other software applications are egdcwith the support of operating
systems on the same designated platform.

Capture specification
Design flow
------------ Communications
L [ ] usesof GALS Designer
Identify essential
components, hardware-
software partitioning
‘ Hardware ‘ ‘ Software ‘
Analysis the required DIEERE .
. . asynchronous clock N - Explore the required
Determine essential hardware component . Identify existing software . ;
. domains and software libraries or
hardware components and processing . SystemC components e
synchronous behaviors applications
elements L
within.

Hardware GALS programs Software

SystemC wrapped in SystemC SystemC

modules modules modules

Hardware components Software
or simulator v applications
- | 2 SystemC simulation program R TETTETERE |
GALS e Software
Hardware ) programs || applications
Components and -~ Processing elements -
. . (hardware) .
implementations Operating
system(s)

Figure 5.9: GALS-Designer in system development

libGALS requires standard features provided by dperating systems, in that it
guarantees the same behavior and outputs regaess which operating system is
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used. This simplifies theYSTEMC simulation model, which does not require a target
OS model. However, the target OS model can be decluor fine-grained simulation.
For example, when OS API calls are made by theAib% the required information
can be passed to the OS model through the synamgrfunction.

The concept of the libGALS enables the developeatescribe GALS systems in a
simple manner, without putting effort into how atucommunication and
synchronization between reactions and clock domaiescarried out. These details are
hidden by using libGALS, which guarantees the coamgle of the designed system
with the GALS MoC. Because the libGALS library isitten in C, it is highly portable
and has been ported to a range of operating sysfeons non-real-time to real-time,
such as Linux, Windows, uCOS-Il, FreeRTOS, eCOS RTEMS, as detailed in
Chapter 4. On the other handysSemC allows modeling at different levels of
abstraction, which makes it suitable as a developnramework, demonstrated by
many previous research and development effortsTES1C also enables designing
systems using either top-down (system-level desagnbottom-up (component-based
design) approaches according to the specific rements of the applications [Cai &
Gajski, 2003]. Both libGALS and YSTEMC can be used to describe a system in
different design phases that include: (1) spedifica (2) modeling and analysis, and (3)
implementation phase. The GALS-Designer developrfiramhework, which supports
the design process in different design phaselyusdrated in Figure 5.10.
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‘ GALS systems, HW/SW components, Algorithms ‘
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=
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with selected OS

Figure 5.10: Development framework of the libGAL8s$EMC model
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In the specification phase, libGALS is used to tifgressential clock domains and
concurrent reactions of a GALS system. Reactionisinva clock domain do not need to
be modeled with details of its actual implementagia.e. clock domains can contain a
single reaction (which can be refined into multipgactions later) and such libGALS
program can be referred to as a ‘simplified libGA®gram’. In this phase simplified
lIbGALS programs are wrapped intor SSEMC modules as described in the previous
section. An overall system can consist of one oreminGALS programs and other
components (hardware descriptions or software nejulOther system components,
which do not follow the GALS MoC, are specified ngi S'STEMC or other
specification methodologies that can be incorpaoratihin SrsTEMC.

At the next modeling and analysis phase, descnptad SSTEMC components are
further refined into more concrete models of hamdwand software. Models of these
components can be at different levels of abstractiepending on what intellectual
property (IP) vendors and designers have provi&aaplified lIbGALS programs are
refined with more synchronous reactions, whereti@ag are described in further detail
including:

1. Identification of concurrent behaviors within a @todomain that are
modeled as separate reactions.

2. Introduction of the algorithms that perform datansformations in each of
these reactions.

3. Specification of control and dependencies betweeactions that are

achieved via signal emit/await and fork/join APllsa

The number of clock domains that libGALS can supp®rpractically unlimited
(assuming the memory to store clock domain datecttre is sufficient), and are bound
by the underlying OS features. Grouping of clockndms into different libGALS-
SysTEMC modules (i.e. liIbGALS programs) is the designéesision and is illustrated
in Figure 5.11.

Each libGALS-§sTEMC module represents a possible mapping to a separat

processor or a libGALS program running on the ta@8. This approach enables the
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implementation of heterogeneous systems, whichudecldifferent processors with
different computing power and therefore can exeatltek domains of different
complexities and different speeds. An example ®wshin Figure 5.11 (a), where all
clock domains are modeled and implemented on desprgcessor, as clock domains
communicate with otherYSTEMC modules through necessary mechanisms. If a faster
execution speed is required, clock domains can apped to separate processors as
Figure 5.11 (b).
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Figure 5.11: Clock domains mapped to different BS-SysTEMC modules

Models of lIbGALS-SSTEMC modules can be described as untimed or with
different timing granularities by annotating timirfigr accurate simulation. Timing
annotations can be made at clock domain leveltimatevel, and operating system
level. Execution times can be obtained, for examgieough profiling and using
instruction set simulators (ISS). At the clock-damizvel, times are annotated within
the tick-hook functions of the clock domains. Thiges the designer information as to
how the clock domains perform on different confagions of processors, enabling

architecture exploration. To obtain higher accurditying information can be further



Chapter 5. GALS-Designer: A design framework for GALS software systems 152

inserted to tick-hook functions of reactions. Oterks have modeled and described
abstract OSs which provide APIs that can be usetthéwapplication models and enable
timing analysis as in [Posadas et al., 2005]. @iy libGALS is implemented by
using common (RT)OS services whose models aredlrawailable. Because timing
information can be annotated when simulating wilGALS and abstract OS APIs,
more accurate simulations are possible. Modelinth wlifferent timing granularities
enables trade-offs between the simulation perfoomand accuracy. As one extreme,
an ISS can be used to execute libGALS programébtamthe most accurate execution
time, but with the slowest simulation speed.

Finally, at the implementation levelySTEMC modules are mapped to synthesized
hardware or software generated automatically orualyas presented in [Cesario et al.,
2002] and [Posadas et al., 2005]. libGAL%8EMC modules are mapped (translated
by a text parser) to libGALS programs for specdelected operating system used on

the target processor(s).
5.7 Case studies and results of using GAL S-Designer

To demonstrate the use of the GALS-Designer appraawd how libGALS-
SysTEMC modules can be integrated with others&MC modeled components, an
Internet-enabled frequency relay (IEFR) has beea uas illustrated in Figure 5.12. A
similar model without network support [Radojevicakt 2006] has presented the major
components of the frequency relay ims$eEMC. In Chapter 4, the libGALS model of
the frequency relay was introduced. The frequeratgtyr measures frequency in the
electrical power system and the rate of its chaagd, switches on and off the loads in
order to help maintain overall system frequencyimithe specified range. The IEFR is
formed by coupling a frequency relay with a simpleb server. IEFR enables
communication with a Web Browser via the Internetconfigure settings of the
frequency relay, as well as to display statussobperation.

Clock domain and reaction partitioning are basethencharacteristics of the relay.
Four clock domains have been identified: data sengptelay control, web service, and

status gathering. Clock domains can be instantiatedifferent libGALS programs
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because of the requirements of the system or thabdéy of the execution platform.
For example, a platform might not be powerful erfotg host all four clock domains
because the data sampling and relay control hagk bomputational demand. To
demonstrate that clock domains can be further ailémtto different libGALS programs,
data sampling and relay control are grouped in lt&ALS-SysTEMC module, as an
example of the design decision. The other moduletates the remaining IEFR
functionalities. Note that the allocation of clodkmains to the lIbGALS programs is

driven by the characteristics of the applicatiod based on the design analysis.
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Figure 5.12: Internet-enabled frequency relay medi@lith lIbGALS-SSTEMC

Communication between clock domains ‘DataSampliagd ‘RelayControl’ in
module ‘FrequencyRelay’ are via channel ‘Sample@o@imilarly, ‘WebServer and
‘StatusGathering’ of module ‘RemoteService’ excramgformation through channels
‘Status’ and ‘Configuration’. Inter-module clock mi@ins communicate with each other
through §STEMC signals or channels, named ‘CalculationResuld &Parameter’
which can be modeled as the environment to theesponding clock domains, or can
be described as libGALS channels if GALS MoC isuiegd. To simulate the overall
system, inputs and outputs are provided and celfetlty SsTEMC modules. Input

stimulus, which is the digitized electric power reaty waveform, is described in the
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module named ‘Stimulus’. Outputs, which are signadsitrolling the switches, are
modeled in the TEMC module called ‘Switches’. Interconnection betw&BTEMC
modules is achieved throughvySSEMC signals. The simulation model of IEFR is
performed on the Linux, where two libGALS prograonmunicate with each other
through SsTEMC channels. The corresponding implementation oh suenodel uses
inter-process communication (IPC) of the host ofpegasystem.

Standard 8STEMC executable is a single-threaded program, whigmaiatake
advantage of using the state of the art multipremeplatforms that are readily available.
On the other hand, the libGALStSTEMC model can take advantage of multiple
processors or cores. The simulation speed cancbeaised and this can be demonstrated
by simulating the libGALS-8TEMC models with a different number of processor
cores. The results of simulation of the FrequentyyRenodule from the IEFR, along
with a number of other examples, are shown in Edufi3. The name of the example
also indicates the number of clock domains in tleel@h for instance, ‘2CD FreqRelay’
represents a FrequencyRelay modeled with two diockains.

Data Comp examples are synthetic examples, which consisinefor more clock
domains as indicated by their names. Each clockaitowonsists of two reactions, one
performing heavy computation within each tick ahe vther having the communication
function of sending out results to the other clocknains through channels. They are
designed in such a way as to present the perforesarf heavy data-driven
computations with low data dependencies betweertk@domains.

Such examples are typical for video encoding antbdi@g applications, which
include both audio and video parts. ‘3CD Kite Colr’, detailed in Chapter 4,
consists of three clock domains that have a midadé computations and control found
in typical heterogeneous embedded systems. ‘2Ché&ypto’ [Lavagno & Sentovich,
1999] is described by two clock domains. Experiraentins were carried out on an
Intel Core 2 Quad 2.4GHz with 4GB of RAM with Linik6.29.6 as the host OS. A
different number of cores are set and made avaitablhe OS by providing maxcpus=n,
n = 1-4 as the argument to Linux kernel during the bootpss. Average tick times (in

ps) for all clock domains are obtained by runninigpabgrams for at least 10 million
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ticks. Simulations of pureYSTEMC models, in which the same functionalities woudd b
achieved without libGALS, are not carried out bessaaf the following:

1. Noticeable modeling effort is required to implem#rg GALS MoC in SSTEMC,
since one might eventually implement functionatityse to libGALS.

2. SysTEMC does not provide certain control statements sagshexplicit pre-
emption construct, and libGALS does. Models tha pse-emption statements
would lose the abstraction intended by lIbGALS.

3. SysTEMC kernel does not support simulations by employlmg multicore

simulation hosts.
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Figure 5.13: Simulation execution results of libG&SrsTEMC models

The simulation runs have shown that, in gener&GALS-SrsTEMC models
perform faster when using more cores, with perferceaincreasing as the number of
clock domains and cores increases. ComputatioriBata Comp’ are with low data

dependencies and make use of parallelism to demat@she advantage of running on
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the multicore systems. 2CD FreqRelay, 3CD Kite @uldr, and 2CD AsyncProto
when executed on four cores, do not achieve pedoca gain as would be expected,
because reactions of the same clock domain arabditd on different processors,
which, in turn, results in overheads of synchromizes and program migrations
between processors. Such a situation appears rbureugly if two clock domains are
highly dependent on each other (with frequent emghaof data), as is the case in 2CD
AsyncProto example. That is, one clock domain s $ender and the other is the
receiver. Both sender and receiver are blocked whaeiting for the rendezvous in
channel communication. The blocking-releasing oafdroth clock domain executions
will result in only one thread running at a timeilehthe other thread from the other
clock domain is waiting for the communication tococ This leads to the
sequentialization of the activities of communicgticlock domains and reduces the

benefit of the multicore platform.
5.8 Summary

In this chapter, a new design framework, GALS-Deeig for the design of
complex GALS software models in C programming laagguusing libGALS library, as
well as their integration with other componentsciiéed in ¥STEMC, is introduced.
lIbGALS models wrapped intoyYSTEMC modules, called liIbGALSs&TEMC modules,
are capable of communication with others&MC modules. libGALS-8STEMC
modules can use different levels of abstractiordifferent design phases and with
different timing granularities. Taking advantage tfe libGALS multithreaded
implementation, such modules can execute on mattgssor and multicore platforms,
opposite to standardr'STEMC models which are single threaded.

Furthermore, as libGALS has been ported to a nunabeDSs, as detailed in
Chapter 4, the same libGALS program, with pracljcab modifications, can be used in
the simulation on one (host) and can be later implged on the target OS with
minimal efforts. This demonstrated the use of thpraach on a complex embedded
systems design. As a case study, the model ohkettenabled frequency relay was first

constructed and was then implemented as a libGAlb§ram. Finally, the simulation
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performance of a number of examples has been athlyhen using a computer with
different numbers of cores. It was shown the libGARSTEMC approach can take
advantage of those cores, which is not possiblenwiseng standardySTEMC.
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Dynamic system designs in DynamicGALS

This chapter presents the DynamicGALS frameworkicwienables the design of
Dynamic Globally Asynchronous Locally Synchronol®GALS) systems in the C
programming language. A DGALS system consists oftipiea DGALS programs and
can be executed on platforms ranging from a sipgbeessor to multicore and
distributed systems. A DGALS program itself corsisif a variable number of
concurrent asynchronous behaviors at the top lgvetogram hierarchy, which run on
a single or multicore computational node. Each elsggnous process can be naturally
composed of a number of synchronous concurrentepsas. The mechanism for
creation, termination, and mobility of asynchrondushaviors allows any existing
behavior to create other asynchronous behaviorhair own or any other DGALS
programs, regardless of their location. In this wthg overall system adapts to changes
in the environment and the execution platform dyicaity.

The DynamicGALS framework consists of a library mahiibDGALS, which also
provides a run-time support for execution of DGA®grams. Features of libDGALS

are available in the form of application programgninterface (API) to the software
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designers. libDGALS, which is an extension of libGRand can be built on top of
almost any operating system, is highly portable da$ low run-time memory
requirements. In contrast to the GALS-Designer aagh in Chapter 5 that systems of
multiple GALS programs are modeled statically, D&@GAprograms in DynamicGALS

framework are instantiated dynamically.

6.1 The need for framework to design dynamic systems

An increasing number of computing applications @mtrthe computing world with
the physical world, creating a single system, oftelled a cyber-physical system (CPS)
[Krogh et al., 2008]. Most CPSs have some commartufes: (1) a distributed
execution environment with computation nodes arair timterfaces with the physical
world connecting or disconnecting from the systerany time, (2) system functions are
implemented as concurrent behaviors that may behsgnous or asynchronous each to
the other, and (3) functions and behaviors havéetinhe and can be created and
terminated dynamically. The goal is to allow thee@xtion of such systems with high
autonomy and cater for dynamic changes in botlpttysical world and the execution
platform itself. Such CPSs need a high degree mitime adaptivity, to enable them to
survive situations such as a loss (or additiond esbmputation node; loss (or addition)
of interfaces to the physical world; variationsfiaquency and nature of requests for
computation on any node; the ability to react metion important events regardless of
the current system load; etc. An example of su€P& is a security surveillance and
access-control system installed over large ar&asclties, airports, commercial centers,
etc, consisting of a huge number of disparate sensannected with computers into
sensor nodes, each capturing information in rea¢-tand collaborating to achieve the
final goal of object tracking and threat detection.

Such a complex CPS is difficult to design and impeat because of the concurrent
and asynchronous execution of various sensor nayeshronization and transfer of
data between the nodes, fault tolerance and regowaed finally the utilization of
heterogeneous execution and communication archrest (e.g. combination of

distributed and shared memory) as the executiotiopfa. Obviously, such systems
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have a high degree of inherent non-determinismgasurolling this non-determinism
and providing a consistent behavior in differergrearios would indeed be an ideal goal.
Yet, this is difficult to achieve with current pr@mnming languages and practice.

On the one hand, sequential programming languageh,as C and C++, which are
most often used in the implementation of curren8§Rack the ability to program basic
safe concurrent behaviors with the proper levebeterminism and reactivity to the
events from the physical world. Applying a formabdél of Computation (MoC) to
CPS designs allows one to validate and even pgssinify the correctness of the
critical components of these systems. A corredigsen formal MoC also allows the
designing of a complex system by composing simp#ets. For instance, the GALS
[Chapiro, 1984] MoC, which describes concurrentnabyonous and synchronous
behaviors, lends itself well to a significant numioé complex CPSs. ‘Asynchronous
concurrency’ is suitable for programming behavidhat run at their own pace,
controlling their respective sensors, and commuimgaoccasionally. ‘Synchronous
concurrency’ might be a better choice for programgnconcurrent behaviors that are
running on a single computation node to reducelmaas, as they communicate more
frequently with each other, and at the same tingrantee key system properties such
as deterministic behavior.

However, the GALS MoC lacks the ability to describe dynamic nature of the
majority of CPSs, such as creating behaviors atother computational node at run-
time. This leads towards evolving the GALS MoC frtime static to the dynamic case,
called ‘Dynamic GALS’ or ‘DGALS’. A framework appeazh is needed for both the
design of CPSs and run-time support for dynamiadb@iCPSs by honoring the DGALS
MoC. The DynamicGALS framework is proposed for sneleds and is detailed in the
following sections.

Related works and approaches are presented inoBegt?. In Section 6.3 an
abstract design is used as an example to undefpn principles behind the
DynamicGALS framework and its features. A more ctempexample of a DGALS
system which is both dynamic and distributed is dlestrated in Section 6.4. Section

6.5 presents the internal implementation detailhefDynamicGALS framework, while
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Section 6.6 then provides the benchmarking resuttsn lIbDGALS was used in a
number of other applications. Finally, a summaryhi$ chapter is provided in Section
6.7.

6.2 Related worksand the DGAL S approach

Adequate frameworks provide a means for designiysiems, and support the
execution of deployed systems. Libraries that mtevprogramming interfaces, and
languages that provide essential constructs, aée tssdescribe systems under design.
To support the deployment and execution of bothopyped and final implementations
of these systems, run-time environments are esseftiameworks targeted at the
design of complex systems need to meet a numbeequiirements to be effectively
used by system designers. What follows is a congm&iie, but in no way exclusive list
of the requirements that need to be satisfied by &tamework that supports
programming complex dynamic systems:

1. Behavior and internal encapsulation: The programming framework should
allow the decomposition of the system into smaftemageable behaviors
and the easy composition of these behaviors intovamall system. Also,
the framework needs to support static (at desige)tiand dynamic (at run-
time) instantiation of these concurrent behaviors.

2. Safe communication: Concurrent behaviors need to communicate. Safe
mechanism for synchronization and communicationveeh concurrent
entities should be a primitive construct in thenfeavork. Communication
between concurrent entities should hide the detaflsthe underlying
communication layer, i.e., some concurrent entitiethe system might be
running in a distributed memory environment, whdéhers might be
running in a shared memory environment, but thédridevel programming
abstractions used should be the same.

3. Location transparency and mobility: The designer should have no need to
change the designed system behaviors, when thelvindeinfrastructure

changes, or the required changes should be atrfeashal. This is known
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as location transparency. The ability of behavitws move from one
physical location (computational node) to anotreessential in dynamic
systems. For example, some piece of code not &laitan a computation
node might be obtained from a code repository aitime and activated as
needed.

4. Fault tolerance and possible recovery: A large complex dynamic system is
bound to have failures. Any design framework gedoedards such systems
needs to provide built-in, error-tolerance cap#ébgiand possibly recovery.

5. Automated formal validation and possible verification: The design of
complex systems needs to be approached from ansystel design
perspective rather than a programming perspeciike.framework should
support a formal MoC, which, as mentioned previgusllows system
designers to formally validate and possibly vedgrtain critical aspects of
the designed systems.

6. Reactivity and abstract data fusion: Every incoming event to the designed
systems needs to be responded to. Programming‘iadtive’ [Harel &
Pneuli, 1985] behaviors can be made easy by prayigirogramming
paradigms especially suited for data fusion fromtiple sensors or other
sources.

7. Ability to take advantage of the heterogeneous execution and
communication platforms. The physical infrastructure (i.e. targeted
processor architectures, or computing platforma} the software system
are executed on might consist of a heterogeneousfseomputational
elements, each element can be implemented by sswmgie-processor and
multicore CPUs and GPUs. Even the communicatioerléye. adaptors and
buses) is to be heterogeneous. The underlying gdlysifrastructure and
the designed system behaviors should be sepanatethe framework
should allow the change of one, without affectihg bther. This improves

the overall reliability, portability, and flexibtly of the designed system.
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8. Ability to accommodate legacy code: There are large software applications,
which have been written in traditional programmiagguages like C/C++,
so any new programming framework should be ablacmommodate and

interface with these software applications with imial or no changes at all.

Not many programming languages and frameworks arcal the aforementioned
requirements. Traditional programming languages @k C++, and Java lack either the
basic mechanisms to describe concurrency and/c@ sammunication between
behaviors implemented using threads [Lee, 2006¢eRity, a number of programming
frameworks and languages that target dynamic sydexalopment have been proposed.
All these have advantages and drawbacks.

Integrating asynchronous concurrent behaviorshigger systems is also known in
the world of ‘actors’ [Hewitt et al., 1973][Clinge981], where asynchronous actors
communicate with each other using message-passeofpjanisms. There are a number
of implementations in the form of libraries or freaworks added to existing
programming languages such as Actor Foundry [Astl®@9], Scala Actors [Haller &
Odersky, 2009] (both implemented using Java andingnon JVM), or included into
new concurrent languages Erlang [Armstrong et1®93]. However, message passing
between actors is sometimes implemented as palgingference (rather than creating
a deep copy of the object to pass), which viol#étessemantics of the Actor model.
Passsing-by-reference will not work in distributeémory architecture because
referencing to memory at a remote site is not bssiAlso, the Actor-based systems
provide a general asynchronous model, which isngéisdefor majority of clustered
distributed dynamic systems. However the Actor nhodees not allow explicit
grouping of actors or internal concurrent behavieithin an actor that would perform
synchronously. Finally, and most importantly, thagk the ability to react to events in
the environment. A similar case can be made fortiragkent systems, such as JADE
[Bellifemine et al., 2005], which provide for rematy, but at the expense of huge

execution overhead (i.e., large run-time librany)oomputation nodes.
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There are approaches to create languages to impleimenal MoC to describe
concurrency and communication between asynchrobebhaviors, as the remedies to
general thread programming. For instance Occamg®al1990] implements the CSP
[Hoare, 1978] MoC. However, both of the above nmred approaches lack a support
for mobility of behaviors. Extensions to supporthiity have been made to Occam,
resulting in Occam-pi [Welch & Barnes, 2005]. Howevthese languages lack the
constructs to describe complex data structuresafgatithms. To resolve this problem,
as an example, CSP has been implemented in soflNveages of general programming
languages, such as JCSP [Welch et al., 2002], €ildefink et al., 1999], and Scala
[Odersky et al., 2004] (on the top of the Actordxdsnodel) in Java, and CCSP [Moores,
1999] in C, but mobility is not supported in théaeguages. [Barnes, 2005] presents a
technique to interfacing both Occam-pi and C, ttawbboth mobility and support for
data-driven computations. However, it complicatess design process without having a
single-language environment.

Some attempts with the tools and frameworks ard¢ecedh on the concepts of
distributed systems, such as X10 [Charles et @05R In X10, asynchronous behaviors
are called ‘activities’ running on distributed ‘pks’. However, X10 is not based on a
formal MoC. Other languages, such as Axum [Microsdrporation, 2008], take into
account current languages and legacy codes, lutelison powerful and heavy virtual
machines (the .NET framework), which abstract awlagy underlying platform to
enforce heterogeneity of the execution environment.

Languages and platforms which emerge from the swymcius/reactive MoC
[Benveniste & Berry, 1991][Boussinot, 1996] and ttm®bile agent-based approach
[Fuggetta et al., 1998] also exist, such as RAMAik&ein, 1999], and REJO [Acosta-
Bermejo, 1999] along with its platform ROS [Aco&armejo, 2000]. They provide
mobility and reactivity, but not one provides causts for asynchrony of behaviors and
communication between behaviors, which is requaed natural in the distributed
systems. They also lack the features for commubitadnd interaction of groups of

synchronous agents.
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One example of a systematic approach, which mesgeshrony with asynchrony
in a formal GALS model, to the design of compleatist systems, is shown in [Gruian
et al.,, 2006] and [Malik et al., 2010] where thenxdaage called ‘SystemJ’ was
introduced. Such an approach contributes to fagtralmable design of software systems.
Yet the SystemJ approach suffers from a numberinoitations: (1) concurrent
asynchronous and synchronous behaviors, calledk ctimmains and reactions in
SystemJ programs, respectively, are compiled tuesdeal and static codes; i.e., a
designer cannot instantiate new clock domainsratime. Therefore one cannot design
dynamic systems. (2) SystemJ, which extends tha Imwuage and uses the Java
Virtual Machine (JVM), is far too abstracted frohetunderlying platform to properly
utilize heterogeneous execution architectures. é&@mple, a designer is unable to
assign processor affinities to the clock domaingstleaving this as the decision of the
underlying JVM and the operating system. Access$iagiware features still requires
programming in different host languages to coogemaith the JVMs. (3) Finally,
SystemJ does not provide a suitable and efficieapping on multicore execution
targets and does not provide inherent support fognamming distributed architectures
(e.g., networked systems).

An extension of SystemJ, called Dynamic SystemJy§EnJ), which supports
DGALS MoC, has been recently proposed [Malik et2010]. It extends SystemJ with
behavior creation and termination mechanisms arakw®obility (behavior migrations
without state capture), but still inherits the degency on the JVM.

Other approaches such as MPI [Gropp et al., 19989]@penMP [Dagum & Menon,
2002] are based on the use of C/C++, but are ldnite static systems (MPI-1 and
OpenMP), or to dynamic systems, but lacking procesbility (MPI-2) and reactivity.
Finally, both these approaches (MPIl and OpenMP &t all-encompassing formal
MoC.

Almost all of the above mentioned approaches, ex8gptemJ and DSystemJ, are
based on a single level of concurrency in the farimeither asynchrony (such as
processes in CSP, and Actor model) or synchrory RAMA and REJO/ROS); some
of them do not follow any formalism (e.g. OpenMRI &nP1).
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The formal DGALS MoC, extended and benefited froALS MoC, covers the
required features to program complex real-worldaagit systems. The DynamicGALS
framework based on the DGALS MoC, provides libDGAESibrary for programming
DGALS systems, as well as run-time support. libD&Abuilds on the libGALS library
introduced in Section 4 used for designing stat&lL& systems. While preserving
features of liIbGALS with minor modifications, libDAES significantly enhances the
power and applicability of the design framework.

6.3 Overview of the DynamicGAL S framework

From the discussion in the previous section, theddyicGALS framework, which
follows the DGALS MoC, should support the followifeptures as guidelines:

1. There are both synchronous and asynchronous bebkawvibich are
available in the conventional GALS MoC. Concurresynchronous
behaviors communicate with each other through $igreadcasting, so that
all synchronous behaviors will have the same viéwhe signals. When
asynchronous behaviors communicate with each othere should be no
shared data between them. Message passing shaulplycwith pass-by-
value semantics, which implies copying of messag8gnchronous
behaviors within the same asynchronous behavierant with each other
by obeying the synchronous reactive MoC assSmeEREL [Berry et al., 1983]
and SystemJ that provide reactivity. The compasitd asynchronous and
synchronous behaviors is based on GALS MoC as ins€RP [Berry et al.,
1993] and SystemJ.

2. A DGALS system can be distributed on networks ahpatational nodes.
Asynchronous behaviors, which are not as tightlptegl as synchronous
behaviors, can migrate within the DGALS system paditnig to the concept
of weak mobility in DGALS MoC. Mobility also proves DGALS systems
capability of fault tolerance and recovery, suchreactivating the backup

asynchronous behavior at the same node or othesnod
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3. The DynamicGALS framework will provide programmingerface, as part
of the libDGALS, along with the run-time environmeno support
communication, activations, and termination of afyonous behaviors.

4. The libDGALS will be implemented in general programg languages, C
in the current implementation, to support legacgecoompatibility.

5. Last but not least, being based on formal MoC, BynamicGALS
framework opens the door to verifying DGALS systewith techniques
used in the adopted MoCs including the synchromeastive model, CSP,
GALS model, and pi-calculus [Milner, 1999].

In the following, general features of the libDGAIlaBe presented by a few small

examples to illustrate the main properties of tlyad@nicGALS framework.
6.3.1From libGALS to libDGALS

The static GALS systems created using libGALS caplait only multicore
processors and do not support distributed platfoymamicGALS framework, which
is centered on libDGALS, evolves to allow explagtirboth multicore and large
distributed architectures. The static GALS systeamiibGALS lack properties such as
fault tolerance, mobility of code, and dynamic ti@a of behaviors, which essentially
makes them very domain-specific. The libDGALS ajpgioextends the static libGALS
API (available in Chapter 4) with the goal that hgnamicGALS framework would
make a good alternative to the general purposeuctert libraries (such as pthreads).

libDGALS inherits basic design entities and objectsoduced in the lIbGALS,
including ‘clock domain’(CD, as a group of synchronous behaviors, each €D i
asynchronous to other CDs), ‘reactiolfsynchronous behaviors), ‘signalgheans of
communication between reactions in the same CD) amannels’ (used for
communications between reactions of different CDlese elements are basic building

blocks used to construct DGALS systems.
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6.3.2Structure of DGALS systems in the framework

The DynamicGALS framework allows the design of ‘DGR systemsthat consist
of multiple ‘DGALS programs’, which run on any com computation node in a
distributed (networked) system. A DGALS program camsist of one or more clock
domains, which can be static (permanent for theesydifetime) or dynamic (non-
permanent). Dynamic creation of CDs is supportedutph ‘CD plug-ins’, or ‘plug-ins’
for short. CD plug-ins encapsulate the body ofdlvek domains, reactions, channels,
signals, and all other information necessary taterea CD and are instantiated upon
activation. A plug-in is basically a library thaarc support ‘dynamic loading’, for
example, a shared object (.so files) on Linux (anixtlike) systems and a dynamic
linking library (.dll files) on a Windows system. Alug-in must be defined and
initialized before it can be used to create a nestance of the CD. Furthermore, a CD
plug-in can be subsequently used to instantiateoomeore CDs. Each CD created from
the same plug-in can be customized according toc@figurations’.

A designer defines the DGALS system, its DGALS paogs, CDs and reactions,
using the libDGALS API. Some of these API callsab#ish run-time data structures,
while others are used to implement creation of @, communication between CDs,

as well as CD mobility.
6.3.3Programming interface provided by libDGALS

Table 6.1 shows the descriptions of the programmimgrface that support
dynamic features. Static systems can still be eteatith the programming interface
inherited from |iIbGALS. A DGALS program must be tialized by using the
createDGALSProgram, and must be started by usiegtDsBALSProgram. The
CDPIlugin macro is used to define the scope of apLig-in, and initPlugin is used for
initializing the required data structure before @@ is instantiated. CD configurations,
such as an identifier given to a newly activated ,C&an be created with
createCDConfiguration and extended via addCDConrdion. Arguments passed to
the activated CD, which are used to perform contpmrts, can be similarly created and

extended by using createCDArgument and addCDArgumesspectively. Other
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available functions, getCDArgumentNum, checkCDArgmt and getCDArgument,

are used within reactions to obtain the argumeassed to the CD. Both configurations

and arguments are used by activateCD to activaiestance of a CD plug-in on the

destination machine. Any active CD can be termohéteusing the terminateCD.

Table 6.1: API to program dynamic GALS systems

Function name Description
createDGALSProgram| Instantiate data structuree®@DIGALS program
startDGALSProgram Start the DGALS program and istdner

CDPIlugin (macro)

Start a CD plug-in definition

initPlugin

Initialize the data structure when cregtan instance of a CIl
plug-in. This APl is called at the beginning of {leg-in
definition.

A\ 4

createCDConfiguration

Initialize a CD configuration of the new CD instano
customize parameters used in the CD.
Returns: pointer to the CD configuration

addCDConfiguration

Add an entry to the CD configuration. Arguments:
1. existing CD configuration
2. configuration entry (key) to append
3. the value of the configuration to append

createCDArgument

Initialize a list of argumentsgekto new CD instance
Returns: pointer to the argument

addCDArgument

Add an argument to the list. Arguraent
1. argument list to append
2. name of the argument
3. type of the argument
4. the actual argument to pass

getCDArgumentNum

Check the number of argumentsepltssthe created CD
instance

checkCDArgument

Check the availability of an argamérgument:
Name of the argument
Returns: 1 - available, O - absent

getCDArgument

Obtain the argument by providingriame of the argument

activateCD

Activate a CD from a CD plug-in. Argunen
1. destination DGALS program, where the CD valide
2. name of the CD plug-in
3. configurations passed to the activated CD
4. arguments passed to the activated CD
Returns: success / fail to activate the CD

terminateCD

Terminate a running CD

Arguments: the name of the CD to terminate
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A programmer must provide functions to serializedddalize data used by a
channel used for communication between CDs. Thasetibns are called serialization
and de-serialization functions. Table 6.2 lists pnetotype names of these functions.

Data to transfer are serialized/de-serialized déhired interpretations by design.

Table 6.2: Serialization and de-serialization fiorts

Function name Description

serialize_data-type Serialize function to encode data to a byte stream.
Argument: the data to send
Returns: unsigned char stream

deserialize _data-type De-serialize function to convert a byte streamhto t
typed data.

Argument: unsigned char stream

Returns: reconstructed data

6.3.4Simple examples to model dynamic behaviors

This section gives simple examples to familiarizee treader with the
DynamicGALS framework and to present the systensllelesign features. Figure 6.1
and its corresponding DGALS code in Listing 6.1wlem example of CD instantiation
and reactivity. The CD ‘cdl’ instantiates ‘cd2’ aied3’ on the ‘local DGALS program’
(named 192.168.1.1:1111) and a ‘remote DGALS progfaamed 192.168.1.2:1111),
respectively, depending upon the value of the irgighal cdlsl received from the
environment.

In Listing 6.1, firstly the required header-filang 1) containing all the DGALS
function definitions is included. The data struetd€DInfo’ is defined (lines 2-7) to
hold information carried by the signal ‘cd1sl’. ing@nd output functions used by cd1
are defined (lines 8-9) and used to communicaté wWie environment to cdl. The
‘reaction function CD1R1Reaction’, which is the ¢tional definition of reaction
‘cd1rl’, is declared on lines 10-25. cd1rl firsthjtializes by setting up argument (lines
11-13), and then waits for an incoming sigodilsl (lines 14) and reads its value (line
15). Next, CD configurations are buit, which inctuthe IP addresses, CD names, etc;
indicating where the new CDs need to be instamtigienes 16-17). Upon the

activateCD (lines 18 and 21), the run-time environment atésa new CD instance on
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the correct physical machines with the CD confitjares. The rest of Listing 6.1 (lines
25-31) shows how a CD is established when beingadet! from a CD plug-in, starting
from the declaration of the scope of the plug-ing(125), initialization of the plug-in
(lines 26-27), instantiation of the clock domaieaction and signal (lines 27-29), and

finally the execution of the CD (line 30).

cdi1s1
Reaction <
cdlrl Clock Domain Clock Domain
Clock Domain cd? cd3
cdl
DGALS Program DGALS Program
192.168.1.1:1111 192.168.1.2:1111

Figure 6.1: CD instantiation

Listing 6.1: CD instantiation and reactivity

1 #include "libDGALS.h"

2 typedef struct CDInfo {

3 char* progName; /l destination DGALS progra m

4 char* CDName; /I CD to activate

5 char* config; /I configurations of the ac tivating CD

6 struct CDInfo *next; // next entry

7 } CDlInfo;

8 void IF(clockdomain CD) { ... } // function to ob tain input

9 void OF(clockdomain CD) { ...} // function to ge nerate output
10 REACTION_FUNCTION(CD1R1Reaction) {

11 initReaction();

12 signal cd1sl = (signal)getArgument(1);

13 endInitReaction();

14 await(cd1sl);

15 CDiInfo cds = value(cd1sl);  // read value of input signal

16 Configuration configCD2 = createCDConfiguration() ;

17 addCDConfiguration(configCD2, "CD.name;CD.rename" , cdinfo->config);
18 activateCD(cds->programName, cds->clockDomainName , configCD2, 0);
19 cds = cds->nextCD; /I read next entr y

20 ...

21 activateCD(cdInfo->programName,

22 cdinfo->clockDomainName, configCD3, 0);

23 endReaction();

24}

25 CDPlugin {

26 initPlugin();

27 clockdomain cd1 = createClockDomain(IF, OF, "cd1" ,0,0);

28 signal cd1sl = createSignal(cdl);

29 reaction cd1rl = createReaction(cd1l, CD1R1Reactio n, 1, "cd1rl”, 1, cdirl);
30 startClockDomain(cdl);

w
=
—
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Another simple example that demonstrates fault-dolee capabilities is shown in

Figure 6.2 and Listing 6.2. Only the important ceggments are shown. In

Figure 6.2, there are two CDs, ‘cd4’ and ‘cd5’, ming on two different physical
machines. Reaction ‘cd4r2’ keeps a check on thdtthed cd5, by receiving value
(acting as heart beats) sending from cd5 througimmél ‘ch2’ (line 21), and sending
the result through signal ‘sSenderAlive’ to reacti@d4rl’ (line 22), described in
‘CD4R2Reaction’. If cd5 dies, in the sense thatseeAlive is not received in a certain
time (maximum allowable number of ticks, lines 8;l@action cd4rl activates a new
instance of cd5 on the remote DGALS program (naf8#1168.1.2:5555) and notifies
cd4r2 to re-initialize (by sending sRestartRecw tthannel communication on ch2
(lines 11 and 12 respectively). The implementatibthis behavior is shown in Listing
6.2.

/

Reaction - SRR N Reaction p ( Reaction
cd4rl sSe:deRIiv: cd4r2 ch2 cd5rl
ClockDomain ClockDomain
cd4 cd5
DGALS Program DGALS Program
192.168.1.1:4444 192.168.1.2:5555

Figure 6.2: Fault tolerant systems designed in DGAL

The two simple examples presented above can be igethbn a plethora of
different ways to allow the designing of robustteyss with the ease of describing
reactivity and communication with the physical e@owment, the synchronous
(reactions) and asynchronous (clock domains) ceenay, communication between the
concurrent entities (reaction to reaction, chartoethannel), weak code mobility and

dynamic process forking and channel instantiation.

Listing 6.2: DGALS program implementing fault taheice

1 REACTION_FUNCTION(CD4R1Reaction) {
2 initReaction();
3 signhal sSenderAlive = (signal)getArgument(1);
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4 signal sEndRecv = (signal)getArgument(2);

5 endInitReaction();

6 int tickCount = 0;

7 while(1) {

8 if(present(sSenderAlive)) { tickCount = 0; }

9 else tickCount++;

10 if(tickCount == MAX_TICK_RESP) {

11 activateCD("192.168.1.2:5555", "cd5", 0, 0);

12 emit(sRestartRecv, 0); // abort the curren t receive
13 }

14 pause();

15 }

16 endReaction();

17 '}

18 REACTION_FUNCTION(CD4R2Reaction) {

19 while(1) {

20 strongAbort(sRestartRecv) {

21 int value2; receive(ch2, value2, int);

22 emit(sSenderAlive, 0); // to inform cd4rl al iveness
23 }

24 endAbort(sRestartRecv);

25 pause();

26 }

27 endReaction();

28 }

29 CDPlugin {

30 channel ch2 = createChannel("ch2", SenderCD, rece iverCD);
31 reaction cd4rl = createReaction( /* arguments omi tted */);
32 reaction cd4r2 = createReaction( /* arguments omi tted */);
33 ...

6.3.5DGALS programs and the run-time environment

Figure 6.3 illustrates a basic view of a DGALS swstconsisting of three DGALS
programs running on Machine 1 (DGALS program 1 d@h@dnd Machine 2 (DGALS
program 3), respectively.

As mentioned previously, the DynamicGALS frameweprbkvides lIbDGALS for
programming, and a run-time environment for exengiof the DGALS system that
contains one or more DGALS programs. DGALS prograares responsible for: (1)
managing the dynamic behavior of the CDs, (2) thebility of CDs, (3)
communication between CDs, and (4) implementingdberall DGALS MoC. Each
DGALS program consists of the following:

1. Static linked libraries that support execution bé tDGALS program, or
dynamic linking libraries which are available andmaged by the operating

systems (OS) on the execution platform.
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2. A local storage area that stores CD plug-ins. Latalage is generally
governed by the file systems of the underlying OS.

3. Configurations of the DGALS program (program configurations), which
describes the location of the local storage, thiedi CDs to be activated at
startup, and the network port (a specific port nampkthat binds the
essential communication to the underlying phydeayedr.

4. CD Configurations of the activated CDs. The DGAL®&gvam holds
configurations of the running CD instances to manageations and
terminations of CDs.

5. Listener, which is a helping thread, and is inussibo the programmer.
Listener is responsible for creating clock domaind channels according to
the program configurations. Listener is also used doordinate
communication via channels between CDs (within Hame DGALS
program or between different DGALS programs). Mivpibf CDs is also
governed by Listener.

Channels are means of communication between reactd different CDs. To
establish such links, handshaking is first carwed by Listener, and is implemented
with TCP/IP illustrated as point-lines in Figur&6.

Handshaking can occur on the same Listener, if betiding and receiving CDs are
of the same DGALS program, such as the channéblestenent between reactions of
CDsi;1 and CDa On the other hand, different Listeners will beadived if CDs are
within different DGALS programs (CD to CD;,, and COQ; to CDs;), regardless of
whether DGALS programs are running on the same meadr not.

Once the communication links are established, ngesgmssing takes place to
perform the actual communications. There are twglémentations of message passing:
‘shared-memory’ and ‘TCP/IP’ based. When shared-orgns used, messages are deep
copied, through provision of serialization and @eaization functions operating on the
shared-memory. The shared-memory approach is atlopteen both parties of a
channel are in the same DGALS program, such ag @dd CD,. When TCP/IP is
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used, messages are serialized and sent to theveecevhich reconstruct the original
message through de-serialization functions. Thig@gch is used when shared-memory
is not available between different DGALS programs.

DGALS Program 1 f(AL.S Program;} ALS Program:} DGALS Program 3
~Configuration.- ~-Configuration -
CD CD
" ) 5 o
Reaction hd S .f Reaction
@
K
V2 Machine 2
' -l
CDy; i
Reaction ;'""'
Reaction .
Channel establishment
‘ ® Via TCP/IP
____________ » Channel communication
CDy \ é via shared memory
. [V
Reaction 2 Channel communication
» \lia TCP/IP
DGALS Program 2 \/\i,AIS’P’r’dg’r"am;?
- Configuration.--
Machine 1

Figure 6.3: Channel implementation in a DGALS syste

6.4 A complete DGAL S system: dynamic Sieve

6.4.1Dynamic sieve of Eratosthenes: prime number geloarat

Figure 6.4 illustrates a dynamic sieve of Eratastise(dynamic Sieve, or ‘Sieve’
for short), which illustrates the use of the Dyne@ALS framework. Sieve is a
DGALS system, which consists of three DGALS progsamcalculate all the naturally
occurring primes. Figure 6.4 shows only the calooheof primes up to six, because this
suffices to explain the major design concepts aardgigms. A more complex example
could have been chosen, but that would distrach fpesenting the features of the

DynamicGALS framework.
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Sieve consists of five CDs, ‘Generator’, ‘ShiftePopper’, ‘Filter’, and ‘Printer’
running concurrently and asynchronously, each ait thwn speeds (logical ticks). In
Figure 6.4, Shifter consists of three synchronowsactions, ‘PrimeShifter’,
‘ActivatePopper’, and ‘ActivateFilter’, respectiyelThese reactions communicate with

each other using signals.

Sieve
Numbers
[2],[2,3],[2,3, 4] Numbers :[3, 4, 5, 6]
) Current Prime : 2 Popper
Primes 1 [2]
Generator Shifter Popping
Numbers
(a) Activate | |
Senegate Prime Popper
umbers ] hift
Start: 6 Numbers Shifter 1y ctivate 3/4/5/6
[2,3,4,5,6] Filter for each send
N
A

FiI*er

Checking
IsPrime

Printer

Not divisible by
CurrentPime: [3, 5]

(e)

——> Environment signal
....... > Local signal

—> CD Plug-in activation
—  Channel communication

Figure 6.4: Dynamic sieve of Eratosthenes desigmélade DynamicGALS framework

Sieve in Figure 6.4 is dynamic. At program start@gnerator and Printer are
running, waiting for an incoming ‘start’ signal, asown in Figure 6.4 (a), which
determines the upper bound within which the primesd to be discovered. This bound
is 6 in this example. Generator, upon receptiothef start signal produces the set of
natural numbers from 2 through to 6. This producti® carried out using dynamic
recursion of Generator. Each instantiation of Gatoerproduces a natural number and
adds it to the set ‘Numbers’, as (b). Next, Gemgrattivates another instance of itself,
passing the set Numbeas an argument. This dynamic recursion continués tine

complete set of natural numbers smaller than thengupper bound is built. Generator
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then activates Shifter, which will now iterativefind the primes from within the
generated natural-number set, as shown in Figdréc). Shifter itself instantiates two
new CDs, Popper and Filter, shown in Figure 6.4 {the first prime from the set (in
this case, 2) is sent to Filter and the rest assgrhonto Popper. Popper communicates
with Filter by sending one number at a time throagiedicated channel. Filter extracts
any number which is not divisible by the currettefing prime (2, as mentioned). The
extracted set of numbers, containing 3 and 5, ssqxh to Shifter through another
channel as shown in Figure 6.4 (e). Shifter puts@the list of primes, by shifting out
the first element of the set (contains 3 and 5gikeel from Filter previously. A new
pair of Popper and Filter is instantiated again,3byfter again, for the next iteration
until the examining set in Shifter is ‘null’. Fidgl all the discovered primes are set to
Printer, as illustrated in Figure 6.4 (f), whichiéfty prints’ the discovered primes. Sieve
highlights a number of features of the DynamicGAts&8nework:

1. Reactivity and data fusion: first of all, the DynamicGALS framework
provides the explicit mechanism to capture sigraming in from the
environment (e.g., signal named ‘start’ in Figuré)6This attribute directly
satisfies support for data fusion capabilities.sTboncept of reactivity is
inspired by BTEREL[Berry, 1993].

2. Hierarchical concurrency and safe message passing: The CDs, as
synchronous islands, allow an easy way to exprégistiyt coupled
concurrent behaviors (called synchronous paradi@ttions or just reactions
in this case). Reactions in different CDs commueicgith each other over
point-to-point channels using CSP-style rendez\blasare, 1978], thus the
blocking send and receive, which in turn guaranti¢a delivery.

3. Dynamic behaviors andRobustness: The DynamicGALS framework allows
the instantiation of new CDs at run-time (dynanmeation); it also allows
the destruction (termination) of CDs at run-timéaeTchannels associated
with dynamic CDs are also created at run-time. fidmmal DGALS MoC
along with dynamic creation and destruction provif#eilt tolerance

capabilities. For example, an error in a certairt pha large design can be
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corrected and that portion restarted without aiifgcthe rest of the running
system. New physical sensors and other units cdodded at run-time.

4. Abstraction of execution platforms andtopologies. It should be noted that
the programs developed using the DynamicGALS fraonkvare detached
from the underlying physical execution layer. Frample, Sieve in Figure
6.4 is designed without any concern for the undeglyexecution and
communication architecture. In fact, the same Siexample can be
implemented on hosts of different heterogeneous cugi@ and
communication platforms. This separation betweesigte and physical
implementation provides an abstraction layer, whaskentially speeds up
the development, because the underlying physigarland the software
model can be developed in parallel. More imporiar@lDGALS program is
immediately ready for execution on a single progesystem, but the same
specification can run on different execution platis without any change.
Also, the aforementioned separation increases faldtance and recovery
capabilities, as the designed model can be chaagedn-time without

affecting the underlying physical implementatiopeaand vice-versa.

Other features, which further enhance the desigaléties of the DynamicGALS
programming framework such as weak code mobilitg, reot presented in Figure 6.4.
Such capability, closely related to the underlyptyysical architecture, is explained in

the next section.
6.4.2Distributed dynamic Sieve

In this section the implementation of the dynamiev8 model on a heterogeneous
and distributed physical execution and communical&yer is presented. The purpose
of this description is to demonstrate the featuodslibDGALS on distributed
architectures.

Figure 6.5 is an abstract representation of theanyn Sieve. There are three
physical machines as computation nodes, connedaeatetwork (LAN/WAN). A single
DGALS program runs on each of these three diffemeathines.
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Figure 6.5: The distributed dynamic Sieve

Popper

——> CD Plug-in activation
— Channel communication through TCP
------ - Channel communication through shared memory

As shown in Figure 6.5, clock domain ‘Startup’ aates Generator of the Sieve
example on ‘DGALS program 3’ executing on ‘mach@&\eSimilarly, Printer is initially
activated on ‘DGALS program 2’ of ‘machine 2’ byaBup. Once the generation of the
natural number set is complete through recursivid-aséivation of Generators,
Generator activates Shifter on DGALS program 1 mmron machine 1. Shifter then
instantiates Popper and Filter CDs within the sS&IGALS program.

Figure 6.5 shows the transfer of the CD plug-insf(&r, Popper, and Filter in this
case) along with their configurations, from DGAL$ogram 3, to Listener of the
DGALS program 1, shown in the dotted box. Note @aherator and Printer plug-ins
need not to be sent from the DGALS program 1 ag #ne available on the destination
DGALS programs. Filter and Popper communicate \e#ich other using channels on
the same computation node (machine 1) via Listeioeextract the primes. Once the

final set of primes is obtained, Shifter passes st onto Printer to pretty print the set.
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The data sent through channel require serializattahe sending side (Shifter) and de-
serialization at the receiving side (Printer). In

Figure 6.5, the CDs in solid round rectangles regme the CDs instantiated at
program startup, i.e., they represent static Céations, while the dotted ones show
the CDs that are invoked at run-time. Similarlyachels created at startup and run-time
follow the same representation. Thus, GeneratorRairder are instantiated at program
startup, while Shifter, Popper, and Filter are ansated dynamically at run-time.
Finally, it should be noted that while the Printgralive throughout the application

lifetime, the remaining CDs do not and they arenieated when they are not needed.
6.4.3Implementation of the dynamic Sieve

A DGALS program can be described as shown in Lgs@r8. In practice, a DGALS
program consists of initialization of other codediich will be used by the DGALS
program, e.g. device drivers. TheeeateDGALSProgram and startDGALSProgram
(lines 4-5) are called to initialize the essentiata structures for the program and

Listener, followed by the start of the program.

Listing 6.3: A simple DGALS program

1 #include "libDGALS.h" // required to use the libG ALS API

2 void main() {

3 // initialization for non-D GALS program, e.g. driver
4 createDGALSProgram(); // setup data structures an d Listener

5 startDGALSProgram(); // start the DGALS program

6 }

In the DynamicGALS framework, a CD can be creatgdadhically only if it is
instantiated from a CD plug-in. The constructionao€D plug-in follows a bottom-up
strategy and consists of the following:

1. Reaction functions, from which reactions will bestemtiated, describe the
functionalities of the reactions. One reaction tiorc can be used to create
more than one reaction of the same clock domain.

2. Definition of the CD plug-in, which is composed refactions, signals, and
channels. When a plug-in is activated, the corredjmg elements are

instantiated in the DGALS program.
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3. Default CD configuration of the plug-in. Parametefsthe configuration
include the names of the CD and used channels eTpe@ameters are hard-
coded as the naming reference which will be ovdeand during plug-in
activation. Reaction and signal names are encapsiuley the CD as they
cannot be accessed by other CDs, and are thusiclatied in the default

configuration.

Listing 6.4 shows CD Startup, which initializes tBeve example. In the reaction
function ‘StartupReaction’, Startup (lines 6-10)tieates Generator and Printer.
Relationship of the ‘request@D’ (the CD that activates the other CD, for exasnble
CD Startup) and the ‘responder’ Cithe CD to be activated, such as Generator and
Printer) are established when invoking the ‘aca@d’ (lines 8 and 9). The essential
information to activate a CD is given as follows:

1. The name of the destination DGALS program. A DGAuSgram name is
a combination of the machine (where the DGALS paogexecutes) name
and the port bind to the Listener of the DGALS perg. For example,
DGALS program 3 running on machine 3 is named aschime3:12222’.

2. The name of the CD plug-in to activate. This i®dlse file name of the CD
plug-in. For example, plug-in Generator will berstb in Generator.so on
Unix-based systems.

3. The CD configuration used for the activation. Cbgl @hannels are means
of describing asynchronous behaviors and commuaitain the DGALS
system. Names of CDs and channels are unique ferefitiate them from
others. The configuration consists of name mappiogvoth CDs and
channels, from the hard-coded reference, to thgrees unique name.

4. The argument passed to the CD. More than one Cheanstantiated from
the same CD plug-in. Each instance of the CD miglguire different
information, depending on the nature of the comptaperformed by the
CD. Such information is passed as arguments toathiwated CD. The

difference between configuration and argument@bas that configuration
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over-rides the existing hard-coded information, levlarguments are created

on an as-required basis.

Thus, during execution of the activateCD calls, Gator and Printer are activated
in DGALS program 3 and DGALS program 2, respectivél plug-in is defined within
the scope of the macro ‘CDPlugin’ (lines 13-19hitPPlugin’ is called to set up data
structures of the plug-in (line 14) followed by tbeation of the CD (line 16), reaction
(line 17), and starting of the CD (line 18).

Listing 6.4: The StartupCD of dynamic Sieve

1 #include "libDGALS.h" // required to use the libDGA LS API

2 // input and output functions, to communicate with the environment
3 void IFCO(void) {......}

4 void OFCO(void) {......}

5 /I the code for the startup reaction.

6 REACTION_FUNCTION(StartupReaction) {

7

8 activateCD("machine3:12222", "Generator", 0, 0);

9 activateCD("machine2:12222", "Printer", 0, 0);

10 endReaction();

11 }

12 /Il definition of the Startup CD plug-in

13 CDPlugin{

14 initPlugin(); //setup data structures and Listene r

15 /I elements of the plug-in

16 clockdomain Startup = createClockDomain(IFCO, OFC 0, "cdStartup”, 0, 0);
17 createReaction(Startup, StartupReaction, 1, "rSta rtup”, 0);

18 startClockDomain(StartupCD);

19 }

Listing 6.5 describes the Generator CD plug-in,chhs activated in Listing 6.4. It
follows the same design approach: to include thlyiired header files (lines 1-3), in
which lIbDGALS API, user defined data structured aonstants are available. This is
followed by the definition of the reaction functioBeneratorReaction’ (lines 4-56).
Arguments passed to a reaction can be obtainedalipg ‘getArgument’ (line 6). A
reaction function has a set of local variableseflir8-10) for carrying out internal
algorithms, or to hold values from signals. Theueabf a signal can be obtained with

the use of ‘value’ (line 15).
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The number of arguments passed to a CD can be sattesvith
‘getCDArgumentNum’(line 11). A return value of zero indicates thatargument was
passed to the plug-in. Arguments passed to anatetivCD can be obtained via
‘getCDArgument’. This takes the names of the arguné€e.g. Numbers or start) and
the corresponding types (IntegerSet or int) as shiomlines 22-23. Arguments sent to
CDs are constructed using ‘createCDArgument’ aradG@GDArgument’ (lines 33-35
and 47-49).

Configurations provided to a CD, which are preparéarough using
‘createCDConfiguration’ and ‘addCDConfigurationings 37 and 41 respectively), are
in the form of strings (lines 38-40). Both configtions and arguments are used when
issuing ‘activateCD’ (line 44 and 52).

Listing 6.5: The Generator of the dynamic Sieve

1 #include "libDGALS.h"

2 #include "IntegerList.h" // user defined typed used in Sieve

3 #include "Sieve.h" // define constants such a s DGALS program name SHIFTER_DP
4 REACTION_FUNCTION(GeneratorReaction){

5 initReaction(); /i nitializing this reaction
6 signal start = (signal)getArgument(1) Il'g et argument-to-reaction
7

8 int start = 1; /ld efault lower bound

9 int MAX = 17; /ld efault upper bound

10 IntegerSet* Numbers = 0; /1t he natural number set
11 if(getCDArgumentNum() == 0) {

12 /I no argument is given to this plug-in instanc e,

13 I therefore it is the first Generator

14 await(start); 1w ait for start signal

15 start = value(start);

16 start = start + 1; Ila llocate first number to the set
17 Numbers = (IntegerSet*)calloc(1, sizeof(Integer Set));

18 Numbers->value = start;

19 }

20 else {

21 I/l get arguments passed to this plug-in instanc e

22 Numbers = getCDArgument("Numbers", IntegerSet);

23 start = getCDArgument(“start", int);

24 start = start + 1; // extend the set with new numbers

25 /l working on the received arguments

26 ...

27 }

28 Il pass the set of complete natural numbers to th e Shifter

29 if(start == MAX)

30 {

31 intid = 1;
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32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60

I/ create arguments passed to activate Shifter
Argument* argsToShifter = createCDArguments();
addCDArgument(argsToShifter, "Numbers", Integer
addCDArgument(argsToShifter, "id", int, id);
/I create binding configuration for Shifter
Configuration* cfgSft = createCDConfiguration()
char* Sftrs = (char*)calloc(1, sizeof(char)*str
sprintf(Sftrs, "Shifter;Shifter%02d", id);
addCDConfiguration(cfgSft,"clockdomain.name;clo
I/ other configurations
/l activate Shifter on DGALS program whose name
activateCD(SHIFTER_DP, "Shifter", cfgSft, argsT

}

else {
Argument* argsToGenerator = createCDArgument();
addCDArgument(argsToGenerator, "start", int, st
addCDArgument(argsToGenerator, "Numbers", Integ
/I configurations to name new instance of Gener

activateCD(GENERATOR_DP, "Generator", cfgGen, a

}
pause(); I'f
endReaction(); Ile

CDPlugin {

// similar to Listing 6.1 to create CD, reactions

Set, Numbers);

len("Shifter;Shifter")+4);
ckdomain.rename",Sftrs);

is define in SHIFTER_DP
oShifter);

art);
erSet, Numbers);
ator
rgsToGenerator);
inish a logical tick

nd of the reaction

, signals, and channels

Listing 6.6 shows the partial implementation of f&niand focuses on support for

reactivity and synchronous parallel reactions witls CD. These features can be
implemented using liIbGALS API, illustrating thatoDGALS is compatible with

lIbGALS. A reaction is initialized via the ‘initReton’ (line 4). A reaction can obtain

the arguments passed to it (line 5-9) by callingtAggument’ It is followed by the end

of the initialization block of the reaction funatipby calling ‘endInitReaction’ (line 11).

‘checkCDArgument’ is used to check the availabibfyan argument passed to this CD

on line 14. The corresponding argument can be &etlawith the ‘getCDArgument’

function (line 15). Thus the value of ‘id’ is ohtad from the plug-in argument and is

assigned to a valued signal (signal_id) by callemit’ (line 18), which in turn makes it

visible to all the synchronous parallel reactiodscijvateFilter’ and ‘ActivatePopper’,

which are instantiated from reaction functions WateFilterReaction’ and

‘ActivatePopperReaction’) running within Shifterhi@l reactions can be forked (line
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19) from the parent reaction, which will be blockedil all of its child reactions jointly
finish execution (line 20). A reaction can commuatéc with other reactions in a
different CD using ‘send’/receive’ that operate onannels (lines 25 and 37). Child
reactions (e.g. ActivateFilter and ActivatePopp&®@ able to receive signals emitted
from the parent reaction (e.g. PrimeShifter) beedusth children and parent reactions
are in the same CD. The value of a signal can ba&ired by calling ‘value’ (line 46).
Information such as the identification (names) ofhannel, its sending CD, and its
receiving CD are predetermined (as part of theuletonfiguration of the plug-in, as

lines 58-59) and can be re-assigned through corafiguns when activating the plug-in.

Listing 6.6: Shifter of the dynamic Sieve

1 /I SHIFTER_DP, POPPER_DP, FITER_DP, and PRINTER_DP are string constants
2 I/l representing the names (addresses with bind port s) of DGALS programs
3 REACTION_FUNCTION(PrimeShifterReaction) {

4 initReaction();

5 channel cFilterToShifter = (channel)getArgument(1 );

6 channel cShifterToPrinter = (channel)getArgument( 2);

7 reaction rActivatePopper = (reaction)getArgument( 3);

8 reaction rActivateFilter = (reaction)getArgument( 4);

9 signal signal_id = (signal)getArgument(5);

(0

11 endInitReaction();

12

13 intid =0;

14 if(checkCDArgument("id") == 1)

15 id = getCDArgument("id", int);

16 /l processing numbers to be used by Popper and Fi Iter

17

18 emit(signal_id,id);

19 ...

20 /I fork 2 child reactions wait them for completio n

21 fork(rActivatePopper); fork(rActivateFilter);

22 join(rActivatePopper); join(rActivateFilter);

23 / receive from Filter via a channel

24 IntegerSet* listOfNonDivisibles = 0;

25 receive(cFilterToShifter, listOfNonDivisibles, In tegerSet);

26 /l add the values from the received to gens

27 if(listOfNonDivisibles != 0) {

28 /I re-iterate the process by activating another instance Shifter until
29 /I the complete set of primes is found (no non- divisibles left to process)
30 Argument* argsToShifter = createCDArgument();

31 addCDArgument(argsToShifter, "Numbers", Integer Set, listOfNonDivisibles);
32 .

33 activateCD(SHIFTER_DP, "Shifter", configShifter , argsToShifter);

34 }

35 else {
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36 /I send the final set of primes to Printer

37 send(cShifterToPrinter, Prime, IntegerSet);

38 }

39 endReaction();

40 }

41 REACTION_FUNCTION(ActivateFilterReaction) {

42 initReaction();

43 signal signal_id = (signal)getArgument(1);

4 .

45 endInitReaction();

46 int id = value(signal_id);

47

48 /Il activating Filter with configurations and argu ments

49 activateCD(FILTER_DP, "Filter", configFilter, arg sToFilter);
50 endReaction();

51 }

52 / reaction function to activate Popper

53 REACTION_FUNCTION(ActivatePopperReaction) { ... }

54 CDPlugin { // definition of the CD plug-in

55 /Il similar to Generator

56 ...

57 /I create channel to transfer non-divisibles of ¢ urrent iteration
58 channel cFilterToShifter = createChannel(

59 SHIFTER_DP"Filter", PRINTER_DP"Shifter", "cFi lterToShifter");
60 ... /I other channels or so

61 }

6.4.4Configurations of a DGALS program

When a CD is activated, it has to be accompanietthéyCD configuration’, which
can be either ‘remote configurations’ or ‘local figarations’. The remote
configurations are these used to activate CDs whigh specified at run-time with
‘activateCD’ calls. Local configurations, on thehet hand, are created statically to
activate CDs at the DGALS programs start up. Astroead in Section 6.3.5, each
DGALS program is equipped with a dedicated setppbgramconfigurations’ which
specify parameters such as the port (number) ugéddstener. Local configurations of
CDs are considered as part of the DGALS prograniigamations. Configurations of
each DGALS program are loaded when the DGALS progstarts, and are stored in
the XML format.

Listing 6.7 shows an XML configuration of DGALS gm@m 1 on machine 1
shown in Figure 6.5. Each key-value pair represesgtiings for the specified

compartment, or a scope of a component. The <gbne 1) indicates the port number
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on which the Listener of this DGALS program wikstén. The <timeout> node (line 2)
is used as the time-out value for Listener whetigpating in channel communication,
and plug-in activations as explained in detail Ect®n 6.5. The configuration of a
statically loaded CD starts with <plugin> (line &)png with the name of the plug-in
(Startup, which is the name of the plug-in) to logech plug-in consists of one CD and
one or more channels. The CDs and channels afgevisystem-wide, and each one
needs to have a unique name. A name re-mappingGid &#om the referenced name
(given as cdStartup in the ‘createClockDomain’ d@dting 6.4) to a globally system-
wide unique name is provided, starting with <clamkain> (line 4). The original CD
name (cdStartup) within a plug-in is identifieddbgh the <name> and </name> pair
(line 5). The re-mapped name is then provided (@tqrand wrapped between
<rename> and </rename> (line 6). The name re-mgpgi@a CD, which is ended with
</clockdomain>, is followed by </plugin> as the emfcthe CD configuration, on lines

7 and 8 respectively. A program configuration caméhmore than one plug-in section.

Listing 6.7: The XML configuration of the DGALS pyoam 1

<port>12222</port>
<timeout>3</timeout>
<plugin>Startup
<clockdomain>
<name>cdStartup</name>
<rename>Startup</rename>
</clockdomain>
</plugin>

O~NO O WNPRP

To show that CDs can be loaded statically at tlggnioéeng of the DGALS program
in the Dynamic Sieve, CD Startup is removed fromatdyic Sieve, shown in Figure 6.5,
and the resulting dynamic Sieve in shown in Fidhfe In this case, both Generator and
Printer will be required to be activated throughe tise of DGALS program
configurations. In Figure 6.6, Printer is loaded@BALS program 2 of machine 2, and
a channel (named cShifterToPrinter, hard-codedefautt configuration in Printer) is
used to receive the resulting primes from Shift€hus, the DGALS program
configurations, shown in Listing 6.8, detail theization of Printer and the required

name mappings of the channel used.
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Figure 6.6: The distributed dynamic Sieve witholt Startup

Listing 6.8 follows the conventions of Figure 6&milarly, name re-mappings of
the channels are given between the <channel> astthrtiel> tags. The name of the
channel (from the ‘createChannel’) in the plugsngiven and is followed by the re-
mapped name of the channel. Since the sendingesriving parties of a channel are
CDs, it is required to provide the correct CD nameslink with the channel.
<sender></sender> and <receiver></receiver> pagsladicated for this requirement.
A CD name is in the format of ‘Machine:Port:CDNamer just ‘CDNmae’ if running
locally. For instance, ‘Machinel:12222:Shifter’ icates that Shifter will be running
within the DGALS program which binds port 12222 Machine 1, whereas PrinterO1
will be executed locally. The order of the re-maggsi for the CD and channels is not

important as long as they are all listed.

Listing 6.8: The XML configuration of the DGALS pyoam 2

1 <port>12222</port>
2 <timeout>3</timeout>
3 <plugin>Printer
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4 <clockdomain>

5 <name>Printer</name>

6 <rename>Printer01</rename>

7 </clockdomain>

8 <channel>

9 <name>cShifterToPrinter</name>

10 <rename>ShifterToPrinter01</rename>

11 <sender>Machinel:12222:Shifter</sender>
12 <receiver>Printer01</receiver>

13 </channel>

14 </plugin>

6.5 The DynamicGAL S framework implementation

The libDGALS in the DynamicGALS framework extendi® libGALS detailed in
Chapter 4. Figure 6.7 presents a high-level vievihef library and run-time system
provided by the DynamicGALS framework. DGALS progisare positioned within its
run-time environment and communicate with other SAprograms, locally or over
the network. Listener is invisible to the programmmand supports dynamic
creation/destruction of CDs, channel-based comnatioiz, and CD mobility within a
DGALS program. Synchronizer is responsible for kiek execution of reactions within
a CD. Currently, all the concurrent entities, whisblude Listeners, Synchronizers, and

reactions in Figure 6.7, are mapped to POSIX tlgead

DGALS Clock Domain Clock Domain
Program
Synchronizer Reaction Synchronizer Reaction Other Other g Other
””””””” DGALS Software % DGALS
| Programs || applications 7 Programs
Listener | Reaction Reaction Reaction Reaction 2
| s
,,,,,,,,,,,,,, 2
B
CD plug-i a
. plug-ins ~
libDGALS libGALS (dynamic libraries) % DGALS
g and other
Other libraries used to implement libDGALS and DGALS 2 libraries
program. Eg. Networking and dynamic library loading z
Operating System Operating
System

Figure 6.7: The programmers' perspective of theadDynGALS framework
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6.5.1Data structures used by DGALS programs

Each DGALS program and each activated CD operate @special data structure
called ‘Run-time information’, which is used to liekeep the status of the program and
consists of two parts, ‘ProgramData’ and ‘Plugitémge’. ProgramData contains the
global view of the DGALS program, such as the uaiguogram name and the names
assigned to the activated CDs.

Plugininstance keeps a unique record of each @aetv@D instantiated from a CD
plug-in. Each Plugininstance is assigned to a Cfaimce, and thus the CD plug-in
allows multiple CDs instantiated from the same Glggn, which in turn enables code
re-use at a coarser level of granularity. The datactures are complex and a complete
explanation of each part is beyond the scope o thesis. To achieve efficient
implementation, instead of using interprocess comioation (IPC) to operate on Run-
time information, reactions, Synchronizers, anddnsr are implemented as threads to

share the Run-time information.

6.5.2Reactions and Synchronizers

Reactions and Synchronizers are implemented inAltf&and their use is extended
to libDGALS. A reaction is implemented as a thredtbse execution body is defined
by a reaction function. Multiple reactions can hmawned from the same reaction
function to achieve code re-use at a finer graitylaBynchronizer is a special thread
that manages reactions within a CD. Synchronizezspeogrammer invisible and are

created at run-time by libDGALS when correspondids are activated.
6.5.3Listener

Listener is a special and dedicated thread crefmte@éach DGALS program, in
charge of channel communication, CD activation, @l termination. Listeners also
communicate with those of other DGALS programs ¢bieve these functionalities.
Communication between Listeners is accomplishasvphases: first, handshaking to

establish the link, then the transference of adnfakmation. Both are carried out by
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sending and receiving messages from one Listendéheoother. Handshaking is via
TCP/IP and transferring of information can be basedshared memory or TCP/IP
depending on the topology of DGALS programs as rilesd in Section 6.3.5.
Messages contain ‘headers’ that include the soarmk destination of the DGALS
programs, added by Listeners; Listeners can thestify the underlying DGALS
program as the sender or receiver of the messagesesking the headers. If a message
is sent and received via the same Listener, tHectfely implements a loopback so
that shared memory is used to shorten the timeslbfeting messages. In this way, the
programmer does not need to worry how the messagesent and received. This, in
turn, satisfies the requirement of ‘location traargmcy’. Current implementation
divides messages operated upon by Listener intognwaps: (1) those that represent
channel communication and (2) those that reprgsegtin activation/CD termination,
respectively. Types of messages are also embeddéteiheaders of the messages.
Listener spawns its own child threads to decodesages for each incoming connection
to the DGALS program.

6.5.4Scheduling of reactions, Synchronizers, and Listene

The scheduling of reactions is handled by the bpstating system (OS) scheduler,
which works closely with the Synchronizer. If actan is blocked due to a libDGALS
API call, control is transferred to another reactithat is ready for execution. The
interleaving of reaction execution and transfertioé processor control from one
reaction to another is governed by the OS schedtlewever, a reaction cannot be
scheduled to be executed unless it has the peonisdiits CD Synchronizer, which
enforces lock-step execution of reactions, and ééine synchronous MoC within CDs.
Scheduling strategies of different OSs only affidet execution sequence of reactions
that do not have mutual signal dependencies. Atimacan run in parallel with
reactions in the same CD, given that these aréloocked due to signal dependencies
and if the execution platform allows it (e.g. omalticore platform). Listener along its
child threads, are scheduled by the OS in the staskion as the asynchronous
execution and activation of the CDs.
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DGALS programs are multithreaded, the threads bemnglemented by using
POSIX threads, i.e. pthread library [Nichols et 4096]. In DGALS programs, several
kinds of threads are created as shown in Figure()the main program thread, which
in turn becomes the DGALS program, (2) reactioedls, (3) Synchronizer threads, (4)
Listener thread, and (5) message-decoding threadsh&innel communications and CD
activations/terminations.

Each reaction maps onto a single reaction thread.ekample, if there are three
reactions in a clock domain, three reaction threaitisbe created. One Synchronizer
thread will be created for each CD. The Listeneedd, one for each DGALS program,
waits for incoming messages and spawns child tréadiecode the messages sent to
the Listeners. Reaction threads are terminated veh&D is terminated. The child
threads of Listener threads terminate when messagesdecoded and actions are
performed. Listener thread terminates only wher@&ALS program terminates.

Choosing between user-level or kernel-level thmegdiibraries is application
dependent. Since kernel-level threading maps elhdad to processes of the OS,
executions of these threads can benefit from thiticore architecture. This is suitable
for parallelizing data computation in the reactiamfisither the same or different CDs.
However, DGALS programs using kernel-level thregdimight suffer from
performance drawback because of context switchinthea kernel level, for systems
with a minimal number of data computations. Usingsar-level threading library can
be seen as the remedy. However, such a DGALS progvidl not benefit from the

multicore platform.
6.5.5CD activation and termination

CD activations are governed by Listeners who sdaltandshaking prior to the
instantiation of a CD plug-in. The CD activationcerried out between two CDs, which
are called the ‘requester’ and the ‘responder’. fdgester CD requires from another
CD, the responder, to be activated by ListenersadgaveCD’. When one requester and
the responder belong to the same DGALS prograim,atjuivalent to spawning a new
plug-in instance locally. Listener handles the maty messages used for the CD

activation and changes the state of ‘Plugininstaricetate variable in Plugininstance
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indicates the current state of the CD activatiogufe 6.8 shows the finite state
machine (FSM) of the requester. To simplify theadsitucture, state naming is shared
between the requester and the responder. Thisssrdted in Figure 6.9, the FSM of the
responder. However, requester and responder work ddferent copies of

Plugininstance. The Plugininstance at the resposider is registered and permanent,

while that at the requester side will be eliminabede the plug-in is activated.

ActivateCD is called

Timer expired Timer expired
il i~ <

SO0 - Initialize data
structure to activate .
CD
/ Ti
Data structure exI;;? ree:1
created Y
S1 - Check if the CD
plug-in file is
Plug-in file available on Plug-in
available destination filegr]wt
available
y y
\ Activation
S2- Send success S3 - Send
) . configuration,
configurations and
arguments, and the
arguments only CD plug-in file
S4 - Receive
acknowledgement
of CD activation
Activation Activation
failed failed
S5 - Return false as
the indication of

failing to activate
the CD

Figure 6.8: FSM of the requester

The activation of a CD requires configurations ¢ie tactivated CD. This
configuration contains information such as thevatéd CD’s mapped name which is
checked for any duplication by Listener. The retgresiill be notified if there is a
naming conflict or the responder fails to be adtda for example if the existing name
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of a channel has been given to a new instance.e@birtation can be requested by any
CD by calling theerminateCD. CD termination follows the same state-based abro
as CD activation.

# Check if plug-in available

S6 - Listener checks
if plug-in is available
in local storage and

for existing plug-in
instance
Timer
Send result expired
back \/
S7 - Wait to receive
configurations,
arguments, and/or
CD plug-in file
. Message contains
Message contains . .
) : configurations,
configuratios and
arguments, and
arguments only CD Plug-in file
) J ) J

' Activation S9 - Receive and
S8 — Receive and success process
process configurations,

configurations and
arguments, and the
arguments e
y CD plug-in file

S10 — Activate the
CD successfully

and return the
result to the
requester

Activation Activation
failed failed

S11 - Return
duplication of the

—————»|| CD/Channel name,
or failed to activate
CD to the requester

Figure 6.9: FSM of the responder

6.5.6Channel communication and rendezvous in libDGALS

The libDGALS in the DynamicGALS framework inherithe point-to-point,
rendezvous-based communication mechanism from Il&;Avhich is semantically
identical to one used in SystemJ [Malik et. al, @0XCommunication in channels is

similar in functionality to the CD activation mectism described in Section 6.5.5, that
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is, based on handshaking and message passings@&dtaver channels are stored in
different copies by means of deep copying. As nometl in Section 6.3.5, two
implementations are available: TCP/IP and shareahong based.

In the TCP/IP implementation, data are serializedugh the use of a serialization
function (used by the ‘send’ API call), provided ttne designer, for each data type. The
serialized data are sent through TCP/IP as paylaémsy with headers inserted by
Listeners, and are received by Listener at the D&Akogram where the receiver CD
resides. The ‘receive’ API call utilizes the detakzation function and restores the data.
On the other hand, in the shared-memory implemientasend API call serialized and
de-serialize functions create a deep copy of datend in the heap. A pointer to the
copied data is used directly by the receive API. ¢&b data transfer over the network

stack is required in this case to reduce the waxklaf Listener effectively.
6.5.7DGALS system over distributed systems

Different virtual topologies of CDs (not necessaniepresenting the underlying
physical architecture) can be established by thegder allowing them to logically
arrange the DGALS programs into DGALS systems basecbnvenience and practical
requirements. Benchmarks in Section 6.6 presemhpbes of partitioning strategies for
DGALS systems into a number of DGALS programs rognon different physical
machines, effectively building virtual topologiés.general, design-space exploration is

required to construct the most efficient topologaes partitioning of CDs.
6.6 Experimental results

A number of experiments with different examples ghgsical execution-platform
setups to gauge the effectiveness of the Dynamic&kamework approach have been
carried out. The benchmark set is shown in Tat8e 6.

Table 6.3 shows the name of the application, foldwy the name of the CD plug-
ins used in the application. This is followed bg tlumber of instances of those plug-ins
created. The numbers of channels and reactionadn plug-in are also provided. The
code size is given for each plug-in and the coredEEALS system. The Send-Receive
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example acts as a micro-benchmark, which gaugesfficeency of the fundamental CD

instantiation and channel communication mechaniEne. Sieve, which has been used
as a running example throughout this chapter, kas lboded in two different versions.
The dynamic version is as shown in Figure 6.6, evtlie static version is created from
the dynamic version after finding the overall numbeCDs and channels instantiated

in the lifetime of the dynamic version and instatitig all as static.

Table 6.3: Benchmarks selected for experimentation

L . Number of | Number of | Number of Code Size (KB)
Applications CD plug-ins . . .
Instances channels reactions Plug-ins total Size
Send Receive
141K
SendCD 1 1 1 8.8K
ReceiveCD 1 1 1 9.2K

Sieve (prime < 17) static version
150K (Main program and plug-ins altogether)

Generator 16 2 1
Shifter 7 6 3
Popper 7 2 1
Filter 7 3 1
Printer 1 1 1

Sieve (prime < 17) dynamic version

188.3K
Generator 16 0 1 13K
Shifter 7 2 3 21K
Popper 7 1 1 9.7K
Filter 7 2 1 12K
Printer 1 1 1 9.6K

*The size of libDGALS is 123K

The same examples have subsequently been impleinenta heterogeneous mix
of underlying physical execution and communica@ochitectures. Table 6.4 shows the
different physical implementations used, twelveug®in total. For groups E, F, K, and
L two sub-groups are created: machines are disetbon WAN (Internet) and LAN
(Intranet). All experimental runs were performediotel Core 2 Duo 2.6GHz with 8GB
of RAM computation node with Linux 2.6.29.6 as tiest OS. 10,000 runs were carried

out for each experimental group. Average, mediasgenstandard deviation, maximum,
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and minimum execution times are logged. Averadedaunt and average tick length of

each clock domain are also recorded.

Table 6.4: Varying physical implementation architees

Clock domains DGALS programs
. Clock S ;
Experiment . created in single or | executed on same | Effective channel
domain . . . .
group . multiple DGALS or different implementation
creation .
programs machines
A Dynamic Single Same TCP/IP*
B Dynamic Single Same Shared memory
C Dynamic Multiple Same TCP/IP
D Dynamic Multiple Same TCP/IP
E Dynamic Multiple Different TCP/IP
F Dynamic Multiple Different TCP/IP
G Static Single Same TCP/IP*
H Static Single Same Shared memory
[ Static Multiple Same TCP/IP
J Static Multiple Same TCP/IP
K Static Multiple Different TCP/IP
L Static Multiple Different TCP/IP

*Shared memory is disabled for experiment purpose

6.6.1The Send-Receive example discussion

Figure 6.10 illustrates the average execution tinfegroups for the Send-Receive
example. The execution time is measured as the toneomplete the required
computation. The experiments demonstrate the fatgw

1. The shared-memory based channels perform betterttea TCP/IP based
counterparts by comparing B to A and H to G, retipely.

2. The static versions of Send-Receive (groups G tpdrjorm better than the
dynamic versions (groups A to F). This could bedose dynamic creation
introduces overhead, such as handshaking and decadiessages to
activate CD.

3. In groups with use of TCP/IP based channels, tieewion times are bound
by the communication method (underlying networkiisTapplies to both
static and dynamic CD creation. For instance, th&N/NInternet) versions
of groups E and F are around 16 to 17 times sloaer their LAN (Intranet)
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counterparts. Similarly, WAN versions of groups KdaL perform around
10 times slower than their LAN versions.

4. From groups D, J, F, and L, it can be concluded tizen a system is
distributed, i.e., implemented as multiple DGALSogmams, shared
memory is not used in the channel communication.

5. When a DGALS system consists of multiple DGALS pergs on the same
machine, TCP/IP channels are used. The executioestiof such systems
(groups C and I) are close to a DGALS system impleied as multiple
programs executing on different machines over hardLAN versions of E,
F, K, and L). This shows that the overhead of TERMGmmunication plays
a significant role and makes a significant contiitouto the execution time.
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Figure 6.10: Average execution times for Send-Recekample

6.6.2Discussions of the Sieve example

Average execution times of groups for the Sievargx®a are illustrated in Figure

6.11. The experiments demonstrate the following:
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1. Shared-memory channels perform faster, as in the Send-Receive case. 3 to 7
times performance gain is achieved in Sieve contperd .33 to 1.76 times
of gain in Send-Receive. The difference betweendSeceive and Sieve
comes from the fact that the time taken in chaegoeimunication in Sieve
takes a greater proportion of the overall execuiioe.

2. The static versions of Seve perform worse than the dynamic version. It was
observed that the execution of the static versidgitigze the processor (from
processor-usage monitors) much more than the dynaersions. It was
also observed that the ‘system time’ of static iee1s takes a greater
proportion of the execution time than the dynamies This is because
only the necessary CDs are active in dynamic sigvewever, in the static
version, all 38 CDs are active all the time, consgnsignificant processor
resources, especially with the huge number of sbrt ticks which occur
during channel communication handshaking. Thistegea large number of
polling-type loops immediately, one after anothresulting in performance
degradation. A proposed solution is provided, wiadds a short time delay
at the end of each tick boundary, explained initietier.

3. The bottleneck for dynamic Seve in terms of execution times is due to the
communication medium. Sieve using LAN (group C) is around 2.5 times
faster than the WAN (group E) version. However, #tatic Sieve, even
when implemented over a LAN (group G) connectiooesd not greatly
outperform the WAN-based dynamic Sieve, thus irtdiga that the
performance bottleneck is due to the nature ofics@Ds, as discussed

previously.

As mentioned earlier, when sending and receiving @it for rendezvous over a
channel communication, both CDs still carry outidad ticks. Many short ticks will
occur in both sending and receiving CDs, in a sterthat both CDs have only one

reaction, and are trying to obtain channel rendegvorhis involves continuous
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checking of the status of the channel as illustrate Figure 6.12 (a). The overall
significance of long ticks decreases due to theshugmber of short ticks, hence the

reduction of average tick times to unrealistic feglin general.

Execution time (s)

12

10
8
6
)
1l i
7 A | B | C | D | | I G I H I | I ] I |

K(WAN)  L(WAN)

E(WAN)  F(WAN)

Figure 6.11: Average execution times for Sieve glam

It is possible for short ticks to create pollingdi activities similar to a looped
behavior with only one pause statement, as illtedran Figure 6.12 (b). The general
solutions to relieving such polling-like executipméich have been also tested, are:

1. Use signaling such as interrupts and semaphores: Insert semaphore at the
beginning of the input function for each CD, angnsi the semaphores
from the other thread/interrupt. When the chansetady, Listener, which
governs channel communication, can signal the mgagiemaphore in order
to continue execution. However, this results ination of the semantics of
ticks, because waiting on a semaphore is a bloakegation that blocks all
other synchronous reactions in the same CD, whctuin prevents CDs
continuing to carry out any ticks during channemeoaunication. This
results in the violation of the GALS semantics (ahdnce DGALS
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semantics) in which other reactions should be &bleroceed when one
reaction is waiting for rendezvous.

2. Add time-delay to the loop so that the loop does not iterate as frequently:
This approach preserves the semantics but elonteeick length (hence
the overall execution time) by adding a short tideday to each tick. The
choice of time-delay is important and must be adidlly investigated.
Choosing a time-delay which is too short will irdume unnecessary

overheads due to frequent context switching.

While(hand_shaking_conditions) while(condition)
{ {
Pause(); /I checking for some variable
/I checking for channel status
/I which executes in very short time }
}
(a) A very short tick due to waiting for rendezvous (b) A polling loop in general

Figure 6.12: A very short tick in a while-loop withrm a polling-like loop

A one microsecond time-delay in these experimethis s completely heuristic
and, obviously, application dependent) has beesahoThis way, for very short ticks
the processor utilization was lowered by 17%. Forger ticks, the delay is only a
fraction of the actual computational time and ieslaot introduce big overheads in
timing. The time-delay is added at the beginningha input function of each clock
domain, which is called at each logical tick. Feg.13 shows the average execution
time for Sieve examples with time-delayed tickspé&formance gain of 9.42 to 46.72
times compared to the non-delayed versions of teeeS is achieved. For WAN-based
groups, performance improves by 1.24 to 1.95 tin@#3U utilization is lowered from
90% (the original Sieve implementation) to arourtdo]l which indicates that a great
part of the execution time was due to the shorlipmplike ticks. System times also
decrease drastically. The actual tick lengths ace longer hidden behind the

overwhelming number of short ticks. In this cadee taverage tick duration is not
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reduced by the meaningless short ticks and hereelase to the realistic and actual

execution times of clock domains.
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Figure 6.13: Average execution times of Sieves wslerting time-delays in ticks
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Figure 6.14: Average execution times with time-gethticks (without WAN groups)
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Figure 6.14 illustrates the execution times of SRedeive and Sieve shown
together for comparison purposes. The WAN-basedpgare not included because
they have much larger execution times than therogineups because of the slower

communication layer and they thus contribute littlehe discussion.

In the observations, execution times from Sievecmatxperimental results of
Send-Receive with the following findings:

1. Channels perform better when using shared memawy FCP/IP due to
communication overheads with the latter.

2. The dynamic versions outperform static versions rwliemputation (as
opposed to communication) forms a significant paft the overall
application.

3. Communication medium limits the execution speedsNibased groups
have better results than WAN-based.

4. Channels connecting different DGALS programs dobmsatefit from shared
memory regardless of the fact that those prograurs an the same
computer.

5. From C and | groups, it can be concluded that ¢lreagh Dynamic GALS
programs are located on the same machine, the tmechottleneck
remains because of the use of TCP/IP connections.

Experiments show that two features of libDGALS citmite to the improvement of
execution times by having: (1) channels implementgtth shared memory, and (2)
addition of time delay at each tick boundary inesrtb lower processor utilization. Note
that it would also be possible to employ other maféicient communication
mechanisms that rely on specific architectural tsmhs to improve performance of
channels, which is a topic of the future work. Htatic version of Sieve has a smaller
memory footprint (150K vs 188.3K) compared to theamic version, but does not

have the mobility of clock domains, and has a staowerall execution time.
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6.6.3Comparison with other languages and systems

A number of experiments were carried out with défg examples and physical
execution architecture setups to gauge the efleoiss of our lIbDGALS approach.
Experiments were performed on Linux kernel 2.6.388ning on Intel Core 2 Duo
2.6GHz with 4GB RAM. In the distributed scenariopristations of the same
specifications are used. These machines have [lgligetter specification than those
used for comparison with JADE and DSystemJ repoirteiMalik et al., 2010]. The
benchmark set is shown in Table 6.5, which alsavshine number of lines of source
code for each application, together with the memfaogtprint (generated by the
application and one that includes the size of tibealy). Lines of source code
demonstrate the effort required to describe GALSesys and their maintainability. The
source code size of DGALS programs is comparablADE. With regard to DSystemJ,
which is a language-based DGALS approach, therdiffee varies from 7% for Send-
Receive to 92% for Sieve (first 3 columns of Tablé). It is worth noting that the
structure of each CD plug-in, such as the CDs, méian signals, and reactions, require
explicit definition as compared to DSystemJ, whish a language-based GALS
approach, where system structures are abstractay, d@nce the smaller source code
sizes.

The memory footprint of DGALS programs is compaeatdl DSystemJ and JADE
(3 middle columns of Table 6.5). Because the DGAbhfry is compact, in contrast to
SystemJ and JADE libraries, its programs resutheésmallest total memory footprints
amongst the three approaches (3 final columns bfeT@.5). Since this approach does
not require the JVM, the real memory footprint BEXBALS programs is much lower.

Table 6.6 and Table 6.7 present the execution tiorebiree approaches: DSystemJ,
JADE, and DGALS. Average tick times are obtaineatigh dividing total execution
time by the number of the ticks required to congpliéte required computations. It is
obvious that DGALS programs outperform the funaiioequivalent models described
in DSystemJ and JADE. For the most complex systsetufity surveillance), the
DGALS programs are on average 490 times faster Bf@ystemJ and 5770 times faster

than JADE. Since inter-program CD communication hased on TCP, the
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communicating DGALS programs on the same machine Isemilar performance to
DGALS programs distributed on LAN.

DGALS programs' smaller memory footprint and muestér execution times
through the support of libDGALS makes the Dynamit¢@&Aramework more suitable
for designing cyber-physical systems compared tbh B&ystemJ and JADE.

Table 6.5: Lines of code and memory footprint corngaams

Lines of source code Generated memory footprint | Total memory footprint (generated
Example (KB) + library) (KB)
DSystemJ| JADE |ibDGALY DSysten]] JADE libDGAUS DSysti| JADE | IibDGALS
Sieve 163 267 313 99 12 65 216 2623 188
Surveillance | 4,5 238 216 158 14.5 33.5 265 2625.3 181
system
Send 39 118 42 38 5.6 18 145 2616|6 141
Receive
Table 6.6: Execution time comparisons (Single maehvith 2 cores)
Examoles Run-time (ms/tick)
P DSystemJ JADE ibDGALS
Send- CD1 CD2 CD1 CD2 CD1 CD2
Receive 5 5.57 74.7 185.9 0.00D 0.008
Sieve cD1| cD2] cD3] cb4] cb§ CD] CD2 CD3 CDh cCD5 cO1 cp2 cp3 dp4
01| 17 | 16.7] 234 17 1] 340 3618 3224 514 0[25 §.331] 0.74

Table 6.7: Execution time comparisons (Distribudgstem 2 machines 4 cores each)

Run-time (ms/tick)

Example DSystemJ JADE libDGALS
Send CD1 CD2 CD1 CD2 CD1 CD2
Receive 20.7 22.2 86.88 470 0.009 0.01

Surveillance | CD1 CD2 CD3 CDh4 CD1 CD2 CD3] CD4 CDL CD2 CD3 CI
system 202.7 | 191.4| 125.1] 1337 32434 1498.1 1320.6 1603180 0.457| 0.253 0.21f

6.7 Summary

This chapter describes the DynamicGALS frameworlsigieed to support
programming of dynamic systems based on the fofahatbally Asynchronous Locally
Synchronous (GALS) Model of Computation (MoC). ThgnamicGALS framework
enables programmers to describe simple to large $28@ALS systems by using CD
plug-ins. Dynamic creation of CDs and channel$y&n@D plug-in instances, along with
‘weak’ CD mobility, are provided in an API to stgthen the design capability, thereby
making the DynamicGALS framework suitable for impknting a wide range of
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dynamic distributed systems. The framework alsovides an abstract means of
programming reactivity and composition of synchmamaoncurrent processes using
behavioral hierarchy. The approach separates thgrdend modeling of the system
from the underlying physical execution and commatian layer. This allows changing
model and physical layers independently withoute@fhg each other. The
DynamicGALS framework allows the utilizing of a nhixe of different execution and
communication architectures with ease and effigireBeing based on C, it allows easy
integration of legacy code. Future work includeapdpical tools for describing DGALS
programs and systems to reduce design effort, dsawduilding tools for automated
mapping of CDs and DGALS programs to heterogenaoctsitectures that will enable
creation of virtual topologies.
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Conclusions and future work

With increasing complexity in system design, adagpt higher level of abstraction
and applying design with formal models of compuatatreduces design effort and
ensures the correctness of the design. Severabagps that enhance system design
have been proposed and developed and are detai@daipter 2. Chapters 3 to 6 detalil
the development of a library-based approach to @ugmmth GALS and DGALS MoC
system design from programming language C, whiclstié a major language in
embedded systems design. In this chapter, a sumaofaitye work presented in this

thesis, as well as its conclusions, is given, alitg plans for possible future works.
7.1 Conclusions

Discussions of system level-design are detaile@hapter 3. System-level design,
which can be categorized into system-level synthesbmponent-based design, and
platform-based design, are performed according e &vailable resources and
knowledge of the target platform. The design thert be further divided into stages
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consists of the specification model, the functiomaldel, component-emergence model,
bus-architecture model, behavior model, bus-funetianodel, cycle-accurate model,
and implementation model. Software and hardwargtipaing are realized throughout
the refinements. Operating systems, used to mas@g@are concurrency, serve as the
bridge between software and hardware of the systantsplay an important role in the
design of systems that include software-implemeift@dtionalities. The modeling of
operating systems is of interest in order to achi@vnodel of the whole software of the
designed system and can be carried out in diffegeamtularities of accuracy. In Chapter
3, an OS model has been developed YST8MC. The model provides a number of
services which can be used by application proce&igaal-operation services, which
are described as part of the core services in henOdel, are used to support reactive
behaviors which can be specified in synchronousinea language such assEEREL
Case studies have been implemented to justify ¢lsessities of having signal-operation
services for implementing reactive systems with vemtional OS services. The
implementation of signal-operation services carbbi-in as part of a kernel or as a
user-level library. The concept of signal-operatservices is further extended and
developed resulting in a library-based approablGALS, detailed in Chapter 4.
libGALS provides a more powerful mechanism andvedldoth synchronous and
asynchronous concurrency to be incorporated asgesicorrect libGALS program,
that complies with the globally asynchronous locadlynchronous (GALS) MoC.
Within a libGALS program, the overall behaviorssystem are first divided into groups
of asynchronous clock domains. Finer grain concwyein each clock domain is
implemented in the form of synchronous reactiongjctv within the same clock
domains, are executed in logical time steps cdileds, being the same as systems
described in synchronous languages. Synchronoasiors of the same clock domain
communicate with each other through signal broadwasOn the other hand, reactions
of different clock domains send and receive infdramato and from each other through
the use of channels which in libGALS programs felldhe semantics of CSP
rendezvous. libGALS is implemented based on priaitservices provided by the

operating systems, such as thread creations anapbemes. Each synchronous reaction
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is mapped to a thread of the lIbGALS program, angaverned by the programmer
invisible thread: Synchronizer. Each clock domarequipped with one Synchronizer
which uses semaphores, provided by the OS to resi@pendencies between reactions,
as locks. Because of the thread-based approacBALS can benefit from the
multicore/multiprocessor architecture. The libGA&proach is the first known library-
based approach that supports programming GALS mgst8ystemJ, a language-based
approach, is compared with libGALS in Chapter 4.

libGALS enables designers to construct correct-esigh software programs given
that the software is described correctly with reger the specification. Behavior of
programs can be also seen as behaviors of the lyindeprocessor(s) in the system
model. To present a system model with correct @nogt a framework for integrating
lIbGALS programs into the STEMC modeling environment, called GALS-Designer,
has been developed, as detailed in Chapter 5. Ilit85Arograms are wrapped to
SysTEMC modules through the use of macros and statictiumec in C++. Because
lIbGALS makes use of the multicore/multiprocessdr tbe simulation host, the
simulation speed of lIbGALS¥STEMC modules is greatly enhanced. Therefore the
GALS-Designer framework provides feasibilities footh describing correct software
programs and fast simulation speed. Furthermorel.$5Besigner also enables the
exploration of distributing GALS systems into siaghr multiple libGALS programs.
The latter can be mapped into different procestmrally (on the same platform) or
different machines on distributed platforms. Comioation between IliIbGALS
programs in GALS-Designer is achieved through tledp hof SrsTEMC modeling
techniques.

To further explore dynamicity in distributed systemenhancements such as
creating clock domains in run-time on different gutational nodes have been added to
lIbGALS, resulting in a library called libDGALS, vidh follows the Dynamic GALS
(DGALS) MoC. The DynamicGALS framework, which prdes both interfaces to
program libDGALS programs and run-time supporttfeem, is detailed in Chapter 6.
Each libDGALS program is similar to a libGALS pragn, and hosts a number of clock
domains. libDGALS program is further equipped wsipecialized Listener threads to
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handle clock domain creations and communicatiomsd®n libDGALS programs. The
lIbDGALS library, inherited from its predecessop@®ALS, requires minimal support
from the OS. In this case, thread creation, senraplamd networking stack are the only
requirements on the underlying OS. The code sidehgh performance of libDGALS
programs are compared with the language-based empatts, DSystemJ at the end of
the Chapter 6.

7.2 Futureresearch

7.2.1Hardware support for libGALS and libDGALS

Based on the results from OS modeling and simulatipossible and preferred
configuration (HW/SW patrtitioning) for the OS impientation can be obtained as
shown in Chapter 3. Hardware support to the OS tieexis further investigation to
support GALS MoC. The current functional unit toppart reactivity is available
through customization of processors but does net kize support from the OS which is
required for libGALS and libDGALS. Such support dag similar to RTM proposed in
[Kohout et al., 2004] by applying dependency resofuin the scheduling policy which
operates in hardware.

7.2.2Exploration of styles of concurrent execution

Future work will explore how to manage and achieven higher performance
gains by controlling processor affinity of libGAL&Sd libDGALS. The scheduling of
synchronous reactions is governed by the underlyaingduling policy of the operating
systems. The operating systems generally followeeitpriority-based scheduling or
fair-for-all scheduling. Priority-based schedulirsgnot used by synchronous reactions
in the same clock domain, because it is not nepgsSynchronizer will handle the
execution sequences by resolving the dependenexesuted as the lowest priority
process. Fair scheduling is often adopted by gérmarating systems also, as in
implementation of libGALS and libDGALS on these t&yss. However, in control-
dominated applications, performance of both libGAL®I liIbDGALS programs might
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suffer from unnecessary ticks while performing camioations between clock

domains. In this case, controlling processor diffinfo achieve best execution
performance of clock domains will be investigatedr example, a clock domain may
be suspended when it is only waiting for the rerdag on channel communication to
prevent unnecessary ticks elapse, and thus lowepdlformance of the overall system.
Such an approach can be adopted in GALS-Desigrechvalso relies on the execution
model of libGALS, in order to increase the simwatspeed.

Furthermore, libDGALS is currently built with weakobility, that is, new
instances of clock domains are created withoutviptes memories’ (previous working
state of the clock domain), unless giving all tequired information as the argument
upon activation of the clock domain. Investigattorinclude the thread/process state of

each reaction to enable strong mobility will berieat out as future work.
7.2.3Designer-friendly framework

Glue-logic such as SyncNodes in GALS-Designer isdu integrate libGALS
programs to liIbGALS-8STEMC modules. This glue-logic is currently presentedhie
form of source codes, which are prone to programmimemors, such as accidental
modification of the source code. In order to resdllis issue, parsers of a libGALS
program can be used to generate essential pari®@ALS-SysTEMC module, by
checking clock domains and reactions in the progsanrces. On top of this approach,
a GUI will be developed as a part of GALS-Designemwill reduce the amount of
textual information entered by the designers tosgmé programming errors. The GUI
will automatically generate templates of libGALSgrams, and the designer will only
need to populate algorithmic parts.

An approach of using animation tools to model carpmlynamic systems has been
introduced in [Efroni et al., 2005]. GALS systenmvolve execution flows of clock
domains, communications between clock domains, @ymhmic creations of clock
domains, which can be presented in a similar manf@ough the use of animation
tools, along with the other graphical tools, speatfon of GALS systems and activities
within can be modeled and observed in an intuifaghion. This would also prevent
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manual coding which leads to programmatic error ttu¢he human factor, such as
incorrect channel creations, i.e. sending and vewgiclock domains are invalid.

The GUI approaches can also be applied to the Dyp@#alLS framework. For
example, the designer should be able to see tti@ state of the DGALS systems, such
as the available storage and resources of eachutatigmal node, to estimate if a clock
domain can be spawned and perform correctly ortaitget computational node. Also,
the default configuration should also be generasadomatically to prevent

programmers’ errors.
7.2.4Better support for embedded systems

Overheads may occur when designing systems withfies grain concurrency, as
for instance, having many concurrent synchronoasti@ns with very tiny numbers of
operations to perform. In this case, synchronirattwerheads may annul the actual
performance gain from the multicore systems, bexaficontext switching. There are
approaches to prevent heavy context switching gocantext switching is required) on
the operating systems level, that are adopted searehes of sensor networks. For
instance, the operating system Contiki appliesuses of protothread [Dunkels et al.,
2006] to be executed on platforms that require hoemnory footprint.

With tight merging of minimal functionalities of ¢hoperating system (particularly
scheduling and support for dynamic loading) withlilarary-based approach, an
operating system might not be required anymores Wauld be suitable on bare-bone
processors. This approach would place an abstrachime above the hardware of
traditional processors, and would equally suppangluage-based systems (compilers)
and library-based systems as libDGALS.

This research should result in an abstract maai@ady to use for implementation
of libDGALS programs on distributed platforms thatlude wireless sensor networks
based on more powerful processors (e.g. ARM-type) also open a research line
resulting in specification of desired features bé tprocessors that would directly

support DynamicGALS MoC.
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7.2.5Provide mappings of existing MoCs

Applying a library- and language- based approacimtalel process network has
been proposed in some earlier works. For exampRR Khets of reactive processes)
[Boussinot, 1992] implements KPN-like systems WBIGRARCUBES (as an extension
based on Java). Similarly, Synchronous Kahn Netw@aspi & Pouzet, 1996] is
proposed with programming in the style of functiolenguage, which relies on the
support of the dedicated compiler. Synchronous Kdbtwork can be seen as one of
the solutions to KPN by applying the concepts aicsyony.

Similarly, investigation should be carried out t@apna PN/KPN-like approach to
lIbGALS, or even with distributed support as prdsdrin libDGALS. A fix-rated-based
approach to KPN, such as SDF, can also be adogige te rate can be computed on-
run-time as part of the investigation into scheayipolicy mentioned in Section 7.2.2.

7.2.6Support of verification

As a library-based approach, libGALS and libDGAIgave to the designers some
of the responsibility of constructing correct praigps. It is thus possible for a designer
to write a compliant program, which, while not \d@bhg the syntax of the base language
(i.,e. C), does behave incorrectly. This problemsdoet exist in a language-based
approach such as SystemJ and DSystemJ. BecaustLBo@nd libDGALS share
similar features to SystemJ and DSystemJ, it isiptesto extract, or to map the control
part of the language, to both SystemJ and DSyswmdther similar languages to
perform a static check, e.g. verification. Statiecking on programs also opens doors
to other verification methodologies mentioned ie ttynamic languages such as DSL
presented in [Attar et al., 2011].
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