

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

� Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

� Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

� You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form and Deposit Licence.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and
contains no corrections. The print copy, usually available in the University
Library, may contain corrections made by hand, which have been
requested by the supervisor.

The Department of Electrical and Computer Engineering

The University of Auckland

New Zealand

Designing GALS software systems

using libraries and run-time OS support

Wei-Tsun Sun

August 2012

Supervisors: Prof. Zoran Salcic

Dr. Morteza Biglari-Abhari

A Thesis submitted in fulfillment of the requirements for the degree of Doctor of

Philosophy in Electrical and Computer Engineering

AbstractAbstractAbstractAbstract

With the increasing use of multicore and distributed computing platforms, software

systems are becoming more and more complex and as such require tremendous design

effort. They are also very difficult to debug and guarantee for correct functionality. In

the case of embedded systems, ideally, software development could proceed in parallel

with the development of the target hardware if this is not known in advance.

This thesis addresses complex software systems development which can be

underpinned by formal models of computation and which use some kind of operating

system to abstract the hardware platform from system developers. Two specific models

of computation, synchronous reactive and asynchronous, combined into a Globally

Asynchronous Locally Synchronous (GALS) model are used as the underlying formal

model of the target systems. A set of tools to implement the GALS model in traditional

programming languages, C and C++, is used to enable re-use of huge legacy codes. The

tools consist of libraries and run-time support that allow the design of two types of

GALS systems for the range of target platforms: (1) static systems with a fixed number

of concurrent processes and (2) dynamic GALS (DGALS) systems where the number of

processes varies during system life. The implemented libraries and run-time support

depend only minimally on the operating system, since they use a very primitive

synchronization mechanism in the form of semaphores, and are ported to a number of

non-real-time and real-time operating systems with identical application programming

interface (API).

A specific version of API is developed for the development of static GALS systems

in system-level design language SYSTEMC, which allows system designers to model

both hardware and software within the same system model, thus developing software

before the actual hardware is available.

The developed APIs are in compliance with the GALS model of computation

(MoC), opening the possibilities for formal verification of designs or their parts, or of

the use of the API in conjunction with programming languages based on GALS MoC.

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

I have to express my gratitude to my supervisor, Professor Zoran Salcic, for his

guidance, inspiration, and support. Valuable suggestions and directions are always

provided when I needed them the most. Having discussions throughout the research

strengthened my analytical skills and ability to see things at different angles. He always

asked me to see a full picture which helped me to obtain the right direction of not only

in research but also aspects in life.

Knowing and being supervised by Professor Salcic has changed my life. It began

from that he opened the door of pursuing further knowledge for me, when I was

supervised by him for my final year project, in my last year of undergraduate study. I

admire Professor Salcic, for both of his wisdom and knowledge, as well as the

enthusiasm. His kind support and caring continue to help me overcome many challenges

and difficulties in my life.

I would like to thank my family from the bottom of my heart for their unconditional

support. My father, Kai-Ping Sun, a civil engineer, has always inspired me. I would like

to thank my mother, Pi-Chu Tu, for her care and love. Brother, Pei-Tsun Sun, I thank

you for your company and humor that cheered me often.

Furthermore, I would like to thank Dr. Avinash Malik and Dr. Alain Girault for

their suggestions and helps toward the research. Many thanks to Dr. Morteza Biglari-

Abhari and Dr. Partha Roop for the support they have offered. I would also like to thank

many other staff from the department of Electrical and Computer Engineering for both

work and technical support.

I must thank my friends and colleagues whom I have worked with throughout these

years. Your presence is vital, not only during my research, but also my life. I thank you

all.

子曰：“學如不及，猶恐失之。”

 iv

The above is a quote from the sayings of Confucius, the Chinese philosopher (511

BC – 479 BC). It means to learn as your goal will never be achieved; worry about not

keeping yourself updated. I dedicate this thesis to myself, who came to the point of

understanding this saying throughout the research work and thesis writing. This thesis is

not the destination of my research. It is the telescope for me to see the universe of

knowledge I would continue to pursue.

 v

Table of ContentsTable of ContentsTable of ContentsTable of Contents

Abstract .. i

Acknowledgements .. iii

Table of Contents .. v

List of Figures .. xi

List of Tables ... xiii

List of Listings .. xv

1. Introduction ... 1

1.1 Problems in design of computer systems .. 1

1.2 Tools based on theory to provide correct designs ... 3

1.3 Motivation ... 4

1.4 Research contributions .. 6

1.5 Thesis organization ... 8

2. Background and related works .. 11

2.1 Types of computer systems ... 11

2.1.1 Embedded systems ... 12

2.1.2 Real-time systems .. 13

2.2 Hardware and software in computer systems .. 13

2.2.1 Hardware in computer systems .. 14

2.2.2 Software in computer systems.. 15

2.2.3 Software concurrency and operating systems .. 16

2.3 Concurrency in system design .. 18

2.4 Model of computation, languages, and libraries ... 20

2.4.1 Model of computation .. 20

2.4.2 Languages as design tools: concepts and backgrounds .. 20

2.4.3 Library based approach .. 22

2.4.4 Current state of the art and approaches .. 22

2.4.5 Synchronous versus asynchronous ... 23

2.5 The discrete event MoC and HDLs ... 25

2.6 System-level design languages ... 26

2.6.1 The need for system-level design languages .. 26

2.6.2 System-level design languages based on existing languages 26

2.7 Process calculi and process networks ... 27

2.8 Languages based on Actor-based models ... 28

 vi

2.9 Programming languages with concurrency ... 29

2.10 Synchronous MoC and approaches ... 30

2.10.1 Introduction of synchronous and reactive programming .. 30

2.10.2 SW and HW implementations of S/R approaches .. 32

2.10.3 Other related approaches .. 33

2.11 The GALS MoC and related developments .. 34

2.11.1 The concept of GALS ... 34

2.11.2 GALS in the software domain .. 35

2.11.3 System-level design based on GALS ... 36

2.12 Dynamic GALS MoC .. 37

2.13 The library-based GALS/DGALS frameworks ... 37

3. System design with OS modeling .. 41

3.1 Approaches to staged system level design .. 42

3.1.1 System-level synthesis .. 43

3.1.2 Component-based design .. 45

3.1.3 Platform-based design .. 45

3.2 Stages in system-level design .. 46

3.2.1 Specification model .. 51

3.2.2 Functional model .. 51

3.2.3 Component selection model ... 51

3.2.4 Bus architecture model ... 52

3.2.5 Behavior model .. 52

3.2.6 Bus functional model .. 53

3.2.7 Cycle-accurate model ... 53

3.2.8 Implementation model .. 54

3.3 Operating systems in system-level design ... 54

3.3.1 System modeling with operating systems .. 54

3.3.2 Existing approaches of OS modeling ... 57

3.3.3 Modeling OS with hardware involvement and support .. 59

3.4 The proposed system model with OS modeling .. 60

3.5 Service-based OS modeling with reactivity .. 62

3.6 Describing software processes with the OS model ... 67

3.6.1 Mechanism available in SYSTEMC to model processes .. 67

3.6.2 Internals of the process module .. 68

3.7 Proposed co-design framework ... 70

3.7.1 The overview of the framework ... 70

 vii

3.7.2 Integration with the OS and process modules .. 72

3.7.3 Communication between modules and environment ... 74

3.7.4 HW/SW partitioning and HW support of OSs ... 75

3.7.5 Mapping of SW models to implementations .. 79

3.8 Case study: lift controller .. 80

3.9 Summary ... 84

4. libGALS: a library for GALS system design .. 85

4.1 Programming with a formal model of computation .. 85

4.2 Approaches in programming concurrency .. 88

4.2.1 Concurrent behaviors in software systems ... 88

4.2.2 Limitation of single-threaded specification models ... 89

4.2.3 Library-based approaches .. 89

4.3 libGALS fundamentals.. 90

4.3.1 Model of computation of libGALS .. 90

4.3.2 Clock domain: top-level synchronous entity .. 91

4.3.3 Reaction: behavior of a clock domain .. 91

4.3.4 Logical tick in libGALS ... 92

4.3.5 Signals and traps for communication and synchronization .. 92

4.3.6 Channels: communication between clock domains.. 93

4.3.7 libGALS and other software components .. 93

4.4 Specifying a design with libGALS ... 94

4.4.1 libGALS API and libGALS programs ... 94

4.4.2 Kite controller: an example of a libGALS program ... 96

4.5 libGALS internals ... 103

4.5.1 Overview of the libGALS data structure .. 103

4.5.2 Clock-domain data structure .. 104

4.5.3 Synchronizers ... 105

4.5.4 Reaction internals ... 105

4.5.5 Scheduling of reactions within clock domains ... 109

4.5.6 Signal representation and resolution .. 110

4.5.7 Pre-emption representation and activation ... 115

4.5.8 Channel communication internals .. 116

4.6 Applications and ports of libGALS ... 118

4.6.1 Mapping GALS/synchronous models to libGALS programs 118

4.6.2 Porting libGALS .. 119

4.7 Experiments and results .. 120

 viii

4.8 Summary ... 122

5. GALS-Designer: A design framework for GALS software systems 125

5.1 Introduction ... 126

5.2 Related works and fundamentals ... 127

5.2.1 Synchronous and GALS system models .. 127

5.2.2 Modeling software concurrency with SYSTEMC .. 128

5.3 Overview of GALS-Designer .. 130

5.3.1 Integration of libGALS and SYSTEMC ... 130

5.3.2 Linkage between libGALS programs and SYSTEMC ... 132

5.4 Integration of libGALS and SYSTEMC .. 134

5.5 Programming model of GALS-Designer ... 138

5.6 GALS system design using GALS-Designer .. 147

5.7 Case studies and results of using GALS-Designer .. 152

5.8 Summary ... 156

6. Dynamic system designs in DynamicGALS ... 159

6.1 The need for framework to design dynamic systems .. 160

6.2 Related works and the DGALS approach.. 162

6.3 Overview of the DynamicGALS framework... 167

6.3.1 From libGALS to libDGALS ... 168

6.3.2 Structure of DGALS systems in the framework ... 169

6.3.3 Programming interface provided by libDGALS... 169

6.3.4 Simple examples to model dynamic behaviors .. 171

6.3.5 DGALS programs and the run-time environment .. 174

6.4 A complete DGALS system: dynamic Sieve .. 176

6.4.1 Dynamic sieve of Eratosthenes: prime number generation 176

6.4.2 Distributed dynamic Sieve ... 179

6.4.3 Implementation of the dynamic Sieve .. 181

6.4.4 Configurations of a DGALS program .. 187

6.5 The DynamicGALS framework implementation .. 190

6.5.1 Data structures used by DGALS programs .. 191

6.5.2 Reactions and Synchronizers .. 191

6.5.3 Listener ... 191

6.5.4 Scheduling of reactions, Synchronizers, and Listener .. 192

6.5.5 CD activation and termination .. 193

6.5.6 Channel communication and rendezvous in libDGALS .. 195

6.5.7 DGALS system over distributed systems ... 196

 ix

6.6 Experimental results .. 196

6.6.1 The Send-Receive example discussion .. 198

6.6.2 Discussions of the Sieve example .. 199

6.6.3 Comparison with other languages and systems .. 205

6.7 Summary ... 206

7. Conclusions and future work .. 209

7.1 Conclusions ... 209

7.2 Future research .. 212

7.2.1 Hardware support for libGALS and libDGALS .. 212

7.2.2 Exploration of styles of concurrent execution .. 212

7.2.3 Designer-friendly framework ... 213

7.2.4 Better support for embedded systems .. 214

7.2.5 Provide mappings of existing MoCs .. 215

7.2.6 Support of verification ... 215

References ... 217

 x

 xi

List of FiguresList of FiguresList of FiguresList of Figures

Figure 1.1: Contributions of this thesis in relation to other work ... 7
Figure 2.1: Relationships between MoC and approaches ... 38
Figure 3.1: Staged system-level design ... 43
Figure 3.2: Modeling approaches at different accuracy levels .. 47
Figure 3.3: Coverage of transaction-level modeling ... 49
Figure 3.4: OS and software processes modeling in system design .. 55
Figure 3.5: OS model including services provided and data structures 63
Figure 3.6: OS model in TLM .. 66
Figure 3.7: State transitions of the OS model ... 67
Figure 3.8: FSM of the process model .. 69
Figure 3.9: The internals and interface of a process module ... 70
Figure 3.10: Modeling framework and staged design approach ... 71
Figure 3.11: OS module with functional modeled processes .. 73
Figure 3.12: The OS module with compiled program .. 74
Figure 3.13: Interactions between processes/external environments .. 74
Figure 3.14: Hardware-supported OS in the system model with other HW components 76

Figure 3.15: Processor model with RFU support .. 77
Figure 3.16: A model of processor: OS with hardware support .. 78
Figure 3.17: Primitive behaviors and dependencies extracted from the specification 81

Figure 3.18: System model of the lift controller example ... 83
Figure 3.19: Simulation results for two system models .. 83
Figure 4.1: libGALS and other software component .. 93
Figure 4.2: Power kite control system abstract representation .. 99
Figure 4.3: Data structure of a libGALS program .. 103
Figure 4.4: Finite state machine of a reaction ... 107
Figure 4.5: Interconnection of ReactionNodes after forking .. 109
Figure 4.6: Data structures used to achieve fork and join of reactions 109
Figure 4.7: True parallelism of reaction threads on multiprocessing cores 110
Figure 4.8: Interconnection of signal nodes .. 111
Figure 4.9: Data structures used to resolve signals ... 112
Figure 4.10: Reactions 2 and 3 are blocked .. 114
Figure 4.11: Signal A is emitted and reactions 2 and 3 are released ... 114
Figure 4.12: Signal B and C are emitted ... 114
Figure 4.13: Preemption Node .. 115
Figure 4.14: Relationships between pre-emption nodes and reaction thread node 115

Figure 4.15: Finite state machine of channel communications ... 117
Figure 4.16: Frequency relay implemented as a GALS system with two clock domains 120

Figure 5.1: Relationships between libGALS and SYSTEMC ... 131
Figure 5.2: Communications of libGALS program and other SYSTEMC components 132

Figure 5.3: A SYSTEMC module wrapping a libGALS program model 133

Figure 5.4: Synchronizations between libGALS-SYSTEMC and other SYSTEMC modules 133
Figure 5.5: Synchronization steps between tick hook and synchronizing function 136

Figure 5.6: Timing diagram of libGALS-SYSTEMC synchronization 137
Figure 5.7: A libGALS program example ... 139
Figure 5.8: Integration of libGALS program into a SYSTEMC module 147

Figure 5.9: GALS-Designer in system development .. 148

 xii

Figure 5.10: Development framework of the libGALS-SYSTEMC model................................. 149

Figure 5.11: Clock domains mapped to different libGALS-SYSTEMC modules 151

Figure 5.12: Internet-enabled frequency relay modeled with libGALS-SYSTEMC 153
Figure 5.13: Simulation execution results of libGALS-SYSTEMC models 155

Figure 6.1: CD instantiation .. 172

Figure 6.2: Fault tolerant systems designed in DGALS .. 173
Figure 6.3: Channel implementation in a DGALS system .. 176
Figure 6.4: Dynamic sieve of Eratosthenes designed in the DynamicGALS framework 177

Figure 6.5: The distributed dynamic Sieve .. 180
Figure 6.6: The distributed dynamic Sieve without CD Startup ... 189
Figure 6.7: The programmers' perspective of the DynamicGALS framework 190

Figure 6.8: FSM of the requester ... 194

Figure 6.9: FSM of the responder.. 195
Figure 6.10: Average execution times for Send-Receive example .. 199
Figure 6.11: Average execution times for Sieve examples ... 201
Figure 6.12: A very short tick in a while-loop will form a polling-like loop 202
Figure 6.13: Average execution times of Sieves with inserting time-delays in ticks 203

Figure 6.14: Average execution times with time-delayed ticks (without WAN groups) 203

 xiii

List of TablesList of TablesList of TablesList of Tables

Table 3.1: API to perform signal operation... 64
Table 3.2: Data structure used by the signal-operation services ... 64
Table 3.3: State descriptions of the OS model .. 67
Table 3.4: State descriptions of the process model ... 69
Table 4.1: Application programming interface of libGALS ... 95
Table 4.2: Fields of ClockDomain data structure ... 104
Table 4.3: Feilds of ReactionNode data structure ... 106
Table 4.4: State transition of a reaction .. 108
Table 4.5: Fields of SignalNode data structure ... 111
Table 4.6: Fields of resolutioNode .. 113
Table 4.7: Fields of channel .. 117

Table 4.8: States of a channel ... 118

Table 4.9: State transitions of a channel ... 118
Table 4.10: Examples of mapping from SystemJ to libGALS .. 118
Table 4.11: APIs used to implemented libGALS .. 119
Table 4.12: Comparisons between SystemJ and libGALS ... 121
Table 5.1: Activites of libGALS-SYSTEMC synchronization ... 138
Table 6.1: API to program dynamic GALS systems ... 170
Table 6.2: Serialization and de-serialization functions ... 171
Table 6.3: Benchmarks selected for experimentation ... 197
Table 6.4: Varying physical implementation architectures ... 198
Table 6.5: Lines of code and memory footprint comparisons ... 206
Table 6.6: Execution time comparisons (Single machine with 2 cores) 206
Table 6.7: Execution time comparisons (Distributed system 2 machines 4 cores each) 206

 xiv

 xv

List of ListingsList of ListingsList of ListingsList of Listings

Listing 3.1: Interfaces of process model at pin accurate level .. 64
Listing 3.2: Interfaces of the OS model in TLM ... 65
Listing 3.3: The SYSTEMC template of a process module .. 69

Listing 3.4: The template of signal-operation service for µC/OS-II ... 80
Listing 3.5: The template of signal-operation service for FreeRTOS ... 80
Listing 3.6: Behavior described in ESTEREL ... 81

Listing 3.7: Behavior description in SystemC .. 81
Listing 4.1: Definition of reaction functions ... 99
Listing 4.2: Definition of the GALS system ... 101
Listing 4.3: Nested pre-emptions .. 116
Listing 5.1: Definition of user-defined data types and reaction functions 141
Listing 5.2: libGALS program that creates CDs, channels, signals and reactions 142

Listing 5.3: SYSTEMC module resulted from the libGALS program .. 145

Listing 6.1: CD instantiation and reactivity .. 172
Listing 6.2: DGALS program implementing fault tolerance .. 173
Listing 6.3: A simple DGALS program .. 181
Listing 6.4: The StartupCD of dynamic Sieve .. 183
Listing 6.5: The Generator of the dynamic Sieve ... 184
Listing 6.6: Shifter of the dynamic Sieve .. 186
Listing 6.7: The XML configuration of the DGALS program 1 ... 188
Listing 6.8: The XML configuration of the DGALS program 2 ... 189

 xvi

1111
1. 1. 1. 1. IntroductionIntroductionIntroductionIntroduction

The development of computer systems is driven by technology advancements. New

application requirements, particularly those that can be classified as embedded systems,

are becoming very challenging due to increased system complexity. The large number

of concurrent behaviors that are implemented in combination with hardware and

software components require us to change traditional design practices to reflect these

new realities. The development of systems is typically divided into phases of system

specification, system verification, component partitioning, simulation, implementation,

and validation, before the delivering of the final product.

1.1 Problems in design of computer systems

Designing computer systems requires sophisticated techniques to overcome

constraints caused by the complexities of the systems under design. It is expected that

complex system design requires much time. However, to ensure that products will be on

the shelves on time, extra effort must be spent within the time available for product

Chapter 1. Introduction 2

release. There are methodologies and remedies to address the underlying issues, for

example design-gap, by adopting the use of advanced system modeling and synthesis

techniques. System models often include models of embedded and/or real-time

operating systems (OSs), to estimate and mimic dynamic behaviors in the final systems.

Because of the ever-increasing application domains of computer systems and time-

to-market constraints, and in order to maintain maximum productivity, current design

methodologies focus on how to achieve the final implementation in the shortest time

with the minimum resources. There are many kinds of computer systems, performing

different dedicated operations. For example, automation (in manufacturing),

transportation (automotive applications and traffic control), communications (e.g.

mobile phones and internets), and healthcare (electronic aids and life support) are

typical applications of computer systems. The design approaches and tools available are

often application-field specific. Such approaches sometimes come from experience; i.e.

they are heuristic. Designs following such methodologies may work without any

problem for long periods of time, but because of a lack of theoretical background and

support for analysis, hidden problematic issues are hard to detect and locate when error

occurs. Safety and liveness are two important aspects of critical systems; such systems

need to be designed with care and should be tolerant to unforeseen events (fault

tolerant). Without proper theoretical-based reasoning, designing critical systems may be

just like filling visible holes which is an unreliable approach. For instance, thread-based

designs in software programming are error prone [Oracle, 1999], [Lee, 2006], and

difficult to program [Serrano et al., 2004] because they rely on the experience and care

of the designer.

Furthermore, as technologies advance, the performance of processing units (i.e.

processors) and available connectivity (e.g. high speed networks) are widely available.

The scope of a system under design is no longer a single chip or computer but also

networks of distributed computational nodes. The size of each computational node

varies according to its requirements and the operations that it performs. However, the

design still depends on the background of the designer, so that one may not have the full

picture of the system under design, and the coverage of the thinking is just not wide

Chapter 1. Introduction 3

enough. The consequences may not be just the failure of the system, but also of

unpredicted design time and financial losses.

1.2 Tools based on theory to provide correct designs

Tools and methodologies based on theories have been proposed and developed

widely to provide designers peace of mind when carrying out design tasks and decisions.

The approaches are mostly application-specific, similar to heuristic methods but better

in the sense that potential problems can be found with given limitations and

requirements. Limitations in methodological approaches are not necessarily drawbacks

for the designs, but can sometimes be ground rules to prevent incorrect plans and

strategies which may lead to a disaster in the design process.

The focus of this thesis is to address the issues and to provide the tools with

theoretical basis to design concurrent systems with less design effort to ensure both the

safety and the correctness of the design. It is also to enable the linkage of such tools to

other application domains with concurrency. Such tools are also suitable but not limited

to system-level design, containing components that are executed concurrently.

Existing theoretical methodologies for designing systems with concurrency are

based on various models of computations (MoCs). MoCs such as synchronous

languages (ESTEREL [Berry & Gonthier, 1988], LUSTRE [Caspi et al., 1987], and SIGNAL

[Benveniste et al., 1985]), process calculi (e.g. Communicating Sequential

Processes/CSP [Hoare, 1978]) and networks (e.g. KPN [Kahn, 1974]), globally

asynchronous and locally synchronous (GALS [Chapiro, 1984]) systems, and process

mobility (such as pi-calculus [Milner, 1999] for dynamic systems) have been proposed

and developed. Some of these approaches, such as process calculi and networks, are

purely theoretical and lack support in design systems. On the other hand, system level

design languages (SLDLs), such as SYSTEMC [OSC Initiative, 1999], have a limited

level of support for formal MoC, i.e. they are based on the discrete event MoC which

does not guarantee determinism. However, they are widely used in the design

community and also serve as an industrial standard.

Chapter 1. Introduction 4

Languages such as SystemJ [Malik et al. 2010] and DSystemJ [Malik et al., 2010]

consider both the theoretical and the practical features of designed systems and cover a

vast range of emerging systems. However, the requirement of using the Java virtual

machine as their target narrows down the door to using them in systems with limited

resources. Furthermore, existing SLDLs are closely related to programming languages

used in embedded platforms, such as C/C++, which makes the integration between

SLDLs and SystemJ/DSystemJ less straightforward.

1.3 Motivation

From current application trends and available design and implementation

approaches, it would be desirable to have a set of tools which are able to handle

concurrency based on theoretical foundations, but at the same time work closely with

existing tools to carry out system design. In order to extend the domain where current

tools can be applied effectively it is necessary to address a range of issues. A non-

exclusive list of these issues follows:

The need for tools to support formal MoC.

Synchronous languages are not suitable for a distributed platform due to the

overheads to maintaining a global sense of instance/tick. Asynchronous languages and

libraries are error prone for programming concurrency. The path adopted in this thesis is

to use the GALS MoC as the basic formal model that underpins the design approach and

tools.

The need for tools to design both control- and data-dominant systems.

Concurrency exists in the realms of both control and data domains. Handling

multiple events at the same time correctly and efficiently is required in complex reactive

systems. At the same time, multiple data streams are being processed concurrently

through the uses of multicore/multiprocessor architectures. Moreover, computer systems

(applications) are heterogeneous and consist of a mix of control and data parts.

Chapter 1. Introduction 5

The need for bridging hardware and software via extensions to operating systems.

Operating systems play the role of bridging between hardware and software

components within systems. Device drivers and firmware are parts of the operating

systems to control hardware peripherals around the processor. Extensions to the

operating systems are necessary to enable hardware/software co-design and co-synthesis

where functionalities implemented either in hardware or software are relevant to the

operating systems running between them.

Integration to current system level design language (SLDL) to help the design process.

As mentioned before, existing SLDLs lack support for formal MoCs but are popular

in both industry and academia. Developing a set of new tools does not imply re-

inventing the wheel. The proposed tools can be used to describe software behaviors and

should be able to link with current state of the art SLDLs with minimal effort.

Support for distributed and dynamic systems with a small footprint in mind.

The concept of distributed systems is not new. It is desirable to have concurrent

programming suitable for distributed systems while a specific MoC is followed.

DSystemJ and X10 [Charles et al., 2005] aim for distributed computing, yet both require

JVM, which implies higher performance underlying execution platforms. In this thesis,

a library-based framework that extends C language is proposed, implemented, and

experimentally verified, and considered as a potential solution.

Single-language approach is used to improve productivity.

Designing a system in a single language frees the designer from interfacing

components described in different languages which can be prone to mistakes.

Synchronous languages such as ESTEREL are difficult for describing software algorithms

and require significant efforts for either hardware or software implementation. Because

of such limitations, algorithms that perform data computations are implemented in the

other host languages such as C/C++ and are linked with the compiled synchronous

programs. Approaches such as ECL [Lavagno & Sentovich, 1999] and JESTER

Chapter 1. Introduction 6

[Antonotti et al., 2000] attempted to achieve a single language environment. However,

source codes are still required to be generated to backend ESTEREL language where

debugging is carried out.

Simulink [MathWorks, 2011] based on MatLab language, is able to provide code

generations and is very flexible for system modeling. However, it is used mainly for

system simulation.

Thus the required tools should be based on a single language. However, such a

language should still be able to provide interface to bind with other languages to ensure

interoperability. The C language is chosen as the lowest-level common denominator and

used to implement the required libraries and tools in this thesis.

Create an extension, in the form of a library, to support MoC of existing languages:

Instead of proposing another language, a library-based extension of existing

programming language is proposed and introduced. Such an extension is able to fulfill

and support the semantics of GALS and DGALS MoC, which have been provided in

languages such as SystemJ [Malik et al. 2010], DSystemJ [Malik et al., 2010], and other

related languages such as synchronous languages ESTEREL [Berry & Gonthier, 1988].

By following specific MoC, the behaviors of systems modeled in the proposed

extension will be deterministic and predictable.

1.4 Research contributions

The research contributions of this thesis are illustrated as two layers of the inner

circles in

Figure 1.1The innermost circle in Figure 1.1 represents the key developments of

language extensions that enable a design underpinned by a GALS MoC, as well as the

methodology to include operating system models in more complex designs. The second

layer extends and utilizes the results of the inner layer to create frameworks to improve

design productivity in a complex system design. The outer layer presents the

fundamental concepts and related approaches that are analyzed and combined into the

results of the thesis.

Chapter 1. Introduction 7

OS modeling is first carried out to pinpoint the required services and programming

support for synchronous languages in system level design, and which consider both

software and hardware components in the system. Derived and developed from these

concepts, libGALS is implemented as a library, based on the basic services provided by

the underlying operating system. The DesignGALS framework merges the works of

both OS modeling and libGALS to perform system-level design. Similarly, libDGALS,

which is a further enhancement and extension of libGALS, supports programming of

dynamic GALS systems and provides the mechanisms to model and design distributed

systems in a higher level of abstraction.

libGALS

DGALS

Framework

DesignGALS

Framework

OS

Modeling

libDGALS

System

Level

Design

and

Modeling

Synchronous

Languages

GALS

MoC

Dynamic Systems

and Process Mobility

Figure 1.1: Contributions of this thesis in relation to other work

Chapter 1. Introduction 8

1.5 Thesis organization

The rest of the thesis is organized as follows:

Chapter 2 gives an overview of the related work. It introduces the motivation,

contribution and the structure of the thesis. Underlying theoretical and practical

concepts relevant to the thesis are given in this chapter. An overview of basic and

essential background along with related works is given in Chapter 2, so that the reader

can understand the context in which the thesis was written.

Chapter 3 introduces the basic principles of developing computer systems in a

staged design flow; collection of design models used in different design phases is

presented. SYSTEMC is used as the main system-level design language (SLDL)

throughout this chapter and this thesis. Methodologies of modeling software

concurrency are also discussed and investigated. A system model that consists of

software processes, OS, and hardware components such as data memory and peripherals

is proposed. The behaviors of processors in the system under design are presented in a

higher level of abstraction through the models of software processes and OS, in contrast

to a lower level description such as RTL or simulation performed by ISS. The OS model

is the main focus and is used to explore possible run-time supports to describe

synchronous concurrency, the basic building blocks of GALS systems.

The findings in Chapter 3 lead to the development of libGALS detailed in Chapter

4, where a library-based approach to describe GALS programs, libGALS, as the run-

time support to OSs, is presented. The application programming interface (API) and the

internal data structure of libGALS are detailed in this chapter. Examples of constructing

a GALS program are given, followed by the experiments and results obtained by

comparing libGALS to SystemJ, a language and compiler-based approach for designing

GALS systems.

Chapter 5 presents a framework that integrates libGALS and SYSTEMC, called

GALS-Designer. GALS-Designer enables the system designer to describe the overall

system consisting of GALS software and hardware components in the same SYSTEMC

model. How libGALS is integrated with SYSTEMC is detailed in this chapter. System

Chapter 1. Introduction 9

models constructed using GALS-Designer benefit from using a multicore host to obtain

simulation speed-up compared to conventional system models in pure SYSTEMC.

GALS-Designer allows the instantiation of multiple libGALS programs in a system.

Because simulations of GALS programs can be un-timed functional or approximate-

timed by having timing annotations, GALS-Designer is suitable in various design

phases of the design flow. Case studies of using GALS-Designer are presented and are

followed by evaluations of the GALS-Designer.

Based on the introduction to libGALS in Chapter 4, Chapter 6 presents its extension

to libDGALS, that clock domains can be created dynamically in distributed networks.

This extension to libGALS requires dynamic library-loading and the ability to operate

over a network, available in modern operating systems. The libDGALS is implemented

according to the Dynamic GALS (DGALS) MoC, and is the backbone of the

DynamicGALS framework. The internals of libDGALS will be addressed in Chapter 6,

along with case studies and comparisons with other relevant approaches. Corresponding

to GALS-Designer in Chapter 5, in which libGALS programs are instantiated statically

in the elaboration phase of the SYSTEMC simulation, clock domains in libDGALS

programs are created dynamically at run-time.

 With Chapter 7, the thesis concludes by summarizing the advantages of the overall

framework built around the libGALS library and run-time support to C language. Future

directions are also presented.

Chapter 1. Introduction 10

2222
2. 2. 2. 2. BackgroundBackgroundBackgroundBackground and related worksand related worksand related worksand related works

Background information required for a clear view of this thesis is provided in this

chapter. A general overview is given to understand the later chapters. Section 2.1 gives

brief descriptions of concurrency in computer system design. Typical elements of

computer systems are briefly described in Section 2.2. Concurrencies of computer

systems are detailed in Section 2.3. This is followed by discussions of models of

computations (MoCs), languages, and libraries for system design in Section 2.4.

Sections 2.5 to 2.13 give further insights into the current state of the art, leading to the

approach taken in this thesis, briefly detailed in Section 2.14.

2.1 Types of computer systems

Computer systems come with different flavors according to different characteristics

of their requirements. They can be categorized as ‘transformational systems’, ‘reactive

systems’ [Harel & Pneuli, 1985], and ‘interactive systems’ [Raymond et al., 1998]

according to how they behave in relation to the external environment.

Chapter 2. Background and related works 12

Transformational systems, also known as data-dominated systems, operate at their

own speeds, which can be periodic or aperiodic. These systems usually have data

arriving at regular intervals and the information they carry is more critical than their

time of arrival. Signal processing is an example of such systems. A compiler can be

seen as an example of an aperiodic transformational system. The time that a

transformational system takes to complete given tasks depends on the complexity of the

computation and how powerful the underlying computer system.

Reactive systems, on the other hand, operate at the speed of the environment,

having to respond to events from the environment continuously and fast enough, i.e.

before the next event occurs. Being control-dominated, they are suitable for control-

based applications such as automotive systems, robots and many other systems.

Therefore logical (how to behave) and temporal (when and how fast to behave)

correctness of such systems is important.

Interactive systems respond to the environment similarly to reactive systems, but

perform at their own speed as transformational systems. Personal computers are

examples of interactive systems, where users can be seen as the environment which

provides inputs; the outputs (e.g. display and sound) are produced when the

computation is finished depending on how fast the systems are.

A computer system can have characteristics from a mixture of these three types of

systems. Heterogeneous systems are typically named after the combination of control-

dominated and data-dominated systems [Radojevic et al., 2006].

2.1.1 Embedded systems

Embedded systems are computer systems which deal with externally or internally

generated events, similar to reactive systems, in synchronous or asynchronous fashion.

Events can occur either externally, such as a temperature variation detected by the

dedicated sensor, or internally, such as generated time-outs. Embedded systems usually

perform in an interchangeable and non-terminating fashion. The major markets of

embedded systems include applications in automotive control (steering control, brakes

control, radio navigation, doors control, and suspension control, etc.), communications,

handheld devices, or aerospace applications [Stepner et al., 1999].

Chapter 2. Background and related works 13

2.1.2 Real-time systems

Computer systems that require attention to complete given tasks within pre-

determined timing constraints are real-time systems. These are further categorized into

two groups: (1) hard real-time systems and (2) soft real-time systems [Lab, 1999].

Timing constraints must be fulfilled precisely at all times to prevent system failure in

hard real-time systems. Concurrent behaviors within hard real-time systems are crafted

carefully with approaches to ensure that critical timing requirements are met.

Applications of hard real-time systems include safety-critical systems such as air-bags

used in automobiles.

In contrast, soft real-time systems may not fail or can recover if failing to respect

the timing specification. Applications requiring actions taken in a timely manner, such

as the temperature adjustment of air-conditioning systems, are categorized as soft real-

time systems.

2.2 Hardware and software in computer systems

Computer systems are becoming very complex and challenging to design, and the

process is spread over a number of stages, such as specifying systems, design

exploration, implementation, and verification. Because computer systems are often a

composition of concurrent behaviors, these behaviors are represented in different forms

at each design stage.

A computer system is generally implemented as a combination of hardware (HW)

and software (SW). Concurrency of such systems is also implemented in both domains.

Hardware circuits are concurrent in nature, while software concurrency is achieved

through the uses of compile-time techniques or run-time support from operating systems

(OS).

Having concurrency in mind in designing computer systems is a must. Concurrency

enables designers to modularize a system to carry out designs in a systematic and

hierarchical manner. However, handling interactions between concurrent behaviors can

be sometimes tedious, especially when the number of behaviors increases. For example,

Chapter 2. Background and related works 14

each behavior, created to achieve a specific goal of the system requirements, may

conflict with other behaviors of the same system. Even if all behaviors can co-exist, the

timing, i.e. the order of the behaviors to perform, may lead to unwanted results which

violate the system requirements. Furthermore, behaviors created in the early design

stages may not be realistic in the implementation stage. For example, a very fine grain

of concurrency in software may introduce a heavy overhead of context switching which

impacts the performance of the system. However, coarse-grain concurrency is often

identified in the specifications (can be formal or informal). Dependencies may occur

between behaviors so that in an extreme case every behavior is dependent on another in

the system. Therefore real parallelism does not exist to assist the designer in exploring

the maximum benefit of platforms such as multicore or distributed architectures.

Methodologies have been introduced to help designers to define and implement

concurrency of computer systems in an appropriate manner. Related theories and

concepts of these methodologies are detailed in the following sections.

To understand the methodologies of designing computer systems, one must know

how computer systems are constructed. Their elements in computer systems can be

categorized into software and hardware. Functionalities, according to their nature, are

mapped to software or hardware taking into account several considerations such as

performance and available resources.

2.2.1 Hardware in computer systems

Having hardware components in computer systems is obvious, since a computer is

itself hardware. A hardware component can be implemented in analog or digital fashion.

The latter is the focus in this thesis. Hardware components in computer systems can be

‘general purpose’ or ‘application specific’. General purpose hardware components are

those common in most systems, and follow various interfacing standards so that they

can be integrated with minimal effort. Application-specific hardware components,

which perform required specific functionalities, are integrated according to the systems'

needs.

Processors, sometimes called ‘processing elements’ (PEs), are examples of

hardware components. Therefore PEs can be categorized as general purpose, such as

Chapter 2. Background and related works 15

embedded processors, and application specific, such as digital signal processing (DSP)

processors; they differ by the computations performed. PEs can be facilitated with

specialized functionalities, in the form of built-in hardware or ‘co-processors’, to

enhance processing power, e.g. multicore architecture and floating point units.

Directions of how computations are performed within processors are stored as software

components, which will be detailed in the next section. Processors can be considered as

the middle layer between other hardware and software components.

There are a number of ways to design hardware components. As technology

advances, hardware design strategies evolve so that designers can describe hardware in

less complex ways. Digital hardware systems are described nowadays using higher level

languages called ‘hardware description languages’ or HDLs, such as VHDL [Lipsett et

al., 1986][IEEE, 2000] and Verilog [IEEE, 2001]. Each hardware component has its

dedicated behavior which can sometimes be further refined into sub-behaviors. A

functionality of behaviors can be sequential or concurrent. In this thesis, behaviors and

sub-behaviors are considered hierarchical and mostly concurrent, and are generally

called ‘hardware process(es)’ in HDLs.

2.2.2 Software in computer systems

The cost of the development of embedded-systems software has an increasing trend

with the evermore significant contribution to the total cost of system development

[Allan et al. 2002]. Sequential behaviors are realized in software components, or

software, and are executed by PEs. Software is described by using programming

languages which can be high level such as Java [Arnold et al., 2000] and C [Ritchie et

al., 1975] / C++ [Stroustrup, 2003], or low level such as assembly, in the form of

‘software source codes’. These latter are compiled into ‘software programs’ (or binaries)

which are usually instructions of the PEs or virtual machines (e.g. JVM of JAVA). A

software program that resides in storage such as hard-drives or memories can be

accessed, loaded, and executed by the PE, as a ‘software process’, or just ‘process’ for

short. The actual execution of a software process, in PE, can be out-of-order or parallel

depending on features of the PEs. However, in this thesis, it is considered that a

software process is executed sequentially, yet this does not stop multiple software

Chapter 2. Background and related works 16

processes being executed at the same time. Parallelism, or rather concurrency, of such

processes is achieved via the use of operating systems (OSs).

2.2.3 Software concurrency and operating systems

Having multiple software processes running on the same processor is not new.

Similar concepts appeared as early as the 50’s when multiprogramming systems were

developed [Rochester, 1955]. The software that coordinates multiple programs running

together is known as an operating system (OS). OSs came with very basic

functionalities in the earlier years, such as support for creation and deletion of software

processes, and were later enhanced with other features to provide services, e.g.

communication and synchronizations between software processes.

There are many flavors of OSs, characterized according to target applications

requirements; for example timing constraint (required to finish a specific computation

with given time, also known as ‘real-time’), size (the available storage for both

programs and the OS), and available executing platform (single or multiple processor

architectures).

With respect to the timing aspect, OSs are differentiated by how software processes

are dispatched by the schedulers. These follow different scheduling policies and

implementation so that the OSs can be cooperative (processes release use of the

processor voluntarily), pre-emptive (execution of software processes can be interrupted

by the OS), and real-time (process executions are constrained by given times).

Executions of some real-time systems are supported by real-time OS, or ‘RTOS’. An

OS scheduler can be equipped with more than one scheduling policy, such as earliest

deadline first (EDF), rate monotonic (RM), round robin (RR), and cooperative

scheduling, to achieve higher adaptivity.

In terms of size, ‘embedded OSs’ are used in the embedded applications in which

storage is usually limited. To achieve a smaller size, these OSs can be modular (can be

stripped down) and/or statically linked variants of general OSs, for example eCOS

[Massa, 2003] (in relation to Linux).

The number of software processes running in a truly parallel manner depends on the

target execution platforms on which suitable OSs are used. For single processor

Chapter 2. Background and related works 17

architecture, software processes are scheduled to obtain virtual parallelism to achieve

better responsiveness and better use of inputs and outputs (I/Os). When multiple cores

or processors are available, the underlying OS is then able to dispatch multiple

processes running at the same time (true parallelism) to achieve performance gain.

Communication and synchronization are also managed by the operating systems to

handle dependencies of software processes running in parallel.

Even though OSs and the categories to which they belong are different, this does

not infer that the types of OSs have to be exclusive. For instance, an embedded OS does

not necessarily need to be a real-time OS. Similarly, a desktop OS, such as Linux,

provides real-time scheduling mechanism when required by the applications.

Each software process can be further composed from a number of threads, which

are concurrent. Threads are light-weight processes [Bovet et al., 2002] which usually

share the same address spaces; i.e. they operate in the same area of memories, in

contrast to processes which have their own memory spaces. Threads can be seen as a

fine-grain of concurrency within coarse-grain concurrent software processes. Executions

of threads are different from one implementation of OS to another. Threads can be

implemented at kernel-level or user-level. The former are mapped to processes managed

by the OS scheduler, while user-level threads are mapped to a single process whose

internal scheduler is governed by specific libraries, or implemented by the designer. For

instance, pthread [POSIX, 2009] is a library implemented by using kernel-level thread;

on the other hand, GNU pth [Engelschall & Pth, 2006] operates at user level.

In some embedded OSs, such as MicroC/OS-II [Labrosse, 2002], the term ‘task’ is

used to describe an execution entity. Tasks can be considered as either processes or

threads, again depending on how the OSs are implemented, i.e. tasks to share a global

address space or not. Throughout the thesis, the terms ‘process’ and ‘threads’ are used

to differentiate the memory model of the concurrent execution entities.

Hence, important concepts to provide software concurrency by OSs are as follows:

1. Critical section (CS) - also known as a critical region where a process will

not be interrupted when entering the CS.

Chapter 2. Background and related works 18

2. Multitasking and scheduling - the scheduling is to provide concurrent

process executions to prevent monopoly over, or starvation of, resources.

3. Context switching and interrupt – context is the snapshot of the processor

state, which represents the status of the current executing processes. Context

switching is required when process scheduling/switching occurs.

Conventional processor provides an interrupt mechanism to store process

context, where OS is responsible to arrange the location where the process

context is saved.

4. Communication and synchronization – since processes are not only

independent of each other but most often heavily interdependent, features

like communication and synchronization are required.

Other OSs can be further application specific, such OSEK/VDK for automobiles

[OSEK, 1997]. Further details of OSs can be found in classical texts such as

[Silberschatz & Galvin, 1998].

Concurrent software behaviors may be sequentialized into a static single thread

with dependencies between processes resolved in advance. One such approach is used

in synchronous languages, e.g. ESTEREL [Berry & Gonthier, 1988]. In this case

operating systems are not required for handling concurrency but may still be required

for interactions with I/Os [Andre & Péraldi, 1993].

Software concurrency with the help of the OS plays an important role in this thesis.

The libGALS and libDGALS, presented in Chapter 4 and 6 respectively, are libraries

implemented using features (locking and scheduling) provided by the OS and benefiting

from the multicore/multiprocessor architecture when supported by the OS.

2.3 Concurrency in system design

Designing systems start from specifications at a coarse-grain level of details, to a

fine-grain level in implementation. A list of the characteristics of a system, e.g. how it

behaves, is given in the specification of each system. Behaviors specified in this level of

abstraction are not finalized and are implementation dependent. As an example, if two

Chapter 2. Background and related works 19

behaviors are concurrent, how they are scheduled is based on which scheduling policy

to use, is unknown in the specification. Therefore, concurrency in the specification is

‘partially ordered’; that is, the order of the behaviors may be neither deterministic nor is

final.

For example, in systems with a single processing unit, and making use of OSs, each

behavior is ordered individually. The scheduling of behaviors sequentializes the

activities of behaviors. Such sequences of how behaviors are scheduled may vary from

one OS to another, or even in different scenarios with the same OS. In multicore

systems, behaviors with dependencies still have a partially ordered relationship, while

the independent computation will have no order at all.

Partial order of concurrency gives expressiveness to system specification, so that it

is more flexible to laying out concurrent behaviors in a system under design. Behaviors

at specification level can be later refined by following specific rules to achieve

deterministic results. These rules, known as ‘model of computation’ (MoC), will be

described in the later sections. Note that it is desired to still have non-deterministic

concurrency in the implementation for the following reasons:

1. Limitation by the architecture: components in a system running in

distributed networks act independently in general, and communicate with

each other when required. These components do not share a global view of

the system, to reduce unnecessary overheads in maintaining such a view.

2. To achieve dynamicity: a system may react to the environment or make a

request to the environment to have behaviors activated at run-time. That is,

the number of behaviors running at a given time is not fixed and not

predictable. This enables systems to have both dynamicity and robustness.

The GALS-Designer framework detailed in Chapter 5, empowered by the libGALS

library and SYSTEMC system level designing language (SLDL), provides the means of

describing software concurrency in Globally Asynchronous Locally Synchronous

(GALS) MoC (from libGALS) with the ability to specify partial concurrency (from

SYSTEMC). The DynamicGALS framework in Chapter 6 further provides the ability to

program distributed systems.

Chapter 2. Background and related works 20

2.4 Model of computation, languages, and libraries

2.4.1 Model of computation

‘Model of computation’, or ‘computational model’, describes how behaviors are

performed and how they communicate with each other in a system (composition of

behaivors). Aspects of MoC include computational complexities, compatibilities, and

language semantics. MoCs are not limited to being described in a purely mathematical

manner. Various languages are proposed to work with dedicated MoCs to describe

systems. ‘Formal languages’ are based on rigorous mathematical models, and therefore

analysis can be made to explore their characteristics. On the other hand, ‘informal

languages’ do not follow specific MoCs and extra effort is required to ensure the

correctness of the designs. MoCs can be heterogeneous, i.e. merging concepts of various

MoCs and presented in a unified view as in [Lee & Sangiovanni-Vincentelli, 1998].

2.4.2 Languages as design tools: concepts and backgrounds

Languages can also be ‘implemental’ or ‘theoretical’. Implemental languages, such

as programming languages and hardware description languages, have compiler support

to generate implementation in software or hardware from the source codes (or the

source descriptions) of the design. In contrast, theoretical languages can only be

expressed in a textual manner, but have a solid theoretical background to analyze the

designed systems. Note that theoretical and implemental languages are not mutually

exclusive; that is, compilers can be implemented for a theoretical language to make it an

implemental one. Languages can be seen as tools to help system design, and are

represented in many forms:

1. Mathematical formalism: alphabets (symbols) and strings of the language

are defined, along with a set of the fundamental (kernel, or logical axioms)

of the language. The fundamentals are further extended (or substituted) in a

logical and mathematical manner to form a complete syntax of the language,

for instance, functional programming languages, which are based on λ-

calculus [Church, 1932]. Examples of such languages include ML (e.g.

Chapter 2. Background and related works 21

STANDARDML [Milner, 1997]) and HASKELL [Jones, 2003]. Languages like

ESTEREL [Berry & Gonthier, 1988], LUSTRE [Caspi et al., 1987], and SIGNAL

[Benveniste et al., 1985] follow ‘synchronous formalism’, which is closely

related to the GALS MoC used in this thesis.

2. Graphical representation: a set of graphical elements, such as nodes

(vertices), arcs (edges), and labels, are used to construct a language. The

rules of connecting these graphical elements are defined as the syntax of the

language. Examples of languages with graphical representations are

STATECHARTS [Harel, 1987], Kahn process network (KPN) [Kahn, 1974],

and Petri nets [Petri, 1962].

3. Programming languages: can be general or application specific. General

programming languages, such as C (which is an ‘informal language’), are

suitable to describe systems in various application domains. Application-

specific languages are designed for particular domains. For instance,

synchronous language ESTEREL targets reactive systems.

Compiler/translator application-specific languages may generate codes in

general programming languages which often have portability in mind.

Programming languages also come with different flavors, e.g. ‘imperative’

(closely related to state-based formalism, such as C/C++ and JAVA), ‘data-

flow’ (used in signal processing, such as SIMULINK), and ‘functional’ (as

afore- mentioned, e.g. HASKELL).

Languages can be presented in combinations of forms. For instance, SIGNAL is

based on synchronous formalism, and can be presented in a graphical manner as data-

flow, relational, and declarative [Le Guernic et al., 1991]. SIGNAL is implemental and its

compiler generates codes in C, FORTRAN, and OCCAM [Benveniste & Berry, 1991].

With the help of ‘compilers’ and ‘translators’, the source code in one representation

can be used to produce the resulting code in another. The differences between compilers

and translators can be summarized in the following:

Chapter 2. Background and related works 22

1. A compiler parses the source codes of a specific language, and uses an

intermediate format to store the parsed result. The structure of the

intermediate format is different from the source code, e.g. imperative style

source codes are stored in a tree-structured control-flow representation.

Instead of using the term ‘compiler’, ‘synthesizer’ is used in digital

hardware development, which translates higher-level description of

hardware to lower-level implementations on FPGAs/ASICs.

2. A translator provides direct mapping from the source language to the

destination language. When direct mapping is not available, substitutions or

macros from destination languages are used.

2.4.3 Library based approach

Software libraries, or ‘libraries’, are implemented at the top of the programming

languages. Libraries take advantage of the existing language so that it is not necessary

to design a new compiler. Run-time supports provided by libraries have more

flexiblility than static checking in a language-based approach. It is also possible to bind

(obtain help) with other libraries to merge different designing concepts. A library can be

implemented according to a specific MoC or multiple MoCs. Even though libraries do

not enforce designers to construct a correct program as a compiler does, they are still

able to offer extra features, in terms of programming constructs, to reduce designers’

efforts in describing systems in raw source codes which are error prone.

2.4.4 Current state of the art and approaches

MoCs, languages, and libraries have been proposed and developed to cope with

concurrency in designing hardware, software, and overall systems. Some examples of

MoCs and corresponding developments are as follows:

1. Discrete event (DE): this is generally used in hardware description

languages (HDLs), and will be detailed in Section 2.5.

2. System-level design languages (SLDLs): these are dicussed in Section 2.6

and can be used to describe systems in different levels of abstractions. It is

also possible to generate software and hardware from SLDLs.

Chapter 2. Background and related works 23

3. Process calculi and process networks: these are used to describe

relationships between concurrent processes and will be described in Section

2.7.

4. Actor-based models: that describe autonomous concurrent entities and the

interactions between them. They may or may not follow a MoC but are

widely used in different fields, as described in Section 2.8.

5. General programming languages with support to describe concurrent

processes: these are made as built-in constructs to the language itself, or

libraries of existing languages to provide concurrency. Some of the

programming languages borrow the concepts of other MoCs as part of their

features. See Section 2.9.

6. Synchronous and reactive MoCs (S/R): these target reactive and time-

critical systems. Determinism is a key factor of these MoCs. Extensions and

relaxations to them have been proposed for wider uses. S/R MoCs and

developments are detailed in Section 2.10.

7. Globally asynchronous locally synchronous (GALS): this is used in both

hardware and software domains. GALS can be seen as a close relative to the

S/R MoC, and will be presented in Section 2.11.

8. Dynamic GALS (DGALS): this is a newly proposed MoC which merges

concepts from the Actor-based model and the GALS model. A brief

description of DGALS is in Section 2.12.

In this thesis, libGALS and libDGALS are libraries implemented by following

GALS and Dynamic GALS (DGALS) MoCs to enrich general programming language

(in this case, C).

2.4.5 Synchronous versus asynchronous

The terms ‘synchronous’ and ‘asynchronous’ are used widely in the field of

designing computer systems and MoCs. In this section, the terms are further described

and are used throughout the thesis to prevent ambiguity. These terms have been adopted

in various scenarios:

Chapter 2. Background and related works 24

1. How concurrent behaviors are carried out: e.g. synchronous concurrency

and asynchronous concurrency. In synchronous concurrency, concurrent

behaviors follow the same logical time reference, similar to clocks in digital

hardware design. Synchronous languages are developed to target

synchronous concurrency and are detailed in Section 2.10; asynchronous

concurrency is more general. Most of operating systems, programming

languages, and libraries which offer process creations and support threading

follow the model of asynchronous concurrency. In this thesis, synchronous

and asynchronous are used to present concurrency in MoCs.

2. How communications are made: e.g. synchronous send-and-receive in

contrast to asynchronous send-and-receive. Synchronous communication

can sometimes be referred to rendezvous, where both the sender and

receiver are blocked until the ealier communication has been completed.

Asynchronous communication, which incorporates the uses of buffers, may

not stop (block) the sender and receiver during the communication. There

are variants of asynchronous communication; for example the sender and

receiver may be blocked when the buffer is full and empty respectively. The

‘send-and-forget’ model does not block the sender at all, nor does guarantee

that the data sent will be received.

3. How function calls are issued: e.g. synchronous function call and

asynchronous function call. Synchronous function calls will block the

execution of the caller until the results of the call are returned. General

programming languages implement synchronous function calls to

immediately evaluate the outcome so that the next operations, which may

rely on the outcome, can proceed. On the other hand, the caller continues to

run after issuing the asynchronous function call. The caller may be blocked

in the future when the return value of the function call is required.

Asynchronous function calls are often adopted in the distributed computing

environment. An asynchronous function call is close to the concepts of

‘future and promises’ [Liskov & Shrira, 1988]. The difference between

Chapter 2. Background and related works 25

(a)synchronous communication and function calls is that communications

are performed by both parties without a given order and can be active, while

the called party (the function or the required service) is passive.

Models of concurrency, communication, and function calls may not be directly

related. For example, in synchronous computation, communications are achieved

through signal/event broadcasting, which is neither synchronous nor asynchronous, but

governed by the MoC so that the dependencies occurring between communications are

resolved.

2.5 The discrete event MoC and HDLs

Hardware description languages are used to specify digital hardware at a higher

level to reduce the effort of designers in constructing large digital systems. Higher level

descriptions are synthesized to lower-level logic and bit-streams that will be used to

create the actual design on digital hardware including FPGA and ASIC. The level of

describing hardware components depends on the requirement of the design stages. This

enables designers to have abstract views of the system before implementing them fully,

although not every model described at a higher level is synthesizable.

Verilog [IEEE, 2001] and VHDL [Lipsett et al., 1986] are well known HDLs and

standards in the industry. The discrete event (DE) MoC is adopted by HDLs, in which

concurrent behaviors of hardware processes are represented as events and governed

according to the DE MoC.

The events are chronometric [Le Guernic et al., 2003], which means that the time of

the occurrence is attached to each event. Events are queued upon on their generation,

and are dispatched by the simulation kernel which can be made generically or to

specified target hardware. The simulation kernel has a sense of time steps. The

simulation kernel scans through the event queue to dispatch the events whose time of

occurrence matches the time steps. Further events can be populated by the dispatched

events. The dispatcher of the simulation kernel scans the queue until there is no event of

Chapter 2. Background and related works 26

the current time step left or populated, when the simulation kernel will carry out the

next time step.

DE MoC provides a way to handle concurrency. However, interleaving execution

of behaviors leads to non-determinism [Benveniste et al., 2003]. This makes DE

sometimes not suitable for modeling of critical systems.

2.6 System-level design languages

2.6.1 The need for system-level design languages

Complexities of a system can be due to interactions between behaviors and how to

implement behaviors in HW/SW components (e.g. new designs or existing intellectual

properties, IP). Other important factors in designing a system include constraints such as

the availability of resources. With the growth of design complexity of computer systems,

various approaches are proposed to increase the designers’ productivity and shorten the

time and effort between the specification and implementation of such systems.

Programming languages such as C/C++ and Java are also used for specification due

to their flexibility in describing functionalities, their data abstraction abilities, and their

huge support in the form of software libraries. At the early design stage, components

(both hardware and software) of the final system implementation might not be identified

without taking consideration of different aspects such as performance evaluation.

Similarly, hardware description languages lack the support of describing software

components of the system. It is not easy to model software concepts such as data

structure and algorithms that include recursive functions in HDLS.

Single language specification is also a need in conquering the system design

[Lavagno & Sentovich, 1999]. This leads to the requirement for a language to bridge the

design in software and hardware, as well as to have a higher level of abstraction; in

design, in this case, system-level design languages (SLDLs) are proposed.

2.6.2 System-level design languages based on existing languages

Chapter 2. Background and related works 27

SLDLs such as SYSTEMC [OSC Initiative, 1999] and SPECC [Gajski et al., 2000]

are proposed. SystemC is a library extension to C++, which provides a set of classes and

macros to empower the developer with the mechanisms to describe hardware (close to

what hardware description languages do) and software systems in a single model.

Similarly, SPECC facilitates constructs to describe systems at an earlier design phase for

both specification and system level synthesis. Differences between SYSTEMC and

SPECC are described in [Cai et al., 2003]. SLDLs come in different flavors, unlike

SYSTEMC and SPECC which are based on imperative languages; BLUESPEC is based on

Haskell and can provide different levels of abstraction.

System-level languages such as SYSTEMC and its simulation kernel follow DE MoC,

and hence it is possible to have non-deterministic behaviors between simulation runs.

However, as mentioned previously, such non-determinism also allows the model to be

described in a more flexible manner as a trade-off.

Other tools in industry adapt the single language approach to system design, such as

Synphony C from Synopsys. Synphony C is based on C/C++, by use of which

descriptions of the system are made and are compiled via the Synphony C compiler to

generate hardware in RTL and software in C.

System-level design, which relies on SLDLs, is carried out with various proposed

methodologies, detailed in Chapter 3. Descriptions of SLDLs in higher-level

abstractions are further refined, manually and/or automatically, towards the

implementation. Because SLDLs are based on existing programming languages,

interfacing between existing software libraries and other programs is viable. Simulation

approaches, which make use of simulation kernels of SLDLs and other existing

simulators, are proposed. Some commercial simulators, such as ModelSim, have the

ability to perform mixed language simulations, by having components modeled in

different languages such as SLDLs and HDLs.

2.7 Process calculi and process networks

Describing concurrency in a mathematical fashion has been developed. CSP [Hoare,

1978] and CCS [Milner et al., 1980] are two of the most notable examples of process

Chapter 2. Background and related works 28

calculi, which express how concurrent processes (in an abstract form, can be hardware

or software) evolve. Communication between processes is also presented in process

calculi, such as rendezvous in CSP. Process calculi are primitive and insufficient for an

implemental language. However, they are often implemented as features in

programming languages.

Process networks are also used to address the concurrency and interactions of

processes/behaviors (again, does not have to be a hardware or software process). Petri-

Net (PN) [Petri, 1962] and Kahn process networks (KPN) [Kahn, 1974] are examples of

such networks. Both PN and KPN are presented graphically. PN is described as a

composition of places (conditions) and transitions (or events, which are concurrent

processes). KPN is presented as concurrent processes which produce and consume

tokens to/from the unbounded FIFO buffer inbetween. PN is used to described control

(can be used to describe data) and can be non-deterministic, while KPN is for data and

is deterministic. Despite the difference in how concurrent processes are described using

PN and KPN, these process networks are based on a concept: tokens are generated by

the producers, and when enough tokens have been gathered (conditions fulfilled), the

consumer of the token will proceed (or fire).

Restrictions are made on these process networks so that they can be implemented.

For example, PN can be restricted and converted to FSM for deterministic analysis

[Peterson, 1977]. Statically schedulable data-flow (SSDF) [Lee & Neuendorffer, 2005],

previously SDF (Synchronous data-flow) [Lee & Messerschmitt, 1987], restricts the

size of the FIFO buffer in KPN so that the rate of the processes can be solved as linear

equations.

Both PN and KPN are graphical formalism, which is intuitive. However it is

difficult to manage for large scale programs [Jose et al., 2009]. Programming languages

such as LUSTRE [Halbwachs et al., 1991], Synchronous KPN [Caspi & Pouzet, 1996],

and libraries such as NRP [Boussinot, 1992] are proposed and are inspired by the KPN

with the concepts of synchrony.

2.8 Languages based on Actor-based models

Chapter 2. Background and related works 29

The Actor model was proposed in the 80s as another model of concurrency [Agha,

1985]. Actors perform at their own rate, and communicate asynchronously with each

other through sending messages that are buffered in mailboxes [Boussinot et al., 1996].

Mobile agent platforms such as JADE [Bellifemine et al., 2005], enable agents to

operate in an autonomous manner, with the ability of migration, similar to Actor-based

models. The Actor model has been implemented as programming languages, and

libraries supporting the operations of actors. Axum [Microsoft Corporation, 2008],

based on the Actor MoC, is a programming language as a part of the .Net framework.

Active Object [Lavender & Schmidt, 1995] implements the Actor model using C++.

Detailed comparisons of various related models can be found in [Nikaein, 1999]. MoC

related to the Actor-based model offers the following:

1. Asynchronous executions of actors. Each actor generally operates

independently.

2. Asynchronous and synchronous communications. There are many choices

of communication models for an actor to choose from.

3. Mobility of actors. An extension of the Actor model, actors/agents are able

to migrate to the required computation node to perform actions.

Actors/agents which are able to migrate are called mobile agents.

2.9 Programming languages with concurrency

General programming languages like C, C++, and Java are used to describe

transformational systems. Algorithms which are computational behaviors are specified

using general programming languages. Concurrent behaviors of transformational

systems are supported by the built-in constructs of the programming languages or other

means such as uses of (real-time) operating systems. Processes/threads are used to

represent the corresponding concurrent behaviors of the software. For example, user-

typed class implements Java Runnable class will be viewed as a thread to the underlying

Java program. Similarly, threads or processes (of programs) can be implemented in C

and are governed by the operating systems. Communications between concurrent

Chapter 2. Background and related works 30

threads and processes are achieved using shared variable or inter-process

communications (IPC), which can be both asynchronous and synchronous.

Programming languages are implemented based on different conceptual models. As

an example, general programming languages (C/C++/Java) follows the implicit ‘state-

based imperative’ style. Functional languages, such as Haskell and ML, are influenced

heavily by the λ-calculus. The concurrency provided by programming languages does

not necessarily follow any aforementioned model of concurrency; some may follow but

may not be restricted. Threads created using pthread library (or user threads available in

the ML) do not follow any MoC, and are controlled by the operating systems. This

creates a scenario that even if the program is correct, i.e. a race condition never happens,

the execution outcome may differ due to the scheduling policy which might be affected

by the load of the machine at various times. In this case, MoCs are enforced through

programmers’ efforts or the uses of libraries that provide programming interfaces to

ease the load of the designer.

Some programming languages are built on top of existing ones through adding

constructs of concurrency, which introduce new syntax to the base language, to support

the desired MoCs. Compilers then map the introduced construct to codes in the base

language or to other languages. For instance, Scala [Odersky et al., 2004] which

provides the flavor of functional programming based on imperative Java language,

which supports concurrency in the Actor model and CSP. In contrast, Erlang

[Armstrong et al., 1993], which is also based on the Actor model and CSP MoC, is not

based on any language.

2.10 Synchronous MoC and approaches

2.10.1 Introduction of synchronous and reactive programming

Non-determinism, which can be observed in concurrent software, can be caused by

temporal logics [Berry & Gonthier, 1988] and race conditions [Lee, 2006], which are

introduced with uses of operating systems. Implementations of synchronous languages

do not rely on conventional mechanisms such as operating systems, but respect the

Chapter 2. Background and related works 31

‘synchrony hypothesis’ to ensure determinism. Software development benefits from

synchrony hypothesis, implemented through uses of synchronous languages, are

summarized in [Benveniste & Berry, 1991], [André, 1996], [Halbwachs, 1998],

[Benveniste et al., 2003], and [Potop-Butucaru et al., 2005].

In synchrony hypothesis, input events are gathered at the beginning of each tick of

logical time and corresponding outputs are generated in ‘zero-time’. Concurrent

behaviors of synchronous systems are carried out in a number of discrete steps, called

reactions, instants, or ticks. Barrier synchronizations are exercised by each concurrent

behavior at every tick. Communications between behaviors are via ‘signal (or event)

broadcastings’. Pre-emption is one of the key control mechanisms within concurrent

behaviors. Throughout this thesis, tick, signal, and pre-emption will be used as the

major terminologies with respect to the synchronous languages and S/R MoC. Mealy

machine and digital circuits generated from synchronous languages are based on

mathematical models which are deterministic and can be verified by using the technique

described in [Clarke, 1997].

Synchronous languages ESTEREL [Berry & Cosserat, 1984], LUSTRE [Halbwachs et

al., 1986], and SIGNAL [Benveniste et al., 1985] are the classical synchronous languages

that were built in the styles of imperative, data-flow, and relational languages

respectively. They are proposed to target the real-time systems by applying synchronous

hypothesis. Such a concept is closely related to that of reactive systems [Harel & Pneuli,

1985] to design systems with real-time characteristics.

Reactive languages, closely related to synchronous languages, relax the synchrony

hypothesis so that the absence of signals/events is known at the next instant/tick

[Boussinot & Dabrowski, 2006]. Reactive approaches further enhance synchronous

languages with the ability to create concurrent behaviors at run-time and to enable

distributed reactive systems dynamically.

A comprehensive, but in complete list of other synchronous/reactive families

includes: ATOM [Hawkins, 2011], ARGOS [Maraninchi, 1991], Distributed reactive

machines (DRM) [Susini et al., 1998], FAIRTHREADS [Boussinot, 2002], FUNLOFT

[Boussinot & Dabrowski, 2007], ICOBJ [Boussinot, 1996], JUNIOR [Hazard et al., 1999],

Chapter 2. Background and related works 32

LOFT [Boussinot, 2005], Lucid Synchrone [Caspi et al., 2007], Nets of reactive

processes (NRP) RC [Boussinot, 1992], POR (Programming of reactive object)

[Doumenc & Boussinot, 1991], QUARTZ [Schneider, 2009], RAMA (Reactive

Autonomous Mobile Agent) [Nikaein, 1999], REACTIVE C (RC) [Boussinot, 1991],

REACTIVE ML [Mandel & Pouzet, 2005], Reactive Object Model [Boussinot et al.,

1996], REACTIVE SCRIPTS [Boussinot & Hazard, 1996], REACTIVE SML [Pucella, 1998],

REJO/ROS (Reactive Java Object) [Acosta-Bermejo, 1999], SL [Boussinot & De

Simone, 1996], SUGARCUBES [Boussinot & Susini, 1997], and SYNCCHARTS [André,

1995].

2.10.2 SW and HW implementations of S/R approaches

Software implementation of synchronous languages can be categorized by how

synchronous programs result from the original system descriptions in synchronous

languages: (1) language-based, and (2) library-based. In language-based approaches,

synchronous descriptions are compiled into several intermediate representations which

are used to generate software source codes in host languages such as C, or directly to

the platform assembly or machine codes. Host language source codes are then compiled

into synchronous programs through use of the compiler for the target platform. On the

other hand, library-based approaches are supported by the available primitive constructs

provided by existing programming languages, and are added as the extensions to these

languages in the form of function calls (or macros) as interfaces. Synchronous

descriptions using these interfaces are compiled and are linked with the library to

produce the target binaries.

As an example of compiler-based language, ESTEREL has a number of developed

compilers with different compilation techniques such as ESTEREL v3 compiler [Berry &

Gonthier, 1988], v4 [Berry, 1999], v5 [Berry, 2000], Columbia Esterel Compiler (CEC)

[Edwards, 2002], SAXO-RT [Closse et al., 2002], and Potop-Butucaru’s compiler

[Potop-Butucaru & De Simone, 2003], to sequentialize the concurrent behaviors of

ESTEREL description into a static single-thread program.

Examples of library-based approaches are REACTIVE C, JUNIOR, and SUGERCUBES.

REACTIVE C provides extensions to C to model synchrony. Concurrency within

Chapter 2. Background and related works 33

REACTIVE C is sequentialized in the textual order of the system under design [Boussinot,

1991]. SL can be firstly translated to REACTIVE C then translated to C. Similarly,

JUNIOR extends Java with dedicated JUNIOR kernel to support reactivity and synchrony.

SUGARCUBES is close to JUNIOR, comprising a set of JAVA class to program

synchronous reactive systems in JAVA .

Implementing graphical synchronous languages via intermediate representations or

through extensions to existing programming languages exercises the mixture of

compiler-/translator- and library- based approaches. For example, SYNCCHARTS is

translated to ESTEREL [André, 2003] and then compiled into C [von Hanxleden,

2009][Traulsen et al., 2011]. ICOBJ is implemented based on SUGARCUBES/JUNIOR and

REACTIVE SCRIPTS.

In order to execute synchronous software programs more efficiently, hardware

enhancements and specialized processors are proposed such as REFLIX [Salcic et al.,

2004], REMIC [Salcic et al., 2005], EMPEROR [Dayaratne, 2004][Yoong et al., 2006],

KEP3a [Li et al., 2006], BAL virtual machine [Plummer et al., 2006][Edwards & Zeng,

2007], and STARPro [Yuan et al., 2009] for executing ESTEREL. Entities described in

synchronous languages can be compiled into digital circuits based on techniques

presented in [Berry, 1992], [Berry, 1999], [Malik, 1994], [Shiple et al., 1996],

[Schneider, 2000], and [Edwards, 2003]. Hardware and software co-synthesis of

ESTEREL also exists such as [Gädtke et al., 2007] where hardware implementation of

synchronous reactions communicate with software implementing counterparts executed

in the KEP processor.

The concepts of synchrony and reactivity have been used in fields such as

multimedia and graphical system design. Examples include: Audio language CHUCK

[Wang et al., 2003], Reactive animation [Efroni et al., 2005] with frontend of Flash and

backend of RHAPSODY [Gery et al., 2002] which is based on STATECHARTS.

2.10.3 Other related approaches

ECL [Lavagno & Sentovich, 1999] and JESTER [Antonotti et al., 2000] are

ESTEREL–like extensions to C and Java, respectively. Use of translators is adopted to

separate the computational and the reactive parts to C/Java and ESTEREL. Single

Chapter 2. Background and related works 34

language approaches help the designer to concentrate on programming instead of

interfacing components in different languages. However, debugging process on reactive

parts will be working on the generated ESTEREL codes which may not be easy. Proposed

support of asynchrony is via support of RTOSs and POLIS [Balarin et al., 1997],

respectively.

Because synchronous languages can be used to describe software and hardware,

using synchronous language as the backbone of the system-design framework has been

developed. For instance, a system-design framework Polychrony [Le Guernic et al.,

2003] is based on the multiclock feature of the synchronous language SIGNAL.

Systems which have components running at different clock speeds, such as

distributed systems, are also addressed in the research community. Synchronous

programs running on distributed network communicate with weak synchrony in CoReA

[Boniol & Adelantado, 1993], that is, communications via signals are delayed for one

instant, so that the overall program can be analyzed. A de-synchronization of

synchronous programs in OC (object code) format with uses of FIFO buffers is

presented in [Caspi & Girault, 1995]. De-synchronized program will be divided into

distributed components. The overall behavior of the distributed program is the same as

the original. Further discussions on distributing synchronous programs are detailed in

[Girault, 2005].

Other reactive approaches which do not follow synchronous MoC exist. Reactive

Java [Passerone et al., 1998] and Triveni [Colby et al., 1998] provide support to

program reactive systems. However, without enforcement of the synchronous MoC, the

designs will suffer in the same way as the conventional thread-based programs. SML

(state machine language) [Browne & Clarke, 1985] and CSML (compositional SML)

[Clarke Jr et al., 1991] are based on FSM to support reactive software and hardware;

however, the ability of handle data computation is absent.

2.11 The GALS MoC and related developments

2.11.1 The concept of GALS

Chapter 2. Background and related works 35

Globally asynchronous and locally synchronous (GALS) MoC have been proposed

in [Chapiro, 1984]. In the sophisticated computer systems, or heterogeneous systems,

there can be a number of processing units, such as processors integrated and interacting

with each other. For instance, System-on-a-Chip (SoC) consists of processors running at

different speeds of computation and communication [Potop-Butucaru & Caillaud, 2007].

To achieve global synchrony is impractical because the fast processor will have to wait

for the slower one to achieve barrier synchronization.

The concept of GALS is originally incorporated for use in hardware design. The

complexity and size of chip increases along with the operational frequency and

introduces problems such as higher power consumptions and clock skew of single clock

domain digital hardware. A GALS digital system is composed of different sub-systems

(clock domains) which are running at their own speeds. Examples of communication

and synchronization between sub-systems include stretched clocks, uses of FIFO buffer,

and a specialized synchronization mechanism, which are discussed in [Krstić et al.,

2007].

As mentioned in Section 2.4.5, the terms synchronous and asynchronous have been

used in different contexts and with different meanings, and hence there are variants of

GALS definitions. The concept of GALS in TinyGALS [Cheong et al., 2003], is based

on the concepts of asynchronous and synchronous function-calls. Function calls at a

global level in TinyGALS are performed through asynchronous message passing, while

intra-component communications are through synchronous function calls as in

programming languages. X10 [Charles et al., 2005], a distributed programming

language, follows the same GALS strategy as in TinyGALS.

In this thesis, the definition of GALS is based on the co-existence of synchronous

and asynchronous concurrency. The communication between asynchronous entities may

or may not follow a specific model of communication. Asynchronous communications

in GALS systems follow a deterministic model, such as CSP rendezvous, which can be

analyzed along with each synchronous compartment, as the key benefit of using the

GALS MoC.

2.11.2 GALS in the software domain

Chapter 2. Background and related works 36

The synchronous subsets of the systems benefit from the existing synchronous

languages emphasizing determinism. On the other hand, an asynchronous model is

suitable for distributed networks [Berry & Sentovich, 2000]. Languages and compilers

following the GALS concept have been utilized in software domain.

Language approaches to describe GALS systems are extensions of existing

synchronous languages, such as Communicating Reactive Process (CRP) [Berry et al.,

1993], Communicating Reactive State Machines (CRSM) [Ramesh, 1998], Multiclock

Esterel (MCEsterel) [Rajan & Shyamasundar, 2000], or as a new languages such as

SHIM [Edwards & Tardieu, 2006] and SystemJ [Malik et al. 2010].

SHIM [Edwards & Tardieu, 2006] is proposed to program asynchronous systems in

which Khan network's channels with CSP rendezvous are used. The compilation process

of SHIM ensures a single writer to a variable at a time to prevent data races.

Synchronous systems can also be modeled with SHIM with suggested approaches in

[Edwards & Tardieu, 2006].

SystemJ [Malik et al. 2010] merges ESTEREL for synchrony and reactivity, CSP for

asynchronous communication, and JAVA for data computations as a whole. SystemJ

does not rely on the existing ESTEREL compiler, as ECL and JESTER do, and enriches the

Java language with programming constructs to design GALS systems. Synchronous

concurrency in SystemJ is described through reactions within clock domains, where

they are asynchronous. Communication between asynchronous clock domains is

through point-to-point channels following CSP rendezvous. As a language-based

approach, a SystemJ program that is correct with regard to a specification will also be

compiled to a correct implementation.

2.11.3 System-level design based on GALS

GALS approaches are also adopted in system-level design. POLIS [Balarin et al.,

1997] has been developed as a HW-SW co-design framework. The framework is

composed of CFSMs, co-design finite state machines, which are synchronous entities.

Thus each CFSM can be translated into synchronous languages, in this case, ESTEREL,

and can be verified [Berry & Sentovich, 2000]. CFSMs are connected to an

asynchronous network, which categorizes POLIS as a member of the GALS family.

Chapter 2. Background and related works 37

DFCharts [Radojevic et al., 2006] merges the concepts of SDF and hierarchical

FSM to have the capability of designing control- and data-dominated systems. DFCharts

adopts the GALS MoC where communication of asynchronous elements in DFCharts

follows the CSP rendezvous. Descriptions made in SLDL such as SYSTEMC and

synchronous language ESTEREL can be mapped to DFCharts [Radojevic et al., 2006]

which is formal and intuitive.

2.12 Dynamic GALS MoC

Dynamic GALS MoC, as a further extension to the GALS MoC, incorporates the

concept of pi-calculus [Milner, 1999], that is, behaviors are able to migrate from one

computational node to another, similar to mobile agents. ULM [Boudol, 2004] presents

a programming model to describe GALS systems with mobility in theory. Dynamic

Synchronous Language (DSL) [Attar et al., 2011] is proposed based on the existing

reactive approaches such as SugarCubes, ReactiveML, and FunLOFT. Synchronous

behaviors can be dynamically created on distributed sites. However, communication

between behaviors of different sites is not clearly defined.

DSystemJ [Malik et al., 2010] applies to the concept of dynamic systems which

introduce process mobility to SystemJ, so that asynchronous clock domains and

channels can be created at different computational nodes at run-time. In contrast to DSL,

the formal semantics of clock domain migration and channel communications are given.

The DSystemJ is followed to a large extent in this thesis when specifying dynamic

GALS systems and libDGALS library in Chapter 6.

2.13 The library-based GALS/DGALS frameworks

Figure 2.1 illustrates the relationships between the MoCs (in rounded rectangles)

and examples of related approaches (in ellipses). The DGALS MoC, which is

surrounded by the related MoCs, particularly GALS MoC, and its use in supporting

standard programming language C in this case, will be the focus in this thesis.

Chapter 2. Background and related works 38

Lustre

GALS MoC

Synchronous

MoC

Signal Esterel

Process

networks, e.g.

KPN

Actor MoC
CSP

Erlang

Scala

Reactive MoC

Lucid

Synchrone

Synchronous

Kahn

Network

CCS

SugarCubes

& Junior

Mobile Agent

RAMA &

REJO/ROS

pi-Calculus

DGALS MoC

Figure 2.1: Relationships between MoC and approaches

In the next chapter, the SYSTEMC SLDL is used to model software concurrency by

incorporating models of operating systems and software processes. The model of the OS

consists of services to support general asynchronous concurrency and communication,

as well as the dedicated service to support synchronous concurrency in the synchronous

language. libGALS, a library-based approach that can be used to both describe and

Chapter 2. Background and related works 39

realize GALS systems in C is then introduced in Chapter 4. As a further development,

libGALS is merged with SYSTEMC to enable modeling of entire systems that include

both models of hardware and GALS software, and this is presented in Chapter 5. This

enables the design of GALS systems in SYSTEMC. Finally, libGALS are extended with

features of dynamic creation, termination and migration of asynchronous behaviors into

the DynamicGALS framework, which enables the design of dynamic GALS systems.

The approach is detailed in Chapter 6.

Chapter 2. Background and related works 40

3333
3. 3. 3. 3. SystemSystemSystemSystem design with OS modelingdesign with OS modelingdesign with OS modelingdesign with OS modeling

A large number of computer systems have software implementation of concurrency

with support from operating systems (OS). Many of those systems do not require full

OS, but a reduced functionality that can be implemented in software, hardware or their

combination. In order to model such systems it is not only necessary to provide OS

functionality, but also the mechanisms to support software concurrency as well as

interactions with hardware. Such a model is required to be suitable in different levels of

abstraction in the early phase of design to explore the suitability of hardware/software

partitioning and implementation. This chapter presents a methodology of modeling

complete computer systems that include OS with basic functionality and extensions to

ensure safe concurrency as the center of the system model. The approach is illustrated in

comprehensive example.

The proposed modeling and design framework enables embedded software, which

includes software processes and the OS, and hardware components, to be described and

simulated together. This methodology, described in this chapter, also provides

anexploration of features of the OS. The model can be further mapped on

Chapter 3. System design with OS modeling 42

standard/customized OSs whose performance can be evaluated. Hardware/software

implementation can be achieved according to such evaluations which determine the

trade-off option. The proposed model is based on the use of SYSTEMC as its backbone.

But the methodology allows the inclusion of models developed in other languages. For

example, hardware components may have already been developed in hardware

description languages (HDLs).

This chapter is organized as follows: in Section 3.1 approaches to system level

design are discussed. This is followed by detailing the design stages in Section 3.2.

Section 3.3 introduces the concept and existing approaches of OS modeling in system

design, as well as the hardware support for OSs. It is followed by the proposed system

model with OS modeling detailed in Section 3.4. The modeling of OS and software

processes is introduced in Section 3.5 and 3.6, respectively. A framework adapting the

uses of OS and the processes model to explore the possibilities of customization of OS

is presented in Section 3.7. A case study where an application originally modeled in

ESTEREL is mapped on the SYSTEMC based new framework is described and analyzed in

Section 3.8.

3.1 Approaches to staged system level design

Approaches in system-level design are iterative, a step-based design with feedbacks

from each step being taken and refinements made from the feedbacks. Iterative steps are

carried out at higher levels of abstraction, to prevent unnecessary effort on details at

lower abstraction levels. Design ideas, performance evaluation, architectural feasibility,

component selections, and system integrations are taken into account to give feedback

for the refinements. Figure 3.1 illustrates how system-level design is carried out. The

horizontal axis of Figure 3.1 represents the design stages of the earliest specification-

capturing at the beginning, which is at the left end of the axis. Levels of abstraction used

in the design, from the most abstract, such as untimed functional, to the most detailed

cycle-accurate level, are represented by the vertical axis. System-level design methods

can be categorized into three groups according to how the overall system is constructed,

and are described in [Cesário et al., 2002], and later in [Cai et al., 2003]. They are

Chapter 3. System design with OS modeling 43

identified as ‘system-level synthesis’, ‘component-based design’, and ‘platform-based

design’.

Entry points of these approaches, shown in italics in Figure 3.1, demonstrate the

relative timeline and level of abstraction where these approaches are carried out. For

instance, system-level synthesis starts from the top-left corner of Figure 3.1 and

illustrates such approach starts at the highest abstraction, i.e. untimed function, while

component-based design performs the selection of existing components, which are

modeled or implemented in the cycle-accurate fashion.

Figure 3.1: Staged system-level design

3.1.1 System-level synthesis

System-level synthesis follows a top-down approach, where implementation details

are not known and will be derived from the specification of system behavior. During the

refinement process of the system specification, software/hardware portioning is

performed, followed by the software and hardware synthesis at the end. This

Chapter 3. System design with OS modeling 44

methodology is adopted to explore the best configuration of the system components

possible.

Specification of a system is first made informally, then transformed to a more

formal representation/model, resulting in an executable on the host machine when using

SLDL such as SYSTEMC. Behaviors of the systems are identified at this stage. This

procedure is made at the earliest design stage shown as the entry point of system-level

synthesis in Figure 3.1. The executable is used to validate the correctness of the model

with the given specification. The execution model can be used to validate both the

implementation of the final design and identified functional specification at the

beginning of the design phases. Feedbacks are given to correct the modeled design, or to

report if the specification is not feasible. Once the end of feedback-refinement iterations

is reached, the ‘architecture exploration’ will be performed.

 During architecture exploration, behaviors in specification are mapped to hardware

and software components, known as hardware/software (HW/SW) partitioning in

‘architecture refinement’, according to characteristics of behaviors and constraints such

as available resources. A number of ‘virtual platforms’ are obtained in architecture

refinements performed iteratively, similar to specification validation. The hardware

model at a higher level of abstraction, and the software model comprising processes and

the OS model are integrated and communicate with each other through a bus. Note that

the models of hardware and software are still abstract and can be replaced

interchangeably. It is also possible to use implemented components in the architecture

exploration. Interfaces will be required to adapt the uses of existing components. In this

stage, communication and computation are modeled in various levels of abstraction,

which provide more information to the designers towards the final architecture/platform.

Information such as timing is obtained through various approaches and added

(annotated) to the virtual platform to evaluate overall performance as feedbacks for

better partitioning.

At the end of the refinement iterations, the final platform is determined. Such an

optimal platform is also known as the ‘golden model’ [Black et al., 2008] or ‘golden

architecture’ [Cesário et al., 2002]. Because hardware and software development of the

Chapter 3. System design with OS modeling 45

golden platform start simultaneously and are generally carried out at different speeds,

techniques to use models at different levels of abstractions are adopted again in

hardware/software co-simulations to test the unit under design, which can be either

software or hardware components. Various co-simulation techniques have been

introduced and investigated. Finally the verified hardware and software are merged to

the final product as the end of design.

3.1.2 Component-based design

Component-based design [Cesário et al., 2002] is a bottom-up strategy in which a

platform is constructed with interconnecting available components. An entry point of

the component-based design is shown in Figure 3.1. Existing components are used to

construct the virtual platform and feedbacks are given to perform re-selection on

components to establish the golden platform. Components can be hardware and

software IPs. Interconnects between hardware IPs, also called buses, can either be

selected from available implementations, or generated as wrappers. Similarly, the OS

that manages the software processes, is selected, or generated as software wrappers.

Once the golden model is formed, the development will be carried out as the system-

level synthesis.

3.1.3 Platform-based design

Platform-based design [Sangiovanni-Vincentelli & Martin, 2002] is considered a

special case of the top-down design approach [Cai et al., 2003]. It is also a special case

of component-based design where hardware platforms (sets of components) may be pre-

determined. In this case, software development may be based on the existing libraries.

Generally, the skeleton of the platform, for instance the hardware bus, is predetermined.

As illustrated in Figure 3.1, the entry point of platform-based design is close to the

golden model. The platform can be customized by selecting suitable hardware

components. Different sets of configurations of platforms are called ‘platform instances’.

Standardizing interfaces such as PCI/Express provides connectivity to other components

facilitating video and audio features of the system. Platform instances of each desktop

Chapter 3. System design with OS modeling 46

computer may differ and the optimal platform depends on the target usage of such

systems, e.g. graphical design or networking servers.

3.2 Stages in system-level design

Different levels of abstraction are based on the degree of accuracy of the underlying

model. Various levels of precision have been used in different dimensions when

applying different accuracy on the system models. These dimensions include data

granularity and timing in communication [Ghenassia, 2005], timing computation

(functionality) and communication [Cai et al., 2003], and abstractions of interfaces for

co-simulation [Yoo & Jerraya, 2005]. Aspects of modeling at different levels of

accuracy, from the most abstract to detailed, are listed as follows:

1. Data granularities in communication: application packet, bus packet, and bus

size [Ghenassia, 2005].

2. Timing accuracy in communication: untimed, approximately-timed, cycle-

accurate [Cai et al., 2003] and [Ghenassia, 2005].

3. Timing accuracy in computation follows the preceding case [Cai et al., 2003].

4. Hardware interfaces in different abstraction: cycle accurate, transfer level,

transaction level, and message level [Yoo & Jerraya, 2005].

5. Software interfaces: instruction set architecture (ISA) level, device-driver level,

and OS level [Yoo & Jerraya, 2005].

Modeling approaches are based on two major properties: communication and

computation. Communication specifies how one component interacts with others.

Computation specifies the way an algorithm is carried out in a software and hardware IP.

Both communication and computation comprise co-relevant features: timing accuracy

and data granularity.

In hardware/software co-design, communication is modeled between 1) hardware

components, 2) software components, and 3) software and hardware components.

Timing accuracy in modeled communication is categorized as follows:

Chapter 3. System design with OS modeling 47

1. Untimed: no timing information is in the model.

2. Time approximate: timing information is included. Timing information is

obtained via design experience or the given properties of the modeled IP.

3. Cycle approximate: the details of modeling are in the level of clock cycles.

However, the number of clock cycles may differ from the actual

implementation. Details such as pipeline stages when executing software are not

considered. Clock cycles of software may be obtained by running each software

process individually without the presence of operating systems.

4. Cycle accurate: very accurate instruction set simulator (ISS) or the actual RTL

design of the processor model or hardware IP is used to execute software and to

simulate hardware components.

Cycle accurateCycle approximateTime approximateUn-timed

Accuracy of communication

A
lg

o
ri

th
m

s
O

S
 l
e
v
e
l
&

B
u
s
 e

x
p

lo
ra

ti
o
n

IS
S

 &

B
u
s
 p

ro
to

c
a

l
B

it
s
 &

 W
ir
e

s

A
c
c
u

ra
c
y
 o

f
c
o
m

p
u
ta

ti
o

n

Specification

model

Implementation

model

Cycle-accurate

model

Behavior

model

Bus functional

model

Bus

architecture

model

Component

selection

model

Functional

model

Figure 3.2: Modeling approaches at different accuracy levels

Chapter 3. System design with OS modeling 48

Data granularity in communication differs in how information is exchanged

between components. The scenarios, from the most abstract to detailed are in the

following:

1. Software to software: from unmanaged shared memory, to message-passing

mechanism governed by the OS.

2. Hardware to hardware: from point to point channels, to packets transferred on a

bus modeled without protocol but with an arbitrator, and to bit-true data transfer

with dedicated bus protocol.

3. software to hardware: from modeled software that communicates directly with

modeled hardware to using a device driver managed by OS to access hardware

components from software processes.

Timing accuracy is co-related to data granularity in communication modeling. For

instance, a functional bus model which operates according to a specified protocol

synchronizing with a dedicated clock is modeled in a cycle-accurate manner.

Timing accuracy of computation is achieved in the same fashion as in

communication. Data granularity used in modeling computation relies on co-simulation

requirements and design refinements. The simulation speed benefits from the abstract

computation model and is important in the early design phases. On the other hand,

detailed data representation will be required for the implementation model. Hardware

and software models exhibit different data granularity, from abstract to detailed, as

follows:

1. Hardware: from functional description to RTL behavior model, and to cycle-

accurate model or actual implementation

2. Software: from algorithm (or communicating behaviors, CB), to processes

supported by OS (operating system level, OSL), to instruction level (IL), and to

bit-streams of codes executed by the RTL processor models or real PEs

(processor register transfer level, P-RTL)

Chapter 3. System design with OS modeling 49

Similarly, timing accuracy and data granularity in computation influence each other,

as in communication models. Modeling approaches based on different levels of

accuracy are illustrated and proposed in Figure 3.2, and called a ‘modeling graph’.

Timing accuracy is used to represent abstractions of communication, as the horizontal

axis of Figure 3.2. The vertical axis represents the data granularity at different degrees

of accuracy.

S
W

 a
lg

o
ri
th

m
s
 &

H
W

 f
u

n
c
ti
o
n

a
lit

ie
s

O
S

 l
e

v
e
l
ta

s
k
s
 &

H
W

 I
P

 l
ib

ra
ri

e
s

IS
S

 &

R
T

L
 H

a
rd

w
a
re

C
y
c
le

 a
c
c
u
ra

te

S
W

 &
 H

W

A
c
c
u
ra

c
y
 o

f
c
o

m
p

u
ta

ti
o

n

Figure 3.3: Coverage of transaction-level modeling

Chapter 3. System design with OS modeling 50

A single modeling technique is not sufficient to cover the whole design space. [Cai

& Gajski, 2003] present models which are discretely distributed according to the levels

of accuracy. Eight modeling approaches are illustrated in Figure 3.2: specification

model, functional model, component-selection model, bus-architecture model, bus-

functional model, behavior model, cycle-accurate model, and implementation model.

The development path, shown as the grey arrow, originates from the specification model

from the bottom left corner of Figure 3.2 and finishes in the implementation model at

the top right of Figure 3.2. The path taken from the specification model to the

implementation varies between different design approaches.

Transaction-level modeling (TLM) enables communication and computation to be

modeled separately [Ghenassia, 2005]. TLM is used with other benefits such as: 1) early

performance estimation in the timed model, and 2) higher simulation speed due to the

higher level of abstraction. TLM provides a set of modeling approaches, which have

been discussed in [Grötker et al., 2002], [Haverinen et al., 2002], [Connell, 2003],

[Ghenassia, 2005], [Yoo & Jerraya, 2005], and [Black et al., 2008]. Different levels of

abstractions in TLM are identified in different approaches as follows:

1. The modeling approaches are first grouped to ‘untimed’ and ‘timed’. Timed

modeling is generally evolved from the untimed model by adding timing

information. The untimed model includes a programmer view (PV), while timed

models consist of a programmer view with timing (PVT), cycle callable (CC)

[Connell, 2003].

2. Based on the communication layers [Haverinen et al., 2002], from abstract to

detailed: message layer (L-3), transaction layer (L-2), transfer layer (L-1), and

RTL layer (L-0).

The above approaches shared common features and are grouped and illustrated in

Figure 3.3, which is based on Figure 3.2, presenting applicable TLM for staged design

models. PV, PVT, CC, and RTL are names used to address the underlying models. TLM

focuses on the communication between modeled components. Therefore the modeling

Chapter 3. System design with OS modeling 51

graph is partitioned horizontally according to the characteristics of different TML

approaches.

The system under design evolves from the specification model to implementation

through communication and computation refinements. Descriptions of refinements in

each model, along with the use of the TLM, are detailed in the following sections.

3.2.1 Specification model

The specification model is established with informal system descriptions. It does

not contain any algorithms of the system under design, but consists of the requirements

and constraints of the system. Examples of requirements are features such as what the

inputs to the systems will be and how the system output is going to be displayed.

3.2.2 Functional model

The functional model is constructed from the specification model through the

‘specification capture’, as shown in Figure 3.1. The functional model is the executable

version of the specification, in which behaviors (and possibly sub-behaviors within

behaviors) of the system are identified. Behaviors are modeled as algorithms (an aspect

of computation) which need not be detailed and used in the final implementation, but

are sufficient to capture the corresponding activities of the behaviors. The functional

model is usually single-threaded, in that concurrent behaviors are not yet identified.

Behaviors and sub-behaviors are in the form of function calls. Communication between

behaviors is via variables and argument-passing of function calls; hence the untimed

nature of the model. The functional model is also called ‘SoC functional view’

[Ghenassia, 2005]. TLM-PV and/or L-3 are used in the functional model.

3.2.3 Component selection model

The component selection model is close to ‘IP-assembly model’ [Cai et al., 2003],

‘component assembly model’ [Ghenassia, 2005], and ‘SoC architecture view’

[Ghenassia, 2005]. Components in this model are mapped from behaviors identified

from the functional model. Components can be existing software or hardware IPs, or IPs

which will be designed manually or synthesized automatically in the later design stages.

Chapter 3. System design with OS modeling 52

Existing IPs can be either proprietary or from sources (or hardware descriptions in

HDLs) available. Proprietary IP models may be at different levels of abstraction in both

computations and communications. Therefore the component selection model covers

computations modeled from functionality to detailed software library codes and RTL

hardware, with both untimed and time-approximate communication. Since

communications in the component selection model are point-to-point linkages, there is

no presence of a bus in this model. Timing estimation can be annotated to mimic delays.

TLM PV (L-3) and/or PVT (L-2) are used to describe communications. The component-

selection model is the starting point of architecture exploration. [Séméria & Ghosh,

2000]

3.2.4 Bus architecture model

Further down from the component selection model, the bus architecture model

presents a primitive description of a bus model hosting the interconnections between

components. In this model, components which share information are coupled with the

same bus. The architecture exploration is carried out to obtain optimal configurations

between components-to-use and how connections between components are established

by the means of a bus. In this model the bus will be refined to a hardware bus or a

mechanism provided by OS for software processes, to communicate. Flexibility of this

model is required to perform efficient architecture exploration; the protocols of buses

are therefore absent. The bus architecture model is adopted by both system-level

synthesis and component-based design to find the ‘golden model’, and the coverage of

abstractions in both communication and computation is therefore vast. TLM PV, PVT

and CC techniques are used in communications between components of all degrees of

accuracy. The bus architecture model is similar to the ‘bus arbitration model’ [Cai &

Gajski, 2003], and the ‘SoC architecture view’ in [Ghenassia, 2005].

3.2.5 Behavior model

The behavior model (BM) emphasizes the descriptions of components and the

buses interfacing them. Descriptions are pin-accurate, and operations of components

and buses are based on clock cycles. Since clock cycles in the behavior model are not as

Chapter 3. System design with OS modeling 53

accurate as those in the cycle-accurate and implementation models, communications are

modeled cycle-approximately. Clock cycles in BM are used mainly to activate state

transitions of the components and the buses. Therefore the behavior model is suitable

for refining the components and protocols of the bus. Computations in this model can be

behavior descriptions of hardware components in RTL, or different software pieces

running in an instruction set simulator (ISS) without the presence of OS to evaluate the

performance of each process. Cycle callable (CC, L-1) of TLM is used in this model.

3.2.6 Bus functional model

The bus functional model (BFM) is equipped with a cycle-accurate bus model with

specific protocol. Bus functional model evolves from the bus architecture model where

the golden model of platform has been obtained. In the BFM, components interact based

on the given protocol. Computation refinements of components are performed at this

stage. Components at different refinement iterations are at different levels of

abstractions. Techniques of inserting adapters, wrappers, and converters between the

components and the bus are used to bridge the differences such as timing accuracy.

Communications of BFM focus on cycle-accurate descriptions as illustrated in Figure

3.2, where CC (L-1) and RTL (L-0) are used to model communications. Computations

of BFM are across a wide spectrum as shown in Figure 3.3, representing the refinements

of components.

3.2.7 Cycle-accurate model

The cycle-accurate (CA) model is a pin-accurate and timing-precise model.

Hardware components are modeled in synthesizable RTL and software processes are

executed on the prototyped platform such as the one crafted in FPGA or the pre-existing

development board, or the processors modeled in the RTL. Communication between

components can be cycle-approximate in communication, and thus modeled with the

TLM CC (L-1), if computations are verified on platforms differing from the final

implementation. For example, a dedicated bus is required to link the FPGA-based

processor model to the RTL hardware simulator to perform co-verification. Similarly, a

fully accurate communication and computation model using RTL (L-0) will be adopted

Chapter 3. System design with OS modeling 54

when the system under design is close to the final implementation, presented with the

implementation model in the next section.

3.2.8 Implementation model

The implementation model is the last stage towards the final product of the system

under design. Both communication and computation are modeled in the most detailed

manner. Software is executed on the finalized platform for verification. Designers

generally do not work directly at this level because the SW and HW components are

compiled and synthesized from higher-level description unless specified in the design.

3.3 Operating systems in system-level design

3.3.1 System modeling with operating systems

With ever-increasing use of software in computer systems, OSs play an important

role in a large class of computer systems. Characterization, and modeling, of the OS

before carrying out the actual software implementation are essential for system

development. Modeling OS as a part of the overall system model thus becomes essential.

In order to estimate system performance, system designers should be able to model an

entire system with the existence of an OS model prior to system implementation.

Since performance and the ability to meet time constraints of process execution rely

not only on the processor power but also on how processes are managed by the OS,

well-performed design of the OS becomes important. Strategies and mechanisms

provided by OS must be taken into consideration when designing (or choosing) an OS.

Introducing specific services to the OS can provide more efficient application

development and can lead to more rational and ‘build-by-correctness’ designs.

Operating systems are introduced to system modeling because:

1. They provide interfaces for software processes communication and

synchronization.

2. Access to hardware is provided as device drivers built-in or constructed on top

of the OS.

Chapter 3. System design with OS modeling 55

3. Behaviors of software processes, such as execution order, are heavily

influenced by the scheduling policy provided by the OS.

Figure 3.4: OS and software processes modeling in system design

Introducing OS to system design means having software processes implemented by

using services provided by the OS. However, the process/thread-based software model

does suffer for a variety of reasons, e.g. the race condition which is an obvious example

of indeterminism introduced by software [Lee, 2006]. System models consisting of OS

and process models thus inherit the same problems. Synchronous languages are

proposed to resolve such problems, but have poor interactions with other software

Chapter 3. System design with OS modeling 56

components and do not integrate well with the existing SLDL-based HW/SW co-design

environment.

There are approaches which model software concurrency without having OS in

mind but make use of the underlying simulation kernel. A modeling strategy that maps

concurrent behaviors to processes/tasks is demonstrated in [Tomiyama et al., 2001]. The

processes/tasks are assigned with fixed priorities, higher priority processes pre-empting

those of lower priority. Pre-emptions are achieved by placing processes functions in a

specific order in the system description. This approach limits the supported scheduling

policy and the scalability of the model. Omitting the OS model in the software

simulation does not provide sufficient information for OS mapping in the later design

stage.

Simulation is one of the features benefitting from the OS model. It is possible to

map the OS models to the existing OSs, or to generate customized OSs according to the

application requirements. For example, automatic generation of RTOS proposed in

[Gauthier et al., 2002] provides options such as processes communication,

synchronization, and hardware requests to construct a customized RTOS. Such

anapproach prevents unnecessary effort for RTOS porting between different

applications and hardware architectures.

OS models, which are used in different design stages, are described in different

levels of abstractions according to the modeling requirements of the development

phases, as shown in Figure 3.4. As mentioned before, OS and software processes as

components of a system, are well fitted into the staged system design.

OS and software processes can be modeled in a functional manner, and are refined

in the final implementation. An OS model can be un-timed, for example, providing

functionality to schedule processes to obtain software concurrency, regardless of the

timing requirement. It can also be modeled in a timed fashion, where scheduling

policies to achieve ‘real-timeness’ are modeled. In terms of modeling accuracy, an OS

can be described in source code form of the SLDL, or the actual OS source can be used

if available, depending on the simulation requirement. If the OS is available only in

binary form (e.g. binary library for the simulation host or target platform), the OS

Chapter 3. System design with OS modeling 57

library is linked with other software components, and is simulated as a host process or

within the instruction set simulator (ISS).

When OS modeling is adopted in system design, various combinations of

interactions between components exist. Software portions of the system are often

divided into processes and OS, and such simulations have been carried out, such as

processes/tasks modeling in [Poplavko et al., 2003], along with RTOS modeling in

[Madsen et al., 2004] and [Gerstlauer et al., 2003]. Interactions between software

programs and hardware devices are presented in [Honda & Takada, 2003] and

[Formaggio et al., 2004].

3.3.2 Existing approaches of OS modeling

Techniques of modeling general OS, embedded OS, and RTOS have been discussed

in [Yoo et al., 2002] as follows:

1. Mapping processes of the target platform to processes of the simulation host,

also known as native simulation. For example, [Bouchhima et al., 2004] focus

on the HW/SW co-simulations on arbitrary levels of abstraction, where

interfaces/adapters are dedicated between software and hardware components in

the model. µVirtualChoices presented in [Tan et al., 1995] is a simulation

environment for the kernel µChoices on the Unix-based hosts. Emulating

interrupts as UNIX signals is one of the approaches which maps hardware-

dependent OS codes to resources available on the host OS. The rest of the OS

codes are linked with the host OS counterparts to perform native simulation.

The software processes are mapped to user-level threads of the host kernel

where simulation is carried out.

2. Compiling the target software sources with the OS to an executable of the host

platform. In [Yoo et al., 2002], the (RT)OS simulation model is generated from

the actual (RT)OS. Software processes are modeled using threads of host OS

and they communicate with each other through remote procedure calls (RPC).

Hardware is also described in SYSTEMC. Estimation of software execution times,

on the targeted (RT)OS, are annotated to the simulation model. This model

evolves in [Yoo et al., 2003] so that time-delay functions are used to

Chapter 3. System design with OS modeling 58

synchronize both software and hardware simulation. Simulation of software

works either with OS codes or scheduling mechanism provided by SYSTEMC.

This approach requires the actual (RT)OS that is not suitable for design space

exploration (DSE) where the (RT)OS selection may not be final.

3. Executing software processes with support of the virtual OSs. A virtual OS is

the functional and abstract model of the real OS, and is intended to validate and

simulate with the other software and hardware components. Virtual OS needs to

provide the following:

a. Interfaces to access features provided by the (RT)OSs. Interfaces can be

in the form of function calls, signals, and events to the (RT)OS model.

Interfaces remain while the underlying (RT)OS model can be inter-

changed with other (RT)OS models, both at simulation and

implementation.

b. Essential features of (RT)OS, or acting as an intermediate layer to the

existing (RT)OS codes.

As an example, [Zabel et al., 2009] present an abstract RTOS library, called

aRTOS, which provides a set of interfaces to model processes and interrupt

service routines (ISRs) using SC_THREAD of SYSTEMC. The designer can

replace internals such as scheduling policy to mimic behaviors of different

(RT)OS. In [Tan et al., 1995], the object-oriented µChoices is modeled as a set

of objects which interact with each other, where a lower level nano-kernel is

mapped to a host process. [Desmet et al., 2000] present SoCOS, a C++ based

simulation environment that facilitates functionalities of (RT)OS. On top of

SoCOS, OsAPI provides a generic interface for software to access the (RT)OS

functions. OsAPI remains in the final implementation where SoCOS is replaced

by the actual (RT)OS. Virtual OS simulation is to achieve performance speed-

up comparable to simulating software in ISS. It also enables (RT) OSs to be

modeled at different levels of abstraction. How processes are modeled depends

Chapter 3. System design with OS modeling 59

on the features provided by the (RT)OS model. [Desmet et al., 2000], [Yoo et

al., 2002], [Zabel et al., 2009] fall into this category.

Processes are mapped to constructs provided by the modeling language. For

example, SC_THREAD from SYSTEMC is used to model processes in [Le Moigne et al.,

2004]. A hardware/software modeling framework in [Chevalier et al., 2006] provides

‘swappable’ software and hardware partitioning at the early design stage by using a

layer between the user module and the RTOS to simulate software and hardware

interactions. However, the real RTOS has to be ported to a particular (target or

simulation) platform. [Madsen et al., 2004] provides extensions made to SYSTEMC

primitives to describe RTOS behaviors.

In [Le Moigne et al., 2004] the RTOS is modeled along with processes using two

approaches: (1) both the RTOS and processes are modeled as threads in SYSTEMC and

(2) the RTOS is described as a set of functions which will be used in actual programs of

processes. In [Gerstlauer et al., 2003], interface of the RTOS model focuses on process

creation and management, event handling, and time modeling. A process has to

explicitly declare behaviors like fork and join through the process management interface.

Process synchronization is implemented via channels between processes. Efforts are

required to create dedicated channels whose number may eventually become very large

and hard to organize. Moreover, resource sharing, an important feature of the RTOS, is

not clearly presented.

Code generation for (RT)OS is also developed. [Gauthier et al., 2002] presents a

methodology to generate an application-specific OS based on the requirements of the

underlying application. Services provided by (RT)OS are differentiated and are stored in

the form of source-code libraries. Existing (RT)OS requires effort to be merged into the

library. Porting is still necessary for different target architectures.

3.3.3 Modeling OS with hardware involvement and support

SLDLs provide the means of hardware/software co-design and co-simulation in

various levels of abstraction. Approaches to interface hardware and software, and

refinements of interfaces towards the final implementations, are also proposed.

Chapter 3. System design with OS modeling 60

[Bouchhima et al., 2004] focus on the HW/SW co-simulations on arbitrary levels of

abstraction, where interfaces/adapters are dedicated between software and hardware

components in the model. The software processes are mapped to user-level threads of

the host kernel where simulation is carried out.

Various approaches to implement part(s) of the RTOS in hardware or with

hardware support are proposed. Most of them are in the form of add-ons to the platform

processor(s). A high-performance communication manager in hardware cooperates with

the on-chip processor in [Shalan & Mooney III, 2002]. [Lee et al., 2003] proposes a

mechanism to synchronize critical sections of the executed code. A RTM (Real-time

Task Manager) proposed in [Kohout et al., 2004] is an example of co-processor

hardware support to achieve more efficient process scheduling. [Nakano et al., 2002]

describes STRON-I, a design flow to migrate event flags, semaphores, timer, scheduler,

and the interrupt mechanisms, to hardware. As an extreme, [Adomat et al., 2002]

proposes RTU as an external hardware dedicated to perform RTOS functions in

hardware. However these approaches are based on existing RTOSs or platform

architectures, where modeling these components in higher levels of abstraction, which

is important in the early design phase, is not presented.

3.4 The proposed system model with OS modeling

SYSTEMC is used as the backbone of the proposed modeling framework. The main

reasons for using SYSTEMC are (1) it allows the modeling of system components

regardless of hardware or software implementation and (2) it allows mixing with

components developed in other specification languages, particularly HDLs.

The current version of SYSTEMC lacks support for OS features. Besides that, using

an existing OS implementation (where porting is required when running simulation on a

host) in the early design phase would be overly complex and result in longer simulation

time because of the execution of the OS code. Also, this approach is not flexible since

some features, such as context switching, used by the OS are always platform dependent.

The OS modeling technique should enable both software (processes and the OS)

and hardware components to be described and simulated together. The methodology

Chapter 3. System design with OS modeling 61

introduced in this chapter also provides exploration of features of the OS. The essential

features of this model should support the following:

1. Concurrent software processes are modeled in different SYSTEMC modules.

Having all processes modeling in the same SYSTEMC module requires all of

the relevant sub-functions to become member functions of the same module.

This leads to poorly organized module description.

2. The OS needs to be modeled as a process in a dedicated module. OS can be

seen as a program whose execution masters the overall software execution

on its resident processor. Therefore OS can act as the bridge to the processor

and other hardware components. Parts of the OS, such as services provided,

are executed concurrently, if allowed by the platform. Furthermore,

interrupts, which are handled first by the OS, can be modeled as the input to

the OS which will trigger actions performed by the OS.

3. Hence, dedicated ports/interfaces of the OS module must be provided, to

allow communication and synchronization between the OS module and other

system components, e.g. programming interfaces for software processes and

signals for hardware.

4. Internally to the software running on the same processor, generic interfaces

of OS must be provided to elaborate process modeling/implementation with

the least dependency on a specific OS.

5. The OS module should be a composition of sub-modules modeled as

services or extensions based on the core-functionality (as another sub-

module) provided by the OS.

6. The internal behavior of the OS, such as the scheduling policy, can be

changed with no substantial effort to provide OS exploration in system

design.

7. This model should be generic and thus able to be further mapped on

standard/customized OSs whose performance can be evaluated.

Chapter 3. System design with OS modeling 62

The OS and software processes which are modeled as different design entities

(SYSTEMC modules) are detailed in this chapter. The OS model receives events via

different signals and reacts differently to each of them, indicating that the signals are the

key object for the proposed OS modeling at the higher level of abstraction. Contexts of

processes are stored within the body of the software process module, which enables

shorer simulation times than simulating the actual context switch at a lower level.

Processes are dispatched by notification from the OS model. Details of the software

model will be described in later sections.

3.5 Service-based OS modeling with reactivity

In this section, an OS model which provides a set of services is presented, shown in

Figure 3.5. OS services are accessed through application programming interface (API)

by software. Proposed ‘signal-operation services’, which carry out operations on signals,

are used to model synchronous models of computation. Also, the modular OS model

allows substitution/support of its functionalities by specialized hardware.

The OS model consists of the following components, as illustrated in Figure 3.5:

1. Interface of the OS to communicate with software processes or the external

environment, in the form of API (to handle requests from processes) or

signal handler (for external signals)

2. A set of services with their own data structures. The current OS model has a

set of core services (in the rounded rectangle) which consists of four main

services (in rectangles). Data structures, shown in dashed rectangles, are

used and managed by corresponding services.

Services provided by the OS utilize corresponding data structures, which

collectively represent the current state of the OS. OS data structures consist of a number

of queues, condition flags, tables, and counters. OS services are divided into four

categories:

1. Resource management, which models mechanisms like semaphore used to

lock and protect shared resources.

Chapter 3. System design with OS modeling 63

2. Timing control, to perform functionality such as the pausing of a process for

a specified time.

3. Signal operation, to support reactivity.

4. Process scheduling, which works as a core service closely related to the

other services. Features such as process creation belong to this category.

Groups of the OS services are formed hierarchically, and are able to perform

independently as sub-modules within the OS.

Figure 3.5: OS model including services provided and data structures

As an illustration, examples of the OS services for signal operations required in

reactive systems are given in Table 3.1:

Chapter 3. System design with OS modeling 64

Table 3.1: API to perform signal operation

API Descriptions
Signal_Await_Reg Wait for presence of a designated signal.
Signal_Emit Emit a signal to the other process or external environment.

Signal_Abort_Reg
Monitor a signal and jump to a specified address when the
corresponding signal is present (implements pre-emption).

Signal_Monitor_Reg Wait on the change of monitored signal.
Signal_Present Check the status of a signal.
Signal_Value Obtain the value of a signal.

Each group of services is supported by dedicated data structures. For example,

signal-operation services are supported by data structures listed in Table 3.2:

Table 3.2: Data structure used by the signal-operation services

Data structures Descriptions
Signal await queue A list of suspend processes due to awaiting a signal.
Signal monitor table A look-up table for monitored signals.
Signal abort queue A list of pre-empted processes.
Signal status and values The current status (absent or present) and value of a signal.
Signal emitter table A list of processes associate with potentially emitting signals

Two methodologies of modeling the interconnections between the OS and other

software components are presented in this chapter. One is pin-accurate modeling, the

other is the transaction-level modeling (TLM).

Programmers obtain detailed views of software interactions in the pin accurate

approach, where SYSTEMC primitive input and output signals are used. From the OS

point of view, an incoming API call consists of the API type and arguments that are

treated as input signals, whereas processes notification signals, which consist of

process-ID and process-new-status, are considered as outputs, as shown in Listing 3.1.

Listing 3.1: Interfaces of process model at pin accurate level

1
2
3
4
5
6
7
8

#define ProcNum 16
#define API_Word_Width 16
#define API_Args_Width 16
#define Process_State 2
SC_MODULE(OSModel) {
 // Interfaces for accessing services – from proce sss
 sc_in<sc_lv<API_Word_Width> > process_API[ProcNum];
 sc_in<sc_lv<API_Word_Width> > process_API_Argumen t[ProcNum];

Chapter 3. System design with OS modeling 65

9
10
11
12
13
14
15

 sc_in<sc_logic> process_API_Last_Argument[ProcNum];
 // Interfaces for notifying processes
 sc_out<sc_lv<sc_logic> > process_Notification[Pro cNum];
 sc_out<sc_lv<Process_State> > process_New_Status[ProcNum];
 // Rest of the OS model

}

API provided by the OS to processes can be divided into two groups: blocking and

non-blocking. Processes will give the control to the OS or obtain control from the OS

once the API calls are issued. Thus the APIs calls, as function invocations, are the

linkage between the OS and processes. This is similar to transaction-level modeling

(TLM). Both blocking and non-blocking interfaces are available in TLM and can be

used to model API to access features of OSs. In this approach, the OS will be modeled

as a SYSTEMC channel (a specialized module) which implements the interface (API

provided) as services. Some of the OSs offer features such as modularity to include the

essential mechanisms and services. Such OSs are generally modeled as hierarchical

channels, the provided services being modeled as sub-modules within the channel

representing the OS.

An API call with more than one argument in a pin-accurate approach consumes

many clock cycles during simulation resulting in lower simulation speed. This is

countered by introducing TLM, where the steps of passing API type and arguments to

the OS are encapsulated within a single transaction. Interfaces of the OS model are bi-

directional blocking interfaces, implemented in the OS as a SYSTEMC channel. Data

types (classes) are created for service requests and OS responses, shown in Listing 3.2

with interface declaration.

Listing 3.2: Interfaces of the OS model in TLM

1
2
3
4
5
6
7
8
9
10
11

class OSAPI_if : public virtual sc_interface {
public:
 virtual NOTIFY service_request(const REQ&) = 0;
};
class REQ {
private:
 unsigned int API_TYPE;
 unsigned int *API_Arguments;
 unsigned int API_Arguments_Num;

};

Chapter 3. System design with OS modeling 66

12
13
14
15
16
17

class NOTIFY {
private:
 unsigned int Process_ID;
 unsigned int Process_New_Status;

};

Services are modularized according to the categories to which they belong. To

achieve higher simulation speed, communications of grouped services are also

described with TLM as shown in Figure 3.6.

Figure 3.6: OS model in TLM

The OS model reacts to its inputs (service requests from processes) according to its

state. The OS state transitions are illustrated in Figure 3.7 and Table 3.3. The OS state is

part of the data structures governed by the ‘process scheduling services’, which

coordinate the overall behaviors of the processes.

Chapter 3. System design with OS modeling 67

Table 3.3: State descriptions of the OS model

State Description
a Power up of system
b Completion of the OS initialization
c No ready process to release and no process activation signal is presented
d Presence of a process activation signal or a ready process
e A process is released
f Neither an event nor an API call is detected
g Receive an API call from a process, or a monitored signal presents
h Finish updating data structure as preparation for scheduling

Figure 3.7: State transitions of the OS model

3.6 Describing software processes with the OS model

3.6.1 Mechanism available in SYSTEMC to model processes

SYSTEMC provides processes (to differentiate from software processes in view of

OS, it is called ‘SYSTEMC process’ in this thesis), namely SC_METHOD and

SC_THREAD, which are scheduled in a co-operative manner. In other words, neither

Chapter 3. System design with OS modeling 68

SC_METHOD nor SC_THREAD are pre-emptive. SC_METHOD is suitable in

modeling behaviors of a finite state machine (FSM), where each execution of

SC_METHOD represents the activities performed in a specific/current state. On the

other hand, SC_THREAD, is suitable for modeling software processes with numbers of

segments formed by using wait statements provided in SYSTEMC. The wait statements

are used to return the control back to the SYSTEMC simulation kernel manually so that

SC_THREADs are scheduled co-operatively. SC_METHOD is used to model one

software process, so that the process model can inherit the properties from the

specification which can be described with formal MoC such as FSM. This approach also

enables possible verification and linkage between other FSM based formal languages

(such as ESTEREL).

3.6.2 Internals of the process module

A process modeled as a SYSTEMC module is called a ‘process module’. It is

specified with the process interface (to connect with the OS module), behavior (an

SC_METHOD which contains the algorithms that describe reactions to various input

events) of a process, a process state, process state transitions, context of the process, and

an execution-control variable (called process-execution segment ID). The process

module requests OS services by sending API calls and required arguments to the OS

module via the communication channel which exists between the OS and each process.

The communication channel is modeled as an un-timed TLM function call, for faster

simulation, or timed (cycle- and pin-accurate) depending on the required accuracy. The

OS notifies (through signaling) a process module to change its state. A process state

indicates the current state of a process as illustrated in Figure 3.8 and whose state

transitions are detailed in Table 3.4.

By encapsulating a process context within the process module as member variables

of the process module, minimal or no effort is needed to model the context switching.

The process module includes the declaration of the module and the process body as

shown in Listing 3.3 and illustrated in Figure 3.9. The process body is modeled by using

SC_METHOD. A segment of the process body behaves according to the current state of

the process module and the current position (point) of the execution (control) flow. This

Chapter 3. System design with OS modeling 69

state-machine based approach enables (1) a structured description of the process

behavior and (2) a straightforward mapping from state-oriented system specifications.

Figure 3.8: FSM of the process model

Table 3.4: State descriptions of the process model

State Description
a Power up of the system
b End of process initialization, process starts immediately
c End of process initialization, process waits to be activated by signal
d Process activation signal is present
e OS signals the process to be released or scheduled
f OS signals the process to pause due to signal pre-emption or scheduling
g An OS service is requested
h Completion of a service call
i Process termination

Listing 3.3: The SYSTEMC template of a process module

1
2
3
4

SC_Module(Process_Module)
{
 // Process module interface declarations
 Declarations of input ports;

Chapter 3. System design with OS modeling 70

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

 Declaration of output ports;
 Declarations of data structures including process context;
 Declarations of process simulation body function;
 SC_CTOR(Process_Module)
 {
 Assigning sensitivity list to the simulation bo dy function;
 SC_METHOD(simulation_body);
 Initialization of data structures;
 }
}
void simulation_body()
{
 Process state transitions model
 // Process execution controls
 if (process_execution_segment_ID = = segment1)
 Running process execution segment1;
 else if (process_execution_egment ID = = segment 2)
 Running process execution segment2;

 else if (process execution_segmentID = = segment N)
 Running process execution segmentN;
}

Figure 3.9: The internals and interface of a process module

3.7 Proposed co-design framework

3.7.1 The overview of the framework

The framework divides the design process into four stages as shown in Figure 3.10.

At the first, a system is specified by using any available SLDL. System verification is

then carried out to ensure correctness of the specification. The last step of the first stage

is to analyze system behaviors and map behaviors to components. The HW/SW

Chapter 3. System design with OS modeling 71

partitioning at this stage can be achieved by employing the designer's experience. There

is no need for optimization since implementation details are not present in these HW or

SW components (known as modules in the next design phase). During the second stage,

embedded software is further refined into process modules and the OS module which is

an abstract model without implementation details (such as disabling/enabling interrupts

for critical sections, which are target-platform dependent). In this stage, exploration of

HW/SW partitioning of the OS itself may be conducted. The hardware portion of the

OS, along with the other hardware modules, including the processor module, memory

modules, and other peripheral modules, is simulated (un-timed, or cycle accurate) with

process modules and the software portion of the OS module.

Figure 3.10: Modeling framework and staged design approach

Once the partitioning of embedded software and hardware devices is confirmed, the

design process moves to the third stage, the implementation stage. Here implementation

Chapter 3. System design with OS modeling 72

of processes and the selection of the OS are accomplished. The processor module is

customized and integrated with the hardware portion of the OS.

Modeling of the dynamic behaviors such as the execution of concurrent processes is

essential in the system model. Without adapting the OS in system models, different

systems are modeled according to the underlying semantics of the used specification

language. Simulators of the used languages will be required and will increase the

complexity of the model. In contrast, if an OS model is used to control dynamic

behaviors by providing semantic-preserving services, the system model is simplified.

Introducing the OS model into the framework can be seen as a bridge between the

design and implementation phases, where communication and synchronization

mechanisms are extracted from the behaviors in the specification stage and included in

the OS model. In the rest of this chapter the focus is on the shaded area in Figure 3.10 (a)

to explore the possible implementations with OS in the later stages. Process execution,

which relies on support provided by the OS, is modeled as a process in SYSTEMC

module. It is simulated together with the OS module. Information shared between

processes is stored in the data memory described within another SYSTEMC module,

which is also modeled in this stage.

3.7.2 Integration with the OS and process modules

This proposed OS and the process modules are integrated to represent the overall

software components of the system. Co-simulations with hardware components and

further refinements on components are in accordance with the aforementioned

methodology. For example, programmers are interested primarily in communication

between processes and their interaction with the OS, whereas system architects need a

view from which to explore possible hardware/software alternatives. Figure 3.11 and

Figure 3.12 illustrate two different approaches with the proposed OS and process

models. During the early design phase, processes are modeled at the functional level

(refer to Section 3.2.2), and executed with support provided by the OS through API

calls, as shown in Figure 3.11. For example, API Signal_Monitor_Reg is used to

monitor input signals. As an execution result, process switching would be required if a

certain signal were present, where the scheduler takes the place of selecting the next

Chapter 3. System design with OS modeling 73

process. Data memory, which is a functional model, provides temporary storage for

process modules and the OS.

Figure 3.11: OS module with functional modeled processes

To explore OS with application-specific customization, an OS with different

configurations (to provide different sets of services or to adopt different scheduling

policies) is modeled. Simulation of pre-compiled processes is done by the ISS, as shown

in Figure 3.12. This type of OS model enables designers to evaluate the OS design.

Processes are first compiled with the skeleton of the OS library, which provides API

only. Object codes of the compiled processes are stored in the functional model of the

program memory, which fetches instructions to the ISS and the OS module. Before an

instruction is loaded to the ISS, the program memory model checks whether the

instruction is an API request. If this is the case, the request will be passed to the OS

module instead of to the ISS. Once the request is carried out, the scheduler of the OS

module notifies the program memory either to continue fetching instructions from the

calling process (process continues to execute), or to load instructions from another

location (as another process is released). Prior to the release of the scheduled process, a

sequence of instructions is fetched to the ISS to simulate the context switching. The

process contexts are stored in the data memory belonging to the processes. Data

memory connects with the OS module, whereas device drivers, as a part of the OS,

require memory access to control memory-mapped devices.

Chapter 3. System design with OS modeling 74

Figure 3.12: The OS module with compiled program

3.7.3 Communication between modules and environment

Communication and synchronization of the process modules is managed through

services provided by the OS. By adopting the use of the OS module, the number of

communication links between the processes is reduced since the processes are

communicating in a centralized fashion. Moreover, signals, which are used in many

SLDLs and synchronous languages, are introduced as the basic communication

mechanism to ease the transition between system specification and implementation. In

this approach a process communicates with another process via internal signals (SN) and

with the external environment via external signal (ESM) with OS support, as shown in

Figure 3.13.

Figure 3.13: Interactions between processes/external environments

Chapter 3. System design with OS modeling 75

3.7.4 HW/SW partitioning and HW support of OSs

A composition of processes and the OS is generally and commonly seen as software

components of the embedded systems. In implementations, OS is presented in the form

of libraries, which are used in compilation with process source codes to embedded

software. Device drivers as parts of the OS libraries are provided to control devices, and

thus the OS bridges the processes and hardware devices. It is also possible to implement

partial OS functionalities in hardware to achieve higher performance, as described in

Section 3.3.3 and this is why OS can be considered a mixture of hardware and software.

To describe the behaviors within OS and explore HW/SW trade-offs in its

implementation, the OS is modeled at the functional level with the aim of enabling co-

simulations with other system components modeled in different levels of abstraction.

In the proposed system model, most of the components are described as modules in

SYSTEMC, while others, for instance the processor, are either modeled in the register

transfer level through hardware description languages (HDLs) or is presented through

an instruction set simulator (ISS). Figure 3.14 illustrates how system components

interconnect. The hardware/software composed OS connects to most of the other system

components. Processor, memories, and devices communicate through a functional bus

model. The processor model connects with the OS model, because the OS provides a

platform-dependent layer such as drivers. Because OS functions implemented in

hardware are integrated with the processor as functional units, the interconnections are

presented. Program memory model connects to the OShardware to provide information for

executions of functional units. OSsoftware processes service requests from compiled

software processes, which are stored in the program memory. Data memory stores

information which is manipulated by the OS and processes. Processes operate with

support and services provided by the OS. Since data memory is modeled functionally,

the details of timing in the memory model are not taken into account; the memory

model can still be refined with further accuracy by back-annotating timing

characteristics.

Chapter 3. System design with OS modeling 76

Figure 3.14: Hardware-supported OS in the system model with other HW components

The OS model is used to encapsulate the details of communication and

synchronization between processes, whereas software developers need not to be

concerned with how to maintain links between processes and other external devices.

The OS model is close to the virtual OS simulation concept: a set of system services,

available to processes through application programming interface (API) calls.

Validation of the OS is achieved by examining interactions between the OS and other

system components, and mapping applications on different OS configurations (with

different services or HW/SW partitions) makes the approach independent of the target

platform.

Data memory in this system model is currently modeled to store variables shared by

the processes and values of memory-mapped signal values (a valued signal has status

and value when it is present). Data memory is described as a SYSTEMC module with

interface to allow reading from and writing to an array whose size equals the

addressable memory space of the target processor. A data-memory module connects

Chapter 3. System design with OS modeling 77

with process modules in the system model. It is also used to provide information on

process activities such as the use of shared resources.

Figure 3.15: Processor model with RFU support

The proposed system model in this chapter allows (1) mapping of application

specifications to software processes and (2) exploration of hardware/software (HW/SW)

trade-offs in implementation of the OS. It also allows mapping on existing OSs and

extending them with new signal-operation services. Based on the simulation results,

possible and preferred configuration (HW/SW partitioning) of the OS implementation

can be obtained. Hardware support to the OS can be integrated with the processor in the

form of functional units. As an example, a Reactive processor [Salcic et al., 2005]

contains RFU (reactive functional unit) to perform reactive operations on signals.

The OS model can thus provide us insight into migration services, in this example

signal operations, from software to hardware, and model them as a hardware unit as

shown in Figure 3.15. This model is derived from Figure 3.12 by introducing the RFU

as a support to the OS. Instructions identified as signal operations, are fetched to the

Chapter 3. System design with OS modeling 78

RFU module. RFU is responsible for informing the OS model whether a process-

scheduling is required at the end of a requested signal operation. RFU is connected with

the data memory where process contexts relevant to the RFU can be saved/restored

during the process switching.

Figure 3.16: A model of processor: OS with hardware support

Figure 3.16 further details the processor model, which covers the overall software

running on the processor and hardware enhancements to the processor itself. API calls

to the OS are done by signaling, described in a later section. The API, OSSW (which

represents the software implemented part of the OS), device drivers, hardware

abstraction layer (HAL), and processes are implemented in software which is compiled

and stored in the program memory. Results of computation performed by the processes

and the OS are stored in the data memory. The processes are allowed to perform

operations on memory-mapped input/output signals via the support of OS.

Chapter 3. System design with OS modeling 79

3.7.5 Mapping of SW models to implementations

The proposed approach for modeling reactive embedded systems with an OS model

can be easily extended to a real (target) OS by properly mapping signal operations on

the services of the existing OS. For that purpose special signal-oriented data structures

have been introduced. Each signal-operation service can be refined into two stages: (1)

accessing and updating the semantics-related data structures (those preserving semantics

of e.g. ESTEREL) and (2) calling other services provided by the target OS to explicitly

trigger process-scheduling, if required. To fulfill these requirements, the target OS must

provide the following services:

Entry and exit of a critical section – these are used to operate on the signal data

structures, where operations should be carried out by one signal-operation service at a

time. This requirement can be achieved also by using a binary semaphore which

protects the data structure.

Blocking the process execution with time-out support – this can be a binary or

counting semaphore, whereas the time-out feature is required to achieve exception/error

handling such as a recovering from a signal non-presence within the specified time

period.

As an example, two existing OSs have been used as the target OS: µC/OS-II and

FreeRTOS. The templates of the signal-operation services for these two OSs are

illustrated in Listing 3.4 and Listing 3.5, respectively. Note that the variable name

timeOutLength is used to achieve the above-mentioned time-out.

In this model, the term ‘logical tick’ is adopted from the synchronous MoC, as the

synchronization barrier of behaviors in the program execution. It is different from the

standard OS ticks which are based on actual time (or clock cycles), and it is of different

length in terms of execution time. Logical ticks are used to handle incoming events in a

deterministic manner.

Chapter 3. System design with OS modeling 80

Listing 3.4: The template of signal-operation service for µC/OS-II

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

UserDefined_OS_Signal_Operation_Name (...)
{
 // Stage 1: Computation on data strucuture (DS)
 int blockingRequired = 0;
 // 0:non-blocking, 1:blocking due to signal, 2;bl ocking due to tick
 // obtaining the access of the DS
 OS_ENTER_CRITICAL();
 // Processing the DS, e.g. signal presence table, tick table, etc.
 blockingRequired = 0; // or 1 or 2 according to t he computation results
 // release the lock to the DS
 OS_EXIT_CRITICAL();
 // Stage 2: Block the process execution if requir ed
 if (blockingRequired == 1)
 OSSemPend(semaphore_for_signalS_of_procN, time OutLength, err_code);
 else if (blockingRequired == 2)
 OSSemPend(semaphore_for_tick_of_procN, timeOut Length, err_code);
 // arriving here when the blocking is not require d or finished
 blockingRequired = 0;
}

Listing 3.5: The template of signal-operation service for FreeRTOS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

x_UserDefined_Signal_Operation_Name (...)
{
 // Stage 1: Computation on data strucuture (DS)
 int blockingRequired = 0;
 // 0: non-blocking, 1: blocking due to signal, 2: blocking due to tick
 // obtaining the access of the DS
 xSemaphoreTake(semaphore_for_data_structure, por tMAX_DELAY);
 // Processing the DS, e.g. signal presence table, tick table, etc.
 blockingRequired = 0; // or 1 or 2 according to t he compuation results
 // release the lock to the DS
 xSemaphoreGive(semaphore_for_data_structure);
 // Stage 2: Block the process execution if requir ed
 if (blockingRequired == 1)
 xSemaphoreTake(sem_for_signalS_of_procN, (por tTickType)timeout);
 else if (blockingRequired == 2)
 xSemaphoreTake(sem_for_tick_of_procN, (portTi ckType)timeout);
 // arriving here when the blocking is not require d or finished
 blockingRequired = 0;
}

3.8 Case study: lift controller

A lift system from [Berry, 2004] was originally specified in ESTEREL. The system

consists of a lift cabin, a set of sensors, a timer, three motors, few push buttons, a

number of indicators (lamps), and a system controller. To map the specification to

Chapter 3. System design with OS modeling 81

processes, primitive behaviors are first extracted from the system specification. Two

large behaviors (call handling and cabin door activities) from the ESTEREL specification

are decomposed into eight primitive behaviors and dependencies between behaviors

identified as illustrated in Figure 3.17.

The primitive behaviors are mapped to 8 processes, where 17 existing dependencies

(possibly require 17 communication channels if the OS is not used) are modeled with 8

communication channels connected to the OS module (un-timed). The processes are

described using the timed model from Section 3.4. Example of mapping an ESTEREL

description to the corresponding process segment is shown in Listing 3.6 and

Listing 3.7.

Figure 3.17: Primitive behaviors and dependencies extracted from the specification

Listing 3.6: Behavior described in ESTEREL

1
2
3
4
5
6
7
8
9
10

if (not StoppedAtFloor) then
 emit {
 PendingCabinCall <= CabinCall or
 PendingUpCall <= UpCall
 PendingDownCall <= DownCall
 PendingCall <= PendingCabnCall or
 PendingUpCall or
 PendingDownCall
 }
end if

Listing 3.7: Behavior description in SystemC

Chapter 3. System design with OS modeling 82

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// Checking the presence of the following signals
int sStoppedAtFloor = Signal_Present(StoppedAtFloor);
int vCabinCall = Signal_Value(CabinCall);
int vUpCall = Signal_Value(UpCall);
int vDownCall = Signal_Value(DownCall);
int vPendingCabinCall = 0;
int vPendingUpCall = 0;
int vPendingDownCall = 0;
int vPendingCall = 0;
......
if(sStoppedAtFloor == 0) {
 vPendingCabinCall = vCabinCall;
 vPendingUpCall = vUpCall;
 vPendingDownCall = vDownCall;
 vPedingCall = vPendingCabinCall | vPendingUpCall |
 vPendingDownCall;
 Signal_Emit(PendingCabinCall, vPendingCabinCall);
 Signal_Emit(PendingUpCall, vPendingUpCall);
 Signal_Emit(PendingDownCall, vPendingDownCall);
 Signal_Emit(PendingCall, vPendingCall);
}

Figure 3.18 illustrates the model of the lift controller, where an additional process is

introduced to function as the test-bench and simulates the external environment. The

test-bench emits signals to the other processes through API calls, where emitted signals

emulate inputs from the external environment. In order to observe the advantages of a

modularized OS model, where services can be introduced and removed as the

application requires, signal-operation services are removed from the OS model in order

to analyze OS models with and without signal services. Two lift systems with the same

functionalities were modeled and simulated. The first system model (Model A) achieves

process communication and information broadcasting based on the use of semaphores.

The second system model (Model B) is supported by signal operations provided within

the OS.

Two models are simulated with 72 events (which may consist of more than one

input occurrence) provided by [Berry, 2004]. Events are generated at random intervals.

Simulation results are shown in Figure 3.19, where the bold line indicates the result

generated from Model B, which has an average speed-up of 28.46 times in simulating

clock cycles.

Chapter 3. System design with OS modeling 83

Figure 3.18: System model of the lift controller example

Figure 3.19: Simulation results for two system models

In Model A, synchronization occurs when a process releases a semaphore (use of a

particular signal) where notification is sent to other processes. However, processes are

notified regardless of the status or value of a signal. Checking of signal values happens

each time the corresponding semaphore is obtained by the process. This creates a

scenario where processes are polling signal values in a loop. In contrast to this,

synchronizations occur through signal operations in Model B, where processes are

notified when signal values change. The response times of Model A vary with event

intervals, which are shown as multiple traces in Figure 3.19, whereas the response times

of Model B are fixed in every simulation.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Number of ticks

Reaction sequence

Use signal operation APIs
Random event 1
Random event 2
Random event 3
Random event 4
Random event 5
Random event 6
Random event 7

Chapter 3. System design with OS modeling 84

3.9 Summary

This chapter presents an approach to modeling the OS for reactive embedded

systems. The abstraction level of the OS itself can be chosen depending on the need of

the computer system designer. The OS model is modular and described in SYSTEMC,

and gives opportunities for exploration of hardware/software trade-offs in

implementations of the OS. The proposed signal operations in the form of OS services

provide a mechanism to produce a relatively straightforward transformation of

ESTEREL-like specification to processes, thus bridging the system specification and the

design phase.

The processor model can be introduced into the system model in the form of an ISS

or a low-level RTL model. Evaluation of performance or other aspects of the OS

implementation in different configurations will be investigated. The future goal is to use

the developed modeling methodology to explore OS customization for specific reactive-

embedded applications.

The advantage of mapping dedicated services to support reactive systems has been

presented in the case study. This was the stepping stone to the design and

implementation of more powerful mechanisms for grouping of software processes in the

form of a library, libGALS, which is built on top of the underlying OS and is presented

in Chapter 4.

4444
4444. . . . libGALS: a library for GALS system designlibGALS: a library for GALS system designlibGALS: a library for GALS system designlibGALS: a library for GALS system design

libGALS is a library and run-time environment that extends operating systems (OSs)

to support the design of Globally Asynchronous Locally Synchronous (GALS) software

systems and models. libGALS provides an application programming interface (API)

that enables the designer to describe concurrent libGALS programs and reactivity in

sequential programming languages. Moreover, it facilitates the interface between the

GALS concurrent program and other processes through the services provided by the

host OS. libGALS is also suitable as a target for code generation from GALS and

synchronous concurrent languages. At the end of this chapter, experiments demonstrate

code size and run-time gains when compared with other approaches to implement

GALS systems.

4.1 Programming with a formal model of computation

The last decade has seen a huge growth in the complexity of software systems,

which, due to the drawbacks of programming languages, usually do not follow any

Chapter 4. libGALS: a library for GALS system design 86

formal model of computation (MoC) and are therefore difficult not only to design but

also to validate and verify. Programming languages like C/C++ and Java provide

inadequate facilities to describe important behaviors of complex systems like

concurrency, determinism and interaction with the environment. They require the use of

operating system mechanisms that are available through the OS API, which require the

designer to delve into low-level details instead of concentrating on the system design at

hand. Since these mechanisms are not guided by any formal model, space it left to the

making of erroneous designs. Synchronous languages like ESTEREL [Berry, 2000] and

GALS system-level languages like SystemJ [Malik, 2010] have been shown to increase

designer productivity when designing large and complex systems. They provide an

abstract way to model concurrency and communication with the environment, besides

being formally verifiable. However, they also have certain drawbacks such as:

1. Large generated code size.

2. Mapping of the concurrent programs onto single threads in the targeted OS

environment. Current synchronous language compilers compile away the

concurrency to produce a single-threaded C code. This generated code is unable

to take advantage of the multicore processors, its large size and single-threaded

nature slowing down the execution speed of the designed systems.

3. Lack of a formal communication model between the designed system and other

parts of the system, which are asynchronous in nature (e.g. the device drivers

which co-exist within the system).

4. Existing synchronous languages are too hardware-like for most software

programmers. Interaction of a synchronous program with the environment is not

addressed in a general way and the programmers must deal with it on case-by-

case basis using low-level language abstractions.

In this chapter a software library and run-time environment for the execution of

GALS systems, called libGALS, is presented. Concurrent behaviors are implemented as

task-based software processes around an operating system, and they comply with the

GALS MoC. libGALS provides a layer atop the host OS and/or a threading library such

Chapter 4. libGALS: a library for GALS system design 87

as pthread [IEEE, 2008]. It can be used to program concurrent systems following the

formal GALS MoC as a safer alternative to conventional threading approaches.

libGALS can also be used as a target for compilation of specifications in languages such

as ESTEREL and SystemJ. Porting libGALS is easy and can be done for almost any

existing OS. libGALS can then be used from sequential programming languages

through a set of proposed API. The main novel features provided by libGALS, which

also affect the way concurrent programs are written in sequential programming

languages, are:

1. Ability to extend sequential programming languages such as C (through

available language bindings) to specify synchronous type concurrency with

simple mechanisms for communication and synchronization between

synchronous processes using signals. Communication and synchronization

between asynchronous processes are through channels implementing message-

passing with rendezvous. Signals and channels can be created dynamically.

2. Ability to dynamically create processes and define their relationship with

already existing processes (synchronous or asynchronous), as well as to

dynamically schedule these processes. libGALS allows designers to create

processes either dynamically or statically depending upon application

requirements. In a safety-critical or sensitive application it would be prudent to

create all processes at startup. The static creation of processes would allow the

designed system to be analyzed for predictability and timing performance.

3. Provision of interface to the external environment through signal abstraction and

to other OS processes through host OS services.

4. Achievement of higher responsiveness and reduced response times compared

with current language approaches to GALS and synchronous concurrency.

5. Smaller memory footprint compared with other GALS approaches, thereby,

making it also suitable for embedded systems.

6. Ability to define simulation model for modeling and simulation of complex

system designs.

Chapter 4. libGALS: a library for GALS system design 88

libGALS is entirely written in C and as such has great degree of portability to

practically any host operating system. The first implementation presented in this chapter

targets Linux, although there have already been ports to some other common OSs.

Throughout this chapter, the term OS is used to represent common operating systems

with sufficient features to support libGALS such as, but not limited to, Linux.

The rest of this chapter is organized as follows. Section 4.2 presents related work.

Principles of operation and implementation of libGALS are given in Section 4.3. An

example of GALS design is given to illustrate both specification and implementation

features of libGALS. Section 4.4 presents performance comparisons with the GALS

language SystemJ to indicate potentials of the proposed approach, not only as an

alternative, but also as the way to merge those two approaches, using the GALS

language on specification and the libGALS approach on the implementation level.

Discussion and conclusions are given in Section 4.5.

4.2 Approaches in programming concurrency

4.2.1 Concurrent behaviors in software systems

Specification and run-time execution of concurrent processes are supported using

different mechanisms. In an OS, concurrency is implemented in the form of multiple

processes (sometimes called tasks) supported by a scheduler implementing switching

between these processes to better use the processor and to provide faster response to the

events from the environment. However, multiple processes require mechanisms for

synchronization, communication and mutual exclusion for the protection of shared

resources. OS [Silberschatz & Galvin, 1998] provides this support in the form of

traditional API to programming languages. These mechanisms must be used by system

programmers with due care to prevent non-deterministic or non-desired behavior and

traditional pitfalls such as deadlock or race conditions [Silberschatz & Galvin, 1998].

Java provides native multithreading support, but the programmer is responsible for

correctness of the program as it does not follow any formal MoC. Also, its concurrency

Chapter 4. libGALS: a library for GALS system design 89

is non-deterministic. Recently, OSs have been extended to support execution and

concurrency in symmetric and asymmetric multiprocessor systems.

4.2.2 Limitation of single-threaded specification models

In system-level languages concurrency is described and dealt with using language

features. When compiled, concurrent behaviors in synchronous and asynchronous

languages are most often sequentialized and scheduled to be executed as a single thread

[Edwards et al., 2006]. Single-threaded implementations of concurrent system level

languages have many drawbacks. For example, if the executing thread has to wait for an

external event to occur, it blocks the other concurrent behaviors of the program, which

do not depend on that event at all. This becomes an even bigger bottleneck if the

computation contains heavy data-driven parts. Also, a single thread cannot take any

advantage of underlying multiple processors.

4.2.3 Library-based approaches

libGALS is not the first attempt at providing a library-based approach to implement

concurrent systems. There are a number of other libraries such as TReK [Gruian et al.,

2006], JESTER [Antonotti et al., 2000], JUNIOR [Hazard et al., 1999] and SUGARCUBES

[Boussinot & Susini, 1998], which provide support for concurrency. JESTER implements

the synchronous MoC, while TReK supports the GALS MoC. Both these approaches

rely on a Java Virtual Machine (JVM) and may have low execution speed. They also

lack support for important reactive constructs. For example, JESTER does not support

deterministic concurrent-exception mechanisms (parallel trap-exit statements), while

TReK does not support strong signal-based pre-emptions like abort and suspend. JUNIOR

and its derivative SUGARCUBES both follow a completely different semantics [Boussinot

et al., 1999]. The JUNIOR reactive kernel implements non-deterministic concurrency,

which can lead to undefined behaviours, a problem for mission-critical systems.

SUGARCUBES implements logical parallelism, which is mapped to a single threaded

implementation.

Chapter 4. libGALS: a library for GALS system design 90

The libGALS approach combines library and run-time (OS) approach and indirectly

supports the language-based approach. It has sequential threads as its basic concurrent

units, which are managed by a host operating system that allows the designer to specify

concurrent behaviors in a much safer way and guarantee a formal relationship between

those behaviors.

The synchronous behaviors can also communicate with each other or with their

environment using signals as in synchronous programming languages [Berry,

1993][Boussinot et al., 1999]. Synchronous reactions are implemented as threads in a

libGALS program. Behaviors in conventional synchronous programs are sequentialized

hence only one behavior is performed at a time. In contrast, reaction threads in libGALS

execute concurrently and synchronize with each other at lock-steps according to the

GALS MoC. Concurrent behaviors in libGALS programs are mapped to threads

supported by the OS following the GALS MoC, and run in true parallel fashion when

the underlying platforms allow. Execution times are thus shortened with increasing

processor utilization.

4.3 libGALS fundamentals

In this section the concepts and model of computation (MoC) of the libGALS are

introduced. Four basic building blocks provided by libGALS, those of clock domain

(CD), reaction, signal, and channel, are provided to the designer to construct GALS

systems. The concept of logical time (tick) which is used within clock domains is

detailed in this section.

4.3.1 Model of computation of libGALS

libGALS extends sequential programming language based on concurrent GALS

MoC. The terminology related to GALS is adopted from that used in SystemJ language,

because libGALS uses the same semantics described in [Malik, 2010]. A program

which utilizes libGALS to model GALS systems is referred to as a libGALS program.

Four entities are defined in libGALS: clock domain, reaction, signal, and channel. At

the top level, a libGALS program is a composition of one or more asynchronous

Chapter 4. libGALS: a library for GALS system design 91

concurrent entities, which are called clock domains. Communication between clock

domains is implemented using channels similar to CSP [Hoare, 1978]. Reactions are

behaviors within one clock domain and are synchronous to each other. Synchronous

reactions follow the same semantics as ESTEREL [Berry, 2000] and synchronous part of

SystemJ [Malik, 2010]. That is, communication between reactions within one clock

domain is via signals.

4.3.2 Clock domain: top-level synchronous entity

A clock domain is a top-level entity in a libGALS program. A clock domain itself

consists of one or more synchronous behaviors called reactions. Inter-clock domain

communications, which occur between reactions belonging to two different clock

domains, are implemented using channels. Clock domains execute asynchronously to

other clock domains, i.e., at their own logical clocks whose unit is called a ‘tick’. Clock

domains are containers where reactions reside. Functionalities of clock domains are

defined only in reactions, not in clock domains.

4.3.3 Reaction: behavior of a clock domain

Each reaction can be a composition of further reactions, thus allowing synchronous

and hierarchical behavioral concurrency. Reactions are implemented as ‘threads’ which

can be created by using the API provided by the underlying operating system. Besides

using any of the usual sequential programming language constructs, reactions are also

allowed to use a number of control and reactive statements which are available in

libGALS. Control and reactive statements enable communication between reactions, as

well as with the external environment.

Reactions in the same clock domain are executed in lock-step and are synchronized

by a logical tick. Reactions react to environment inputs simultaneously and

instantaneously. Outputs are computed and emitted in zero logical time

(instantaneously). The reactions of different clock domains communicate with each

other through the use of channels, which will be detailed in Section 4.3.5 and 4.5.8.

Reactions on each side of the channel work on different copies of the message.

Chapter 4. libGALS: a library for GALS system design 92

4.3.4 Logical tick in libGALS

A logical tick (different from a tick in the host OS kernel) is used to represent a

discrete time instant for a clock domain and all its synchronous reactions, where

reactions in each clock domain are executed at its own logical tick. Management of

execution of the reactions within each clock domain, and communication with the

external environment, are carried out by a helping thread named ‘Synchronizer’ (see

Section 4.5.3). The time between two logical ticks, unlike that between two real clock

ticks, has variable duration. The tick boundary is determined by various libGALS API

calls such as ‘pause’, ‘await’, ‘sustain’, and ‘suspend’. The usage of libGALS API will

be detailed in Section 4.4.1.

4.3.5 Signals and traps for communication and synchronization

Signals are the main communication primitives between reactions within clock

domains. Communications between reactions and their external environment are also

made via signals. Signals can be divided into two major categories: (1) interface signals,

used for communication between reactions and the environment and (2) local signals,

used for broadcast-based communication between reactions. Signals can be further

divided into ‘pure’ and ‘valued’ signals. Pure signals have only a Boolean status

(present or absent). Valued signals are a composition of a Boolean status and a value,

which can be of any type (void pointers are used in the current implementation). The

status of pure and valued signals can be altered with signal emission, which is achieved

by calling ‘emit’. The status can be checked using functions like ‘present’ and ‘await’.

Similar to reactive languages [Boussinot & Dabrowski, 2006], absence of the signals

can be detected only in the next tick. The value of valued signals is persistent over ticks

and can be checked via calling ‘value’. Traps are a special kind of signal, used to

monitor a specified scope within a reaction body. When executions of reactions are not

in the scopes of traps, these traps are not effective. Status of traps can be:

1. Monitoring. Execution of a reaction is still within the scope of a trap. The scope

of a trap is bounded by the ‘setTrap’ and ‘endTrap’ calls.

Chapter 4. libGALS: a library for GALS system design 93

2. Activated to exit. Similar to signal emission, a trap is exited through ‘exitTrap’

call.

3. Not valid. The execution is out of a trap’s scope and the trap is no longer

effective.

4.3.6 Channels: communication between clock domains

Channels are the only means of communication between reactions belonging to

different clock domains. Channels are point-to-point, unidirectional, and use rendezvous,

i.e. blocking send and receive, to guarantee data delivery between reactions. A sender

reaction uses the send function and the receiver waits for the data using the receive

function. Channels in libGALS operate similarly to CSP of [Hoare, 1978], the sending

and receiving sides working on different copies of the message. Invisible delays occur

between input and output in the form of empty ticks while waiting for rendezvous in the

CSP MoC. In each empty tick, the ‘send’ or ‘receive’ call only ‘pause’, invisible to the

programmer at that instance. Empty ticks enable clock domains to still carry out ticks

when reactions within are waiting for the channel communication.

4.3.7 libGALS and other software components

Figure 4.1 illustrates relationships between libGALS and other software processes.

libGALS is a library implemented at the top of the host OS and requires host OS

services including: (1) thread creation and deletion, and (2) semaphore manipulation,

which are all available in almost any OS.

Figure 4.1: libGALS and other software component

Chapter 4. libGALS: a library for GALS system design 94

Reactions and Synchronizers are implemented as OS threads. Reactions

communicate with other application processes and user-defined drivers through input

and output functions of the underlying clock domains. Input and output functions can be

implemented using inter-process communication (IPC) of the host OS.

4.4 Specifying a design with libGALS

In this section the application programming interface (API) of libGALS is

presented. libGALS API is used to construct libGALS programs. An example of

alibGALS program, a kite controller used for wind and water surfing, is modeled by

using the provided API. The kite controller will be used in a later chapter to demonstrate

the linkage between the internals of libGALS with libGALS programs.

4.4.1 libGALS API and libGALS programs

The designer commences the design by dividing the concurrent behaviors into

reactions and clock domains. Reactions can then be decomposed into further (child)

reactions. The reactions are defined as usual the C functions with a few restrictions

which include: (1) use signals instead of shared variables to prevent the use of

semaphores, thus avoiding possibility of deadlock and (2) make temporal infinite loops

by using at least one statement (function) that consumes logical ticks, i.e. ‘pause’ and

‘await’. The body of the reaction function consists of computational and reactive

statements. Computational statements are those of the host programming language

(C/C++ in this case), while reactive statements are specified by the libGALS API calls.

The comprehensive list of reactive statements with short explanations of their

functionality is shown in Table 4.1.

libGALS API calls are categorized into three groups for (1) construction of GALS

systems, (2) modeling synchronous behaviors within reactions, and (3) asynchronous

communication between clock domains. Groups of API calls are shaded to show

differentiation in Table 4.1.

Chapter 4. libGALS: a library for GALS system design 95

Table 4.1: Application programming interface of libGALS

API Description
createlibGALSprogram Initialize a libGALS program
createClockDomain Create a clock domain
createReaction Create a reaction within a clock domain
create[Signal | Trap] Create an instance of a signal or a trap
createChannel Create a channel connecting two clock domains
startClockDomain Activate running a clock domain
startlibGALSprogram Start libGALS program and activated clock domains
initReaction/
endinitReaction

Initialize a reaction and end initialization of the reaction

getArgument Get an argument passed to the reaction
register[Emitter|Trap] Register a process as a signal emitter or a trap thrower
emit | sustain Emit/broadcast (or sustain) a signal
present Check if a signal is present
pause Enforce end of tick for a reaction
await Wait for the presence of a signal
[strong|weak]
abort/endAbort

Start and end of a pre-emption block. Pre-empt if monitored
signals are present

suspend/endSuspend Suspend a reaction by one tick if a monitored signals are
present

setTrap/endTrap Set and end the scope of the trap
exitTrap Exit the trap, the reaction will jump to the end of the trap

scope
fork/join Fork out child reactions and wait for joining of the child

reactions
AND,OR,NOT,REP Form a combined signal expression from presences of

signals:
AND: logical AND
OR: logical OR
NOT: logical NOT
REP: will return true when a signal emission occurs n times
consecutively

value Acquire the value of a signal
pre[Value] Get the presence status and value of a signal in the previous

tick
endReaction End a reaction, called if the reaction is not a child reaction
send/receive Send and receive data between reactions in different clock

domains via a channel

API calls in the first group are used to initialize a libGALS program and to create

essential compartments of a libGALS program. Clock domains, reactions, signals, traps

(special type of signal), and channels are created via this kind of API calls. libGALS

Chapter 4. libGALS: a library for GALS system design 96

program and created clock domains are activated through calling this group of API calls

also. Synchronous reactions are described using the second group of the API calls that

act as reactive statements. Finally, channel communications between the reactions of

clock domains, ‘send’ and ‘receive’ are used as the asynchronous group of the libGALS

API calls.

4.4.2 Kite controller: an example of a libGALS program

libGALS enables modular design and re-usability of code in describing GALS

systems. For example, the code definition of a reaction, also known as ‘reaction

function’, can be used to implement multiple numbers of the actual instantiated reaction

threads. Signals and channels used in the reaction functions are mapped to actual

instances when a reaction is created. A power-kite controller is depicted in Figure 4.2

and its equivalent libGALS program is presented in Listings Listing 4.1 and Listing 4.2,

respectively. The power-kite controller consists of three clock domains, which include

‘CDKiteControl’, ‘CDGetWindInfo’, and ‘CDGetKiteInfo’. Speed and heading of the

wind and the kite are collected using sensors running at different sampling rates (hence

the different clock domains). Collected samples are passed to the ‘rReceiveWindData’

and ‘rReceiveKiteData’ reactions running in parallel synchronously within the clock

domain CDKiteControl through channels ‘cWind’ and ‘cKite’, respectively. This clock

domain computes the value of the output signals that control the kite heading and speed,

based on this received data. Once calculated, the computed values are emitted via

signals to the actuators that stabilize the power kite. libGALS also enables designers to

specify test-benches that generate stimuli for testing and validation of the designed

system. For example, reactions ‘rSimulateWindData’ and ‘rSimulateKiteData’ generate

stimuli that behave as input signals from the environment.

A libGALS program consists of definitions of reactions and a description of the

system, which are shown in Listings Listing 4.1 and Listing 4.2, respectively. The

definitions of reactions (Listing 4.1) include the definition of user-typed data (lines 2-6)

used as arguments in the reactions, the clone function of the user-typed data (lines 7-13),

and the body of the reaction functions (lines 14-76). Data sent in both channels cWind

and cKite are user-defined type called ‘measurements’, which consists of two

Chapter 4. libGALS: a library for GALS system design 97

components, the heading angle and the speed. The ‘clone function’ measurements_clone

is used to duplicate the user-typed data for channel communications to work on

different copies of the messages. Lines 14-40 of Listing 4.1 demonstrate how a reaction

is defined. A reaction function ‘KiteControl’ is defined with the

‘REACTION_FUNCTION’ macro (line 14). The body of a reaction is divided into two

parts, the initializations and the behavior of the reaction. The initialization of the

reaction starts with the API call ‘initReaction’ and ends with the API call

‘endInitReaction’ as shown on lines 16 and 30, respectively. Within the scope of the

initialization, the arguments passed to create a reaction can be extracted by calling

‘getArgument’ (lines 18 to 25). Signals that will be emitted by this reaction are

registered by calling ‘registerEmitter’ (line 28) in the initialization phase. Variables

used in the reaction can also be declared in the initialization scope. The behavioral

description of a reaction is written after the ‘endInitReaction’ API call. The reaction’s

behavior consists of the control part and computational part (data-driven

transformations), which are tightly integrated with each other (lines 31-45). Control

parts of the reaction are modeled with the libGALS API calls, while computational parts

are expressed in the host programming language. To illustrate the hierarchical design in

libGALS programs, KiteControl forks out and then waits for joining of child-reactions

‘rReceiveKiteData’ and ‘rReceiveWindData’ with fork and join API calls (lines 32-33).

The ‘fork’ and ‘join’ API calls together coordinate the synchronous concurrency model

within a clock domain. A reaction can initialize multiple synchronous reactions (called

child reactions) concurrently using the ‘fork’ API calls, which instantiate the child

reactions. Once the child reactions are initialized the parent waits for their completion

before proceeding further. This is done by calling the blocking ‘join’ API call.

Computational parts are carried out to determine whether the bearing and speed of the

kite need to be increases or reduces. Emission/broadcasting of the signal

‘sIncreaseKiteVelocity’ with an ‘emit’ API call (line 41) is performed to maintain the

course of the kite.

Asynchronous communications through channels are carried out with ‘send’ and

‘receive’ API calls on lines 71 and 54, respectively. Both send and receive calls require

Chapter 4. libGALS: a library for GALS system design 98

the name of channel, the data to transfer, and the type of the data. In this case, data

typed measurements is used. The behavioral description of a reaction ends with the

‘endReaction’ API call (such as line 46).

The GALS system (Listing 4.2) instantiates the clock domains using the

‘createClockDomain’ API calls (lines 5-10). These API calls take the input and output

functions that act on the interface input and output signals as arguments. Input and

output functions allow the inputs to the clock domain to be read at the beginning of

every tick and the output signals to be emitted at the end of every tick. ‘createChannel’

is used to instantiate channels for communication between the sending and receiving

clock domains, along with the name of the channel, which are arguments to this

function (lines 11-16). Signals used within the clock domain are created by calling

‘createSignal’ whose argument is the clock domain where the signal operates (lines 18-

29). The reactions are instantiated via the ‘createReaction’ API call. The required

arguments to create a reaction include:

1. The clock domain where the reaction resides; each created reaction acts

synchronously with other reactions created in the same clock domain.

2. The reaction function which hooks with this reaction instance. Each reaction is

associated with a reaction function. More than one reaction can refer to the

same reaction functions but with no shared context.

3. The activation status of the reaction (activated or dormant); an activated status

is of value 1 and 0 otherwise. Child reactions are dormant before being forked

from the parent reaction. For instance, ‘rReceiveWindData’ and

‘rReceiveKiteData’ are dormant (lines 33 and 40)) and wait for activation from

‘rKiteControl’, which is activated initially (line 47).

4. The number of arguments passed to the reaction function (lines 34, 41, 48, 61,

69, 76, 83, and 90).

5. The actual arguments are provided as arguments. For instance, the creation of

reaction ‘rKiteControl’ (line 44) indicates the reaction will be active upon the

creation. Furthermore, eight arguments will be passed to the reactions, which

include two child reactions, four output signals, and two input channels.

Chapter 4. libGALS: a library for GALS system design 99

Note that two instances of the reaction function ‘ReadData’ are created on line 59

and 88, which demonstrates the modularity and code re-usability provided by libGALS.

The clock domains are started using the ‘startClockDomain’ API calls (lines 96-98).

Finally the GALS system starts with the ‘startlibGALSProgram’ (line 99).

Synchronizers are programmer-invisible threads to manage activities of each clock

domain.

Figure 4.2: Power kite control system abstract representation

Listing 4.1: Definition of reaction functions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#include “libGALS.h”
typedef struct measurements {
// Definition of User Types
 int heading;
 int speed;
} measurements;
measurements* measurements_clone(measurements* orig inal) {
 measurements * newMeasurements =
 malloc(sizeof(measurements));
 newMeasurements->heading = original->heading;
 newMeasurements->speed = original->speed;
 return newMeasurements;
}
REACTION_FUNCTION(KiteControl) {
 // Initialize data structure used by the reaction
 initReaction();
 // Obtain arguments passed to this reaction
 reaction rReceiveKiteData = (reaction)getArgument (1);
 reaction rReceiveWindData = (reaction)getArgument (2);
 signal sIncreaseKiteBearing = (signal)getArgument (3);

Chapter 4. libGALS: a library for GALS system design 100

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

 signal sIncreaseKiteVelocity = (signal)getArgumen t(4);
 signal sReduceKiteBearing = (signal)getArgument(5);
 signal sReduceKiteVelocity = (signal)getArgument(6);
 signal sWindData = (signal)getArgument(7);
 signal sKiteData = (signal)getArgument(8);

 // Register the output signals of this reaction
 registerEmitter(IncreaseKiteVelocity);
 // Declare variable used within the reacti on
 endInitReaction();
 while(1) {
 fork(rReceiveKiteData); fork(rReceiveWindData);
 join(rReceiveKiteData); join(rReceiveWindData);
 crossWind = sin(sWindData->heading-sKiteData->h eading)*
 sWindData->speed;
 // cross_wind within limits
 if(abs(CrossWind) < MAX_CROSS_WIND) {
 headwind = cos(sWindData->heading-sKiteData-> heading)*
 sWindData->speed;
 if (headWind>0&& head_wind < MAX_HEAD_WIND){
 emit(sIncreaseKiteVelocity, 0);
 }

 }
 endReaction();
}
REACTION_FUNCTION(ReceiveData) {
 initReaction();
 channel cData = (channel)getArgument(1);
 signal sData = (signal)getArgument(2);

 ChannelDataType *data;
 receive(cData, data, ChannelDataType);
 emit(sData, data);

}
REACTION_FUNCTION(GetSpeed) { }
REACTION_FUNCTION(ReadSpeed) { }
REACTION_FUNCTION(SendData) {
 initReaction();
 signal sData = (signal)getArgument(1);
 channel cData = (channel)getArgument(2);

 // Await and store sData to headingData and speed Data
 ...
 ChannelDataType *data =(ChannelDataType*)malloc(
 Sizeof(ChannelDataType));
 data->heading = headingData;
 data->speed = speedData;
 send(cData, data, ChannelDataType);

}
// TestBench Reaction

Chapter 4. libGALS: a library for GALS system design 101

75
76

REACTION_FUNCTION(SimulateKiteData) { }
REACTION_FUNCTION(SimulateWindData) { }

Listing 4.2: Definition of the GALS system

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

#include “libGALS.h”
#include “ReactionFunctions.h”
int main(void) {
 createlibGALSProgram();
 clockdomain CDKiteControl = createClockDomain(Inp utC0,
 Out putC0);
 clockdomain CDGetWindInfo = createClockDomain(Inp utC1,
 Out putC1);
 clockdomain CDGetKiteInfo = createClockDomain(Inp utC2,
 Out putC2);
 channel cWind = createChannel(CDGetWindInfo,
 CDKiteControl,
 “cWind”);
 channel cKite = createChannel(CDGetKiteInfo,
 CDKiteControl,
 “cKite”);
 // Signals for clock domain CDKiteControl
 signal sIncreaseKiteBearing = createSignal(CDKite Control);
 signal sIncreaseKiteVelocity = createSignal(CDKit eControl);
 signal sReduceKiteBearing = createSignal(CDKiteCo ntrol);
 signal sReduceKiteVelocity = createSignal(CDKiteC ontrol);
 signal sWindData = createSignal(CDKiteControl);
 signal sKiteData = createSignal(CDKiteControl);
 // Signals for clock domain CDGetWindInfo
 signal sWindHeading = createSignal(CDGetWindInfo) ;
 signal sWindSpeed = createSignal(CDGetWindInfo);
 signal sWindDataToSend = createSignal(CDGetWindIn fo);
 // Signals for clock domain CDGetKiteInfo

 reaction rReceiveKiteData = createReaction(
 CDKiteControl, // Clock domain that reacti on is in
 ReceiveData, // Reaction function
 0, // Set Active status to dor mant
 2, // Number of argument(s)
 cKite, // Pass cKite as the argume nt
 sKiteData); // Used to pass data to rKi teControl
 reaction rReceiveWindData = createReaction(
 CDKiteControl,
 ReceiveData,
 0,
 2,
 cWind,
 sWindData);
 reaction rKiteControl = createReaction(
 CDKiteControl,
 KiteControl,
 1,
 8,
 rReceiveKiteData,
 rReceiveWindData,

Chapter 4. libGALS: a library for GALS system design 102

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

 sIncreaseKiteBearing,
 sIncreaseKiteVelocity,
 sReduceKiteBearing,
 sReduceKiteVelocity,
 sWindData,
 sKiteData);
 reaction rReadWindData = createReaction(
 CDGetWindInfo,
 ReadData,
 1,
 3,
 sWindSpeed,
 sWindHeading,
 sWindDataToSend);
 reaction rSendWindData = createReaction(
 CDGetWindInfo,
 SendData,
 1,
 2,
 sWindDataToSend,
 cWind);
 reaction rGatherWindData = createReaction(
 CDGetWindInfo,
 GatherData,
 1,
 2,
 rReadWindData,
 rSendWindData);
 reaction rSimulateWindData = createReaction(
 CDGetWindInfo,
 SimulateWindData,
 1,
 2,
 sWindSpeed,
 sWindHeading);
 reaction rReadKiteData = createReaction(
 CDGetKiteInfo,
 ReadData,
 1,
 4,
 sKiteSpeed,
 sKiteHeading,
 sKiteDataToSend,
 kiteSamplingPeriod);
 // creation of other reactions
 startClockDomain(CDKiteControl);
 startClockDomain(CDGetWindInfo);
 startClockDomain(CDGetKiteInfo);
 startlibGALSProgram();
}

Chapter 4. libGALS: a library for GALS system design 103

4.5 libGALS internals

Internal representations of clock domain, reaction, signal, and channel are detailed

in this section. Concepts such as the helping thread and the scheduling policy used to

govern internals of libGALS are described in the following text.

4.5.1 Overview of the libGALS data structure

Each libGALS program works on a programmer-invisible data structure, which is

illustrated in Figure 4.3. API calls within reactions operate on the underlying data

structure. Information within such data structure is used to book-keep status of the

libGALS program.

Figure 4.3: Data structure of a libGALS program

Chapter 4. libGALS: a library for GALS system design 104

‘SystemData’ holds a list of clock domains and channels in the ‘globally

asynchronous’ realm. Clock domains and channels are stored in link-lists and

SystemDataLock is a semaphore-typed lock to ensure data consistency when adding

clock domains and channels to a libGALS program. ClockDomainRR is used only when

the underlying OS does not provide suitable scheduling policy to prevent starvation of

clock domains.

Data structures of reactions, signals, and pre-emptions of different clock domains

are managed independently and shown as shaded in Figure 4.3. They are linked with the

corresponding clock domain data structure. Traps use the data structure of a signal since

traps are special cases of signals.

4.5.2 Clock-domain data structure

Each clock domain operates on its own data structure whose fields are listed in

Table 4.2. Notice that each clock domain has a ‘clockDomainDataLock’ which is

similar to SystemDataLock of SystemData, for data integrity within each clock domain.

Table 4.2: Fields of ClockDomain data structure

Field Name Description
clockDomainID The ID of the clock domain. The ID is issued based on the

order of clock domain creation
clockDomainName The name of the clock domain. It is used to identify sending

and receiving sides of a channel
clockDomainDataLock This is used to ensure the data consistency within the clock

domain when calling API which operates on reactions and
signals of the underlying clock domain

numberOfReactions The number of reactions in the clock domain
numberOfSignal The number of signals in the clock domain
reactionList A pointer to a link list of data structure ReactionNode. The list

contains the information of reactions resided in the clock
domain

signalList Similar to reactionList, signalList is a pointer to a link list of
data structure SignalNode representing the list of used signals
in the clock domain

preemptionList A list of the PreemptionNodes, which is monitored in the
current tick. Pre-emptions are used at the beginning and end of
ticks to perform strong and weak pre-emptions

tickTable Records the tick status of each reaction in the clock domain

Chapter 4. libGALS: a library for GALS system design 105

emitTable/
preEmitTable

To record the status and values of the signals in the current tick
and previous tick

resolutionTable A table whose rows and columns are equal to
NumberOfReaction and NumberOfSignal respectively. This
table is used to dynamically resolve signal dependencies at
run-time

forkAndJoinTable A table whose rows and columns are equal to
NumberOfReaction. It is used to maintain fork-and-join
activities between parent and child reactions

inputFunction/
outputFunction

These are two function pointers pointing to user-defined
functions to communicate with the environment

previousCD/nextCD Points to the previous and next instance of clock domain in the
libGALS program

Synchronizer Points to a Synchronizer function, which manages ticks and
signal resolutions in a clock domain

4.5.3 Synchronizers

Synchronizers are helping threads within a libGALS program. A synchronizer is

created whenever a new clock domain is created. The services provided by

Synchronizer are: (1) dynamic resolution of signal dependencies, (2) synchronization of

reactions at the clock-domain tick boundaries, (3) maintenance of internal data

structures for the new tick, such as book-keeping of the previous status and values of

signals, (4) call of the input and output functions to communicate with the environment

and (5) update of channels’ status to implement rendezvous between reactions

belonging to different clock domains. The implementation of Synchronizer is simply an

infinite loop, which provides services when all the other reactions in the same clock

domain are blocked. In priority based OSs, such as µCOS-II, Synchronizers is

implemented as the thread with the lowest priority, compared to reaction threads, to

prevent taking up control of the processor.

4.5.4 Reaction internals

Synchronous reactions are implemented as threads whose execution bodies are

defined as reaction functions. ‘ReactionNode’ is used as the data structure to represent

the status of a reaction and to relate the reaction to the other components within a clock

Chapter 4. libGALS: a library for GALS system design 106

domain, such as pre-emption and signals. The fields of ‘ReactionNode’ are shown in

Table 4.3. The behavior of a reaction is described by a finite state machine illustrated in

Figure 4.4. State transitions are resulted from libGALS API calls or actions of the

Synchronizer and are listed in Figure 4.4. A tick of a reaction can span over one or more

FSM states depending on the interaction with other reactions.

Table 4.3: Feilds of ReactionNode data structure

Field Description
reactionID The ID of the reaction
reactionName The name of the reaction
reactionFunctionPointer Points to reaction function as the execution body
pendChildReactionID The reaction ID of the child reaction which is awaited by

the parent reaction, it is used by the join API call
parentReaction Pointer to the parent reaction, if there is any
elderSiblingReaction/
youngerSiblingReaction

Pointers to reactions that share the same parent reaction

childReaction Pointer to the first child reaction if there is any
reactionState An enumeration showing the current reaction state, as

shown in Figure 4.4.
emitterChecking It is used for signal resolutions
preemptionList Pointer to the innermost pre-emption scope in the reaction.

The underlying pre-emption scope is also located in the list
of pre-emptions of the resident clock domain

ticked Indicate if a reaction has finished its tick
terminationCode The status of the reaction. It is set to 1 at the end of tick,

values greater than 1 if the reaction is ended due to pre-
emption, -1 if it is checking the presence of the signal, and 0
if it is not active or running computational statements or
non-blocking libGALS API

childrenTerminationCode Present the returning status of the child reactions. This
structure guarantees that the current reaction will proceed
further with execution only once all the children have
finished executing

endTickLock It is used to signal Synchronizer that the end of tick of the
reaction has reached

newTickLock It is signaled by Synchronizer to information the reaction to
start a new tick

Forking of a reaction will establish interconnect between the parent and child

reactions. Figure 4.5 illustrates one of the relationships of the nodes in the power kite

Chapter 4. libGALS: a library for GALS system design 107

controller shown in Figure 4.2. Note that ‘childReaction’ of rKiteControl points to the

first child (rReceiveKiteData) that it forks out. Sibling relationships are formed between

the rReceiveKiteData and rReceiveWindData reactions. reactionFunctionPointer of both

rReceiveKiteData and rReceiveWindData refer to reaction function ReceiveData.

Figure 4.4: Finite state machine of a reaction

Chapter 4. libGALS: a library for GALS system design 108

Table 4.4: State transition of a reaction

State
transition

Description

a End of reaction initializations
b Forked by parent reaction or activated while created
c libGALS API such as endAbort indicates the end of a pre-emption

scope
d Pre-emption scope removed, return from libGALS API
e Encounter tick boundary, eg a ‘pause’ call
f No weak pre-emption is activated
g All active reactions reach the end of tick
h Start new tick, jump to continuation address if strong pre-emption is

activated
i Strong pre-emption set by parent reaction is activated
j Weak pre-emption set by parent reaction is activated
k Reach end of the reaction or join the parent reaction
l Weak pre-emption activated
m Wait to be activated by a parent reaction
n Blocking caused by the operating system service requested by libGALS

when processing API call
o Unblocking from the previous blocked libGALS API call
p Transfer control to other reactions or processes due to the scheduling

policy of underlying operating system
q Control of the processor transferred from other reactions or processes

due to operating system scheduling

Forking and joining are managed through forkAndJoinTable as shown in Figure 4.6.

It is a two-dimensional structure where each row-to-column element is directly mapped

to a parent-to-child reaction relationship. For instance, the element located at the

intersection of the first row, second column, indicates that the first reaction of the clock

domain is the parent reaction to the second reaction of the clock domain. Each element

is a node and contains two binary semaphores. These semaphores are used for activation

and resumption of the parent and child threads. Both the number of rows and columns

of the table structure are equal to the number of reaction threads. To conserve the run-

time memory, memory for each element is only allocated when there is a ‘fork’ call.

The allocation of the element is freed once the corresponding parent and child reaction

threads finish the fork and join phases.

Chapter 4. libGALS: a library for GALS system design 109

Figure 4.5: Interconnection of ReactionNodes after forking

Figure 4.6: Data structures used to achieve fork and join of reactions

4.5.5 Scheduling of reactions within clock domains

The scheduling of reactions is handled by the host OS scheduler. This scheduling

mechanism works closely with Synchronizers and the internal data structures of a

libGALS program. If a reaction is blocked due to a libGALS API call, control is

transferred to another reaction that is ready for execution. The interleaving of reaction

execution and transfer of control from one reaction to another are governed by the

scheduling policy of the host OS. For instance, the libGALS Linux implementation

adopts the use of POSIX threads and, the scheduling decisions are thus made by the

Linux scheduler. However, the reaction cannot be scheduled unless it has the permission

of its clock domain Synchronizer, which enforces lock-step execution of reactions.

Chapter 4. libGALS: a library for GALS system design 110

Scheduling strategies on different operating systems affect only the execution sequence

of reactions which do not have mutual signal dependencies. A reaction in one clock

domain can be executed in parallel with reactions in other clock domains if the

execution platform allows it (for example on a multiprocessor or multicore platform).

Figure 4.7 illustrates an example of three reaction threads where Reaction 2 and

Reaction 3 depend on the emission of signal A, and the sequence of execution is such

that Reaction Thread 1 takes the first step. Once the signal A is emitted, all three

reactions can run in parallel depending on the number of available processing units.

Figure 4.7: True parallelism of reaction threads on multiprocessing cores

Another example of libGALS implementation is in the embedded operating system,

µCOS-II [Labrosse, 2002], which features pre-emptive scheduling. Scheduling

strategies on different operating systems will affect only the execution sequence of

independent micro steps of reaction threads. Dependencies such as checking on

presence of signals and conditions of pre-emptions are handled by the libGALS library

and the behavior of the reactive program is still deterministic.

4.5.6 Signal representation and resolution

Signals in the libGALS are represented by ‘SignalNode’ data structure. A

SignalNode is positioned in signalList of the clock domain that utilizes such signal.

Fields in SignalNode are listed in Table 4.5.

Chapter 4. libGALS: a library for GALS system design 111

Table 4.5: Fields of SignalNode data structure

Field Description
signalID The ID of the signal
signalName The name of the signal
clockDomain The clock domain that the signal is created in
signalType The type of the signal:

0: signal created by using createSignal API call
1: signal created by using AND
2: signal created by using OR
3: signal created by using NOT
4: signal created by using REP

level The level of the signal starts from 1 indicating the
SignalNode is created by using createSignal API call.
Otherwise the SignalNode is created by other means.

presence The status of the signal
previousSignal/
nextSignal

Used by signalList of the underlying clock domain. Point to
the previous and next signalNode in the list

childSignal1/
childSignal2

Point to SignalNodes which are used as arguments of singal
combination API calls such as AND and OR

Figure 4.8: Interconnection of signal nodes

A signal node (implemented by using SignalNode data structure) can represent a

single signal or an operation on a signal (such as NOT), or logical combinations of

signals (such as AND between two signal status). A SignalNode is created when

corresponding libGALS API calls are made. For instance, AND(A,B) will operate over

Chapter 4. libGALS: a library for GALS system design 112

three SignalNodes (one created for AND, two existing for signals A and B) and will

form an ‘and’ relationship of signals A and B. The interconnections between the signal

nodes are illustrated in Figure 4.8.

API call AND(A,B) established a SignalNode whose SignalID is 3. childSignal1

and childSignal2 of such SignalNode point to signals A and B, respectively. Both

signals A and B are created by calling createSignal, therefore levels of these signals are

1 with signalType of 0. Subsequently, SignalNode AND(A,B) are assigned with level 2

and signalType 1.

The presence of a signal (or their logical combination) also determines the

dependencies between reactions. For instance, a ‘present’ statement in one reaction

cannot proceed until the signal, which is checked for presence, is emitted or ruled out by

control flow in this logical tick, otherwise the ‘present’ will execute the wrong control

branch. A ‘resolutionTable’ is created in each clock domain to comply with this signal

broadcast MoC as detailed in Figure 4.9. Each element of the resolution table, called

resolutionNode, indicates the relationship between a signal and a reaction in the clock

domain. Fields of resolutionNode are detailed in Table 4.6. Synchronizer carries out the

resolution process of a signal according to the internal status of the resolutionNodes.

Synchronizer has a global view of the resolution table, where dependencies can be

detected and resolved. Example of strategies of signal resolutions include but are not

limited to:

1. Resolve a signal if the emitter reaction thread has finished its tick.

2. Resolve a signal if the emitter reaction thread is not active and does not wait for

the joining of any child-reaction threads.

Figure 4.9: Data structures used to resolve signals

Chapter 4. libGALS: a library for GALS system design 113

The ‘emitTable’ created in each clock domain stores the status (emitted member of

the emitNode structure) and the values of signals. A signal is identified as emitted when

it is fully resolved and has been emitted by one of the reaction threads, which are the

emitters. The ‘preEmitTable’ stores the status and values of signals in the previous tick,

which is used by the ‘pre’ and ‘preValue’ API calls.

Figure 4.10, Figure 4.11, and Figure 4.12 illustrate how signals are resolved in the

scenario presented in Figure 4.7. In each resolutionNode, status such as resolutionType,

resolved, and resolutionLock are shown. Firstly, reactions 2 and 3 are blocked due to

checking the presence of signal A as shown in Figure 4.10. resolutionLocks of blocked

reactions are in a pending status. Signal A is then emitted (shown in emitTable) and

resolved (resolved = 3 for signal A, in resolutionTable), which leads to the releases of

resolutionLocks, as illustrated in Figure 4.11. Reactions 2 and 3 continue to be executed.

Finally, signals B and C are emitted in Figure 4.12.

Table 4.6: Fields of resolutioNode

Field Description
resolutionType Indicates the relationship between the signal and the

reaction:
0: No relationship
1: The reaction is currently blocked due to checking the
presence of the signal
2: The reaction has been registered as an emitter of the
signal

resolved The presence of the signal has been resolved or not
signal Pointer to the SignalNode
reaction Pointer to the ReactionNode
resolutionLock A lock to block execution of the reaction. It is pending when

resolutionType is 1 and is signaled to release when the
signal is resolved

Exits of traps are implemented in a manner similar to signal emissions. However,

the available operation on traps is limited to checking the status of the trap. Traps share

the resolution table with signals.

Chapter 4. libGALS: a library for GALS system design 114

Figure 4.10: Reactions 2 and 3 are blocked

Figure 4.11: Signal A is emitted and reactions 2 and 3 are released

Figure 4.12: Signal B and C are emitted

Chapter 4. libGALS: a library for GALS system design 115

4.5.7 Pre-emption representation and activation

A pre-emption scope in a reaction is represented by a data structure called

‘PreemptionNode’ illustrated in Figure 4.13. Figure 4.14 details the interconnections of

the PreemptionNode and ReactionNode resulting from Listing 4.3. When a reaction

enters a scope of a monitored pre-emption, such as ‘StrongAbort’, the PreemptionNode

of the corresponding pre-emption scope is created. When a monitored PreemptionNode

is detected to be active, the execution will be pre-empted from the tick boundary and

carried out from the ‘continuationScope’, which is the end of the underlying pre-

emption scope. The member ‘preemptionList’ of a reaction points to the innermost

PreemptionNode resident in the reaction. Note that the innermost pre-emption scope

will take a lower precedence than the outer pre-emption scope(s). Nested pre-emption

scopes are assigned with different ‘preemptionLevels’.

Figure 4.13: Preemption Node

Figure 4.14: Relationships between pre-emption nodes and reaction thread node

Chapter 4. libGALS: a library for GALS system design 116

Note that ‘traps’ and ‘suspends’ are special cases of pre-emptions. Traps are similar

to weak pre-emptions (aborts). The PreemptionNode of a trap is activated when

‘exitTrap’ is called. ‘suspend’ is similar to strong abort. Instead of redirecting the

reaction thread to the continuationScope, a tick is delayed when the condition of

suspension is true. Thus, the PreemptionNode of a suspend statement lacks the

continuationScope.

Listing 4.3: Nested pre-emptions

1
2
3
4
5
6
7
8
9
10
11
12
13

void ExampleReaction(void *data) {
 // other statements
 StrongAbort(Signal_A, AbortName1) {
 StrongAbort(Signal_B, AbortName2) {
 StrongAbort(Signal_C, AbortName3) {
 // Other statements
 }
 EndAbort(AbortName3);
 }
 EndAbort(AbortName2);
 }
 EndAbort(AbortName1);
}

4.5.8 Channel communication internals

A channel data structure is created when ‘createChannel’ is called. Both sending

and receiving reactions of different clock domains operate on the same instance of

Channel. Fields of Channel are detailed in Table 4.7. The ‘state’ variable of Channel is

used to identify the status of the data transfer. Figure 4.15 illustrates a Moore-type finite

state machine of a channel. The states and the transitions of states are described in Table

4.8 and Table 4.9, respectively.

For each user-typed data used in channel communication, a clone function is

required. The name of the clone function for data-typed ‘dataTyped’ is in the form of

‘dataTyped_clone’. The input argument is the original data and the output of the

function is the new instance of the data which is a duplication of the original. The

output of the clone function is then pointed to by the ‘data’ field in Channel. This

Chapter 4. libGALS: a library for GALS system design 117

enables channel communications to work on different copies of the messages. The clone

function is called along with the ‘send’ API call.

Table 4.7: Fields of channel

Field Description
state The state of the channel. Details of states are listed in Table

4.8
channelDataLock This is used to keep the consistency of the channel data,

because channel data are accessed by two reaction threads,
that is, the sending and receiving reactions

channelName The name of the channel
senderCDName The clock domain name where send is called
receiverCDName The clock domain name where receive is called
data A pointer points to the duplicated version of the original

data for receiver to read
previousChannel/
nextChannel

Point to the previous and next instance channel in the
libGALS program

Figure 4.15: Finite state machine of channel communications

Chapter 4. libGALS: a library for GALS system design 118

Table 4.8: States of a channel

States
Description of activates

Sending side Receiving side
0 Channel is ready Channel is ready

1
Calling clone function to duplicate
original data. Assign result to ‘data’
field of the channel

2
 Read data field of the channel and

return to the receive call

Table 4.9: State transitions of a channel

State
transitions

Description

a ‘creatingChannel’ is called
b ‘send’ is called
c ‘receive’ is called
d Returned from the receive call, received data is assigned to the destination

4.6 Applications and ports of libGALS

4.6.1 Mapping GALS/synchronous models to libGALS programs

As libGALS provides all mechanisms to implement the GALS MoC, it also gives

the opportunity to implement existing GALS and synchronous languages using

concurrent processes.

SystemJ [Malik, 2010] is a GALS language which can be implemented by using

libGALS. The SystemJ statements can be directly compiled onto libGALS API calls.

Examples of a few mappings are provided in Table 4.10.

Table 4.10: Examples of mapping from SystemJ to libGALS

SystemJ Statements Mappings with libGALS
present S { … } Present(S) { … }
emit S; emit(S);
pause; pause();
abort (S) { … } strongAbort(S, AbortName) {

 ……
}
endAbort(S, AbortName);

Chapter 4. libGALS: a library for GALS system design 119

4.6.2 Porting libGALS

libGALS has been ported to general operating systems such as Linux and Windows

via POSIX interface, where the pthread library is used in implementation. Both of these

operating systems offer scheduling mechanisms to provide high fairness between

processes and threads, and hence the high response times. Reactions in libGALS do not

necessarily require special care to change attributes of the mapped threads/processes,

such as priority.

Ports of embedded and real-time operating systems (RTOS) are similarly available.

Since libGALS requires only features such as task creation/deletion and semaphore,

effort in porting libGALS to different operating systems is minimal. Existing libGALS

ports on RTOS include eCos [Massa, 2003], RTEMS[RTEMS, 2003], FreeRTOS[Barry,

2008], and µCOS-II [Labrosse, 2002]. Since eCos and RTEMS provide POSIX

interface and cooperative scheduling policy, they are very close to the Linux port of

libGALS. FreeRTOS and µCOS-II provide sufficient APIs for libGALS implementation,

and the used API calls are listed in Table 4.11. Note that the semaphore mechanism in

FreeRTOS is based on message queue, and because of the lack of semaphore deletion

API call, vQueueDelete is known as the function to call to delete the created semaphore.

Table 4.11: APIs used to implemented libGALS

Operating system
features

POSIX based FreeRTOS µµµµCOS-II

Task creation pthread_create xTaskCreate OSTaskCreate
Task deletion pthread_exit vTaskDelete OSTaskDelete
Semaphore type sem_t* xSemaphoreHandle OS_EVENT
Semaphore pending sem_wait xSemaphoreTake OSSemPend
Semaphore signaling sem_post xSemaphoreGive OSSemPost
Semaphore creation sem_init xSemaphoreCreateCounting OSSemCreate
Semaphore deletion sem_destroy vQueueDelete OSSemDel

Because µCOS-II does not allow multiple tasks with the same priority, reactions of

clock domains are divided into different priority groups. This leads to the issue that one

of the clock domains may have monopoly over processor time and not ever give control

to the other reactions of other clock domains. This is resolved by introducing member

Chapter 4. libGALS: a library for GALS system design 120

‘ClockDomainRR’ in SystemData data structure mentioned in section 4.5.1.

ClockDomainRR is implemented as a counting semaphore that forces clock domains to

take their turns of execution or be scheduled in a specific ratio of executions.

The Synchronizer task of a clock domain can be seen as the lowest priority task,

providing services when all the reaction threads of the clock domain are blocked.

4.7 Experiments and results

In order to demonstrate performance of the libGALS programs, they are compared

with SystemJ programs that implement the same functionality, since SystemJ is

practically the only GALS language with an available compiler. All examples are with

mixed data-driven and control-driven operations. A frequency relay (FR) has been used

as an example and is illustrated in Figure 4.16.

Figure 4.16: Frequency relay implemented as a GALS system with two clock domains

Chapter 4. libGALS: a library for GALS system design 121

Frequency relay consists of two major parts, data sampling and relay control [Salcic

& Mikhael, 2000]. In data sampling, signal processing algorithms are performed.

Sampled power signal waveform is processed in an averaging filter by using a moving

window concept. It is followed by the symmetry function calculation to simplify the

procedure of finding peak points of the waveform instead of zero-crossings, carried out

later in the peak detection function. Time periods between peaks are obtained to allow

calculation of frequencies. The rate of change of frequency is also computed. To

maintain a stable power network, working frequencies and rate of change of frequency

must be within a specified range. If they are out of range, the loads will be shed from

the network. This is carried out by the switching facilities and relay control part.

The frequency relay is partitioned to two clock domains, ‘DataSampling’ and

‘RelayControl’. The DataSampling clock domain consists of four reactions: the parent

reaction, reaction ‘Sampling’, forks out reaction ‘Averaging’, reaction ‘Symmetry

detection’ and reaction ‘Peak detection’. Clock domain RelayControl is a composition

of two larger reactions: reaction ‘Calculation’ and reaction ‘Switching’. Both reactions

have two child-reactions. ‘Frequency calculation’ and ‘Rate of change calculation’ are

child reactions of reaction Calculation, delivering essential information to ‘Switch

control’ reaction under reaction ‘Switching’ to perform load shedding, if necessary.

Reaction ‘Configuration’ is the other child reaction of reaction Switching, which

provides parameters of the frequency relay to reaction Switch control. These two clock

domains communicate through ‘SampleCount' channel.

Table 4.12: Comparisons between SystemJ and libGALS

Example
Average tick time (µs) Code Size (Bytes)

libGALS SystemJ libGALS SystemJ
2CD Frequency Relay 27.67 75.23 33,865 101,469
2CD KiteController 11.37 27.16 9,431 59,296
2CD Async Proto 48.37 16.25 13,078 52,800
2CD Data Comp 18.23 26.37 865 10,920
3CD Data Comp 17.72 39.28 975 11,944
4CD Data Comp 17.43 56.62 1,085 13,010
*Note that the code size of libGALS is 33K Bytes.

SystemJ examples are compiled with the latest SystemJ compiler to generate single-

threaded Java source code, which is compiled by the Java compiler version 6.0 and then

Chapter 4. libGALS: a library for GALS system design 122

run on a JVM. The equivalent libGALS examples are compiled with gcc-4.3.1.

Experiments were carried out on Intel Core 2 Quad 2.4GHz with 4GB of RAM with

Linux 2.6.29.6 as the host OS. Results are shown in Table 4.12.

The libGALS approach consistently results in smaller object code size, because the

single-threaded SystemJ code emulates both synchronous- and asynchronous-

concurrency with switch-case statements. On the other hand, libGALS implements

concurrency with threads. Note that the code size of the SystemJ implementation does

not include the code size of the JVM, which is larger than the standard C run-time

library. Execution speed has been compared through an average-tick execution-time of

one million ticks. The libGALS approach shows advantages if the data computations are

heavier. The ‘3CD Data Comp’ and ‘4CD Data Comp’ consist of three and four clock

domains, respectively. In these cases libGALS takes advantage of multicore processing.

SystemJ is advantageous if clock domains are highly control-dominated as in the 2CD

Async Proto example.

4.8 Summary

In this chapter a run-time library approach, libGALS, for extension of the

sequential programming language (C/C++, for instance) to enable specification of

GALS concurrent systems is proposed. libGALS provides an application programming

interface (API) that enables the designer to describe GALS programs in these sequential

programming languages. This enables efficient integration of control-driven and data-

driven components of a design.

The approach is based on the features of a host OS, made available to the

programmer via a set of API. Programs designed with libGALS comply with the GALS

MoC and thus provide a much safer programming approach compared with the use of

traditional threading libraries. libGALS implements GALS concurrency by using

multiple processes or threads, unlike the current system-level languages that compile the

specification into a single-threaded code. This not only improves responsiveness of the

resulting programs, but also offers the advantage of executing such programs on

multiprocessor and multicore systems. Because of this, libGALS opens a new path

Chapter 4. libGALS: a library for GALS system design 123

towards the compilation of GALS languages, as well as of synchronous languages as

their subset. The other advantage of libGALS programs is their ability to interface with

other tasks and drivers in the host with minimal effort. This allows major future

development, targeting the dynamic creation of clock domains, synchronous reactions

and whole GALS programs, thus supporting software system run-time adaptation and

reconfiguration, as will be described in Chapter 6.

Chapter 4. libGALS: a library for GALS system design 124

5555
5. 5. 5. 5. GALSGALSGALSGALS----DesignerDesignerDesignerDesigner: A design framework for : A design framework for : A design framework for : A design framework for

GALS software systems GALS software systems GALS software systems GALS software systems

GALS-Designer is a framework for the design of software systems which comply

with formal globally asynchronous locally synchronous model of computation (GALS).

The framework integrates the libGALS library for writing libGALS programs and

SYSTEMC. In Chapter 4, a library called libGALS to model GALS systems as libGALS

programs has been introduced. GALS systems may consist of single or multiple

libGALS programs and their immediate environment, which can be other programs and

any other modules described in SYSTEMC. It enables modeling and simulation of single

and multiple libGALS programs within the single SYSTEMC executable model on the

host (simulation) operating system. The same libGALS programs then can be run

without SYSTEMC on a target operating system for which the libGALS run-time library

is available.

The use of the GALS-Designer is demonstrated on an example of a complex

embedded system. As libGALS can ultilize multiprocessor platforms, both simulation

and target models of the GALS system can take advantage of multiprocessor and

Chapter 5. GALS-Designer: A design framework for GALS software systems 126

multicore systems, which is not possible when using standard SYSTEMC. Results of

running simulation models of libGALS programs demonstrate simulation performance

improvement when performing on multicore platforms.

5.1 Introduction

In this chapter the GALS-Designer, the marriage between libGALS and SYSTEMC

in the single design framework, is presented. GALS-Designer enables the modeling of

complex systems that include hardware and other concurrent components, e.g. models

of the physical world and the environment, along with software-system components that

are represented by libGALS programs. In the proposed approach, libGALS is used to

specify libGALS programs, which are then wrapped into SYSTEMC modules and can be

simulated together with other SYSTEMC modules within the same SYSTEMC execution

model. Simulation of such a multicomponent system can be carried out with different

timing granularities, depending on the current development phase of the overall system,

so the designer can use trade-offs between faster simulation and more accurate timing

behavior of the system. libGALS programs, once simulated within a SYSTEMC model

can be translated to the implementation code which will be executed on a target

operating system. SYSTEMC is chosen as the basis because of its ability to (1) model

hardware, software and environment of the designed system with different levels of

abstraction and timing granularity, (2) result in hardware and software synthesis, (3)

cooperate with models made in other languages which can be linked with the SYSTEMC

library to obtain the host simulating executable and (4) model the interaction with the

environment, thus effectively providing test benches, which is essential for validation of

design through simulation.

This chapter is organized as follows. Section 5.2 presents the related work and

positions the contributions. In Section 5.3, principles of the GALS-Designer are

introduced. Integration of libGALS and SYSTEMC is given in Section 5.4, followed by

the programming model used in GALS-Designer in Section 5.5. Using GALS-Designer

in system level design is presented in Section 5.6. A case study and the results of using

Chapter 5. GALS-Designer: A design framework for GALS software systems 127

the proposed approach are given in Section 5.7, followed by a summary of this chapter

in Section 5.8.

5.2 Related works and fundamentals

5.2.1 Synchronous and GALS system models

Linkage between SYSTEMC and synchronous languages such as Esterel was

explored and presented previously. Brandt and Schneider demonstrated that a set of

Esterel programs can be translated to SYSTEMC with certain limitations [Brandt &

Schneider, 2008]: (1) programs respond to delayed actions, i.e. signals emitted in the

previous clock cycle, and (2) pre-emptions are not modeled. Sun et al. present a case

study on how to convert an Esterel program into SYSTEMC description simulated with

the abstract RTOS model [Sun & Salcic, 2007]. In [Radojevic et al., 2006], both Esterel

and SYSTEMC are used to model systems described in DFCharts. Significant effort is

required to manually translate an ESTEREL program to SYSTEMC, with numerous

restrictions on the use of SYSTEMC constructs. An automatic generation of SYSTEMC

model from COLA is presented in [Wang et al., 2008], where COLA follows the perfect

synchrony semantics. However, it produces only a simulation model.

Furthermore, in synchronous languages like Esterel compiler resolves causality

problems of signal dependencies, which is not possible in the library-based approach

used in SYSTEMC. Other synchronous languages such as SL [Boussinot & De Simone,

1996], JESTER [Antonotti et al., 2000], JUNIOR [Hazard et al., 1999] and SUGARCUBES

[Boussinot & Susini, 1997] provide support for concurrency. However they do not

support the GALS MoC. TReK [Gruian et al., 2006] and SystemJ [Malik, 2010] provide

GALS MoC for software systems, but do not allow simulation of interaction between

SystemJ program and other components in the system, particularly those describing

hardware. Also, since SystemJ programs require Java virtual machine (JVM), it is not

suitable for real-time applications.

Chapter 5. GALS-Designer: A design framework for GALS software systems 128

5.2.2 Modeling software concurrency with SYSTEMC

Concurrent software is often implemented as a collection of processes, or threads,

governed by an operating system. Modeling of (real-time) operating systems, (RT)OS,

in SYSTEMC is not new. A summary of modeling strategies is presented in [Posadas et

al., 2005]. (RT)OS model often provides information in different timing granularities,

from untimed to timed, with different resolutions, especially for the task scheduling.

(RT)OS modeling in SYSTEMC can be categorized as follows:

1. Model a target processor in SYSTEMC. The processor will read the

executable target binary from the modeled memory. The target binary is

obtained by linking concurrent software tasks with OS. The modeled

processor (sometimes called ‘emulator’) behaves as the real processor but

internal details of the processor are abstracted for the faster simulation speed.

2. Execute target binary on the simulation host through the instruction set

simulation (ISS). The ISS either could communicate with the SYSTEMC

simulation kernel through inter-process communication (IPC) with the host,

or be linked with the SYSTEMC simulation kernel.

3. Software tasks are executed in the ISS, and they interact with the OS model

described in SYSTEMC. Communication between the ISS and the OS model

follows the previous category. [Krause et al., 2008] demonstrates such kind

of modeling strategy.

4. The proprietary OS simulator is provided in a library form. The developer

can choose to link the task codes with the OS library and then simulate with

SYSTEMC as in point number 2.

5. An OS model described in SYSTEMC provides a set of application

programming interface (API), which is the same as that of the original (real)

OS, linked with the task codes and SYSTEMC library. The OS model can be

from very abstract to very detailed.

6. Both OS and the tasks are modeled in SYSTEMC, communication and

synchronization between the tasks and between the tasks and the OS are via

SYSTEMC constructs. However, the underlying model of computation might

Chapter 5. GALS-Designer: A design framework for GALS software systems 129

be different from the original SYSTEMC description to the final embedded

software because of different scheduling policies of different targeted OS.

Even when support for the OS modeling is once introduced to SYSTEMC

version 3, the inconsistency with the MoC will still remain when a different

OS is used. Furthermore, the nature of the SYSTEMC simulation kernel

determines that only one host process is used to execute the simulation

executable regardless of the number of concurrent processes in a SYSTEMC

module.

Herrera et al. present how embedded software can be generated from SYSTEMC

descriptions through the use of concurrent threads managed by an OS [Herrera et al.,

2003]. Few restrictions are set when describing a concurrent software process in

SYSTEMC, such as using channels for inter-process communication instead of using

shared member-variables in a SYSTEMC module. Inasmuch channels and process

management are mapped onto services such as mutex and thread management, provided

by the underlying RTOS, they do not follow any formal MoC. Various (RT)OSs behave

differently over similar sets of APIs, i.e. the implementation will be different from the

simulation model. SoCOS presents a framework to model dynamicity and concurrency

of software through the use of C++ [Desmet et al., 2000]. Focusing on simulation it

proposes a library-based approach to support the execution of generated software on an

OS. Posadas et al. present a POSIX model in SYSTEMC [Posadas et al., 2005] and its

implementation with an OS compatible with the POSIX standard; however, it limits the

selection of the target OS.

Based on previous work and known constraints, a modeling technique is presented

to integrate programs that use GALS MoC, libGALS programs, with SYSTEMC

components by using GALS-Designer framework. The major contributions of this

approach and work are:

1. It enables a developer to describe a concurrent application software system

that complies with the formal GALS MoC, and simulate its execution

together with other SYSTEMC components on a host OS. The same libGALS

Chapter 5. GALS-Designer: A design framework for GALS software systems 130

program can be executed on the target platform OS with almost no

modification (the modification is done by a simple text parser that removes

simulation-related parts).

2. It enables the use of different timing granularities in simulation models.

Details such as execution times can be annotated in dedicated hook-

functions which will be introduced in Section 5.5 and 5.6. With designers

able to choose between faster simulation and higher accuracy, depending on

the requirements, GALS-Designer can be used in different design stages.

3. It supports scalability by enabling the use of multiple libGALS programs

with any number of asynchronous behaviors (clock domains), as well as any

number of synchronous behaviors inside each of the asynchronous

behaviors in the same model, as is explained in more detail in Section 5.3.

4. It enables faster and more efficient simulation by enabling the use of a

multithreaded multicore execution platform, not practicable with usual

SYSTEMC models.

5.3 Overview of GALS-Designer

5.3.1 Integration of libGALS and SYSTEMC

GALS-Designer is a framework for designing GALS software systems, which may

consist of single or multiple libGALS programs. GALS-Designer uses SYSTEMC and

libGALS as the backplane for system models. Both SYSTEMC and libGALS are libraries

built on top of the C++ and C, respectively, as shown in Figure 5.1 (a). They both

provide interfaces to access the library and generate executables with which to be linked.

Systems modeled in SYSTEMC can use libGALS to describe libGALS programs as a

part of an overall system model. The executable model that combines parts described

with libGALS and SYSTEMC runs on the host OS, as shown in Figure 5.1 (b). The

execution is started as a SYSTEMC executable, which is governed by the SYSTEMC

simulation kernel. When the modeled libGALS programs start executing, threads

mapped from reactions are spawned. These threads are managed by the libGALS with

Chapter 5. GALS-Designer: A design framework for GALS software systems 131

the aid of the OS, and are executed concurrently with the SYSTEMC simulation kernel.

libGALS programs synchronize and communicate with other hardware and software

(HW/SW) components modeled using SYSTEMC.

Once the designer switches from the simulation to the implementation phase,

SYSTEMC library is removed, and the translation from libGALS program models to their

implementation version is performed. The resulting libGALS program is then linked

with the version of the libGALS for the target execution platform and target OS, which

may be different from the one used in simulation, but with identical API. This situation

is illustrated in Figure 5.1 (c).

SYSTEMC provides to libGALS the necessary modeling mechanisms for the

description of the environment in which the libGALS programs will run. This enables

modeling of inputs/outputs (such as user-inputs and sensor data), other software

components in the system and hardware components communicating with the libGALS

programs.

Figure 5.1: Relationships between libGALS and SYSTEMC

Each libGALS program is described and modeled in a single SYSTEMC module. A

libGALS program model can communicate with other SYSTEMC modules as to its

environment through communication constructs provided by SYSTEMC, as shown in

Figure 5.2. libGALS programs can also communicate with each other through modeled

channels. These are abstracted and may have different underlying implementations such

as sockets and network-communication links, inter-process communication (IPC)

mechanism, etc.

As detailed in Chapter 4, each libGALS program consists of a number of

asynchronous concurrent behaviors called clock domains, which communicate with

Chapter 5. GALS-Designer: A design framework for GALS software systems 132

each other using rendezvous-based channels. The name clock domain is used to

emphasize the fact that it may consist of a number of synchronous concurrent behaviors,

called reactions, which execute in lock-step with a logical clock called ‘tick’ and

follows the rules of the synchronous-reactive model of computation [Berry & Gonthier,

1988].

Figure 5.2: Communications of libGALS program and other SYSTEMC components

5.3.2 Linkage between libGALS programs and SYSTEMC

Figure 5.3 illustrates how libGALS and SYSTEMC mechanisms are used to form a

SYSTEMC module representing a libGALS program which is specified by using

mechanisms provided within the libGALS. In addition, the libGALS program uses hook

functions to communicate with the external environment of the libGALS program, in

this case other modules of the SYSTEMC model. A clock domain in a libGALS program

communicates with its environment synchronously through a sampling process. This

process receives information from the environment either periodically (e.g. using the

clock) or by an event-driven pre-emption mechanism (e.g. using interrupts).

Synchronizing functions are introduced to model this. Synchronizing functions can be

triggered by either external clock (synchronously) or other signals when input data is

ready (asynchronously), and are synchronized again with hook functions through

‘SyncNodes’ when input data is required by the libGALS program. Outputs from the

libGALS program to other SYSTEMC modules are implemented using the same concept.

Chapter 5. GALS-Designer: A design framework for GALS software systems 133

Figure 5.3: A SYSTEMC module wrapping a libGALS program model

Figure 5.4: Synchronizations between libGALS-SYSTEMC and other SYSTEMC modules

The synchronization between the libGALS program and its environment through

SyncNodes takes the following forms (as illustrated in Figure 5.3):

1. A clock domain inside a libGALS program, i.e. CD1 in Figure 5.4 (a), is

synchronized with the environment by an external clock clk1. The clock

domain finishes its logical tick before the tick of the external clock arrives.

2. Figure 5.4 (b) illustrates how a clock domain synchronizes with the

environment in multirate fashion through the external clock. For example,

Chapter 5. GALS-Designer: A design framework for GALS software systems 134

the hook function of the clock domain synchronizes with the synchronizing

functions every three logical clock ticks.

3. A clock domain synchronizes with the environment when signal s is valid to

read.

4. Signal s is activated by other SYSTEMC modules as shown in Figure 5.4 (c).

In the next section it is shown how libGALS and SYSTEMC are combined into

GALS-Designer, where they collaborate in modeling complex systems.

5.4 Integration of libGALS and SYSTEMC

To enable interoperability and integration of libGALS and SYSTEMC, some aspects

need to be addressed:

1. libGALS and SYSTEMC are implemented in C and C++, respectively, which

requires resolution of compatibility between the two libraries.

2. GALS programs execute at logical ticks, with different logical clocks for

each clock domain, in contrast to SYSTEMC models, which can be simulated

at different levels of time granularity. Synchronizations between libGALS

programs and SYSTEMC modules need to be established, as discussed in

Section 5.3.

3. Since the libGALS program is used not only in simulation but also in the

implementation, interfaces provided by libGALS to describe libGALS

programs should be preserved in both simulation and implementation. This

way the libGALS can be used in different phases of the system-design cycle.

Because libGALS is a C library, in order to use it together with SYSTEMC, which is

an extension of C++, programs written in C have to be used in C++ with the ‘extern C

{ … }’ construct. This construct is utilized in this approach as the glue mechanism

between libGALS programs and SYSTEMC descriptions.

Chapter 5. GALS-Designer: A design framework for GALS software systems 135

Since SYSTEMC is used to model the environment of the libGALS programs, the

libGALS program is ‘wrapped’ into a SYSTEMC module that provides interface to other

SYSTEMC modules. A SYSTEMC module generally consists of the following:

1. Interfaces of the module.

2. Member variables representing the attributes and the structure of the module.

3. Member functions, which can either be used as concurrent processes, or can be

private functions to carry out algorithms. In libGALS programs, clock domains

and reactions, channels, and signals are modeled as member variables of the

module. Interfaces of the wrapping module are also member variables.

As mentioned previously, libGALS programs are running at the pace of their clock

domain logical ticks, which are different to a SYSTEMC simulation clock, and thus

synchronization between a libGALS program and other SYSTEMC modules is required.

Furthermore, since the input and output functions of a libGALS program operate on a

libGALS signal object and are thus not able to access member variables of the wrapping

module, a set of member functions to the wrapping module is introduced, called

‘interfacing functions’. As interfacing functions are responsible for the communication

and synchronization between the libGALS program and its wrapping SYSTEMC module,

they need to be recognized by both. Because interfacing functions are member functions,

they can access the member variables such as the module interfaces and signals of the

libGALS program. It would, moreover, be inefficient to check whether a tick of the

libGALS program has elapsed by using polling, and, even more important, it is also

possible to miss a libGALS program ticks, since threads from the libGALS program are

running at speeds different from the SYSTEMC simulation. Therefore, interfacing

functions must be registered with the libGALS program so that they can be activated

when a tick completes.

Interfacing functions are categorized into (1) tick-hook functions and (2)

synchronizing functions. Tick-hook functions are registered with clock domains and

reactions of a libGALS program, and the synchronizing functions are defined as

processes in the wrapping module. The tick-hook functions are non-static in order to

Chapter 5. GALS-Designer: A design framework for GALS software systems 136

enhance the re-usability of the libGALS-SYSTEMC module. It means that if there is

more than one instance of the same module, the static functions of all these instances

would operate on the same data set, which is impractical and error prone. However, in

C++ (hence in SYSTEMC) only static functions are allowed to create the

threads/processes which are essential to libGALS programs. Therefore a dedicated

static-function wrapper is introduced to wrap each non-static member function to

become a static function. When a clock domain or a reaction is created in the wrapping

module, the static-function wrapper is passed as the tick-hook function. The static-

function wrapper takes an argument, called SyncNode, implemented as a data structure

which contains a pointer to the actual tick-hook function.

The SyncNode data structure maintains the link between the hook functions and

synchronizing functions. SyncNodes are member variables of the wrapping module and

are instantiated when a ‘tick-hook and synchronizing functions’ pair is required. Figure

5.5 illustrates the SyncNode structure and its operations. A SyncNode consists of (1) a

function pointer that points to a tick-hook function of a clock domain or a reaction, (2)

synchronization constructs: the current implementation in Linux uses two semaphores

from pthread and (3) a set of member functions to perform handshaking. The SyncNode

contains two semaphores, which are used by the tick-hook function and the

synchronizing function to implement the handshaking.

Figure 5.5: Synchronization steps between tick hook and synchronizing function

Chapter 5. GALS-Designer: A design framework for GALS software systems 137

To abstract the details of synchronization during the handshaking, four member

functions are introduced to SyncNodes:

1. signalSC – the tick-hook function requests to synchronize

2. pendSC – the synchronizing function is ready to synchronize

3. signallibGALS – the synchronizing function accepts the synchronization

4. pendlibGALS – the synchronization is finished

When a SyncNode is created, a corresponding tick-hook function is first registered

with the SyncNode. The SyncNode is then passed as an argument to a static-function

wrapper acting as the tick-hook function when a clock domain (or a reaction) is created.

When a clock domain tick elapses, the actual tick-hook function pointed by the

SyncNode is then activated. Tick-hook functions and synchronizing functions carry out

the handshaking procedures. Finally, the data read by the wrapping module are passed

to the libGALS program wrapped in the SYSTEMC module.

Figure 5.6 illustrates the chronological steps taken in synchronization between the

libGALS program and the other SYSTEMC modules. Details of each step are described

further in Table 5.1. The figure has been divided into two parts, the upper part

representing activities carried out in libGALS program, and the lower governed by the

SYSTEMC simulation kernel. Note that due to the single-thread simulation model of

SYSTEMC, each module and the synchronizing function (which is in the libGALS-

SYSTEMC module) take turns to be excuted. The libGALS program, which is running in

other threads, is executed in parallel.

Figure 5.6: Timing diagram of libGALS-SYSTEMC synchronization

Chapter 5. GALS-Designer: A design framework for GALS software systems 138

Table 5.1: Activites of libGALS-SYSTEMC synchronization

Stage Description

A
Create SyncNode, initialize data structure of SyncNode, and register the tick
function.

B Clock domain reaches tick boundary (end of tick).

C
TickHook function is called by the libGALS. Outputs from the libGALS
program have been generated to be used by other SYSTEMC modules. Time
annotations of reactions are inserted here.

D
‘signalSC’ is called by the tick function to signal the signaling semaphore 1,
that the tick-hook function is ready to synchronize with the synchronizing
function. ‘pendSC’ is called to wait synchronizing function to reply.

E
Synchronizing function is activated by the clock signal from the SYSTEMC.
Communications with other SYSTEMC modules are carried out.

F

‘signallibGALS’ is called by the synchronizing function to resume TickHook
function. Inputs from other SYSTEMC modules are ready for the libGALS
program. ‘pendGALS’ is called to await the next synchronization from the
TickHook function.

G
TickHook function resumes, inputs to libGALS programs are registered. Start
a new libGALS tick.

H Clock domains/reactions start activities in the new tick (beginning of tick).
I When SYSTEMC clock reaches the edge again. Refer to E.
J Refer to F.
K Refer to G.
L Refer to H.

5.5 Programming model of GALS-Designer

A libGALS program is illustrated in Figure 5.7 to demonstrate how to integrate a

libGALS program within the GALS-Designer. This example also shows that there is no

need for extensive code modification between a libGALS model and GALS-Designer

SYSTEMC modules. This enables automatic wrapping of the existing libGALS program

into GALS-Designer modules.

The libGALS program is a composition of one or more asynchronous concurrent

clock domains, illustrated as rounded rectangles (CD1 and CD2) in Figure 5.7. Each

clock domain can include one or more synchronous concurrent behaviors/programs.

These reactions are shown as rectangles (CD1_R1, CD1_R2, CD1_R3, and CD2_R1)

within clock domains. To enable hierarchical design, each reaction can be further

Chapter 5. GALS-Designer: A design framework for GALS software systems 139

decomposed into child reactions. Such relationships are shown in Figure 5.7, where

CD1_R1 and CD1_R2 are child reactions to CD1_R3.

Figure 5.7: A libGALS program example

Communication between reactions of the same clock domain is via signals CD1_S1.

Signals are also used for the interaction of reactions with the external environment to a

libGALS program, e.g. CD1_S2 and CD2_S1. Reactions in different clock domains in

the same libGALS program communicate through message passing over channels

cCD1toCD2.

Listing 5.1 and Listing 5.2 are segments of a libGALS program which describes the

GALS system illustrated in Figure 5.7. Listing 5.1 consists of the definitions of user-

typed data (lines 2-5), clone function of the user-typed data (lines 6-11) and reaction

functions (lines 12-65). User-typed data are used (1) in internal algorithms, (2) to define

the value type of a signal and (3) to define the value type passed by a channel. In this

example, data type of ‘customedType’ is used in the channel cCD1toCD2. Definitions

of reactions represent the bodies of reactions which will be instantiated in clock

domains. A definition of a reaction starts with the name of the reaction with the

keyword REACTION_FUNCTION. Line 12 illustrates the starting point of defining

Chapter 5. GALS-Designer: A design framework for GALS software systems 140

ReactionCD1R1. The body of a reaction is composed of the initialization and the

behavior of the reaction. The initialization of a reaction starts with the API call

‘initReaction’ and ends with the API call ‘endInitReaction’ as shown on lines 13 and 17,

respectively. Reactions are created with arguments and can be extracted by using

‘getArgument’ API call (lines 14 and 15). Channel is used to send and receive messages

between reactions of different clock domains (lines 48 and 60, respectively). Signals

emitted by a reaction are registered (line 16 and line 56). The code representing

description of the behavior of a reaction is written after the ‘endInitReaction’ API call.

Besides using any usual C sequential programming language constructs, reaction

behavior can use a set of additional libGALS control statements to model flow control

and reactivity in the form of API calls. The behavior of a reaction consists of arbitrarily

mixed sequences of libGALS reactive and standard C statements (e.g. lines 18 to 22).

Examples of libGALS control statements include:

1. ‘emit’ for broadcasting the presence of a signal, lines 19 and 62, to all

reactions within the same clock domain.

2. ‘pause’ to explicate end of tick, as shown in lines 14 and 16.

3. ‘await’ to wait on the presence of a signal, lines 24 and 26.

4. ‘fork’ and ‘join’ to fork out and then wait for the joining of child reactions,

lines 43 and 44. A parent reaction can proceed only if all of its forked child

reactions have joined.

Details of available libGALS API calls can be found in Chapter 4. Reactions in

different clock domains communicate through channels. A sending reaction has to

prepare a message to send by creating the message (lines 45-47) followed by a ‘send’

(line 48) API call, which takes arguments including the instance of the channel, the

message, and the type of the message. At the receiving side, a place-holder of the

receiving message needs to be declared (line 59) prior to the ‘receive’ API call (line 60).

‘endReaction’ API call (lines 23, 34, 50, and 64) is used to denote the end of the

behavioral description of reaction.

Chapter 5. GALS-Designer: A design framework for GALS software systems 141

Listing 5.1: Definition of user-defined data types and reaction functions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

#include “libGALS.h”
typedef struct customedType {
 // Definition of User Types
 int val;
} customedType;
customedType *customedType_clone(customedType* orig inal) {
 customedType* newData =
 (customedType*)malloc(sizeof(customedType));
 newData->val = original->val;
 return newData;
}
REACTION_FUNCTION(ReactionCD1R1) {
 initReaction();
 signal CD1_S1 = (signal)getArgument(1);
 signal CD1_S2 = (signal)getArgument(2);
 registerEmitter(CD1_S1);
 endInitReaction();
 ...// Computational segments
 emit(CD1_S1, 0);
 pause();
 ... // Computational segments
 pause();
 endReaction();
}
REACTION_FUNCTION(ReactionCD1R2) {
 initReaction();
 signal CD1_S1 = (signal)getArgument(1);
 signal CD1_S2 = (signal)getArgument(2);
 endInitReaction();
 await(CD1_S1);
 ... // computational segments
 await(CD1_S2);
 ... // computational segments
 endReaction();
}
REACTION_FUNCTION(ReactionCD1R3) {
 initReaction();
 reaction CD1_R1 = (reaction)getArgument(1);
 reaction CD1_R2 = (reaction)getArgument(2);
 channel cCD1toCD2 = (channel)getArgument(3);
 endInitReaction();
 while(1) {
 fork(CD1_R1); fork(CD1_R2);
 join(CD1_R1); join(CD1_R2);
 customedType *dataToSend =
 (customedType *)malloc(sizeof(customedType));
 dataToSend->val = success;
 send(cCD1toCD2, dataToSend, customedType);
 }
 endReaction();
}
REACTION_FUNCTION(ReactionCD2R1) {

Chapter 5. GALS-Designer: A design framework for GALS software systems 142

53
54
55
56
57
58
59
60
61
62
63
64
65

 initReaction();
 signal CD2_S1 = (signal)getArgument(1);
 channel cCD1toCD2 = (channel)getArgument(2);
 registerEmitter(CD2_S1);
 endInitReaction();
 while(1) {
 customedType *dataToReceive;
 receive(cCD1toCD2, dataToReceive, customedType) ;
 if (dataToReceive->val == success)
 emit(CD2_S1, 0);
 }
 endReaction();
}

Entities and objects of the libGALS programs, including clock domains, reactions,

signals and channels, are created in Listing 5.2. Firstly, a libGALS program is created

with ‘createlibGALSProgram’ call (line 4). Clock domains are instantiated by using

‘createClockDomain’ API call (lines 5-10). Channels, signals, and reactions have to be

instantiated as arguments before being used to create other reactions. The channel

cCD1toCD2 are created through the use of ‘createChannel’ API call (line 15), which

takes the sending and receiving clock domains as arguments. Instantiation of signal

objects is via ‘createSignal’ API call (lines 16-18). Reactions are then created with

‘createReaction’ API call (lines 19-55). Note that tick-hook function and its argument

for both creations of clock domains and reactions are optional, that is, they can be

substituted as 0 (or NULL) when calling the creation functions. Tick-hook functions can

be used to synchronize with the other software components, such as SYSTEMC modules,

as described initially in Section 5.3 and with more detailed description in the following

sections. Clock domains are activated by using ‘startClockDomain’ API calls (line 56-

57). Finally the libGALS program starts via calling ‘startlibGALSProgram’ in line 58.

Listing 5.2: libGALS program that creates CDs, channels, signals and reactions

1
2
3
4
5
6
7
8
9

#include “libGALS.h”
#include “ReactionFunctions.h”
int main(void) {
 createlibGALSProgram();
 clockdomain CD1 = createClockDomain(
 InputC1, // Input function to clock domain
 OutputC1, // Output function to clock domain
 CD1TickHook, // Tick-hook function, call ed every tick
 CD1TickHookArgs); // Arguments to tick-hook f unction

Chapter 5. GALS-Designer: A design framework for GALS software systems 143

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

 clockdomain CD2 = createClockDomain(
 InputC2,
 OutputC2,
 CD2TickHook,
 CD2TickHookArgs);
 channel cCD1toCD2 = createChannel(CD1, CD2, “cCD1 toCD2”);
 signal CD1_S1 = createSignal(CD1);
 signal CD1_S2 = createSignal(CD1);
 signal CD2_S1 = createSignal(CD2);
 reaction CD1_R1 = createReaction(
 CD1, // Clock domain that the re action is in
 ReactionCD1R1, // Reaction function
 0, // Active status
 CD1R1TickHook, // Tick-hook function, call ed every tick
 TickHookArgs, // Arguments to tick-hook f unction
 2, // Number of arguments to t he reaction
 CD1_S1, // First argument
 CD1_S2); // Second argument
 reaction CD1_R2 = createReaction(
 CD1,
 ReactionCD1R2,
 0,
 0,
 0,
 2,
 CD1_S1,
 CD1_S2);
 reaction CD1_R3 = createReaction(
 CD1,
 ReactionCD1R3,
 1,
 0,
 0,
 3,
 CD1_R1,
 CD1_R2,
 cCD1toCD2);
 reaction CD2_R1 = createReaction(
 CD2,
 ReactionCD2R1,
 1,
 0,
 0,
 2,
 CD2_S1,
 cCD1toCD2);
 startClockDomain(CD1);
 startClockDomain(CD2);
 startlibGALSProgram();
}

Chapter 5. GALS-Designer: A design framework for GALS software systems 144

The forming of a libGALS-SYSTEMC module from wrapping a libGALS program is

presented in Listing 5.3. This demonstrates a SYSTEMC description, which wraps up the

libGALS program shown in Listing 5.2 into a libGALS-SYSTEMC module. Note that

most of the original libGALS program, as from Listing 5.1, remains untouched, and it

requires minimal effort to implement a libGALS-SYSTEMC module. A diagram

representing this module is illustrated in Figure 5.8. The programming interface of

libGALS and reactions declarations are included with the above mentioned ‘extern C

{ … }’ construct (lines 2-5, Listing 5.3). In line 6, a header file, libgals_sc.h, is included

to provide macros and data structures which are parts of the libGALS-SYSTEMC

compartments.

The transformation from an existing libGALS model to a GALS-Designer module

is as follows. A SYSTEMC module named GALS_PROG is created (line 7) with a set of

its member variables and functions (lines 9-27). Firstly, member variables representing

a set of input and output signals are declared. Declared signals include the clock signals

for each clock domain (line 9), and interfacing signals (lines 10 and 11). Member

variables, such as clock domains, channels, signals, and reactions are also declared

(lines 12-15). ‘SyncNodeParser’ (line 16) is the macro to create the static function

wrapper. ‘SyncNodes’ are declared through ‘NewSyncNode’ macro (lines 17-19).

Within the constructor of GALS_PROG (lines 26-47), SyncNodes are created through

‘createSyncNode’ (lines 29-31), providing arguments including the name of the

libGALS-SYSTEMC module and the actual tick-hook function pointed by the SyncNode.

‘createlibGALSProgram’ (line 32) is still required to establish data structures to execute

the libGALS components. Upon the creation of the clock domains and reactions, a

‘SyncNodeHook’ macro is used as the static function wrapper, providing the

SyncNodes as the argument (lines 36, 41, and 49) which can be applied to both clock

domains and reactions. The creations of other clock domains, channels, signals, and

reactions are the same as in the original libGALS program. Activations of clock

domains and libGALS programs (lines 56-58) are essential to enable the libGALS part

of libGALS-SYSTEMC module to be up and running. Synchronizing functions are

registered (lines 59-64) with the clock signals to the corresponding clock domains.

Chapter 5. GALS-Designer: A design framework for GALS software systems 145

Examples of a tick-hook function for clock domain CD1, listed in lines 67-71, consist of

handshaking operations and evaluations of interfacing signals. A corresponding

synchronization function (lines 78-79) implements the counterparts of the handshaking

to the tick-hook function. Note that in Listing 5.3, line 69, scCD1_S2 is a SYSTEMC

signal and CD1_S2 is of type libGALS signal. The interfacing between the two kinds of

signals is carried out within the hook function. Input signals to a SYSTEMC module are

first checked and then emitted to the libGALS program (line 69). Similarly, output

signals are written when they are present in the libGALS program (line 74).

Synchronization between a tick-hook function and a synchronizing function is presented

as the grey area in the Figure 5.8 and detailed in Section 5.3.

Listing 5.3: SYSTEMC module resulted from the libGALS program

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

#include "systemc.h"
extern "C" {
 #include "syncapi.h"
 #include "ReactiveFunction.h"
}
#include "libgals_sc.h"
SC_MODULE(GALS_PROG) {
public:
 sc_in<bool> clk_CD1, clk_CD2;
 sc_in<bool> scCD1_S2;
 sc_out<bool> scCD2_S1;
 clockdomain CD1, CD2;
 channel cCD1toCD2;
 signal CD1_S1, CD1_S2, CD2_S1;
 reaction CD1_R1, CD1_R2, CD1_R3, CD2_R1;
 SyncNodeParser(GALS_PROG);
 NewSyncNode(GALS_PROG, snCD1);
 NewSyncNode(GALS_PROG, snCD2);
 NewSyncNode(GALS_PROG, snCD1_R1);
 // Tick-hook functions
 void CD1_TickHook();
 void CD2_TickHook ();
 void CD1_R1_TickHook();
 // Synchronization functions
 void CD1_Sync();
 void CD2_Sync();
 void CD1_R1_Sync();
 SC_CTOR(GALS_PROG) {
 snC1 = createSyncNode(GALS_PROG, CD1_TickHook);
 snC2 = createSyncNode(GALS_PROG, CD2_TickHook);
 snCD1_R1 = createSyncNode(GALS_PROG, CD1_R1_Tic kHook);
 createlibGALSProgram();

Chapter 5. GALS-Designer: A design framework for GALS software systems 146

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

 clockdomain CD1 = createClockDomain(
 InputC1,
 OutputC1,
 SyncNodeHook(GALS_PROG),
 snCD1);
 clockdomain CD2 = createClockDomain(
 InputC2,
 OutputC2,
 SyncNodeHook(GALS_PROG),
 snCD2);
 // The same as lines 15 to 19 in Listing 5.2
 // to create channels and signals
 reaction CD1_R1 = createReaction(
 CD1,
 ReactionCD1R1,
 0,
 SyncNodeHook(GALS_PROG),
 snCD1_R1,
 2,
 CD1_S1,
 CD1_S2);
 // The same as lines 28 to 55 in Listing 5.2
 // to create reactions
 startClockDomain(CD1);
 startClockDomain(CD2);
 startlibGALSProgram();
 SC_METHOD(CD1_Sync);
 sensitive << clk_CD1.pos();
 SC_METHOD(CD2_Sync);
 sensitive << clk_CD2.pos();
 SC_METHOD(CD1_R1_Sync);
 sensitive << clk_CD1.pos();
 }
};
void GALS_PROG::CD1_TickHook() {
 snCD1->signalSC();
 if(scCD1_S2.read()) emit(CD1_S2);
 snCD1->pendlibGALS();
}
void GALS_PROG::CD2_TickHook() {
 snCD2->signalSC();
 scCD2_S1.write(present(CD2_S1));
 snCD2->pendlibGALS();
}
void GALS_PROG::CD1_R1_TickHook() { ... }
void GALS_PROG::CD1_Sync(void) {
 snCD1->pendSC(); snCD1->signallibGALS();
}
void GALS_PROG::CD2_Sync(void) { ... }
void GALS_PROG::CD1_R1_Sync(void) { ... }

Chapter 5. GALS-Designer: A design framework for GALS software systems 147

Figure 5.8: Integration of libGALS program into a SYSTEMC module

In the libGALS-SYSTEMC module, reactions are still executed in the same fashion

as in the libGALS program. However, contrary to the conventional simulation of a

SYSTEMC executable which is single-threaded, the executables consisting of libGALS-

SYSTEMC modules are multithreaded and can take advantage of being executed on

multicore systems. Tick-hook function also enables the modeling of further details of

communication and synchronization between the libGALS programs and the SYSTEMC

wrapping module. For example, timing annotations can be inserted into tick-hook

functions and then used for architecture exploration and performance evaluation, as

detailed in Section 5.7.

5.6 GALS system design using GALS-Designer

Figure 5.9 illustrates design flow in which the GALS-Designer is used. Solid lines

represent the flow between design stages. Dashed lines represent the communications

between components. GALS-Designer is utilized in stages shaded in grey. After system

specification capture, hardware/software partitioning is performed. Software and

hardware components can be categorized into two groups: existing components or those

needed to implement. libGALS programs, which are derived from identified

asynchronous and synchronous behaviors, are wrapped to become SYSTEMC modules

Chapter 5. GALS-Designer: A design framework for GALS software systems 148

that are integrated to a SYSTEMC simulation model of the designed system, which

communicates with hardware/software simulators and performs the entire system

simulation. As refinements of the design are carried out along with simulations and

validations, the results lead to the final implementation of the system. libGALS

programs and other software applications are executed with the support of operating

systems on the same designated platform.

Figure 5.9: GALS-Designer in system development

libGALS requires standard features provided by the operating systems, in that it

guarantees the same behavior and outputs regardless as to which operating system is

Chapter 5. GALS-Designer: A design framework for GALS software systems 149

used. This simplifies the SYSTEMC simulation model, which does not require a target

OS model. However, the target OS model can be included for fine-grained simulation.

For example, when OS API calls are made by the libGALS, the required information

can be passed to the OS model through the synchronizing function.

The concept of the libGALS enables the developer to describe GALS systems in a

simple manner, without putting effort into how actual communication and

synchronization between reactions and clock domains are carried out. These details are

hidden by using libGALS, which guarantees the compliance of the designed system

with the GALS MoC. Because the libGALS library is written in C, it is highly portable

and has been ported to a range of operating systems, from non-real-time to real-time,

such as Linux, Windows, uCOS-II, FreeRTOS, eCOS, and RTEMS, as detailed in

Chapter 4. On the other hand, SYSTEMC allows modeling at different levels of

abstraction, which makes it suitable as a development framework, demonstrated by

many previous research and development efforts. SYSTEMC also enables designing

systems using either top-down (system-level design) or bottom-up (component-based

design) approaches according to the specific requirements of the applications [Cai &

Gajski, 2003]. Both libGALS and SYSTEMC can be used to describe a system in

different design phases that include: (1) specification, (2) modeling and analysis, and (3)

implementation phase. The GALS-Designer development framework, which supports

the design process in different design phases, is illustrated in Figure 5.10.

Figure 5.10: Development framework of the libGALS-SYSTEMC model

Chapter 5. GALS-Designer: A design framework for GALS software systems 150

In the specification phase, libGALS is used to identify essential clock domains and

concurrent reactions of a GALS system. Reactions within a clock domain do not need to

be modeled with details of its actual implementations; i.e. clock domains can contain a

single reaction (which can be refined into multiple reactions later) and such libGALS

program can be referred to as a ‘simplified libGALS program’. In this phase simplified

libGALS programs are wrapped into SYSTEMC modules as described in the previous

section. An overall system can consist of one or more libGALS programs and other

components (hardware descriptions or software modules). Other system components,

which do not follow the GALS MoC, are specified using SYSTEMC or other

specification methodologies that can be incorporated within SYSTEMC.

At the next modeling and analysis phase, descriptions of SYSTEMC components are

further refined into more concrete models of hardware and software. Models of these

components can be at different levels of abstraction depending on what intellectual

property (IP) vendors and designers have provided. Simplified libGALS programs are

refined with more synchronous reactions, where reactions are described in further detail

including:

1. Identification of concurrent behaviors within a clock domain that are

modeled as separate reactions.

2. Introduction of the algorithms that perform data transformations in each of

these reactions.

3. Specification of control and dependencies between reactions that are

achieved via signal emit/await and fork/join API calls.

The number of clock domains that libGALS can support is practically unlimited

(assuming the memory to store clock domain data structure is sufficient), and are bound

by the underlying OS features. Grouping of clock domains into different libGALS-

SYSTEMC modules (i.e. libGALS programs) is the designer’s decision and is illustrated

in Figure 5.11.

Each libGALS-SYSTEMC module represents a possible mapping to a separate

processor or a libGALS program running on the target OS. This approach enables the

Chapter 5. GALS-Designer: A design framework for GALS software systems 151

implementation of heterogeneous systems, which include different processors with

different computing power and therefore can execute clock domains of different

complexities and different speeds. An example is shown in Figure 5.11 (a), where all

clock domains are modeled and implemented on a single processor, as clock domains

communicate with other SYSTEMC modules through necessary mechanisms. If a faster

execution speed is required, clock domains can be mapped to separate processors as

Figure 5.11 (b).

Figure 5.11: Clock domains mapped to different libGALS-SYSTEMC modules

Models of libGALS-SYSTEMC modules can be described as untimed or with

different timing granularities by annotating timing for accurate simulation. Timing

annotations can be made at clock domain level, reaction level, and operating system

level. Execution times can be obtained, for example, through profiling and using

instruction set simulators (ISS). At the clock-domain level, times are annotated within

the tick-hook functions of the clock domains. This gives the designer information as to

how the clock domains perform on different configurations of processors, enabling

architecture exploration. To obtain higher accuracy, timing information can be further

Chapter 5. GALS-Designer: A design framework for GALS software systems 152

inserted to tick-hook functions of reactions. Other works have modeled and described

abstract OSs which provide APIs that can be used by the application models and enable

timing analysis as in [Posadas et al., 2005]. Similarly, libGALS is implemented by

using common (RT)OS services whose models are already available. Because timing

information can be annotated when simulating with libGALS and abstract OS APIs,

more accurate simulations are possible. Modeling with different timing granularities

enables trade-offs between the simulation performance and accuracy. As one extreme,

an ISS can be used to execute libGALS programs to obtain the most accurate execution

time, but with the slowest simulation speed.

Finally, at the implementation level, SYSTEMC modules are mapped to synthesized

hardware or software generated automatically or manually as presented in [Cesario et al.,

2002] and [Posadas et al., 2005]. libGALS-SYSTEMC modules are mapped (translated

by a text parser) to libGALS programs for specific selected operating system used on

the target processor(s).

5.7 Case studies and results of using GALS-Designer

To demonstrate the use of the GALS-Designer approach and how libGALS-

SYSTEMC modules can be integrated with other SYSTEMC modeled components, an

Internet-enabled frequency relay (IEFR) has been used, as illustrated in Figure 5.12. A

similar model without network support [Radojevic et al., 2006] has presented the major

components of the frequency relay in SYSTEMC. In Chapter 4, the libGALS model of

the frequency relay was introduced. The frequency relay measures frequency in the

electrical power system and the rate of its change, and switches on and off the loads in

order to help maintain overall system frequency within the specified range. The IEFR is

formed by coupling a frequency relay with a simple web server. IEFR enables

communication with a Web Browser via the Internet to configure settings of the

frequency relay, as well as to display status of its operation.

Clock domain and reaction partitioning are based on the characteristics of the relay.

Four clock domains have been identified: data sampling, relay control, web service, and

status gathering. Clock domains can be instantiated in different libGALS programs

Chapter 5. GALS-Designer: A design framework for GALS software systems 153

because of the requirements of the system or the capability of the execution platform.

For example, a platform might not be powerful enough to host all four clock domains

because the data sampling and relay control have high computational demand. To

demonstrate that clock domains can be further allocated to different libGALS programs,

data sampling and relay control are grouped in one libGALS-SYSTEMC module, as an

example of the design decision. The other module contains the remaining IEFR

functionalities. Note that the allocation of clock domains to the libGALS programs is

driven by the characteristics of the application and based on the design analysis.

Figure 5.12: Internet-enabled frequency relay modeled with libGALS-SYSTEMC

Communication between clock domains ‘DataSampling’ and ‘RelayControl’ in

module ‘FrequencyRelay’ are via channel ‘SampleCount’. Similarly, ‘WebServer’ and

‘StatusGathering’ of module ‘RemoteService’ exchange information through channels

‘Status’ and ‘Configuration’. Inter-module clock domains communicate with each other

through SYSTEMC signals or channels, named ‘CalculationResult’ and ‘Parameter’

which can be modeled as the environment to the corresponding clock domains, or can

be described as libGALS channels if GALS MoC is required. To simulate the overall

system, inputs and outputs are provided and collected by SYSTEMC modules. Input

stimulus, which is the digitized electric power signal waveform, is described in the

Chapter 5. GALS-Designer: A design framework for GALS software systems 154

module named ‘Stimulus’. Outputs, which are signals controlling the switches, are

modeled in the SYSTEMC module called ‘Switches’. Interconnection between SYSTEMC

modules is achieved through SYSTEMC signals. The simulation model of IEFR is

performed on the Linux, where two libGALS programs communicate with each other

through SYSTEMC channels. The corresponding implementation of such a model uses

inter-process communication (IPC) of the host operating system.

Standard SYSTEMC executable is a single-threaded program, which cannot take

advantage of using the state of the art multiprocessor platforms that are readily available.

On the other hand, the libGALS-SYSTEMC model can take advantage of multiple

processors or cores. The simulation speed can be increased and this can be demonstrated

by simulating the libGALS-SYSTEMC models with a different number of processor

cores. The results of simulation of the FrequencyRelay module from the IEFR, along

with a number of other examples, are shown in Figure 5.13. The name of the example

also indicates the number of clock domains in the model, for instance, ‘2CD FreqRelay’

represents a FrequencyRelay modeled with two clock domains.

Data Comp examples are synthetic examples, which consist of one or more clock

domains as indicated by their names. Each clock domain consists of two reactions, one

performing heavy computation within each tick and the other having the communication

function of sending out results to the other clock domains through channels. They are

designed in such a way as to present the performances of heavy data-driven

computations with low data dependencies between clock domains.

Such examples are typical for video encoding and decoding applications, which

include both audio and video parts. ‘3CD Kite Controller’, detailed in Chapter 4,

consists of three clock domains that have a mix of data computations and control found

in typical heterogeneous embedded systems. ‘2CD AsyncProto’ [Lavagno & Sentovich,

1999] is described by two clock domains. Experimental runs were carried out on an

Intel Core 2 Quad 2.4GHz with 4GB of RAM with Linux 2.6.29.6 as the host OS. A

different number of cores are set and made available to the OS by providing maxcpus=n,

n = 1-4, as the argument to Linux kernel during the boot process. Average tick times (in

µs) for all clock domains are obtained by running all programs for at least 10 million

Chapter 5. GALS-Designer: A design framework for GALS software systems 155

ticks. Simulations of pure SYSTEMC models, in which the same functionalities would be

achieved without libGALS, are not carried out because of the following:

1. Noticeable modeling effort is required to implement the GALS MoC in SYSTEMC,

since one might eventually implement functionality close to libGALS.

2. SYSTEMC does not provide certain control statements such as explicit pre-

emption construct, and libGALS does. Models that use pre-emption statements

would lose the abstraction intended by libGALS.

3. SYSTEMC kernel does not support simulations by employing by multicore

simulation hosts.

Figure 5.13: Simulation execution results of libGALS-SYSTEMC models

The simulation runs have shown that, in general, libGALS-SYSTEMC models

perform faster when using more cores, with performance increasing as the number of

clock domains and cores increases. Computations in ‘Data Comp’ are with low data

dependencies and make use of parallelism to demonstrate the advantage of running on

0

10

20

30

40

50

60

70

80

90

2CD FreqRelay 1CD Data Comp 2CD Data Comp 3CD Data Comp 4CD Data Comp 3CD KiteController 2CD AsyncProto

Average tick
length (us) 1 Core 2 Cores 3 Cores 4 Cores

Chapter 5. GALS-Designer: A design framework for GALS software systems 156

the multicore systems. 2CD FreqRelay, 3CD Kite Controller, and 2CD AsyncProto

when executed on four cores, do not achieve performance gain as would be expected,

because reactions of the same clock domain are distributed on different processors,

which, in turn, results in overheads of synchronizations and program migrations

between processors. Such a situation appears more obviously if two clock domains are

highly dependent on each other (with frequent exchange of data), as is the case in 2CD

AsyncProto example. That is, one clock domain is the sender and the other is the

receiver. Both sender and receiver are blocked when waiting for the rendezvous in

channel communication. The blocking-releasing order of both clock domain executions

will result in only one thread running at a time while the other thread from the other

clock domain is waiting for the communication to occur. This leads to the

sequentialization of the activities of communicating clock domains and reduces the

benefit of the multicore platform.

5.8 Summary

In this chapter, a new design framework, GALS-Designer, for the design of

complex GALS software models in C programming language using libGALS library, as

well as their integration with other components described in SYSTEMC, is introduced.

libGALS models wrapped into SYSTEMC modules, called libGALS-SYSTEMC modules,

are capable of communication with other SYSTEMC modules. libGALS-SYSTEMC

modules can use different levels of abstraction in different design phases and with

different timing granularities. Taking advantage of the libGALS multithreaded

implementation, such modules can execute on multiprocessor and multicore platforms,

opposite to standard SYSTEMC models which are single threaded.

Furthermore, as libGALS has been ported to a number of OSs, as detailed in

Chapter 4, the same libGALS program, with practically no modifications, can be used in

the simulation on one (host) and can be later implemented on the target OS with

minimal efforts. This demonstrated the use of the approach on a complex embedded

systems design. As a case study, the model of Internet-enabled frequency relay was first

constructed and was then implemented as a libGALS program. Finally, the simulation

Chapter 5. GALS-Designer: A design framework for GALS software systems 157

performance of a number of examples has been analyzed when using a computer with

different numbers of cores. It was shown the libGALS-SYSTEMC approach can take

advantage of those cores, which is not possible when using standard SYSTEMC.

Chapter 5. GALS-Designer: A design framework for GALS software systems 158

6666
6. 6. 6. 6. DDDDynamic systemynamic systemynamic systemynamic system designsdesignsdesignsdesigns in in in in DynamicGALS DynamicGALS DynamicGALS DynamicGALS

This chapter presents the DynamicGALS framework, which enables the design of

Dynamic Globally Asynchronous Locally Synchronous (DGALS) systems in the C

programming language. A DGALS system consists of multiple DGALS programs and

can be executed on platforms ranging from a single-processor to multicore and

distributed systems. A DGALS program itself consists of a variable number of

concurrent asynchronous behaviors at the top level of program hierarchy, which run on

a single or multicore computational node. Each asynchronous process can be naturally

composed of a number of synchronous concurrent processes. The mechanism for

creation, termination, and mobility of asynchronous behaviors allows any existing

behavior to create other asynchronous behaviors in their own or any other DGALS

programs, regardless of their location. In this way, the overall system adapts to changes

in the environment and the execution platform dynamically.

The DynamicGALS framework consists of a library named libDGALS, which also

provides a run-time support for execution of DGALS programs. Features of libDGALS

are available in the form of application programming interface (API) to the software

Chapter 6. Dynamic system design in DynamicGALS 160

designers. libDGALS, which is an extension of libGALS and can be built on top of

almost any operating system, is highly portable and has low run-time memory

requirements. In contrast to the GALS-Designer approach in Chapter 5 that systems of

multiple GALS programs are modeled statically, DGALS programs in DynamicGALS

framework are instantiated dynamically.

6.1 The need for framework to design dynamic systems

An increasing number of computing applications connect the computing world with

the physical world, creating a single system, often called a cyber-physical system (CPS)

[Krogh et al., 2008]. Most CPSs have some common features: (1) a distributed

execution environment with computation nodes and their interfaces with the physical

world connecting or disconnecting from the system at any time, (2) system functions are

implemented as concurrent behaviors that may be synchronous or asynchronous each to

the other, and (3) functions and behaviors have a lifetime and can be created and

terminated dynamically. The goal is to allow the execution of such systems with high

autonomy and cater for dynamic changes in both the physical world and the execution

platform itself. Such CPSs need a high degree of run-time adaptivity, to enable them to

survive situations such as a loss (or addition) of a computation node; loss (or addition)

of interfaces to the physical world; variations in frequency and nature of requests for

computation on any node; the ability to react in time on important events regardless of

the current system load; etc. An example of such a CPS is a security surveillance and

access-control system installed over large areas like cities, airports, commercial centers,

etc, consisting of a huge number of disparate sensors connected with computers into

sensor nodes, each capturing information in real-time and collaborating to achieve the

final goal of object tracking and threat detection.

Such a complex CPS is difficult to design and implement because of the concurrent

and asynchronous execution of various sensor nodes, synchronization and transfer of

data between the nodes, fault tolerance and recovery, and finally the utilization of

heterogeneous execution and communication architectures (e.g. combination of

distributed and shared memory) as the execution platform. Obviously, such systems

Chapter 6. Dynamic system design in DynamicGALS 161

have a high degree of inherent non-determinism, so controlling this non-determinism

and providing a consistent behavior in different scenarios would indeed be an ideal goal.

Yet, this is difficult to achieve with current programming languages and practice.

On the one hand, sequential programming languages, such as C and C++, which are

most often used in the implementation of current CPSs, lack the ability to program basic

safe concurrent behaviors with the proper level of determinism and reactivity to the

events from the physical world. Applying a formal Model of Computation (MoC) to

CPS designs allows one to validate and even possibly verify the correctness of the

critical components of these systems. A correctly chosen formal MoC also allows the

designing of a complex system by composing simpler parts. For instance, the GALS

[Chapiro, 1984] MoC, which describes concurrent asynchronous and synchronous

behaviors, lends itself well to a significant number of complex CPSs. ‘Asynchronous

concurrency’ is suitable for programming behaviors that run at their own pace,

controlling their respective sensors, and communicating occasionally. ‘Synchronous

concurrency’ might be a better choice for programming concurrent behaviors that are

running on a single computation node to reduce overheads, as they communicate more

frequently with each other, and at the same time guarantee key system properties such

as deterministic behavior.

However, the GALS MoC lacks the ability to describe the dynamic nature of the

majority of CPSs, such as creating behaviors at the other computational node at run-

time. This leads towards evolving the GALS MoC from the static to the dynamic case,

called ‘Dynamic GALS’ or ‘DGALS’. A framework approach is needed for both the

design of CPSs and run-time support for dynamics of the CPSs by honoring the DGALS

MoC. The DynamicGALS framework is proposed for such needs and is detailed in the

following sections.

Related works and approaches are presented in Section 6.2. In Section 6.3 an

abstract design is used as an example to underpin the principles behind the

DynamicGALS framework and its features. A more complex example of a DGALS

system which is both dynamic and distributed is demonstrated in Section 6.4. Section

6.5 presents the internal implementation details of the DynamicGALS framework, while

Chapter 6. Dynamic system design in DynamicGALS 162

Section 6.6 then provides the benchmarking results when libDGALS was used in a

number of other applications. Finally, a summary of this chapter is provided in Section

6.7.

6.2 Related works and the DGALS approach

Adequate frameworks provide a means for designing systems, and support the

execution of deployed systems. Libraries that provide programming interfaces, and

languages that provide essential constructs, are used to describe systems under design.

To support the deployment and execution of both prototyped and final implementations

of these systems, run-time environments are essential. Frameworks targeted at the

design of complex systems need to meet a number of requirements to be effectively

used by system designers. What follows is a comprehensive, but in no way exclusive list

of the requirements that need to be satisfied by any framework that supports

programming complex dynamic systems:

1. Behavior and internal encapsulation: The programming framework should

allow the decomposition of the system into smaller manageable behaviors

and the easy composition of these behaviors into an overall system. Also,

the framework needs to support static (at design time) and dynamic (at run-

time) instantiation of these concurrent behaviors.

2. Safe communication: Concurrent behaviors need to communicate. Safe

mechanism for synchronization and communication between concurrent

entities should be a primitive construct in the framework. Communication

between concurrent entities should hide the details of the underlying

communication layer, i.e., some concurrent entities in the system might be

running in a distributed memory environment, while others might be

running in a shared memory environment, but the higher-level programming

abstractions used should be the same.

3. Location transparency and mobility: The designer should have no need to

change the designed system behaviors, when the underlying infrastructure

changes, or the required changes should be at least minimal. This is known

Chapter 6. Dynamic system design in DynamicGALS 163

as location transparency. The ability of behaviors to move from one

physical location (computational node) to another is essential in dynamic

systems. For example, some piece of code not available on a computation

node might be obtained from a code repository at run-time and activated as

needed.

4. Fault tolerance and possible recovery: A large complex dynamic system is

bound to have failures. Any design framework geared towards such systems

needs to provide built-in, error-tolerance capabilities and possibly recovery.

5. Automated formal validation and possible verification: The design of

complex systems needs to be approached from a system-level design

perspective rather than a programming perspective. The framework should

support a formal MoC, which, as mentioned previously, allows system

designers to formally validate and possibly verify certain critical aspects of

the designed systems.

6. Reactivity and abstract data fusion: Every incoming event to the designed

systems needs to be responded to. Programming such ‘reactive’ [Harel &

Pneuli, 1985] behaviors can be made easy by providing programming

paradigms especially suited for data fusion from multiple sensors or other

sources.

7. Ability to take advantage of the heterogeneous execution and

communication platforms: The physical infrastructure (i.e. targeted

processor architectures, or computing platforms) that the software system

are executed on might consist of a heterogeneous set of computational

elements, each element can be implemented by using single-processor and

multicore CPUs and GPUs. Even the communication layer (i.e. adaptors and

buses) is to be heterogeneous. The underlying physical infrastructure and

the designed system behaviors should be separate, and the framework

should allow the change of one, without affecting the other. This improves

the overall reliability, portability, and flexibility of the designed system.

Chapter 6. Dynamic system design in DynamicGALS 164

8. Ability to accommodate legacy code: There are large software applications,

which have been written in traditional programming languages like C/C++,

so any new programming framework should be able to accommodate and

interface with these software applications with minimal or no changes at all.

Not many programming languages and frameworks excel in all the aforementioned

requirements. Traditional programming languages like C, C++, and Java lack either the

basic mechanisms to describe concurrency and/or safe communication between

behaviors implemented using threads [Lee, 2006]. Recently, a number of programming

frameworks and languages that target dynamic system development have been proposed.

All these have advantages and drawbacks.

Integrating asynchronous concurrent behaviors into bigger systems is also known in

the world of ‘actors’ [Hewitt et al., 1973][Clinger, 1981], where asynchronous actors

communicate with each other using message-passing mechanisms. There are a number

of implementations in the form of libraries or frameworks added to existing

programming languages such as Actor Foundry [Astley, 1999], Scala Actors [Haller &

Odersky, 2009] (both implemented using Java and running on JVM), or included into

new concurrent languages Erlang [Armstrong et al., 1993]. However, message passing

between actors is sometimes implemented as passing-by-reference (rather than creating

a deep copy of the object to pass), which violates the semantics of the Actor model.

Passsing-by-reference will not work in distributed-memory architecture because

referencing to memory at a remote site is not possible. Also, the Actor-based systems

provide a general asynchronous model, which is essential for majority of clustered

distributed dynamic systems. However the Actor model does not allow explicit

grouping of actors or internal concurrent behaviors within an actor that would perform

synchronously. Finally, and most importantly, they lack the ability to react to events in

the environment. A similar case can be made for multi-agent systems, such as JADE

[Bellifemine et al., 2005], which provide for reactivity, but at the expense of huge

execution overhead (i.e., large run-time library) on computation nodes.

Chapter 6. Dynamic system design in DynamicGALS 165

There are approaches to create languages to implement formal MoC to describe

concurrency and communication between asynchronous behaviors, as the remedies to

general thread programming. For instance Occam [Galletly, 1990] implements the CSP

[Hoare, 1978] MoC. However, both of the above mentioned approaches lack a support

for mobility of behaviors. Extensions to support mobility have been made to Occam,

resulting in Occam-pi [Welch & Barnes, 2005]. However, these languages lack the

constructs to describe complex data structures and algorithms. To resolve this problem,

as an example, CSP has been implemented in software libraries of general programming

languages, such as JCSP [Welch et al., 2002], CTJ [Hilderink et al., 1999], and Scala

[Odersky et al., 2004] (on the top of the Actor-based model) in Java, and CCSP [Moores,

1999] in C, but mobility is not supported in these languages. [Barnes, 2005] presents a

technique to interfacing both Occam-pi and C, to obtain both mobility and support for

data-driven computations. However, it complicates the design process without having a

single-language environment.

Some attempts with the tools and frameworks are centered on the concepts of

distributed systems, such as X10 [Charles et al., 2005]. In X10, asynchronous behaviors

are called ‘activities’ running on distributed ‘places’. However, X10 is not based on a

formal MoC. Other languages, such as Axum [Microsoft Corporation, 2008], take into

account current languages and legacy codes, but also rely on powerful and heavy virtual

machines (the .NET framework), which abstract away the underlying platform to

enforce heterogeneity of the execution environment.

Languages and platforms which emerge from the synchronous/reactive MoC

[Benveniste & Berry, 1991][Boussinot, 1996] and the mobile agent-based approach

[Fuggetta et al., 1998] also exist, such as RAMA [Nikaein, 1999], and REJO [Acosta-

Bermejo, 1999] along with its platform ROS [Acosta-Bermejo, 2000]. They provide

mobility and reactivity, but not one provides constructs for asynchrony of behaviors and

communication between behaviors, which is required and natural in the distributed

systems. They also lack the features for communication and interaction of groups of

synchronous agents.

Chapter 6. Dynamic system design in DynamicGALS 166

One example of a systematic approach, which merges synchrony with asynchrony

in a formal GALS model, to the design of complex static systems, is shown in [Gruian

et al., 2006] and [Malik et al., 2010] where the language called ‘SystemJ’ was

introduced. Such an approach contributes to fast and reliable design of software systems.

Yet the SystemJ approach suffers from a number of limitations: (1) concurrent

asynchronous and synchronous behaviors, called clock domains and reactions in

SystemJ programs, respectively, are compiled to sequential and static codes; i.e., a

designer cannot instantiate new clock domains at run-time. Therefore one cannot design

dynamic systems. (2) SystemJ, which extends the Java language and uses the Java

Virtual Machine (JVM), is far too abstracted from the underlying platform to properly

utilize heterogeneous execution architectures. For example, a designer is unable to

assign processor affinities to the clock domains, thus leaving this as the decision of the

underlying JVM and the operating system. Accessing hardware features still requires

programming in different host languages to cooperate with the JVMs. (3) Finally,

SystemJ does not provide a suitable and efficient mapping on multicore execution

targets and does not provide inherent support for programming distributed architectures

(e.g., networked systems).

An extension of SystemJ, called Dynamic SystemJ (DSystemJ), which supports

DGALS MoC, has been recently proposed [Malik et al., 2010]. It extends SystemJ with

behavior creation and termination mechanisms and weak mobility (behavior migrations

without state capture), but still inherits the dependency on the JVM.

Other approaches such as MPI [Gropp et al., 1999] and OpenMP [Dagum & Menon,

2002] are based on the use of C/C++, but are limited to static systems (MPI-1 and

OpenMP), or to dynamic systems, but lacking process mobility (MPI-2) and reactivity.

Finally, both these approaches (MPI and OpenMP) lack an all-encompassing formal

MoC.

Almost all of the above mentioned approaches, except SystemJ and DSystemJ, are

based on a single level of concurrency in the form of either asynchrony (such as

processes in CSP, and Actor model) or synchrony (e.g. RAMA and REJO/ROS); some

of them do not follow any formalism (e.g. OpenMP and MPI).

Chapter 6. Dynamic system design in DynamicGALS 167

The formal DGALS MoC, extended and benefited from GALS MoC, covers the

required features to program complex real-world dynamic systems. The DynamicGALS

framework based on the DGALS MoC, provides libDGALS, a library for programming

DGALS systems, as well as run-time support. libDGALS builds on the libGALS library

introduced in Section 4 used for designing static GALS systems. While preserving

features of libGALS with minor modifications, libDGALS significantly enhances the

power and applicability of the design framework.

6.3 Overview of the DynamicGALS framework

From the discussion in the previous section, the DynamicGALS framework, which

follows the DGALS MoC, should support the following features as guidelines:

1. There are both synchronous and asynchronous behaviors which are

available in the conventional GALS MoC. Concurrent synchronous

behaviors communicate with each other through signal broadcasting, so that

all synchronous behaviors will have the same view of the signals. When

asynchronous behaviors communicate with each other, there should be no

shared data between them. Message passing should comply with pass-by-

value semantics, which implies copying of messages. Synchronous

behaviors within the same asynchronous behavior interact with each other

by obeying the synchronous reactive MoC as in ESTEREL [Berry et al., 1983]

and SystemJ that provide reactivity. The composition of asynchronous and

synchronous behaviors is based on GALS MoC as used in CRP [Berry et al.,

1993] and SystemJ.

2. A DGALS system can be distributed on networks of computational nodes.

Asynchronous behaviors, which are not as tightly related as synchronous

behaviors, can migrate within the DGALS system, according to the concept

of weak mobility in DGALS MoC. Mobility also provides DGALS systems

capability of fault tolerance and recovery, such as re-activating the backup

asynchronous behavior at the same node or other nodes.

Chapter 6. Dynamic system design in DynamicGALS 168

3. The DynamicGALS framework will provide programming interface, as part

of the libDGALS, along with the run-time environment, to support

communication, activations, and termination of asynchronous behaviors.

4. The libDGALS will be implemented in general programming languages, C

in the current implementation, to support legacy code compatibility.

5. Last but not least, being based on formal MoC, the DynamicGALS

framework opens the door to verifying DGALS systems with techniques

used in the adopted MoCs including the synchronous reactive model, CSP,

GALS model, and pi-calculus [Milner, 1999].

In the following, general features of the libDGALS are presented by a few small

examples to illustrate the main properties of the DynamicGALS framework.

6.3.1 From libGALS to libDGALS

The static GALS systems created using libGALS can exploit only multicore

processors and do not support distributed platforms. DynamicGALS framework, which

is centered on libDGALS, evolves to allow exploiting both multicore and large

distributed architectures. The static GALS systems in libGALS lack properties such as

fault tolerance, mobility of code, and dynamic creation of behaviors, which essentially

makes them very domain-specific. The libDGALS approach extends the static libGALS

API (available in Chapter 4) with the goal that the DynamicGALS framework would

make a good alternative to the general purpose concurrent libraries (such as pthreads).

libDGALS inherits basic design entities and objects introduced in the libGALS,

including ‘clock domain’ (CD, as a group of synchronous behaviors, each CD is

asynchronous to other CDs), ‘reactions’ (synchronous behaviors), ‘signals’ (means of

communication between reactions in the same CD), and ‘channels’ (used for

communications between reactions of different CDs). These elements are basic building

blocks used to construct DGALS systems.

Chapter 6. Dynamic system design in DynamicGALS 169

6.3.2 Structure of DGALS systems in the framework

The DynamicGALS framework allows the design of ‘DGALS systems’ that consist

of multiple ‘DGALS programs’, which run on any core or computation node in a

distributed (networked) system. A DGALS program can consist of one or more clock

domains, which can be static (permanent for the system lifetime) or dynamic (non-

permanent). Dynamic creation of CDs is supported through ‘CD plug-ins’, or ‘plug-ins’

for short. CD plug-ins encapsulate the body of the clock domains, reactions, channels,

signals, and all other information necessary to create a CD and are instantiated upon

activation. A plug-in is basically a library that can support ‘dynamic loading’, for

example, a shared object (.so files) on Linux (or Unix-like) systems and a dynamic

linking library (.dll files) on a Windows system. A plug-in must be defined and

initialized before it can be used to create a new instance of the CD. Furthermore, a CD

plug-in can be subsequently used to instantiate one or more CDs. Each CD created from

the same plug-in can be customized according to ‘CD configurations’.

A designer defines the DGALS system, its DGALS programs, CDs and reactions,

using the libDGALS API. Some of these API calls establish run-time data structures,

while others are used to implement creation of new CDs, communication between CDs,

as well as CD mobility.

6.3.3 Programming interface provided by libDGALS

Table 6.1 shows the descriptions of the programming interface that support

dynamic features. Static systems can still be created with the programming interface

inherited from libGALS. A DGALS program must be initialized by using the

createDGALSProgram, and must be started by using startDGALSProgram. The

CDPlugin macro is used to define the scope of a CD plug-in, and initPlugin is used for

initializing the required data structure before the CD is instantiated. CD configurations,

such as an identifier given to a newly activated CD, can be created with

createCDConfiguration and extended via addCDConfiguration. Arguments passed to

the activated CD, which are used to perform computations, can be similarly created and

extended by using createCDArgument and addCDArgument, respectively. Other

Chapter 6. Dynamic system design in DynamicGALS 170

available functions, getCDArgumentNum, checkCDArgument, and getCDArgument,

are used within reactions to obtain the arguments passed to the CD. Both configurations

and arguments are used by activateCD to activate an instance of a CD plug-in on the

destination machine. Any active CD can be terminated by using the terminateCD.

Table 6.1: API to program dynamic GALS systems

Function name Description
createDGALSProgram Instantiate data structures of the DGALS program
startDGALSProgram Start the DGALS program and its Listener
CDPlugin (macro) Start a CD plug-in definition
initPlugin Initialize the data structure when creating an instance of a CD

plug-in. This API is called at the beginning of the plug-in
definition.

createCDConfiguration

Initialize a CD configuration of the new CD instance to
customize parameters used in the CD.
 Returns: pointer to the CD configuration

addCDConfiguration

Add an entry to the CD configuration. Arguments:
 1. existing CD configuration
 2. configuration entry (key) to append
 3. the value of the configuration to append

createCDArgument Initialize a list of arguments passed to new CD instance
 Returns: pointer to the argument

addCDArgument Add an argument to the list. Arguments:
 1. argument list to append
 2. name of the argument
 3. type of the argument
 4. the actual argument to pass

getCDArgumentNum Check the number of arguments passed to the created CD
instance

checkCDArgument Check the availability of an argument. Argument:
 Name of the argument
 Returns: 1 - available, 0 - absent

getCDArgument Obtain the argument by providing the name of the argument
activateCD Activate a CD from a CD plug-in. Arguments:

 1. destination DGALS program, where the CD will reside
 2. name of the CD plug-in
 3. configurations passed to the activated CD

4. arguments passed to the activated CD
Returns: success / fail to activate the CD

terminateCD Terminate a running CD
 Arguments: the name of the CD to terminate

Chapter 6. Dynamic system design in DynamicGALS 171

A programmer must provide functions to serialize/de-serialize data used by a

channel used for communication between CDs. These functions are called serialization

and de-serialization functions. Table 6.2 lists the prototype names of these functions.

Data to transfer are serialized/de-serialized with desired interpretations by design.

Table 6.2: Serialization and de-serialization functions

Function name Description
serialize_data-type

Serialize function to encode data to a byte stream.
 Argument: the data to send
 Returns: unsigned char stream

deserialize_data-type

De-serialize function to convert a byte stream to the
typed data.
 Argument: unsigned char stream
 Returns: reconstructed data

6.3.4 Simple examples to model dynamic behaviors

This section gives simple examples to familiarize the reader with the

DynamicGALS framework and to present the system-level design features. Figure 6.1

and its corresponding DGALS code in Listing 6.1 show an example of CD instantiation

and reactivity. The CD ‘cd1’ instantiates ‘cd2’ and ‘cd3’ on the ‘local DGALS program’

(named 192.168.1.1:1111) and a ‘remote DGALS program’ (named 192.168.1.2:1111),

respectively, depending upon the value of the input signal cd1s1 received from the

environment.

In Listing 6.1, firstly the required header-file (line 1) containing all the DGALS

function definitions is included. The data structure ‘CDInfo’ is defined (lines 2-7) to

hold information carried by the signal ‘cd1s1’. Input and output functions used by cd1

are defined (lines 8-9) and used to communicate with the environment to cd1. The

‘reaction function CD1R1Reaction’, which is the functional definition of reaction

‘cd1r1’, is declared on lines 10-25. cd1r1 firstly initializes by setting up argument (lines

11-13), and then waits for an incoming signal cd1s1 (lines 14) and reads its value (line

15). Next, CD configurations are buit, which include the IP addresses, CD names, etc;

indicating where the new CDs need to be instantiated (lines 16-17). Upon the

activateCD (lines 18 and 21), the run-time environment activates a new CD instance on

Chapter 6. Dynamic system design in DynamicGALS 172

the correct physical machines with the CD configurations. The rest of Listing 6.1 (lines

25-31) shows how a CD is established when being activated from a CD plug-in, starting

from the declaration of the scope of the plug-in (line 25), initialization of the plug-in

(lines 26-27), instantiation of the clock domain, reaction and signal (lines 27-29), and

finally the execution of the CD (line 30).

Figure 6.1: CD instantiation

Listing 6.1: CD instantiation and reactivity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include "libDGALS.h"
typedef struct CDInfo {
 char* progName; // destination DGALS progra m
 char* CDName; // CD to activate
 char* config; // configurations of the ac tivating CD
 struct CDInfo *next; // next entry
} CDInfo;
void IF(clockdomain CD) { ... } // function to ob tain input
void OF(clockdomain CD) { ... } // function to ge nerate output
REACTION_FUNCTION(CD1R1Reaction) {
 initReaction();
 signal cd1s1 = (signal)getArgument(1);
 endInitReaction();
 await(cd1s1);
 CDInfo cds = value(cd1s1); // read value of input signal
 Configuration configCD2 = createCDConfiguration() ;
 addCDConfiguration(configCD2, "CD.name;CD.rename" , cdInfo->config);
 activateCD(cds->programName, cds->clockDomainName , configCD2, 0);
 cds = cds->nextCD; // read next entr y

 activateCD(cdInfo->programName,
 cdInfo->clockDomainName, configCD3, 0);
 endReaction();
}
CDPlugin {
 initPlugin();
 clockdomain cd1 = createClockDomain(IF, OF, "cd1" , 0, 0);
 signal cd1s1 = createSignal(cd1);
 reaction cd1r1 = createReaction(cd1, CD1R1Reactio n, 1, "cd1r1", 1, cd1r1);
 startClockDomain(cd1);
}

Chapter 6. Dynamic system design in DynamicGALS 173

Another simple example that demonstrates fault-tolerance capabilities is shown in

Figure 6.2 and Listing 6.2. Only the important code segments are shown. In

Figure 6.2, there are two CDs, ‘cd4’ and ‘cd5’, running on two different physical

machines. Reaction ‘cd4r2’ keeps a check on the health of cd5, by receiving value

(acting as heart beats) sending from cd5 through channel ‘ch2’ (line 21), and sending

the result through signal ‘sSenderAlive’ to reaction ‘cd4r1’ (line 22), described in

‘CD4R2Reaction’. If cd5 dies, in the sense that sSenderAlive is not received in a certain

time (maximum allowable number of ticks, lines 8-10), reaction cd4r1 activates a new

instance of cd5 on the remote DGALS program (named 192.168.1.2:5555) and notifies

cd4r2 to re-initialize (by sending sRestartRecv) the channel communication on ch2

(lines 11 and 12 respectively). The implementation of this behavior is shown in Listing

6.2.

Figure 6.2: Fault tolerant systems designed in DGALS

The two simple examples presented above can be combined in a plethora of

different ways to allow the designing of robust systems with the ease of describing

reactivity and communication with the physical environment, the synchronous

(reactions) and asynchronous (clock domains) concurrency, communication between the

concurrent entities (reaction to reaction, channel to channel), weak code mobility and

dynamic process forking and channel instantiation.

Listing 6.2: DGALS program implementing fault tolerance
1
2
3

REACTION_FUNCTION(CD4R1Reaction) {
 initReaction();
 signal sSenderAlive = (signal)getArgument(1);

Chapter 6. Dynamic system design in DynamicGALS 174

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

 signal sEndRecv = (signal)getArgument(2);
 endInitReaction();
 int tickCount = 0;
 while(1) {

if(present(sSenderAlive)) { tickCount = 0; }
 else tickCount++;
 if(tickCount == MAX_TICK_RESP) {
 activateCD("192.168.1.2:5555", "cd5", 0, 0);
 emit(sRestartRecv, 0); // abort the curren t receive
 }
 pause();
 }
 endReaction();
}
REACTION_FUNCTION(CD4R2Reaction) {
 while(1) {
 strongAbort(sRestartRecv) {
 int value2; receive(ch2, value2, int);
 emit(sSenderAlive, 0); // to inform cd4r1 al iveness
 }
 endAbort(sRestartRecv);
 pause();
 }
 endReaction();
}
CDPlugin {
 channel ch2 = createChannel("ch2", SenderCD, rece iverCD);
 reaction cd4r1 = createReaction(/* arguments omi tted */);
 reaction cd4r2 = createReaction(/* arguments omi tted */);

6.3.5 DGALS programs and the run-time environment

Figure 6.3 illustrates a basic view of a DGALS system consisting of three DGALS

programs running on Machine 1 (DGALS program 1 and 2) and Machine 2 (DGALS

program 3), respectively.

As mentioned previously, the DynamicGALS framework provides libDGALS for

programming, and a run-time environment for executions of the DGALS system that

contains one or more DGALS programs. DGALS programs are responsible for: (1)

managing the dynamic behavior of the CDs, (2) the mobility of CDs, (3)

communication between CDs, and (4) implementing the overall DGALS MoC. Each

DGALS program consists of the following:

1. Static linked libraries that support execution of the DGALS program, or

dynamic linking libraries which are available and managed by the operating

systems (OS) on the execution platform.

Chapter 6. Dynamic system design in DynamicGALS 175

2. A local storage area that stores CD plug-ins. Local storage is generally

governed by the file systems of the underlying OS.

3. Configurations of the DGALS program (or program configurations), which

describes the location of the local storage, the list of CDs to be activated at

startup, and the network port (a specific port number) that binds the

essential communication to the underlying physical layer.

4. CD Configurations of the activated CDs. The DGALS program holds

configurations of the running CD instances to manage creations and

terminations of CDs.

5. Listener, which is a helping thread, and is invisible to the programmer.

Listener is responsible for creating clock domains and channels according to

the program configurations. Listener is also used to coordinate

communication via channels between CDs (within the same DGALS

program or between different DGALS programs). Mobility of CDs is also

governed by Listener.

Channels are means of communication between reactions of different CDs. To

establish such links, handshaking is first carried out by Listener, and is implemented

with TCP/IP illustrated as point-lines in Figure 6.3.

Handshaking can occur on the same Listener, if both sending and receiving CDs are

of the same DGALS program, such as the channel establishment between reactions of

CD11 and CD12. On the other hand, different Listeners will be involved if CDs are

within different DGALS programs (CD21 to CD12, and CD11 to CD31), regardless of

whether DGALS programs are running on the same machine or not.

Once the communication links are established, message passing takes place to

perform the actual communications. There are two implementations of message passing:

‘shared-memory’ and ‘TCP/IP’ based. When shared-memory is used, messages are deep

copied, through provision of serialization and de-serialization functions operating on the

shared-memory. The shared-memory approach is adopted when both parties of a

channel are in the same DGALS program, such as CD11 and CD12. When TCP/IP is

Chapter 6. Dynamic system design in DynamicGALS 176

used, messages are serialized and sent to the receivers which reconstruct the original

message through de-serialization functions. This approach is used when shared-memory

is not available between different DGALS programs.

Figure 6.3: Channel implementation in a DGALS system

6.4 A complete DGALS system: dynamic Sieve

6.4.1 Dynamic sieve of Eratosthenes: prime number generation

Figure 6.4 illustrates a dynamic sieve of Eratosthenes (dynamic Sieve, or ‘Sieve’

for short), which illustrates the use of the DynamicGALS framework. Sieve is a

DGALS system, which consists of three DGALS programs to calculate all the naturally

occurring primes. Figure 6.4 shows only the calculation of primes up to six, because this

suffices to explain the major design concepts and paradigms. A more complex example

could have been chosen, but that would distract from presenting the features of the

DynamicGALS framework.

Chapter 6. Dynamic system design in DynamicGALS 177

Sieve consists of five CDs, ‘Generator’, ‘Shifter’, ‘Popper’, ‘Filter’, and ‘Printer’

running concurrently and asynchronously, each at their own speeds (logical ticks). In

Figure 6.4, Shifter consists of three synchronous reactions, ‘PrimeShifter’,

‘ActivatePopper’, and ‘ActivateFilter’, respectively. These reactions communicate with

each other using signals.

Figure 6.4: Dynamic sieve of Eratosthenes designed in the DynamicGALS framework

Sieve in Figure 6.4 is dynamic. At program startup, Generator and Printer are

running, waiting for an incoming ‘start’ signal, as shown in Figure 6.4 (a), which

determines the upper bound within which the primes need to be discovered. This bound

is 6 in this example. Generator, upon reception of the start signal produces the set of

natural numbers from 2 through to 6. This production is carried out using dynamic

recursion of Generator. Each instantiation of Generator produces a natural number and

adds it to the set ‘Numbers’, as (b). Next, Generator activates another instance of itself,

passing the set Numbers as an argument. This dynamic recursion continues until the

complete set of natural numbers smaller than the given upper bound is built. Generator

Chapter 6. Dynamic system design in DynamicGALS 178

then activates Shifter, which will now iteratively find the primes from within the

generated natural-number set, as shown in Figure 6.4 (c). Shifter itself instantiates two

new CDs, Popper and Filter, shown in Figure 6.4 (d). The first prime from the set (in

this case, 2) is sent to Filter and the rest are passed onto Popper. Popper communicates

with Filter by sending one number at a time through a dedicated channel. Filter extracts

any number which is not divisible by the current filtering prime (2, as mentioned). The

extracted set of numbers, containing 3 and 5, is passed to Shifter through another

channel as shown in Figure 6.4 (e). Shifter puts 3 into the list of primes, by shifting out

the first element of the set (contains 3 and 5) received from Filter previously. A new

pair of Popper and Filter is instantiated again, by Shifter again, for the next iteration

until the examining set in Shifter is ‘null’. Finally, all the discovered primes are set to

Printer, as illustrated in Figure 6.4 (f), which ‘pretty prints’ the discovered primes. Sieve

highlights a number of features of the DynamicGALS framework:

1. Reactivity and data fusion: first of all, the DynamicGALS framework

provides the explicit mechanism to capture signals coming in from the

environment (e.g., signal named ‘start’ in Figure 6.4). This attribute directly

satisfies support for data fusion capabilities. This concept of reactivity is

inspired by ESTEREL [Berry, 1993].

2. Hierarchical concurrency and safe message passing: The CDs, as

synchronous islands, allow an easy way to express tightly coupled

concurrent behaviors (called synchronous parallel reactions or just reactions

in this case). Reactions in different CDs communicate with each other over

point-to-point channels using CSP-style rendezvous [Hoare, 1978], thus the

blocking send and receive, which in turn guarantees data delivery.

3. Dynamic behaviors and Robustness: The DynamicGALS framework allows

the instantiation of new CDs at run-time (dynamic creation); it also allows

the destruction (termination) of CDs at run-time. The channels associated

with dynamic CDs are also created at run-time. The formal DGALS MoC

along with dynamic creation and destruction provide fault tolerance

capabilities. For example, an error in a certain part of a large design can be

Chapter 6. Dynamic system design in DynamicGALS 179

corrected and that portion restarted without affecting the rest of the running

system. New physical sensors and other units can be loaded at run-time.

4. Abstraction of execution platforms and topologies: It should be noted that

the programs developed using the DynamicGALS framework are detached

from the underlying physical execution layer. For example, Sieve in Figure

6.4 is designed without any concern for the underlying execution and

communication architecture. In fact, the same Sieve example can be

implemented on hosts of different heterogeneous execution and

communication platforms. This separation between design and physical

implementation provides an abstraction layer, which essentially speeds up

the development, because the underlying physical layer and the software

model can be developed in parallel. More importantly, a DGALS program is

immediately ready for execution on a single processor system, but the same

specification can run on different execution platforms without any change.

Also, the aforementioned separation increases fault tolerance and recovery

capabilities, as the designed model can be changed at run-time without

affecting the underlying physical implementation layer and vice-versa.

Other features, which further enhance the design capabilities of the DynamicGALS

programming framework such as weak code mobility, are not presented in Figure 6.4.

Such capability, closely related to the underlying physical architecture, is explained in

the next section.

6.4.2 Distributed dynamic Sieve

In this section the implementation of the dynamic Sieve model on a heterogeneous

and distributed physical execution and communication layer is presented. The purpose

of this description is to demonstrate the features of libDGALS on distributed

architectures.

Figure 6.5 is an abstract representation of the dynamic Sieve. There are three

physical machines as computation nodes, connected via network (LAN/WAN). A single

DGALS program runs on each of these three different machines.

Chapter 6. Dynamic system design in DynamicGALS 180

Figure 6.5: The distributed dynamic Sieve

As shown in Figure 6.5, clock domain ‘Startup’ activates Generator of the Sieve

example on ‘DGALS program 3’ executing on ‘machine 3’. Similarly, Printer is initially

activated on ‘DGALS program 2’ of ‘machine 2’ by Startup. Once the generation of the

natural number set is complete through recursive self-activation of Generators,

Generator activates Shifter on DGALS program 1 running on machine 1. Shifter then

instantiates Popper and Filter CDs within the same DGALS program.

Figure 6.5 shows the transfer of the CD plug-ins (Shifter, Popper, and Filter in this

case) along with their configurations, from DGALS program 3, to Listener of the

DGALS program 1, shown in the dotted box. Note that Generator and Printer plug-ins

need not to be sent from the DGALS program 1 as they are available on the destination

DGALS programs. Filter and Popper communicate with each other using channels on

the same computation node (machine 1) via Listener, to extract the primes. Once the

final set of primes is obtained, Shifter passes this set onto Printer to pretty print the set.

Chapter 6. Dynamic system design in DynamicGALS 181

The data sent through channel require serialization at the sending side (Shifter) and de-

serialization at the receiving side (Printer). In

Figure 6.5, the CDs in solid round rectangles represent the CDs instantiated at

program startup, i.e., they represent static CD invocations, while the dotted ones show

the CDs that are invoked at run-time. Similarly, channels created at startup and run-time

follow the same representation. Thus, Generator and Printer are instantiated at program

startup, while Shifter, Popper, and Filter are instantiated dynamically at run-time.

Finally, it should be noted that while the Printer is alive throughout the application

lifetime, the remaining CDs do not and they are terminated when they are not needed.

6.4.3 Implementation of the dynamic Sieve

A DGALS program can be described as shown in Listing 6.3. In practice, a DGALS

program consists of initialization of other codes, which will be used by the DGALS

program, e.g. device drivers. The createDGALSProgram and startDGALSProgram

(lines 4-5) are called to initialize the essential data structures for the program and

Listener, followed by the start of the program.

Listing 6.3: A simple DGALS program
1
2
3
4
5
6

#include "libDGALS.h" // required to use the libG ALS API
void main() {
 // initialization for non-D GALS program, e.g. driver
 createDGALSProgram(); // setup data structures an d Listener
 startDGALSProgram(); // start the DGALS program
}

In the DynamicGALS framework, a CD can be created dynamically only if it is

instantiated from a CD plug-in. The construction of a CD plug-in follows a bottom-up

strategy and consists of the following:

1. Reaction functions, from which reactions will be instantiated, describe the

functionalities of the reactions. One reaction function can be used to create

more than one reaction of the same clock domain.

2. Definition of the CD plug-in, which is composed of reactions, signals, and

channels. When a plug-in is activated, the corresponding elements are

instantiated in the DGALS program.

Chapter 6. Dynamic system design in DynamicGALS 182

3. Default CD configuration of the plug-in. Parameters of the configuration

include the names of the CD and used channels. These parameters are hard-

coded as the naming reference which will be overridden during plug-in

activation. Reaction and signal names are encapsulated by the CD as they

cannot be accessed by other CDs, and are thus not included in the default

configuration.

Listing 6.4 shows CD Startup, which initializes the Sieve example. In the reaction

function ‘StartupReaction’, Startup (lines 6-10) activates Generator and Printer.

Relationship of the ‘requester CD’ (the CD that activates the other CD, for example the

CD Startup) and the ‘responder’ CD (the CD to be activated, such as Generator and

Printer) are established when invoking the ‘activateCD’ (lines 8 and 9). The essential

information to activate a CD is given as follows:

1. The name of the destination DGALS program. A DGALS program name is

a combination of the machine (where the DGALS program executes) name

and the port bind to the Listener of the DGALS program. For example,

DGALS program 3 running on machine 3 is named as ‘machine3:12222’.

2. The name of the CD plug-in to activate. This is also the file name of the CD

plug-in. For example, plug-in Generator will be stored in Generator.so on

Unix-based systems.

3. The CD configuration used for the activation. CDs and channels are means

of describing asynchronous behaviors and communications in the DGALS

system. Names of CDs and channels are unique to differentiate them from

others. The configuration consists of name mappings of both CDs and

channels, from the hard-coded reference, to the assigned unique name.

4. The argument passed to the CD. More than one CD can be instantiated from

the same CD plug-in. Each instance of the CD might require different

information, depending on the nature of the computation performed by the

CD. Such information is passed as arguments to the activated CD. The

difference between configuration and argument to a CD is that configuration

Chapter 6. Dynamic system design in DynamicGALS 183

over-rides the existing hard-coded information, while arguments are created

on an as-required basis.

Thus, during execution of the activateCD calls, Generator and Printer are activated

in DGALS program 3 and DGALS program 2, respectively. A plug-in is defined within

the scope of the macro ‘CDPlugin’ (lines 13-19). ‘initPlugin’ is called to set up data

structures of the plug-in (line 14) followed by the creation of the CD (line 16), reaction

(line 17), and starting of the CD (line 18).

Listing 6.4: The StartupCD of dynamic Sieve
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

#include "libDGALS.h" // required to use the libDGA LS API
// input and output functions, to communicate with the environment
void IFC0(void) {......}
void OFC0(void) {......}
// the code for the startup reaction.
REACTION_FUNCTION(StartupReaction) {

 activateCD("machine3:12222", "Generator", 0, 0);
 activateCD("machine2:12222", "Printer", 0, 0);
 endReaction();
}
// definition of the Startup CD plug-in
CDPlugin {
 initPlugin(); //setup data structures and Listene r
 // elements of the plug-in
 clockdomain Startup = createClockDomain(IFC0, OFC 0, "cdStartup", 0, 0);
 createReaction(Startup, StartupReaction, 1, "rSta rtup", 0);
 startClockDomain(StartupCD);
}

Listing 6.5 describes the Generator CD plug-in, which is activated in Listing 6.4. It

follows the same design approach: to include the required header files (lines 1-3), in

which libDGALS API, user defined data structure, and constants are available. This is

followed by the definition of the reaction function ‘GeneratorReaction’ (lines 4-56).

Arguments passed to a reaction can be obtained by calling ‘getArgument’ (line 6). A

reaction function has a set of local variables (lines 8-10) for carrying out internal

algorithms, or to hold values from signals. The value of a signal can be obtained with

the use of ‘value’ (line 15).

Chapter 6. Dynamic system design in DynamicGALS 184

The number of arguments passed to a CD can be accessed with

‘getCDArgumentNum’ (line 11). A return value of zero indicates that no argument was

passed to the plug-in. Arguments passed to an activated CD can be obtained via

‘getCDArgument’. This takes the names of the arguments (e.g. Numbers or start) and

the corresponding types (IntegerSet or int) as shown in lines 22-23. Arguments sent to

CDs are constructed using ‘createCDArgument’ and ‘addCDArgument’ (lines 33-35

and 47-49).

Configurations provided to a CD, which are prepared through using

‘createCDConfiguration’ and ‘addCDConfiguration’ (lines 37 and 41 respectively), are

in the form of strings (lines 38-40). Both configurations and arguments are used when

issuing ‘activateCD’ (line 44 and 52).

Listing 6.5: The Generator of the dynamic Sieve
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include "libDGALS.h"
#include "IntegerList.h" // user defined typed used in Sieve
#include "Sieve.h" // define constants such a s DGALS program name SHIFTER_DP
REACTION_FUNCTION(GeneratorReaction){
 initReaction(); // i nitializing this reaction
 signal start = (signal)getArgument(1) // g et argument-to-reaction

 int start = 1; // d efault lower bound
 int MAX = 17; // d efault upper bound
 IntegerSet* Numbers = 0; // t he natural number set
 if(getCDArgumentNum() == 0) {
 // no argument is given to this plug-in instanc e,
 // therefore it is the first Generator
 await(start); // w ait for start signal
 start = value(start);
 start = start + 1; // a llocate first number to the set
 Numbers = (IntegerSet*)calloc(1, sizeof(Integer Set));
 Numbers->value = start;
 }
 else {
 // get arguments passed to this plug-in instanc e
 Numbers = getCDArgument("Numbers", IntegerSet);
 start = getCDArgument("start", int);
 start = start + 1; // extend the set with new numbers
 // working on the received arguments

 }
 // pass the set of complete natural numbers to th e Shifter
 if(start == MAX)
 {
 int id = 1;

Chapter 6. Dynamic system design in DynamicGALS 185

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 // create arguments passed to activate Shifter
 Argument* argsToShifter = createCDArguments();
 addCDArgument(argsToShifter, "Numbers", Integer Set, Numbers);
 addCDArgument(argsToShifter, "id", int, id);
 // create binding configuration for Shifter
 Configuration* cfgSft = createCDConfiguration() ;
 char* Sftrs = (char*)calloc(1, sizeof(char)*str len("Shifter;Shifter")+4);
 sprintf(Sftrs, "Shifter;Shifter%02d", id);
 addCDConfiguration(cfgSft,"clockdomain.name;clo ckdomain.rename",Sftrs);
 // other configurations

 // activate Shifter on DGALS program whose name is define in SHIFTER_DP
 activateCD(SHIFTER_DP, "Shifter", cfgSft, argsT oShifter);
 }
 else {
 Argument* argsToGenerator = createCDArgument();
 addCDArgument(argsToGenerator, "start", int, st art);
 addCDArgument(argsToGenerator, "Numbers", Integ erSet, Numbers);
 // configurations to name new instance of Gener ator

 activateCD(GENERATOR_DP, "Generator", cfgGen, a rgsToGenerator);
 }
 pause(); // f inish a logical tick
 endReaction(); // e nd of the reaction
}
CDPlugin {
 // similar to Listing 6.1 to create CD, reactions , signals, and channels

}

Listing 6.6 shows the partial implementation of Shifter and focuses on support for

reactivity and synchronous parallel reactions within a CD. These features can be

implemented using libGALS API, illustrating that libDGALS is compatible with

libGALS. A reaction is initialized via the ‘initReaction’ (line 4). A reaction can obtain

the arguments passed to it (line 5-9) by calling ‘getArgument’ It is followed by the end

of the initialization block of the reaction function, by calling ‘endInitReaction’ (line 11).

‘checkCDArgument’ is used to check the availability of an argument passed to this CD

on line 14. The corresponding argument can be extracted with the ‘getCDArgument’

function (line 15). Thus the value of ‘id’ is obtained from the plug-in argument and is

assigned to a valued signal (signal_id) by calling ‘emit’ (line 18), which in turn makes it

visible to all the synchronous parallel reactions (‘ActivateFilter’ and ‘ActivatePopper’,

which are instantiated from reaction functions ‘ActivateFilterReaction’ and

‘ActivatePopperReaction’) running within Shifter. Child reactions can be forked (line

Chapter 6. Dynamic system design in DynamicGALS 186

19) from the parent reaction, which will be blocked until all of its child reactions jointly

finish execution (line 20). A reaction can communicate with other reactions in a

different CD using ‘send’/’receive’ that operate on channels (lines 25 and 37). Child

reactions (e.g. ActivateFilter and ActivatePopper) are able to receive signals emitted

from the parent reaction (e.g. PrimeShifter) because both children and parent reactions

are in the same CD. The value of a signal can be obtained by calling ‘value’ (line 46).

Information such as the identification (names) of a channel, its sending CD, and its

receiving CD are predetermined (as part of the default configuration of the plug-in, as

lines 58-59) and can be re-assigned through configurations when activating the plug-in.

Listing 6.6: Shifter of the dynamic Sieve
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// SHIFTER_DP, POPPER_DP, FITER_DP, and PRINTER_DP are string constants
// representing the names (addresses with bind port s) of DGALS programs
REACTION_FUNCTION(PrimeShifterReaction) {
 initReaction();
 channel cFilterToShifter = (channel)getArgument(1);
 channel cShifterToPrinter = (channel)getArgument(2);
 reaction rActivatePopper = (reaction)getArgument(3);
 reaction rActivateFilter = (reaction)getArgument(4);
 signal signal_id = (signal)getArgument(5);

 endInitReaction();

 int id = 0;
 if(checkCDArgument("id") == 1)
 id = getCDArgument("id", int);
 // processing numbers to be used by Popper and Fi lter

 emit(signal_id,id);

 // fork 2 child reactions wait them for completio n
 fork(rActivatePopper); fork(rActivateFilter);
 join(rActivatePopper); join(rActivateFilter);
 // receive from Filter via a channel
 IntegerSet* listOfNonDivisibles = 0;
 receive(cFilterToShifter, listOfNonDivisibles, In tegerSet);
 // add the values from the received to gens
 if(listOfNonDivisibles != 0) {
 // re-iterate the process by activating another instance Shifter until
 // the complete set of primes is found (no non- divisibles left to process)
 Argument* argsToShifter = createCDArgument();
 addCDArgument(argsToShifter, "Numbers", Integer Set, listOfNonDivisibles);

 activateCD(SHIFTER_DP, "Shifter", configShifter , argsToShifter);
 }
 else {

Chapter 6. Dynamic system design in DynamicGALS 187

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

 // send the final set of primes to Printer
 send(cShifterToPrinter, Prime, IntegerSet);
 }
 endReaction();
}
REACTION_FUNCTION(ActivateFilterReaction) {
 initReaction();
 signal signal_id = (signal)getArgument(1);

 endInitReaction();
 int id = value(signal_id);

 // activating Filter with configurations and argu ments
 activateCD(FILTER_DP, "Filter", configFilter, arg sToFilter);
 endReaction();
}
// reaction function to activate Popper
REACTION_FUNCTION(ActivatePopperReaction) { ... }
CDPlugin { // definition of the CD plug-in
 // similar to Generator

 // create channel to transfer non-divisibles of c urrent iteration
 channel cFilterToShifter = createChannel(
 SHIFTER_DP"Filter", PRINTER_DP"Shifter", "cFi lterToShifter");
 // other channels or so
}

6.4.4 Configurations of a DGALS program

When a CD is activated, it has to be accompanied by the ‘CD configuration’, which

can be either ‘remote configurations’ or ‘local configurations’. The remote

configurations are these used to activate CDs which are specified at run-time with

‘activateCD’ calls. Local configurations, on the other hand, are created statically to

activate CDs at the DGALS programs start up. As mentioned in Section 6.3.5, each

DGALS program is equipped with a dedicated set of ‘program configurations’ which

specify parameters such as the port (number) used by Listener. Local configurations of

CDs are considered as part of the DGALS program configurations. Configurations of

each DGALS program are loaded when the DGALS program starts, and are stored in

the XML format.

Listing 6.7 shows an XML configuration of DGALS program 1 on machine 1

shown in Figure 6.5. Each key-value pair represents settings for the specified

compartment, or a scope of a component. The <port> (line 1) indicates the port number

Chapter 6. Dynamic system design in DynamicGALS 188

on which the Listener of this DGALS program will listen. The <timeout> node (line 2)

is used as the time-out value for Listener when participating in channel communication,

and plug-in activations as explained in detail in Section 6.5. The configuration of a

statically loaded CD starts with <plugin> (line 3), along with the name of the plug-in

(Startup, which is the name of the plug-in) to load. Each plug-in consists of one CD and

one or more channels. The CDs and channels are visible system-wide, and each one

needs to have a unique name. A name re-mapping of a CD from the referenced name

(given as cdStartup in the ‘createClockDomain’ of Listing 6.4) to a globally system-

wide unique name is provided, starting with <clockdomain> (line 4). The original CD

name (cdStartup) within a plug-in is identified through the <name> and </name> pair

(line 5). The re-mapped name is then provided (Startup) and wrapped between

<rename> and </rename> (line 6). The name re-mapping of a CD, which is ended with

</clockdomain>, is followed by </plugin> as the end of the CD configuration, on lines

7 and 8 respectively. A program configuration can have more than one plug-in section.

Listing 6.7: The XML configuration of the DGALS program 1
1
2
3
4
5
6
7
8

<port>12222</port>
<timeout>3</timeout>
<plugin>Startup
 <clockdomain>
 <name>cdStartup</name>
 <rename>Startup</rename>
 </clockdomain>
</plugin>

To show that CDs can be loaded statically at the beginning of the DGALS program

in the Dynamic Sieve, CD Startup is removed from dynamic Sieve, shown in Figure 6.5,

and the resulting dynamic Sieve in shown in Figure 6.6. In this case, both Generator and

Printer will be required to be activated through the use of DGALS program

configurations. In Figure 6.6, Printer is loaded on DGALS program 2 of machine 2, and

a channel (named cShifterToPrinter, hard-coded as default configuration in Printer) is

used to receive the resulting primes from Shifter. Thus, the DGALS program

configurations, shown in Listing 6.8, detail the activation of Printer and the required

name mappings of the channel used.

Chapter 6. Dynamic system design in DynamicGALS 189

Figure 6.6: The distributed dynamic Sieve without CD Startup

Listing 6.8 follows the conventions of Figure 6.6. Similarly, name re-mappings of

the channels are given between the <channel> and </channel> tags. The name of the

channel (from the ‘createChannel’) in the plug-in is given and is followed by the re-

mapped name of the channel. Since the sending and receiving parties of a channel are

CDs, it is required to provide the correct CD names to link with the channel.

<sender></sender> and <receiver></receiver> pairs are dedicated for this requirement.

A CD name is in the format of ‘Machine:Port:CDName’, or just ‘CDNmae’ if running

locally. For instance, ‘Machine1:12222:Shifter’ indicates that Shifter will be running

within the DGALS program which binds port 12222 on Machine 1, whereas Printer01

will be executed locally. The order of the re-mappings for the CD and channels is not

important as long as they are all listed.

Listing 6.8: The XML configuration of the DGALS program 2

1
2
3

<port>12222</port>
<timeout>3</timeout>
<plugin>Printer

Chapter 6. Dynamic system design in DynamicGALS 190

4
5
6
7
8
9
10
11
12
13
14

 <clockdomain>
 <name>Printer</name>
 <rename>Printer01</rename>
 </clockdomain>
 <channel>
 <name>cShifterToPrinter</name>
 <rename>ShifterToPrinter01</rename>
 <sender>Machine1:12222:Shifter</sender>
 <receiver>Printer01</receiver>
 </channel>
</plugin>

6.5 The DynamicGALS framework implementation

The libDGALS in the DynamicGALS framework extends the libGALS detailed in

Chapter 4. Figure 6.7 presents a high-level view of the library and run-time system

provided by the DynamicGALS framework. DGALS programs are positioned within its

run-time environment and communicate with other DGALS programs, locally or over

the network. Listener is invisible to the programmer and supports dynamic

creation/destruction of CDs, channel-based communication, and CD mobility within a

DGALS program. Synchronizer is responsible for lockstep execution of reactions within

a CD. Currently, all the concurrent entities, which include Listeners, Synchronizers, and

reactions in Figure 6.7, are mapped to POSIX threads.

Figure 6.7: The programmers' perspective of the DynamicGALS framework

Chapter 6. Dynamic system design in DynamicGALS 191

6.5.1 Data structures used by DGALS programs

Each DGALS program and each activated CD operate over a special data structure

called ‘Run-time information’, which is used to book-keep the status of the program and

consists of two parts, ‘ProgramData’ and ‘PluginInstance’. ProgramData contains the

global view of the DGALS program, such as the unique program name and the names

assigned to the activated CDs.

PluginInstance keeps a unique record of each activated CD instantiated from a CD

plug-in. Each PluginInstance is assigned to a CD instance, and thus the CD plug-in

allows multiple CDs instantiated from the same CD plug-in, which in turn enables code

re-use at a coarser level of granularity. The data structures are complex and a complete

explanation of each part is beyond the scope of this thesis. To achieve efficient

implementation, instead of using interprocess communication (IPC) to operate on Run-

time information, reactions, Synchronizers, and Listener are implemented as threads to

share the Run-time information.

6.5.2 Reactions and Synchronizers

Reactions and Synchronizers are implemented in libGALS and their use is extended

to libDGALS. A reaction is implemented as a thread whose execution body is defined

by a reaction function. Multiple reactions can be spawned from the same reaction

function to achieve code re-use at a finer granularity. Synchronizer is a special thread

that manages reactions within a CD. Synchronizers are programmer invisible and are

created at run-time by libDGALS when corresponding CDs are activated.

6.5.3 Listener

Listener is a special and dedicated thread created for each DGALS program, in

charge of channel communication, CD activation, and CD termination. Listeners also

communicate with those of other DGALS programs to achieve these functionalities.

Communication between Listeners is accomplished in two phases: first, handshaking to

establish the link, then the transference of actual information. Both are carried out by

Chapter 6. Dynamic system design in DynamicGALS 192

sending and receiving messages from one Listener to the other. Handshaking is via

TCP/IP and transferring of information can be based on shared memory or TCP/IP

depending on the topology of DGALS programs as described in Section 6.3.5.

Messages contain ‘headers’ that include the source and destination of the DGALS

programs, added by Listeners; Listeners can thus identify the underlying DGALS

program as the sender or receiver of the messages by checking the headers. If a message

is sent and received via the same Listener, this effectively implements a loopback so

that shared memory is used to shorten the time of delivering messages. In this way, the

programmer does not need to worry how the messages are sent and received. This, in

turn, satisfies the requirement of ‘location transparency’. Current implementation

divides messages operated upon by Listener into two groups: (1) those that represent

channel communication and (2) those that represent plug-in activation/CD termination,

respectively. Types of messages are also embedded in the headers of the messages.

Listener spawns its own child threads to decode messages for each incoming connection

to the DGALS program.

6.5.4 Scheduling of reactions, Synchronizers, and Listener

The scheduling of reactions is handled by the host operating system (OS) scheduler,

which works closely with the Synchronizer. If a reaction is blocked due to a libDGALS

API call, control is transferred to another reaction that is ready for execution. The

interleaving of reaction execution and transfer of the processor control from one

reaction to another is governed by the OS scheduler. However, a reaction cannot be

scheduled to be executed unless it has the permission of its CD Synchronizer, which

enforces lock-step execution of reactions, and hence the synchronous MoC within CDs.

Scheduling strategies of different OSs only affect the execution sequence of reactions

that do not have mutual signal dependencies. A reaction can run in parallel with

reactions in the same CD, given that these are not blocked due to signal dependencies

and if the execution platform allows it (e.g. on a multicore platform). Listener along its

child threads, are scheduled by the OS in the same fashion as the asynchronous

execution and activation of the CDs.

Chapter 6. Dynamic system design in DynamicGALS 193

DGALS programs are multithreaded, the threads being implemented by using

POSIX threads, i.e. pthread library [Nichols et al., 1996]. In DGALS programs, several

kinds of threads are created as shown in Figure 6.7: (1) the main program thread, which

in turn becomes the DGALS program, (2) reaction threads, (3) Synchronizer threads, (4)

Listener thread, and (5) message-decoding threads for channel communications and CD

activations/terminations.

Each reaction maps onto a single reaction thread. For example, if there are three

reactions in a clock domain, three reaction threads will be created. One Synchronizer

thread will be created for each CD. The Listener thread, one for each DGALS program,

waits for incoming messages and spawns child threads to decode the messages sent to

the Listeners. Reaction threads are terminated when a CD is terminated. The child

threads of Listener threads terminate when messages are decoded and actions are

performed. Listener thread terminates only when the DGALS program terminates.

Choosing between user-level or kernel-level threading libraries is application

dependent. Since kernel-level threading maps each thread to processes of the OS,

executions of these threads can benefit from the multicore architecture. This is suitable

for parallelizing data computation in the reactions of either the same or different CDs.

However, DGALS programs using kernel-level threading might suffer from

performance drawback because of context switching at the kernel level, for systems

with a minimal number of data computations. Using a user-level threading library can

be seen as the remedy. However, such a DGALS program will not benefit from the

multicore platform.

6.5.5 CD activation and termination

CD activations are governed by Listeners who start a handshaking prior to the

instantiation of a CD plug-in. The CD activation is carried out between two CDs, which

are called the ‘requester’ and the ‘responder’. The requester CD requires from another

CD, the responder, to be activated by Listeners via ‘activeCD’. When one requester and

the responder belong to the same DGALS program, it is equivalent to spawning a new

plug-in instance locally. Listener handles the incoming messages used for the CD

activation and changes the state of ‘PluginInstance’. A state variable in PluginInstance

Chapter 6. Dynamic system design in DynamicGALS 194

indicates the current state of the CD activation. Figure 6.8 shows the finite state

machine (FSM) of the requester. To simplify the data structure, state naming is shared

between the requester and the responder. This is illustrated in Figure 6.9, the FSM of the

responder. However, requester and responder work on different copies of

PluginInstance. The PluginInstance at the responder side is registered and permanent,

while that at the requester side will be eliminated once the plug-in is activated.

S0 - Initialize data

structure to activate

CD

S1 - Check if the CD

plug-in file is

available on

destination

S2 - Send

configurations and

arguments only

S3 - Send

configuration,

arguments, and the

CD plug-in file

S4 - Receive

acknowledgement

of CD activation

Timer expired

ActivateCD is called

Timer expired

Data structure

created

Timer

expired

Plug-in

file not

available

Plug-in file

available

Activation

success

S5 - Return false as

the indication of

failing to activate

the CD

Activation

failed

Activation

failed

Figure 6.8: FSM of the requester

The activation of a CD requires configurations of the activated CD. This

configuration contains information such as the activated CD’s mapped name which is

checked for any duplication by Listener. The requester will be notified if there is a

naming conflict or the responder fails to be activated; for example if the existing name

Chapter 6. Dynamic system design in DynamicGALS 195

of a channel has been given to a new instance. CD termination can be requested by any

CD by calling the terminateCD. CD termination follows the same state-based approach

as CD activation.

Figure 6.9: FSM of the responder

6.5.6 Channel communication and rendezvous in libDGALS

The libDGALS in the DynamicGALS framework inherits the point-to-point,

rendezvous-based communication mechanism from libGALS, which is semantically

identical to one used in SystemJ [Malik et. al, 2010]. Communication in channels is

similar in functionality to the CD activation mechanism described in Section 6.5.5, that

Chapter 6. Dynamic system design in DynamicGALS 196

is, based on handshaking and message passing. Data sent over channels are stored in

different copies by means of deep copying. As mentioned in Section 6.3.5, two

implementations are available: TCP/IP and shared-memory based.

In the TCP/IP implementation, data are serialized through the use of a serialization

function (used by the ‘send’ API call), provided by the designer, for each data type. The

serialized data are sent through TCP/IP as payloads along with headers inserted by

Listeners, and are received by Listener at the DGALS program where the receiver CD

resides. The ‘receive’ API call utilizes the de-serialization function and restores the data.

On the other hand, in the shared-memory implementation, send API call serialized and

de-serialize functions create a deep copy of data-to-send in the heap. A pointer to the

copied data is used directly by the receive API call. No data transfer over the network

stack is required in this case to reduce the workload of Listener effectively.

6.5.7 DGALS system over distributed systems

Different virtual topologies of CDs (not necessarily representing the underlying

physical architecture) can be established by the designer allowing them to logically

arrange the DGALS programs into DGALS systems based on convenience and practical

requirements. Benchmarks in Section 6.6 present examples of partitioning strategies for

DGALS systems into a number of DGALS programs running on different physical

machines, effectively building virtual topologies. In general, design-space exploration is

required to construct the most efficient topologies and partitioning of CDs.

6.6 Experimental results

A number of experiments with different examples and physical execution-platform

setups to gauge the effectiveness of the DynamicGALS framework approach have been

carried out. The benchmark set is shown in Table 6.3.

Table 6.3 shows the name of the application, followed by the name of the CD plug-

ins used in the application. This is followed by the number of instances of those plug-ins

created. The numbers of channels and reactions in each plug-in are also provided. The

code size is given for each plug-in and the complete DGALS system. The Send-Receive

Chapter 6. Dynamic system design in DynamicGALS 197

example acts as a micro-benchmark, which gauges the efficiency of the fundamental CD

instantiation and channel communication mechanism. The Sieve, which has been used

as a running example throughout this chapter, has been coded in two different versions.

The dynamic version is as shown in Figure 6.6, while the static version is created from

the dynamic version after finding the overall number of CDs and channels instantiated

in the lifetime of the dynamic version and instantiating all as static.

Table 6.3: Benchmarks selected for experimentation

Applications CD plug-ins
Number of

Instances

Number of

channels

Number of

reactions

Code Size (KB)

Plug-ins total Size

Send Receive

141K

 SendCD 1 1 1 8.8K

 ReceiveCD 1 1 1 9.2K

Sieve (prime < 17) static version

150K (Main program and plug-ins altogether)

 Generator 16 2 1

 Shifter 7 6 3

 Popper 7 2 1

 Filter 7 3 1

 Printer 1 1 1

Sieve (prime < 17) dynamic version

188.3K

 Generator 16 0 1 13K

 Shifter 7 2 3 21K

 Popper 7 1 1 9.7K

 Filter 7 2 1 12K

 Printer 1 1 1 9.6K

*The size of libDGALS is 123K

The same examples have subsequently been implemented on a heterogeneous mix

of underlying physical execution and communication architectures. Table 6.4 shows the

different physical implementations used, twelve groups in total. For groups E, F, K, and

L two sub-groups are created: machines are distributed on WAN (Internet) and LAN

(Intranet). All experimental runs were performed on Intel Core 2 Duo 2.6GHz with 8GB

of RAM computation node with Linux 2.6.29.6 as the host OS. 10,000 runs were carried

out for each experimental group. Average, median, mode, standard deviation, maximum,

Chapter 6. Dynamic system design in DynamicGALS 198

and minimum execution times are logged. Average tick count and average tick length of

each clock domain are also recorded.

Table 6.4: Varying physical implementation architectures

Experiment

group

Clock

domain

creation

Clock domains

created in single or

multiple DGALS

programs

DGALS programs

executed on same

or different

machines

Effective channel

implementation

A Dynamic Single Same TCP/IP*

B Dynamic Single Same Shared memory

C Dynamic Multiple Same TCP/IP

D Dynamic Multiple Same TCP/IP

E Dynamic Multiple Different TCP/IP

F Dynamic Multiple Different TCP/IP

G Static Single Same TCP/IP*

H Static Single Same Shared memory

I Static Multiple Same TCP/IP

J Static Multiple Same TCP/IP

K Static Multiple Different TCP/IP

L Static Multiple Different TCP/IP

*Shared memory is disabled for experiment purpose

6.6.1 The Send-Receive example discussion

Figure 6.10 illustrates the average execution times of groups for the Send-Receive

example. The execution time is measured as the time to complete the required

computation. The experiments demonstrate the following:

1. The shared-memory based channels perform better than the TCP/IP based

counterparts by comparing B to A and H to G, respectively.

2. The static versions of Send-Receive (groups G to L) perform better than the

dynamic versions (groups A to F). This could be because dynamic creation

introduces overhead, such as handshaking and decoding messages to

activate CD.

3. In groups with use of TCP/IP based channels, the execution times are bound

by the communication method (underlying network). This applies to both

static and dynamic CD creation. For instance, the WAN (Internet) versions

of groups E and F are around 16 to 17 times slower than their LAN (Intranet)

Chapter 6. Dynamic system design in DynamicGALS 199

counterparts. Similarly, WAN versions of groups K and L perform around

10 times slower than their LAN versions.

4. From groups D, J, F, and L, it can be concluded that when a system is

distributed, i.e., implemented as multiple DGALS programs, shared

memory is not used in the channel communication.

5. When a DGALS system consists of multiple DGALS programs on the same

machine, TCP/IP channels are used. The execution times of such systems

(groups C and I) are close to a DGALS system implemented as multiple

programs executing on different machines over Intranet (LAN versions of E,

F, K, and L). This shows that the overhead of TCP/IP communication plays

a significant role and makes a significant contribution to the execution time.

0

100

200

300

400

500

600

Execution time (ms)

Figure 6.10: Average execution times for Send-Receive example

6.6.2 Discussions of the Sieve example

Average execution times of groups for the Sieve example are illustrated in Figure

6.11. The experiments demonstrate the following:

Chapter 6. Dynamic system design in DynamicGALS 200

1. Shared-memory channels perform faster, as in the Send-Receive case. 3 to 7

times performance gain is achieved in Sieve compared to 1.33 to 1.76 times

of gain in Send-Receive. The difference between Send-Receive and Sieve

comes from the fact that the time taken in channel communication in Sieve

takes a greater proportion of the overall execution time.

2. The static versions of Sieve perform worse than the dynamic version. It was

observed that the execution of the static versions utilize the processor (from

processor-usage monitors) much more than the dynamic versions. It was

also observed that the ‘system time’ of static versions takes a greater

proportion of the execution time than the dynamic ones. This is because

only the necessary CDs are active in dynamic sieves. However, in the static

version, all 38 CDs are active all the time, consuming significant processor

resources, especially with the huge number of very short ticks which occur

during channel communication handshaking. This creates a large number of

polling-type loops immediately, one after another, resulting in performance

degradation. A proposed solution is provided, which adds a short time delay

at the end of each tick boundary, explained in detail later.

3. The bottleneck for dynamic Sieve in terms of execution times is due to the

communication medium. Sieve using LAN (group C) is around 2.5 times

faster than the WAN (group E) version. However, the static Sieve, even

when implemented over a LAN (group G) connection, does not greatly

outperform the WAN-based dynamic Sieve, thus indicating that the

performance bottleneck is due to the nature of static CDs, as discussed

previously.

As mentioned earlier, when sending and receiving CDs wait for rendezvous over a

channel communication, both CDs still carry out logical ticks. Many short ticks will

occur in both sending and receiving CDs, in a scenario that both CDs have only one

reaction, and are trying to obtain channel rendezvous. This involves continuous

Chapter 6. Dynamic system design in DynamicGALS 201

checking of the status of the channel as illustrated in Figure 6.12 (a). The overall

significance of long ticks decreases due to the huge number of short ticks, hence the

reduction of average tick times to unrealistic figures in general.

0

2

4

6

8

10

12

A B C D E(WAN) F(WAN) G H I J K(WAN) L(WAN)

Execution time (s)

Figure 6.11: Average execution times for Sieve examples

It is possible for short ticks to create polling-like activities similar to a looped

behavior with only one pause statement, as illustrated in Figure 6.12 (b). The general

solutions to relieving such polling-like executions, which have been also tested, are:

1. Use signaling such as interrupts and semaphores: Insert semaphore at the

beginning of the input function for each CD, and signal the semaphores

from the other thread/interrupt. When the channel is ready, Listener, which

governs channel communication, can signal the waiting semaphore in order

to continue execution. However, this results in violation of the semantics of

ticks, because waiting on a semaphore is a blocking operation that blocks all

other synchronous reactions in the same CD, which in turn prevents CDs

continuing to carry out any ticks during channel communication. This

results in the violation of the GALS semantics (and hence DGALS

Chapter 6. Dynamic system design in DynamicGALS 202

semantics) in which other reactions should be able to proceed when one

reaction is waiting for rendezvous.

2. Add time-delay to the loop so that the loop does not iterate as frequently:

This approach preserves the semantics but elongates the tick length (hence

the overall execution time) by adding a short time-delay to each tick. The

choice of time-delay is important and must be additionally investigated.

Choosing a time-delay which is too short will introduce unnecessary

overheads due to frequent context switching.

Figure 6.12: A very short tick in a while-loop will form a polling-like loop

A one microsecond time-delay in these experiments (this is completely heuristic

and, obviously, application dependent) has been chosen. This way, for very short ticks

the processor utilization was lowered by 17%. For longer ticks, the delay is only a

fraction of the actual computational time and it does not introduce big overheads in

timing. The time-delay is added at the beginning of the input function of each clock

domain, which is called at each logical tick. Figure 6.13 shows the average execution

time for Sieve examples with time-delayed ticks. A performance gain of 9.42 to 46.72

times compared to the non-delayed versions of the Sieves is achieved. For WAN-based

groups, performance improves by 1.24 to 1.95 times. CPU utilization is lowered from

90% (the original Sieve implementation) to around 15%, which indicates that a great

part of the execution time was due to the short polling-like ticks. System times also

decrease drastically. The actual tick lengths are no longer hidden behind the

overwhelming number of short ticks. In this case, the average tick duration is not

Chapter 6. Dynamic system design in DynamicGALS 203

reduced by the meaningless short ticks and hence are close to the realistic and actual

execution times of clock domains.

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

Execution time (s)

Figure 6.13: Average execution times of Sieves with inserting time-delays in ticks

0.000

0.050

0.100

0.150

0.200

0.250

0.300

A B C D E (LAN) F (LAN) G H I J K (LAN) L (LAN)

Execution time (s)

Sieve

Send-Receive

Figure 6.14: Average execution times with time-delayed ticks (without WAN groups)

Chapter 6. Dynamic system design in DynamicGALS 204

Figure 6.14 illustrates the execution times of Send-Receive and Sieve shown

together for comparison purposes. The WAN-based groups are not included because

they have much larger execution times than the other groups because of the slower

communication layer and they thus contribute little to the discussion.

In the observations, execution times from Sieve match experimental results of

Send-Receive with the following findings:

1. Channels perform better when using shared memory than TCP/IP due to

communication overheads with the latter.

2. The dynamic versions outperform static versions when computation (as

opposed to communication) forms a significant part of the overall

application.

3. Communication medium limits the execution speeds. LAN-based groups

have better results than WAN-based.

4. Channels connecting different DGALS programs do not benefit from shared

memory regardless of the fact that those programs run on the same

computer.

5. From C and I groups, it can be concluded that even though Dynamic GALS

programs are located on the same machine, the execution bottleneck

remains because of the use of TCP/IP connections.

Experiments show that two features of libDGALS contribute to the improvement of

execution times by having: (1) channels implemented with shared memory, and (2)

addition of time delay at each tick boundary in order to lower processor utilization. Note

that it would also be possible to employ other more efficient communication

mechanisms that rely on specific architectural solutions to improve performance of

channels, which is a topic of the future work. The static version of Sieve has a smaller

memory footprint (150K vs 188.3K) compared to the dynamic version, but does not

have the mobility of clock domains, and has a slower overall execution time.

Chapter 6. Dynamic system design in DynamicGALS 205

6.6.3 Comparison with other languages and systems

A number of experiments were carried out with different examples and physical

execution architecture setups to gauge the effectiveness of our libDGALS approach.

Experiments were performed on Linux kernel 2.6.33.3 running on Intel Core 2 Duo

2.6GHz with 4GB RAM. In the distributed scenario, workstations of the same

specifications are used. These machines have a slightly better specification than those

used for comparison with JADE and DSystemJ reported in [Malik et al., 2010]. The

benchmark set is shown in Table 6.5, which also shows the number of lines of source

code for each application, together with the memory footprint (generated by the

application and one that includes the size of the library). Lines of source code

demonstrate the effort required to describe GALS systems and their maintainability. The

source code size of DGALS programs is comparable to JADE. With regard to DSystemJ,

which is a language-based DGALS approach, the difference varies from 7% for Send-

Receive to 92% for Sieve (first 3 columns of Table 6.5). It is worth noting that the

structure of each CD plug-in, such as the CDs, channels, signals, and reactions, require

explicit definition as compared to DSystemJ, which is a language-based GALS

approach, where system structures are abstracted away, hence the smaller source code

sizes.

The memory footprint of DGALS programs is comparable to DSystemJ and JADE

(3 middle columns of Table 6.5). Because the DGALS library is compact, in contrast to

SystemJ and JADE libraries, its programs result in the smallest total memory footprints

amongst the three approaches (3 final columns of Table 6.5). Since this approach does

not require the JVM, the real memory footprint for DGALS programs is much lower.

Table 6.6 and Table 6.7 present the execution times for three approaches: DSystemJ,

JADE, and DGALS. Average tick times are obtained through dividing total execution

time by the number of the ticks required to complete the required computations. It is

obvious that DGALS programs outperform the functional equivalent models described

in DSystemJ and JADE. For the most complex system (security surveillance), the

DGALS programs are on average 490 times faster than DSystemJ and 5770 times faster

than JADE. Since inter-program CD communication is based on TCP, the

Chapter 6. Dynamic system design in DynamicGALS 206

communicating DGALS programs on the same machine have similar performance to

DGALS programs distributed on LAN.

DGALS programs' smaller memory footprint and much faster execution times

through the support of libDGALS makes the DynamicGALS framework more suitable

for designing cyber-physical systems compared to both DSystemJ and JADE.

Table 6.5: Lines of code and memory footprint comparisons

Example
Lines of source code

Generated memory footprint
(KB)

Total memory footprint (generated
+ library) (KB)

DSystemJ JADE libDGALS DSystemJ JADE libDGALS DSystemJ JADE libDGALS
Sieve 163 267 313 99 12 65 216 2623 188

Surveillance
system

125 238 216 158 14.5 33.5 265 2625.3 181

Send
Receive

39 118 42 38 5.6 18 145 2616.6 141

Table 6.6: Execution time comparisons (Single machine with 2 cores)

Examples
Run-time (ms/tick)

DSystemJ JADE libDGALS
Send-

Receive
CD1 CD2 CD1 CD2 CD1 CD2

5 5.57 74.7 185.9 0.009 0.008

Sieve
CD1 CD2 CD3 CD4 CD5 CD1 CD2 CD3 CD4 CD5 CD1 CD2 CD3 CD4
0.1 17 16.7 23.4 17 1 340 361.8 322.4 514 0.25 0.33 1.31 0.74

Table 6.7: Execution time comparisons (Distributed system 2 machines 4 cores each)

Example
Run-time (ms/tick)

DSystemJ JADE libDGALS
Send

Receive
CD1 CD2 CD1 CD2 CD1 CD2
20.7 22.2 86.88 470 0.009 0.01

Surveillance
system

CD1 CD2 CD3 CD4 CD1 CD2 CD3 CD4 CD1 CD2 CD3 CD4
202.7 191.4 125.1 133.7 3243.4 1498.1 1320.6 1603 0.418 0.457 0.253 0.217

6.7 Summary

This chapter describes the DynamicGALS framework designed to support

programming of dynamic systems based on the formal Globally Asynchronous Locally

Synchronous (GALS) Model of Computation (MoC). The DynamicGALS framework

enables programmers to describe simple to large scale DGALS systems by using CD

plug-ins. Dynamic creation of CDs and channels in the CD plug-in instances, along with

‘weak’ CD mobility, are provided in an API to strengthen the design capability, thereby

making the DynamicGALS framework suitable for implementing a wide range of

Chapter 6. Dynamic system design in DynamicGALS 207

dynamic distributed systems. The framework also provides an abstract means of

programming reactivity and composition of synchronous concurrent processes using

behavioral hierarchy. The approach separates the design and modeling of the system

from the underlying physical execution and communication layer. This allows changing

model and physical layers independently without affecting each other. The

DynamicGALS framework allows the utilizing of a mixture of different execution and

communication architectures with ease and efficiency. Being based on C, it allows easy

integration of legacy code. Future work includes graphical tools for describing DGALS

programs and systems to reduce design effort, as well as building tools for automated

mapping of CDs and DGALS programs to heterogeneous architectures that will enable

creation of virtual topologies.

Chapter 6. Dynamic system design in DynamicGALS 208

7777
7. 7. 7. 7. Conclusions and future workConclusions and future workConclusions and future workConclusions and future work

With increasing complexity in system design, adopting a higher level of abstraction

and applying design with formal models of computation reduces design effort and

ensures the correctness of the design. Several approaches that enhance system design

have been proposed and developed and are detailed in Chapter 2. Chapters 3 to 6 detail

the development of a library-based approach to support both GALS and DGALS MoC

system design from programming language C, which is still a major language in

embedded systems design. In this chapter, a summary of the work presented in this

thesis, as well as its conclusions, is given, along with plans for possible future works.

7.1 Conclusions

Discussions of system level-design are detailed in Chapter 3. System-level design,

which can be categorized into system-level synthesis, component-based design, and

platform-based design, are performed according to the available resources and

knowledge of the target platform. The design that can be further divided into stages

Chapter 7. Conclusions and future works 210

consists of the specification model, the functional model, component-emergence model,

bus-architecture model, behavior model, bus-functional model, cycle-accurate model,

and implementation model. Software and hardware partitioning are realized throughout

the refinements. Operating systems, used to manage software concurrency, serve as the

bridge between software and hardware of the systems, and play an important role in the

design of systems that include software-implemented functionalities. The modeling of

operating systems is of interest in order to achieve a model of the whole software of the

designed system and can be carried out in different granularities of accuracy. In Chapter

3, an OS model has been developed in SYSTEMC. The model provides a number of

services which can be used by application processes. Signal-operation services, which

are described as part of the core services in the OS model, are used to support reactive

behaviors which can be specified in synchronous/reactive language such as ESTEREL.

Case studies have been implemented to justify the necessities of having signal-operation

services for implementing reactive systems with conventional OS services. The

implementation of signal-operation services can be built-in as part of a kernel or as a

user-level library. The concept of signal-operation services is further extended and

developed resulting in a library-based approach, libGALS, detailed in Chapter 4.

libGALS provides a more powerful mechanism and allows both synchronous and

asynchronous concurrency to be incorporated as a single, correct libGALS program,

that complies with the globally asynchronous locally synchronous (GALS) MoC.

Within a libGALS program, the overall behaviors of system are first divided into groups

of asynchronous clock domains. Finer grain concurrency in each clock domain is

implemented in the form of synchronous reactions, which within the same clock

domains, are executed in logical time steps called ticks, being the same as systems

described in synchronous languages. Synchronous reactions of the same clock domain

communicate with each other through signal broadcasting. On the other hand, reactions

of different clock domains send and receive information to and from each other through

the use of channels which in libGALS programs follow the semantics of CSP

rendezvous. libGALS is implemented based on primitive services provided by the

operating systems, such as thread creations and semaphores. Each synchronous reaction

Chapter 7. Conclusions and future works 211

is mapped to a thread of the libGALS program, and is governed by the programmer

invisible thread: Synchronizer. Each clock domain is equipped with one Synchronizer

which uses semaphores, provided by the OS to resolve dependencies between reactions,

as locks. Because of the thread-based approach, libGALS can benefit from the

multicore/multiprocessor architecture. The libGALS approach is the first known library-

based approach that supports programming GALS systems. SystemJ, a language-based

approach, is compared with libGALS in Chapter 4.

libGALS enables designers to construct correct-by-design software programs given

that the software is described correctly with regard to the specification. Behavior of

programs can be also seen as behaviors of the underlying processor(s) in the system

model. To present a system model with correct programs, a framework for integrating

libGALS programs into the SYSTEMC modeling environment, called GALS-Designer,

has been developed, as detailed in Chapter 5. libGALS programs are wrapped to

SYSTEMC modules through the use of macros and static functions in C++. Because

libGALS makes use of the multicore/multiprocessor of the simulation host, the

simulation speed of libGALS-SYSTEMC modules is greatly enhanced. Therefore the

GALS-Designer framework provides feasibilities for both describing correct software

programs and fast simulation speed. Furthermore, GALS-Designer also enables the

exploration of distributing GALS systems into single or multiple libGALS programs.

The latter can be mapped into different processors locally (on the same platform) or

different machines on distributed platforms. Communication between libGALS

programs in GALS-Designer is achieved through the help of SYSTEMC modeling

techniques.

To further explore dynamicity in distributed systems, enhancements such as

creating clock domains in run-time on different computational nodes have been added to

libGALS, resulting in a library called libDGALS, which follows the Dynamic GALS

(DGALS) MoC. The DynamicGALS framework, which provides both interfaces to

program libDGALS programs and run-time support for them, is detailed in Chapter 6.

Each libDGALS program is similar to a libGALS program, and hosts a number of clock

domains. libDGALS program is further equipped with specialized Listener threads to

Chapter 7. Conclusions and future works 212

handle clock domain creations and communications between libDGALS programs. The

libDGALS library, inherited from its predecessor libGALS, requires minimal support

from the OS. In this case, thread creation, semaphore, and networking stack are the only

requirements on the underlying OS. The code size and high performance of libDGALS

programs are compared with the language-based counter-parts, DSystemJ at the end of

the Chapter 6.

7.2 Future research

7.2.1 Hardware support for libGALS and libDGALS

Based on the results from OS modeling and simulations, possible and preferred

configuration (HW/SW partitioning) for the OS implementation can be obtained as

shown in Chapter 3. Hardware support to the OS thus needs further investigation to

support GALS MoC. The current functional unit to support reactivity is available

through customization of processors but does not have the support from the OS which is

required for libGALS and libDGALS. Such support can be similar to RTM proposed in

[Kohout et al., 2004] by applying dependency resolution in the scheduling policy which

operates in hardware.

7.2.2 Exploration of styles of concurrent execution

Future work will explore how to manage and achieve even higher performance

gains by controlling processor affinity of libGALS and libDGALS. The scheduling of

synchronous reactions is governed by the underlying scheduling policy of the operating

systems. The operating systems generally follow either priority-based scheduling or

fair-for-all scheduling. Priority-based scheduling is not used by synchronous reactions

in the same clock domain, because it is not necessary; Synchronizer will handle the

execution sequences by resolving the dependencies, executed as the lowest priority

process. Fair scheduling is often adopted by general operating systems also, as in

implementation of libGALS and libDGALS on these systems. However, in control-

dominated applications, performance of both libGALS and libDGALS programs might

Chapter 7. Conclusions and future works 213

suffer from unnecessary ticks while performing communications between clock

domains. In this case, controlling processor affinity to achieve best execution

performance of clock domains will be investigated. For example, a clock domain may

be suspended when it is only waiting for the rendezvous on channel communication to

prevent unnecessary ticks elapse, and thus lower the performance of the overall system.

Such an approach can be adopted in GALS-Designer, which also relies on the execution

model of libGALS, in order to increase the simulation speed.

Furthermore, libDGALS is currently built with weak mobility, that is, new

instances of clock domains are created without ‘previous memories’ (previous working

state of the clock domain), unless giving all the required information as the argument

upon activation of the clock domain. Investigation to include the thread/process state of

each reaction to enable strong mobility will be carried out as future work.

7.2.3 Designer-friendly framework

Glue-logic such as SyncNodes in GALS-Designer is used to integrate libGALS

programs to libGALS-SYSTEMC modules. This glue-logic is currently presented in the

form of source codes, which are prone to programmers’ errors, such as accidental

modification of the source code. In order to resolve this issue, parsers of a libGALS

program can be used to generate essential parts of libGALS-SYSTEMC module, by

checking clock domains and reactions in the program sources. On top of this approach,

a GUI will be developed as a part of GALS-Designer. It will reduce the amount of

textual information entered by the designers to prevent programming errors. The GUI

will automatically generate templates of libGALS programs, and the designer will only

need to populate algorithmic parts.

An approach of using animation tools to model complex dynamic systems has been

introduced in [Efroni et al., 2005]. GALS systems involve execution flows of clock

domains, communications between clock domains, and dynamic creations of clock

domains, which can be presented in a similar manner. Through the use of animation

tools, along with the other graphical tools, specification of GALS systems and activities

within can be modeled and observed in an intuitive fashion. This would also prevent

Chapter 7. Conclusions and future works 214

manual coding which leads to programmatic error due to the human factor, such as

incorrect channel creations, i.e. sending and receiving clock domains are invalid.

The GUI approaches can also be applied to the DynamicGALS framework. For

example, the designer should be able to see the initial state of the DGALS systems, such

as the available storage and resources of each computational node, to estimate if a clock

domain can be spawned and perform correctly on the target computational node. Also,

the default configuration should also be generated automatically to prevent

programmers’ errors.

7.2.4 Better support for embedded systems

Overheads may occur when designing systems with very fine grain concurrency, as

for instance, having many concurrent synchronous reactions with very tiny numbers of

operations to perform. In this case, synchronization overheads may annul the actual

performance gain from the multicore systems, because of context switching. There are

approaches to prevent heavy context switching (or no context switching is required) on

the operating systems level, that are adopted in researches of sensor networks. For

instance, the operating system Contiki applies the uses of protothread [Dunkels et al.,

2006] to be executed on platforms that require low memory footprint.

With tight merging of minimal functionalities of the operating system (particularly

scheduling and support for dynamic loading) with a library-based approach, an

operating system might not be required anymore. This would be suitable on bare-bone

processors. This approach would place an abstract machine above the hardware of

traditional processors, and would equally support language-based systems (compilers)

and library-based systems as libDGALS.

This research should result in an abstract machine ready to use for implementation

of libDGALS programs on distributed platforms that include wireless sensor networks

based on more powerful processors (e.g. ARM-type) and also open a research line

resulting in specification of desired features of the processors that would directly

support DynamicGALS MoC.

Chapter 7. Conclusions and future works 215

7.2.5 Provide mappings of existing MoCs

Applying a library- and language- based approach to model process network has

been proposed in some earlier works. For example, NRP (nets of reactive processes)

[Boussinot, 1992] implements KPN-like systems with SUGRARCUBES (as an extension

based on Java). Similarly, Synchronous Kahn Network [Caspi & Pouzet, 1996] is

proposed with programming in the style of functional language, which relies on the

support of the dedicated compiler. Synchronous Kahn Network can be seen as one of

the solutions to KPN by applying the concepts of synchrony.

Similarly, investigation should be carried out to map a PN/KPN-like approach to

libGALS, or even with distributed support as presented in libDGALS. A fix-rated-based

approach to KPN, such as SDF, can also be adopted while the rate can be computed on-

run-time as part of the investigation into scheduling policy mentioned in Section 7.2.2.

7.2.6 Support of verification

As a library-based approach, libGALS and libDGALS leave to the designers some

of the responsibility of constructing correct programs. It is thus possible for a designer

to write a compliant program, which, while not violating the syntax of the base language

(i.e. C), does behave incorrectly. This problem does not exist in a language-based

approach such as SystemJ and DSystemJ. Because libGALS and libDGALS share

similar features to SystemJ and DSystemJ, it is possible to extract, or to map the control

part of the language, to both SystemJ and DSystemJ or other similar languages to

perform a static check, e.g. verification. Static checking on programs also opens doors

to other verification methodologies mentioned in the dynamic languages such as DSL

presented in [Attar et al., 2011].

Chapter 7. Conclusions and future works 216

References 217

ReferenceReferenceReferenceReferencessss

[Acosta-Bermejo, 1999] R. Acosta-Bermejo, “Programming in REJO,” 1999

[Acosta-Bermejo, 2000] R. Acosta-Bermejo, “Reactive operating system, reactive java objects,”

Proc. NOTERE’2000, ENST, Paris, 2000

[Adomat et al., 2002] J. Adomat, J. Furunas, L. Lindh, and J. Starner, “Real-time kernel in

hardware RTU: a step towards deterministic and high-performance real-time systems,”

Real-Time Systems, 1996., Proceedings of the Eighth Euromicro Workshop on, 2002, pp.

164–168

[Agha, 1985] G. A. Agha, “Actors: a model of concurrent computation in distributed systems,”

1985

[André, 1995] C. André, “SyncCharts: A visual representation of reactive behaviors,” Rapport

de recherche tr95-52, Université de Nice-Sophia Antipolis, 1995

[André, 1996] C. André, “Representation and analysis of reactive behaviors: A synchronous

approach,” 1996

[André, 2003] C. André, Semantics of syncharts, Laboratoire I3S - Sophia Antipolis, 2003

[Andre & Péraldi, 1993] C. Andre and M. A. Péraldi, “Effective implementation of ESTEREL

programs,” Real-Time Systems, 1993. Proceedings., Fifth Euromicro Workshop on, 1993,

pp. 262–267

[Antonotti et al., 2000] M. Antonotti, A. Ferrari, A. Flesca, and A. Sangiovanni-Vincentelli,

“JESTER: An Esterel based reactive Java extension for reactive embedded systems,” Forum

on specification & Design Languages, 2000

[Armstrong et al., 1993] J. Armstrong, R. Virding, C. Wikström, and M. Williams, “Concurrent

programming in ERLANG,” 1993

[Arnold et al., 2000] K. Arnold, J. Gosling, and D. Holmes, The Java programming language,

Addison-Wesley Reading, MA, 2000

[Astley, 1999] M. Astley, The Actor Foundry. University of Illinois, 1999

[Attar et al., 2011] P. Attar, F. Boussinot, L. Mandel, and J. F. Susini, “Proposal for a Dynamic

Synchronous Language,” 2011

[Balarin et al., 1997] F. Balarin, P. Di Giusto, A. Jurecska, M. Chiodo, C. Passerone, H. Hsieh, A.

Sangiovanni-Vincentelli, E. Sentovich, B. Tabbara, L. Lavagno, and others, Hardware-

software co-design of embedded systems: the POLIS approach, Springer Netherlands, 1997

[Barnes, 2005] F. Barnes, “Interfacing C and occam-pi,” 2005

[Barry, 2008] R. Barry, “FreeRTOS,” Internet, Oct, 2008

[Bellifemine et al., 2005] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, “JADE—a java agent

development framework,” Multi-Agent Programming, 2005, pp. 125–147

[Benveniste et al., 1985] A. Benveniste, P. Bournai, T. Gautier, and P. Le Guernic, “SIGNAL: a

data flow oriented language for signal processing,” 1985

[Benveniste et al., 2003] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,

and R. de Simone, “The synchronous languages 12 years later,” Proceedings of the IEEE,

vol. 91, 2003, pp. 64–83

[Benveniste & Berry, 1991] A. Benveniste and G. Berry, “The synchronous approach to reactive

and real-time systems,” Proceedings of the IEEE, vol. 79, 1991, pp. 1270–1282

[Berry et al., 1983] G. Berry, S. Moisan, and J. P. Rigault, “Esterel: Towards a synchronous and

semantically sound high-level language for real-time applications,” Proc. IEEE Real-Time

Systems Symposium, 1983, pp. 30–40

References 218

[Berry, 1992] G. Berry, “A hardware implementation of pure Esterel,” Sadhana, vol. 17, 1992,

pp. 95–130

[Berry et al., 1993] G. Berry, S. Ramesh, and R. K. Shyamasundar, “Communicating reactive

processes,” Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 1993, pp. 85–98

[Berry, 1993] G. Berry, “The semantics of pure Esterel,” Program Design Calculi, vol. 118, 1993,

pp. 361–409

[Berry, 1999] G. Berry, “The constructive semantics of pure Esterel,” 1999

[Berry, 2000] G. Berry, The Esterel v5 language primer. Version 5 91 (2000), 2000

[Berry, 2004] G. Berry, “Programming and Verifying an Elevator in Esterel v7,” Esterel

Technologies, 2004

[Berry & Cosserat, 1984] G. Berry and L. Cosserat, “The synchronous programming language

Esterel and its mathematical semantics,” Seminar on Concurrency, 1984, pp. 389–448

[Berry & Gonthier, 1988] G. Berry and G. Gonthier, “The ESTEREL synchronous programming

language : design, semantics, implementation,” 1988

[Berry & Sentovich, 2000] G. Berry and E. M. Sentovich, “An implementation of constructive

synchronous programs in POLIS,” Formal Methods in System Design, vol. 17, 2000, pp.

135–161

[Black et al., 2008] D. C. Black, J. Donovan, B. Bunton, and A. Keist, SystemC: from the ground

up, Springer Verlag, 2008

[Boniol & Adelantado, 1993] F. Boniol and M. Adelantado, “Programming Communicating

Distributed Reactive Automata: the Weak Synchronous Paradigm,” 1993

[Bouchhima et al., 2004] A. Bouchhima, S. Yoo, and A. Jeraya, “Fast and accurate timed

execution of high level embedded software using HW/SW interface simulation model,”

Proceedings of the 2004 Asia and South Pacific Design Automation Conference, 2004, pp.

469–474

[Boudol, 2004] G. Boudol, “ULM: A core programming model for global computing,”

Programming Languages and Systems, 2004, pp. 234–248

[Boussinot, 1991] F. Boussinot, “Reactive C: An extension of C to program reactive systems,”

Software: Practice and Experience, vol. 21, Apr. 1991, pp. 401–428

[Boussinot, 1992] F. Boussinot, “Reseaux de processus reactifs,” 1992

[Boussinot et al., 1996] F. Boussinot, G. Doumenc, and J. B. Stefani, “Reactive objects,” Annals

of Telecommunications, vol. 51, 1996, pp. 459–473

[Boussinot, 1996] F. Boussinot, Icobj programming, Citeseer, 1996

[Boussinot, 1996] F. Boussinot, La programmation réactive : Application aux systèmes

communicants, Masson, 1996

[Boussinot et al., 1999] F. Boussinot, L. Hazard, and J. F. Susini, “The junior reactive kernel,”

INRIA Research Report, vol. 3732, 1999

[Boussinot, 2002] F. Boussinot, “Fair Threads in C,” 2002

[Boussinot, 2005] F. Boussinot, “Loft+Cyclone,” 2005

[Boussinot & Dabrowski, 2006] F. Boussinot and F. Dabrowski, “Cooperative Threads and

Preemptive Computations,” 2006

[Boussinot & Dabrowski, 2007] F. Boussinot and F. Dabrowski, “Safe reactive programming:

The FunLoft proposal,” 2007

[Boussinot & Hazard, 1996] F. Boussinot and L. Hazard, “Reactive scripts,” rtcsa, 1996, p. 270

[Boussinot & De Simone, 1996] F. Boussinot and R. De Simone, “The SL synchronous language,”

Software Engineering, IEEE Transactions on, vol. 22, 1996, pp. 256–266

References 219

[Boussinot & Susini, 1997] F. Boussinot and J.-F. Susini, “The SugarCubes Tool Box,” Sep. 1997

[Boussinot & Susini, 1998] F. Boussinot and J. F. Susini, “The SugarCubes tool box: a reactive

Java framework,” Software: Practice and Experience, vol. 28, 1998, pp. 1531–1550

[Bovet et al., 2002] D. Bovet, M. Cesati, and A. Oram, Understanding the Linux kernel, O’Reilly

& Associates, Inc. Sebastopol, CA, USA, 2002

[Brandt & Schneider, 2008] J. Brandt and K. Schneider, “How different are Esterel and SystemC,”

Embedded Systems Specification and Design Languages, 2008, pp. 3–13

[Browne & Clarke, 1985] M. C. Browne and E. M. Clarke, SML - a high level language for the

design and verification of finite state machines, Department of Computer Science,

Carnegie-Mellon University, 1985

[Cai et al., 2003] L. Cai, L. Cai, S. Verma, S. Verma, D. D. Gajski, and D. D. Gajski, Comparison of

SpecC and SystemC Languages for System Design, 2003

[Cai & Gajski, 2003] L. Cai and D. Gajski, “Transaction level modeling: an overview,”

Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/Software

codesign and system synthesis, 2003, p. 24

[Caspi et al., 1987] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: a declarative

language for real-time programming,” Proceedings of the 14th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, 1987, pp. 178–188

[Caspi et al., 2007] P. Caspi, G. Hamon, and M. Pouzet, “Synchronous Functional Programming

with Lucid Synchrone,” 2007

[Caspi & Girault, 1995] P. Caspi and A. Girault, “Execution of distributed reactive systems,”

EURO-PAR ’95 Parallel Processing, S. Haridi, K. Ali, and P. Magnusson, Eds.,

Berlin/Heidelberg: Springer-Verlag, 1995, pp. 13–26

[Caspi & Pouzet, 1996] P. Caspi and M. Pouzet, “Synchronous kahn networks,” ACM SIGPLAN

Notices, 1996, pp. 226–238

[Cesario et al., 2002] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot,

S. Yoo, A. A. Jerraya, and M. Diaz-Nava, “Component-based design approach for multicore

SoCs,” Proceedings of the 39th annual Design Automation Conference, 2002, pp. 789–794

[Cesário et al., 2002] W. O. Cesário, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A. Jerraya, L.

Gauthier, and M. Diaz-Nava, “Multiprocessor SoC platforms: a component-based design

approach,” Design & Test of Computers, IEEE, vol. 19, 2002, pp. 52–63

[Chapiro, 1984] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,” PhD

Thesis, Stanford University, 1984

[Charles et al., 2005] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C.

von Praun, and V. Sarkar, “X10: an object-oriented approach to non-uniform cluster

computing,” Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, San Diego, CA, USA: ACM, 2005, pp.

519–538

[Cheong et al., 2003] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “TinyGALS: A programming

model for event-driven embedded systems,” Proceedings of the 2003 ACM symposium on

Applied computing, 2003, pp. 698–704

[Chevalier et al., 2006] J. Chevalier, M. de Nanclas, L. Filion, O. Benny, M. Rondonneau, and G.

Bois, “A SystemC refinement methodology for embedded software,” Design & Test of

Computers, IEEE, vol. 23, 2006, pp. 148–158

[Church, 1932] A. Church, “A set of postulates for the foundation of logic,” The Annals of

Mathematics, vol. 33, 1932, pp. 346–366

References 220

[Clarke, 1997] E. Clarke, “Model checking,” Foundations of Software Technology and

Theoretical Computer Science, 1997, pp. 54–56

[Clarke Jr et al., 1991] E. M. Clarke Jr, D. E. Long, and K. L. McMILLAN, “A language for

compositional specification and verification of finite state hardware controllers,”

Proceedings of the IEEE, vol. 79, 1991, pp. 1283–1292

[Clinger, 1981] W. D. Clinger, “Foundations of actor semantics,” 1981

[Closse et al., 2002] E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil, “SAXO-RT: Interpreting

Esterel semantic on a sequential execution structure,” Electronic Notes in Theoretical

Computer Science, vol. 65, 2002, pp. 80–94

[Colby et al., 1998] C. Colby, L. J. Jagadeesan, R. Jagadeesan, K. Laufer, and C. Puchol, “Design

and implementation of Triveni: a process-algebraic API for threads+ events,” Computer

Languages, 1998. Proceedings. 1998 International Conference on, 1998, pp. 58–67

[Connell, 2003] J. Connell, “ARM System-Level Modeling,” White paper, June, vol. 25, 2003

[Dagum & Menon, 2002] L. Dagum and R. Menon, “OpenMP: an industry standard API for

shared-memory programming,” Computational Science & Engineering, IEEE, vol. 5, 2002,

pp. 46–55

[Dayaratne, 2004] M. W. . Dayaratne, “Direct execution of Esterel using reactive

microprocessors,” Electrical and Computer Engineering)–University of Auckland, 2004

[Desmet et al., 2000] D. Desmet, D. Verkest, and H. De Man, “Operating system based software

generation for systems-on-chip,” Proceedings of the 37th Annual Design Automation

Conference, 2000, p. 401

[Doumenc & Boussinot, 1991] G. Doumenc and F. Boussinot, “La Programmation par Objets

Reactifs (POR),” Rapport Interne ENSMP-CMA, 1991

[Dunkels et al., 2006] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying

event-driven programming of memory-constrained embedded systems,” Proceedings of

the 4th international conference on Embedded networked sensor systems, 2006, pp. 29–

42

[Edwards, 2002] S. A. Edwards, “An Esterel compiler for large control-dominated systems,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 21,

2002, pp. 169–183

[Edwards, 2003] S. A. Edwards, “Making cyclic circuits acyclic,” Proceedings of the 40th annual

Design Automation Conference, 2003, pp. 159–162

[Edwards et al., 2006] S. A. Edwards, V. Kapadia, and M. Halas, “Compiling Esterel into Static

Discrete-Event Code,” Electronic Notes in Theoretical Computer Science, vol. 153, Jun.

2006, pp. 117–131

[Edwards & Tardieu, 2006] S. A. Edwards and O. Tardieu, “SHIM: A deterministic model for

heterogeneous embedded systems,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 14, 2006, pp. 854–867

[Edwards & Zeng, 2007] S. A. Edwards and J. Zeng, “Code generation in the Columbia Esterel

compiler,” EURASIP Journal on Embedded Systems, vol. 2007, 2007, pp. 1–31

[Efroni et al., 2005] S. Efroni, D. Harel, and I. R. Cohen, “Reactive animation: Realistic modeling

of complex dynamic systems,” Computer, vol. 38, 2005, pp. 38–47

[Engelschall & Pth, 2006] R. S. Engelschall and G. Pth, Gnu portable threads, June, 2006

[Formaggio et al., 2004] L. Formaggio, F. Fummi, and G. Pravadelli, “A timing-accurate HW/SW

co-simulation of an ISS with SystemC,” Proceedings of the 2nd IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis, 2004, pp. 152–157

References 221

[Fuggetta et al., 1998] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”

Software Engineering, IEEE Transactions on, vol. 24, 1998, pp. 342–361

[Gädtke et al., 2007] S. Gädtke, C. Traulsen, and R. von Hanxleden, “HW/SW co-design for

Esterel processing,” Proceedings of the 5th IEEE/ACM international conference on

Hardware/software codesign and system synthesis, 2007, pp. 99–104

[Gajski et al., 2000] D. D. Gajski, J. Zhu, R. D\ömer, A. Gerstlauer, and S. Zhao, SpecC:

specification language and methodology, Springer Netherlands, 2000

[Galletly, 1990] J. Galletly, Occam 2, Taylor & Francis, 1990

[Gauthier et al., 2002] L. Gauthier, S. Yoo, and A. A. Jerraya, “Automatic generation and

targeting of application-specific operating systems and embedded systems software,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 20,

2002, pp. 1293–1301

[Gerstlauer et al., 2003] A. Gerstlauer, H. Yu, and D. D. Gajski, “RTOS modeling for system level

design,” Design, Automation and Test in Europe Conference and Exhibition, 2003, 2003, pp.

130–135

[Gery et al., 2002] E. Gery, D. Harel, and E. Palachi, “Rhapsody: A complete life-cycle model-

based development system,” Integrated Formal Methods, 2002, pp. 1–10

[Ghenassia, 2005] F. Ghenassia, Transaction-level modeling with Systemc: TLM concepts and

applications for embedded systems, Springer Verlag, 2005

[Girault, 2005] A. Girault, “A survey of automatic distribution method for synchronous

programs,” International workshop on synchronous languages, applications and programs,

SLAP, 2005

[Gropp et al., 1999] W. Gropp, E. Lusk, and A. Skjellum, “Using MPI: portable parallel

programming with the message passing interface,” 1999

[Grötker et al., 2002] T. Grötker, S. Liao, G. Martin, and S. Swan, System design with SystemC,

Springer Netherlands, 2002

[Gruian et al., 2006] F. Gruian, P. Roop, Z. Salcic, and I. Radojevic, “The SystemJ approach to

system-level design,” Formal Methods and Models for Co-Design, 2006. MEMOCODE ’06.

Proceedings. Fourth ACM and IEEE International Conference on, 2006, pp. 149–158

[Le Guernic et al., 1991] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire,

“Programming real-time applications with SIGNAL,” Proceedings of the IEEE, vol. 79, 1991,

pp. 1321–1336

[Le Guernic et al., 2003] P. Le Guernic, J. P. Talpin, and J. C. Le Lann, “Polychrony for system

design,” JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, vol. 12, 2003, pp. 261–304

[Halbwachs et al., 1986] N. Halbwachs, A. Lonchampt, and D. Pilaud, “Describing and designing

circuits by means of a synchronous declarative language,” From HDL Descriptions to

Garanteed Correct Circuits Designs, 1986, pp. 255–268

[Halbwachs et al., 1991] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous

data flow programming language LUSTRE,” Proceedings of the IEEE, vol. 79, 1991, pp.

1305–1320

[Halbwachs, 1998] N. Halbwachs, “Synchronous programming of reactive systems,” Computer

Aided Verification, 1998, pp. 1–16

[Haller & Odersky, 2009] P. Haller and M. Odersky, “Scala Actors: Unifying thread-based and

event-based programming,” Theoretical Computer Science, vol. 410, Feb. 2009, pp. 202–

220

References 222

[von Hanxleden, 2009] R. von Hanxleden, “SyncCharts in C - A Proposal for Light-Weight

Deterministic Concurrency,” ACM Embedded Software Conference (EMSOFT), 2009, pp.

11–16

[Harel, 1987] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of

Computer Programming, vol. 8, Jun. 1987, pp. 231–274

[Harel & Pneuli, 1985] D. Harel and A. Pneuli, On the development of reactive systems,

Microelectronics and Computer, Technology Corporation, 1985

[Haverinen et al., 2002] A. Haverinen, M. Leclercq, N. Weyrich, and D. Wingard, “SystemC

based SoC communication modeling for the OCP protocol,” Whitepaper, October, 2002

[Hawkins, 2011] T. Hawkins, “Atom,” 2011

[Hazard et al., 1999] L. Hazard, J.-F. Susini, and F. Boussinot, “The Junior Reactive Kernel,” Jul.

1999

[Herrera et al., 2003] F. Herrera, H. Posadas, P. Sanchez, and E. Villar, “Systemic embedded

software generation from systemC,” Proceedings of the conference on Design, Automation

and Test in Europe-Volume 1, 2003, p. 10142

[Hewitt et al., 1973] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism

for artificial intelligence,” Proceedings of the 3rd international joint conference on Artificial

intelligence, 1973, pp. 235–245

[Hilderink et al., 1999] G. Hilderink, J. Broenink, A. Bakkers, and N. C. Schaller, “Communicating

Threads for Java
TM

,” Architectures, languages and techniques for concurrent systems:

WoTUG-22, proceedings of the 22nd World Occam and Transputer User Group Technical

Meeting, 11-14 April 1999, Keele, United Kingdom, 1999, p. 243

[Hoare, 1978] C. A. R. Hoare, “Communicating sequential processes,” Communications of the

ACM, vol. 21, 1978, pp. 666–677

[Honda & Takada, 2003] S. Honda and H. Takada, “Evaluation of applying SpecC to the

integrated design method of device driver and device,” 2003

[IEEE, 2000] IEEE, “IEEE Standard VHDL Language Reference Manual,” 2000

[IEEE, 2001] IEEE, “IEEE Standard Verilog Hardware Description Language,” 2001

[IEEE, 2008] IEEE, “IEEE Standard for Information Technology- Portable Operating System

Interface (POSIX) Base Specifications, Issue 7,” IEEE Std 1003.1-2008 (Revision of IEEE Std

1003.1-2004), 2008

[Jones, 2003] S. P. Jones, Haskell 98 language and libraries: the revised report, Cambridge Univ

Pr, 2003

[Jose et al., 2009] B. A. Jose, H. D. Patel, S. K. Shukla, and J. P. Talpin, “Generating multi-

threaded code from polychronous specifications,” Electronic Notes in Theoretical

Computer Science, vol. 238, 2009, pp. 57–69

[Kahn, 1974] G. Kahn, “The semantics of a simple language for parallel programming,” 1974

[Kohout et al., 2004] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support for real-time

operating systems,” Hardware/Software Codesign and System Synthesis, 2003. First

IEEE/ACM/IFIP International Conference on, 2004, pp. 45–51

[Krause et al., 2008] M. Krause, D. Englert, O. Bringmann, and W. Rosenstiel, “Combination of

instruction set simulation and abstract RTOS model execution for fast and accurate target

software evaluation,” Proceedings of the 6th IEEE/ACM/IFIP international conference on

Hardware/Software codesign and system synthesis, 2008, pp. 143–148

[Krogh et al., 2008] B. Krogh, E. Lee, I. Lee, A. Mok, R. Rajkumar, L. Sha, A. Vincentelli, K. Shin, J.

Stankovic, J. Sztipanovits, and others, “Cyber-Physical Systems, Executive Summary,”

Cyber-Physical Systems Summit, 2008

References 223

[Krstić et al., 2007] M. Krstić, E. Grass, F. K. G\ürkaynak, and P. Vivet, “Globally asynchronous,

locally synchronous circuits: Overview and outlook,” IEEE Design and Test, 2007, pp. 430–

441

[Labrosse, 2002] J. J. Labrosse, MicroC/OS-II: the real-time kernel, Newnes, 2002

[Lavagno & Sentovich, 1999] L. Lavagno and E. Sentovich, “ECL: A specification environment for

system-level design,” Proceedings of the 36th annual ACM/IEEE Design Automation

Conference, 1999, pp. 511–516

[Lavender & Schmidt, 1995] R. G. Lavender and D. C. Schmidt, “Active object–an object

behavioral pattern for concurrent programming,” 1995

[Lee et al., 2003] J. Lee, V. J. Mooney III, A. Daleby, K. Ingstr\öm, T. Klevin, and L. Lindh, “A

Comparison of the RTU Hardware RTOS with a Hardware/Software RTOS,” Proceedings of

the 2003 Asia and South Pacific Design Automation Conference, 2003, pp. 683–688

[Lee, 2006] E. A. Lee, “The problem with threads,” Computer, vol. 39, 2006, pp. 33–42

[Lee & Messerschmitt, 1987] E. A. Lee and D. G. Messerschmitt, “Static scheduling of

synchronous data flow programs for digital signal processing,” Computers, IEEE

Transactions on, vol. 100, 1987, pp. 24–35

[Lee & Neuendorffer, 2005] E. A. Lee and S. Neuendorffer, “Concurrent models of computation

for embedded software,” Computers and Digital Techniques, IEE Proceedings-, 2005, pp.

239–250

[Lee & Sangiovanni-Vincentelli, 1998] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework

for comparing models of computation,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 17, 1998, pp. 1217–1229

[Li et al., 2006] X. Li, M. Boldt, and R. von Hanxleden, “Mapping Esterel onto a multi-threaded

embedded processor,” Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems, 2006, pp. 303–314

[Lipsett et al., 1986] R. Lipsett, E. Marschner, and M. Shahdad, “VHDL-The language,” Design &

Test of Computers, IEEE, vol. 3, 1986, pp. 28–41

[Liskov & Shrira, 1988] B. Liskov and L. Shrira, Promises: linguistic support for efficient

asynchronous procedure calls in distributed systems, ACM, 1988

[Madsen et al., 2004] J. Madsen, K. Virk, and M. Gonzales, “Abstract RTOS modeling for

multiprocessor system-on-chip,” System-on-Chip, 2003. Proceedings. International

Symposium on, 2004, pp. 147–150

[Malik, 1994] S. Malik, “Analysis of cyclic combinational circuits,” Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 13, 1994, pp. 950–956

[Malik et al., 2010] A. Malik, A. Girault, and Z. Salcic, “The DSystemJ programming language for

dynamic GALS systems: it’s semantics, compilation, implementation, and run-time system,”

Jul. 2010

[Malik, 2010] A. Malik, “Principia lingua SystemJ,” The University of Auckland New Zealand,

2010

[Malik et al., 2010] A. Malik, Z. Salcic, P. S. Roop, and A. Girault, “SystemJ: A GALS language for

system level design,” Comput. Lang. Syst. Struct., vol. 36, 2010, pp. 317–344

[Mandel & Pouzet, 2005] L. Mandel and M. Pouzet, “ReactiveML: a reactive extension to ML,”

Proceedings of the 7th ACM SIGPLAN international conference on Principles and practice

of declarative programming, 2005, pp. 82–93

[Maraninchi, 1991] F. Maraninchi, “The Argos Language: Graphical Representation of

Automata and Description of Reactive Systems,” IN IEEE WORKSHOP ON VISUAL

LANGUAGES, 1991

References 224

[Massa, 2003] A. J. Massa, Embedded software development with eCos, Prentice Hall PTR, 2003

[MathWorks, 2011] MathWorks, “Simulink - Simulation and Model-Based Design,” 2011

[Microsoft Corporation, 2008] Microsoft Corporation, “Axum programming language,” Sep.

2008

[Milner et al., 1980] R. Milner, R. Milner, R. Milner, and R. Milner, A calculus of communicating

systems, Springer-Verlag, 1980

[Milner, 1997] R. Milner, The definition of standard ML: revised, The MIT press, 1997

[Milner, 1999] R. Milner, Communicating and mobile systems: the pi-calculus, Cambridge Univ

Pr, 1999

[Le Moigne et al., 2004] R. Le Moigne, O. Pasquier, and J. P. Calvez, “A generic RTOS model for

real-time systems simulation with SystemC,” Proceedings of the conference on Design,

automation and test in Europe-Volume 3, 2004, p. 30082

[Moores, 1999] J. Moores, “CCSP-A portable CSP-based run-time system supporting C and

occam,” Architectures, languages and techniques for concurrent systems: WoTUG-22,

proceedings of the 22nd World Occam and Transputer User Group Technical Meeting, 11-

14 April 1999, Keele, United Kingdom, 1999, p. 147

[Nakano et al., 2002] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and M. Imai, “Hardware

implementation of a real-time operating system,” TRON Project International Symposium,

1995., Proceedings of the 12th, 2002, pp. 34–42

[Nichols et al., 1996] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads programming, O’Reilly

Media, 1996

[Nikaein, 1999] N. Nikaein, RAMA Reactive Autonomous Mobile Agent, DEA RSD at ESSI, Sophia

Antipolis France, 1999

[Odersky et al., 2004] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N.

Mihaylov, M. Schinz, E. Stenman, and M. Zenger, An overview of the Scala programming

language, 2004

[Oracle, 1999] Oracle, “Java Thread Primitive Deprecation,” 1999

[OSC Initiative, 1999] OSC Initiative, SystemC, 1999

[OSEK, 1997] OSEK, Osek/vdx Operating System Specification 2.0, Jun, 1997

[Passerone et al., 1998] C. Passerone, C. Sansoe, L. Lavagno, R. McGeer, J. Martin, R. Passerone,

and A. Sangiovanni-Vincentelli, “Modeling reactive systems in Java,” ACM Transactions on

Design Automation of Electronic Systems (TODAES), vol. 3, 1998, pp. 515–523

[Peterson, 1977] J. L. Peterson, “Petri nets,” ACM Computing Surveys (CSUR), vol. 9, 1977, pp.

223–252

[Petri, 1962] C. A. Petri, “Kommunikation mit automaten,” 1962

[Plummer et al., 2006] B. Plummer, M. Khajanchi, and S. A. Edwards, “An Esterel virtual

machine for embedded systems,” International Workshop on Synchronous Languages,

Applications, and Programming (SLAP), 2006

[Poplavko et al., 2003] P. Poplavko, T. Basten, M. Bekooij, J. Van Meerbergen, and B. Mesman,

“Task-level timing models for guaranteed performance in multiprocessor networks-on-

chip,” Proceedings of the 2003 international conference on Compilers, architecture and

synthesis for embedded systems, 2003, pp. 63–72

[Posadas et al., 2005] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder, “RTOS

modeling in SystemC for real-time embedded SW simulation: A POSIX model,” Design

Automation for Embedded Systems, vol. 10, 2005, pp. 209–227

[POSIX, 2009] POSIX, “Information technology - Portable Operating System Interface (POSIX)

Operating System Interface (POSIX),” ISO/IEC/IEEE 9945 (First edition 2009-09-15), 2009

References 225

[Potop-Butucaru et al., 2005] D. Potop-Butucaru, R. de Simone, and J. P. Talpin, “The

synchronous hypothesis and synchronous languages,” The Embedded Systems Handbook,

2005

[Potop-Butucaru & Caillaud, 2007] D. Potop-Butucaru and B. Caillaud, “Correct-by-construction

asynchronous implementation of modular synchronous specifications,” Fundamenta

Informaticae, vol. 78, 2007, pp. 131–159

[Potop-Butucaru & De Simone, 2003] D. Potop-Butucaru and R. De Simone, “Optimizations for

faster execution of Esterel programs,” Formal Methods and Models for Co-Design, 2003.

MEMOCODE’03. Proceedings. First ACM and IEEE International Conference on, 2003, pp.

227–236

[Pucella, 1998] R. R. Pucella, “Reactive Programming in Standard ML,” Computer Languages,

International Conference on, Los Alamitos, CA, USA: IEEE Computer Society, 1998, p. 48

[Radojevic et al., 2006] I. Radojevic, Z. Salcic, and P. Roop, “Design of heterogeneous

embedded systems using DFCharts model of computation,” VLSI Design, 2006. Held jointly

with 5th International Conference on Embedded Systems and Design., 19th International

Conference on, 2006, p. 4

[Radojevic et al., 2006] I. Radojevic, Z. Salcic, and P. S. Roop, “Modeling Embedded Systems:

From SystemC and Esterel to DFCharts,” Design & Test of Computers, IEEE, vol. 23, 2006,

pp. 348–358

[Rajan & Shyamasundar, 2000] B. Rajan and R. K. Shyamasundar, “Multiclock ESTEREL: A

reactive framework for asynchronous design,” Parallel and Distributed Processing

Symposium, 2000. IPDPS 2000. Proceedings. 14th International, 2000, pp. 201–209

[Ramesh, 1998] S. Ramesh, “Communicating reactive state machines: design, model and

implementation,” IFAC Workshop on Distributed Computer Control Systems, 1998

[Raymond et al., 1998] P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber, “Automatic

testing of reactive systems,” Real-Time Systems Symposium, 1998. Proceedings., The 19th

IEEE, 1998, pp. 200–209

[Ritchie et al., 1975] D. M. Ritchie, B. W. Kernighan, M. Lesk, and inc Bell Telephone

Laboratories, The C programming language, Bell Laboratories, 1975

[Rochester, 1955] N. Rochester, “The computer and its peripheral equipment,” Papers and

discussions presented at the the November 7-9, 1955, eastern joint AIEE-IRE computer

conference: Computers in business and industrial systems, 1955, pp. 64–69

[RTEMS, 2003] C. RTEMS, Users Guide. Edition 4.6. 5, for RTEMS 4.6. 5, On-Line Applications

Research Corporation (OAR) http://www. rtems. com, 2003

[Salcic et al., 2004] Z. Salcic, P. Roop, M. Biglari-Abhari, and A. Bigdeli, “REFLIX: a processor

core with native support for control-dominated embedded applications,” Microprocessors

and Microsystems, vol. 28, 2004, pp. 13–25

[Salcic et al., 2005] Z. Salcic, D. Hui, P. Roop, and M. Biglari-Abhari, “REMIC: design of a reactive

embedded microprocessor core,” Proceedings of the 2005 Asia and South Pacific Design

Automation Conference, 2005, pp. 977–981

[Salcic & Mikhael, 2000] Z. Salcic and R. Mikhael, “A new method for instantaneous power

system frequency measurement using reference points detection,” Electric Power Systems

Research, vol. 55, 2000, pp. 97–102

[Sangiovanni-Vincentelli & Martin, 2002] A. Sangiovanni-Vincentelli and G. Martin, “Platform-

based design and software design methodology for embedded systems,” Design & Test of

Computers, IEEE, vol. 18, 2002, pp. 23–33

References 226

[Schneider, 2000] K. Schneider, “A verified hardware synthesis of Esterel programs,”

Proceedings of the IFIP WG10, 2000, pp. 205–214

[Schneider, 2009] K. Schneider, “The synchronous programming language Quartz,” Department

of Computer Science, University of Kaiserslautern, Kaiserslautern, Germany, Tech. Rep,

2009

[Séméria & Ghosh, 2000] L. Séméria and A. Ghosh, “Methodology for hardware/software co-

verification in C/C++ (short paper),” Proceedings of the 2000 Asia and South Pacific Design

Automation Conference, New York, NY, USA: ACM, 2000, pp. 405–408

[Serrano et al., 2004] M. Serrano, F. Boussinot, and B. Serpette, “Scheme fair threads,”

Proceedings of the 6th ACM SIGPLAN international conference on Principles and practice

of declarative programming, 2004, pp. 203–214

[Shalan & Mooney III, 2002] M. Shalan and V. J. Mooney III, “Hardware support for real-time

embedded multiprocessor system-on-a-chip memory management,” Proceedings of the

tenth international symposium on Hardware/software codesign, 2002, pp. 79–84

[Shiple et al., 1996] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic circuits,”

Proceedings of the 1996 European conference on Design and Test, 1996, p. 328

[Silberschatz & Galvin, 1998] A. Silberschatz and P. Galvin, Operating System Concepts, 5th

Edition, John Wiley & Sons, 1998

[Stepner et al., 1999] D. Stepner, N. Rajan, and D. Hui, “Embedded application design using a

real-time OS,” Design Automation Conference, 1999. Proceedings. 36th, 1999, pp. 151–

156

[Stroustrup, 2003] B. Stroustrup, C++, John Wiley and Sons Ltd., 2003

[Sun & Salcic, 2007] W.-T. Sun and Z. Salcic, “Modeling RTOS for Reactive Embedded Systems,”

Proceedings of the 20th International Conference on VLSI Design held jointly with 6th

International Conference: Embedded Systems, IEEE Computer Society, 2007, pp. 534–539

[Susini et al., 1998] J. F. Susini, L. Hazard, and F. Boussinot, “Distributed reactive machines,”

Real-Time Computing Systems and Applications, 1998. Proceedings. Fifth International

Conference on, 1998, pp. 267–274

[Tan et al., 1995] S. Tan, D. K. Raila, W. S. Liao, and R. H. Campbell, Virtual Hardware for

Operating Systems Development, IEEE TCOS Bulletin, Spring, 1995

[Tomiyama et al., 2001] H. Tomiyama, Y. Cao, and K. Murakami, “Modeling Fixed-Priority

Preemptive Multi-Task Systems in SpecC,” 2001

[Traulsen et al., 2011] C. Traulsen, T. Amende, and R. von Hanxleden, “Compiling SyncCharts to

Synchronous C,” Design, Automation & Test in Europe Conference & Exhibition (DATE),

2011, 2011, pp. 1–4

[Wang et al., 2003] G. Wang, P. R. Cook, and others, “ChucK: A concurrent, on-the-fly audio

programming language,” Proceedings of International Computer Music Conference, 2003,

pp. 219–226

[Wang et al., 2008] Z. Wang, W. Haberl, S. Kugele, and M. Tautschnig, “Automatic generation

of systemc models from component-based designs for early design validation and

performance analysis,” Proceedings of the 7th international workshop on Software and

performance, 2008, pp. 139–144

[Welch et al., 2002] P. Welch, J. Aldous, and J. Foster, “CSP networking for java (JCSP. net),”

Computational Science—ICCS 2002, 2002, pp. 695–708

[Welch & Barnes, 2005] P. H. Welch and F. R. . Barnes, “Communicating mobile processes:

introducing occam-pi,” In 25 Years of CSP, 2005

References 227

[Yoo et al., 2002] S. Yoo, G. Nicolescu, L. Gauthier, and A. A. Jerraya, “Automatic generation of

fast timed simulation models for operating systems in SoC design,” Design, Automation

and Test in Europe Conference and Exhibition, 2002. Proceedings, 2002, pp. 620–627

[Yoo et al., 2003] S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A. A. Jerraya, “Building fast

and accurate SW simulation models based on hardware abstraction layer and simulation

environment abstraction layer,” Proceedings of the conference on Design, Automation and

Test in Europe-Volume 1, 2003, p. 10550

[Yoo & Jerraya, 2005] S. Yoo and A. A. Jerraya, “Hardware/software cosimulation from

interface perspective,” Computers and Digital Techniques, IEE Proceedings -, vol. 152,

2005, pp. 369–379

[Yoong et al., 2006] L. H. Yoong, P. Roop, Z. Salcic, and F. Gruian, “Compiling Esterel for

distributed execution,” International Workshop on Synchronous Languages, Applications,

and Programming (SLAP’06), Vienna, Austria, 2006

[Yuan et al., 2009] S. Yuan, S. Andalam, L. H. Yoong, P. S. Roop, and Z. Salcic, “STARPro -- A new

multithreaded direct execution platform for Esterel,” Electronic Notes in Theoretical

Computer Science, vol. 238, Jun. 2009, pp. 37–55

[Zabel et al., 2009] H. Zabel, W. Müller, and A. Gerstlauer, “Accurate RTOS modeling and

analysis with SystemC,” Hardware-dependent Software, 2009, pp. 233–260

