

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

� Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

� Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

� You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form and Deposit Licence.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and
contains no corrections. The print copy, usually available in the University
Library, may contain corrections made by hand, which have been
requested by the supervisor.

Automata and game theoretic models of

computation

A thesis submitted in partial fulfilment

of the requirements for

the degree of Doctor of Philosophy,

The University of Auckland.

Aniruddh Gandhi

August 2012

ii

Abstract

In this thesis we investigate two finite state models of computation: automata and games

on graphs. First we investigate the state complexity of finite word and tree automata

from two directions. One direction is to study the interplay between non-deterministic

automata (NFA) and deterministic automata (DFA) state complexity. In particular, we

show that the exponential gap of the state explosion caused by the subset construction and

the complementation of NFA may be filled. Another direction is to investigate the DFA

state complexity of natural subclasses of regular languages. We focus on finite word and

tree languages and provide improved upper bounds on the state complexity of union and

intersection of such languages.

Secondly we generalize finite automata by introducing automata over arbitrary alge-

braic structures. For a structure S, we use the term S-automata for the class of automata

operating over S. An S-automaton has a fixed number of registers and processes finite

sequences of elements from the (possibly infinite) domain of S. At every stage, it may test

the input against the values in the registers using the relations of S and then based on the

outcome of this test, move to another state after applying some operations from S to the

registers. We investigate certain natural problems such as the validation problem and the

emptiness problem and show that they may become decidable or undecidable if we change

the underlying structure or the structure of the automaton in various natural ways.

Lastly we investigate the problem of solving Büchi and parity games on trees with back-

edges. We present an efficient algorithm that solves a Büchi game played on trees with

back-edges and then apply our analysis to parity games. We then present experimental

evidence which shows that our algorithm for Büchi games performs asymptotically better

than the classical algorithm in many cases. Also we present a concrete class of Büchi games

for which the classical algorithm has a quadratic running time and our algorithm has linear

running time.

iii

iv

Dedicated to Amma

v

vi

Acknowledgements

I would like to thank my advisor Prof. Bakhadyr Khoussainov for his guidance and pa-

tience. He has been a tremendous source of ideas and inspiration and has always given

me his time generously. He was also kind enough to organize two illuminating trips to

Cornell University which have taught me a lot.

Thanks are also due to my co-author Jiamou Liu for many fruitful discussions and

the many lessons learned by working with him. I would like to thank my colleagues

and friends Alexander Melnikov and Tatyana Gvozdeva for many enjoyable conversations

and their friendship. I would also like to acknowledge the University of Auckland for

supporting my research through the UoA Doctoral Scholarship.

Finally I would like to thank my parents for all their love and support over the years.

Without their encouragement and sacrifices, this work would never have been possible.

vii

viii

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1

1.1 Background and motivation . 1

1.1.1 Complexity of regular languages . 6

1.1.2 Generalizations of the automata model 7

1.1.3 Infinite games on graphs . 8

1.2 Summary of results . 9

2 Preliminaries 19

2.1 Finite automata . 19

2.1.1 Finite word automata . 19

2.1.2 Finite tree automata . 22

2.1.3 Complexity of regular languages . 24

2.2 Structures . 25

2.3 Infinite games on graphs . 26

3 Complexity of regular languages 35

3.1 Complexity of determinization and complementation of NFA’s 35

3.1.1 State explosion in determinization . 35

3.1.2 State explosion in complementation 49

3.2 Complexity of finite word and tree languages 57

3.2.1 Finite languages with bounded word length 59

3.2.2 Union and intersection of uniform-length languages 65

ix

3.2.3 Union and intersection of finite word languages 67

3.2.4 Union and intersection of finite tree languages 70

4 Finite automata over structures 77

4.1 The Automata Model . 77

4.2 Simple Properties of S-automata . 79

4.3 Deterministic S-automata . 83

4.4 The Validation Problem . 86

4.5 The Emptiness Problem . 93

4.5.1 The emptiness problem for acyclic S-automata 93

4.5.2 The emptiness problem for automata on natural numbers 97

4.5.3 The emptiness problem for constant comparing automata 102

5 Infinite games played on trees with back-edges 109

5.1 Trees with back-edges . 110

5.2 Solving Büchi games played on trees with back-edges 114

5.2.1 Snares . 115

5.2.2 Finding snares . 118

5.2.3 An algorithm for solving Büchi games on trees with back-edges . . . 121

5.3 Solving parity games played on trees with back-edges 123

5.4 Experimental results . 125

5.5 Concrete class of games to support experiments 128

6 Open problems and future work 131

I Code listing for chapter 5 133

Bibliography 161

x

List of Figures

3.1 The minimal NFA recognizing the language L2,4. 37

3.2 The minimal DFA recognizing the language L2,4. 39

3.3 The mimimal NFA recognizing the language Uk,m. 41

3.4 The minimal NFA recognizing the language R2,3. 45

3.5 The minimal DFA recognizing the language R2,3. 47

3.6 The NFA recognizing the language B2,4. 53

3.7 The NFA recognizing the language G2,2,1. 53

3.8 The NFA recognizing the language H2,4 . 55

3.9 Illustration of the tree tree(Lmax(i)). 61

4.1 An ((N;+,pr1,=, 1), 1)-automaton accepting the N-language L. The initial

value is 0. 83

4.2 An (S, 1)-automaton accepting the monotonic sequences. Note α(q0) =

α(q1) =<. A transition (q, b, q′, g) is represented by an arrow from state q

to q′ with label b : g. The arrow labeled by 0/1 : pr2 represent both transi-

tions (q1, 0, q1,pr2) and (q1, 1, q1,pr2). The initial value is 0. 85

4.3 An ((N;+,=,pr1), 2)-automaton accepting all pre-arithmetic progressions.

The initial value is (0,0). 85

4.4 An (S, 2)-automaton accepting the S-language L = {w | odd(w) < even(w)}.

The initial value is (0, 0) . 85

4.5 An (S, 2)-automaton accepting the Fibonacci sequences. The initial value is

(0, 0). 86

4.6 An ((N;+,%,pr1,=, 0), 3)-automaton accepting the Euclidean paths. The

initial value is (0, 0, 0). The mapping αmaps every state q to the tuple (=,=,=). 87

xi

5.1 Example of a Büchi game played on a tree with back edges and the equivalent

reduced game. 113

5.2 Example of a Büchi game with snares shown. 116

5.3 The top left graph shows the comparison of algorithms for RANUD, the

top right graph for RANBT and the bottom left for RANDL (the dashed

lines represent the classical algorithm). The bottom right table compares the

average running times of the two algorithms. Note that the running time of

the classical algorithm has been scaled down by 102 in the graphs. 127

5.4 The game G0. 129

5.5 The construction of the game G1 from G0. 130

xii

Chapter 1

Introduction

1.1 Background and motivation

In this thesis we investigate models of computation with a finite number of states. In

particular we concentrate on two finite state models of computation: automata and two-

player games on graphs. Our goal in the study of these models of computation is three-

fold: the first is to study the algorithmic problems associated with them, the second is

to generalize automata to operate over arbitrary algebraic structures and the third is to

analyze the complexity of these models of computation.

An automaton has a finite number of states and transitions between them. The automa-

ton reads an input and based on the input and its current state, makes a decision on which

state it should transition to. Some states of the automaton are designated as accepting

states. The idea is that the automaton accepts or rejects a sequence of inputs based on some

condition involving the accepting states (called the acceptance condition). For example, the

familiar finite state word automaton accepts or rejects finite words depending on whether

it ends up in an accepting state after processing the word. Another example is the Büchi

automaton which accepts an infinite word if some accepting states occur infinitely often

during the processing of the word.

Given an automaton, an important question is to find whether there exists any sequence

of inputs accepted by the automaton. This problem is referred to as the emptiness problem and

it has applications in model checking, verification and logic. We review these connections

later in this chapter.

Two-player games are played on a directed graph by two players: Player 0 and Player 1.

1

2 CHAPTER 1. INTRODUCTION

Each vertex of the graph is owned by one player. The game is played as follows: the players

take turns moving a token from one vertex to another along the edges of the graph. The

player that owns the vertex on which the token is currently placed decides where the token

should be placed next. Therefore the game continues indefinitely or until a dead end

is reached. Here we need to specify the most important ingredient naturally associated

with a game: a rule to decide which player wins the game (called the winning condition).

Analogous to the case of finite automata, there are various winning conditions that can be

used and each gives rise to a different class of games. For instance, one way to specify

a winning condition is to designate certain vertices as target vertices for Player 0 and say

that the player wins the game if she is able to reach any of the target vertices. Such a

winning condition gives rise to reachability games. Another type of winning condition also

designates certain vertices as target vertices for Player 0 but specifies that the player wins if

she is able to visit some target vertices infinitely often. Two-player games with this winning

condition are called Büchi games.

Given a two-player game with a certain winning condition we generally seek to solve

the following problem: Find those vertices from which Player 0 (or Player 1) may “win” the

game i.e. she can satisfy the winning condition irrespective of the moves of the adversary.

We refer to this problem as the winning region problem and as we will see later, it is important

in modeling reactive systems and has connections with logic.

Finite state models of computation are important in computer science since they allow

one to model a real system by a finite mathematical object. This abstraction allows us to

reason about the behavior and properties of the system by analyzing the structure of the

finite object. In this context we observe that automata and two-player games arise from

different approaches to modeling a system.

One approach is to view the system as receiving inputs from the environment and

changing its state based on the input and its current state. Many systems like computer

programs and industrial automation robots may be naturally modeled using this approach.

In this case, the automata model of computation comes to our aid and allows us to analyze

the behavior of these systems. Some prominent examples of this approach are the modeling

of real-time systems [3] and concurrent and distributed systems [59]. Another application

of this approach is the modeling of hybrid systems which consist of discrete programs

operating in an analog environment e.g. an airplane or an elevator. The authors of [2]

introduced hybrid automata to effectively model such systems.

1.1. BACKGROUND AND MOTIVATION 3

Another approach is to think of the interaction of the system with its environment as

a game with two-players: the system and the environment. This view sees the interaction

between the system and its environment as an adversarial process where the adversary

(environment) is attempting to trick the system into behaving in an undesirable manner.

In this case, it is natural to use two-player games as our model. An important example

where such an approach has been successfully is in the domain of reactive systems [88, 69].

A game theoretic approach has also been applied for analyzing the security of computer

networks [58].

After we have chosen one of these models of computation to model our system, some

useful questions that one may ask about a system’s behavior are:

1. Does the system end up in an undesirable state for a given sequence of inputs?

2. Does there exist some sequence of inputs to a system that cause it to enter an unde-

sirable state?

3. Can the environment force the system to enter an irrecoverable slide?

4. Is the system specification realizable in practice?

In the automata framework, question 2 is equivalent to asking whether there exists some

sequence of inputs accepted by an automaton i.e. the emptiness problem. In the context

of two-player games, question 3 is equivalent to the winning region problem. Also if our

system is modeled as a two-player game, finding whether our specification is realizable

(question 4) corresponds to the winning region problem for the two-player game [1, 76].

Since the model of computation has a finite number of states, questions of this type become

decidable in many cases.

Finite state models of computation also play an important role in logic. Logic is

essential for formally expressing properties that we would like our system to have and

forms the backbone of model checking and verification. Many different kinds of logic are

useful depending on the kinds of properties we want to express e.g. propositional logic,

predicate logic, linear temporal logic (LTL) [75], computational tree logic (CTL) [21, 20] etc.

Fixed-point logics , particularly the modal µ-calculus introduced by Kozen in [57], are of

fundamental importance in the field of model checking and verification [30]. The idea is

that we first express a property of the system in the language of some formal logic and then

decide if the formula is satisfiable.

4 CHAPTER 1. INTRODUCTION

There is a deep connection between finite state models of computation and logic. It

arises from the insight that formulae of certain kinds of logics can be translated into a finite

state model of computation i.e the formula is satisfiable if and only if some property of

the constructed finite state model of computation holds[89]. If we have a procedure for

deciding whether this property holds on the finite state model of computation, then we

can decide if formulae of the logic are satisfiable. This in turn gives us the ability to decide

if our system satisfies the property specified by the formula.

There are numerous examples where a formula of a particular logic can be translated

into a finite state model of computation. One of the earliest such connections was discov-

ered by Büchi when he proved that monadic second order logic of one successor (S1S) is

decidable since a formula written in this logic could be translated into a Büchi automaton

[15, 29]. The satisfiability of the formula can then be determined by finding out if there

exists an input which is accepted by the constructed automaton i.e. solving the emptiness

problem for the Büchi automaton.

Another important example where finite models of computation are applied to logic is

the modal µ-calculus which is of great importance in model checking and verification [30].

The basic idea is that formulae of the modalµ-calculus may be translated into a certain kind

of two-player game called parity games. Then the satisfiability of the µ-calculus formula can

be ascertained by solving the winning region problem for the parity game [31, 32, 86, 90].

All these applications of finite state models of computation to logic trace their roots back

to the interaction between Turing machines and the arithmetical hierarchy [79, 85].

The wide range of applications of automata and games in computer science and logic

indicate the versatility and robustness of these models. In this thesis, we focus on the

following broad themes regarding automata and two-player games:

1. How complex can automata be? This question implicitly assumes a definition of

”complexity” of automata. As we will see in Chapter 2, there are various ways of

defining complexity of automata. Under this general theme, some natural questions

are:

• What is the increase in complexity if we convert a nondeterministic automaton

to a deterministic one?

• What is the cost of performing various standard operations on automata?

• How is the analysis of the above questions affected if we restrict the structure of

1.1. BACKGROUND AND MOTIVATION 5

the automata?

In Chaper 3 we investigate the above questions.

2. Can we extend the automata model for arbitrary algebraic structures? Traditionally,

automata have been viewed as reading inputs which are words (or trees) over a

finite set of symbols. Also, the only action they may perform is changing their

state depending on the input and the current state. However in practice, computer

programs process inputs that could be more complicated e.g. sets, natural numbers,

real numbers etc. Also computer programs may use natural operations and predicates

over these inputs (such as adding or multiplying numbers, union/intersection of sets

etc.).

In this case, the concept of algebraic structures is a natural way to encapsulate the

underlying (possibly infinite) domain of inputs and operations/predicates on the set

of inputs. An algebraic structure consists of a possibly infinite domain D and finitely

many atomic operations f1, . . . , fm, relations R1, . . . ,Rn and constants c1, . . . , cℓ from

D.

In order to model such systems effectively we need to generalize the automata model

to operate over arbitrary algebraic structures. In Chapter 4, we introduce a model

of automata over structures which fulfills this goal. We analyze various classical

automata theoretic problems (such as the emptiness problem mentioned earlier) for our

new model of automata and show that these problems become decidable under some

natural restrictions over the underlying structures or the automata themselves.

3. Can we develop efficient algorithms for solving the winning region problem for two-

player games if we restrict the structure of the graphs over which games are played?

In this thesis we focus on two-player games on finite directed graphs with Büchi

and parity winning conditions. It is well known that the winning region problem

for a Büchi game played on a graph with n vertices and m edges is O(n · (n + m))

[41](Ch. 2). However the corresponding problem for parity games is known to be

in NP ∩ co − NP but not in P [41](Ch. 6). Therefore, a natural direction is to analyze

the winning region problem for such games for restricted classes of graphs and to

develop efficient algorithms for these classes.

In Chapter 5, we investigate the problem of solving Büchi and parity games on trees

6 CHAPTER 1. INTRODUCTION

with back-edges which occur frequently in computer science. We show that such

games can be decomposed in a nice way and then exploit this structure to develop

an efficient algorithm for such games.

The above themes are naturally related to three interconnected fields of research. The

first theme lies within the realm of the study of complexity of regular languages, the

second concerns generalization of the automata model and the third has its origins in

infinite games on graphs. These are active fields of research and we would like to provide

some background on them to provide the necessary context for this thesis. To this end, in

the subsequent sections we review the developments in the fields of complexity of regular

languages, generalizations of the automata model and infinite games on graphs.

1.1.1 Complexity of regular languages

We assume familiarity with the basics of regular languages and finite automata which may

be found in standard textbooks such as [47]. There have been two main directions in the

study of complexity for automata and formal languages. The first direction is the study

of time and space complexity for performing decision procedures or operations on automata.

This is important for example in designing algorithms that solve the emptiness, reacha-

bility, complementation and minimization problems for automata[6, 47, 42]. The second

direction is that of descriptional complexity, which is a measure of complexity for various

classes of formal languages and their operations. This notion is important for example in

investigating state explosion that occurs when transforming a nondeterministic automa-

ton into an equivalent deterministic one [47, 51, 36]. It is also important when analyzing

the minimal automaton for recognizing complementation of ω-languages recognizable by

Büchi automata [80]. A good survey of these two directions may be found in [46]. These

two directions of study are interrelated; the descriptional complexity for operations on

language also gives lower bound for the time and space complexity for performing these

operations.

One way of measuring the descriptional complexity of formal languages is state complex-

ity. For a regular language L, its NFA-state complexity (DFA-state complexity) is the number

of states in a minimal NFA (minimal DFA) that recognizes L. There have been a series of

results that study the state complexity of the Boolean operations, the concatenation and the

Kleene-star operation on regular languages. For instance, in [45] it is shown that n +m + 1

1.1. BACKGROUND AND MOTIVATION 7

states are necessary and sufficient to recognize the union of regular languages L1 and L2,

recognized by n state and m state NFA, respectively. Similarly, in [45] it is shown that n ·m

states are necessary and sufficient to recognize the intersection of regular languages L1 and

L2 recognized by n state and m state NFA, respectively. The papers [45] and [50] study

the state complexity of other operations. Also, there has recently been some work on the

study of average state complexity of regular languages and operations thereon. Regular

tree languages, which are classes of finite trees that are recognizable by tree automata, are

natural extensions of regular word languages. Recently there has been an increasing body

of work devoted to state complexity of tree languages [73, 74].

Another way of measuring the descriptional complexity of regular languages is transi-

tion complexity. For a given regular language L, its transition complexity is the number of

transitions in the minimal NFA recognizing L. Transition complexity of a regular language

seems to be a better measure of the descriptional complexity of a regular language since the

transitions of the minimal NFA are needed to completely specify a regular language. More-

over, the transition complexity of a regular language L may be exponentially greater than

the NFA-state complexity of L. The papers [42, 82] investigate the transition complexity of

regular languages.

1.1.2 Generalizations of the automata model

As we mentioned earlier, traditionally automata are finite state machines which read inputs

from a finite set of symbols and change their state depending on the symbol read. However,

most algorithms use methods, operations, and test predicates over an already defined

underlying structure. For instance, algorithms that work on graphs or trees assume that

the underlying structure consists of graphs and trees with operations such as adding or

deleting a vertex or an edge, merging trees or graphs, and test predicates such as the subtree

predicate.

Algebraic structures are an apt way to capture this situation. An structure is denoted

by S = (D; f0, . . . , fn,R0, . . . ,Rk) where each fi is an atomic operation on D and each Ri is a

predicate on D. An algorithm may be thought of as a sequence of instructions that uses the

operations and predicates of the structure. This simple observation has led to the introduc-

tion of various generalizations of the automata model over arbitrary structures and their

analysis. The first example here is the class of Blum-Shub-Smale (BSS) machines [9], where

the underlying structure is the ordered ring of the reals. The model is essentially a multiple

8 CHAPTER 1. INTRODUCTION

register machine that stores tuples of real numbers and that can evaluate polynomials at

unit cost. The second example is the work of O. Bournez, et al. [12], where the authors

introduce computations over arbitrary structures thus generalizing the work of L. Blum,

M. Shub and S. Smale [9]. In particular, among several results, they prove that the set of all

recursive functions over arbitrary structure S is exactly the set of decision functions com-

puted by BSS machines over S. The third example is various classes of counter automata

that use counters in different ways [13, 24, 48, 60, 65].

Another motivation for generalizing the automata model comes from the field of pro-

gram verification and databases. There has recently been a lot of interest the study of finite

automata over infinite alphabets [4, 10, 11, 34, 71, 83, 87]. One goal of these investigations

is to extend automata-theoretic techniques to words and trees over data values. Several

models of computations have been proposed towards this goal. For example, Kaminsky

and Francez in [54] proposed register automata. These are finite state machines equipped

with a fixed number of registers which may hold values from an infinite domain D. The

operations allowed by the automata are equality comparisons between the input and the

register values and the copy operation. Another example is pebble automata introduced

by Neven, Schwentick and Vianu [71]. Here the automata use a fixed set of pebbles with a

stack discipline to keep track of values in the input data words. Operations include equal-

ity comparisons of the current pebble values, and dropping and lifting a pebble. Other

examples of such automata models include Bojanczyk’s data automata [10] and Alur’s

extended data automata [4]. While all the above automata models allow only equality tests

between data values, there has also been automata model proposed for linearly ordered

data domains [84].

1.1.3 Infinite games on graphs

In this section, we give a brief account of the development of the field of infinite games on

graphs. For a detailed study of two-player infinite games on graphs and their connection

with logic, the reader is referred to [41]. As we mentioned previously, two-player infinite

games on graphs can be used to model and analyze reactive systems. One of the earliest

survey on the interplay between logic and games and the application of such games to

the synthesis of digital circuits was published by Church [19] in 1962. In [19], Church set

out the major problems in the field at the time including the synthesis problem which was

to determine whether a specification was actually realizable. However Church did not

1.2. SUMMARY OF RESULTS 9

explicitly use the terminology of two-player games.

The currently prevalent terminology of infinite games on graphs was first introduced

by McNaughton in [64]. McNaughton games are special case of Borel games and therefore

by the result of [62], McNaughton games are determined i.e. for any given node in a

McNaughton game, one of the players always has a winning strategy. In fact, McNaughton

showed that such games have finite state winning strategies i.e. the next move of a

player is determined by a finite amount of history of that particular play. Note that such

strategies do not exist in the more general class of Borel games. The finite state winning

strategies described in [64] are known as last visitation record (LVR) strategies. These

strategies were inspired by last appearance record (LAR) strategies described earlier by

Gurevich and Harrington [43]. Nerode, Remmel and Yakhnis subsequently used finite state

winning strategies of McNaughton games to model distributed concurrent systems and

hence established the connection between infinite games and distributed systems[69, 70].

The study of minimizing the amount of memory required for winning strategies was

started by [31] and [68] where memoryless winning strategies were shown to exist for parity

games i.e. the next move of a player is only dependent on its current position. Also in

[28], the authors provide examples of McNaughton games with O(n) nodes such that every

winning strategy requires n! memory and hence show that the LVR strategy described in

[64] is optimal.

1.2 Summary of results

In this section we provide a summary of results from each chapter. The reader is referred to

the relevant chapter for a detailed discussion of each topic, formal definitions and proofs.

Chapter 2. Preliminaries

In this chapter, we introduce basic definitions and facts about finite automata, algebraic

structures and infinite games. The terminology and concepts introduced here are used

throughout this thesis. This chapter is divided into three sections: the first section concerns

finite automata and introduces finite word and tree automata, the second section introduces

structures and the third section introduces infinite games on graphs.

In the third section, we prove that reachability, Büchi and parity games enjoy memory-

less determinacy (Theorems 2.3.2, 2.3.3 and 2.3.4). In particular we provide a new proof of

10 CHAPTER 1. INTRODUCTION

the memoryless determinacy of parity games which is much simpler than the proof given

in [41](Ch. 6).

Chapter 3. Complexity of regular languages

In this chapter, we investigate the complexity of regular languages from two directions:

the first direction is to investigate the relationship between the NFA and the DFA-state

complexity of a regular language and the second direction is to investigate the DFA-state

complexity of natural subclasses of regular word and tree languages. Accordingly, this

chapter is divided into two main sections.

In the first section of this chapter (section 3.1) we investigate the interplay between the

NFA and DFA-state complexity of regular word languages. It is well known that the cost

of constructing a DFA equivalent to a NFA (using the subset construction) is exponential

i.e. for any n there exists an n state NFA recognizing a language L such that 2n number of

states are needed for a DFA to recognize the complement of the language L [78, 66]. The

situation is similar for the case of complementation of NFA’s i.e. there exists a NFA with n

states such that the NFA recognizing its complement needs 2n states [66].

In section 3.1.1 we revisit subset construction and investigate the problems around the

following question: given n and m such that n ≤ m ≤ 2n, does there exist a regular language

whose NFA-state complexity is n and its DFA-state complexity is m? Then in section 3.1.2,

we focus on the following question: given n and m with n ≤ m ≤ 2n, does there exist a

regular language whose NFA-state complexity is n such that the NFA-state complexity of

the complement of the language is m? We present asymptotic solutions to these problems.

In particular, we prove the following:

1. For every k > 1 there exists a regular language Ln over a k-letter alphabet, where n > k,

such that a minimal NFA recognizing Ln needs exactly n states and the minimal DFA

recognizing Ln needs exactly (k+1)·n−c states and O(n) transitions, where c = (k+1)2−2

(Theorem 3.1.3).

2. Let m =
2k+1−pk−2p

p−1 for any p, k > 0. Then for every n = k + m + 2 there exists a

regular language Ln over the binary alphabet such that the minimal NFA recognizing

Ln needs exactly n states and the minimal DFA needs exactly p · n states and O(n)

transitions (Theorem 3.1.6).

3. For every k > 1 there exists a regular language Ln over a k-letter alphabet such that

1.2. SUMMARY OF RESULTS 11

the minimal NFA A recognizing Ln needs n states, where n > k, and the minimal

DFA recognizing Ln has asymptotically nk states. The NFAA has O(n2

log2(n)) transitions

(Theorem 3.1.14).

4. For every k > 1 there exists a regular language Ln over the k-letter alphabet, where

n > k, such that the minimal NFA recognizing Ln needs exactly n states and the

minimal NFA recognizing the complement of Ln needs exactly n(k + 1) − c states and

O(n) transitions, where c = 2(k + 1) − 2 (Theorem 3.1.16).

5. For every k > 1 there exists a regular language Ln over the k-letter alphabet, where

n > k, such that the minimal NFA A recognizing Ln needs O(n) states and the

minimal NFA recognizing the complement of Ln needs between O(nk−1) and O(n2k)

states. MoreoverA has O(n2

log2(n)) transitions (Theorem 3.1.21).

The results of this section have been published in [36].

In the second section of this chapter (section 3.2), we investigate the DFA-state com-

plexity of finite word and tree languages. In particular, we show the following:

1. We first consider the class of finite word languages which have all words of the same

length, say h (we call these uniform-length languages of length h). Suppose h = 2i+ i for

some i ≥ 0. The state complexity of the class of uniform-length languages of length

h is Θ(2h/h) (see Theorem 3.2.4). Here we consider the case of a binary alphabet but

the proof may be extended for an alphabet of greater size.

2. The state complexity of the class of finite word languages whose words have length

bounded by h, where h = 2i + i for some i ≥ 0, is Θ(2h/h) (see Theorem 3.2.6). As in

the previous case, we consider a binary alphabet but the result may be generalized

for alphabets of greater size.

3. The state complexity of union and intersection of two uniform-length languages is at

most k−1
k mn +m + n − 2 where k = |Σ| and m, n are the number of states in the input

minimal automata (see Theorem 3.2.9).

4. Consider two finite word languages L1, L2 over alphabet Σ of size k which have state

complexities m, n respectively. The state complexity of L1 ∪ L2 (and L1 ∩ L2) is at most

m · n − logk(m)(m + n) + 3m + n + 2 states (see Theorem 3.2.13)

12 CHAPTER 1. INTRODUCTION

5. Consider two finite tree languages L1, L2 with state complexities m, n respectively such

that L1, L2 that are subsets of the {1}-labeled k-ary trees. The state complexity of L1∪L2

(and L1∩L2) is at most m ·n− (logk log2(m))(m+n)+9m+n (see Theorem 3.2.18). This

result may also be generalized for finite tree languages which are subsets ofΣ-labeled

k-ary trees for |Σ| > 1 (see Corollary 3.2.19).

The results of this section have been published in [39].

Chapter 4. Finite automata over structures

In this chapter, we introduce the notion of finite automata over algebraic structures.

Recall that an algebraic structure S consists of a (possibly infinite) domain D, a finite

number of atomic operations f1, . . . , fm, relations R1, . . . ,Rn and constants c1, . . . , cℓ from D.

A D-word is a finite sequence a1 . . . at of elements from the domain D and a D-language is

a set of D-words. We use Op(S),Rel(S) to denote the atomic operations and relations of S

respectively. This chapter is divided into five sections.

In the first section of this chapter (section 4.1), we define automata over any given

structure S. Such an automaton is equipped with a finite number of states, a fixed number

of registers, a read only head that always moves to the right in the tape and transitions

between the states.

The automaton processes D-words. During the computation, given an input from the

sequence, the automaton tests the input against the values of the registers. Depending on

the outcomes of the test, the automaton updates the register values by performing basic

operations on the input and the register values and then makes a transition to a state. The

automaton accepts a D-word if it reaches an accepting state after procesing it. The language

accepted by the automaton is the set of all D-words accepted by it. Given a structureS, we

use the term S-automata to denote the instantiation of this computation model for S. The

formal definition of S-automata is as follows:

Definition 4.1.2 An (S, k)-automaton is a tuple A = (Q, α, x,∆, q0, F) where Q is a finite set of

states, the mapping α is a function from Q to Relk+ℓ(S), x ∈ Dk are the initial values of the registers,

q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states and ∆ ⊆ Q × {0, 1}k+ℓ ×Q ×Opk(S)

is the transition relation ofA. We refer to the first k registers (whose values may change during the

course of a run) as changing registers.

The (S, k)-automaton is deterministic if for each q ∈ Q, b ∈ {0, 1}k+ℓ , there is exactly one q′

1.2. SUMMARY OF RESULTS 13

and g ∈ Opk(S) such that (q, b, q′, g) ∈ ∆. An (deterministic) S-automaton is an (deterministic)

(S, k)-automaton for some k.

In the following, we will use pri (i ∈ {1, 2}) to denote the operation defined as fol-

lows: pri(x1, x2) = xi. Also we use S[R1, . . . ,Rm, f1, . . . , fn, a1, . . . , ad] to denote the structure

obtained by adding the relations R1, . . . ,Rm, the operations f1, . . . , fn and the constants

a1, . . . , ad to S.

In the second section of this chapter (section 4.2), we use several examples to demon-

strate some simple properties ofS-automata. First we show that all regular word languages

can be recognized by S-automata. Let S be a structure. Suppose that the structure S con-

tains an atomic equivalence relation ≡ of finite index. Let Σ = {σ1, . . . , σk} be the set of all

equivalence classes of ≡. For every word w = w1 . . .wn over the alphabet Σ, let R(w) be the

D-language {a1 . . . an | ai ∈ wi for all i = 1, . . . , n}. For every language L over Σ, let R(L) be

the D-language
⋃

w∈L R(w). Then we prove the following theorem.

Theorem 4.2.1 Let ai be an element from the ≡-equivalence class σi, where i = 1, . . . , k. Then each

of the following is true.

• For every regular languageL overΣ, the D-language R(L) is accepted by an (S[a1 , . . . , ak], 0)-

automaton.

• Suppose the signature of S contains only one relation ≡ and the atomic operations of S are

compatible with ≡. For every S-automata recognizable D-language W, there is a regular

language L over Σ such that W = R(L).

Then we show the following two separation results via examples:

• The class of D-languages accepted by (S, k)-automata properly contains the class of

D-languages accepted by (S, k − 1)-automata (see example 4.2.2).

• Deterministic S-automata form a proper subclass of S-automata. Furthermore, the

class of S-automata recognizable D-language is not closed under Boolean operations

in the general case (see example 4.2.3).

In the third section (4.3), we provide several examples of determinisitcS-automata and

prove that languages recognized by deterministicS-automata are closed under the boolean

operations. In particular we show the following:

14 CHAPTER 1. INTRODUCTION

Theorem 4.3.3 LetS be a structure. The class of languages recognized by deterministicS-automata

is closed under union, intersection and complementation.

In the fourth section (4.4), we investigate the validation problem which is formulated as

follows:

Validation problem. Design an algorithm that, given an S-automaton A and a path p in

A from the initial state to an accepting state, decides if there exists a D-word a such that a

run ofA over a proceeds along p.

The validation problem forS-automata turns out to be equivalent to solving systems of

equations and in-equations over the structure. Formally, deciding the validation problem

is equivalent to deciding the existential theory of the structure S. In particular we prove

the following theorem.

Theorem 4.4.5 The validation problem for S[pr1,pr2,=]-automata is decidable if and only if the

existential theory of S is decidable.

In the fifth section of this chapter (section 4.5), we investigate the emptiness problem for

S-automata which can be stated as follows:

Emptiness problem. Design an algorithm that, given a structureS and an (S, k)-automaton

A, decides ifA accepts at least one D-word.

The answer to this questions obviously depends on many parameters: the structure S,

the number of registers of the automaton, the structure of the automaton etc. In this section

we show that the emptiness problem may become decidable or undecidable by varying

these parameters. In section 4.5.1, we restrict the structure of the S-automata to be acyclic.

We observe that the emptiness problem for acyclic automata is computationally equivalent

to the validation problem and have the following theorem.

Theorem 4.5.1 For any structure S, the emptiness problem of acyclic S[pr1,pr2,=]-automata is

decidable if and only if S has decidable existential theory.

Then we consider acyclic automata over two structures which occur naturally in math-

ematics: SZ = (Z;+,×,pr1,pr2,=, 0) and SN = (N;+,×,pr1,pr2,=, 0). Note that these

structures do not have decidable existential theory. We prove the emptiness problem for

SZ (SN) acyclic automata becomes undecidable with a sufficient number of registers by

using a reduction from Hilbert’s tenth problem. In particular we show the following.

Proposition 4.5.4 The emptiness problem for deterministic acyclic (SZ , 11)-automata and (SN, 12)-

automata is undecidable.

1.2. SUMMARY OF RESULTS 15

In section 4.5.2, we investigate the emptiness problem forS-automata when the domain

of S in the natural numbersN. First we show that if we remove the acyclicity constraint

from the automaton, the emptiness problem is undecidable for S-automata with a small

number of registers. In particular we prove the following theorem.

Theorem 4.5.5 Let S1 = (N;+1,−1,=,pr1, 0) and S2 = (N,+1,=,pr1,pr2, 0).

(a) The emptiness problem for deterministic (S1, 2)-automata is undecidable.

(b) The emptiness problem for deterministic (S2, 4)-automata is undecidable.

Then we show that if we reduce the number of registers to 1, the emptiness problem

becomes decidable. We have the following theorem.

Theorem 4.5.6 Let S be the structure (N;+,×,pr1,pr2,=,≤, c1, . . . , cℓ) where c1, . . . , cℓ are arbi-

trary constants inN. The emptiness problem for (S, 1)-automata is decidable.

Next in section 4.5.3, we put a natural constraint on the allowable transitions of the

automata and show that by allowing only those transitions that compare the input or

exactly one register with the constants, the emptiness problem may become decidable.

More precisely we allow the input to be compared with exactly one of the changing

registers using the = relation and compared to the constants using any of atomic relations

of the structure. We call such automata as constant comparing automata. The subclass

of constant comparing automata where the input is only allowed to be compared with

constants (and not the changing registers) are called strongly constant comparing automata.

The reader is referred to definition 4.5.5 for the formal defintion of these automata. We

first show that the emptiness problem for constant comparing automata over the structure

(N;+,×,pr1,pr2,=,≤, c1, . . . , cℓ) is decidable for an aribtrary number of registers.

Theorem 4.5.11 Let S be the structure (N;+,×,pr1,pr2,=,≤, c1, . . . , cℓ) where c1, . . . , cℓ are

arbitrary constants inN. The emptiness problem for constant comparing S-automata is decidable.

Next we analyze the emptiness problem for strongly constant comparing automata and

prove the following theorem.

Theorem 4.5.16 Let S = (N;+,−,pr1,=,≤, c1, . . . , cℓ) where c1, . . . , cℓ are constants inN.

(a) The emptiness problem for constant comparing (S, 2)-automata is undecidable if ℓ ≥ 2.

(b) The emptiness problem for strongly constant comparing S-automata is decidable.

The results of this chapter have been published in [38].

16 CHAPTER 1. INTRODUCTION

Chapter 5. Infinite games played on trees with back-edges

In this chapter, we investigate infinite games on graphs with Büchi and parity winning

conditions. Given a directed graph G, a Büchi game played on G specifies a set of target

nodes T in G, and Player 0 wins the game from a node u if the player has a strategy to

visit nodes in T infinitely often starting from u. A parity game on G associates a priority

ρ(u) ∈ N with every node u. Player 0 wins the game from a node u if the player has a

strategy such that the minimum priority amongst all the nodes visited infinitely often in

any play starting from u is even.

Recall that the winning region problem is to determine all those nodes from which Player 0

(Player 1) wins the game. It is well known that the winning region problem for Büchi games

can be solved in polynomial time. By contrast, though intensely studied, polynomial time

algorithms for solving the winning region problem for parity games remain unknown.

Parity games are known to be in NP ∩ Co-NP but not known to be in P.

The classical algorithm for Büchi games has a running time of O(n · (n +m)) where n,m

are the number of nodes and vertices of the underlying graph respectively [41]. However

the classical algorithm seems to be repetitive in nature and hence it is natural to carry out a

more detailed analysis of Büchi games to see if it can be improved. For instance, the paper

[17] investigates the class of graphs with constant out-degrees and shows that solving

Büchi games played on such graphs takes O(n2/ log n) time. For graphs with unbounded

out-degrees, the paper [16] presents an algorithm that runs in time O(n ·m · log δ(n)/ log n)

where δ(n) is the out-degree of the game graph. These investigations suggest the idea

of designing more efficient algorithms in specified classes of graphs such as trees with

back-edges.

We first analyze Büchi games played on trees with back-edges and then apply our

analysis to parity games on trees with back-edges. This chapter is divided into five sections.

In the first section (5.1), we lay out the basic definitions and terminology of trees with back-

edges. We also prove a normal form lemma (Lemma 5.1.2) for games played on trees with

back-edges.

In the second section (5.2), we analyze Büchi games played on trees with back-edges.

In our analysis, we use the notion of snares to classify the winning nodes of Player 0 as

follows. Intuitively, a snare of rank 0 is a subtree from which Player 0 has a strategy to stay

in the subtree forever and win the game. A snare of rank i, i > 0, is a subtree from which

1.2. SUMMARY OF RESULTS 17

Player 1 may choose between two options: (a) staying in the subtree forever and losing the

game, or (b) going to an (i− 1)-snare. We show that the collection of all snares corresponds

exactly to winning nodes of Player 0. We present an efficient algorithm that solves a Büchi

game played on trees with back-edges. The algorithm runs in time O(min{r · m, ℓ + m})

where r is the largest rank of a snare and ℓ is the external path length, i.e., sum over all the

leaves, of the distances from the root to each leaf in the underlying tree. In particular, we

prove the following theorem.

Theorem 5.2.9 There exists an algorithm that solves any Büchi game G played on trees with back-

edges in time O(min{r · m, ℓ +m}) where r is the snare rank, m is the number of edges and ℓ is the

external path length of G.

In the third section (5.3), we apply our analysis for Büchi games to the case of parity

games played on trees with back-edges. We reduce the problem of solving parity games

played on trees with back-edges to solving Büchi games (Lemma 5.3.1) and prove the

following theorem.

Theorem 5.3.2 Any parity game G played on trees with back-edges can be solved in time O(ℓ +m)

where ℓ is the external path length of G and m is the number of edges in G.

In the fourth section (5.4), we describe the results of experiments to compare the running

our algorithm for Büchi games to the classical algorithm for Büchi games. The experiments

can be broadly divided into two categories: average case running time comparison and

running time comparison with random sampling. Our experiments clearly show that, in

practice, not only our algorithm is much more efficient asymptotically but it also performs

better for games with small number of nodes on the set of trees with back-edges.

In the fifth section (5.5), we support the positive results of the experiments described

in section 5.4 by providing some concrete examples of Büchi games where our algorithm

outperforms the classical algorithm. We present a class of Büchi games on trees with back-

edges, E, where our algorithm performs asymptotically better than the classical algorithm.

In particular we prove the following.

Proposition 5.5.2 For the class of Büchi games E, the classical algorithm has a quadratic running

time of O(n · (n +m)) whereas our algorithm has a linear running time of O(n +m).

The results of this chapter have been published in [37].

18 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

As discussed in Chapter 1, our goal is to study two models of computation: finite automata

and two-player games. In this chapter we provide some basic definitions and facts about

finite automata and two-player games. The definitions and terminology we introduce in

this chapter will be used throughout this thesis.

We will useN,Z,Q,R to denote the natural numbers, integers, rational numbers and

real numbers respectively. Also we useN+,Q+,R+ to denote the positive natural numbers,

rational numbers and real numbers respectively.

2.1 Finite automata

In this section we introduce finite word and tree automata and provide some basic facts

about them. For a detailed background on automata theory, the reader is referred to [47].

2.1.1 Finite word automata

We useΣ to denote a finite set of symbols which is referred to as the alphabet. We denote the

empty word by ǫ. We use Σ∗ to denote the set of all finite words over Σ and Σ+ = Σ∗ \ {ǫ}. A

language L is a subset of Σ∗. For σ ∈ Σ and n ∈N, σn is the word obtained by concatenating

σ to itself n times and σ0 = ǫ. Also σ∗ = {σn | n ∈N} and σ+ = σ∗ \ {ǫ}. We now define finite

word automata.

Definition 2.1.1 A deterministic finite word automaton (DFA)A overΣ is a 4-tuple 〈S, δ, s0 , F〉

such that:

19

20 CHAPTER 2. PRELIMINARIES

1. S is the finite set of states.

2. ∆ : S × Σ→ S is the transition function.

3. s0 ∈ S is the initial state.

4. F ⊆ S is the set of accepting states.

A nondeterministic word automaton is defined similarly except that we may have more

than one initial state and each state may have multiple outgoing transitions labeled by the

same symbol. Formally:

Definition 2.1.2 A nondeterministic finite word automaton (NFA)A over Σ is a 4-tuple 〈S, δ,

S0, F〉 such that:

1. S is the finite set of states.

2. ∆ : S × Σ→ 2S is the transition function.

3. S0 ⊆ S is the set of initial states.

4. F ⊆ S is the set of accepting states.

Given a NFAA = 〈S, δ, S0, F〉, we define δ+ : S × Σ+ → 2S recursively by:

1. δ+(s, σ) = δ(s, σ) and

2. δ+(s,w · σ) = δ(δ+(s,w), σ)

where s ∈ S, σ ∈ Σ and w ∈ Σ+. Also for each X ⊂ S and w ∈ Σ+, we let δ+(X,w) =
⋃

s∈X δ
+(s,w). Intuitively δ+(s,w) is the set of all states ofA that may be reached by reading

the word w starting from the state s.

A run of the automaton A on the finite word w = σ1σ2 . . . σn is the sequence of states

s0, s1, . . . , sn−1, sn such that s0 is an initial state and si+1 ∈ ∆(si, σi). The run is said to be

accepting if sn ∈ F. Note that a DFA has exactly one run on a given word while a NFA may

have more than one run on the same word. The automaton A is said to accept the word

w if it has an accepting run on w. The language recognized by an automaton, denoted by

L(A), is defined as follows:

{w ∈ Σ∗ | A accepts w}.

2.1. FINITE AUTOMATA 21

It is well known that the class of languages recognized by NFA’s is exactly the same as

that recognized by DFA’s i.e. for every NFAA, there exists a DFAB such that L(A) = L(B).

The class of languages recognized by finite word automata are known as regular languages,

which we denote by R. Hence we will frequently identify a regular language with the

finite automaton recognizing it and vice versa. For a regular language L, the minimal DFA

recognizing L is the DFA with the least number of states recognizing L.

For a language L ⊆ Σ∗, we define the Myhill-Nerode equivalence relation ≡L on Σ∗ as

follows: x ≡L y if xz ∈ L if and only if yz ∈ L for every z ∈ Σ∗. The Myhill-Nerode theorem

is a classical resullt that gives a necessary and sufficient condition for a language to be

regular:

Theorem 2.1.1 A language L ⊆ Σ∗ is regular if and only if the equivalence relation ≡L has finite

index. Furthermore, if L is regular, the index of ≡L is the size of the minimal DFA recognizing L.

For two languages L1 and L2, we define the concatenation operation as follows: L1 · L2 =

{w ∈ Σ∗ | w = xy and x ∈ L1, y ∈ L2}. For a language L, we define L0 = {ǫ} and Ln+1 = L · Ln

for n ∈ N. The Kleene star operation is defined as L∗ =
⋃

n∈N Ln. Kleene’s theorem gives an

alternate characterization of regular languages:

Theorem 2.1.2 A language L ⊆ Σ∗ is regular if and only if it can be constructed from the empty

set and singletons by the application of a finite number of union, concatenation and Kleene star

operations.

The next classical result relies on the fact that if an n-state automaton processes a word

w such that |w| > n, then any run of the automaton on w must contain at least one repeated

state. It is called the pumping lemma and may be stated as follows:

Theorem 2.1.3 Suppose L ⊆ Σ∗ is a regular language which is accepted by a n-state NFA. For any

w ∈ L such that |w| ≥ n, there are words x, y, z ∈ Σ∗ such that w = xyz, |y| > 1, |xy| ≤ n and

xyiz ∈ L for all i ∈N+.

The pumping lemma is often used to show that a language in not regular. For example, it

is easy to use the pumping lemma to show that the language {0n1n | n ∈N} is not regular.

The class of regular languages is well known to be closed under the boolean operations

of union, intersection and complementation. Given a DFA M = (S,∆, s0, F) the DFA

M′ = (S,∆, s0, S\F) recognizes the complement of L(A). Also for DFA’sM1 = (S1,∆1, s0, F1)

andM2 = (S2,∆2, q0, F2), we define the union automatonM1 ⊕M2 = (S,∆, sI, F) as follows:

22 CHAPTER 2. PRELIMINARIES

1. S = S1 × S2.

2. sI = (s0, q0).

3. F = (F1 × S2) ∪ (S1 × F2).

4. ∆((s, q), σ) = (∆1(s, σ),∆2(q, σ)) for s ∈ S1, q ∈ S2 and σ ∈ Σ.

It is quite easy to show that union automatonM1 ⊕M2 recognizes the languages L(M1)∪

L(M2). We can define the intersection automatonM1⊗M2 = (S,∆, sI, F) to recognize L(M1)∩

L(M2) in a similar manner except that F = F1 × F2. We refer to the automataM1 ⊕M2 and

M1 ⊗M2 collectively as product automata.

2.1.2 Finite tree automata

In this section we provide the basic definitions and properties of tree automata. The reader

is referred to [40, 23] for a detailed treatment of tree automata. We use ≺pref to denote the

prefix order on words in N∗, i.e., for u, v ∈ N∗, u ≺pref v if v = uw for some w ∈ N∗. For

L ⊆N∗, let pref(L) = {w ∈N∗ | ∃u ∈ L : w ≺pref u}. We say that L is prefix-closed if pref(L) = L.

For an integer k ≥ 0, we use Nk to denote the set {0, . . . , k − 1}. A k-ary tree t is a

non-empty finite prefix-closed subset ofN∗
k
. The ≺pref-maximal elements in a tree t are the

the leaves, denoted by leaves(t). All other elements are internal nodes. The empty word ε is

the root. The height of the tree is the maximal distance from the root to a leaf. We denote

the set of all k-ary trees by Tk.

Let Σ be a finite alphabet. A Σ-labeled k-ary tree is of the form (t, λ) where t is a k-ary tree

and λ : t → Σ is a labeling function. We use Tk(Σ) to denote the set of all finite Σ-labeled

k-ary trees. Analogous to the case of finite word automata, we define finite tree automata.

Note that our definition of tree automata is slightly different from the one given in [40] but

is nonetheless equivalent.

Definition 2.1.3 LetΣ be a finite alphabet. A deterministic (bottom-up) tree automaton (DTA)

over Σ with rank k is a tupleM = (Q,∆, q0, F), where Q is the finite set of states, q0 < Q is the

initial state, F ⊆ Q is the set of accepting states, and

∆ : ((Q ∪ {q0})
k × Σ→ Q

is the transition relation.

2.1. FINITE AUTOMATA 23

Intuitively the intial state q0 may be seen as a “dummy” state such that for any node of the

tree having less than k children, q0 labels the missing children. Formally, for an unlabeled

k-ary tree t ∈ Tk, let t̂ denote the tree t ∪ {wa | w ∈ t, a ∈Nk}.

Definition 2.1.4 Given any Σ-labeled k-ary tree T = (t, λ) ∈ Tk(Σ), a run ofM on T is a mapping

ρ : t̂→ Q such that

(i) for every w ∈ leaves(̂t), ρ(w) = q0, and

(ii) for every w ∈ t, ρ(w) = ∆(ρ(wa1), . . . , ρ(wak), λ(w)).

The run ρ is accepting if ρ(ε) ∈ F.

With L(M) we denote the set of all T ∈ Tk(Σ) on which the DTAM has an accepting run;

this is called the tree language recognized by M. A set L ⊆ Tk(Σ) is called regular if there

exists a DTAM over Σwith L = L(M). The size of a DTA is the number of states it contains

(excluding the state q0). The minimal automaton for a regular tree language L ⊆ Tk(Σ) is the

size of the smallest DTA that recognizes L. We use Rtree denote the class of all regular k-ary

tree languages.

It is easy to see that the class of regular tree languages, just like regular word languages,

is closed under union and intersection. LetM1 = (Q1,∆1, q0, F1) andM2 = (Q2,∆2, q0, F2)

be two rank k DTA over Σ. We define, using a similar definition as the product automata

for word languages, the product tree automataM1 ⊕M2 andM1 ⊗M2. The state space of

the product tree automata is Q1 ×Q2. The transition ∆ : (Q1 ×Q2 ∪ {q0})
k × Σ→ Q1 ×Q2 is

defined as follows. For convenience we write the state q0 as a pair (q0, q0). For any states

p1, . . . , pk ∈ Q1 ∪ {q0} and q1, . . . , qk ∈ Q2 ∪ {q0}, we let

∆((p1, q1), . . . , (pk, qk), σ) = (∆1(p1, . . . , pk, σ),∆2(p2, . . . , pk, σ)).

The set F forM1 ⊕M2 (resp. M1 ⊗M2) is defined as Q1 × F2 ∪ F1 ×Q2 (resp. F1 × F2). The

following lemma is easy to prove.

Lemma 2.1.4 The product automaton M1 ⊕ M2 recognizes L(M1) ∪ L(M2) and M1 ⊗ M2

recognizes L(M1) ∩ L(M2).

Similar to the case of regular word languages, we also have a pumping lemma for regular

tree languages. However we need to introduce some terminology before formulating the

24 CHAPTER 2. PRELIMINARIES

pumping lemma for regular tree languages. Fix k ≥ 0 and let Σ be a finite alphabet. Also

let ∗ be a symbol not occuring in Σ. A Σ-context C is a Σ ∪ {∗} labeled k-ary tree (t, λ) where

the label ∗ may only occur on exactly one leaf of t. The leaf labeled by ∗ is called a hole. A

Σ-context is called non-trivial if its domain is not equal to {ǫ}.

Given a Σ-context C and a Σ-labeled k-ary tree T, we use C[T] to denote the tree

obtained by plugging T into the hole of C. Similarly given two Σ-contexts C1,C2, the

Σ-context obtained by plugging C2 into the hole of C1 is denoted by C1[C2]. We define

Cn inductively by saying that C1 = C and Cn = Cn−1[C]. Now we are ready to state the

pumping lemma for regular tree languages.

Lemma 2.1.5 Suppose L ⊆ Tk(Σ) is a regular tree language recognized by some DTA M with

n states. Then for any T = (t, λ) ∈ L such that the height(t) ≥ k, there exist a Σ-context C1, a

non-trivial Σ-context C2 and a tree T′ ∈ Tk(Σ) such that T = C1[C2[T′]] and C1[Ci
2
[T′]] ∈ L for

every i ∈N+.

2.1.3 Complexity of regular languages

In chapter 1 (section 1.1.1), we briefly described the concept of state complexity of regular

languages. We now give a formal definition of the state complexity of regular word

languages.

Definition 2.1.5 The NFA (DFA) state complexity NSC(L) (SC(L)) of a regular word language

L is the number of states of the minimal NFA (DFA) recognizing L. The NFA (DFA) state

complexity NSC(C) (SC(C)) of a class C ⊆ R of regular word languages is the maximal state

complexity of languages in the class. Consider an operation Op : Rk → R (k ≥ 0). Then

given languages L1, . . . Lk ∈ R, the NFA (DFA) state complexity of Op(L1, . . . , Lk) is defined as

NSC(Op(L1, . . . , Lk)) (SC(Op(L1, . . . , Lk))).

The above definition may be extended to the DTA in a straightforward manner i.e. the state

complexity SC(L) of a regular tree language L is the size of the minimal DTA recognizing L.

When we have the minimal NFA recognizing a regular language, the number of tran-

sitions in the NFA also serves as an important indicator of the complexity of the language

(since the number of transitions may be exponentially more than the number of states).

For a regular word language L, we use the term transition complexity of L to mean the the

number of transitions in the minimal NFA recognizing L.

2.2. STRUCTURES 25

2.2 Structures

A structureS consists of a (possibly infinite) domain D and finitely many atomic operations

f1, . . . , fm, relations R1, . . . ,Rn and constants c1, . . . , cℓ on the set D. We denote this by

S = (D; f1, . . . , fm,R1, . . . ,Rn, c1, . . . , cℓ).

The sequence of symbols f1, . . . , fm,R1, . . . ,Rn, c1, . . . , cℓ is called the signature ofSwhich we

denote by Sig(S). In this thesis we only consider structures whose operations and relations

have arity 2. Furthermore all structures we consider in this thesis will have countable

domains.

We denote the set of all atomic operations and the set of all atomic relations of S by

Op(S) and Rel(S), respectively. The semantics of an operation f ∈ Op(S) are that f takes

two inputs x1, x2 from the domain D and outputs another element x3 ∈ D i.e. f (x1, x2) = x3.

Intuitively, a relation R ∈ Rel(S) may be viewed as a predicate which takes two inputs

x1, x2 ∈ D i.e. R(x1, x2) is either true or false.

A formula over Sig(S) is a formula which uses the relation symbols from Sig(S) as

non-logical symbols. A sentence over Sig(S) is a formula which has no free variables i.e.

every variable in the formula is bound by either a ∀ quantifier or a ∃ quantifier. A sentence

is said to be existential if all the variables are bound by the existential quantifier (∃).

In first-order logic, all variables in a formula may only range over the elements of the

domain of S. In this thesis we will only consider formulae from first-order logic. Given a

sentence ϕ over Sig(S), we write S |= ϕ if ϕ is true in S. The theory of S, denoted by Th(S)

is the set of all first-order sentences over Sig(S) that are true in S, that is

Th(S) = {ϕ | S |= ϕ and ϕ is a first order sentence over Sig(S)}.

The existential theory of S, denoted by Th∃(S) is the set of all existential sentences that are

true in S, that is

Th∃(S) = {ϕ | S |= ϕ and ϕ is an existential sentence over Sig(S)}.

26 CHAPTER 2. PRELIMINARIES

2.3 Infinite games on graphs

For background on games played on graphs, see e.g. [41]. A game is a tuple G =

(V0,V1,E,Win) where G = (V0 ∪ V1,E) forms a finite directed graph (called the under-

lying graph of G), V0 ∩ V1 = ∅ and the set Win ⊆ (V0 ∪ V1)ω. Nodes in the set V0 are said

to be 0-nodes and nodes in the set V1 are said to be 1-nodes. We use V to denote V0 ∪ V1

and E(u) to denote the set {v | (u, v) ∈ E}. The game is played by Player 0 and Player 1 in

rounds. Initially, a token is placed on some initial node v ∈ V. In each round, if the token is

placed on a node u ∈ Vσ, where σ ∈ {0, 1}, then Player σ selects a node u′ ∈ E(u) and moves

the token from u to u′. The play continues indefinitely unless the token reaches a node

u where E(u) = ∅. Thus, a play starting from u is a (possibly infinite) sequence of nodes

π = v0v1 . . . such that v0 = u and for every i ≥ 0, vi+1 ∈ E(vi). We use Plays(G) to denote the

set of all plays starting from any node in V. The winning condition of G, denoted by Win, is

a subset of Plays(G) and Player 0 wins a play π ∈ Plays(G) if π ∈ Win and Player 1 wins π

otherwise. We use Occ(π) to denote the set of nodes that appear in π and Inf(π) to denote

the set of nodes that appear infinitely often in π.

A reachability game is a game G = (V0,V1,E,Wreach). The winning condition Wreach is

determined by a set of target nodes T ⊆ V such that Wreach = {π ∈ Plays(G) | Occ(π)∩T , ∅}.

Hence, for convenience, we denote the reachability G by (V0,V1,E,T).

A Büchi game is a game G = (V0,V1,E,Wbuchi). As in the case of reachability games, we

specify a set of target nodes T ⊆ V. Then the Büchi winning condition can be expressed

as follows: Wbuchi = {π ∈ Plays(G) | Inf(π) ∩ T , ∅}. For convenience, we also denote a

Büchi game by (V0,V1,E,T). It will be clear from the context whether reachability or Büchi

games are considered.

A parity game is a game G = (V0,V1,E,Wparity) along with a priority function ρ : V →N.

The winning condition is expressed as follows: Wparity = {π ∈ Plays(G) | min{ρ(v) | v ∈

Inf(π)} is even}. We use the tuple (V0,V1,E, ρ) to denote a parity game.

When playing a game, the players use strategies to determine the next move from the

previous moves. Formally, a strategy for Player σ (or a σ-strategy), where σ ∈ {0, 1}, is a

partial function fσ : V∗Vσ → V such that if fσ(v1v2 . . . vi) = w then (vi,w) ∈ E (here V∗Vσ

denotes the set of all finite paths in the graph G with the last node in Vσ). A strategy fσ for

Player σ is called memoryless if fσ(v1v2 . . . vi) = fσ(vi) for all (v1v2 . . . vi) ∈ V∗Vσ.

A play π = v0v1 . . . is consistent with fσ if vi+1 = fσ(v0v1 . . . vi) whenever vi ∈ Vσ (i ≥ 0).

2.3. INFINITE GAMES ON GRAPHS 27

A strategy fσ is winning for Player σ on v if Player σwins all plays starting from v consistent

with fσ. If Player σ has a winning strategy on u, we say Player σ wins the game on u, or

u is a winning position for Player σ. The σ-winning region, denoted by Wσ, is the set of all

winning positions for Player σ. Note that W0 ∩W1 = ∅. By solving a game, we mean to

provide an algorithm that takes as input a game G, and outputs all nodes in W0.

For the sake of simplicity, we assume E(u) , ∅ for all u ∈ V in any game G. This can be

achieved by performing the following whenever E(u) = ∅: we add two extra vertices u1, u2

such that E(u) = u1, E(u1) = u2 and E(u2) = u1. In the case of reachability and Büchi games

we declare u1, u2 < T and for parity games we declare u1, u2 to have odd priorities. Note

that this does not change the winning region of Player 0 for any of the winning conditions

described earlier. Hence we may assume that Plays(G) ⊆ Vω.

A game enjoys determinacy if W0 ∪W1 = V. A well known result by Martin states that

all Borel games enjoy determinacy [62]. The next theorem follows from this result since

reachability, Büchi and parity games are special cases of Borel games:

Theorem 2.3.1 [62][41] Reachability, Büchi and parity games enjoy determinacy.

A game is said to enjoy memoryless determinacy if it enjoys determinacy and there is a

memoryless winning strategy for Player σ (σ ∈ {0, 1}) starting from each node in Wσ. In

the subsequent sections, we outline proofs of the memoryless determinacy of reachability,

Büchi and parity games.

Reachability games.

In this section we outline the proof of the memoryless determinacy of reachability games.

The proof is constructive in the sense that it gives an algorithm to solve reachability games

and also a memoryless winning strategy for each player. Consider a reachability game

G = (V0,V1,E,T). We use G to denote the underlying graph (V0 ∪V1,E) and let m = |E| and

n = |V|.

Theorem 2.3.2 [41] Reachability games enjoy memoryless determinacy. Furthermore there exists

an O(m + n) algorithm to solve reachability games.

Proof We now describe the classical algorithm to solve reachability games which also

28 CHAPTER 2. PRELIMINARIES

provides a proof of the memoryless determinacy of reachability games. For Y ⊆ V, let

Pre(Y) = {v ∈ V0 | ∃u : (v, u) ∈ E ∧ u ∈ Y} ∪ {v ∈ V1 | ∀u : (v, u) ∈ E→ u ∈ Y}.

The algorithm to solve G computes a sequence of sets T0,T1, ...where T0 = T, and for i > 0,

Ti = Pre(Ti−1) ∪ Ti−1. Since the graph is finite, we have Ts = Ts+1 for some s ∈ N. We say

that a node v has rank i (i ≥ 0) if v ∈ Ti \ Ti−1. If u < Ts, we say that it has infinite rank. We

claim that a node has finite rank if and only if it is winning for Player 0.

We may prove by induction on the rank that every vertex with a finite rank is winning

for Player 0. Consider a node v with rank i for i > 0. If v ∈ V1, then by the algorithm all u

such that (v, u) ∈ E must have rank strictly lesser than i. Also if v ∈ V0, then there must exist

a x such that (v, x) ∈ E and x has rank stricly lesser than i. By the inductive assumption,

there exists a memoryless winning strategy f for Player 0 on x. Hence we may define the

following memoryless strategy g : V0 → V:

g(u) =

x if u = v

f (u) otherwise

The strategy g is clearly a winning strategy for Player 0 on v. Hence we have Ts ⊆W0.

Now suppose that v ∈ W0 i.e. Player 0 has a winning strategy f such that all plays

starting from v reach T. Let n ∈ N be the number of nodes of the graph. Then it must

be the case that any play π consistent with f must visit a target node in at most n steps

since otherwise π would never visit a target node (contradicting the assumption that f is a

winning strategy). Hence we must have v ∈ Tn and therefore v has a finite rank. The above

arguments prove that W0 = {v | v has finite rank} = Ts.

We may implement the algorithm for solving reachability games to run in O(m + n).

We associate with each node v ∈ V, an integer labels which we denote by r(v). We first

compute the out-degrees of every v ∈ V1 and initialize r(v) to be the out-degree of v. For

every v ∈ V0, we initialize r(v) = 1. This can be accomplized in O(m + n).

Then we conduct a reverse breadth first search strating from the set of target nodes T.

First we set r(t) = 0 for every t ∈ T. For every (u, t) ∈ E such that u ∈ V0 and t ∈ T, we set

r(u) = 0. Also for every (u, t) ∈ E such that u ∈ V1 and t ∈ T we decrement the value of r(u)

by 1 (while ensuring that r(u) remains nonnegative). Note that we process each edge exactly

once in order to update the integer labels. Then we let T1 = {v | (v, t) ∈ E, r(v) = 0 and t ∈ T}

2.3. INFINITE GAMES ON GRAPHS 29

and repeat the reverse breadth first search starting from T1. We continue this process until

no more nodes have their can have their integer labels set to 0. At the end of this process

we have Ts = {v ∈ V | r(v) = 0}. Since each edge is processed exactly once, the reverse

breadth first search described above runs in O(m + n). Therefore the overall running time

of the algorithm is O(m + n).

Note that the above algorithm for reachability games gives us a memoryless winning

strategy for Player 0. We refer to this algorithm as the reach algorithm. For any set X ⊆ V, we

use Reachσ(X,G) to denote the σ-winning region for the reachability game (V0,V1,E,X).

In other words, from any node in Reachσ(X,G), Player σ has a strategy that forces any play

starting from this node to visit X. Hence in the above algorithm we have Ts = Reach0(T,G).

Büchi games.

Similar to the case of reachability games, we now provide a constructive proof of the fact

that Büchi games enjoy memoryless determinacy. Consider a Büchi gameG = (V0,V1,E,T).

We use G to denote the underlying graph (V0 ∪ V1,E) and let m = |E| and n = |V|.

Theorem 2.3.3 [41] Büchi games enjoy memoryless determinacy. Furthermore there exists an

O(n · (m + n)) algorithm to solve Büchi games.

Proof The algorithm to solve G computes the sequences of sets T0,T1, . . ., R0,R1, . . . and

U0,U1, . . . as follows: Let T0 = T. Suppose Ti is defined for i ≥ 0. Set Ri = Reach0(Ti,G)

and Ui = V \ Ri. Set Ti+1 = Ti \ Reach1(Ui,G). Hence we have T0 ⊇ T1 ⊇ T2 ⊇ Since

the game is played on a finite directed graph, we must have Ts = Ts+1 for some s ∈N. We

claim that a node v is a winning position for Player 0 if and only if v ∈ Reach0(Ts,G).

Consider a node v ∈ Reach0(Ts,G). By the algorithm, we have Reach1(Us,G) ∩Ts = ∅

and hence Player 0 must have a memoryless strategy f on v (corresponding to the strategy

given by the Reach0(Ts,G) algorithm) such that any play consistent with f never leaves

Reach0(Ts,G). The memoryless strategy f is clearly a winning strategy for Player 0 since

any play consistent with it visits nodes in Ts infintely often. Hence we have v ∈ W0 and

Reach0(Ts,G) ⊆W0.

Now consider a node v ∈ V \ Reach0(Ts,G). We show that Player 1 has a memoryless

winning strategy on v. In order to do this we observe the following for every i ∈N:

30 CHAPTER 2. PRELIMINARIES

For every v ∈ Ui, Player 1 has a memoryless winning strategy gi on v such that any play

consistent with gi never visits any nodes from Reach0(Ti,G)

We may prove the correctness of the above statement by induction. For i = 0, it is

clear that for any v ∈ U0 Player 1 has a memoryless winning strategy g0 such that any

play consistent with it never visits any node in Reach0(T0,G) (by definition of U0). Now

consider v ∈ Ui+1. By definition of Ui+1, Player 1 has a memoryless strategy f which avoids

all nodes in Reach0(Ti+1,G).

Also by the inductive assumption for any node u ∈ Ui, Player 1 has a memoryless

winning strategy gi on u such that any play consistent with it avoids Reach0(Ti,G). Fur-

thermore from any node u ∈ T \ Ti+1, Player 1 has a memoryless strategy f ′ to force any

play into Ui in one move (corresponding to the strategy given by Reach1(Ui,G)). We now

define the memoryless strategy gi+1 : V1 → V for Player 1 as follows:

gi+1(v) =

f (v) if v ∈ Ui+1 \Ui

f ′(v) if v ∈ T

gi(v) otherwise

We now claim that gi+1 is a winning strategy for Player 1 on v ∈ Ui+1. We only need to

consider the case when v ∈ Ui+1 \Ui. Indeed consider any play π starting from v consistent

with gi+1. There are two cases: (1) no target node is visited by π or (2) some target node is

visited by π. In the first case, π is clearly a winning play for Player 1. In the second case let

π = vu1u2 . . . uktx . . . where t ∈ T is the first target node visited by π. Note that t must be in

T \ Ti+1 since v ∈ Ui+1 \Ui and by the definition of gi+1, the play vu1 . . .uk is consistent with

f which avoids all nodes in Reach0(Ti+1,G). Therefore x ∈ Ui and by the definition of gi+1,

the play from x onwards is consistent with gi (by the inductive assumption that gi avoids

all nodes in Reach0(Ti,G)). Since gi is a winning strategy for Player 1, πmust be winning for

Player 1. This proves the correctness of the statement and it immediately follows that any

node v ∈ V \ Reach0(Ts,G) is a winning node for Player 1. Therefore W0 ⊆ Reach0(Ts,G)

and hence W0 = Reach0(Ts,G) as required.

Since the reach algorithm has a running time of O(m + n) and the algorithm for solving

Büchi games performs at most n iterations, the running time of the algorithm to solve Büchi

games is O(n · (n +m)).

2.3. INFINITE GAMES ON GRAPHS 31

Parity games.

Parity games also enjoy memoryless determinacy but unlike reachability and Büchi games,

no polynomial time algorithm is known to solve them. A constructive proof of the memo-

ryless determinacy of parity games can be found in in [41](Ch. 6). The proof given in [41] is

constructive but quite involved. Here we provide an alternative proof of the memoryless

determinacy of parity games which is much simpler. This proof is due to Khoussainov [55]

and has not been written down before to the best of our knowledge.

Theorem 2.3.4 [41] If Player 0 wins a parity game G = (V0,V1,E, ρ) starting from v ∈ V, then

Player 0 has a memoryless strategy to do so.

Before we begin the proof of the above theorem,we need to introduce some terminology.

A parity gameN = (V0,V1,E, ρ) is called a choiceless game for Player σ (σ ∈ {0, 1}) if |E(v)| = 1

for every v ∈ Vσ. It is easy to see that a choiceless game for Player σ defines a memoryless

strategy for Player σ.

Consider a node x ∈ V0 such that |E(x)| > 1 and let S ⊂ E(x) be an arbitrary non-

empty subset of E(x). We define the two parity games G(x, S),G(x, S) as follows: G(x, S) =

(V0,V1,E1, ρ) where E1 = E \ {(x, u) ∈ E | u < S}. The game G(x, S) = (V0,V1,E2, ρ) is defined

analogously and E2 = E \ {(x, u) ∈ E | u ∈ S}.

Lemma 2.3.5 Consider a parity game G = (V0,V1,E, ρ) and let x ∈ V0 be such that E(x) > 1.

Then for any node v ∈ V, Player 1 wins G from v if and only if Player 1 wins both G(x, S) and

G(x, S) from v for some S ⊂ E(x).

Proof It is easy to see that if Player 1 wins the game starting from v, then it wins bothG(x, S)

and G(x, S) from v. Now suppose that Player 1 has winning strategies f0, f1 in G(x, S) and

G(x, S) respectively.

For a play π = v0v1 . . . vr in G, we use τ0(π) to denote the portion of π that only uses

edges in G(x, S). Similarly we use τ1(π) to denote the portion of π that only uses edges in

G(x, S). Also we use ix ∈ {0, . . . , r} to denote the last occurrence of x in π (if π visits x at least

once). We now define a strategy f : V∗V1 → V for Player 1 in G as follows:

f (v0 . . . vkvk+1) =

f0(v0 . . . vkvk+1) if x does not occur in v0v1 . . . vk

f0(τ0(v0 . . . vk+1)) if x occurs in v0 . . . vk and vix+1 ∈ S

f1(τ1(v0 . . . vk+1)) if x occurs in v0 . . . vk and vix+1 < S

32 CHAPTER 2. PRELIMINARIES

Consider a play π consistent with f . The following cases are possible for π:

1. x occurs finitely many times in π: In this case we must have that π always uses edges

of G(x, S) after the last occurrence of x. Hence by the definition of f , the portion of

π after the last occurrence of x is consistent with f0 which is a winning strategy for

Player 1. Therefore π must be winning for Player 1.

2. x occurs infinitely often in π: In this case we may form two plays π0, π1 where πi

(i ∈ {0, 1}) is formed by joining those portions of πwhere fi is followed. Suppose that

one of the plays πi is finite. By the definition of f , we must have that the portion of

π after the occurrence of the last node of πi is consistent with f1−i and hence winning

for Player 1.

If π0, π1 are both infinite then min{ρ(u) | u ∈ Inf(π0)} and min{ρ(u) | u ∈ Inf(π1)} are

both odd (since f0, f1 are winning for Player 1 in G(x, S) and G(x, S) respectively).

Therefore min{ρ(u) | u ∈ Inf(π)} is odd and π is winning for Player 1.

The above cases show that f is a winning strategy for Player 1 in G.

Now we are ready to prove Theorem 2.3.4.

Proof (Proof of Theorem 2.3.4) Let V0 = {x0, . . . , xk}. We now obtain the games G(x0, S0),

G(x0, S0), . . . ,G(xk, Sk),G(xk, Sk) where each Si is arbitrary non-empty subsets of E(xi) (for

i ∈ {0, . . . , k}). By lemma 2.3.5, we have that for Player 1 to lose G from v, she must lose at

least one of G(x0, S0),G(x0, S0), . . . , G(xk, Sk),G(xk, Sk).

We repeat this process for each of the gamesG(xi, Si),G(xi, Si) (i ∈ {0, . . . , k}) and continue

iterating this process until we get choiceless games N0, . . . ,Nℓ. By lemma 2.3.5 it must be

the case that for Player 1 to lose the game from v, she must lose at least one of N0, . . . ,Nℓ.

Let this choiceless game be N j for some j ∈ {0, . . . , ℓ}. Recall that choiceless games define

memoryless strategies for Player 0 and hence N j defines a memoryless winning strategy

for Player 0 from v.

We would like to point out that Theorem 2.3.4 implies that the winning region problem

for parity games is in NP ∩ co-NP. This is because a non-deterministic Turing machine

guesses a memoryless strategy for Player i (i ∈ {0, 1}) and then verifies whether this strategy

is winning for Player i or not (which can be done in polynomial time). In fact Jurdziński

[53] has strengthened this result by showing that the winning region problem for parity

2.3. INFINITE GAMES ON GRAPHS 33

games is in UP ∩ co-UP. Here UP is the class of languages recognized by non-deterministic

unambiguous polynomial-time Turing machines i.e. Turing machines which have at most one

accepting computation of length polynomially bounded in the size of the input. However

it is an open problem whether there exists a polynomial time algorithm to determine the

winner of a parity game.

34 CHAPTER 2. PRELIMINARIES

Chapter 3

Complexity of regular languages

In this chapter we approach the study of complexity of regular languages from two direc-

tions. First we study regular word languages and analyze the relationship between DFA

and NFA-state complexity. Then we study the complexity of a natural class of regular

languages i.e. finite word and tree languages.

3.1 Complexity of determinization and complementation of NFA’s

In this section we focus on regular word languages. We investigate the increase in com-

plexity which occurs during the following transformations: (1) determinization i.e. trans-

forming a NFA to a DFA (section 3.1.1) and (2) computing a NFAA′ which recognizes the

complement of a given NFAA (section 3.1.2). Throughout our analysis, we pay particular

attention to the transition complexity of the languages we construct in addition to the state

complexity.

3.1.1 State explosion in determinization

The subset construction is one of the fundamental constructions in automata theory that

converts non-deterministic finite automata into equivalent deterministic automata. Under

the subset construction, the states of the constructed DFA are subsets of the underlying

NFA. Therefore, if the underlying NFA has n states the then resulting equivalent DFA has

at most 2n states. Hence, the cost of determinization is an exponential explosion in the

number of states [78]. In [66] it was shown that this blow-up in the number of states is

35

36 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

sharp. This sharpness result implies hardness for the complementation problem as well.

Namely, for any n there exists an n state NFA recognizing a language L such that 2n number

of states are needed for a DFA to recognize the complement of the language L.

A natural question is to ask whether it is possible to fill in the exponential gap between

n and 2n in the determinization process of NFA to DFA i.e. given n and m such that

n ≤ m ≤ 2n, does there exist a regular language whose NFA-state complexity is n and its

DFA-state complexity is m? In [50] for every n and m such that n ≤ m ≤ 2n a regular

language L is constructed such that its NFA state complexity is n and whose DFA-state

complexity is m. However, these precise bounds are obtained in the expense of increasing

the alphabet size exponentially on n. The authors of [50] pose the problem if the sizes of

the alphabets can be controlled. For instance, can the sizes of alphabets be dependent on

n linearly or be of a fixed size. In [51], the authors prove that for for every m, n such that

n ≤ m ≤ 2n, there exists a n state NFA whose DFA state complexity is m for a fixed four

letter alphabet. However the n state NFA constructed in [51] have O(n2) transitions in the

worst case.

In this section, we investigate this problem and provide asymptotic solutions. The

languages we construct are over either binary alphabets or alphabets that depend on n

linearly. These languages exhibit the same behavior as the languages in [51] but the bounds

on the number of states are not sharp and the size of the alphabet varies linearly with n.

However, the n-state NFA’s constructed by us have asymptotically fewer transitions than

the NFA constructed by the authors of [51] in the worst case.

Linear state explosion

First we construct regular languages such that the state explosion that occurs in the deter-

minization process is linear in the number of states of the input NFA. LetΣ = {0, 1, . . . , k−1}

be an alphabet of k ≥ 2 symbols. We define the following language:

Lk,m = {ux | x ∈ σ+, σ ∈ Σ, u ∈ Σ∗ and |u| ≡ (m − 1)mod m}.

The NFA Ak,m recognizing Lk,m has m + k states denoted by {s0, s1, . . . , sm+k−1}. When the

automaton is in state sm−1, it non-deterministically guesses the form of the remaining word

to be either σ+ or uσ+ (|u| ≡ m−1(mod m) and σ ∈ Σ). Formally the NFAAk,m = 〈S,Σ, δ, SI, F〉

is defined as follows:

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 37

1. S = {s0, s1, . . . , sm+k−1}.

2. SI = {s0} and F = {sm, sm+2, ..., sm+k−1}.

3. δ(si, σ) =

{si+1} if i < m − 1, σ ∈ Σ

{s0, sm+σ} if i = m − 1, σ ∈ Σ

{si} if i ≥ m, σ = i −m

The NFAA2,4 is shown in Figure 3.1. It is not hard to see thatAk,m has m + 2k transitions.

We would now like to show thatAk,m is indeed the minimal NFA accepting Lk,m.

2 3

0,1 0,1 0,1

0 1

0 1

0,1

0 1

4 5

Figure 3.1: The minimal NFA recognizing the language L2,4.

Lemma 3.1.1 NFAAk,m with m + k states is a minimal NFA accepting Lk,m.

Proof Let NFA C= 〈S′,Σ, δ′, S′
I
, F′〉 be a minimal NFA accepting Lk,m. It is sufficient to

show that C has at least m + k states. Consider a word w ∈ Σ∗ of length m − 1. Then for

any σ ∈ Σ, the word w · σ · σ ∈ Lk,m, and there is an accepting run for C on w · σ · σ. Let

S′(w ·σ) = {s ∈ S′ | s ∈ δ′+(S′
I
,w ·σ)∧δ′+(s, σ)∩F′ , ∅}. Assume for the sake of contradiction

that S′(w · σ) ∩ S′(w · α) , ∅ where σ , α and σ, α ∈ Σ. Then the word w · σ · α < Lk,m will

be accepted by C, and we have reached a contradiction. Since there are k symbols in the

alphabet Σ, the NFA Cmust have at least k states.

Let p0, p1, . . . , pm be the accepting run of C on w · σ for σ ∈ Σ. Since no word of length

less than m is in the language, the state pm is an accepting state and states p0, p1, . . . , pm−1

are non-accepting states. Now suppose there exist pi and p j with i < j ≤ m such that pi = p j

and there is a cycle of length i where i < m. Then there exists a word u whose length is

less than m and which takes the automaton C to the accepting state pm without running

38 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

through this cycle. This is a contradiction since no word of length less than m is in Lk,m.

Hence we must have that p0, p1, . . . , pm are all distinct states.

Suppose there exists pi (i < m) such that pi ∈ S′(w · α) for some α , σ. Then the word

w · α · σm−i will be accepted by C. However w · α · σm−i is not in Lk,m and hence the states

{p0, p1, . . . , pm} ∩ S′(w · α) = ∅ for any α ∈ Σ \ {σ}. Therefore C must have another m states

and hence it has at least m + k states.

The DFA recognizing Lk,m, upon reading a word w counts the lengths of the prefixes of

w modulo m. Once the length equals m − 1 modulo m the automaton starts verifying that

the rest of the string is from σ+ for some σ ∈ Σ. Formally, the DFA Bk,m = 〈S
′,Σ, δ′, s′

I
, F′〉

accepts Lk,m with (k + 1)m + (1 − k) states.

1. S = {s′
0
, s′

1
, . . . , s′

k−1
} ∪ {s′

0,1
, . . . , s′

0,k−1
} ∪ . . . ∪ {s′

k−1,1
, . . . , s′

k−1,k−1
} ∪ {s′

F
}.

2. s′
I
= s′

0

3. F′ = {s′
F
} ∪ {s′

i, j
| i ≤ k − 1 and 1 ≤ j ≤ k − 1}.

4. For σ ∈ Σ, we have the following transitions:

δ′(s′
i
, σ) =

s′

i+1
if i < m − 1

s′
σ,1

if i = m − 1

δ′(s′
i, j
, σ) =

s′
i, j+1

if σ = i and 1 ≤ j < k − 1

s′
j

if σ , i and i ≤ j < k − 1

s′
F

if j = k − 1

The automaton B2,4 is shown in Figure 3.2.

The following lemma shows that the DFA Bk,m described above is minimal.

Lemma 3.1.2 The minimal DFA recognizing Lk,m has exactly (k + 1)m + (1 − k) states.

Proof For the proof we use Myhill-Nerode theorem and count the number of ≡Lk,m
equiva-

lence classes. Consider a word x ∈ Σ∗, we can write it in the form x = u · w where u,w ∈ Σ∗

and |u| ≡ (m − 1)mod m and 1 ≤ |w| ≤ m. There are two cases for the word w:

Case 1: w ∈ σi where σ ∈ Σ and 1 ≤ i ≤ m. For this case we want to show that the number

of ≡Lk,m
equivalence classes is k · (m − 1)+ 1. To show this we distinguish the following two

possibilities for w = σi:

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 39

0 1 2 3
0,1 0,10,1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

4

5

6

7

8

9

10

Figure 3.2: The minimal DFA recognizing the language L2,4.

1. |w| < m: Consider any other word x′ such that x′ is of the form u′ ·w′where |u′| = m−1

modulo m and w′ is of the form α j with α ∈ Σ and 1 ≤ j ≤ m. Then either |w| = |w′|

or |w| , |w′|. First we consider the case when |w| = |w′|. In this case it must be

that σ , α. It is not hard to see that for z = σm−|w| we have x · z ∈ Lk,m. However,

x′ · z < Lk,m because |αiσm−i| = m and α , σ. Hence, x .Lk,m
x′. Now we consider

the case when |w| , |w′|. Without loss of generality, we may assume |w| > |w′|. Next

consider z = βm−|w|+1, where β ∈ Σwith β , α. For this z we have x · z ∈ Lk,m because it

is of the form uσiβm−iβ and |uσiβm−i| = m − 1 modulo m. However, x′ · z < Lk,m. Thus,

this possibility proves that there are exactly k · (m − 1) number of ≡Lk,m
equivalence

classes represented by the words of the form x = u · w where |u| ≡ (m − 1)mod m and

w = σi with σ ∈ Σ and 1 ≤ i ≤ m.

2. |w| = m: Consider any word x′ of the form x′ = u′ ·w′, where |u′| = m−1 modulo m. It

is not hard to see that x ≡Lk,m
x′ since for all z ∈ Σ∗ we have x · z ∈ Lk,m ⇐⇒ x′ ∈ Lk,m.

Now we want to show that x is not≡Lk,m
equivalent to any word y of the form y = u0 ·α

i

where α ∈ Σ, 1 ≤ i ≤ m and |u0| ≡ (m − 1)mod m. Take β ∈ Σ such that β , α. Then it

40 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

is clear that x · β ∈ Lk,m, but y · β < Lk,m.

Thus, Case 1 proves that there are k · (m − 1) + 1 equivalence ≡Lk,m
-classes.

Case 2: Assume that w is not of the form σi for σ ∈ Σ and 1 ≤ i ≤ m − 1). We want to

show that there are m number of ≡Lk,m
equivalence classes all distinct from the equivalence

classes provided in Case 1.

Consider a word x′ of the form x′ = u′ · w′, where u′ and w′ are components of x′

and satisfy the same conditions as the u and w components of x. Then either |w| = |w′| or

|w| , |w′|. First we consider the case |w| = |w′|. Then it is not hard to see that x ≡Lk,m
x′ since

for all z ∈ Σ∗ that x · z ∈ Lk,m ⇐⇒ x′ · z ∈ Lk,m. This is due to the choices of u, u′, w and w′.

Next we consider the case |w| , |w′| and assume that |w′| < |w|. For z = 0m−|w|+1, we have

x · z ∈ Lk,m and x′ · z < Lk,m. Therefore x .Lk,m
x′.

Now we need to show that x is not ≡Lk,m
to any word from Case 1. Consider y = u0 · σ

i

where u0 ∈ Σ
∗, 1 ≤ i ≤ m and |u0| ≡ (m − 1)mod m. Take z = σm−|x|−1, it is not hard to see

that y · z ∈ Lk,m but x · z < Lk,m. Hence y .Lk,m
x, and in this case Lk,m has m − 1 distinct

equivalence classes.

Finally, we consider the case when x = ǫ. Consider a word x′ ∈ Σ∗\{ǫ}. If x′ ∈ Lk,m, we

set z = ǫ. It is clear that x · z < Lk,m but x′ · z ∈ Lk,m. Therefore x , x′. If x′ < Lk,m, then we set

i = |x|mod m such that 0 ≤ i < m. Now set z = 0m−i+1. It is clear that x · z < Lk,m but x· ∈ Lk,m

and thus x .Lk,m
x′. Therefore ǫ is in an equivalence class on its own.

We have shown that Lk,m has (k+ 1)m+ (1− k) equivalence classes. Therefore, by Myhill

Nerode theorem the minimal DFA accepting Lk,m has exactly (k + 1)m + (1 − k) states.

We now reformulate our results above in terms of linear blow-up of the determinization

of non-deterministic finite automata.

Theorem 3.1.3 For every k > 1 there exists a regular language Ln over a k-letter alphabet, where

n > k, such that a minimal NFA recognizing Ln needs exactly n states and the minimal DFA

recognizing Ln needs exactly (k + 1) · n − c states, where c = (k + 1)2 − 2. Moreover, the minimal

NFA recognizing Ln needs O(n) transitions.

Proof The language Ln is Lk,m where n = k + m. Lemma 3.1.1 shows that this language

requires exactly n states to be recognized by a minimal NFA. Lemma 3.1.2 shows that this

language requires exactly (k + 1) · n − c states to be recognized by a minimal DFA.

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 41

One would like to sharpen the theorem above to build a regular language Ln such that

the minimal NFA recognizing Ln has exactly n states and the minimal DFA recognizing Ln

has exactly k ·n states. Below we present another class of languages in which this sharpness

can be achieved for infinitely many n.

Let Σ = {0, 1} and k,m ∈N+. We define the following language

Uk,m = {u · 0 · w | u,w ∈ Σ∗, |u| ≥ m and |w| = k}.

Intuitively, Uk,m is the set of all words v such that |v| ≥ (m+ k+ 1) and the k+ 1th letter from

the right is 0.

The NFA recognizing Uk,m, after processing the prefix of an input word of length

greater than m nondeterministically guesses that the rest of the string has length k once a 0

is read. Then the automaton verifies that the guess was correct. The NFA C3,6 recognizing

U3,6 which has 11 states is shown in Figure 3.3. It is not hard to see that the NFA Ck,m

(recognizing Uk,m) has m + k + 2 transitions.

0 1 2 6

0,1

0,1 0,1 0,1 0,1

0

78910 0,10,10,1

Figure 3.3: The mimimal NFA recognizing the language Uk,m.

Formally the NFA Ck,m = 〈S,Σ, δ, SI, F〉with m+ k+ 2 states accepting Uk,m is defined as

follows.

1. S = {s0, s1, ..., sm+k+1}.

2. SI = {s0}, F = {sm+k+1}.

3. δ(si, σ) =

si+1 if 0 ≤ i < m or

m < i ≤ m + k and σ ∈ Σ

si if i = m, σ ∈ Σ

si+1 if i = m and σ = 0

42 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

Lemma 3.1.4 A minimal NFA accepting Uk,m has exactly m + k + 2 states.

Proof Assume for a contradiction that there exists an NFA D= 〈S′,Σ, δ′, S′
I
, F′〉 accepting

Uk,m with at most m+k+1 states. Consider 0m+1w ∈ Σ∗where |w| = k. Let r = p0, p1, ..., pm+k+1

be an accepting run of D on 0m+1w. There are m + k + 2 states in this run and hence there

is at least one state p appearing twice in r. Thus a cycle of length smaller than m + k + 1

exists. Let string v0, v1 ∈ Σ
∗ be such that p ∈ δ′+(s′

0
, v0) ∩ δ′+(pi, v1), and string v2 be such

that δ′+(pi, v2) ∩ F′ , ∅. Therefore δ′+(s′
0
, v0v2) ∩ F′ , ∅. However |v0v2| < m + k + 1 and

therefore v0v2 < Uk,m. Hence we have reached a contradiction and such aD does not exist.

Next we show the minimal number of states a DFA requires to accept Uk,m is 2k+1 +m.

Intuitively, the deterministic automaton needs to remember the first m states of the NFA

Ak,m. Afterwards, once 0 is read, the DFA needs to remember all the strings of length at

most k.

Lemma 3.1.5 The minimal DFA recognizing Uk,m has 2k+1 +m states.

Proof For the proof we use Myhill-Nerode Theorem and count the number of ≡Uk,m
equiv-

alence classes. Consider a word x ∈ Σ∗, where |x| ≥ m. There are three cases:

Case 1: |x| ≤ m: Consider any other word y ∈ Σ∗ where |y| ≤ m. There are two

possibilities, either |x| = |y| or |x| , |y|. First we consider the case |x| , |y|. Without loss of

generality we may assume |x| > |y|. The word x ·1m−|x| ·0k+1 ∈ Uk,m and y ·1m−|x| ·0k+1 < Uk,m.

Hence, corresponding to each 0 ≤ i ≤ m we have one distinct equivalence class giving us

m + 1 classes.

Now consider |x| = |y|. It is clear for z ∈ Σ∗ that x · z ∈ Uk,m ⇐⇒ y · z ∈ Uk,m. Thus, x ≡Uk,m
y

and we have already counted the equivalence classes. There is a total of m + 1 equivalence

classes in this case.

Case 2: m + 1 ≤ |x| ≤ m + k + 1: In this case either x = u · 0 · w or x = u · 1 · w where

u,w ∈ Σ∗ and |u| = m. First we consider x = u ·0 ·w. Take any other word y = u′ ·0 ·w′ where

u′,w′ ∈ Σ∗ and |u′| = m. If w , w′, then let w1 be the suffix such that w = w0 · σ · w1 and

w′ = w′
0
· σ′ ·w1 (σ, σ′ ∈ Σ and σ , σ′). Without loss of generality we may assume σ = 0 and

σ′ = 1. It is clear that x · 1k−i+1 ∈ Uk,m and y · 1k−i+1 < Uk,m, and hence x .Uk,m
y. Therefore

Uk,m has another

20 + 21 + . . . + 2k = 2k+1 − 1

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 43

equivalence classes. When w = w′ for all z ∈ Σ∗ it is clear that x · z ⇐⇒ y · z and we have

already counted the equivalence classes.

Next we consider x of the form u · 1 · w (u,w ∈ Σ∗ and |u| = m). If w ∈ 1∗, then it is clear

that x ≡Uk,m
u. Otherwise, let w1 be such that w = 1∗ · 0 · w1. Then x ≡Uk,m

0m+1 · w1. In

both cases we have already counted the equivalence classes. Thus Uk,m has another 2k+1−1

equivalence classes in Case 2.

Case 3: |x| > m + k + 1: We first consider x ∈ Uk,m. Then x = u · 0 · w where u,w ∈ Σ∗

and |w| = k. It is clear that x ≡Uk,m
0m+1 · w. Now we consider x < Uk,m, then x = u · 1 · w

where u,w ∈ Σ∗ and |w| = k. If w ∈ 1∗ then x ≡Uk,m
u, else w can be written as 1∗ · 0 · w1

where w1 ∈ Σ
∗. It is clear that x ≡Uk,m

0m+1 · w1. In this case, we have already counted the

equivalence classes.

From the above arguments, we have shown that Uk,m has 2k+1 +m equivalence classes.

Hence, by the Myhill-Nerode theorem, the minimal DFA accepting Uk,m has 2k+1+m states.

Let p be a natural number. We fix m =
2k+1−pk−2p

p−1 and assume that m is also a natural

number. For instance, when p = 2 we have m = 2k+1 − 2k − 4. For such chosen m and p we

have the following theorem that sharpens Theorem 3.

Theorem 3.1.6 For every n = k+m+2 there exists a regular language Ln over the binary alphabet

such that the minimal NFA recognizing Ln needs exactly n states and the minimal DFA needs

exactly p · n states. The minimal NFA recognizing Ln has O(n) transitions.

Proof The desired language Ln is Uk,m. We have shown in Lemma 3.1.4 that n = m + k + 2.

Furthermore, we have shown in Theorem 3.1.5 that the minimal DFA accepting Uk,m needs

m + 2k+1 states. Since m =
2k+1−pk−2p

p−1 , the minimal DFA accepting Uk,m needs p(m + k + 2)

states. From the definition of the NFA for Uk,m, it is not hard to see that it needs O(n)

transitions.

Polynomial state explosion

In this section, we construct regular languages which fill in the exponential gap between

n and 2n in the determinization process. We do so by constructing languages which

demonstrate polynomial state explosion in the determinization process i.e. for every k, we

44 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

construct a language L such that its NFA-state complexity is n and its DFA state complexity

is asymptotically nk.

LetΣ = {0, 1, . . . , k−1} be an alphabet of k symbols. For m ∈N+, we define the following

languages:

Bk = 0∗1∗ . . . (k − 1)∗.

Bk,m = {u | u ∈ Bk and |u| = m}.

Rk,m = {u · 0 · w | u ∈ Bk and w ∈ Bk,m}.

Lemma 3.1.7 The number of states sufficient for a NFA accepting Rk,m is km + 2.

Proof The following NFAAk,m accepts Rk,m with km + 2 states. LetAk,m = 〈S,Σ, δ, sI, F〉 be

such that:

1. S = {s0, s1, . . . , sk1
} ∪ sk ∪ {s0,1, . . . , s0,m−1} ∪ . . . ∪ {sk−1,1, . . . , sk−1,m−1} ∪ {sF}.

2. sI = s0 and F = {sF}.

3. For σ ∈ Σ and si ∈ S, we add the following transitions:

δ(si, σ) =

{sσ, sk} if i ≤ k − 1

{sσ,1} if i = k

4. For σ ∈ Σ and si, j ∈ S, we add the following transitions:

δ(si, j, σ) =

{si, j+1} if j < m − 1 and i = σ

{sσ, j+1} if j < m − 1 and i < σ

{sF} if j = m − 1 and i ≤ σ

For example, the nondeterministic automaton A2,3 is shown in Figure 3.4. It is clear that

Ak,m accepts the language Rk,m.

Next we analyze the DFA-state complexity of Rk,m.

Lemma 3.1.8 For the language Bk,m, where 1 ≤ m and k is the size of the alphabet, the cardinality

of Bk,m is
∏k−1

i=1
(m+i)

i .

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 45

0 1

2 3 4

1

0 0

0 0

1

1

1

0 1

5 6

7

1

0,1

Figure 3.4: The minimal NFA recognizing the language R2,3.

Proof We show this by an induction on k. For the base case k = 2, it is not hard to see that

|B2,m| = (m + 1) =
∏2−1

i=1
(m+i)

i .

Assume it is true for k = n − 1 that

|Bn−1,m| =
∏n−2

i=1
(m+i)

i .

Words in Bn,m are of the form un−1,m−i · n
i where 0 ≤ i ≤ m and un−i ∈ Bn−1,m−i. Thus, the

cardinality of Bn,m is:

|Bn,m| = |Bn−1,m| + |Bn−1,m−1| + ... + |Bn−1,0| =
∏n−2

i=1
(m+i)

i + . . . +
∏n−2

i=1
(0+i)

i =
∏n−1

i=1
(m+i)

i .

This completes the proof.

Lemma 3.1.9 For the language Bk,m, where 1 ≤ m and k is the size of the alphabet

∑m
i=0 |Bk,i| =

∏k
i=1

(m+i)
i .

Proof We have previously shown in Lemma 3.1.8 that |Bk,m| =
∏k−1

i=1
(m+i)

i . Hence we have

the following relation:
∑m

i=0 |Bk,i| = |Bk,0| + |Bk,1| + ... + |Bk,m| =
∏k−1

i=1
(i+0)

i + . . . +
∏k−1

i=1
(i+m)

i =
∏k

i=1
m+i

i .

Lemma 3.1.10 The minimal DFA accepting Rk,m needs
∏k

i=1
m+i

i + (km + 3) states.

Proof We count the number of distinct ≡Rk,m
-equivalence classes. Rk,m is represented by

the regular expression 0∗ · 1∗ · . . . · k∗ · 0 · u where u ∈ Bk,m. Consider a word x ∈ Σ∗, there are

two cases:

Case 1: ∃z ∈ Σ∗ such that x · z ∈ Rk,m. There are the following sub-cases:

46 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

1. x ∈ 0 · u such that u ∈ Bk,i (0 ≤ i ≤ m): In this case, corresponding to every u ∈ Bk,i we

have a distinct ≡Rk,m
-equivalence class containing the word 0 · u. Consider distinct

words 0 · u and 0 · u′, where u ∈ Bk,n and u′ ∈ Bk, j (0 ≤ n, j ≤ m). Without loss of

generality we may assume that n ≤ j.

First, consider the case when n < j. If j = m, then 0 · u′ ∈ Rk,m but 0 · u < Rk,m and

thus 0 · u .Rk,m
0 · u′. If j , m then let σ ∈ Σ be the last symbol that occurs in u′. Then

0 · u′ · σm− j ∈ Rk,m but 0 · u · σm− j < Rk,m and hence 0 · u .Rk,m
0 · u′.

Next consider the case when n = j. Let u = 0+ ·v and u′ = 0+ ·v′ where v, v′ ∈ (Σ\{0})∗.

Since u , u′, we have |v| , |v′|. Without loss of generality, assume that |v| > |v′|. Then

0 · u′ · σm−|v′| ∈ Rk,m but 0 · u · σm−|v′ | < Rk,m where σ is the last symbol of v′. Thus

0 · u .R2,m 0 · u′.

By Lemma 3.1.9, we have
∑m

i=0 |Bk,i| =
∏k

i=1
(m+i)

i and therefore we have
∏k

i=1
(m+i)

i

distinct equivalence classes corresponding to each word of the form 0 · u.

2. x ∈ v · 0 · u where v ∈ (1∗ · . . . · k∗) \ {ǫ} and u ∈ Bk,i (0 ≤ i ≤ m): Let x = v · 0 · l j and

consider another word w ∈ v · 0 · p j where l, p ∈ Σ \ {0} and l < p (1 ≤ j ≤ m − 1). Then

x .Rk,m
w since x · lm− j ∈ Rk,m but w · lm− j < Rk,m. Also x,w .Rk,m

0 · u′ (u′ ∈ Bk,i) since

0 ·u′ ·0 ·0m ∈ Rk,m but x ·0 ·0m < Rk,m (similarly w ·0 ·0m < Rk,m). Hence, corresponding

to each 1 ≤ j ≤ m − 1 we have k distinct equivalence classes giving us k · (m − 1)

equivalence classes. We further have one equivalence class for all words of the form

v · 0. For u ∈ Bk,m, all x ∈ v · 0 · u form another equivalence class.

Note that x ∈ v · 0 · u · σ (σ ∈ Σ and u ∈ Bk,i for 0 ≤ i ≤ m− 1) is equivalent to all words

of the form v · 0 · σi+1 and we have already counted these equivalence classes.

Thus, there are a total of k · (m − 1) + 2 distinct equivalence classes in this case.

3. x ∈ 0+ · v where v ∈ (1∗ · . . . · k∗) \ {ǫ}: If |x| ≤ m + 1, then x is of the form 0 · u for

u ∈ Bk,|x|−1 and we have already counted the equivalence class corresponding to x.

If |x| > m + 1, let x = 0 · 0n · v such that n ≥ 0. If |v| > m, then it is easy to see that

x ≡Rk,m
σ|v| where σ is the last symbol of x. Therefore let |v| ≤ m. If n + |v| ≤ m, then x

is of the form 0 · u where u = 0n · v ∈ Bk,n+|v|. If n + |v| > m, then x ≡Rk,m
0 · 0m−|v| · v.

In either case we have already counted the equivalence classes corresponding to x.

Hence, all x ∈ 0+ · 1+ belong to previously enumerated equivalence classes.

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 47

4. x ∈ σ+ (σ ∈ Σ \ {0}): For every σ ∈ Σ \ {0}, all words of the form σ+ form a distinct

equivalence class. Consider words li and p j such that l, p ∈ Σ \ {0} and l < p (i, j ≥ 1).

Then li · l · 0m+1 ∈ Rk,m but p j · l · 0m+1 < Rk,m and li .Rk.m
p j.

Hence we have k − 1 equivalence classes in this case.

5. x = ǫ: ǫ forms a distinct equivalence class.

Case 2: ∀z ∈ Σ∗ we have x · z < R2,m: All such x form one distinct equivalence class.

From the above arguments, we can see that there are (k ·m+ 3)+
∏k

i=1
(m+i)

i distinct ≡Rk,m

equivalence classes. Thus, by the Myhill-Nerode theorem the minimal DFA accepting Rk,m

has exactly (k ·m + 3) +
∏k

i=1
(m+i)

i states.

0 1 2 3 4
1 0 0

1

1

1

1

0

0 0 0

1

1

1

1

1

1
1

1

1

0

0

0

0

0

00
1 *

*

*

*

*

*

1

0,1

5 6

7

8 9 10 11

12 13 14

15 16

17

All transitions marked ∗ go to State 2.

Figure 3.5: The minimal DFA recognizing the language R2,3.

As an example the minimal DFA recognizing the language R2,3 is shown in figure 3.5.

The next lemma analyzes the transition complexity of Rk,m.

Lemma 3.1.11 For a fixed k, the NFA recognizing Rk,m has O(n) transitions, where n = km + 2.

Proof Let NFAAk,m = 〈S,Σ, δ, SI, F〉 be the NFA recognizing Rk,m as defined in Lemma 3.1.7.

For a state s ∈ S, let t(s) be the number of states s has transitions to. First we consider the

48 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

case t(si) where i ≤ k. For state si where i ≤ k−1, state si has transitions to states si, si+1, . . . , sk

and hence t(si) = k + 1 − i. Therefore the total number of transitions s0, s1, . . . , sk+1 have are

∑k−1
i=0 t(si) = (k + 1) + k + . . . + 2 =

k(k+3)
2 .

Furthermore, it is not hard to see that t(sk) = k. Hence we have accounted for
k(k+3)

2 + k

transitions. Now we consider a state si, j where i ≤ k − 1 and j ≤ m − 2. The state si, j has

transitions to states si, j+1, . . . , sk−1, j+1 and hence t(si, j) = k − i. Hence we have

k+1∑

i=0

m−2∑

j=1

t(si, j) = (m − 2)(1 + . . . + k) =
(k + 1)k(m − 2)

2

Next each state si,m+1 has exactly one transition, hence there are another k transitions.

Note that state sF has no transitions.

Hence in total Ak,m has k+1
2 km + c transitions, where c = 5k2+11k

2 . Therefore the Ak,m

recognizing Rk,m has O(n) transitions.

In [51], the authors present a n-state NFA such that the minimal DFA requires m states

where n ≤ m ≤ 2n. However, in the worst case (i.e. m = 2n − n + 1) the n-state NFA has

O(n2) transitions as shown by the following lemma.

Lemma 3.1.12 For α = 2n−n+1, the n-state NFAA constructed in [51], such that the DFA-state

complexity of L(A) is α, has O(n2) transitions where the alphabet is {a, b, c, d}.

Proof Letα = 2n−n+1. In this case the states in NFAA constructed in [51] has the following

transitions for symbol d: δ(1, d) = {0, 2}, δ(2, d) = {0, 2, 3}, . . . , δ(n − 3, d) = {0, 2, 3, . . . , n − 2}

and δ(n − 2, d)=δ(n − 1, d)=δ(n, d) = {0, 1, 2, 3, . . . , n − 1}.

It is not hard to see thatA has O(n2) transitions for the symbol d. There are O(n) number

of transitions for the symbols a, b, c and henceA has O(n2) transitions in total.

The next lemma shows that the transition complexity of Rk,m is asymptotically less than

the number of transitions of the NFA of [51] in the worst case.

Lemma 3.1.13 For α = 2n−n+1, the n-state NFAAk,m recognizing Rk,m such that the DFA state

complexity of Rk,m is O(α) has O(n2

log2n) transitions.

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 49

Proof Note that n = km + 2 by Lemma 3.1.7. For k = logn(2n − (n − 1)), the DFA state

complexity of Rk,m is O(α) according to Lemma 3.1.10.

State si where i < k − 1 has k + 1 − i outgoing transitions and state sk has k outgoing

transitions. States of the form si, j where 1 ≤ i ≤ k − 1 have k − i outgoing transitions each.

HenceAk,m has 1
2m(k + 1)(k + 2) transitions. As shown in Lemma 3.1.11, Ak,m has O(k · n)

transitions. Since k = logn(2n− (n−1)), we have k = n
log2n − c (c > 0). HenceAk,m has O(n2

log2 n)

transitions.

We reformulate the results of the above two lemmas in the following theorem.

Theorem 3.1.14 For every k > 1 there exists a regular language Ln over a k-letter alphabet such

that

1. The minimal NFA recognizing Ln needs n states, where n > k, and the minimal DFA

recognizing Ln has O(nk) states.

2. For α = 2n − n + 1, the minimal NFA recognizing Ln and having a blowup of O(α) has

O(n2

log2n) transitions. This is asymptotically fewer than the O(n2) transitions required by the

NFA with DFA-state complexity α that was described in [51] .

Proof As shown in Lemma 3.1.7 and Lemma 3.1.10, km + 2 states are sufficient for a NFA

accepting Rk,m and the minimal DFA accepting Rk,m has
∏k

i=0
m+i

i + (km + 3) states. Since

n > k, this implies the minimal DFA accepting Rk,m has O(nk) states. Our desired language

Ln then is Rk,m with n = km+2. The second part of the theorem follows from Lemmas 3.1.12

and 3.1.13.

3.1.2 State explosion in complementation

In this section, we investigate the complementation problem for NFA and consider prob-

lems around the following question: given n and m with n ≤ m ≤ 2n, does there exist a

regular language whose NFA-state complexity is n such that the NFA-state complexity of

the complement of the language is m?

The complementation operation for DFA is efficient and the DFA recognizing the com-

plement of a n-state DFA has at most n states. However for every n ≥ 1 and the binary

alphabet, there exists a n-state NFA such that the minimal NFA recognizing its complement

50 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

needs 2n states [66] (see also [45]). In other words, the complementation problem for the

language M is hard in the class of nondeterministic finite automata. Similar to the case of

determinization, it is natural to ask whether one can fill in the exponential gap.

In [50] for every n and m such that n ≤ m ≤ 2n a regular language L is constructed such

that its NFA state complexity is n and the NFA-state complexity of the complement is m. In

[52], the authors prove that for every m, n such that n ≤ m ≤ 2n, there exists a n-state NFA

A such that the NFA state complexity of the complement of L(A) is m for a fixed five letter

alphabet. However, in the worst case the number of transitions in the n state NFA is O(n2).

As in the case of determinization, we provide asymptotic solutions to this question. Our

languages exhibit the same behaviour as [52] but the NFA’s recognizing these languages

have asymptotically fewer transitions than those of [52].

Linear state explosion

First we construct regular languages such that the NFA-state complexity of the complement

is asymptotically linear with respect to input NFA-state complexity. Let Σ = {0, 1, . . . , k− 1}

be an alphabet of k symbols. Recall the language Lk,m we defined in Section 3.

Lk,m={ux | x ∈ σ+, σ ∈ Σ, u ∈ Σ∗, and |u| ≡ (m − 1)mod m)}.

We proved that the minimal DFA recognizing Lk,m has exactly (k+ 1)m+ (1− k) states. Then

it is clear that the DFA recognizing the complement of Lk,m has at most (k + 1)m + (1 − k)

many states. Our goal is to show that a succinct representation of this language using NFA

still needs exactly (k + 1)m + (1 − k) many states.

Lemma 3.1.15 A minimal NFA recognizing the complement of Lk,m has at least (k+ 1)m + (1− k)

states.

Proof Let NFA A=〈S,Σ, δ, sI, F〉 be a minimal NFA accepting Lc
k,m

, the complement of the

language Lk,m. For u, v ∈ Σ∗, define S(u, v) = {s ∈ S | s ∈ δ+(sI, u) and δ+(s, v) ∩ F , ∅}.

First, we show thatA needs at least k(m − 1)+ 1 non-accepting states. Consider a word

0m−1 · σi where 1 ≤ i ≤ m and σ ∈ Σ. There are two cases for i:

Case 1: i < m: Consider any other word 0m−1·α j where 1 ≤ j ≤ m − 1 and α ∈ Σ. There

are two possibilities for i and j:

1. i = j: In this case α , σ. It is easy to see that 0m−1 · σi · αm−i ∈ Lc
k,m

. Assume for a

contradiction that S(0m−1 · σi, αm−1)∩ S(0m−1 · α j, αm−1) , ∅. Let s ∈ S(0m−1 · σi, αm−1)∩

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 51

S(0m−1 ·α j, αm−1). Then δ+(sI, 0
m−1 ·α j ·αm−i)∩F , ∅ and hence 0m−1 ·α j ·αm−i is accepted

byA. This is a contradiction since 0m−1 · α j · αm−i < Lc
k,m

.

2. i , j: Let β ∈ Σ \ {α}. Clearly 0m−1 · α j · βm−i+1 ∈ Lc
k,m

. Assume for the sake of

contradiction that S(0m−1 · σi, βm−i+1) ∩ S(0m−1 · α j, βm−i+1) , ∅. Then there must be an

s ∈ S(0m−1 ·σi, βm−i+1)∩S(0m−1 ·α j, βm−i+1) and therefore δ+(sI , 0
m−1 ·σi · βm−i+1)∩F , ∅.

HenceA accepts the word 0m−1·σi·βm−i+1. This is a contradiction since 0m−1·σi·βm−i+1 <

Lc
k,m

.

Since we have k(m − 1) words of type 0m−1 · σi, we have shown that A needs at least

k(m − 1) distinct states.

Case 2: i = m: Let β ∈ Σ\{σ}. Consider any other word 0m−1·α j where 1 ≤ j ≤ m−1. Then

clearly 0m−1·α j · β ∈ Lc
k,m

. Assume for contradiction that S(0m−1·α j, β) ∩ S(0m−1·σm, β) , ∅.

Then there must be an s ∈ S(0m−1·α j, β)∩ S(0m−1·σm, β) and hence δ+(sI, 0
m−1 · σm · β)∩ F , ∅.

Therefore,A accepts 0m−1 · σm · β which is a contradiction since 0m−1 · σm · β < Lc
k,m

. Hence

A has at least one more state.

From the two cases above, we conclude thatA has at least k(m−1)+1 states. We would

now like to show thatA has at least m more states.

Consider a word 0i for 0 ≤ i ≤ m − 1. Consider another word 0 j for 0 ≤ j ≤ m − 1 such

that i , j. Without loss of generality assume that i < j. Clearly 0i · 0m−1− j · 0 ∈ Lc
k,m

. Assume

for the sake of contradiction that S(0i, 0m−1− j · 0) ∩ S(0 j, 0m−1− j · 0) , ∅. Then there exists a

state s ∈ S(0i, 0m−1− j · 0) ∩ S(0 j, 0m−1− j · 0) and hence δ+(sI, 0
j · 0m−1− j · 0) ∩ F , ∅. Thus A

accepts 0 j · 0m−1− j · 0 and this is a contradiction since 0 j · 0m−1− j · 0 < Lc
k,m

.

Now consider a word 0i (0 ≤ i ≤ m − 1) and another word 0m−1α j (1 ≤ j ≤ m − 1 and

α ∈ Σ). Clearly we have 0i · αm−i−1 ∈ Lc
k,m

. Assume for contradiction that S(0i, αm−i−1) ∩

S(0m−1α j, αm−i−1) , ∅ and there is s ∈ S(0i, αm−i−1) ∩ S(0m−1α j, αm−i−1). Hence δ+(sI , 0
m−1 ·

α j · αm−i−1) ∩ F , ∅ and thereforeA accepts 0m−1 · α j · αm−i−1. This is a contradiction since

0m−1 · α j · αm−i−1 < Lc
k,m

.

From the above arguments, we can conclude that A has at least m more states as

required. Hence we have shown that A has at least k(m − 1) + 1 + m = (k + 1)m + (1 − k)

states.

Theorem 3.1.16 For every k > 1 there exists a regular language Ln over k-letter alphabet, where

n > k, such that

52 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

1. The minimal NFA recognizing Ln needs exactly n states and the minimal NFA recognizing

the complement of Ln needs exactly (k + 1)n − c states, where c = (k + 1)2 − 2.

2. The minimal NFA recognizing Ln needs O(n) transitions.

Proof The language Ln is Lk,m where n = k + m. We have shown in Lemma 1 a minimal

NFA accepting Ln needs exactly n states. In Theorem 3 we have shown the minimal DFA

accepting Ln needs exactly (k + 1)n − c states, hence the complement of Ln can be accepted

by a (k+ 1)n − c states DFA. Furthermore in Lemma 3.1.15, we have shown that (k + 1)n − c

states are necessary for a minimal NFA accepting the complement of Ln. Hence this proves

(k + 1)n − c states are necessary and sufficient for a minimal NFA recognizing Lc
n.

Polynomial state explosion

In this section, we fill in the exponential gap for the complementation of NFA’s i.e. for every

n, k ≥ 2, there exists a O(n) state NFA such that the minimal NFA accepting its complement

has between O(nk−1) and O(n2k) states where the alphabet is of size k. Recall the language

Bk,m we defined in section 3.1.1 i.e. {u | u ∈ 0∗ · . . . · (k − 1)∗ and |u| = m}. Then it is clear that

the following NFAA = (S,Σ, δ, sI, F) with k(m − 1) + 2 states recognizes Bk,m:

1. S = {s0} ∪ {s0,1, . . . , s0,m−1} ∪ . . . ∪ {sk−1,1, . . . , sk−1,m−1} ∪ {sF} and Σ = {0, 1, . . . , k − 1}.

2. sI = s0 and F = {sF}.

3. For 0 ≤ i < k and σ ∈ Σ, δ(s0, σ) = {sσ,1}.

4.

δ(si, j, σ) =

{si, j+1} if j < m − 1 and i = σ

{sσ, j+1} if j < m − 1 and i < σ

{sF} if j = m − 1 and i ≤ σ

The NFA recognizing B2,4 is shown in Figure 3.6. It is not hard to see that the NFA for

Bk,m has O(k2m) transitions.

Later we will need to use the following language: Gk,m,α = {β · u | β · u ∈ Bk,m and β ∈

{0, . . . α − 1}}where α ∈ {1, . . . , k − 1}. The following NFA C recognizes Gk,m,α:

1. S = {s0,0, . . . , s0,m} ∪ . . . ∪ {sα−1,0, . . . , sα,m} ∪ {sα,1, . . . , sα,m} . . . ∪ {sk−1,1, . . . , sk−1,m}.

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 53

Figure 3.6: The NFA recognizing the language B2,4.

2. The initial states are {sσ,0 | σ ∈ Σ} and F = {sσ,m | σ ∈ Σ}.

3. For i, σ ∈ Σ and 0 ≤ j < m:

δ(si, j, σ) =

{si, j+1} i = σ

{sσ, j+1} i < σ

The NFA recognizing G2,2,1 is shown in Figure 3.7. It is not hard to see that the NFA for

Gk,m,α has α(m + 1) + (k − α)m states and O(k2m) transitions.

Figure 3.7: The NFA recognizing the language G2,2,1.

Lemma 3.1.17 For every k,m > 1, there exists a O(m)-state NFA B such that NFA accepting the

complement of L(B) has at least O(mk−1) states.

Proof Consider the language Hk,m = (Σ∗ · 0 · y · (Σ \ {0}) ·Σ∗)+ (Σ∗ · 1 · y · (Σ \ {1}) ·Σ∗)+ . . .+

(Σ∗ · (k − 1) · y · (Σ \ {k − 1}) · Σ∗) where the following conditions hold:

1. |y| = m and

2. y = y1 · y2 such that a · y1, y2 · b ∈ 0∗ · 1∗ · . . . · (k − 1)∗ for some symbols a , b.

Intuitively, the NFA recognizing Hk,m behaves as follows: It guesses the position of a

symbol a ∈ Σ and then starts verifying whether the next m + 1 symbols are in Bk,m. If

at position i in this verification, the automaton reads a symbol α such that the symbol at

54 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

position i − 1 is β > α then the automaton tries to verify whether the last m − i + 1 symbols

are in Bk,m−i+1 and the (m + 1)th symbol is b , a.

Formally, let the following be the NFA’s recognizing Bk,m, . . . ,Bk−i,m, . . . ,B1,m respectively

(i.e. Ai recognizes Bk−i,m where 0 ≤ i ≤ k − 1):

A0 = (SA0
,Σ, δA0

, s
IA0 , FA0

)

. . .

Ai = (SAi
,Σ \ {0, . . . , i − 1}, δAi

, s
IAi , FAi

)

. . .

Ak−1 = (SAk−1
,Σ \ {0, . . . , k − 2}, δAk−1

, s
IAk−1 , FAk−1

)

Let C0 = (SC0
,Σ, δC0

, s
IC0 , FC0

) be the NFA recognizing Gk,m−2,k−1 and the following be the

NFA’s recognizing Gk,m−1,1, . . .Gk,m−1,k−2 (i.e. Ci recognizes Gk,m,i where 1 ≤ i ≤ k − 2) .

C1 = (SC1
,Σ, δC1

, s
IC1 , FC1

)

. . .

Ck−2 = (SCk−2
,Σ, δCk−2

, s
ICk−2 , FCk−2

)

Also, let Ck−1 = (SCk−1
,Σ\{k − 1}, sδCk−1

, s
ICk−1 , FCk−1

) be the NFA recognizing Gk−1,m−1,k−1.

The following NFADk,m accepts Hk,m:

1. S = {s0} ∪ SAk−1
∪ . . . ∪ SA0

∪ SCk−1
∪ . . . SC1

∪ SC0
∪ {sF}.

2. I = {s0} and F = {sF}.

3. For every σ ∈ Σ, δ(s0, σ) = {s0, sIAσ } and δ(sF, σ) = {sF}.

4. For s ∈ SAi
(1 ≤ i ≤ k) and σ ∈ Σ, δ(s, σ) = δAi

(s, σ). Similarly for s ∈ SC j
(0 ≤ j ≤ k − 1).

5. For every 0 ≤ i ≤ k − 1, the following conditions hold:

(a) sF ∈ δ(sAi

F
, σ) for every σ ∈ Σ \ {i}.

(b) For i > 0, sF ∈ δ(sCi

α,m−1
, σ) for every α in the alphabet of Ci and σ ∈ Σ \ {i}. For

i = 0, sF ∈ δ(sC0

α,m−2
, σ) for every α ∈ Σ and σ ∈ Σ \ {0}.

3.1. COMPLEXITY OF DETERMINIZATION AND COMPLEMENTATION OF NFA’S 55

6. For every 1 ≤ i ≤ k − 1, the following conditions hold:

(a) For σ ∈ {0, . . . , i − 1}, sCi

σ,0
∈ δ(s

IAi , σ).

(b) For 0 ≤ j ≤ k− i−1 and 1 ≤ j′ ≤ m−1, sCi

σ, j′
∈ δ(sAi

j, j′
, σ) for every σ ∈ {0, . . . , j+ i−1}.

7. For i = 0, the following is true:

(a) For 1 ≤ j ≤ k − 1 and 1 ≤ j′ ≤ m − 1, sC0

σ, j′−1
∈ δ(sA0

j, j′
, σ) for every σ ∈ {0, . . . , j − 1}.

The NFA recognizing H2,4 is shown in Figure 3.8. Since the NFA recognizing Bk,m has

k(m − 1) + 2 states and the NFA for Gk,m,α has α(m + 1) + (k − α)m states, it is not hard to see

that the NFA recognizing Hk,m has O(k2m) = O(m) states.

Figure 3.8: The NFA recognizing the language H2,4

LetA = (S,Σ, δ, sI, F) be a NFA recognizing Hc
k,m

. Consider any word w ∈ Bk,m+1. Then

w · w ∈ Hc
k,m

since any symbols in w · w that are separated by m positions are identical.

We define S(w) = {s ∈ S | s ∈ δ+(sI ,w) and δ+(s,w) ∩ F , ∅}. Consider any other word

w′ ∈ Bk,m+1. Assume for the sake of contradiction that S(w) ∩ S(w′) , ∅. Then there is a

state s ∈ S(w) ∩ S(w′) and we have δ+(sI,w · w
′) ∩ F , ∅ and δ+(sI,w

′ · w) ∩ F , ∅. HenceA

accepts w · w′ and w′ · w.

However w and w′ are distinct words and differ for at at least one position 1 ≤ p ≤ m+1.

Hence w · w′ is of the form x1x2 . . . xp−1a . . . xm+1x′
1
x′

2
. . . x′

p−1
b . . . x′

m+1
such that a , b. There

are two cases:

56 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

1. xm+1 ≤ x′
1
: Since w,w′ ∈ Bk,m, it is not hard to see that axp+1 . . . x

′
p−1
∈ 0∗ · 1∗ · . . . · (k− 1)∗

and b ∈ 0∗ ·1∗ ·. . .·(k−1)∗. Hence w·w′ is of the formΣ∗ ·a·y·b·Σ∗where y1 = xp+1 . . . x
′
p−1

and y2 = ǫ and a · y1, y2 · b ∈ 0∗ · 1∗ · . . . · (k − 1)∗.

2. xm+1 > x′
1
: In this case axp+1 . . . xm+1 ∈ 0∗ ·1∗ ·. . .·(k−1)∗ and x′

1
. . . x′

p−1
b ∈ 0∗ ·1∗ ·. . .·(k−1)∗.

Hence, w ·w′ is of the form Σ∗ · a · y · b ·Σ∗ where y1 = xp+1 . . . xm+1 and y2 = x′
1
. . . x′

p−1

and a · y1, y2 · b ∈ 0∗ · 1∗ · . . . · (k − 1)∗.

In both cases w ·w′ < Hc
k,m

but the word is accepted byA. A very similar argument can

be made for w′ · w. We have arrived at a contradiction. By Lemma 3.1.8 there are O(mk−1)

words in Bk,m+1 and henceA has at least O(mk−1) states.

In the following theorem we give an upper bound for the DFA recognizing the comple-

ment of the language Hk,m.

Lemma 3.1.18 For every k,m > 1, the DFA recognizing the complement of the language Hk,m has

at most O(m2k) states.

Proof We use the Myhill-Nerode theorem to prove this bound. First we observe that for

any words u, v ∈ Hk,m, we have u ≡ v.

Now consider any word w < Hk,m such that w , ǫ. Then w must be of the form Σ∗ · a · y

where a ∈ Σ and 0 ≤ |y| ≤ m. Here y is the maximal length word such that y = y1 · y2 and

a · y1 ∈ 0∗ · . . . (k − 1)∗.

Consider any other word w′ < Hk,m such that w′ ∈ Σ∗ · a · y. Then it is not hard to see

that w ≡ w′ since w · x ∈ Hk,m iff w′ · x ∈ Hk,m for any x ∈ Σ∗. There are at most O(m2k) words

of the form a · y and hence there are at most O(m2k) equivalence classes.

Lemma 3.1.19 For n > 0 and α = 2n − n + 1, the NFAA constructed in [52] with n states such

that the NFA accepting the complement has α states has O(n2) number of transitions.

Proof The NFA A constructed in [52] with n states has exactly has an alphabet of five

symbols a, b, c, d, f . The number of transitions for symbols a, b, c, d are exactly the same as

those for the NFA constructed in [51] which is O(n2) by lemma 3.1.12. The symbols f only

adds O(n) number of transitions. Hence, the NFAA constructred in [52] has O(n2) number

of transitions.

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 57

Lemma 3.1.20 For n > 0 and α = 2n − n + 1, the O(n)-state NFA Dk,m accepting Hk,m, such that

the NFA accepting Hc
k,m

has O(α) states, has O(n2

log2n) transitions.

Proof In order for the minimal NFA for Hc
k,m

to have O(α) states, we must have k ∈ O(n
log2n).

The NFA Dk,m has O(k3m) number of transitions since the NFA’s for Bk,m and Gk,m,α have

O(k2m) transitions each. Also Dk,m has O(k2m) states by lemma 3.1.17. Hence Dk,m has

O(kn) transitions where n ∈ O(k2m). Since k ∈ O(n
log2n), it is clear that Dk,m has O(n2

log2n)

transitions.

The following theorem follows from lemmas 3.1.17, 3.1.18, 3.1.19 and 3.1.20.

Theorem 3.1.21 For every k, n > 1, there exists a NFAA with O(n) states such that:

1. The minimal NFA recognizing the complement of L(A) has between O(nk−1) and O(n2k)

states.

2. In the worst case, the NFAA has O(n2

log2n) transitions which is asymptotically fewer than the

O(n2) transitions of the NFA described in [52].

3.2 Complexity of finite word and tree languages

In section 3.1, we analyzed the complexity of regular languages from the point of view of

the tradeoff between NFA and DFA-state complexity. Here we investigate the complexity

of regular languages from another direction i.e. the state complexity of natural subclasses

of regular languages.

The state complexity of union and intersection on regular languages L1 and L2 is

bounded above by m · n where m, n are the number of states in the minimal DFA’s recog-

nizing L1 and L2 respectively. It is also known that over the class of all regular languages,

this upper bound is tight [91]. This means for some regular languages L1 and L2 with state

complexity m and n respectively, m · n states are necessary for a DFA to recognize L1 ∪ L2

or L1 ∩ L2. Hence the question naturally arises if we can obtain a better upper bound for

natural subclasses of regular languages.

This section addresses this problem for the class of finite languages. Finite languages

are important in many practical applications. A good example of such an area is natural

language processing where finite automata are used to represent very large (but finite)

58 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

dictionaries of words[27, 67]. In many of these applications, the union and intersection

operations are frequently required [67].

The state complexity for finite word languages has been investigated in [26, 44, 91].

In [44], the authors proved that the upper bounds for the state complexity of union and

intersection of finite word languages are mn−(m+n) and mn−3(m+n)+12 respectively. They

show that these bounds are tight when the size of the alphabet can be varied depending

on m and n. The authors also provide examples of finite word languages (with fixed

alphabet size) for which union and intersection have a state complexity of c · mn for some

constant c. This shows that one cannot hope to prove that the state complexity for union

and intersection of finite languages is asymptotically better than O(mn).

The results of [44] give rise to two questions:

1. What is the state complexity of finite languages when the alphabet size is fixed?

2. In [44], a lower bound of O(m + n) was shown for the difference between m · n

and the state complexity of union and intersection of finite languages. Since the

asymptotic bound for state complexity of union and intersection cannot be improved

beyond O(m · n), can we improve on the difference between m · n and the actual state

complexity of union and intersection?

Here we provide answers to these questions. For question (1), we investigate the state

complexity of finite languages such that the length of the words in the language is bounded

by a parameter h. We show that the state complexity such languages language can be as

high as ckh

h for some constant c (here k is the size of the alphabet) (See Theorem 3.2.6). We also

answer question (2) positively by improving the lower bound of the difference between m·n

and the state complexity of union and intersection from O(m+ n) to O((logk min{m, n})(m+

n))(See Theorem 3.2.13).

Analogous to the case of word languages, we consider the state complexity of finite

tree languages. Similar to the word case, the state complexity of a regular tree language L

is the number of states in the minimal deterministic tree automaton recognizing it. Using

a technique very similar to the finite word languages, we show that the asymptotic lower

bound of the difference between mn and the state complexity of union and intersection in

this case is O((logk log2 min{m, n})(m + n)) (See Theorem 3.2.18 and Corollary 3.2.19).

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 59

3.2.1 Finite languages with bounded word length

In this section we investigate the following question: Given h ∈ N, how many states are

required by a DFA to recognize a finite language whose words have length bounded by

h? In other words, we would like to measure the state complexity of the class of finite

languages with bounded word length. The goal is to express the state complexity in terms

of h. In order to do this, we first analyze the state complexity of a special class of finite

languages, called uniform-length languages. These are languages where all words in the

language have the same length. We then extend the result to finite languages where the

word length is bounded.

State complexity of uniform-length languages

The following definition singles out the languages under investigation.

Definition 3.2.1 A uniform-length language with length h is L ⊆ Σ∗ where all words in L have

the same length h.

A level automaton is a DFA where for each state s (apart from the reject state), all words

that take the automaton from the initial state to s have the same length. We call this length

the level of the state s. The height of a level automaton is the maximum level of a state in

the automaton. Note that any finite language can be recognized by a level automaton. The

following lemma relates level automata with uniform-length languages.

Lemma 3.2.1 The minimal automaton for any uniform-length language L with length h is a level

automaton with height h.

Proof Let L be a uniform-length language andM be the minimal automaton recognizing

L. IfM is not a level automaton, then there is some state s which is not the reject state such

that two words x, y with different lengths both takeM from the initial state to s. If there is a

path that goes from s to an accepting state, then L would not be uniform-length. Hence all

reachable states from s are non-accepting, which contradicts the minimality ofM. Hence

M must be a level automaton. FurthermoreM must have height h as otherwise it would

accepts words whose length is not equal to h.

Our goal is to investigate the state complexity of uniform-length languages of length h.

In the rest of this section we focus on the case when the alphabet Σ = {0, 1}. The techniques

used in the proofs can then be generalized to the cases when |Σ| > 2.

60 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

Before we begin our analysis of uniform-length languages we introduce some notions

and facts which we will require. A language is prefix-free if any two distinct words w1,w2

in the language are not comparable with respect to the prefix relation ≺pref. A prefix-free

language L ⊆ Σ∗ may be naturally identified with a |Σ|-ary tree tree(L) as follows: words in

L are leaves of tree(L) and prefixes of all words in L are the internal nodes of tree(L).

Let L be a prefix-free language. For any w ∈ tree(L), let L(w) be the language {y | wy ∈ L}.

Note that for any w1,w2 ∈ L, we have w1 ≡L w2 if and only if L(w1) = L(w2). Hence by the

Myhill-Nerode theorem we have the following lemma which will be useful later.

Lemma 3.2.2 Let L be a prefix-free language and w1,w2 ∈ tree(L). The minimal automaton

recognizing L reaches the same state upon reading w1 and w2 if and only if L(w1) = L(w2).

Since each uniform-length language is prefix-free, we can define Ti as the class of trees

of the form tree(L) where L is a uniform-language of length i, i ≥ 0. The class Ti can be

defined inductively as follows:

• The class T0 contains the only height-0 tree {ε}.

• For any j > 0, the class T j contains all trees of the form

{ε} ∪ {0w | w ∈ t0} ∪ {1w | w ∈ t1}

where t0, t1 ∈ T j−1 ∪ {∅} and t0 and t1 are not both ∅.

The number of trees in Ti is given by the following recurrence: |T0| = 1 and |T j| =

|T j−1|
2 + 2|T j−1| for j ≥ 1. Solving this recurrence we get

|Ti| = 22i
− 1. (3.1)

Fig. 3.9 shows the general shape of the tree tree(Lmax(i)) for the language Lmax(i).

We fix a mapping Ti : {0, 1}2
i
→ Ti such that Ti(0

2i
) = Ti(1

2i
) and for all w1,w2 ∈ {0, 1}

2i
\

{02i
, 12i
}, we have Ti(w1) , Ti(w2) where w1 , w2 and Ti(w1),Ti(w2) are not equal to Ti(0

2i
).

For i ≥ 0, define the uniform length language Lmax(i) as {wy | |w| = 2i, y ∈ leaves(Ti(w))}.

Note that Lmax(i) is a prefix-free language.

Lemma 3.2.3 For i ≥ 0, the language Lmax(i) has maximal state complexity in the class of all

uniform-length languages of length 2i + i.

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 61

Figure 3.9: Illustration of the tree tree(Lmax(i)).

Proof Fix i ≥ 0. For simplicity we write Lmax(i) as Lmax. An automaton M recognizing

Lmax is defined as follows. For every word w ∈ {0, 1} j where j < 2i,M contains a state sw at

level j. For every tree t in T j where 0 ≤ j ≤ i,M contains a state qt at level 2i + i − j. The

initial state ofM is the state sε. The accepting state ofM is qt where t is the level-0 tree {ε}.

The transition function ∆ ofM is defined as follows.

• For each w ∈ {0, 1} j where 0 ≤ j < 2i − 1, set ∆(w, σ) = swσ where σ ∈ {0, 1}

• For each w ∈ {0, 1}2
i−1, set ∆(w, σ) = qTi(wσ).

• For each t ∈ T j where 0 < j ≤ i, by definition t is of the form {ε} ∪ {0x | x ∈ t0} ∪ {1x |

x ∈ t1} for some t0, t1 ∈ T j−1 ∪ {∅}. For σ ∈ {0, 1}, if tσ ∈ T j−1, then set ∆(qt, σ) = qtσ ; if

tσ = ∅ then set ∆(qt, σ) as the reject state.

The automatonM is minimal for Lmax because the following two facts.

• For every w1,w2 ∈ {0, 1}
j where 0 ≤ j < 2i, we have Lmax(w1) , Lmax(w2) whenever

w1 , w2. Hence by Lemma 3.2.2 level j of the minimal automaton for Lmax must

contain 2 j states.

62 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

• For every t ∈ T j where 0 ≤ j ≤ i, there exists a word w with |w| = 2i + i − j such that

Lmax(w) = t. Hence by Lemma 3.2.2 level 2i + i− j of the minimal automaton for Lmax

must contain 22 j
− 1 states.

LetM′ be the minimal automaton for a uniform-length language of length 2i + i. By

Lemma 3.2.1M′ is a level automaton of height 2i + i. We would like to prove that for every

0 ≤ j ≤ 2i + i, the number of states inM′ at level j is at most the number of states inM at

level j. This is, again, due to two facts.

• For any j ≥ 0, the number of states at level j ofM′ is at most 2 j.

• For any j ≤ 2i + i, the number of states at level j is at most 222i+i− j
− 1. This is due to

Lemma 3.2.2 and equation (3.1).

Hence the maximal number of states at every level j, where 0 ≤ j ≤ 2i + i is min{2 j, 222i+i− j
},

which matches the number of states inM at level j.

By the above lemma, the minimal automatonM for the language Lmax(i) has exactly

1 + 2 + 22 + . . . + 22i−1 + 22i
− 1 + 22i−1

− 1 + . . . + 220
− 1 + 1

= 22i+1 + 22i−1
+ 22i−2

+ . . . + 220
− i − 1.

states.

Theorem 3.2.4 Suppose h = 2i + i for some i ≥ 0. The state complexity for the class of uniform-

length languages of length h is Θ(2h/h).

Proof By Lemma 3.2.3 and the above argument, the state complexity SC(h) for the class of

uniform-length languages of length h is

22i+1 + 22i−1
+ 22i−2

+ . . . + 220
− i − 1.

We analyze the asymptotic behavior of the above expression as follows. For any k ≥ 1 we

have

22k
+ 22k−1

+ . . . + 220
<

2k∑

j=1

2 j = 22k+1.

Hence we have:

SC(h) < 22i+1 + 22i−1+1 < 3 · 22i
. (3.2)

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 63

Solving the equation h = 2i + i we get

2i =
W(2h ln 2)

ln 2
(3.3)

where W is the product logarithmic function. The function W, also called the Lambert W

function, is a branch of the inverse relation of the function f (w) = wew. W(x) is defined and

has a single value for all non-negative real numbers [25]. Substituting (3.3) into (3.2) we

get

SC(h) < 3 · 2
W(2h ln 2)

ln 2 = 3 · eW(2h ln 2).

Since W(z)eW(z) = z for any complex z, we get

SC(h) < 3 ·
W(2h ln 2)eW(2h ln 2)

W(2h ln 2)

= 3 ·
2h ln 2

W(2h ln 2)

= 3 ln 2 ·
2h

W(2h ln 2)
.

Note that for sufficiently large h we have 2h ln 2 > eh/2h/2 and W is an increasing function

onN. Hence we have

W(2h ln 2) > W(eh/2h/2) = h/2.

Therefore SC(h) < 3 ln 2 · 2h

h/2 . This shows that SC(h) is O(2h/h).

Conversely we have

SC(h) > 22i+1 = 2 · 2
W(2h ln 2)

ln 2 = 2 · eW(2h ln 2) = 2 ln 2 ·
2h

W(2h ln 2)
.

Since W is an increasing function on reals above 0, for sufficiently large h

W(2h ln 2) =W(eh ln 2 ln 2) < W(eh ln 2h ln 2) = h ln 2.

This means that SC(h) > 2 ln 2 · 2h

h ln 2 = 2 · 2h

h . Hence SC(h) is Ω(2h/h) and the theorem is

proved.

64 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

State complexity of finite languages with bounded word length

Let Fh denote the class of all finite languages whose words have length bounded by h,

where h ≥ 0. Theorem 3.2.4 shows that the state complexity for the class Fh isΩ(2h/h). We

now show that the state complexity for Fh is also Θ(2h/h).

Let L be a finite language in Fh. Fix a new symbol σ < Σ. We define the uniform-length

language LU of length h as follows

LU = {w ∈ Σ
∗ | w = xσh−|x|, x ∈ L}.

Recall for a regular language R, the equivalence relation≡R has a finite index by the Myhill-

Nerode theorem and the state complexity of R is the index of ≡R. In the following we use

[x]R to denote the equivalence class of x with respect to ≡R.

Lemma 3.2.5 For a finite language L of length h, we have SC(L) ≤ SC(LU).

Proof We only need to consider the case when L is not uniform-length. Note that there is

exactly one equivalence class [w]L (resp. [w]LU) with respect to ≡L (resp. ≡LU) containing

all words x where xy < L (resp xy < LU) for any y ∈ Σ∗. Now consider an equivalence class

[w]L such that wx ∈ L for some x ∈ Σ∗. Let ℓ([w]L) = |{k ∈ N | y ∈ [w]L, |y| = k}|. By the

choice of w, we have ℓ([w]) > 1.

Take two words w1,w2 ∈ [w]L. If |w1| , |w2|, by Lemma 3.2.1, w1,w2 do not belong to the

same equivalence class of ≡LU . Otherwise, we have |w1| = |w2|. In this case, since w1x ∈ L

if and only if w2x ∈ L for any x ∈ Σ∗, we must also have w1x ∈ LU if and only if w2x ∈ LU.

Hence w1 and w2 belong to the same equivalence classes of ≡LU . Hence there are ℓ([w]L)

distinct equivalence classes of LU, [w]1
LU
, . . . , [w]

ℓ([w]L)
LU

such that

[w]L ⊆ [w]1
LU
∪ . . . ∪ [w]

ℓ([w]L)
LU

and [w]L ∩ [w]i
LU
, ∅ for each i ∈ {1, . . . , ℓ([w]L)}.

Also note that a word w′ .L w cannot be in any of the equivalence classes [w]1
LU
, . . . , [w]

ℓ([w]L)
LU

.

Suppose for a contradiction that w′ ∈ [w]i
LU

. Since w′ .L w, there is some word x such that

either wx ∈ L and w′x < L or wx < L and w′x ∈ L. Now pick y ∈ [w]L ∩ [w]i
LU

. Note

that y ≡LU w′ and |y| = |w′|. Since y ≡L w, we have either yxαh−|xy| ∈ L and w′xαh−|xy| < L

or yxαh−|xy| < L and w′xαh−|xy| ∈ L. This contradicts with the assumption that y ≡LU w′.

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 65

Therefore we have [w]1
LU
∪ . . . ∪ [w]

ℓ([w]L)
LU

⊆ [w]L and hence

[w]L = [w]1
LU
∪ . . . ∪ [w]

ℓ([w]L)
LU

.

The above arguments show that every equivalence class [w]L of ≡L where wx ∈ L for

some x ∈ Σ∗ is partitioned into ℓ([w]L) many equivalence classes of ≡LU . By Myhill-Nerode

theorem, SC(L) ≤ SC(LU).

Note that LU is a uniform-length language of height h over an alphabet with three

symbols. However the new symbol σ is only used to “pad” the words of L and therefore at

most h−1 states in the minimal automaton recognizing LU are used achieve this “padding”.

Indeed each language from the class of languages of the type LU is of the form {w ∈ (Σ∪{σ})h |

w = u · σh−|u| and u ∈ Σ∗}. Since at most h − 1 states are used to recognize the suffix of the

form σ∗, we conclude that the state complexity of the class of languages of the type LU is

still Θ(2h/h). Hence we have the following theorem.

Theorem 3.2.6 The state complexity of the class of finite languages over a binary alphabet whose

words have length bounded by h, where h = 2i + i for some i ≥ 0, is Θ(2h/h).

Remark The above technique can be easily adapted to the cases when |Σ| = 22ℓ for some

ℓ ≥ 0. In this case let k = |Σ|. Using a very similar argument, we could show the following:

Suppose h = ki log2 k+ i for some i ≥ 0. The state complexity of the class of finite languages

whose words have length bounded by h is Θ(kh/h).

3.2.2 Union and intersection of uniform-length languages

In this section we analyze the number of states needed to recognize the union and intersec-

tion of two uniform-length languages L1 and L2. We do not assume the alphabet Σ has size

2 and let k = |Σ|. LetM1 (m states) andM2 (n states) be the minimal automata recognizing

L1 and L2 respectively. Clearly the product automatonM1⊕M2 orM1⊗M2 has m ·n states.

Our goal is to show that we can reduce the number of states of the product automata for

L1 and L2.

The next lemma presents automata that recognize the union and intersection of two

uniform-length languages. By Lemma 3.2.1M1 andM2 are both level automata, say with

heights h1 and h2 respectively. Without loss of generality, we assume h1 ≤ h2. Let mi (resp.

ni) be the number of states inM1 (resp. M2) at level i for i ∈ {0, . . . ,min{h1, h2}}.

66 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

Lemma 3.2.7 There exist level automataM∪ andM∩ that recognize L1∪L2 and L1∩L2 respectively

whose size is at most
∑h1

i=0
mi · ni + m + n − 2 where mi, ni are the number of states at level i of

M1,M2 respectively.

Proof Let Si, j be the set of all states inMi that are on level j where 0 ≤ j ≤ hi. The set of

states S of automatonM∪ is

h1⋃

i=0

S1,i × S2,i ∪ (S1 \ {s
1
0}) × {s2} ∪ {s1} × (S2 \ {s

2
0})

where s1 and s2 are the reject state ofM1 andM2 respectively.

The state (s1
0
, s2

0
) is the initial state and the only state at level 0 of M∪. The transition

function ∆ ofM∪ is defined as

∆((s1, s2), σ) = (∆(s1, σ),∆(s2, σ))

for s1 ∈ S1 and s2 ∈ S2. The accepting states ofM∪ are all states in S∩ ((F1 × S2)∪ (S1 × F2)).

It is easy to see that the language ofM∪ contains all words that are recognized by either

M1 orM2.

The automatonM∩ is defined in the same way except the accepting states are S∩ (F1 ×

F2).

Since m =
∑h1

i=0
mi, we have

min{h1,h2}∑

i=0

mi · ni = m1n1 +m2n2 + . . . +mh1
nh1

≤ m ·max{ni | 0 ≤ i ≤ h1}.

Lemma 3.2.8 The maximal ni for 0 ≤ i ≤ h2 is at most k−1
k n.

Proof Let i be the level where ni is maximal. Note that n j+1 ≤ kn j for every 0 ≤ j < h2.

Hence at level j of the automatonM2 where j < i, there are at least
⌈

ni

ki− j

⌉
states. Therefore

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 67

the automaton contains at least

ni +

⌈
ni

k

⌉
+

⌈
ni

k2

⌉
+ . . . 1

≥ ni +
ni

k
+

ni

k2
+ . . . + 1

=
kni − 1

k − 1

number of states. Note that the above calculation does not take into account the reject state.

Hence

n ≥
kni − 1

k − 1
+ 1

≥
kni

k − 1
.

Therefore ni ≤
k−1

k n.

Combining the two lemmas above we get the following.

Theorem 3.2.9 The state complexity of union and intersection for two uniform-length languages

is at most k−1
k mn+m + n− 2 where k = |Σ| and m, n are the number of states in the input minimal

automata.

3.2.3 Union and intersection of finite word languages

This section focuses on the state complexity of the union and intersection operation for

finite word-languages in general. If L is a finite language, the minimal automaton M

recognizing L contains exactly one self-loop. We single out such automata in the next

definition.

Definition 3.2.2 A acyclic DFA (ADFA) is a DFA M = (S, q0,∆, F) that has the following

properties:

1. There is a state s ∈ S, called the reject state, such that ∆(s, σ) = s for all σ ∈ Σ, and

2. Let E ⊆ S2 be the edge relation such that (s1, s2) ∈ E if and only if ∆(s1, σ) = s2 for some

σ ∈ Σ. The graph (S \ {s},E↾S \ {s}) is a directed acyclic graph.

68 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

Intuitively, the above definition states that the transition diagram of M, minus the only

self-loop s, is acyclic. We omit the reject state from our calculations that follow.

Let L1 and L2 be two finite word-languages recognized by ADFA M1 (m states) and

M2 (n states) respectively. We adopt the following plan in analyzing the number of states

needed to recognize L1 ∪ L2 and L1 ∩ L2. First we take the product automataM1 ⊕M2 and

M1 ⊗M2. We then compute a lower bound on the number of states that are unreachable

by the product automata when processing any input words. Then using this bound we

will compute upper bounds for the minimal automata of L1 ∪ L2 and L1 ∩ L2.

First we introduce some terminology. LetM = (S, s0,∆, F) be an ADFA. The low-level of

a state s ∈ S is the length of the shortest path from s0 to s. The high-level of a state s ∈ S is

the length of the longest path from s0 to s. The height ofM is the maximal high-level of any

state. Let h be the height ofM. A witness path is a transition path s0, s1, . . . , sh of length h.

For the rest of the section we fix two ADFA M1 = (S1, s
1
0
,∆1, F1), M2 = (S2, s

2
0
,∆2, F2)

recognizing finite languages L1 and L2 respectively. We say a state (s1, s2) is unreachable if

the product automaton cannot reach this state upon processing any input word.

Lemma 3.2.10 In the product automaton, any state (s1, s2), where s1 ∈ S1, s2 ∈ S2 and the

high-level of s1 (resp. s2) is less than the low-level of s2 (resp. s1), is not reachable.

Proof Suppose the high-level of s1 ∈ S1 is less than the low-level of s2 ∈ S2, and the state

(s1, s2) is reachable in the product automaton via a path q0, q1, . . . , qℓ where q0 = (s1
0
, s2

0
).

Then the sequence of the first components of q0, q1, . . . , qℓ is a path inM1 from s1
0

to s1, and

the sequence of second components of q0, q1, . . . , qℓ is a path inM2 from s2
0

to s2. Note by

definition the length ℓ of this path is at most the high level of s1. Also ℓmust be greater than

or equal to the low level of s2. However this is impossible since the high-level of s1 is less

than the low-level of s2 and hence (s1, s2) cannot be reachable in the product automaton.

The case when the high-level of s2 is less than the low-level of s1 is proved similarly.

The following lemma computes the number of unreachable states associated with a single

state inM1 andM2.

Lemma 3.2.11 1. For each state s2 ∈ S2 with high-level i ≥ 1, the number of s1 ∈ S1 such that

(s1, s2) is unreachable is at least m −
∑i

j=0 k j.

2. For each state s1 ∈ S1 with high-level i ≥ 1, the number of s2 ∈ S2 such that (s1, s2) is

unreachable is at least n −
∑i

j=0 k j.

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 69

Proof We only prove the first part of the lemma. The second part can be proved in the

same way. Fix a state s2 ∈ S2 with high-level i ≥ 1. By Lemma 3.2.10, for any state s1 ∈ S1

with low-level smaller than i, the state (s1, s2) is unreachable in the product automaton.

There are at most k j states with low-level j. This means at least

m − k0 − k1 − k2 − . . . − ki = m −

i∑

j=0

k j

states of the form (s1, s2) in the product automaton are not reachable.

In the following, we assume that the heights of the two automataM1 andM2 are h1 and h2

respectively, and that h1 ≤ h2. Note that since there are at most 2i states with each low-level

i, we have logk(m + 1) − 1 ≤ h1, and logk(n + 1) − 1 ≤ h2.

Lemma 3.2.12 The number of unreachable states in the product automaton of M1 andM2 is at

least (logk(m + 1))(m + n) − 3m − n − 2.

Proof Let P1 = s0, s1, . . . , sh1
and P2 = q0, q1, . . . , qh2

be witness paths inM1 andM2 respec-

tively. Note that each state (si, qi) has high-level i, as otherwise there would be longer paths

inM1 orM2, which contradicts with the definition of a witness path.

By Lemma 3.2.11 and the fact that logk(m + 1)− 1 ≤ h1 ≤ h2, for each i ≤ logk(m + 1) − 1,

there are at least m−
∑i

j=0 k j unreachable states of the form (s, qi) in the product automaton.

Therefore the total number of unreachable states of the form (s, qi) where 0 ≤ i ≤ h2 is at

least

logk(m+1)−1∑

i=1

m −

i∑

j=0

k j

 = (logk(m + 1))m −m −

logk(m+1)−1∑

i=1

i∑

j=0

k j

≥ (logk(m + 1))m −m −

logk(m+1)−1∑

i=1

ki+1

≥ (logk(m + 1))m −m − klogk(m+1)

≥ (logk(m + 1))m − 2m − 1 (3.4)

Similarly, by Lemma 3.2.11, for each i ≤ logk(m + 1) − 1, there are at least n −
∑i

j=0 k j

unreachable states of the form (si, q) in the product automaton. Hence the total number of

70 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

unreachable states of the form (si, q) where 1 ≤ i ≤ h1 is at least

logk(m+1)−1∑

i=1

n −

i∑

j=0

k j

 .

The above is greater than

(logk(m + 1))n − n −m − 1. (3.5)

Summing up the values in (3.4) and (3.5), the total number of unreachable states is at least

(logk(m + 1))(m + n) − 3m − n − 2.

Note that no state (si, qi) is counted twice in the above sum due to the nature of the states

counted as unreachable within lemma 3.2.11.

The next theorem directly follows from the above lemma.

Theorem 3.2.13 Let M1,M2 be two ADFA over an alphabet of k symbols with m, n states re-

spectively. The number of states in the minimal automaton recognizing L(M1) ∪ L(M2) (and the

minimal automaton recognizing L(M1) ∩ L(M2)) is at most m · n − logk(m)(m + n) + 3m + n + 2

states.

3.2.4 Union and intersection of finite tree languages

Recall the definitions ofΣ-labeled k-ary trees and deterministic tree automata (DTA) that we

introduced in chapter 2 (section 2.1.2). Also recall that the class of regular tree languages,

just like regular word languages, is closed under union and intersection. Similar to the case

of regular word languages, given DTA’sM1,M2, we may construct the product automata

M1 ⊕M2 andM1 ⊗M2 which recognize L(M1) ∪ L(M2), L(M1) ⊗ L(M2) respectively. The

state complexity of union and intersection on two tree regular language L1, L2 is bounded

above by m · n where m, n are the state complexity of L1, L2 respectively. In the rest of

this section, we show that this upper bound can be improved for the class of finite tree

languages.

A unary tree language consists of Σ-labeled k-ary trees where the alphabet set Σ = {1}.

The corresponding tree automata are called unary tree automata. Since on a {1}-labeled tree

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 71

(t, λ) all elements have the same label, transition functions for unary tree automata can be

simplified as ∆ : (Q ∪ {q0})
k → Q. Also we identify (t, λ) with the tree t.

The next lemma demonstrates that any tree language can be coded by a unary tree

language while preserving regularity. Furthermore, this coding may be done without

making too much sacrifice in state complexity.

Lemma 3.2.14 For any T = (t, λ) ∈ Tk(Σ), there is a (k + 1)-ary tree f (T) such that for any tree

language L ⊆ Tk(Σ), L is a regular tree language if and only if the set f (L) = { f (T) | T ∈ L} is a

regular unary tree language. Furthermore, we have SC(L) ≤ SC(f (L)) ≤ SC(L) + |Σ|.

Proof Without loss of generality, assume Σ = {1, . . . ,m} for some number m ≥ 1. Take

T = (t, λ) ∈ Tk(Σ). The (k + 1)-ary tree f (T) is defined as the smallest prefix-closed set

containing t ∪ {wk0λ(w)−1 | w ∈ t}.

Consider a regular tree language L ⊆ Tk(Σ) and let M = (Q,∆, q0, F) be the minimal

DTA over Σ such that L = L(M). We define the unary DTAM′ = (Q′,∆′, q0, F
′) as follows:

1. Q′ = Q ∪ {s1, . . . , sm}where s1, . . . , sm < Q and F′ = F.

2. The transition function ∆′ is defined as follows:

∆′(p0, . . . , pk) =

s1 if p0 = . . . = pk = q0

si+1 if p1 = . . . = pk = q0 and p0 = si

for i ∈ {1, . . . ,m − 1}

∆(p0, . . . , pk−1, j) if pk = s j for j ∈ Σ

and p0, . . . , pk−1 ∈ Q

Consider a k-ary tree T ∈ L and letρ : t̂→ Q be the run ofM on T. Also letρ′ : f̂ (T)→ Q′

be the run ofM′ on f (T). From the definition of f (T) and the construction ofM′, it is clear

that ρ(w) = ρ′(w) for every w ∈ T. Hence we see that L(M′) = f (L). Since |Q′| = SC(L)+ |Σ|,

we have SC(f (L)) ≤ SC(L) + |Σ|

Now let H ′ = (Q′,∆′, q0, F
′) be the minimal unary DTA such that L(H ′) = f (L). We

would like to construct a DTA H = (Q,∆, q0, F) from H ′ such that L(H) = L. However

before we do so, we would like to set up some terminology. We use ri to denote the Σ-

labeled k-ary tree (ǫ, λ) such that λ(ǫ) = i for i ∈ Σ. We define the function g : Q′ → P(Σ)

72 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

such that

g(q) = {i ∈ Σ | ρ′(k) = q where ρ′ is the run ofH ′ on f (ri)}

for q ∈ Q′.

Note that since H ′ is deterministic, it must be the case that the sets g(q1) and g(q2)

are disjoint for distinct q1, q2 ∈ Q′ and
⋃

q∈Q′ g(q) = Σ. Now we are ready to define

H = (Q,∆, q0, F):

1. Q = Q′ and F = F′.

2. For every j ∈ Σ and p0, . . . , pk−1 ∈ Q, we define ∆(p0, . . . , pk−1, j) = ∆′(p0, . . . , pk−1, q)

where q ∈ Q′ and j ∈ g(q).

By the construction ofH and the definition of f (T), it is clear thatH accepts T ∈ Tk(Σ)

if and only if H ′ accepts f (T). Since L(H ′) = f (L), we have L(H) = L. Also we have

SC(f (L)) = |Q′| and Q = Q′. Therefore SC(L) ≤ SC(f (L)) as required.

Note that for any tree languages L1, L2 ∈ Tk(Σ), the languages f (L1) and f (L2) satisfy that

f (L1) ∪ f (L2) = f (L1 ∪ L2) and f (L1) ∩ f (L2) = f (L1 ∩ L2). (3.6)

The above equalities will be useful later in this section.

Our goal is to obtain an analogous upper bound of the state complexity of union and

intersection on tree languages as the upper bound given in Section 3.2.3. To this end we

first study the state complexity of finite unary tree languages. We then use Lemma 3.2.14

to obtain the upper bound for finite tree languages in general. We say a state q in a unary

DTAM is reachable if there is a tree t such that the run ρ ofM on t labels the root of t by

q. In this case, the run ρ is called the witness run of q. Note that a minimal tree automaton

does not contain any states that are not reachable.

LetM = (S,∆, q0, F) be an DTA that recognizes a finite tree language. The low-level of a

state q ∈ S is the minimal height of any tree t such that the run ofM on t labels the root of

t by q. The high-level of a state q ∈ S is the maximal height of any tree t such that the run of

M on t labels the root of t by q. The height ofM is the maximal high-level of any accepting

state q ∈ F inM. In other words, the height ofM is the maximal height of any tree in L(M).

Let L1 and L2 be two finite tree languages recognized by DTAM1 (m states) andM2 (n

states) respectively. Similar to the word automata case, we again would like to compute

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 73

a lower bound on the number of states that are not reachable by the product automata

M1 ⊕M2 andM1 ⊗M2. Suppose thatM1 = (S1,∆1, q0, F1) andM2 = (S2,∆2, q0, F2). The

following lemma can be proved in a similar way as Lemma 3.2.10.

Lemma 3.2.15 In the product automaton, any state (q1, q2) ∈ S1 × S2 where the high-level of q1

(resp. q2) is less than the low-level of q2 (resp. q1), is not reachable.

Proof Suppose that the high-level of q1 is less than the low-level of q2, and (q1, q2) is

reachable in the product automaton via a tree t. Let ρ : t̂ → (Q1 ∪ {q0}) × (Q2 ∪ {q0}) be the

witness run of (q1, q2). Let ρ1 : t̂ → Q1 ∪ {q0} and ρ2 : t̂ → Q2 ∪ {q0} be such that for each

w ∈ t̂, we have ρ(w) = (ρ1(w), ρ2(w)). Then the functions ρ1 and ρ2 are witness runs of q1

in M1 and q2 in M2 respectively. By definition of low-level and high-level, the height of

the tree t must be no less than the low-level of q2, and no more than the high-level of q1.

However, this contradicts with the assumption. The case when the high-level of q2 is less

than the low-level of q1 can be proved in the same way.

As in the case of finite word automata, we let h1, h2 be the heights of M1 and M2

respectively and assume that h1 ≤ h2.

Lemma 3.2.16 SupposeM1 andM2 are unary rank-k DTAs.

1. For each state s1 ∈ S1 with high-level i where 1 ≤ i ≤ h1, the number of s2 ∈ S2 such that

(s1, s2) is not reachable is at least n −
∑i

j=0 2k j+1
.

2. For each state s2 ∈ S2 with high-level i where 1 ≤ i ≤ h2, the number of s1 ∈ S1 such that

(s1, s2) is not reachable is at least m −
∑i

j=0 2k j+1
.

Proof We only prove the first part of the lemma. Note that by definition each k-ary tree t

of height i is a subset of
⋃i

j=0N
j

k
. Since there are at most

1 + k + k2 + . . . + ki =
ki+1 − 1

k − 1
≤ ki+1

elements in the set
⋃i

j=0N
j

k
, there are at most 2ki+1

number of k-ary trees of height i. Now

fix a state s1 ∈ S1 with high-level i ≥ 1. There are at least

n − 2k1
− 2k2

− . . . − 2ki+1
= n −

i∑

j=0

2k j+1

74 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

states of the form (s1, s2) ∈ S1 × S2 where s2 has low-level smaller than i. By Lemma 3.2.15,

all these states (s1, s2) are not reachable in the product automaton. Similarly, one may prove

that for s2 ∈ S2 with high-level i ≥ 1, the number of s1 ∈ S1 such that (s1, s2) is not reachable

is at least m −
∑i

j=0 2k j+1
.

Lemma 3.2.17 The number of unreachable states in the product automatonM1 andM2 is at least

(logk log2(m − 1))(m + n) − 9m − n + 8.

Proof Note that the number of states with high-level i, where 0 ≤ i ≤ h1, is bounded above

by the number of k-ary trees of height i. Therefore there are at most 2ki+1
states inM1 with

high-level i. Hence, we have
h1∑

i=0

2ki+1
≥ m.

Since
∑h1

i=0
2ki+1

< 2ki+1+1, we have

2kh1+1+1 ≥ m

kh1+1 ≥ log2(m − 1)

h1 + 1 ≥ logk log2(m − 1)

h1 ≥ logk log2(m − 1) − 1.

Similarly, one can prove that h2 ≥ logk log2(n − 1) − 1.

Let t1 ∈ L1 and t2 ∈ L2 be trees with height h1 and h2 respectively. Let ρ1 and ρ2 be

witness runs for t1 and t2 byM1 andM2 respectively. Note that for any words u1, u2 ∈ tα

where α ∈ {1, 2} and u1 ≺pref u2, ρα(u1) , ρα(u2) as otherwise one may apply a pumping

argument to obtain infinitely many trees in the tree language Lα.

Let w be a word in t2 of length h2 and let s0, s1, . . . , sh2
be the sequence of states labeled

by ρ2 on the path from the root ε to w in t2. Note that each si (where 0 ≤ i ≤ h2) must has

high-level i as otherwiseM2 must have height greater than h2. By Lemma 3.2.16, for each

i where 0 ≤ i ≤ logk log2(m − 1) − 1, there are at least m −
∑i

j=0 2k j+1
states of the form (q, si)

that are not reachable in the product automaton. Since logk log2(m − 1) − 1 ≤ h1 ≤ h2, the

3.2. COMPLEXITY OF FINITE WORD AND TREE LANGUAGES 75

total number of states of the form (q, si) is at least

logk log2(m−1)−1∑

i=1

m −

i∑

j=0

2k j+1

= (logk log2(m − 1) − 1)m −

logk log2(m−1)−1∑

i=1

i∑

j=0

2k j+1
.

Since
∑i

j=0 2k j+1
<
∑ki+1

j=0 2 j < 2ki+1+1, the above is greater than

(logk log2(m − 1) − 1)m −

logk log2(m−1)−1∑

i=1

2ki+1+1

≥ (logk log2(m − 1) − 1)m − 2klogk log2(m−1)+2

= (logk log2(m − 1))m − 5m + 4. (3.7)

Similarly, let w be a word in t1 of length h1 and let q0, q1, . . . , qh1
be the sequence of states

labeled by ρ1 on the path from the root to w in t1. One may show that the number of states

of the form (qi, s) that is not reachable in the product automaton, where 1 ≤ i ≤ logk log2 m

is at least

(logk log2(m − 1))n − n − 4m + 4. (3.8)

Summing up the expressions (3.7) and (3.8) we obtain the desired bound of

(logk log2(m − 1))(m + n) − 9m − n + 8.

Again note that no state (si, qi) is counted twice in the above sum due to the nature of the

states that are counted as unreachable in lemma 3.2.16.

The next theorem directly follows from the lemma above.

Theorem 3.2.18 LetM1 (m states) andM2 (n states) be two unary rank k DTA recognizing finite

tree languages. The number of states in the minimal automaton recognizing L(M1)∪L(M2) (and the

minimal automaton recognizing L(M1)∩L(M2)) is at most m·n−(logk log2(m−1))(m+n)+9m+n,

where m, n are the number of states inM1 andM2 respectively.

By Lemma 3.2.14, the above upper bound also holds for tree languages where the

alphabet Σ contains more than 1 letter.

76 CHAPTER 3. COMPLEXITY OF REGULAR LANGUAGES

Corollary 3.2.19 LetM1 (m states) andM2 (n states) be two DTA of rank k recognizing finite

tree languages. The number of states in the minimal automata recognizing L(M1) ∪ L(M2) and

L(M1) ∩ L(M2)) is at most m · n − c(logk+1 log2(m))(m + n) for some constant c > 0 when m, n

are sufficiently large.

Proof Let M1 and M2 be minimal DTAs with rank k recognizing finite tree languages

L1, L2 respectively. By Lemma 3.2.14, the finite unary tree languages f (L1) and f (L2) have

rank k+ 1 and the minimal automaton recognizing f (L1) (resp. f (L2)) is at most m+ k (resp.

n + k). By Theorem 3.2.18, the minimal automaton recognizing f (L1) ∪ f (L2) (and the one

recognizing f (L1) ∩ f (L2)) has at most

(m + k) · (n + k) − (logk+1 log2(m + k − 1))(m + n + 2k) + 9m + n + 10k

≤ mn − (logk+1 log2(m + k − 1))(m + n + 2k) + k(m + n) + 9m + n + 10k + k2

states. When m, n are sufficiently large, the above expression is bounded from above by

mn − c(logk+1 log2 m)(m + n) for some constant c > 0.

Chapter 4

Finite automata over structures

In this chapter we generalize finite automata to operate over arbitrary algebraic structures.

As mentioned in chapter 1 (section 1.1.2), there are two main motivations for generalizing

the automata model. The first motivation comes from the observation that algebraic

structures are an apt way of capturing the underlying domain, operations and predicates

of an algorithm. Some examples which are inspired by this observation are [9, 12, 13,

24, 48, 60, 65]. The second motivation comes from the fields of program verification and

databases where various models of automata operating over infinite alphabets have been

proposed [4, 10, 11, 34, 71, 83, 87]. The existence of many such models of automata over

either structures or infinite alphabets calls for a general yet simple framework to formally

reason about such finite state automata. In this chapter we address this issue and suggest

one such framework.

4.1 The Automata Model

In this section, we introduce the notion of finite automata over algebraic structures which

accept or reject finite sequences of elements from the domain of the underlying structure.

Our main motivation here is that our model is the finite automata analogue of BSS machines

over arbitrary structures. Namely, we define finite state automata over any given structure

S. Such an automaton is equipped with a finite number of states, a fixed number of

registers, a read only head that always moves to the right in the tape and transitions

between the states.

Generally speaking, the structures under consideration can be arbitrary structures.

77

78 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

Therefore the operations and relations are not necessarily computable. However, we will

always assume that given two elements x1, x2 in the domain, computing the value of

fi(x1, x2) as well as checking R j(x1, x2) can be carried out effectively for all i and j. Recall

that we denote the set of all atomic operations and the set of all atomic relations of S by

Op(S) and Rel(S), respectively.

Definition 4.1.1 A D-word of length t is a sequence a1 . . . at of elements in the domain D. A

D-language is a set of D-words.

Given a structureSwith domain D, we investigate a certain class of programs that process

D-words. Informally, such a program reads a D-word as input while updating a fixed

number of registers. Each register holds an element in D at any given time. Whenever the

program reads an element from the input D-word, it first checks if some atomic relations

hold on this input element and the current values of the registers, then applies some atomic

operations to update the registers. The program stops when the last element in the D-word

is read. If the structureS is finite, then our model is simply finite automata whose alphabet

is the domain of S. In this sense, our model is a finite automata model of BSS machines.

We model such programs using finite state machines and call our model (S, k)-automata

(k ∈N). An (S, k)-automaton keeps k changing registers as well as ℓ constant registers. The ℓ

constant registers store the constants c = c1, . . . , cℓ and their values are fixed. Each changing

register stores an element of D at any time. We normally use m1, . . . ,mk to denote the current

values of the changing registers. Inputs to the automaton are written on a one-way read-

only tape. Every state q is associated with k + ℓ atomic relations P1, . . . ,Pk+ℓ ∈ Rel(S).

Whenever the state q is reached, the (S, k)-automaton reads the next element x of the

input D-word and tests the predicate Pi(x,mi) for each i ∈ {1, . . . , k} and Pk+ j(x, c j) for each

j ∈ {1, . . . , ℓ}. The (S, k)-automaton then chooses a transition depending on the outcome

of the tests and moves to the next state. Each transition is labelled with k operations, say

g1, . . . , gk ∈ Op(S). The automaton changes the value of its ith register from mi to gi(mi, x).

After all elements on the input tape have been read, the (S, k)-automaton stops and decides

whether to accept the input depending on the current state. Here is a formal definition.

Definition 4.1.2 An (S, k)-automaton is a tupleA = (Q, α, x,∆, q0, F) where Q is a finite set of

states, the mapping α is a function from Q to Relk+ℓ(S), x ∈ Dk are the initial values of the registers,

q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states and ∆ ⊆ Q× {0, 1}k+ℓ ×Q×Opk(S) is

the transition relation ofA. The (S, k)-automaton is deterministic if for each q ∈ Q, b ∈ {0, 1}k+ℓ ,

4.2. SIMPLE PROPERTIES OF S-AUTOMATA 79

there is exactly one q′ and g ∈ Opk(S) such that (q, b, q′, g) ∈ ∆. An (deterministic)S-automaton

is an (deterministic) (S, k)-automaton for some k.

One can view each state q of an S-automaton as a test state and an operational state;

the state q is a test state because the predicates from α(q) are tested on tuples of the form

(a,m) where a is the input and m is a value from the registers. The state q is an operational

state because depending on the outcomes of the tests, an appropriate list of operations are

applied to the tuples (m, a).

To define runs of S-automata, we introduce the following notations. For any n ∈

N, given a tuple P = (P1, . . . ,Pn) ∈ Reln(S), m = (m1, . . . ,mn) ∈ Dn and a ∈ D, we let

χ(P,m, a) = (b1, . . . , bn) ∈ {0, 1}n such that bi = 1 if S |= Pi(a,mi) and bi = 0 otherwise, where

1 ≤ i ≤ n. Fix an (S, k)-automaton A. A configuration of A is a tuple r = (q,m) ∈ Q × Dk.

Given two configurations r1 = (q,m), r2 = (q′,m′) and a ∈ D, by r1 ֒→a r2 we denote that

(q, χ(α(q), (m, c), a), q′, g1, . . . , gk) ∈ ∆ and m′
i
= gi(mi, a) for all i ∈ {1, . . . , k}. Note that if gi is

a partial operation, then it must be defined for the arguments mi, a for r1 ֒→a r2.

Definition 4.1.3 A run ofA on a D-word a1 . . . an is a sequence of configurations

r0, r1, . . . , rn

where r0 = (q0, x1, . . . , xk) and ri−1 ֒→ai
ri for all i ∈ {1, . . . , n}. The run is accepting if the state in

the last configuration rn is accepting. The (S, k)-automaton A accepts the D-word a1 . . . an if A

has an accepting run on a1 . . . an. The language L(A) of the automaton is the set of all D-words

accepted byA.

We say a D-language L is (deterministic) S-automata recognizable if L = L(A) for some (deter-

ministic) S-automataA. The subsequent sections present several examples of S-automata

recognizable languages and discuss some simple properties of S-automata. These exam-

ples and properties provide justification to investigateS-automata as a general framework

for finite state machines.

4.2 Simple Properties of S-automata

In this section we use several examples to establish some simple properties of S-automata

and S-automata recognizable D-languages.

80 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

S-automata and regular languages: Let S be a structure. We use S[a] to denote the

structure obtained fromSby adding constants a to the signature. Suppose that the structure

S contains an atomic equivalence relation ≡ of finite index. Let Σ = {σ1, . . . , σk} be the set

of all equivalence classes of ≡. For every word w = w1 . . .wn over the alphabet Σ, let R(w)

be the D-language {a1 . . . an | ai ∈ wi for all i = 1, . . . , n}. For every language L over Σ, let

R(L) be the D-language
⋃

w∈L R(w).

Theorem 4.2.1 Let ai be an element from the ≡-equivalence class σi, where i = 1, . . . , k. Then each

of the following is true.

• For every regular languageL overΣ, the D-language R(L) is accepted by an (S[a1 , . . . , ak], 0)-

automaton.

• Suppose the signature of S contains only one relation ≡ and the atomic operations of S are

compatible with ≡. For every S-automata recognizable D-language W, there is a regular

language L over Σ such that W = R(L).

Proof For (1), let L be a regular language over the alphabet Σ. Take a deterministic finite

automaton A accepting L. We define an (S[a1, . . . , ak], 0)-automaton A′ accepting the

D-language R(L) as follows.

The automaton A′ has all states in A with a new state qsink. The initial state and the

accepting states ofA′ coincide with those states ofA. The map α associates with each state

ofA′ the tuple (≡, . . . ,≡). The transitions inA′ are the following.

• A transition (qsink, b, qsink) for every b ∈ {0, 1}k.

• A transition (q, (b1, . . . , bk), q′) where (q, σi, q
′) is a transition ofAwith bi = 1 and b j = 0

for all j , i.

• A transition (q, (b1, . . . , bk), qsink) for every state q inAwhere |{i | bi = 1}| , 1.

It is easy to see thatA′ is the desired (S[a1, . . . , ak], 0)-automaton.

For (2), let W be a D-language accepted by an (S, t)-automaton A = (Q, α, x,∆, q0, F).

We construct a finite automatonA′ for the desiredL.

• The states ofA′ are Q×Σt+ℓ where ℓ is the number of constant symbols in the signature

of S.

4.2. SIMPLE PROPERTIES OF S-AUTOMATA 81

• The initial state ofA′ is (q0, σi1 , . . . , σit+ℓ) where x j ∈ σi j
for j = 1, . . . , t and c j ∈ σit+ j

for

j = 1, . . . , ℓ.

• A state (q, σi1 , . . . , σit+ℓ) is accepting if q ∈ F.

• A transition from (q, σi1 , . . . , σit+ℓ) to (q′, σ′
i1
, . . . , σ′

it+ℓ
) is labelled by σ ∈ Σ if there is a

transition (q, b, q′, g) ∈ ∆ and a ∈ D that satisfy the following conditions:

1. a ∈ σ

2. b j = 1 if and only if a ∈ σi j
for j = 1, . . . , t + ℓ

3. For any y ∈ σi j
, g j(y, a) ∈ σ′

i j
for j = 1, . . . , t.

For the language L accepted by the automatonA′ we have R(L) =W.

Example 4.2.1 Using Theorem 4.2.1 one can present many example of D-languages accepted by

S-automata.

(a) Regular languages over Σ = {σ1, . . . , σk} are accepted by ((Σ;=, σ1, . . . , σk), 0)-automata.

(b) Let S be a finite structure with domain D where equality is part of the signature. Any

D-language acceptable by an S-automaton is a regular language over the alphabet D.

(c) Let S be (Z;≡) where ≡= {(i, j) | i = j = 0 or i, j > 0}. The following Z-language is

recognized by (S[−1, 0, 1], 0)-automata.

{n0 . . . nk | k ∈N, n j is positive when j is even and negative when j is odd}

Separation between (S, k)-automata and (S, k + 1)-automata: We now single out two

functions that will be used throughout the paper.

Definition 4.2.1 For i ∈ {1, 2}, define projection on the ith coordinate as an operation pri : D2 →

D such that pri(a1, a2) = ai for all a1, a2 ∈ D.

The next example shows that for infinite structures of the formS = (D;=,pr1,pr2), the class

of D-languages accepted by (S, k)-automata properly contains the class of D-languages

accepted by (S, k − 1)-automata.

82 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

Example 4.2.2 Let S = (D;=,pr1,pr2) with D infinite. For k > 0, let Dk be the S-language

{a0 . . . ak | ∀i, j ∈ {0, . . . , k} : i , j⇒ ai , a j}.

It is clear that an (S, k)-automaton recognizes Dk: The automaton reads the input ai and stores

ai into the ith register (by applying pr1 on the ith register) when ai , a j for all j < i, where

0 ≤ i ≤ k − 1. The automaton accepts a0 . . . ak if and only if ak is different from any register values.

Now suppose Dk is accepted by an (S, k − 1)-automaton A. Fix a D-word w = a0 . . . ak−1

where ai , a j for any i , j and say A reaches state q after reading w. Since there are only k − 1

registers, there is some j ∈ {0, . . . , k − 1} such that no register stores the element a j. Now if there is

a transition that goes from q to an accepting state q′ of the form (q, 0, q′, g), then the S-automaton

A would accept the D-word wa j < Dk. Otherwise all transitions from q to an accepting state are

of the form (q, b, q′, g) where b = (b1, . . . , bk−1) and some b j in b is 1. Therefore ifA reads another

input ak and reaches an accepting state, ak must equal to some register value. This means that

|{ak | wak ∈ L(A)}| ≤ k − 1, which contradicts with the assumption that D is infinite.

Separation between deterministic and nondeterminstic S-automata: The next example

shows that the deterministic S-automata form a proper subclass of S-automata. Fur-

thermore, the class of S-automata recognizable D-language is not closed under Boolean

operations in the general case.

Example 4.2.3 Let S = (N;+,pr1,=, 1). Let L be the N-language {1nm | n,m ∈ N,m ≤ n}.

Fig. 4.1 gives an (S, 1)-automaton that recognizes L. We now prove that no deterministic S-

automaton recognizes the N-language L. Suppose for a contradiction that a deterministic (S, d)-

automaton A recognizes L. Fix a number n > k. The S-automaton A have exactly one run over

the N-word 1n. Since n > k, at the end of this run, there must be one value m ∈ {0, . . . , n} that

is not stored by any registers. Since 1nm ∈ L, there must be a transition from the current state

to an accepting state that is labelled by 0k+1 (which indicates that the input is different from any

registers). However, this means that some word 1nm′ where m′ > n is accepted by A, which is in

contradiction with the assumption aboutA.

Now consider the N-language L′ = {1nm | n,m ∈ N,m > n}. Suppose L′ is recognized by

some (S, k)-automaton A′. Consider anN-word 1n where n ∈ N. Since the only operations of S

are + and pr1, at the end of any run ofA′ on 1n, no register ofA′ would store a value greater than

n. Fix a number n > k. Take an accepting run ofA′ on theN-word 1n(n+1). The last transition of

4.3. DETERMINISTIC S-AUTOMATA 83

this run must be labelled by 0k (which indicates that the input is different from any register values).

However, since n > k, there is a value m ∈ {0, . . . , n} that is not stored by any registers before

A′ reads the last input and hence the N-word 1nm is also accepted by A’. This contradicts with

the assumption about A’. Hence the language L′ can not recognized by any S-automaton. Since

N∗ \L = {ε}∪{1nmw | n,m ∈N,m , 1,w ∈N+}∪L′, it is easy to see that the class ofS-automata

recognizableN-languages is not closed under the set operations.

Figure 4.1: An ((N;+,pr1,=, 1), 1)-automaton accepting theN-language L. The initial value
is 0.

q0 := q1 :=

{
0/1:pr1

1

{0/1:+
1

{
1:pr1

0/1

4.3 Deterministic S-automata

This section presents examples of deterministicS-automata. An important property of our

automata model is that the class of all languages recognized by deterministic S-automata

is closed under all the Boolean operations. Furthermore, every language recognized by an

S-automaton over a (computable) structure is decidable. Thus deterministic S-automata

do not generate undecidable languages. We first show that the class of deterministic

S-automata recognizable D-language forms a Boolean algebra. This is a justification to

investigate deterministic S-automata as a general framework for finite state machines.

Lemma 4.3.1 (The union lemma) Given an (S, k1)-automatonA1 and an (S, k2)-automatonA2

(k1, k2 ∈N), there exists an (S, k1 + k2)-automatonA accepting the language L(A1) ∪ L(A2).

Proof The construction of the desired automaton A is very similar to the standard con-

struction for regular languages. Let A1 = (Q1, α1, x,∆1, p0, F1), A2 = (Q2, α2, y,∆2, q0, F2).

The (S, k1 + k2)-automatonA is

(Q1 ×Q2, α, (x, y),∆, (p0, q0), (Q1 × F2) ∪ (F1 ×Q2))

84 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

such that α((p, q)) = (α1(p), α2(q)) and the transition function ∆ is defined as follows: For all

p1 ∈ Q1, p2 ∈ Q2, b = (b1, . . . , bk1+k2+ℓ) ∈ {0, 1}
k1+k2+ℓ, suppose

∆1(p1, (b1, . . . , bk1
, bk1+k2+1, . . . , bk1+k2+ℓ)) = (q1, (g1, . . . , gk1

))

and

∆2(p2, (bk1+1, . . . , bk1+k2+ℓ)) = (q2, (gk1+1, . . . , gk1+k2
))

where g1, . . . , gk1+k2
∈ Op(S). Then we let ∆((p1, p2), b) = ((q1, q2), (g1, . . . , gk1+k2

)).

Intuitively, on any input D-word w, the automatonA simulates the computation ofA1

over w using the first k1 changing registers and the ℓ fixed registers. At the same time,

the automaton A simulates A2 using the remaining k2 changing registers and the ℓ fixed

registers.

The next lemma can be easily proved since the S-automata are deterministic.

Lemma 4.3.2 (The complementation lemma) Given an (S, k)-automatonA, there is an (S, k)-

automatonAc such that L(Ac) = D∗ \ L(M) where D is the domain of S.

The next theorem easily follows from Lemma 4.3.1 and Lemma 4.3.2.

Theorem 4.3.3 (Closure under Boolean operations) Let S be a structure. The class of lan-

guages recognized by S-automata is closed under union, intersection and complementation.

Now we present several examples of deterministic S-automata where the structure S

has the set of natural numberN as its domain.

Example 4.3.1 Let S = (N; pr2, <). Let L be the language containing all monotonic sequences,

i.e. N-words of the form a1 . . . an such that ai ≤ ai+1 for all i ∈ {1, . . . , n − 1}. An (S, 1)-automaton

accepting this language is presented in Fig. 4.2.

Example 4.3.2 An pre-arithmetic progression is a sequence

a, x, a + x, x, a + 2x, x, a + 3x, . . . , a + nx, x

where a, n, x ∈ N. An ((N;+,=,pr1), 2)-automaton accepting all pre-arithmetic progressions is

presented in Fig. 4.3.

4.3. DETERMINISTIC S-AUTOMATA 85

Figure 4.2: An (S, 1)-automaton accepting the monotonic sequences. Noteα(q0) = α(q1) =<.
A transition (q, b, q′, g) is represented by an arrow from state q to q′ with label b : g. The
arrow labeled by 0/1 : pr2 represent both transitions (q1, 0, q1,pr2) and (q1, 1, q1,pr2). The
initial value is 0.

q0 :< q1 :<

0 : pr2

1 : pr2

0/1 : pr2

Figure 4.3: An ((N;+,=,pr1), 2)-automaton accepting all pre-arithmetic progressions. The
initial value is (0,0).

q0 := q1 := q2 := q3 :=
{ 0/1:+

0/1:pr1
{0/1:+

0/1:+
{

1:pr1

0/1:pr1

{0/1:+
1:pr1

Example 4.3.3 LetS = (N;+,pr1, <,≤). For anyN-words w, let even(w) be the sum of numbers

on the even positions of w, and let odd(w) be the sum of numbers on the odd positions of w. Let L

contain allN-words w such that odd(w) < even(w). An (S, 2)-automaton accepting L is presented

in Fig. 4.4.

Figure 4.4: An (S, 2)-automaton accepting the S-language L = {w | odd(w) < even(w)}. The
initial value is (0, 0)

q0 :< q1 :≤

q2 :≤ q3 :<

{0/1:+
0:pr1

{
1:pr1

0/1:+

{
0:pr1

0/1:+
{0/1:1

0:pr1
{0/1:+

1:pr1
{

1:pr1

0/1:+

{
0:pr1

0/1:+

{0/1:+
1:pr1

Example 4.3.4 Let S = (N;+,pr1,=). Let F contain all Fibonacci sequences, i.e. N-words

a1a2 . . . an (n ∈ N) where ai+2 = ai+1 + ai for i ∈ {1, . . . , n − 2}. A deterministic (S, 2)-automaton

accepting F is presented in Fig 4.5.

86 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

Figure 4.5: An (S, 2)-automaton accepting the Fibonacci sequences. The initial value is
(0, 0).

q0 := q1 := q2 := q3 :=

q4 :=

{
0/1:pr1

0/1:+ {0/1:+
0/1:+

{0/1:+
1:pr1

{
1:pr1

0/1:+

{
0/1:pr1
0:pr1

{
0:pr1

0/1:pr1

{
0/1:pr1

0/1:pr1

The next example shows how deterministic S-automata may be used to accept execution

sequences of algorithms.

Example 4.3.5 Let S = (N;+,%,pr2,=, 0) where % denotes the modulo operation on natural

numbers, where a%b = r means r < b and r + bq = a for some q ∈N. Euclid’s algorithm computes

the greatest common divisor of two given natural numbers x, y ∈ N by repeatedly computing the

sequence a1, a2, a3, . . . such that a1 = x, a2 = y, and ai = ai−2%ai−1 for i > 2. The procedure

terminates when ai = 0 and declares that ai−1 is gcd(x, y). We call such a sequence a1, a2, a3, . . . an

Euclidean path. For example, the N-word 384 270 114 42 30 12 6 0 is an Euclidean path.

Note that if a1 . . . an is an Euclidean path, then an−1 = gcd(a1, a2). Hence an Euclidean path can be

thought of as a computation of Euclid’s algorithm. A deterministic (S, 2)-automaton accepting the

set of all Euclidean paths is presented in Fig. 4.6.

4.4 The Validation Problem

This section discusses the validation problem for automata over a given structure S. The

problem is formulated as follows.

Validation problem. Design an algorithm that, given an S-automaton A and a path p in

A from the initial state to an accepting state, decides if there exists a D-word a such that a

run ofA over a proceeds along p.

Obviously the problem depends on the given structure S. For instance, if S is a finite

structure then, by Example 4.2.1(b), both the validation and the emptiness problem are

4.4. THE VALIDATION PROBLEM 87

Figure 4.6: An ((N;+,%,pr1,=, 0), 3)-automaton accepting the Euclidean paths. The initial
value is (0, 0, 0). The mapping α maps every state q to the tuple (=,=,=).

q0 q1 q2 q3

q5q4

0/1 : +

0/1 : pr1

0

0/1 : %

0/1 : +

0

1 : pr1

0/1 : %

0

0/1 : %

1 : pr1

0

0/1 : pr1

1 : pr1

1

0/1 : pr1

0/1 : pr1

1

0/1 : pr1

0/1 : pr1

1

1 : pr1

0/1 : pr1

1

0 : pr1

0/1 : pr1

0/1

0/1 : pr1

0 : pr1

0/1

0/1 : pr1

0/1 : pr1

0/1

0/1 : pr1

0/1 : pr1

0/1

decidable. The validation problem for S-automata turns out to be equivalent to solving

systems of equations and in-equations over the structure. More formally, we define the

following:

Definition 4.4.1 The existential theory of S, denoted by Th∃(S) is the set of all existential

sentences true in S, that is,

Th∃(S) = {ϕ | S |= ϕ and ϕ is an existential sentence}.

Lemma 4.4.1 If Th∃(S) is decidable, then the validation problem for S[pr1,pr2,=]-automata is

decidable, where S[pr1,pr2,=] is the expansion of S by the operations pr1,pr2 and the equality

predicate =.

Proof Suppose the existential theory of S is decidable. Then the existential theory of S

expanded by the operations pr1,pr2 Th∃(S[pr1,pr2]) is also decidable. LetA = (Q, α, x,∆, q0, F)

be an (S[pr1,pr2,=], k)-automata. Let p = q0, . . . , qm be a path in the transition diagram of

A. Our goal is to construct an existential sentence ϕp (in the signature of S expanded by

pr1 and pr2) such that S[pr1,pr2] |= ϕp if and only if there exists a D-word a such that the

run ofA over a proceeds along p, and therefore prove that the validation problem forA is

decidable. We need to introduce some terminology and notation.

A sequence of transitions t1, . . . , tm ∈ ∆ conforms with the path p if for each i ∈ {1, . . . ,m},

88 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

ti = (qi−1, b, qi, g) for some b ∈ {0, 1}k+ℓ and g ∈ Op(S). Since for each edge e in the transition

diagram there are at most 2k+ℓ number of transitions that conform with e, there are only

finitely many sequences of transitions that conform with the path p. For any state q ∈ Q

we denote α(q) as (P1
q, . . . ,P

k+ℓ
q). For any transition t = (q, (b1, . . . , bk+ℓ), q

′, (g1, . . . , gk)) ∈ ∆

and j ∈ {1, . . . , k + ℓ}, we let S
j
t be the relation P

j
q if b j = 1 and let S

j
t be ¬P

j
q otherwise.

Furthermore, for any j ∈ {1, . . . , k}, let f t
j

denote the operation g j.

For a sequence t ∈ ∆∗ conforming with p, let ψt be the following existential sentence:

∃y1, . . . , ym :

m∧

i=1

k+ℓ∧

j=1

Si, j(yi, τ(x j, y1, . . . , yi−1, c)),

where α(qi−1) = (Si,1, . . . , Si,k) and for i ∈ {1, . . . ,m}, j ∈ {1, . . . , k + ℓ} and y = y1, . . . , yi−1 the

term

τ(x j, y, c) =

f ti−1

j
(f ti−2

j
(. . . f t1

j
(x j, y1), y2) . . .), yi−2), yi−1) if 1 ≤ j ≤ k

c j if j > k

By definition it is clear that the sentenceψt holds in the structureS if and only if S contains

elements y1, . . . , ym such that on the D-word y1 . . . ym the automatonAwill proceed along

the transition t1, . . . , tm. Note that ψt does not hold if any of the operations f t
j

(where

j ∈ {1, . . . , k} and t ∈ {t1, . . . , tm}) are undefined for the arguments specified by τ(x j, y, c).

Hence there exists a D-word a such that the run ofA over a proceeds along p if and only if

the following sentence holds: ∨

t conforms with p

ψt.

Since there are only finitely many t that conform with p, the above sentence is clearly

existential.

To prove the other direction,suppose that the validation problem forS[pr1,pr2,=]-automata

is decidable. Let ϕ is an existential formula over the signature of S. Without loss of gen-

erality, we assume ϕ is of the form ∃x1, . . . , xk :
∨m

i=1 ψi(x1, . . . , xk) where ψ(x1, . . . , xk) is a

conjunction of literals. Hence ϕ is equivalent to the sentence

s∨

i=1

∃x1, . . . , xk : ψi(x1, . . . , xk).

4.4. THE VALIDATION PROBLEM 89

Our goal is to construct an S[pr1,pr2,=]-automatonAi for each i ∈ {1, . . . , s} such that

(⋆) Ai contains exactly one accepting state and there is exactly one path in the transition

diagram that goes from the initial state to the accepting state.

(⋆⋆) S |= ∃x1, . . . , xk : ψi(x1, . . . , xk) if and only if there exists a D-word thatAi accepts.

Then applying Lemma 4.3.1 we build an S[pr1,pr2,=]-automaton A accepting the S-

language
⋃s

i=1 L(Ai). Furthermore, the construction from Lemma 4.3.1 guarantees that

there is an unique path in the transition diagram that goes from the initial state to each

accepting state in A. Hence checking if ϕ ∈ Th∃(S) is reduced to deciding the validation

problem forA on at most t paths and is therefore decidable. For the following lemma, we

define an x-assignment as a formula of the form x = f (y, z) where x, y, z are variables in S.

Lemma 4.4.2 Let {x1, . . . , xk} be a set of variables in S and let Φ be a set of xi-assignments

(i ∈ {1, . . . , k}) where for each i, Φ contains at most one xi-assignment. We can effectively construct

an (S[pr1,pr2,=], k)-automatonA[Φ] such that the following hold.

• A[Φ] contains exactly one accepting state and there is exactly one path in the transition

diagram that goes from the initial state to the accepting state.

• Suppose A[Φ] processes the input from the initial state and reaches the accepting state. Let

x1, . . . , xk respectively take the current values of the k registers ofA[Φ]. Then S satisfies the

conjunction of all formula in Φ.

Proof Take x ∈ {x1, . . . , xk} in ψ. We say that x has rank 0, denoted by rank(x) = 0, if

Φ does not contain an x-assignment. Otherwise, say ψ contains an x-assignment X j of

the form x = f (y, z). We let rank(x) = max{rank(y), rank(z)} + 1. In this case we also say

rank(X j) = rank(x). We use r to denote the maximum rank of any variable in Var.

We now construct the (S[pr1,pr2,=], k)-automaton A[Φ]. The initial values of the k

registers can be chosen arbitrarily. The automatonA[Φ] contains (2r+ 1)k+ 2 states, which

are denoted by

q0,0, . . . , q0,k, q1,1, . . . , q1,2k, . . . , qr,1, . . . , qr,2k, qrej.

The initial state is q0,0 and the unique accepting state is qr,2k. The mapping α maps every

state inA[Φ] to the tuple {=}k+ℓ . The state qrej is a sink, i.e., all outgoing transitions of qrej go

back to qrej. Intuitively, the automaton will work in stages: At stage 0, the automaton will

90 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

assign values to all rank-0 variables using the states q0,0, . . . , q0,k. Then for i ∈ {1, . . . , r}, the

automaton will assign values to all rank-i variables using the states qi,1, . . . , qi,2k. Formally,

we define below the transitions of the automatonA.

• For i ∈ {1, . . . , k}, add the transitions

(q0,i−1, b, q0,i, (g1, . . . , gk))

where b ∈ {0, 1}k+ℓ and for all j ∈ {1, . . . , k}

g j =

pr2 if j = i

pr1 otherwise

Suppose the automaton starts processing the input from the initial state q0,0 and

arrives at state q0,i for i ∈ {1, . . . , k}, then it must have read i input elements y1, . . . , yi,

and for j ∈ {1, . . . , j}, the jth register will store the value y j.

• For i ∈ {1, . . . , r}, add the transitions

(qi−1,k, b, qi,1, (g1, . . . , gk))

such that the following hold.

– Suppose rank(x1) < i. Then b ∈ {1} × {0, 1}k+ℓ−1 and g j = pr2 for all j where

rank(x j) = i and the x j-assignment is x j = f (x1, y) (for some y and f). All other

g j is pr1.

– Suppose rank(x0) ≥ i. Then b ∈ {0, 1}k+ℓ and g j = pr1 for all j.

• For i ∈ {1, . . . , r} and j ∈ {2, . . . , k}, add the transitions

(qi, j−1, b, qi, j, (g1, . . . , gk))

such that the following hold.

– Suppose rank(x j) < i. Then b ∈ {0, 1} j−11{0, 1}k+ℓ− j and gm = pr2 for all m where

rank(xm) = i and the xm-assignment is xm = f (x j, y) (for some y and f). All other

gm is pr1.

4.4. THE VALIDATION PROBLEM 91

– Suppose rank(x j) ≥ i. Then b ∈ {0, 1}k+ℓ and g j = pr1 for all j.

• For i ∈ {1, . . . , r} and j ∈ {k + 1, . . . , 2k}, add the transitions

(qi, j−1, b, qi, j, (g1, . . . , gk))

such that the following hold.

– Suppose rank(x j) < i. Then b ∈ {0, 1} j−11{0, 1}k+ℓ− j and gm = pr2 for all m where

rank(xm) = i and the xm-assignment is xm = f (y, x j) (for some y and f). All other

gm is pr1.

– Suppose rank(x j) ≥ i. Then b ∈ {0, 1}k+ℓ and g j = pr1 for all j.

• All other transitions inA[Φ] directs to the sink qrej.

Suppose the automaton starts processing the input from the initial state q0,0 and arrives at

state qi,2k for i ∈ {1, . . . , r}, then it must have read (2i + 1)k input elements. Furthermore,

if we let x j take current value of the jth register (for all j ∈ {1, . . . , k}), then S satisfies the

conjunction of all xm-assignments inΦwhere rank(xm) ≤ i. Hence the lemma is proved

Lemma 4.4.3 Let Var = {x1, . . . , xk} be a set of variables and Const be the set of constants in

S. Let Ψ be a finite set of formulae of the form R(x, y) or ¬R(x, y) where R ∈ Rel(S) ∪ {=} and

x, y ∈ Var∪Const and x , y. We can effectively construct an (S[pr1,=], k)-automaton B[Ψ] such

that

• B[Ψ] contains exactly one accepting state and there is exactly one path in the transition

diagram that goes from the initial state to the accepting state.

• Let x1, . . . , xk take the initial values of the k registers in B[Ψ]. There is an input word that

proceeds along this path if and only if S satisfies all formulae inΨ.

Proof LetΨ = {ϕ1, . . . , ϕm}. The automaton B[Ψ] has m + 2 states, which are denoted by

q0, q1, . . . , qm, qrej.

The initial state is q0 and the accepting state is qm. Similar to the automaton A[Φ], the

state qrej is a sink. Let x1, . . . , xk be the initial values of the k registers in B[Ψ]. Intuitively,

92 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

the automaton B[Ψ] checks if the formula ϕi holds on the state qi−1. If ϕi holds, then the

automaton makes a transition to the next state qi. Otherwise, the automaton moves to qrej.

Formally, we use xk+1, . . . , xk+ℓ to denote the constants c1, . . . , cℓ. For each i ∈ {1, . . . ,m},

if ϕi = S(xi, x j) or ¬S(xi, x j) where i, j ∈ {1, . . . , k + ℓ}, the mapping α will map the state qi−1

to a tuple {=}i−1S{=}k+ℓ−i ∈ Relk+ℓ(S) ∪ {=} There are transitions

(qi−1, (b1, . . . , bk+ℓ), qi, (pr1, . . . ,pr1︸ ︷︷ ︸
k

))

where b j = 1, bi = 1 if ϕi = S(xi, x j) and bi = 0 if ϕi = ¬S(xi, x j), and bm ∈ {0, 1} for all

m < {i, j}. All other transitions inB[Ψ] directs to the sink qrej. It is clear that all of ϕ1, . . . , ϕm

hold if and only if some input sequence proceeds along the path q0, . . . , qm.

Using the lemmas above we are then ready to prove the following lemma.

Lemma 4.4.4 If the validation problem for S[pr1,pr2,=]-automata is decidable, then Th∃(S) is

decidable.

Proof By the discussion above, it suffice to construct the S[pr1,pr2,=]-automatonAi that

satisfy properties (⋆) and (⋆⋆) for every i ∈ {1, . . . , s}. For ease of notation we will drop the

subscript i and simply say we construct an S[pr1,pr2,=]-automaton A for the existential

sentence ∃x1, . . . , xk : ψ(x1, . . . , xk) where ψ(x1, . . . , xk) is a conjunction of literals. Let Var

denote the set {x1, . . . , xk} of all free variables that appeared in ψ and Const denote the set of

all constants in ψ. Without loss of generality, we assume that the conjunction ψ(x1, . . . , xk)

can be written in the form
s1∧

i=1

Xi ∧

s2∧

i+1

Yi

such that the following hold:

1. Each Xi is an xi-assignment for some i ∈ {1, . . . , k}.

2. If Xi is an y-assignment and X j is an z-assignment and i , j, then y , z.

3. Each Yi is of the form R(x, y) or¬R(x, y) where x, y ∈ Var∪Const and R ∈ Rel(S)∪{=}.

We construct the (S[pr1,pr2,=], k)-automaton A[{X1, . . . ,Xs1
}] and B[{Y1, . . . ,Ys2}] as de-

scribed in Lemma 4.4.2 and Lemma 4.4.3. The desired automaton A can be obtained by

4.5. THE EMPTINESS PROBLEM 93

joining these two automata such that the accepting state in A[{X1, . . . ,Xs1
}] and the initial

state B[{Y1, . . . ,Ys2}] is replaced by a single state, the initial state ofA is the initial state of

A[{X1, . . . ,Xs1
}] and the only accepting state ofA is the accepting state of B[{Y1, . . . ,Ys2}].

The correctness of the construction is directly implied from the statements of Lemma 4.4.2

and Lemma 4.4.3.

Combining Lemma 4.4.1 and Lemma 4.4.4, we obtain the following theorem.

Theorem 4.4.5 The validation problem for S[pr1,pr2,=]-automata is decidable if and only if

Th∃(S) is decidable.

4.5 The Emptiness Problem

This section discusses the emptiness problem for S-automata.

Emptiness problem. Design an algorithm that, given a structureS and an (S, k)-automaton

A, decides ifA accepts at least one D-word.

4.5.1 The emptiness problem for acyclic S-automata

A sink state in an S-automaton is a state whose all outgoing transitions loop into the state

itself. All accepting sink states can be collapsed into one accepting sink state, and all non-

accepting sink states can be collapsed into one non-accepting sink state. Therefore we can

always assume that every S-automaton has at most 2 sink states.

Definition 4.5.1 We call an S-automaton acyclic if its state space without the sink states is an

acyclic graph.

Note that in any acyclic S-automaton, there are only finitely many paths from the initial

state to an accepting state. Hence the emptiness problem is computationally equivalent to

the validation problem. Theorem 4.4.5 implies the following corollary that we state as a

theorem.

Theorem 4.5.1 For any structure S, the emptiness problem of acyclic S[pr1,pr2,=]-automata is

decidable if and only if S has decidable existential theory.

94 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

The above theorem immediately provides a wide range of structures S for which the

emptiness problem of acyclic S[pr1,pr2,=]-automata is decidable. The following corollary

lists a few examples of such structures. The structures (a-c) are well-known to have

decidable first-order theory, (d) has decidable theory by [14], (e) has decidable theory by

[77], and (f-g) have decidable theory since they are instances of automatic structures [49].

Corollary 4.5.2 The emptiness problem is decidable for acyclic S[pr1,pr2,=]-automata where S

is the following structures and c1, . . . , ck are constants in the respective domain:

(a) (N;+, <,≤, c1, . . . , cℓ).

(b) (N;×, c1, . . . , cℓ).

(c) Any finitely generated Abelian group.

(d) (N;+,Vp) where p ∈N and the function Vp :N2 →N is defined as

Vp(x, y) =

the greatest power of p dividing x if x , 0 and

1 if x = 0.

(e) (N;+, pow2, c1, . . . , cℓ) where the function pow2 :N2 →N is the function (x, y)→ 2x.

(f) (Q;+,≤, c1, . . . , cℓ) where Q is the set of rational numbers.

(g) The Boolean algebra of finite and co-finite subsets ofN.

Theorem 4.5.1 above poses the following question. LetSbe a structure with undecidable

existential theory, find k such that the emptiness problem for acyclic (S, k)-automata is

undecidable. Speculatively there might be a structure S with undecidable existential

theory (and hence undecidable emptiness problem for acyclic S-automata) such that for

each k the emptiness problem for acyclic (S, k)-automata is decidable, but we don’t know

any such example. Below we provide an example of a structure S such that the emptiness

problem for acyclic (S, 1)-automata is undecidable.

Let G = (V,E) be a computable graph for which testing whether each node is isolated

is undecidable (the reader is referred to [33] for the existence of such a graph). Then

the following acyclic (G[pr2,=], 1)-automatonA has undecidable emptiness problem. The

4.5. THE EMPTINESS PROBLEM 95

(G, 1)-automatonA has four states q0, q1, qf, qs where qf, qs are sink states and F = {qf}. The

mapping α maps q0 to = and q1 to E. The transitions on q0 and q1 are

{(q0, b, q1,pr2) | b = 0, 1} ∪ {(q1, 0, qs,pr2)} ∪ {(q1, 1, qf,pr2)}

We now give a more natural example of a structure S where emptiness problem is

undecidable for acyclic (S, k)-automata with small k. Consider the following structure

S = (Z;+,×,pr1,pr2,=, 0). Let p(x1, . . . , xk) be a polynomial inN[x1, . . . , xk] of the form

s∑

i=1

ci

ti∏

j=1

xi, j

where each xi, j ∈ {x1, . . . , xk}. Let C = {c1, . . . , cs}.

Lemma 4.5.3 There exists a deterministic acyclic (S[C], k+2)-automatonAp such that if (a1, . . . , ak,

0, 0) ∈ N is the initial value of Ap then there is a unique Z-word that Ap accepts and when the

accepting run arrives at the accepting state, the last register will have the value p(a1, . . . , ak).

Proof Note that the automatonAp has s fixed registers containing the values c1, . . . , cs. Let

m1, . . . ,mk+2 be the k+2 changing registers ofAp. Intuitively, during any accepting run, the

first k changing registers do not change their values, the (k+1)th register mk+1 is responsible

for storing the value of each term ci
∏t

j=1 xi, j, and the last register mk+1 stores the partial

sums

c1

t1∏

j=1

x1, j + . . . + ci

ti∏

j=1

xi, j

for i ∈ {1, . . . , s}. Formally,Ap has states

{qrej} ∪ {qi, j | 1 ≤ i ≤ s, 1 ≤ j ≤ ti + 1} ∪ {pi | 1 ≤ i ≤ s + 1}.

The initial state is p1 and qrej is a sink. The transition is defined as follows:

• From state pi (1 ≤ i ≤ s), Ap makes a transition to qi,1 only when the input equals to

ci, andAp then applies pr2 on the register mk+1 (thus mk+1 = ci whenAp reaches qi,1).

• From state qi, j (1 ≤ j ≤ ti),Ap makes a transition to qi, j+1 only when the input equals

to xi, j, andAp then applies × on the register mk+1 (thus mk+1 = ci×xi,1× . . .×xi, j) when

Ap reaches qi, j+1.

96 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

• From state qi,ti+1 (1 ≤ i ≤ s),Ap makes a transition to pi+1 only when the input equals

to mk+1, and Ap then applies + on the register mk+2. Thus mk+2 = c1
∏t1

j=1
x1, j + . . . +

ci
∏ti

j=1
xi, j.

• All other transitions go to qrej.

Hence the lemma is proved.

Proposition 4.5.4 Let SZ = (Z;+,×,pr1,pr2,=, 0) and SN = (N;+,×,pr1,pr2,=, 0).

(a) The emptiness problem for deterministic acyclic (SZ, 11)-automata is undecidable.

(b) The emptiness problem for deterministic acyclic (SN, 12)-automata is undecidable.

Proof For (a), we prove the proposition using a reduction from the Hilbert’s tenth problem:

Given a polynomial p(x1, x2, . . . , xk) ∈N[x1, x2, . . . , xk], decide if the following hold

∃x1, . . . , xk ∈ Z : p(x1, . . . , xk) = 0.

By [63], the problem is not decidable and the number of variables in the polynomial can be

bounded by 9.

By Lemma 4.5.3, it is easy to build, for any polynomial p ∈ Z[x1, . . . , x9], an (SZ, 11)-

automaton Ap such that computes the value of p(a1, . . . , ak) for initial values (a1, . . . , ak).

One can slightly modifyAp such that the modified S-automaton accepts a Z-word if and

only if p(x1, . . . , x9) = 0 has a integer solution.

For (b), we prove use reduction from a slightly different problem: Given two polyno-

mials p(x1, x2, . . . , xk), q(x1, x2, . . . , xk) ∈N[x1, x2, . . . , xk], decide if the following hold

∃x1, . . . , xk ∈N : p(x1, . . . , xk) = q(x1, . . . , xk).

Again the problem is already undecidable when the number k of variables is 9.

By slightly modifying the construction in Lemma 4.5.3, it is easy to build, for any

two polynomials p ∈ N[x1, . . . , x9], q ∈ N[x1, . . . , x9], an (SN, 12)-automata Bp,q such that

L(Bp,q) , ∅ if and only if there exist a1, . . . , a9 such that p(x1, . . . , x9) = q(x1, . . . , x0). Here we

need one more changing register because we need two registers to store the values of the

two polynomials separately.

4.5. THE EMPTINESS PROBLEM 97

It is a natural open question whether the emptiness problem for acyclic (Z, k)- and

(N,m)-automata is decidable where k < 11 and m < 12. Another natural question is the

decidability of the emptiness problem if we remove the acyclicity constraint. The next

section discusses this problem.

4.5.2 The emptiness problem for automata on natural numbers

This section investigates the emptiness problem for S-automata when the domain of S

is the natural numbers N, with the atomic operations being arithmetic operations such

as addition, subtraction, multiplication and atomic relations being equality and natural

ordering. Our goal is to show that there is a tradeoff between the decidability of the

emptiness problem and the expressibility of the automata. We define the binary operation

+1 and −1 onN2 such that +1(x, y) = x + 1 and −1(x, y) = x− 1 (Note that the −1 operation

is not total). The next theorem shows that if we remove the acyclicity constraint, the

emptiness problem is undecidable for S-automata with a small number of registers.

Theorem 4.5.5 Let S1 = (N;+1,−1,=,pr1, 0) and S2 = (N,+1,=,pr1,pr2, 0).

(a) The emptiness problem for deterministic (S1, 2)-automata is undecidable.

(b) The emptiness problem for deterministic (S2, 4)-automata is undecidable.

Proof The proof of (a) uses a reduction from the emptiness problem of k-counter machines.

Intuitively, a one-way k-counter machine is a finite state machine with k registers which

can hold natural numbers and the only operations allowed on the registers are −1,+0 and

+1. The machine reads inputs from a finite alphabet Σ and its head is only allowed to

move to the right. Upon reading an input, the machine may test whether each register

has a value of 0 or not and then move to another state and perform increment/decrement

operations on the registers. A formal definition can be found in [48]. The language accepted

by a counter machine M is the set of all words over Σ which take the machine from q0

to an accepting state. Minsky [65] showed that the emptiness problem for deterministic

one-way 2-counter machines is undecidable. One may reduce the emptiness problem for

deterministic 2-counter machines to the emptiness problem of (S1, 2)-automata: The 2

changing registers store the two counters’ values respectively. We simulate incrementing,

+0 and decrementing of the counter by applying the operations+1, pr1 and−1, respectively.

98 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

Also we simulate the 0-test of counters by applying the=-comparison between the changing

registers and the constant register storing 0.

For (b), observe that we may simulate the −1 operation by using the pr2 and +1 op-

erations along with two extra changing registers (say x1, x2). In order to perform a −1

operation on the ith register, the automaton first reads an natural number and uses pr2 to

store this number in x1 and x2. Then it performs a +1 operation on x2 and checks if the

value of x2 is equal to the value of the ith register. If so, then the automaton uses the pr2

operation to store the value of x1 into the ith register. Hence it is easy to see that the value

of the ith register is decremented exactly by 1.

Therefore for any deterministic (S1, 2)-automaton M, we may effectively construct a

deterministic (S2, 4)-automaton M′ such that L(M) = ∅ if and only if L(M′) = ∅. It

then follows from (a) that the emptiness problem for deterministic (S2, 4)-automata is

undecidable.

The next question is whether the emptiness problem is undecidable if we lower

the number of register even further. Below we will show that for the structure S =

(N,+,×,pr1,pr2,≤,=, c1, . . . , cℓ) where c1, . . . , cℓ are arbitrary constants inN, the emptiness

problem is decidable for S-automata with 1 changing register.

Theorem 4.5.6 Let S be the structure (N;+,×,pr1,pr2,=,≤, c1, . . . , cℓ) where c1, . . . , cℓ are arbi-

trary constants inN. The emptiness problem for (S, 1)-automata is decidable.

Recall that a configuration of an (S, 1)-automatonA is a pair (q,m) where q is a state of

A and m ∈ N is the value of the changing register. The configuration graph ofA contains

all configurations as nodes, and two configurations are connected by an edge if a transition

sends the first configuration to the second configuration. It is easy to see that the emptiness

problem forA can be reduced to the reachability problem of the configuration graph. The

S-automatonA accepts anN-word w if and only if there is a path that goes from the initial

configuration to an accepting configuration in the configuration graph. A problem arises

as the configuration graph ofA is infinite. In the following we provide a way to “collapse”

the configuration graph into a finite graph so that emptiness problem onA can be reduced

to the reachability on the resulting finite graph. Without loss of generality, we assume

c1 < c2 < . . . < cℓ. We make the following definition.

Definition 4.5.2 We say that two numbers m1,m2 are (S, 1)-equivalent if either m1 = m2 or

4.5. THE EMPTINESS PROBLEM 99

min{m1,m2} > cℓ. In this case we write m1 ≈ m2. We use [m1] to denote the ≈-equivalence class

of m1 and C≈ denotes the set of equivalence classes of ≈.

Note that C≈ is a finite set. We say that two configurations (p,m1),(q,m2) of some

(S, 1)-automaton are equivalent if p = q and m1 ≈ m2. We fix the following notation.

Definition 4.5.3 An S-test is a quantifier-free formula ϕ(x, y) over S that is a finite conjunction

of literals of the form

x ≤ c, c < x, x = c, x , c, x ≤ y, y < x, x = y, or x , y

where c is a constant in S.

The next lemma reveals the connection between the equivalence relation ≈ and theS-tests.

Lemma 4.5.7 Let ϕ(x, y) be an S-test condition and let m1,m2 ∈ N be such that m1 ≈ m2. For

any equivalence class C ∈ C≈, there is some z ∈ C such that S |= ϕ(z,m1) if and only if there

is some z ∈ C such that S |= ϕ(z,m2). Furthermore, the set of equivalence classes C such that

∃z ∈ C : S |= ϕ(z,m1) can be effectively computed from ϕ and m1.

Proof We only prove the case when min{m1,m2} > cℓ as the case when m1 = m2 ≤ cℓ is

trivial. We prove the following statements separately:

(a) For any z ∈ {0, . . . , cℓ}, S |= ϕ(z,m1) if and only if S |= ϕ(z,m2).

(b) There is some z > cℓ such that S |= ϕ(z,m1) if and only if there is some z > cℓ such

that S |= ϕ(z,m2).

For (a), suppose S |= ϕ(z,m1) for some z ∈ {0, . . . , cℓ}. Then if ϕ(x,m1) contains a

conjunction involving m1, it must be of the form c < m1, c , m1, x ≤ m1, x < m1 or x , m1.

Since z ≤ cℓ < m2, z must also satisfies the same conjunct if m1 is replaced by m2. Hence

S |= ϕ(z,m2). The other direction can be proved in the same way.

For (b), suppose some z > cℓ satisfies ϕ(x,m1). Note that ϕ(x,m1) can be written as

ψ(x) ∧ ϕ′(x,m1) where ψ(x) is a finite conjunction that does not contain the parameter m1

and ϕ′(x,m1) is a finite conjunction of literals of the form c < m1, x ≤ m1, x = m1 or m1 < x.

Since z > cℓ, ψ(x) must not contain any conjunct of the form x = c or x ≤ c. This means that

any z′ > cℓ would satisfy ψ(x). Thus it is sufficient to show that there is some z′ > cℓ that

100 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

also satisfies the formula ϕ′(x,m2). Indeed, if ϕ′(x,m1) does not contain m1 < x, then m2

will satisfy ϕ′(x,m2). Otherwise, m2 + 1 would satisfy ϕ′(x,m2). This proves the lemma.

Givenϕ(x, y) and [m1], we can effectively compute any C ∈ C≈ such that∃z ∈ C : ϕ(z,m1)

by induction on the construction of ϕ(x, y) as follows: If ϕ(x, y) is a literal, then it is clear

that we can compute the desired equivalence classes. If ϕ(x, y) is ϕ1(x, y) ∧ ϕ2(x, y), then

the desired equivalence classes is the intersection of the equivalence classes for ϕ1(x, y) and

ϕ2(x, y).

The next lemma shows that the atomic operations of S are consistent with the equivalence

relation ≈ and can be easily proved.

Lemma 4.5.8 For any operation f ∈ Op(S), for any m1,m2, x1, xy ∈ N such that m1 ≈ m2,

x1 ≈ xy, we have

f (m1, x1) ≈ f (m2, x2).

We are now ready to describe the reduction from the emptiness problem of (S, 1)-automata

to reachability problem of finite graphs. Fix an (S, 1)-automaton A = (Q, α, x,∆, q0, F). In-

tuitively, we define a finite graph GA by taking the configuration graph ofA and collapsing

all the equivalent configurations into one node. Hence nodes in the graph GA will be of

the form (q,C) where q ∈ Q and C ∈ C≈. Lemma 4.5.7 and Lemma 4.5.8 ensure that the

S-automaton recognizes anN-word if and only if there is a path that goes from (q0, [x]) to

some node (q, [y]) where q ∈ F. Formally, we define the graph GA as follows.

Definition 4.5.4 For any transition t = (q, (b0, . . . , bℓ), q
′, f) ∈ ∆, we define the literals Lt,0(x, ci),

. . . , Lt,ℓ(x, ci) such that

Lt,i =

Ri(x, ci) if bi = 1

¬R0(x, ci) otherwise

where R0, . . . ,Rℓ = α(q). Let ϕt(x, c0) be the S-test
∧ℓ

i=0 Lt,i(x, c0).

The reduced configuration graph GA is (Q × C≈,E), where the edge relation E contains a

pair of nodes ((q,C1), (q′,C2)) if and only if there is a transition t = (q, b, q′, f) ∈ ∆ and c0 ∈ C1

such that S |= ∃x : ϕt(x, c0) and f (c0, x) ∈ C2.

Lemma 4.5.9 The graph GA is effectively computable fromA.

4.5. THE EMPTINESS PROBLEM 101

Proof Take a node (q,C) ∈ Q × C≈ and a transition t = (q, (b0, . . . , bℓ), q
′, f) ∈ ∆. By

Lemma 4.5.7, for any c0, c
′
0
∈ C, the same equivalence classes C′ satisfy∃z ∈ C′ : S |= ϕt(z, c0)

and ∃z ∈ C′ : S |= ϕt(z, c
′
0
). Furthermore, all such equivalence classes C′ ∈ C≈ is computable

from ϕt and C. By Lemma 4.5.8, for each of such equivalence classes C′, there is a unique

equivalence class B ∈ C≈ such that f (c0, z) ∈ B for z ∈ C′.

Hence we use the following procedures to compute the out-going edges of (q,C):

• Fix an arbitrary c0 ∈ C.

• Compute all C′ ∈ C≈ such that ∃z ∈ C′ : S |= ϕt(z, c0).

• From each such C′, take an element z and compute f (c0, z).

• Add an edge from (q,C) to (q′, [f (c0, z)]).

The graph GA is computed by repeating the above procedures for every node (q,C) ∈ Q×C≈.

Finally, we prove the next lemma which concludes the proof of Theorem 4.5.6.

Lemma 4.5.10 The (S, 1)-automatonA recognizes someN-word if and only if there is a path that

goes from (q0, [x]) to some node (q, [y]) where q ∈ F and y ∈N.

Proof Suppose (S, 1)-automatonA recognizes anN-word a1a2 . . . an. Let

(q0, x), (q1,m1), . . . , (qn,mn)

be the sequence of configurations produced by the accepting run of A. It is clear by

definition of GA that the sequence (q0, [x]), (q1, [m1]), . . . , (qn, [mn]) is a path in GA and

qn ∈ F.

Conversely, suppose GA contains a path (q0, [m0]), (q1, [m1]), . . . , (qn, [mn]) where m0 = x

and qn ∈ F. By definition, there is a transition t = (qi, b, qi+1, f) ∈ ∆ such that for some

c0 ∈ [mi] there is some x ∈ N such satisfies ϕt(x, c0) and f (mi, x) ∈ [mi+1]. By Lemma 4.5.7

and Lemma 4.5.8, for all c0 ∈ [mi] there is some ai ∈N that satisfies ϕt(ai, c0), and f (mi, ai) ∈

[mi+1]. Hence theN-word a1a2 . . . an is accepted by the (S, 1)-automatonA.

We are now ready to prove Theorem 4.5.6.

102 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

of Theorem 4.5.6 To decide the emptiness problem of an (S, 1)-automatonA, we construct

the reduced configuration graph GA and decide whether a path connects (q0, [x]) with (q, [y])

for some q ∈ F and y ∈N.

Remark By a similar reduction for Theorem 4.5.5(a), one may reduce the emptiness prob-

lem of (S1, 1)-automata to the emptiness problem of one-way 1-counter machines. Hence

the emptiness problem for (S1, 1)-automaton is decidable (since the emptiness problem

for one-way 1-counter machines is decidable [48]). However, it remains to see whether

decidability still holds if we change the +1 and −1 operations to addition and subtraction

in general. Another obvious open question is whether the emptiness problem remains

undecidable for (N,+,=,pr1,pr2, 0)-automata with 2 or 3 registers.

4.5.3 The emptiness problem for constant comparing automata

The previous section shows that one may obtain decidability of the emptiness problem by

restricting the number of changing registers of theS-automata. Another way of restricting

the automata is to put constraints on the allowable transitions of the automata. We show

in this section that by allowing only those transitions that compare the input or a changing

register with constants, the emptiness problem may become decidable. Our motivation is

to analyze those algorithm in which comparisons occur only between variables and a fixed

number of constant values. For example we may allow the comparison a < 5 but not the

comparison a < b where a, b are variables. With this in mind, we now introduce a class

of automata which we call the constant comparing automata. We would like to show such

automata have a decidable emptiness problem. For the sake of convenience we add the

relation U =N2 to our structures. This can be done without any loss of generality.

Definition 4.5.5 Let S be a structure that contains = as an atomic relation and ℓ constants

c1, . . . , cℓ in its signature. A constant comparing (S, k)-automaton is A = (Q, α, y,∆, q0, F) such

that for every q ∈ Q, α(q) = (R1, . . . ,Rk+ℓ) satisfies the following conditions:

• There is at most one i ∈ {1, . . . , k} such that Ri is the = relation.

• For all j ∈ {1, . . . , k} apart from i (if it exists) we have R j = U.

The (S, k)-automaton A is a strongly constant comparing S-automaton if no such i exists.

Note that by definition an (S, 1)-automaton is also a constant comparing S-automaton.

Hence the next theorem can be viewed as a generalization of Theorem 4.5.6.

4.5. THE EMPTINESS PROBLEM 103

Theorem 4.5.11 Let S be the structure (N;+,×,pr1,pr2,=,≤,U, c1, . . . , cℓ) where c1, . . . , cℓ are

arbitrary constants inN. The emptiness problem for constant comparing S-automata is decidable.

The proof proceeds in the same manner as the proof for Theorem 4.5.6. We define the

equivalence relation ≈k onNk in a similar way as ≈.

Definition 4.5.6 We say that two k-tuples m = (m1, . . . ,mk) and s = (s1, . . . , sk) are (S, k)-

equivalent if for every i ∈ {1, . . . , k} we have mi ≈ si. In this case we write m ≈k s. We use [m] to

denote the ≈k-equivalence class of m and C≈k
denotes the set of equivalence classes of ≈k.

Clearly C≈k
is a finite set.

Definition 4.5.7 An S-test is a quantifier-free formula ϕ(z, x1, . . . , xk) (k > 0) over S that is a

finite conjunction of literals of the form

z ≤ c, z > c, z = c, z , c.

where c is a constant in S and exactly one literal of the form z = xi or z , xi for i ∈ {1, . . . , k}.

The proof of the following lemma depends on the fact that the input can only be tested

for equality against at most one changing register.

Lemma 4.5.12 Let ϕ(y, x1, . . . , xk) be an S-test and let m, s ∈ Nk be such that m ≈k s. For any

equivalence class C ∈ C≈, there is z ∈ C such that S |= ϕ(z,m) if and only if there is z ∈ C such

that S |= ϕ(z, s). Furthermore, the set of equivalence classes C such that ∃z ∈ C : S |= ϕ(z,m) can

be effectively computed from ϕ and [m].

Proof Note that if ϕ does not contain any literal of the form y = xi or y , xi, then either

S |= ϕ(z, x1, . . . , xk) for all z ∈ N or there exists no such z. Hence we only need to consider

the case when ϕ contains exactly one such literal. Let b ∈ {1, . . . , k} be such that the literal

y = xb or y , xb occurs in ϕ. We need only consider the case when min(mb, sb) > cℓ since

the case mb = sb is trivial.

Fix an equivalence class C ∈ C≈ and assume that there is z ∈ C such that S |= ϕ(z,m).

If the literal y = xb occurs in ϕ, it must be the case that z = mb and since mb > ccℓ , we have

z > cℓ. Also we must have sb > cℓ and therefore there exists a z ∈ C such that S |= ϕ(z, s).

If the literal y , xb occurs in ϕ, it must be the case that z , mb. If z ≤ cℓ, then it must be

the case that z , sb since sb > cℓ and hence we have S |= ϕ(z, s). Otherwise if z > cℓ, it must

104 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

be the case that no literal of the form y ≤ c and y = c occurs in ϕ. Then there must exist a

z ∈ C such that S |= ϕ(z, s).

The proof of the other direction is symmetric. The proof of the fact that the all such

equivalence classes C such that ∃z ∈ C : S |= ϕ(z,m) can be effectively computed from ϕ

and [m] is exactly the same as lemma 4.5.7.

The next lemma follows directly from lemma 4.5.8.

Lemma 4.5.13 For any k-tuple of operations (f1, . . . , fk) where each fi ∈ Op(S), for any m, s ∈Nk

and x1, x2 ∈N such that m ≈k s, x1 ≈ x2 we have

(f1(m1, x1), . . . , fk(mk, x1)) ≈k (f1(s1, x2), . . . , fk(sk, x2)).

Proof We need to show that for every i ∈ {1, . . . , k}we have fi(mi, x1) ≈ fi(si, x2). Since mi ≈ si

(by definition of ≈k) and x1 ≈ x2, by Lemma 4.5.8 we must have fi(mi, x1) ≈ fi(si, x2).

Definition 4.5.8 For any transition t = (q, (b1, . . . , bk+ℓ), q
′, (f1, . . . , fk)) ∈ ∆, letα(q) = (R1, . . . ,Rk+ℓ).

Then we define the literals Lt,1(z, x1), . . . , Lt,k(z, xk) such that

Lt,i(z, xi) =

Ri(z, xi) if bi = 1

¬Ri(z, xi) otherwise

We also define the literals Lt,k+1(z, c1), . . . , Lt,k+ℓ(z, ck+ℓ) such that

Lt,i(z, ci) =

Ri(z, ci) if bi = 1

¬Ri(z, ci) otherwise

Let ϕt(z, x1, . . . , xk) be the S-test
∧k

i=1 Lt,i(z, xi) ∧
∧k+ℓ

i=k+1 Lt,i(z, ci).

The reduced configuration graph GA is (Q × C≈k
,E), where the edge relation E contains a

pair of nodes ((q,C1), (q′,C2)) if and only if there is a transition t = (q, b, q′, (f1, . . . , fk)) ∈ ∆ and

m = (m1, . . . ,mk) ∈ C1 such that S |= ∃x : ϕt(x,m) and (f1(m1, x), . . . , fk(mk, x)) ∈ C2.

Lemma 4.5.14 The graph GA = (Q × C≈k
,E) is effectively computable fromA.

Proof It suffices to prove that the edge relation E is effectively computable. Therefore we

need to effectively decide whether ((q,C1), (q′,C2)) is an edge of GA or not (here q1, q2 ∈ Q

4.5. THE EMPTINESS PROBLEM 105

and C1,C2 ∈ C≈k
). By Lemma 4.5.12, for m, s ∈ C1 the same equivalence classes C′ ∈ C≈

satisfy ∃z ∈ C′ : S |= ϕt(z,m) and ∃z ∈ C′ : S |= ϕt(z, s). Also all such equivalence classes

are effectively computable from ϕ and C1. Furthermore, by Lemma 4.5.13 there is a unique

equivalence class B ∈ C≈k
such that (f1(m1, z), . . . , fk(mk, z)) ∈ B.

Keeping the above facts in mind, the edge relation can be computed effectively in a

manner similar to Lemma 4.5.9.

The following lemma reduces the emptiness problem for constant comparing (S, k)-

automata to finding a path from (q0, [y]) to some node (q, [s]) in the reduced configuration

graph.

Lemma 4.5.15 The constant comparing (S, k)-automaton A recognizes a N-word if and only if

there is a path that goes from (q0, [y]) to some node (q, [s]) in the reduced configuration graph GA

where q ∈ F and s ∈Nk.

Proof The proof uses lemmas 4.5.12, 4.5.13, 4.5.14 and uses a similar argument to that of

lemma 4.5.10

Theorem 4.5.11 clearly follows from Lemma 4.5.15. Note that the structure S in Theo-

rem 4.5.11 does not contain subtraction as part of the signature. If subtraction is added

to the signature, one may show by slightly modifying the proof of Theorem 4.5.5(a) that

the emptiness problem becomes undecidable. However, the emptiness problem becomes

decidable if we restrict to strongly constant comparing S-automata. Formally we prove

the following theorem.

Theorem 4.5.16 Let S = (N;+,−,pr1,=,≤, c1, . . . , cℓ) where c1, . . . , cℓ are constants inN.

(a) The emptiness problem for constant comparing (S, 2)-automata is undecidable if ℓ ≥ 2.

(b) The emptiness problem for strongly constant comparing S-automata is decidable.

Below we first prove (a). The rest of the section proves (b).

Proof of Theorem 4.5.16(a) For (a), one constructs for every one-way 2-counter machine

A a constant comparing (S, 2)-automaton A′ such that A accepts a non-empty language

if and only if L(A′) , ∅. The construction is very similar to the proof of Theorem 4.5.5(a).

Note that we need to use two constant symbols c1, c2 in the signature of S. Assume c1 < c2.

106 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

The initial values of A′ are c1. Whenever the counter machine A increments/decrements

its counters, the S-automatonA′ adds/subtracts c2 from its registers. WheneverA tests its

counter against 0,A′ compares the register values with c1.

For (b), one uses a reduction to the reachability problem for Vector Addition Systems

with States (VASS) [60]. An k-dimensional VASSV is a tuple (Q,Σ,∆) where Q is a finite set

of states, Σ is a finite alphabet, ∆ ⊆ Q × Σ ×Q ×Zk is a transition relation. A configuration

of V is a pair (q,m) where q ∈ Q and m ∈ Nk. Given a configuration (q0,m0) ∈ Q ×

Nk, a run from (q0,m0) of V on a word σ1σ2 . . . σm ∈ Σ
∗ is a sequence of configurations

(q0,m0), (q1,m1), . . . , (qn,mn) such that (qi−1, σi, qi,mi − mi−1) ∈ ∆. VASSs are known to be

equivalent to Vector Addition Systems (VASs) and also to Petri nets. The reachability

problem is a well-studied problem and is stated as follows: Given an n-dimensional VASS

and two configurations (q,m) and (q′, n), is there a run from (q,m) that reaches (q′, n)? This

problem is decidable by [61].

The next lemma proves (b) in Theorem 4.5.16

Lemma 4.5.17 One may effectively construct, given a strongly constant comparing (S, k)-automaton

A, a k-dimensional VASSVA and configurations (q,m), (q′, n) of VA such that L(A) , ∅ if and

only if there is a run ofVA from (q,m) to (q′, n).

Proof LetA = (Q, α,m,∆, q0, F) be a strongly constant comparing (S, k)-automaton. Recall

thatS has in its signature ℓ constant symbols c1, . . . , cℓ. By definition, for any q ∈ Q, the first

k components of α(q) are all Us. This means that the transitions the S-automaton may take

at state q do not depend on the tests made on the register values. Hence we may assume

that the transition ∆ of A is a subset of Q × {0, 1}ℓ × Q × {+,−,pr1}
k. Suppose a run of the

S-automaton reaches state q and A reads the next input x ∈ N. A transition (q, b, q′, g)

(where b ∈Nℓ) can be taken when x = ci if bi = 1 and x , ci if bi = 0 for all i ∈ {1, . . . , ℓ}.

We construct the k-dimensional VASS VA as follows. The alphabet of VA is the set

{c1, . . . , cℓ, cℓ+1} where cℓ+1 is different from any of c1, . . . , cℓ. The VASS VA contains all

states in Q. For any transition (q, b, q′, g) ∈ ∆, we do the following:

(i) If bi = 1 for exactly one i ∈ {1, . . . , ℓ}, then create a transition

(q, ci, q
′, (m1, . . . ,mk))

4.5. THE EMPTINESS PROBLEM 107

in T where m j = ci if g j = +, m j = 0 if g j = pr1 and m j = −ci if g j = − for every

j ∈ {1, . . . , k}.

(ii) If bi = 0 for all i ∈ {1, . . . , ℓ}, then create a fresh state r in VA and add the following

transitions in T:

– Suppose without loss of generality that cℓ is the largest constant in S. For every

y ∈ {0, . . . , cℓ} − {c1, . . . , cℓ}, add a transition (q, ci+1, q
′, x) where x j = y if g j = +,

x j = 0 if g j = pr1 and x j = −y if g j = −.

– Add a transition (q, ci+1, r, x) where x j = cℓ + 1 if g j = +, x j = 0 if g j = pr1 and

x j = −cℓ − 1 if g j = −.

– Add a transition (r, ci+1, r, x) where x j = 1 if g j = +, x j = 0 if g j = pr1 and x j = −1

if g j = −.

– Add a transition (r, ci+1, q
′, 0k).

Intuitively, suppose a run ofVA reaches state q ∈ Q and reads a input c ∈ {c1, . . . , cℓ+1}. If

c = ci for some i ∈ {1, . . . , ℓ}, the VASSVA will update the current vector according to the

transition (q, b, q′, g) ∈ ∆ where bi = 1 and b j = 0 for all j ∈ {1, . . . , ℓ} − {i}. If c = cℓ+1, then

the VASSVA will update the current vector according to the transition (q, 0ℓ, q′, g) in two

possible ways: it either (1) changes the values of the vectors by some c < {c1, . . . , cℓ} and

moves to q′ directly, or (2) first changes the values of the vectors by cℓ + 1 and moves to

state r, then increments or decrements the vector values by some arbitrary amount before

moving to state q′′.

Finally, we complete the construction ofVA, we add a fresh state qfinal toVA, and then

add the following transitions:

• For every q ∈ F, add a transition (q, ci+1, qfinal, 0
k)

• Add transitions (qfinal, ci+1, qfinal, x) where x = {−1, 0, 1}k.

Note that once a state q is reached by a run in VA, then the run can be extended to reach

the configuration (qfinal, n) for any n ∈Nk.

Recall that q0 and m are respectively the initial state and initial values of A. It is now

easy to see that the S-automaton A accepts some N-word if and only if there is a run of

VA from (q0,m) to the configuration (qfinal, 0
k). This finishes the proof of the lemma.

108 CHAPTER 4. FINITE AUTOMATA OVER STRUCTURES

Proof of Theorem 4.5.16(b) The statement immediately follows from Lemma 4.5.17 and

the fact that the reachability problem for VASS is decidable. This finishes the proof of

Theorem 4.5.16.

Remark Theorem 4.5.16 showed that in a precise way, a strongly constant comparing S-

automaton is coded into a VASS. We may show that the other direction is also possible in the

following precise sense: Given a VASSV of dimension d and configurations (q,m), (q′, n),

we may effectively compute a strongly constant S-automatonAV and two states r, r′ such

that there is a run from (q,m) to (q′, n) inV if and only if there is a run from the initial state

to r but no run from the initial state to r′ inAV.

We assume that for every integer x ∈ Z that occurs on a transition ofV, |x| is included

as a constant in S. Additionally for every σ ∈ Σ, we have a unique constant cσ ∈ N in S

and |n1|, . . . , |nd| and 1 are all included as constants in S. We construct the S-automaton

AV as follows.

The states of AV include all the states of V, the states r, r′ and some additional states

as we will explain shortly. The initial state ofAV is q and it has d changing registers. The

initial value of AV is m. Consider a transition (s, σ, s′, y) of V. When the automaton AV

is in state s, it compares the input with the constant cσ. If the input is equal to cσ, the

automaton moves to a new state h. The automaton processes the next d inputs as follows:

for every i ∈ {1, . . . , d} the automaton compares the input with the constant |yi|. If equal,

the automaton adds or subtracts |yi| from the ith register (depending on whether yi ≥ 0 or

yi < 0). After updating all the registers in this manner, the automaton moves to state s′.

From the state q′, the automaton processes the next d inputs as follows: for every

i ∈ {1, . . . , d} the automaton compares the input with the constant |ni| and if equal it subtracts

|ni| from the ith register if ni ≥ 0 and adds it to the ith register otherwise. After updating the

registers, the automaton moves to the state r. From state r, the automaton has d outgoing

transitions. For each i ∈ {1, . . . , d}, the corresponding transition compares the input with

the constant 1 and if equal, subtracts 1 from the ith register and moves to state r′.

From the definition ofAV, it is easy to see that there is a run from (q,m) to (q′, n) if and

only if there is a run from the initial state to r but no run from the initial state to r′ inAV.

Chapter 5

Infinite games played on trees with

back-edges

In this chapter, we concentrate on algorithms for solving the winning region problem for

games with Büchi winning conditions played on trees with back-edges. In particular, we

present an efficient algorithm that solves a Büchi game played on trees with back-edges.

The algorithm runs in time O(min{r ·m, ℓ+m}) where m is the number of edges in the graph,

r is the largest rank of a snare and ℓ is the external path length, i.e., sum of the distances

from the root and all leaves, in the underlying tree. We then apply our analysis for the case

of Büchi games to solve the winning region problem for parity games played on trees with

back-edges and show that they can be solved in O(ℓ +m).

J. Obdržálek in his work [72] (Chapter 3) outlines a proof that parity games played

on trees with back-edges are solved in polynomial time. The work does not provide a

detailed analysis of the algorithm but rather concentrates on attacking the general parity

game problem. The algorithm detects whether Player 0 wins from the root and it is claimed

that this can be done in time O(m) (where m is the number of edges in the graph).

We would like to point out that the running time of any algorithm for solving the

winning region problem is heavily dependent on the data structures and underlying model

of computation. In particular, under the reasonable assumption that trees with back-edges

are encoded as binary strings it can be shown that O(m · log(m)) bits are necessary to encode

a tree with back-edges with O(m) edges. This can be seen as follows: for a tree T , we

determine the main branch by starting from the root and always choosing the next node

v such that v has the most number of nodes below it. Now consider a tree T with O(m)

109

110 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

edges such that the main branch has m/2 nodes and the first m/4 nodes of the main branch

have exactly one offbranching leaf. Below the first (m/4)th nodes of the main branch, there

is a full binary tree with m/2 nodes and m/4 leaves. If we now consider the class of trees

with back-edges that can be obtained from T by adding exactly one back-edge per leaf,

it can be seen that there are O((m/4)(m/4)) trees with back-edges in this class. Hence we

need at least O(m · log(m)) bits to encode a tree with back-edges with O(m) edges. This fact

shows that any algorithm to solve the winning region problem for games on trees with

back-edges must have a running time of al least O(m · log(m)). Hence it is not clear how the

time bound of O(m) of [72] can be achieved when trees with back-edges are encoded using

binary strings.

Notwithstanding the above observations, the algorithm of [72] can be modified to run in

O(h·m) (where h is the height of the underlying tree). Here we give an alternative algorithm

for solving parity games on trees with back-edges based on our analysis for Büchi games

played on trees with back-edges which has a running time of O(ℓ + m). Since ℓ maybe

much smaller than h ·m, our algorithm performs better than the time bound of O(h ·m) in

many cases. Importantly, we clarify the data structures and model of computation used

(see section 5.1) and hence analyze the problem in greater detail.

5.1 Trees with back-edges

Trees with back-edges are widely used and studied in computer science. The paper [22]

studies counterexamples in model checking whose transition diagrams are trees with back-

edges. Furthermore, as discussed in [7], they form a natural class of directed graphs that

has directed tree-width 1 and unbounded entanglement. Also, consider the trees generated

by depth-first search. If the original graph has only tree-edges and back-edges but no cross-

edges, then the algorithms described in this chapter can be used. Another use of trees with

back-edges is in µ-calculus where the syntax graph of a µ-calculus formula is a tree with

back-edges [8]. As pointed out in [8] a finite Kripke structure can be viewed as a tree with

back-edges by performing a partial unraveling of the structure.

Foramlly, we consider rooted directed trees where all edges are directed away from the

root. All terminologies on trees are standard. The ancestor relation on a tree T is denoted

by ≤T and the root is its least element. For u ≤T v, let Path[u, v] = {x | u ≤T x ≤T v}. The

level lev(u) of a node u ∈ V is the length of the unique path from the root to u. The height h

5.1. TREES WITH BACK-EDGES 111

of the tree is max{lev(v) | v ∈ V}. The external path length ℓ is
∑
{lev(v) | v is a leaf in T }.

Definition 5.1.1 A directed graph G = (V,E) is a tree with back-edges if E = ET ∪ EB where

T = (V,ET) is a rooted directed tree and all edges in EB are of the form (v, u) where u <T v. Edges

in EB are called back-edges. We denote a tree with back-edges by (V,ET ∪ EB). We refer to leaves

of T as leaves of G. A Büchi game is played on a tree with back-edges if its underlying graph

is a tree with back-edges.

Let G = (V,ET ∪ EB) be a tree with back-edges. A subtree of G is a subgraph of G that is

also a tree. In particular, all the edges of a subtree are from ET and the root of the subtree is

not necessarily the root of G. A subtree with back-edges consists of a subtree and all induced

back-edges on the subtree. We useB to denote the class of all Büchi games played on trees

with back-edges. A game G ∈ B is denoted by the tuple (V0,V1,E
T,EB,T) where T ⊆ V

are target nodes. Recall that we may assume without loss of generality that for any node

u ∈ V, we have ET(u) ∪ EB(u) , ∅.

In the rest of the chapter we will present our algorithm for solving the winning region

problem for games in B. Our claim on the running time of the algorithm depends on the

following assumptions on the data structures and the underlying model of computation.

A node u in a gameG ∈ B is stored as (p(u), tar(u),pos(u),Ch(u), InBk(u),OutBk(u)), where

p(u) is a pointer to the parent of u, tar(u) is true if and only if u ∈ T, pos(u) = σ if and

only if u ∈ Vσ, Ch(u) is a list of children of u, InBk(u) is a list of incoming back-edges

into u, OutBk(u) is a list of outgoing back-edges from u. We assume that the underlying

model of computation is a random access machine (RAM) and that manipulating registers

(of logarithmic lengths) takes constant time. Hence, accessing p(u), tar(u), pos(u) as well as

the first elements of Ch(u), InBk(u) and OutBk(u) takes constant time. In the following we

define a canonical form for all games G ∈ B.

Definition 5.1.2 A Büchi game G ∈ B is reduced if the following conditions hold:

• For all (u, v) ∈ EB, u is a leaf in the underlying tree with back-edges (V,ET ∪ EB).

• All target nodes are leaves.

• Each leaf in (V,ET ∪ EB) has exactly one outgoing back-edge.

The following lemma is easy to see.

112 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

Lemma 5.1.1 Suppose G is a reduced Büchi game and π is a play in G. Let R be the set of leaves

that are visited infinitely often by π. Then we have

Inf(π) =
⋃
{Path[v, u] | (u, v) ∈ EB, u ∈ R}.

The next lemma reduces solving games in the class B to solving games that are reduced.

Lemma 5.1.2 Given a Büchi game G = (V0,V1,E
T
1
,EB

1
,T) ∈ B, there exists a reduced game

Rd(G) = (U0,U1,E
T
2
,EB

2
, S) such that

• V ⊆ U and |U| ≤ |V| + |EB
1
|.

• A node v ∈ V is winning for Player 0 in G if and only if v is winning for Player 0 in Rd(G).

• Rd(G) is constructed from G in time O(|ET
1
∪ EB

1
|).

Proof The game Rd(G) is constructed from G as follows :

1. For each back-edge (u, v) ∈ EB
1

, add a new leaf α(u, v) and subdivide the edge (u, v)

into (u, α(u, v)) and (α(u, v), v).

2. S = {α(u, v) | Path[v, u] ∩ T , ∅}.

See Fig. 5.1 for an example. It is easy to see that Rd(G) is a reduced game and that V ⊆ U

and |U| ≤ |V| + |EB
1
|. Suppose v ∈ V is winning for Player 0 in G. Let f be the winning

strategy for Player 0 in G from v. We define a strategy g for Player 0 in the game Rd(G)

such that

g(u) =

f (u) if f (u) ∈ ET

1
(u),

α(u, f (u)) if f (u) ∈ EB
1

(u).

Let π be a play starting at v that is consistent with g. Then π can be written as a sequence

in the following form:

u0, u1, · · · , ui0 , α(ui0 , ui0+1), ui0+1, · · · , ui1 , α(ui1 , ui1+1), ui1+1, · · ·

where u0 = v, u1, u2, . . . are nodes in V. Note further that u0, u1, . . . forms a play π′ inG that

is consistent with f . Consider a node u j ∈ T occurring in π′ and let u j+k be the first node

that occurs in π′ after u j such that (u j+k, u j+k+1) ∈ EB
1

. There are two cases: (a) u j+k+1 ≤T u j

in which case the node α(u j+k, u j+k+1) ∈ S occurs in π after u j. (b) u j+k+1 >T u j in which case

5.1. TREES WITH BACK-EDGES 113

Figure 5.1: Example of a Büchi game played on a tree with back edges and the equivalent
reduced game.

1

2

3

4

5

1

2

3

4

α(4, 1)

5

α(4, 2)

α(2, 1)

Player 0’s nodes

Player 1’s nodes

targets

there must be a target node in Path[u j+k+1, u j+k] in G. If this were not the case, π′ would be

a winning play for Player 1 contradicting our assumption that f is a winning strategy for

Player 0. Hence the node α(u j+k, u j+k+1) ∈ S occurs in π after u j.

In both the cases, whenever a target node u j occurs inπ′, a nodeα(u j+k, u j+k+1) ∈ S occurs

in π. By the assumption that f is a winning strategy for Player 0, we have Inf(π′) ∩ T , ∅.

It then follows that Inf(π) ∩ S , ∅.

On the other hand, suppose v0 ∈ V is winning for Player 0 in Rd(G). Let f : U0 → U

be the winning strategy for Player 0 starting from v. We define a strategy g : V0 → V for

Player 0 in G such that

g(u) =

f (u) if f (u) ∈ V,

w if f (u) < V and w ∈ EB
2

(f (u)).

Take a play π = v0, v1, . . . consistent with g. If we subdivide all back edges (vi, vi+1) in this

sequence by the node α(vi, vi+1), we obtain a play π′ consistent with f and Inf(π′) ∩ V =

Inf(π). By Lemma 5.1.1, Inf(π′) =
⋃
{Path[v, u] | u ∈ R, (u, v) ∈ EB

2
} where R is the set

114 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

of leaves in Rd(G) that π′ visits infinitely often. Since π′ is a winning play for Player 0,

there is a node α(u, v) ∈ R ∩ S. This means that Path[v, u] ∩ T , ∅. Hence we have

Inf(π) = Inf(π′) ∩V ⊇ Path[v, u] and π is a winning play for Player 0 in G.

The target level of a node u ∈ V is the number of target nodes that occur on the unique

path from the root to u. To construct Rd(G) from G, we first compute the levels and target

levels for all nodes in V0 ∪V1. This can be done by a preorder traversal of the tree starting

from the root. We use k(u) and ℓ(u) to denote resp. the target level and level of u. The value

of k(u) and ℓ(u) are set to 0 when u is the root. We increment the ℓ-value by 1 as the tree

traversal visits a node of a higher level. If a target node u is visited, we increase the k-value

by 1; see Algorithm 1. The algorithm is executed with parameters (r, 0) where r is the root

of (V,ET
1
∪ EB

1
).

Algorithm 1 AssignLabel(u, i).

1: if tar(u) then k(u)← i + 1
2: else k(u)← i end if
3: for v ∈ Ch(u) do

4: ℓ(v)← ℓ(u) + 1
5: Run AssignLabel(v, k(u)).
6: end for

The algorithm then copies the nodes and edges in the tree (V,ET
1
) to Rd(G). When a

back-edge (u, v) is detected, the algorithm creates a new node α(u, v), and connects u (resp.

α(u, v)) with α(u, v) (resp. v). Finally, the node α(u, v) is set as a target in S if u and v have

different target levels. Algorithm 1 runs in time O(|V|) because the algorithm visits each

node in the tree exactly once. The construction of Rd(G) takes O(|ET
1
∪ EB

1
|) time because

each edge (tree edge or back-edge) in G is visited exactly once.

5.2 Solving Büchi games played on trees with back-edges

Our goal is to describe an algorithm that solves a Büchi game played on trees with back-

edges. By Lemma 5.1.2, it suffices to describe an algorithm that solves reduced Büchi

games.

5.2. SOLVING BÜCHI GAMES PLAYED ON TREES WITH BACK-EDGES 115

5.2.1 Snares

Let G = (V0,V1,E
T,EB,T) be a reduced Büchi game. Let u be a leaf in the tree T = (V,ET).

Since G is reduced, we abuse the notation by writing EB(u) for the unique node v such that

(u, v) ∈ EB. We will often identify a subset S ⊆ V with the subgraph of G = (V0∪V1,E
T∪EB)

induced by S. Recall that W0 denotes the 0-winning region of G. We now give a refined

analysis of the set W0 by introducing the notion of snares. Essentially, we will construct a

sequence S0 ⊆ S1 ⊆ S2 ⊆ . . . of subsets of nodes in V that contain all nodes in W0.

Definition 5.2.1 For a subset S ⊆ V, a snare strategy in S is a strategy for Player 0 such that all

plays consistent with the strategy starting from a node in S stay in S forever. A 0-snare is a subtree

S of the tree (V,ET) such that all leaves in S are targets and Player 0 has a snare strategy in S.

Note that by definition, Player 0 wins the Büchi gameG from any nodes in a 0-snare. On the

other hand, there can be winning positions of Player 0 that do not belong to any 0-snares.

To capture the entire winning region W0 of Player 0, we inductively define the notion of

i-snares for all i ∈ N. Let S0 be the set {u | u belongs to a 0-snare in G}, and let T0 = T. For

i > 0, define the set

Ti = {x | E
B(x) ∈ Si−1},

where the sets S1, S2, . . . are defined inductively as follows.

Definition 5.2.2 For i > 0, an i-snare is a subtree S of the tree (V,ET) such that

• All leaves of S are in T ∪ Ti.

• From any node v ∈ S, Player 0 has a snare strategy in S ∪ Si−1.

We let Si denote the set of all nodes that are in an i-snare.

Note that the sequence of nodes S0, S1, . . . satisfies that

S0 ⊆ S1 ⊆ S2 ⊆ · · ·

The snare rank of the node u ∈ V is min{i | u ∈ Si}. The snare rank of the Büchi game G is

the maximum snare rank of the nodes in G. From now on we always use r to denote the

snare rank of G. Note that the definition requires that G is a reduced game. When G is not

reduced, the snare rank of G is defined on the game Rd(G). A snare is an i-snare for some

i ∈ {0, . . . , r}.

116 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

Figure 5.2: Example of a Büchi game with snares shown.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0-snare 0-snare 1-snare

As an example, consider the Büchi game shown in Fig. 5.2. The 0-snares and 1-snare

are shown in the figure. Note that the subtree with back-edges rooted at 5 and containing

7, 8, 11, 12 is not a 0-snare. Node 13 is the root of a 1-snare. Note that from 13, Player 1 has

two options: 1) move to 15 and lose the game since 16 is a target node or 2) move to 14 and

lose the game since the play must move to the 0-snare rooted at 3.

Proposition 5.2.1 The snare rank r of G is bounded by the height h of the tree (V,ET).

Proof Let Hr be a snare of rank r with root ur. It is clear from the definition of an i-snare

that there must be a leaf x ∈ Hr such that there is a back-edge from x to some node v ∈ Sr−1.

Also note that all nodes in Path[ur, x] belong to Hr and therefore v <T ur.

Let ur−1 be the root of the snare Hr−1 which contains v (ur−1 ≤T v <T ur). Since

ur−1 <T ur, we have lev(ur−1) < lev(ur). We can apply a similar argument to the snare Hr−1

to find a snare Hr−2 which has a root ur−2 <T ur−1 (lev(ur−2) < lev(ur−1)). In this manner

we find a sequence of nodes ur, ur−1, ur−2, .. such that each ui is the root of an i-snare and

for each i we have lev(ui−1) < lev(ui). Since the tree (V,ET) has height h, the value of r is

bounded by h.

The following lemmas reduce the problem of solving a reduced Büchi game to comput-

ing snares.

5.2. SOLVING BÜCHI GAMES PLAYED ON TREES WITH BACK-EDGES 117

Lemma 5.2.2 If u0 ∈ Si for some i ∈ {0, . . . , r}, then u0 ∈W0.

Proof We prove the lemma by induction on i. Suppose u0 belongs to an i-snare S for some

i > 0. Let f be a snare strategy in S ∪ Si−1. Then a play starting from u0 that is consistent

with f either stays in S forever or goes to an (i − 1)-snare. If all plays starting from u0

consistent with f reach Si−1, then u0 ∈W0 by the inductive assumption.

Suppose π = u0, u1, .. is a play consistent with f that does not reach Si−1. Since the

game G is reduced, the play π eventually reaches a leaf node. Let u j0 be the first leaf node

visited by π. Then u j0 ∈ Ti ∪ T. If EB(u j0) ∈ Si−1, then u j0+1 ∈ Si−1 which is impossible by

assumption. Hence, by definition, u j0 is a target node. Now applying the same argument

to the play starting from u j0+1, we obtain u j1 which is the second leaf node visited by π.

Continuing this argument, we obtain a sequence of target nodes u j0 , u j1 , u j2 , . . . of nodes in

π where j0 < j1 < j2 < · · · . Hence π is a winning play for Player 0. This concludes the

proof that u0 ∈W0.

Now our goal is to show that every node in W0 belongs to some snare. We need the

following definition:

Definition 5.2.3 Let f be a winning strategy for Player 0 on a node u. We define the tree induced

by f on u as a subtree T
f

u = (V
f
u ,≤T) of the underlying tree (V,ET) such that the root of T

f
u is u

and for every node w >T u, w ∈ V
f
u whenever

• w = f (x) for some x ∈ V0 ∩V
f
u , or

• w ∈ ET(x) for some x ∈ V1 ∩ V
f
u .

The edge relation Eu, f is ET restricted to V
f
u .

Lemma 5.2.3 If u ∈W0 then u ∈ Si for some i ∈ {0, . . . , r}.

Proof Suppose u does not belong to any snare. Assume for the sake of contradiction that

u ∈ W0. Let f be the winning strategy for Player 0 starting from u. Consider the tree T
f

u

induced by f on u. If for all leaves v in T
f

u we have EB(v) ∈ Si for some i ∈ N, then by

definition T
f

u is a (j + 1)-snare where j = max{i | v is a leaf in T
f

u and EB(v) has snare rank

i}. This is in contradiction with the assumption. Therefore, let L be the non-empty set

containing all leaves v of T
f

u such that EB(v) does not belong to any snare. We define a

node u1 as follows.

118 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

• If all nodes in L are targets, then there is some v ∈ L with EB(v) <T u as otherwise T
f

u

is a 0-snare. In this case, let u1 = EB(v).

• Suppose a node v ∈ L is not a target. If EB(v) ≥T u, then the path u, v,EB(v), v,EB(v), · · ·

defines a play consistent with f but is winning for Player 1. Thus EB(v) <T u and we

let u1 = EB(v).

Note that in both cases, u1 <T u and u1 does not belong to any snare. Also since f is a

winning strategy for Player 0 , u1 is a winning position for Player 0. Applying the same

argument as above, we obtain the sequence u >T u1 >T u2 >T · · · such that no node in

this sequence is in a snare. The sequence is finite and let uk be the last node in it. Any play

consistent with f starting at uk stays in the induced tree T
f

uk
forever. Therefore if all leaves

in T
f

uk
are targets, uk belongs to a 0-snare which is impossible. Hence let y be the leaf in T

f
uk

that is not a target. Then the sequence uk, y,E
B(y), y,EB(y), · · · defines a winning play that

is consistent with f and is winning for Player 1. This is in contradiction with the fact that

f is a winning strategy for Player 0.

Combining Lemma 5.2.2 and Lemma 5.2.3, we have the following:

Theorem 5.2.4 Given a reduced Büchi game G, we have W0 = Sr.

5.2.2 Finding snares

In the following, we first describe a method to compute 0-snares in the game G, then

generalize this method to compute all i-snares where i > 0. Let T = (V,ET). Recall

from Section 2.3 that for any X ⊆ V, Player 0 has a strategy to force any play into X

from Reach0(X,T) by using only tree-edges. For simplicity, we denote Reach0(X,T) by

Reach(X). Note that if v ∈ S0 then v ∈ Reach(T).

For every node v ∈ Reach(T), we define a value b0(v) ∈N inductively as follows:

• If v is a leaf, let b0(v) = lev(EB(v)). Notice that v ∈ T.

• If v is an internal node and v ∈ V0, let b0(v) = max{b0(u) | u ∈ ET(v) ∩Reach(T)}.

• If v is an internal node and v ∈ V1, let b0(v) = min{b0(u) | u ∈ ET(v)}.

The intuition behind the definition of b0(v) is that Player 0 would like to stay as close

to the leaves as possible, while Player 1 attempts to move the play as close to the root as

possible.

5.2. SOLVING BÜCHI GAMES PLAYED ON TREES WITH BACK-EDGES 119

For any node v ∈ V, and a strategy f for Player 0, let

b0(f, v) = min{lev(EB(w)) | w is a leaf in the tree T
f

v }.

In other words, b0(f, v) is the largest number k with the following property: the first leaf

w that appears in any play starting from v and consistent with f has lev(EB(w)) ≥ k. In

other words if Player 0 adopts the strategy f starting from v, then b0(f, v) is the closest level

to the root that Player 1 can guarantee to move to after following exactly one back-edge.

Note that when v is itself a leaf, b0(f, v) = lev(EB(v)) for any strategy f . For any X ⊆ V

and v ∈ Reach(X), let SReach(X, v) denote the set of all 0-strategies that force any play into

X from v. The next lemma relates b0(v) with b0(f, v) for all f ∈ SReach(T, v). We prove the

lemma by induction on the level of v:

Lemma 5.2.5 For every v ∈ Reach(T), b0(v) = max{b0(f, v) | f ∈ SReach(T, v)}.

Proof The lemma is clear when v is a leaf in Reach(T). Now suppose v is an internal node

and the lemma holds for all nodes u ∈ ET(v) ∩ Reach(T). If v ∈ V0, we have

b0(v) = max{b0(u) | u ∈ ET(v) ∩ Reach(T)}

(Ind.Hyp.)
=

max
{

max{b0(f, u) | f ∈ SReach(T, u)} | u ∈ ET(v) ∩Reach(T)
}

= max
{

max{b0(f, v) | f ∈ SReach(T, v), f (v) = u} | u ∈ ET(v) ∩Reach(T)
}

= max{b0(f, v) | f ∈ SReach(T, v)}.

Suppose v ∈ V1. Below we need the following equality for any sets F1, . . . , Fm ⊆N:

max{min{xi | 1 ≤ i ≤ m} | x1 ∈ F1, . . . , xm ∈ Fm} = min{max{Fi} | 1 ≤ i ≤ m}. (5.1)

Let ET(v) = {u1, . . . , um} and let Fi = {b0(f, ui) | f ∈ SReach(T, ui)} for i ∈ {1, . . . ,m}. Note that

for any 0-strategy f , f ∈ SReach(T, v) if and only if the subtree of T
f

v rooted at ui, 1 ≤ i ≤ m,

is of the form T
fi

ui
for some fi ∈ SReach(T, ui). Let f ∈ SReach(T, v) and f1, . . . , fm be the

0-strategies as described above. By definition,

b0(f, v) = min{b0(fi, ui) | 1 ≤ i ≤ m} (5.2)

120 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

Then we have

b0(v) = min{b0(ui) | 1 ≤ i ≤ m}

(Ind.Hyp)
=

min
{

max{b0(fi, ui) | fi ∈ SReach(T, ui)} | 1 ≤ i ≤ m
}

= min{max{Fi} | 1 ≤ i ≤ m}

by (5.1)
=

max{min{xi | 1 ≤ i ≤ m} | x1 ∈ F1, . . . , xm ∈ Fm}

= max{min{b0(fi, ui) | 1 ≤ i ≤ m} | f1 ∈ SReach(T, u1), . . . , fm ∈ SReach(T, um)}

by (5.2)
=

max{b0(f, v) | f ∈ SReach(T, v)}

For every u ∈ Reach(T), let S0(u) = {v ≥T u | ∀w ∈ Path[u, v] : b0(w) ≥ lev(u)}. The

following lemma provides a way to check if a node belongs to a 0-snare.

Lemma 5.2.6 For every v ∈ Reach(T), v belongs to a 0-snare if and only if v ∈ S0(u) for some

u ≤T v such that b0(u) ≥ lev(u).

Proof Suppose v belongs to a 0-snare S that is rooted at some node u. Let f be the snare

strategy in S. Since all leaves of S are targets, for all w ∈ Path[u, v], f ∈ SReach(T,w), and by

definition of a snare strategy, all plays starting from w that are consistent with f will stay in

S forever. In particular, we have b0(f, u) ≥ lev(u). By Lemma 5.2.5, b0(u) ≥ b0(f, u) ≥ lev(u).

Furthermore, for all nodes w ∈ Path[u, v], b0(w) ≥ b0(f,w) ≥ lev(u). Hence, v ∈ S0(u).

Conversely, let u ∈ Reach(T) be such that b0(u) ≥ lev(u). We prove that the set S0(u)

forms a 0-snare. It is clear that all leaves in S0(u) are targets. By Lemma 5.2.5, for every

node v ∈ S0(u), there is a strategy fv such that any leave w in the tree T
fv

v is a target and

lev(EB(w)) ≥ b0(u). Therefore we define a strategy for Player 0 such that g(v) = fv(v) for all

node v ∈ V0 ∩ S0(u). Now let π be a play starting from some v ∈ S0(u) and consistent with

g. Whenever π reaches a leaf w, we have lev(EB(w)) ≥ lev(u) and thus EB(w) ∈ S0(u). Hence

any play starting from S0(u) and consistent with g will stay in S0(u) forever. This means

S0(u) is a 0-snare.

Lemma 5.2.6 gives us a way to check if a node belongs to a 0-snare. In particular, the

following equality holds:

S0 =
⋃{

S0(u) | u ∈ Reach(T), b0(u) ≥ lev(u)
}
.

5.2. SOLVING BÜCHI GAMES PLAYED ON TREES WITH BACK-EDGES 121

We now apply our reasoning above to i-snares where i > 0. For i > 0, recall that Ti = {w |

EB(w) ∈ Si−1}. Note that a node belongs to an i-snare only if it belongs to Reach(T ∪ Ti).

Recall that h is the height of the treeT . We inductively define a function bi : Reach(T∪Ti)→

{0, . . . , h} in the same way as b0 with the following difference: If v ∈ Ti, let bi(v) = h.

For any node v ∈ V and a strategy f , let bi(f, v) = h if all leaves in the tree T
f

u belong

to Ti and let bi(f, v) = b0(f, v) otherwise. In other words, bi(f, v) is the largest number

k ∈ {0, . . . , h} with the following property: the first leaf w that appears in any play starting

from v and consistent with f has either EB(w) ∈ Si−1 or lev(EB(u)) ≥ k. In the same way as

the proof of Lemma 5.2.5, we can prove the following lemma:

Lemma 5.2.7 For every v ∈ Reach(T ∪ Ti), bi(v) = max{bi(f, v) | f ∈ SReach(T ∪ Ti, v)}.

For every u ∈ Reach(T ∪ Ti), let Si(u) = {v ≥T u | ∀w ∈ Path[u, v] : bi(w) ≥ lev(u)}. We

can prove the next lemma similarly as proving Lemma 5.2.6 with every appearance of

Lemma 5.2.5 replaced by Lemma 5.2.7.

Lemma 5.2.8 For any node v ∈ Reach(Ti ∪ T), v belongs to an i-snare if and only if v ∈ Si(u) for

some u ≤ v such that bi(u) ≥ lev(u).

Hence, we obtain the following equality for every i ∈ {0, . . . , r}.

Si =
⋃{

Si(u) | u ∈ Reach(T ∪ Ti), bi(u) ≥ lev(u)
}
. (5.3)

5.2.3 An algorithm for solving Büchi games on trees with back-edges

Recall that for a tree T , the external path length ℓ is
∑
{lev(v) | v is a leaf in T }. For any game

G played on trees with back-edges (not necessarily reduced), by the height and external path

length ofGwe respectively mean the height and external path length of the underlying tree

of G.

Theorem 5.2.9 There exists an algorithm that solves any Büchi game G played on trees with back-

edges in time O(min{r · m, ℓ +m}) where r is the snare rank, m is the number of edges and ℓ is the

external path length of G.

Proof By Lemma 5.1.2, we first compute in time O(m) the reduced game Rd(G). The rest of

the algorithm works on Rd(G), which we simply write asG. For i ≥ 0, assume Si−1 has been

computed. By Lemma 5.2.8 and (5.3), Algorithm 2 computes the set Si. By Lemma 5.2.2

122 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

Algorithm 2 FindSnare[i](G). (Outline)

1: Compute the set Ti = {w | E
B(w) ∈ Si−1}.

2: Compute Reach(T ∪ Ti).
3: For all u ∈ Reach(Ti ∪ T) do:
4: Compute bi(u)
5: If bi(u) ≥ lev(u), compute Si(u) and add Si(u) to Si.

and Lemma 5.2.3, we obtain that W0 = Sr. Hence, to compute the entire winning region W0,

it suffices to run FindSnare[0](G), Findsnare[1](G),. . ., in order. The algorithm terminates

after running FindSnare[r + 1](G) where Sr = Sr+1 (and thus r is the snare rank).

In FindSnare[i](G), i ∈ {0, . . . , r+ 1}, we compute bi(u) for all u ∈ Reach(Ti ∪T) in order:

we only compute bi(u) when bi(v) for all v ∈ ET(u) ∩ Reach(Ti ∪ T) have been computed.

When bi(u) ≥ lev(u), we apply a depth-first search on the subtree rooted at u to compute

the set Si(u). After Si(u) has been computed, we contract all the nodes in Si(u) into a meta-

node MSi(u) and redirect edges as follows: any edge (u, v) where u ∈ Si(u) and v < Si(u)

is substituted by an edge (MSi(u), v) and conversely any edge (v, u) where v < Si(u) and

u ∈ Si(u) is substituted by (v,MSi(u)). Hence, each edge in G is visited a fixed number of

times and the FindSnare[i](G) algorithm takes time O(m).

To further reduce the running time of the algorithm, we maintain a variable b(u) for

every node u throughout the entire algorithm. When FindSnare[i](G) is executed, b(u)

will store the value of bi(u). During the first iteration (when FindSnare[0] is performed),

b(u) = b0(u) for all u ∈ Reach(T) and undefined for all other nodes. In the subsequent

iterations, we do the following to compute bi(u) for i > 0 and u ∈ Reach(T ∪ Ti):

1. If u is a leaf in Ti, set b(u) = h. If u is a leaf in T, the value of b(u) remains unchanged.

2. Then “propagate” the value of b(u) to ancestors of u as follows: let v be the parent of

u. If v ∈ V1 and b(v) > b(u), then set b(v) = b(u). If v ∈ V0 and b(v) < b(u), then set

b(v) = b(u). This process continues until we reach a node w <T u such that b(w) does

not need to be updated or w is the root.

Hence, at any iteration of the algorithm, we only change the value of b(v) when b(u) is

changed for some leaf u ≥T v. Also, for any leaf u, if the value of b(u) is set to h, it is never

changed again. Therefore, the number of times we visit a node v ∈ V is at most the number

of leaves in the subtree rooted at v. This means that the algorithm runs in time O(ℓ + m)

5.3. SOLVING PARITY GAMES PLAYED ON TREES WITH BACK-EDGES 123

(since the external path length of Rd(G) is at most ℓ + m). By the arguments above, we

conclude that the algorithm runs in time O(min{r ·m, ℓ +m}).

5.3 Solving parity games played on trees with back-edges

We now apply Theorem 5.2.9 to obtain an algorithm for solving parity games on trees with

back-edges. Recall the definition of parity games from Section 2.3: In a parity game G, each

node u ∈ V is associated with a priority ρ(u) ∈ N and Player 0 wins π = v0v1 · · · if and

only if min{ρ(v) | v ∈ Inf(π)} is even. Also recall that we may assume that E(u) , ∅ for any

u ∈ V. The following lemma reduces the problem of solving parity games played on trees

with back-edges to solving reduced Büchi games.

Lemma 5.3.1 Given a parity game G = (V0,V1,E
T
1
,EB

1
, ρ) played on trees with back-edges, there

is a reduced Büchi gameH = (U0,U1,E
T
2
,EB

2
,T) such that

• V ⊆ U and |U| ≤ |V| + |EB
1
|.

• A node u ∈ V is winning for Player 0 in G if and only if u is winning for Player 0 inH .

• H is constructed in time O(ℓ +m) where ℓ is the external path length of G.

Proof To define the sets U0,U1,E
T
2

and EB
2

, we use the same construction as in the proof of

Lemma 5.1.2. The target set T in the gameH is defined as

T = {α(u, v) | (u, v) ∈ EB
1 ,min{ρ(x) | x ∈ Path[v, u]} is even}.

We prove the following claim.

Claim. A node u ∈ V is winning for Player 0 in G if and only if u is winning for Player 0 in

H .

Fix u ∈ V. Suppose u is a winning position of Player 0 inG. Let f be the winning strategy

for Player 0 at u. By Theorem 2.3.1 we know that f is a memoryless strategy. Define the

strategy g in the same way as in the proof of Lemma 5.1.2. Any play π starting from u and

consistent with g in H defines a play π′ starting from u and consistent with f in G such

that Inf(π′) = Inf(π) ∩ V. Since f is a winning strategy for Player 0, min{ρ(x) | x ∈ Inf(π′)}

is even. Let e = min{ρ(x) | x ∈ Inf(π)}. There must be a back edge (x, y) ∈ EB
1

that is visited

124 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

infinitely often by π′ and min{ρ(z) | z ∈ Path[y, x]} = e. By definition, the node α(x, y) ∈ T

and appears in π infinitely often. Hence π is winning for Player 0.

Conversely, suppose u is winning position of Player 0 inH . Then u belongs to a snare

by Theorem 5.2.4. Let i be the snare rank of u and let S be the i-snare containing u. Let

f be a snare strategy for Player 0 in S ∪ Si−1 (recall that Si−1 denotes all nodes in H that

are in an (i − 1)-snare). Define the strategy g : V0 → V in the same way as in the proof of

Lemma 5.1.2. Let π be a play consistent with g starting from u in G. Our goal is to prove

that π is a winning play for Player 0 in G. Suppose for the sake of contradiction that π is

winning for Player 1.

Note that π corresponds to a play π′ consistent with f such that Inf(π) = Inf(π′)∩V. By

definition of an i-snare, each leaf in the snare S is either a target or has a back edge that goes

to Si−1. Assumeπ′ never visits Si−1. In this case, all leaves visited by π′ are targets. Let R be

the set of leaves visited byπ′, then by Lemma 5.1.1, Inf(π′) =
⋃
{Path[x, α(y, x)] | α(y, x) ∈ R}.

Therefore

Inf(π) = Inf(π′) ∩ V =
⋃
{Path[x, y] | α(y, x) ∈ R}.

Since R ⊆ T, for all α(y, x) ∈ R, min{ρ(z) | z ∈ Path[x, y]} is even. Hence min{ρ(z) | z ∈ Inf(π)}

is also even and π is winning for Player 0. This is in contradiction with the assumption

that π is winning for Player 1.

Hence π′ (and π) must visit a node u1 <H u that belongs to an (i − 1)-snare. Now

apply the same argument on u1. Continuing this process, we obtain a sequence of nodes

u = u0 >H u1 >H u2 >H · · · such that for all j ∈N, u j+1 has snare rank strictly smaller than

the snare rank of u j. This is clearly a contradiction.

Hence the claim is proved.

We use the depth-first search (DFS) algorithm on the underlying tree T of G. Consider

a path P in T from the root to a leaf. We represent the length of P by |P|. We use the

algorithm of [35] to preprocess P in time O(|P|) such that for any u, v ∈ P such that u <T v,

we may find the value of min{ρ(x) | x ∈ Path[u, v]} in constant time. Then it is clear that

preprocessing every such path in T takes O(ℓ) time (where ℓ is the external path length of

G) and subsequently finding min{ρ(x) | x ∈ Path[u, v]} for any nodes u <T v takes constant

time.

Hence for every back edge (u, v) ∈ EB
1

, min{ρ(x) | x ∈ Path[v, u]}maybe found in constant

time after the above preprocessing has been completed. Therefore an algorithm constructs

5.4. EXPERIMENTAL RESULTS 125

the reduced Büchi gameH as follows:

1. Preprocess every path P of T from the root to a leaf using the algorithm of [35].

2. For each back edge (u, v) ∈ EB
1

, create a new leaf α(u, v) by subdividing (u, v). Set

α(u, v) as a target if and only if min{ρ(x) | x ∈ Path[v, u]} is even (note that this takes

constant time now).

This procedure takes time O(ℓ +m).

By Lemma 5.3.1, we obtain the following theorem.

Theorem 5.3.2 Any parity game G played on trees with back-edges can be solved in time O(ℓ+m)

where ℓ is the external path length of G and m is the number of edges in G.

5.4 Experimental results

Since the worst case performance of our algorithm for Büchi games is the same as that of

the classical algorithm, we carried out experiments to compare the actual performance of

the two algorithms. The experiments can be broadly divided into two categories:

1. Average case running time comparison: We systematically enumerate all games on

trees with back-edges with order n ∈ N nodes. For each game, we compare the

running times of the classical algorithm and our algorithm.

2. Running time comparison with random sampling: We considered three classes of

rooted trees: (a) rooted trees with unbounded out-degree (denoted by RANUD) , (b)

rooted binary trees (denoted by RANBT) and (c) rooted trees where all internal nodes

have only a single child node (denoted by RANDL) We consider the class RANDL

since it is the simplest class of rooted trees.

Whenever we refer to a random Büchi game G from one of these classes of trees, we

mean that the underlying tree of G is a randomly generated tree from that class. Since

for a given n ∈ N , there is a unique tree of order n from RANDL, we describe how

we generate random samples of order n from the classes RANUD and RANBT:

• RANUD : We first construct a random free tree Tfree of order n by first generating

a sequence of (n−2) random integers chosen independently and uniformly from

126 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

{0, 1, . . . , n−1} and then applying a reverse Prüfer transformation to this sequence

[18] . We then randomly select a root from the nodes of Tfree, hence obtaining a

rooted tree T.

• RANBT: We construct a random rooted binary tree by the algorithm of [5].

Given a random rooted tree T from RANUD or RANBT, we generate a random

reduced Büchi game G from T as follows:

• For each leaf v of T, we make a random choice of an ancestor u of v and declare a

back-edge from v to u. In this manner we obtain a random tree with back-edges

Tb.

• From the nodes of Tb, we randomly select nodes of Player 0 and target nodes to

obtain a random Büchi gameG on trees with back-edges. Note thatG is reduced.

Given a rooted tree T from RANDL, for every node v of T we randomly choose an

ancestor u of v and add a back-edge from v to u. Then we randomly choose nodes

of Player 0 and target nodes as before to obtain a random game G. We then use the

procedure described in Lemma 5.1.2 to convert G to a reduced game.

In our experiment, we generated random Büchi games from the three classes de-

scribed above and then compared the running times of the classical algorithm and

our algorithm.

We implemented both the algorithms using the Sage mathematics software system [81].

All the experiments were performed on an Intel Core 2 Duo processor (2.4 GHz) with a L2 cache

of 4 MB and RAM of 3 GB. The source code for the experiments and the implementation of

the relevant algorithms is included in appendix I.

Results: Average case running time comparison : Figure 5.3 (bottom right) shows the

average running time of the classical algorithm and our algorithm for games of size n ∈

{5, 6, . . . , 13}. It is clear that our algorithm performs better than the classical algorithm in

all cases. Moreover as n increases, the difference in average case running time between

the two algorithms increases. This is particularly evident for n = 13, where our algorithm

performs an order of magnitude better than the classical algorithm.

The picture becomes even clearer when we analyze the results of the experiments with

random sampling. In order to enable a more convenient comparison between the two

algorithms we have scaled down the running times of the classical algorithm by a factor of

5.4. EXPERIMENTAL RESULTS 127

Figure 5.3: The top left graph shows the comparison of algorithms for RANUD, the top
right graph for RANBT and the bottom left for RANDL (the dashed lines represent the
classical algorithm). The bottom right table compares the average running times of the two
algorithms. Note that the running time of the classical algorithm has been scaled down by
102 in the graphs.

102 for all experiments with random sampling. The sizes of the random games are in the

range n ∈ {100, . . . , 10000}.

Random games from RANUD : Figure 5.3 (top left) shows the graph comparing the running

time of the classical algorithm versus our algorithm for random Büchi games from the class

RANUD. The sample sizes are as follows: 106 random games for n ∈ {100, . . . , 2000}, 105

random games for n ∈ {4000, . . . , 6000}, 5 · 104 games for n = 8000 and 4 · 104 games for

n = 10000.

As the graph shows, the classical algorithm exhibits a quadratic growth in running

time whereas our algorithm has a linear growth in running time (with respect to n). This

128 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

is better than the worst case bound of O(min{r ·m, l}) mentioned in Theorem 5.2.9.

Random games from RANBT: Figure 5.3 (top right) shows the graph comparing the running

time of the classical algorithm versus our algorithm for random Büchi games from the class

RANBT. The sample sizes are as follows: 105 games for n ∈ {100, . . . , 2000} and 104 games

for n ∈ {4000, 10000}. Again the classical algorithm shows a quadratic growth in running

time as compared to our algorithm which has a linear growth in running time (w.r.t. n)

which is better than the worst case bound of O(min{r ·m, ℓ}).

Random games from RANDL: Figure 5.3 (bottom left) shows the graph comparing the run-

ning time of the classical algorithm versus our algorithm for random Büchi games from

the class RANDL. The sample sizes are identical to the RANBT case. Here also, our algo-

rithm shows a linear growth as compared to the quadratic growth shown by the classical

algorithm.

Hence the experiments demonstrate that our algorithm outperforms the classical algo-

rithm in all the three classes. In particular, for n > 4000, our algorithm performs two orders

of magnitude better than the classical algorithm for all three classes of Büchi games. The

experiments clearly show that, in practice, not only our algorithm is much more efficient

asymptotically but it also performs better for games with small number of nodes on the set

of trees with back-edges.

5.5 Examples where our algorithm performs better than the clas-

sical algorithm

We would like to support the positive results of the experiments described in section 5.4 by

providing some concrete examples of Büchi games where our algorithm outperforms the

classical algorithm. In this section, we present a class of Büchi games on trees with back-

edges, E, where our algorithm performs asymptotically better than the classical algorithm.

We first describe the game G0 with the smallest number of nodes in this class and then

use G0 as a basic unit to construct larger games from E. Consider the game G0 shown in

Fig. 5.4. We have V0 = {3, 4, 5, 6, 7, 8, 9} and V1 = {1, 2} and the target nodes T = {5, 7}. It is

not hard to see that Player 0 has no winning nodes since Player 1 can force any play from

the target nodes to node 1 which is clearly a winning node for Player 1.

5.5. CONCRETE CLASS OF GAMES TO SUPPORT EXPERIMENTS 129

Figure 5.4: The game G0.

1

2

3 4

5 6 7 8

9

Let us now analyze the running time of the classical algorithm on G0. In the first

iteration, we have T0 = {5, 7}, R0 = Reach0(T0,G) = {2, 3, 4, 5, 6, 7} and U0 = V\R0 = {1, 8, 9}.

Then we set T1 = T0\Reach1(U0,G) = {7} and compute R1 and U1. The algorithm terminates

at the end of the second iteration since T2 = ∅. By contrast, our algorithm needs only one

iteration to compute the set W0.

We now define the games in E inductively:

1. The game G0 is as described earlier. Let C denote a copy of the subtree rooted at node

2 in G0. We denote a node in C by vc where v is a node in G0.

2. For k > 0, we construct the game Gk from Gk−1 as follows: Let x0, . . . , xk−1 be the path

in the underlying tree of Gk−1 such that x0 is the left child of the root and for every

i > 0, xi is the right child of xi−1. We replace the right subtree rooted at xk−1 by C and

add back-edges from 5c and 8c to xk−1. We declare the nodes 5c and 7c to be target

nodes in addition to all the target nodes of Gk−1.

Figure 5.5 shows the construction of G1 from G0. We now give a definition which will

help capture the behavior of the classical algorithm on the games in E.

Definition 5.5.1 Given a Büchi game (V0,V1,E
T,EB,T) ∈ E, for x ∈ T, we defineχ(x) = max{n ∈

N | Player 0 has a strategy to visit at least n target nodes from x}.

Hence in the gameG0, we have χ(5) = 0 and χ(7) = 1. Note that a game Gk ∈ E has k+ 2

target nodes and for every n ∈ {0, . . . , k+ 2} there is a target node x in Gk such that χ(x) = n.

The following proposition is not hard to prove:

130 CHAPTER 5. INFINITE GAMES PLAYED ON TREES WITH BACK-EDGES

Figure 5.5: The construction of the game G1 from G0.

1

2

3 4

5 6 7 8

9

G0

1

2

3

5 6

9

2c

3c 4c

5c 6c 7c 8c
G1

Proposition 5.5.1 Given a Büchi game Gk ∈ E, the classical algorithm terminates after exactly

k + 2 iterations. Our algorithm performs exactly one iteration on Gk.

Intuitively due to the nature of the construction, given a game Gk ∈ E, the classical

algorithm needs to perform one iteration for every target node x ∈ Gk i.e. for every i > 0,

Ti = Ti−1 ∪ {x} where x is a target node with χ(x) = i − 1. On the other hand, our algorithm

performs exactly one iteration just as in the case of G0.

By the above proposition and the fact that a game Gk has exactly k + 2 target nodes, we

can see that the classical algorithm has a running time of O(n · (n +m)) for the games in E

where n,m are the number of nodes and edges respectively. Since our algorithm performs

exactly one iteration for any game Gk ∈ E and n +m increases only linearly with k, we see

that our algorithm has a running time of O(n + m). The following proposition expresses

this fact:

Proposition 5.5.2 For the class of Büchi games E, the classical algorithm has a quadratic running

time of O(n · (n +m)) whereas our algorithm has a linear running time of O(n +m).

Chapter 6

Open problems and future work

Here we provide a brief overview of some open problems related to each of the previous

chapters and outline possible future work.

• In chapter 3, we investigated the state complexity of the union and intersection

of finite word and tree languages. We improved the known upper bounds in the

case of finite word languages and obtained an upper bound for the case of finite

tree language. A natural open problem is to obtain sharp upper bounds for these

operations on finite word and tree languages.

• In chapter 4, we generalized the automata model to operate over an arbitrary algebraic

structure. It is still a speculation that our model provides a general framework for

all other known models of automata. However, the generality of our model comes

form the following observations: (1) we can vary the underlying structures and

thus investigate models of finite automata over arbitrary structures, (2) in a certain

precise sense our machines can simulate Turing machines, (3) many known automata

models (e.g Pushdown automata, Petri nets, visibly pushdown automata) can easily

be simulated by our model but whether decidability results for these models can be

derived from decidability results of our model remains to be seen.

There are a lot of possiblities for future work on this topic. One natural direction is to

obtain more generic results on the emptiness problem. This may require to identify

the common properties of the automata over different structures discussed in this

thesis, and see how different existing types of automata with external memory (e.g.

131

132 CHAPTER 6. OPEN PROBLEMS AND FUTURE WORK

bounded reversal counter machines, flat counter automata, pushdown automata) fit

into this general framework.

Another interesting direction for future work is to identify structures for which this

type of automata enjoy closure under the set operations (even in the nondeterministic

case) and hence identify connections of these automata with certain logic over the

underlying structures.

A third possible direction is to analyze automata over structures whose domains are

not natural numbers. Some interesting examples of such structures include real closed

fields, the boolean algebra of finite and co-finite subsets with the subset predicate etc.

In this thesis we have focused our attention on the decidability of emptiness problem

for our automata model. However other classical automata-theoretic decidability

problems such as the universality problem, the language inclusion problem and the

equivalence problem are also topics for future work.

• In chapter 5, we developed an effcient algorithm for Büchi games on trees with back-

edges and then applied our analysis to solve parity games on trees with back-edges.

A possible direction for future work would be to analyze games with other winning

conditions played on trees with back-edges. A particularly interesting case is that of

Müller games played on trees with back-edges.

Another possible direction for future work is to use our analysis of Büchi games

on trees with back-edges to develop fully dynamic algorithms for such games i.e. the

algorithm updates the winning region when some changes are allowed to be made

to the game graph. Fully dynamic algorithms have been developed previously for

reachability games played on trees [56] and it may be possible to apply a similar

approach in our case.

Appendix I

Code listing for chapter 5

import os

import sage . a l l

import time

p r i n t c o u n t e r = 0

def next (n , L , par) :

q = 0

p = n − 1

while L [p] == 1 :

p = p − 1

i f p == 0 :

return

e l i f L [p] == 2 and L [p−1] == 1 :

L [p]=1

par [p] = par [p−1]

return

else :

q = p − par [p]

133

134 APPENDIX I. CODE LISTING FOR CHAPTER 5

fo r i in range (p , n) :

L [i] = L [i−q]

i f par [i−q] < p−q :

par [i] = par [i−q]

else :

par [i] = q + par [i−q]

return

p = n−1

def g e n t r e e s (n , s t a r t , f i n i s h , f i le name) :

global p r i n t c o u n t e r

f= open (f i le name , ’w’)

f . write (’n = ’+s t r (n)+ ’ , s t a r t = ’+ s t r (s t a r t)+ ’ , f i n i s h= ’+

s t r (f i n i s h)+ ’ \n ’)

p r i n t c o u n t e r = 0

i f f i n i s h == −1:

f i n i s h = sage . r ing s . i n f i n i t y . I n f i n i t y

t iming = [0 . 0 , 0 . 0]

enum = 0

goal = range (n)

goal [0]=0

fo r i in range (1 , n) :

goal [i] = 1

L = range (n)

par = range (−1 ,n−1)

par [0]=0

e = g e n t r e e s b e (L , par , enum, timing , s t a r t , f i n i s h , f)

enum = e [0]

i f e [1] :

135

f . write (’ games : ’ + s t r (f i n i s h − s t a r t +1)+ ’ , C l a s s i c : ’ +

s t r (t iming [0] ∗ 1 0 0 0) + ’ , New: ’+ s t r (t iming [1] ∗ 1 0 0 0)+ ’

\n ’)

f . c l o s e ()

p rin t ’ games = ’+ s t r (f i n i s h − s t a r t +1) + ’ , n= ’+ s t r (n)

p rin t ’ C l a s s i c a l : ’+ s t r (t iming [0] ∗ 1 0 0 0)

p rin t ’New Avg : ’+ s t r (t iming [1] ∗ 1 0 0 0)

return

while L!= goal :

next (n , L , par)

e = g e n t r e e s b e (L , par , enum, timing , s t a r t , f i n i s h , f)

enum = e [0]

f . f l u s h ()

os . fsync (f . f i l e n o ())

i f e [1] :

f . write (’ games : ’ + s t r (f i n i s h − s t a r t +1)+ ’ , C l a s s i c : ’

+ s t r (t iming [0] ∗ 1 0 0 0) + ’ , New: ’+ s t r (t iming

[1] ∗ 1 0 0 0)+ ’ \n ’)

f . c l o s e ()

p rin t ’ games = ’+ s t r (f i n i s h − s t a r t +1) + ’ , n= ’+ s t r (

n)

p rin t ’ C l a s s i c a l : ’+s t r (t iming [0] ∗ 1 0 0 0)

p rin t ’New Avg : ’+ s t r (t iming [1] ∗ 1 0 0 0)

return

num games = (enum− s t a r t)+1

f . write (’ games : ’ + s t r (num games)+ ’ , C l a s s i c : ’ + s t r (t iming

[0] ∗ 1 0 0 0) + ’ , New: ’+s t r (t iming [1] ∗ 1 0 0 0)+ ’ \n ’)

f . c l o s e ()

p rin t ’ games = ’+ s t r (num games) + ’ , n= ’+ s t r (n)

p rin t ’ C l a s s i c a l Avg : ’+ s t r (t iming [0] ∗ 1 0 0 0)

136 APPENDIX I. CODE LISTING FOR CHAPTER 5

p rin t ’New Avg : ’+ s t r (t iming [1] ∗ 1 0 0 0)

def g e t l e a v e s (L) :

le ave s = []

fo r i in range (len (L) −1) :

i f (L [i] >= L [i +1]) :

le ave s . append (i)

le ave s . append (len (L) −1)

return l e ave s

def g e n t r e e s b e (L , par , enum, timing , s t a r t , f i n i s h , f i l e) :

back edges = { }

b e r e v e r s e = { }

b e i s o = { }

l e ave s = g e t l e a v e s (L)

b e l e v e l s = []

fo r i in range (len (le ave s)) :

b e l e v e l s . append (range (L [le ave s [i]]))

fo r x in sage . misc . mrange . mrange iter (b e l e v e l s) :

i s o = F als e

c = c o u n t l i s t (x)

i f b e i s o . has key (c) :

candidates = b e i s o [c]

fo r y in candidates :

i f isomorphic1 (L , par , x , y) :

i s o = True

break

i f not i s o :

b e i s o [c] . append (x)

else :

b e i s o [c] = [x]

137

i f not i s o :

be = gen be (L , par , x)

back edges = be [0]

b e r e v e r s e = be [1]

e = gen games (L , par , back edges , be re ve rs e , leaves ,

enum, timing , s t a r t , f i n i s h , f i l e)

enum = e [0]

i f e [1] :

return enum, e [1]

back edges = { }

b e r e v e r s e = { }

return enum, F als e

def gen be (L , par , l e v e l s) :

back edges = { }

b e r e v e r s e = { }

l e ave s = g e t l e a v e s (L)

fo r j in range (len (l e v e l s)) :

b e t a r g e t = t race up (par , le ave s [j] , L [le ave s [j]]− l e v e l s

[j])

back edges [le ave s [j]] = b e t a r g e t

i f b e r e v e r s e . has key (b e t a r g e t) :

b e r e v e r s e [b e t a r g e t] . append (le ave s [j])

else :

b e r e v e r s e [b e t a r g e t] = [le ave s [j]]

return back edges , b e r e v e r s e

def c o u n t l i s t (l i s t) :

count = range (len (l i s t))

fo r i in range (len (l i s t)) :

count [i] = l i s t . count (i)

return s t r (count)

138 APPENDIX I. CODE LISTING FOR CHAPTER 5

def isomorphic (L , par , l1 , l2 , pr = F als e) :

be1 = gen be (L , par , l 1) [0]

be2 = gen be (L , par , l 2) [0]

g1 = game to graph (par , be1)

g2 = game to graph (par , be2)

i f pr :

p rin t g1 . i s i s omorphic (g2 , c e r t i f y=True)

return g1 . i s i s omorphic (g2)

def isomorphic1 (L , par , l1 , l 2) :

c l a s s e s = c l a s s i f y l e a v e s (L , par)

le ave s = g e t l e a v e s (L)

v = c l a s s e s . values ()

fo r c in v :

s1 = []

s2 = []

fo r y in c :

s1 . append (l 1 [le ave s . index (y)])

s2 . append (l 2 [le ave s . index (y)])

s1 . s o r t ()

s2 . s o r t ()

i f s1 != s2 :

return F als e

return True

def t race up (par , l e a f , amt) :

curr = l e a f

fo r i in range (amt) :

curr = par [curr]

return curr

139

def ch i ld re n (par) :

c = { }

fo r i in range (1 , len (par)) :

i f c . has key (par [i]) :

c [par [i]] . add (i)

else :

c [par [i]] = s e t ([i])

return c

def c l a s s i f y l e a v e s (L , par) :

c l a s s e s = { }

isom = t r e e i s o (L , par)

le ave s = isom [1]

l a b e l s = isom [0]

fo r l in l e ave s :

type = g e t l e a f t y p e (par , l , l a b e l s)

i f c l a s s e s . has key (type) :

c l a s s e s [type] . append (l)

else :

c l a s s e s [type] = [l]

return c l a s s e s

def g e t l e a f t y p e (par , l e a f , l a b e l s) :

curr = l e a f

s = ’ ’

while par [curr] != curr :

s = s + s t r (l a b e l s [curr])

curr = par [curr]

s = s + s t r (l a b e l s [curr])

return s

def t r e e i s o (L , par) :

140 APPENDIX I. CODE LISTING FOR CHAPTER 5

c h i l d = ch i ld re n (par)

l a b e l = range (len (L))

le ave s = s e t (g e t l e a v e s (L))

f r o n t i e r = l e ave s

temp = s e t ([])

while len (f r o n t i e r) !=0 :

s t r i n g s = { }

fo r x in f r o n t i e r :

i f c h i l d . has key (x) :

ch = c h i l d [x]

s = ’ ’

fo r y in ch :

s = s + s t r (l a b e l [y])

s t r i n g s [x] = s

else :

s t r i n g s [x] = ’ 0 ’

d = s t r i n g s . values ()

d . s o r t ()

e = { }

c = 0

fo r i in d :

i f not e . has key (i) :

e [i] = c

c = c+1

fo r x in f r o n t i e r :

l a b e l [x] = e [s t r i n g s [x]]

i f x !=0 :

temp . add (par [x])

f r o n t i e r = temp

temp = s e t ([])

return l a b e l , le ave s

141

def gen games (L , par , back edges , be re ve rs e , leaves , enum, timing ,

s t a r t , f i n i s h , f i l e) :

global p r i n t c o u n t e r

l im reached = F als e

t = sage . combinat . subset . Subsets (le ave s)

fo r t a r g e t s in t :

fo r i in range (2) :

V0 = []

V1 = []

fo r j in range (len (L)) :

i f L [j]%2 == i :

V0 . append (j)

else :

V1 . append (j)

game = [L , par , back edges , be re ve rs e , leaves , s e t (V0

) , s e t (V1)]

enum = enum+1

i f (enum>=s t a r t and enum <= f i n i s h) :

p r i n t c o u n t e r = p r i n t c o u n t e r+1

c = ch i ld re n (par)

t1 = time . time ()

W1 = c l a s s i c s o l v e (game , 0 , t a r g e t s)

t2 = time . time ()

t iming [0]= t iming [0]+ t2−t 1

t1 = time . time ()

W0 = new alg (game , 0 , t a r g e t s , c)

t2 = time . time ()

t iming [1]= t iming [1]+ t2−t 1

142 APPENDIX I. CODE LISTING FOR CHAPTER 5

i f p r i n t c o u n t e r ==20000:

f i l e . write (’ games : ’ + s t r (enum)+ ’ , C l a s s i c :

’ + s t r (t iming [0] ∗ 1 0 0 0) + ’ , New: ’+ s t r (

t iming [1] ∗ 1 0 0 0)+ ’ \n ’)

p r i n t c o u n t e r = 0

i f enum== f i n i s h :

l im reached = True

return enum, l im reached

return enum, l im reached

def c l a s s i c s o l v e (game , o f p lay e r , t a r g e t s) :

curr nodes = s e t (range (len (game [0])))

t a r g e t s = s e t (t a r g e t s)

W = s e t ([])

winning = s e t ([])

while True :

W = a v o i d s e t (game , o f p lay e r , t a r g e t s , curr nodes)

winning . update (W)

curr nodes . d i f f e r e n c e u p d a t e (W)

i f len (W) == 0 :

break

return winning

def a v o i d s e t (game , o f p lay e r , t a r g e t s , curr nodes) :

R = reach (game , o f p lay e r , t a r g e t s , curr nodes)

t r = curr nodes . copy ()

t r . d i f f e r e n c e u p d a t e (R)

return reach (game , 1−of p lay e r , t r , curr nodes)

def new alg (game , o f p lay e r , t a r g e t s , ch i ld re n) :

143

c u r r t a r g e t s = t a r g e t s

W = s e t ([])

curr = []

temp = []

c r e d i t = { }

while len (c u r r t a r g e t s) !=0 :

t= min max (game , o f p lay e r , c u r r t a r g e t s , curr , chi ldren

, c r e d i t)

fo r x in t [0] :

i f game [3] . has key (x) :

le ave s = game [3] [x]

fo r y in l e ave s :

temp . append (y)

W. add (x)

curr = t [1]

c u r r t a r g e t s = temp

temp = []

return W

def min max (game , o f p lay e r , s t a r t , curr , chi ldren , c r e d i t) :

snares = s e t ([])

temp = s e t ([])

f r o n t i e r = s e t ([])

proc = s e t ([])

i f len (curr) == 0 :

curr = range (len (game [0]))

fo r i in range (len (game [0])) :

i f i in game[5+ o f p l a y e r] :

curr [i] = −1

else :

curr [i] = len (game [0])+1

fo r x in s t a r t :

144 APPENDIX I. CODE LISTING FOR CHAPTER 5

curr [x] = game [0] [game [2] [x]]

f r o n t i e r . add (x)

else :

fo r x in s t a r t :

curr [x] = len (game [0])+1 # i n f i n i t y

snares . add (x)

f r o n t i e r . add (x)

fo r x in f r o n t i e r :

node = x

parent = game [1] [node]

while parent != node :

i f parent in game[5+ o f p l a y e r] and curr [node]> curr [

parent] :

curr [parent] = curr [node]

i f curr [parent]>=game [0] [parent] :

snares . add (parent)

temp = parent

parent = game [1] [parent]

node = temp

e l i f parent in game[6− o f p l a y e r] :

i f c r e d i t . has key (parent) :

d i c t = c r e d i t [parent]

d i c t [node] = curr [node]

else :

d i c t = { }

d i c t [node] = curr [node]

c r e d i t [parent] = d i c t

d i c t = c r e d i t [parent]

i f len (d i c t) == len (ch i ld re n [parent]) :

min val = min (d i c t . values ())

i f min val != curr [parent] :

145

curr [parent] = min val

i f curr [parent]>=game [0] [parent] :

snares . add (parent)

temp = parent

parent = game [1] [parent]

node = temp

else :

node = parent

else :

node = parent

else :

node = parent

return snares , curr

def reach (game , o f p lay e r , t a r g e t s , curr nodes) :

c = i n i t l a b e l (game , o f p lay e r , curr nodes)

r e a c h s e t = s e t ([])

t = t a r g e t s

while len (t) !=0 :

temp = t r e e r e a c h (game , o f p lay e r , t , c , curr nodes)

r e a c h s e t . update (temp [0])

t = temp [1]

return r e a c h s e t

def t r e e r e a c h (game , o f p lay e r , t a r g e t s , c , curr nodes) :

r e a c h s e t = s e t ([])

new tar = s e t ([])

fo r t in t a r g e t s :

propagate (game , t , c , r e a c h s e t , curr nodes)

fo r x in r e a c h s e t :

146 APPENDIX I. CODE LISTING FOR CHAPTER 5

i f game [3] . has key (x) :

fo r y in game [3] [x] :

i f y not in r e a c h s e t :

new tar . add (y)

return r e a c h s e t , new tar

def i n i t l a b e l (game , o f p lay e r , curr nodes) :

c = range (len (game [0]))

fo r i in curr nodes :

i f i in game[5+ o f p l a y e r] :

c [i]=1

e l i f i in game[6− o f p l a y e r] :

count = game [1] . count (i)

i f i ==0:

count = count −1

i f count !=0 :

c [i] = count

else :

c [i] = 1

return c

def propagate (game , s t a r t , l a b e l , r e a c h s e t , curr nodes) :

i f s t a r t not in curr nodes :

return

anc = s t a r t

while l a b e l [anc] != 0 :

l a b e l [anc] = l a b e l [anc] − 1

i f l a b e l [anc] == 0 :

r e a c h s e t . add (anc)

anc = game [1] [anc]

i f anc not in curr nodes :

return

147

else :

return

def game to graph (par , back edges) :

g = to graph (par)

fo r be in back edges . i t e r i t e m s () :

g . add edge (be [0] , be [1])

return g

def show game (game , t a r g e t s) :

d={ ’ #FF0000 ’ : [] , ’ #FFFF00 ’ : [] , ’ #00 FF00 ’ : [] }

fo r v in range (len (game [0])) :

i f v in t a r g e t s :

d [’ # FF0000 ’] . append (v) # t a r g e t s a r e r e d

e l i f v in game [5] :

d [’ #FFFF00 ’] . append (v) #P0 i s y e l l o w

else :

d [’ #00 FF00 ’] . append (v) #P1 i s g r e e n

g = game to graph (game [1] , game [2])

s = g . p l o t (v e r t e x c o l o r s = d)

s . show ()

def to graph (par) :

g = sage . graphs . digraph . DiGraph ()

fo r i in range (len (par)) :

g . add vertex (i)

i f i != par [i] :

g . add edge (par [i] , i)

return g

def t re e to g ame (g , roo t) :

L = range (g . order ())

148 APPENDIX I. CODE LISTING FOR CHAPTER 5

par = range (g . order ())

l = { }

L [0] = 0

l [roo t] = 0

par [0] = 0

lab = { }

lab [root] = 0

l a b e l = 1

dfs = l i s t (g . d e p t h f i r s t s e a r c h (root))

fo r x in dfs [1 : len (dfs)] :

neighbors = g . neighbors (x)

fo r n in neighbors :

i f l . has key (n) :

lab [x] = l a b e l

l [x] = l [n] + 1

L [l a b e l] = l [n] + 1

par [l a b e l] = lab [n]

l a b e l = l a b e l+1

return L , par

def random game (n) :

t r e e = RandomTree (n)

root = i n t (round (sage . misc . prandom . random () ∗ (n−1)))

p = t re e to g ame (t re e , roo t)

le ave s = g e t l e a v e s (p [0])

l e v e l s = []

fo r l in l e ave s :

l e v e l s . append (i n t (round (sage . misc . prandom . random () ∗ (p

[0] [l]−1))))

be = gen be (p [0] , p [1] , l e v e l s)

t a r g e t s = s e t ([])

fo r l in l e ave s :

149

coin = i n t (round (sage . misc . prandom . random ()))

i f coin == 1 :

t a r g e t s . add (l)

V0 = s e t ([])

V1 = s e t ([])

fo r l in range (n) :

co in = i n t (round (sage . misc . prandom . random ()))

i f coin == 0 :

V0 . add (l)

else :

V1 . add (l)

return [p [0] , p [1] , be [0] , be [1] , leaves , V0 , V1] , t a r g e t s

def check (W0,W1, game) :

N = W1. union (W0)

return not W1. i s d i s j o i n t (W0) or len (N) != len (game [0])

def exp (n , s t a r t , f i n i s h , f i le name) :

g e n t r e e s (n , s t a r t , f i n i s h , f i le name)

def e x p s e r i e s (n1 , n2 , f i le name) :

fo r i in range (n1 , n2+1) :

g e n t r e e s (i , 1 , −1 , f i le name)

def exp random (s t a r t , end , lim , gap , f i le name , p r i n t c) :

f= open (f i le name , ’w’)

i f gap<=0:

gap = 1

count = s t a r t

while count<= end :

p r i n t c o u n t e r = 0

time1=0.0

150 APPENDIX I. CODE LISTING FOR CHAPTER 5

time2=0.0

fo r j in range (lim) :

game = random game (count)

p r i n t c o u n t e r = p r i n t c o u n t e r + 1

t1 = time . time ()

W0 = new alg (game [0] , 0 , game [1] , ch i ld re n (game [0] [1])

)

t2=time . time ()

time2=time2+t2−t 1

i f p r i n t c o u n t e r == p r i n t c :

f . write (s t r (count)+ ’ , ’+s t r (j +1)+ ’ ,New: ’+ s t r (

time2 ∗1000))

f . f l u s h ()

os . fsync (f . f i l e n o ())

t1 = time . time ()

W1 = c l a s s i c s o l v e (game [0] , 0 , game [1])

t2 = time . time ()

time1 = time1 + t2−t 1

i f p r i n t c o u n t e r == p r i n t c :

p r i n t c o u n t e r = 0

f . write (’ , C l a s s i c a l : ’+s t r (time1 ∗1000)+ ’ \n ’)

f . f l u s h ()

os . fsync (f . f i l e n o ())

p rin t ’n = ’+ s t r (count)

p rin t ’ C l a s s i c a l = ’+ s t r ((time1 ∗1000))

p rin t ’New = ’+s t r ((time2 ∗1000))

p rin t ’ \n ’

f . write (s t r (count)+ ’ , ’+ s t r (lim)+ ’ , ’+ s t r (time1 ∗1000)+ ’ , ’

+ s t r (time2 ∗1000)+ ’ \n ’)

151

f . f l u s h ()

os . fsync (f . f i l e n o ())

count = count + gap

f . c l o s e ()

def RandomTree (n) :

g = sage . graphs . graph . Graph ()

code = [i n t (round (sage . misc . prandom . random () ∗ (n−1))) fo r i

in xrange (n−2)]

a v a i l = [True fo r i in xrange (n)]

count = [0 fo r i in xrange (n)]

fo r k in xrange (n−2) :

count [code [k]] += 1

g . a d d v e r t i c e s (range (n))

idx = 0

while idx < len (code) :

x l i s t = [k fo r k in range (n) i f a v a i l [k] and count [k

]==0]

i f len (x l i s t)==0: break

x = x l i s t [0]

a v a i l [x] = F als e

s = code [idx]

g . add edge (x , s)

count [s] −= 1

idx += 1

l a s t e d g e = [v fo r v in range (n) i f a v a i l [v]]

g . add edge (l a s t e d g e)

return g

def exp random binary (s t a r t , end , lim , gap , f i le name , p r i n t c) :

f= open (f i le name , ’w’)

i f gap<=0:

152 APPENDIX I. CODE LISTING FOR CHAPTER 5

gap = 1

count = s t a r t

while count<= end :

p r i n t c o u n t e r = 0

time1=0.0

time2=0.0

fo r j in range (lim) :

game = random game binary (count)

p r i n t c o u n t e r = p r i n t c o u n t e r + 1

t1 = time . time ()

W0 = new alg (game [0] , 0 , game [1] , ch i ld re n (game [0] [1])

)

t2=time . time ()

time2=time2+t2−t 1

i f p r i n t c o u n t e r == p r i n t c :

f . write (s t r (count)+ ’ , ’+s t r (j +1)+ ’ ,New: ’+ s t r (

time2 ∗1000))

f . f l u s h ()

os . fsync (f . f i l e n o ())

t1 = time . time ()

W1 = c l a s s i c s o l v e (game [0] , 0 , game [1])

t2 = time . time ()

time1 = time1 + t2−t 1

i f p r i n t c o u n t e r == p r i n t c :

p r i n t c o u n t e r = 0

f . write (’ , C l a s s i c a l : ’+s t r (time1 ∗1000)+ ’ \n ’)

f . f l u s h ()

os . fsync (f . f i l e n o ())

p rin t ’n = ’+ s t r (count)

153

p rin t ’ C l a s s i c a l = ’+s t r ((time1 ∗1000))

p rin t ’New = ’+s t r ((time2 ∗1000))

p rin t ’ \n ’

f . write (s t r (count)+ ’ , ’+ s t r (lim)+ ’ , ’+ s t r (time1 ∗1000)+ ’ , ’

+ s t r (time2 ∗1000)+ ’ \n ’)

f . f l u s h ()

os . fsync (f . f i l e n o ())

count = count + gap

f . c l o s e ()

def number unbalanced (s t r i n g) :

s tack = []

fo r i in range (len (s t r i n g)) :

b = s t r i n g [i]

i f b == ’ (’ :

s tack . append ((b , i))

else :

i f len (s tack) !=0 :

y = s tack . pop ()

else :

return False , len (s tack) , ’ ’

return True , len (s tack) , ’ (’ ∗ len (s tack)

def go up (par , degree , s t a r t) :

curr = s t a r t

while curr >0:

curr = par [curr]

i f degree [curr] <2:

return curr

return curr

154 APPENDIX I. CODE LISTING FOR CHAPTER 5

def gen random binary (n) :

L = [0] ∗ i n t (n)

par = [0] ∗ i n t (n)

degree = [0] ∗ i n t (n)

l e v e l = 0

curr node = −1

max = −1

k = 2∗n

r = 0

temp = ’ ’

fo r i in range (2 ∗n) :

x = number unbalanced (temp)

r = x [1]

temp = x [2]

p = ca l prob (r , k)

l = sage . misc . prandom . random ()

i f r>0 and l<=p :

temp = temp+ ’) ’

i f degree [curr node] < 2 :

degree [curr node] = degree [curr node]+1

else :

i f curr node>max :

max = curr node

curr node = go up (par , degree , curr node)

degree [curr node] = degree [curr node]+1

l e v e l = L [curr node]

else :

temp = temp + ’ (’

i f curr node>max :

155

max = curr node

i f (curr node+1) !=0 :

i f degree [curr node]==2:

curr node = go up (par , degree , curr node)

l e v e l = L [curr node]

par [max+1] = curr node

degree [curr node] = degree [curr node]+1

L [max+1] = l e v e l+1

l e v e l = l e v e l+1

curr node = max + 1

k = k−1

return L , par

def ca l prob (r , k) :

return (r ∗ (k+r +2 .0)) / (2 . 0 ∗ k ∗ (r +1 .0))

def random game binary (n) :

p = gen random binary (n)

le ave s = g e t l e a v e s (p [0])

l e v e l s = []

fo r l in l e ave s :

l e v e l s . append (i n t (round (sage . misc . prandom . random () ∗ (p

[0] [l]−1))))

be = gen be (p [0] , p [1] , l e v e l s)

t a r g e t s = s e t ([])

fo r l in l e ave s :

coin = i n t (round (sage . misc . prandom . random ()))

i f coin == 1 :

t a r g e t s . add (l)

V0 = s e t ([])

156 APPENDIX I. CODE LISTING FOR CHAPTER 5

V1 = s e t ([])

fo r l in range (n) :

co in = i n t (round (sage . misc . prandom . random ()))

i f coin == 0 :

V0 . add (l)

else :

V1 . add (l)

return [p [0] , p [1] , be [0] , be [1] , leaves , V0 , V1] , t a r g e t s

def exp random line (s t a r t , end , lim , gap , f i le name , p r i n t c) :

f= open (f i le name , ’w’)

i f gap<=0:

gap = 1

count = s t a r t

while count<= end :

p r i n t c o u n t e r = 0

time1=0.0

time2=0.0

fo r j in range (lim) :

game = f u n c l i n e (count)

p r i n t c o u n t e r = p r i n t c o u n t e r + 1

t1 = time . time ()

W0 = new alg (game [0] , 0 , game [1] , ch i ld re n (game [0] [1])

)

t2=time . time ()

time2=time2+t2−t 1

i f p r i n t c o u n t e r == p r i n t c :

f . write (s t r (count)+ ’ , ’+s t r (j +1)+ ’ ,New: ’+ s t r (

time2 ∗1000))

f . f l u s h ()

os . fsync (f . f i l e n o ())

157

t1 = time . time ()

W1 = c l a s s i c s o l v e (game [0] , 0 , game [1])

t2 = time . time ()

time1 = time1 + t2−t 1

i f p r i n t c o u n t e r == p r i n t c :

p r i n t c o u n t e r = 0

f . write (’ , C l a s s i c a l : ’+ s t r (time1 ∗1000)+ ’ \n ’)

f . f l u s h ()

os . fsync (f . f i l e n o ())

p rin t ’n = ’+ s t r (count)

p rin t ’ C l a s s i c a l = ’+s t r ((time1 ∗1000))

p rin t ’New = ’+s t r ((time2 ∗1000))

p rin t ’ \n ’

f . write (s t r (count)+ ’ , ’+ s t r (lim)+ ’ , ’+ s t r (time1 ∗1000)+ ’ , ’

+ s t r (time2 ∗1000)+ ’ \n ’)

f . f l u s h ()

os . fsync (f . f i l e n o ())

count = count + gap

f . c l o s e ()

def f u n c l i n e (n) :

i n t e r n a l = sage . f u n c t i o n s . other . c e i l ((n−2) / 2 . 0) + i n t (round

(sage . misc . prandom . random () ∗ ((n−2)−sage . f u n c t i o n s . other .

c e i l ((n−2) / 2 . 0))))

return random game line (n , i n t e r n a l)

def g e n b e l i n e a r (L , par , l e v e l s) :

back edges = { }

b e r e v e r s e = { }

fo r j in l e v e l s :

158 APPENDIX I. CODE LISTING FOR CHAPTER 5

b e t a r g e t = t race up (par , j [0] , L [j [0]] − j [1])

back edges [j [0]] = b e t a r g e t

i f b e r e v e r s e . has key (b e t a r g e t) :

b e r e v e r s e [b e t a r g e t] . append (j [0])

else :

b e r e v e r s e [b e t a r g e t] = [j [0]]

return back edges , b e r e v e r s e

def random game line (n , i n t e r n a l) :

to add = n−2− i n t e r n a l

p = [range (i n t e r n a l+2) , [0]+ range (i n t e r n a l +1)]

le ave s = []

l e v e l s = []

t a r g e t s = s e t ([])

x =range (1 , i n t e r n a l+1)

x . re ve rs e ()

le ave s . append (i n t e r n a l+1)

l e v e l s . append ((i n t e r n a l +1 , i n t (round (sage . misc . prandom .

random () ∗ i n t e r n a l))))

co in = i n t (round (sage . misc . prandom . random ()))

i f coin==1:

t a r g e t s . add (i n t e r n a l+1)

nodes remaining = i n t e r n a l

fo r i in x :

prob = to add / nodes remaining

coin = i n t (round (sage . misc . prandom . random ()))

i f to add>0 and coin <= prob :

new leaf = len (p [0])

l e v e l = p [0] [i]+1

159

p [0] . append (l e v e l)

p [1] . append (i)

l e v e l s . append ((new leaf , i n t (round (sage . misc . prandom

. random () ∗ (l e v e l −1)))))

le ave s . append (new leaf)

coin2 = i n t (round (sage . misc . prandom . random ()))

i f coin2 == 1 :

t a r g e t s . add (new leaf)

to add = to add−1

nodes remaining = nodes remaining − 1

be = g e n b e l i n e a r (p [0] , p [1] , l e v e l s)

V0 = s e t ([])

V1 = s e t ([])

fo r l in range (n) :

co in = i n t (round (sage . misc . prandom . random ()))

i f coin == 0 :

V0 . add (l)

else :

V1 . add (l)

return [p [0] , p [1] , be [0] , be [1] , leaves , V0 , V1] , t a r g e t s

160 APPENDIX I. CODE LISTING FOR CHAPTER 5

Bibliography

[1] Abadi, M., Lamport, L., Wolper, P., Realizable and unrealizable specifications of reactive

systems, In: Proc. 17th ICALP (G. Ausiello et al., eds.), Lecture notes in Computer

Science 372 (1989), pp. 1-17, Springer-Verlag, 1989.

[2] Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H., Hybrid automata: An algorithmic

approach to the specification and verification of hybrid systems, In: Hybrid Systems,

Lecture Notes in Computer Science 736, pp. 209-229, Springer-Verlag, 1993.

[3] Alur, R., Dill, D.L., A theory of timed automata, In: Theoretical Computer Science 126,

pp. 183-235, Elsevier Science, 1994.

[4] Alur, R., Cerný, P., Weinstein, S., Algorithmic analysis of array-accessing programs, In:

Proceeding of CSL 2009, Lecture Notes in Computer Science 5504, pp. 86-101, Springer,

2009.

[5] Arnold, D.B., and Sleep, M.R., Uniform random generation of balanced parenthesis

strings, In: ACM Trans. Program. Lang. Syst. 2, pp. 122-128, 1980.

[6] Berstel, J., Boasson, L., Carton, O., Fagnot, I., Minimization of Automata, In: Automata:

from Mathematics to Applications, European Mathematical Society, 2010.

[7] Berwanger, D., Grädel, E., Entanglement - a measure for the complexity of directed

graphs with applications to logic and games. In: Proceedings of LPAR’04, pp. 209-223,

2004.

[8] Berwanger, D., Grädel, E., Lenzi, G., The variable hierarchy of the µ calculus is strict,

In: Theory of Computing Systems 40, no. 4, pp. 437-466, 2007.

161

162 BIBLIOGRAPHY

[9] Blum, L., Shub, M., Smale, S., On a Theory of Computation and Complexity over the

Real Numbers: NP-completeness, Recursive Functions and Universal Machines, In:

Bulletin of the American Mathematical Society 21(1), pp. 1-46, 1989.

[10] Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C., Two-Variable

Logic on Words with Data, In: Proceedings of LICS 2006, pp. 7-16, IEEE Computer

Society, 2006.

[11] Bojanczyk, M., David, C., M., Muscholl, Schwentick, T., Segoufin, L., Two-variable

logic on data trees and XML reasoning, In: Proceedings of PODS 2006, pp. 10–19,

ACM, 2006.

[12] Bournez, O., Cucker, F., Jacobé de Naurois, P., Marion, J.-Y., Computability over

an Arbitrary Structure: Sequential and Parallel Polynomial Time, In: Proc. FOS-

SACS03/ETAPS03, Lecture Notes in Computer Science 2620, pp. 185-199, 2003.

[13] Bozga, M., Iosif, R., Lakhnech, Y., Flat parametric counter automata, In: Proceedings

of ICALP ’06, Lecture Notes in Computer Science 4052, pp. 577-588, 2006.

[14] Bruyére, V., Hansel, G., Michaux, C., Villemairez, R., Logic and p-Recognizable Sets of

Integers, In: Bull. Belg. Math. Soc 1, pp. 191–238, 1994.

[15] Büchi, J.R., Weak second-order arithmetic and finite automata, In: Z. Math. Logik

Grundl. Math. 6, pp. 66-92, 1960.

[16] Chatterjee, K., Henzinger, T., Piterman, N., Algorithms for Büchi games. In: Proc. of

the 3rd Workshop of Games in Design and Verification (GDV’06), 2006.

[17] Chatterjee, K., Jurdziński, M., Henzinger, T., Simple stochastic parity games. In: Proc.

of CSL’03. LNCS 2803:100-113. Springer, 2003.

[18] Cho, M., Kim, D., Seo S., and Shin, H., Colored Prüfer Codes for k−Edge Colored

Trees, In: Electron. J. Combin. 11 no. 1, #N10, 2004.

[19] Church, A., Logic, arithmetic and automata, In: Proc. of the Intl. Cong. of Mathemati-

cians (Stockholm, Sweden), 1962.

[20] Clarke, E.M., Emerson, E.A., Design and syntheis of synchonization skeletons using

branching time temporal logic, In: Lecture Notes in Computer Science 131, pp. 52-71,

Springer, 1981.

BIBLIOGRAPHY 163

[21] Clarke, E.M., Emerson, E.A., Characterizing correctness properties of parallel pro-

grams as fixpoints, In: Proc. 7th ICALP, Lecture Notes in Computer Science 85,Springer-

Verlag, 1980.

[22] Clarke, E., Lu, Y., Veith, H., Jha, S., Tree-Like counterexamples in model checking. In:

Proc. of LICS’02, pp.19-29, IEEE Computer Society, 2002.

[23] Comon, H. et al., Tree Automata Techniques and Applications, available on http:

//www.grappa.univ-lille3.fr/tata, 2007.

[24] Comon, S., Jurski, Y., Multiple counters automata, safety analysis and Presburger

arithmetic. In: Proceedings of CAV ’98, Lecture Notes in Computer Science 1427, pp.

268–279, Springer, 1998.

[25] Corless, R, Gonnet, G., Hare, D., Jeffrey, D., Knuth, D., On the Lambert W function,

In: Advances in Computational Mathematics 5, pp. 329–359, Springer, 1996.

[26] Câmpeanu, C., Culik, K., Salomaa, K., Yu, S., State Complexity of Basic Operations on

Finite Languages, In: Lecture Notes in Computer Science 2214, pp. 148-157, Springer,

2001.

[27] Dacuik, J., Watson, B.W., Watson, R.E., Incremental Construction of Minimal Acyclic

Finite State Automata and Transducers, In: Proceedings of Finite State Methods in

Natural Language Processing (FSMNLP1998), pp. 48-56, 1998.

[28] Dziembowski, S., Jurdziński, M., Walukiewicz, I., How much memory is needed to

win infinite games?, In: Proc. LICS ’97, pp. 99-110, 1997.

[29] Elgot, C.C., Decision problems of finite automata design and related arithmetics, In:

Trans. Amer. Math. Soc. 98, pp. 21-52, 1961.

[30] Emerson, E.A., Model checking and the µ-calculus, In: Descriptive Complexity and

finite models, pp. 185-214 , American Mathematical Society, 1996.

[31] Emerson, E.A., Jutla, C.S., Tree automata, µ-calculus and determinacy, In: Proc. 32nd

FOCS, pp. 368-377, IEEE Computer Society Press, 1991.

[32] Emerson, E.A., Jutla, C.S., Sistla, A.P., On model-checking for fragments of the µ-

calculus, In: Proc. 5th CAV, Lecture Notes in Computer Science 697, pp. 385-396, 1993.

164 BIBLIOGRAPHY

[33] Ershov, Y., Goncharov, S., Marek, V., Nerode, A., Remmel, J., Handbook of Recur-

sive Mathematics: Recursive Model Theory, Studies in Logic and the Foundations of

Mathematics. North Holland, 1998.

[34] Figueira, D., Reasoning on words and trees with data,PhD thesis, ENS Cachan, France,

2010.

[35] Fischer, J., Heun, V., A New Succinct Representation of RMQ-Information and Im-

provements in the Enhanced Suffix Array, In: LNCS 4614, pp. 459-470, Springer-Verlag,

2007.

[36] Gandhi, A., Ke, N.R., Khoussainov, B., State complexity of determinization and com-

plementation for finite automata, In: Proceedings of the 17th Computing: the Aus-

tralasian Theory Symposium (CATS2011), CRPIT 119, pp. 105-110, 2011.

[37] Gandhi, A., Khoussainov, B., Liu, J., Efficient Algorithms for Games Played on Trees

with Back-edges, In: Fundam. Inform. 111(4), pp. 391-412, 2011.

[38] Gandhi, A., Khoussainov, B., Liu, J., Finite Automata over Structures (Extended Ab-

stract), In: Procs. of TAMC 2012, LNCS 7287, pp. 373-384, 2012.

[39] Gandhi, A., Khoussainov, B., Liu, J., On State Complexity of finite word and tree

languages, In: Procs. of DLT 2012, LNCS 7410, pp. 392-403, 2012.

[40] Gécseg, F., Steinby, M., Tree languages, In: Handbook of Formal Languages, Vol. 3:

Beyond Words (eds. G. Rozenberg and A. Salomaa), pp. 1-68, Springer, 1997.

[41] Grädel, E., Thomas, W., Wilke, T. (Eds.): Automata, Logics, and Infinite Games: A

Guide to Current Research. Lecture Note in Computer Science 2500. Springer, 2002.

[42] Gramlich, G., Schnitger, G., Minimizing NFA’s and regular expressions, In: J. Comput.

Syst. Sci. 73, pp. 908-923, Academic Press Inc., 2007.

[43] Gurevich, Y., Harrington, L., Trees, Automata and Games, In: Proc. of STOCS ’82, pp.

60-65, 1982.

[44] Han, Y., Salomaa, K.: State complexity of union and intersection of finite languages.

International Journal of Foundations of Computer Science, 19(3): 581–595, World Sci-

entific, 2008.

BIBLIOGRAPHY 165

[45] Holzer, M., Kutrib, M., State complexity of basic operations on nondeterministic finite

automata, In: Lecture Notes in Computer Science 2608, pp. 148-157, Springer, 2003.

[46] Holzer, M., Kutrib, M., Descriptional and computational complexity of finite automata

- A survey, In: Information and Computation 209, pp. 456-470, 2011.

[47] Hopcroft, J., Motwani, R., Ullman, J., Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, 2006.

[48] Ibarra, O., Reversal-bounded multicounter machines and their decision problems, In:

J. ACM 25(1), pp. 116-133, 1978.

[49] Ishihara, H., Khousainov, B., Rubin, S., Some Results on Automatic Structures, In:

Proceedings of LICS 2002, pp. 253-, IEEE Computer Society, 2002.

[50] Jirásek, J., Jirásková, G., Szabari, A., State complexity of concatenation and com-

plementation of regular languages, In: Lecture Notes in Computer Science 3317, pp.

178-189, Springer, 2005.

[51] Jirásek, J., Jirásková, G., Szabari, A., Deterministic blow-ups of minimal nondeter-

ministic finite automata over a fixed alphabet, In: Proc. 11th DLT, Lecture Notes in

Computer Science 4588, pp. 254–265, Springer, 2007.

[52] Jirásková, G., On the state complexity of complements, stars, and reversals of regular

languages, In: Proc. 12th DLT, Lecture Notes in Computer Science 5257, pp. 431-442,

Springer, 2008.

[53] Jurdziński, M., Deciding the winner in parity games is in UP ∩ co-UP, Information

Processing Letters 68 (3), pp. 119-124, 1998.

[54] Kaminsky, M., Francez, N., Finite memory automata, In: Theor. Comp. Sci. 134(2), pp.

329-363, 1994.

[55] Khoussainov, B., Proof of memoryless determinacy of parity games, Personal commu-

nication, 2010.

[56] Khoussainov, B., Liu, J., Khaliq, I., A Dynamic Algorithm for Reachability Games

Played on Trees, In: Proc. of MFCS 2009, Lecture Notes in Computer Science 5734, pp.

477-488, Springer-Verlag, 2009.

166 BIBLIOGRAPHY

[57] Kozen, D., Results on the propositional µ-calculus, In: Theoretical Computer Science

27, pp. 333-354, 1983.

[58] Lye, K.-W., Wing, J.L., Game strategies in network security, In: Int. J. Inf. Secur. 4, pp.

71-86, 2005.

[59] Lynch, N.A., Tuttle, M.R., Hierarchical correctness proofs for distributed algorithms,

In: Proc. 6th ACM SIGACT-SIGOPS Symp. on Princ. of Dist. Comp., pp. 137-151, 1987.

[60] Leroux, J., Sutre, G., Flat counter automata almost everywhere!, In: Proceedings of

ATVA ’05, Lecture Notes in Computer Science 3707, pp. 489-503, Springer, 2005.

[61] Leroux, J.: The general vector addition system reachability problem by presburger

inductive invariants, In: Procedings of LICS 2009: 4–13, IEEE Computer Society, 2009.

[62] Martin, D.: Borel determinacy, Ann. Math. 102, No. 2(Sep., 1975), pp. 363-371.

[63] Matiyasevich, Y., Hilbert’s Tenth Problem, MIT Press, Cambridge, Massachusetts,

1993.

[64] McNaughton, R., Inifinte games played on finite graphs, In: Annals of Pure and

Applied Logic 65, pp. 149-184, 1993.

[65] Minsky, M., Recursive unsolvability of Post’s problem of “Tag” and other topics in

theory of Turing machines, In: Annals of Math. 74(3), 1961.

[66] Moore, F.R., On the Bounds for State-Set Size in the Proofs of Equivalence Between De-

terministic, Nondeterministic, and Two-Way Finite Automata, In: IEEE Trans. Comput.

20, pp. 1211-1214, IEEE Computer Society, 1971.

[67] Mohri, M., On some applications of finite-state automata theory to natural language

processing, Natural Language Engineering 2, Cambridge University Press, 1996.

[68] Mostowski, A., Games with forbidden positions, Tech. Report 78, Instytut Matematyki,

Uniwersytet Gdański, Poland, 1991.

[69] Nerode, A., Yakhnis, A., Yakhnis, V., Concurrent programs as strategies in games, In:

Logic from Computer Science (Y. Moschovakis, ed.), Springer, 1992.

BIBLIOGRAPHY 167

[70] Nerode, A., Remmel, J., Yakhnis, A., McNaughton games and extracting strategies for

concurrent programs, In: Annals of Pure and Applied Logic 78, pp. 203-242, 1996.

[71] Neven, F., Schwentick, T., Vianu, V., Finite state machines for strings over infinite

alphabets, In: ACM Tran. Comput. Logic 15(3), pp. 403-435, 2004.

[72] Obdržálek, J., Algorithmic Analysis of Parity Games, PhD thesis, Univ. of Edinburgh,

2006.

[73] Piao, X., Salomaa, K.: Operational state complexity of Deterministic Unranked Tree

Automata, In: Proc. of the Twelfth Annual Workshop on Descriptional Complexity of

Formal Systems (DCFS 2010), EPTCS 31: 149–158, 2010.

[74] Piao, X., Salomaa, K.: Transformations between different models of unranked bottom-

up tree automata, In: Fundamenta Informaticae 109(4), pp. 405–424, IOS Press, 2011.

[75] Pnueli, A., The temporal logic of programs, In: Proc. 18th FOCS, pp. 46-57, 1977.

[76] Pnueli, A., Rosner, R., On the synthesis of a reactive module, In: Proc. 16th ACM

Symp. on Principles of Progr. Lang., pp. 179-190, Austin, 1989.

[77] Point, F., On Decidable Extensions of Presburger Arithmetic: From A. Bertrand Nu-

meration Systems to Pisot Numbers, In: J. Symb. Log. 65(3), pp. 1347-1374, 2000.

[78] Rabin, M.O., Scott, D., Finite automata and their decision problems, In: IBM J. Res.

Develop. 3, pp. 114-125, 1959.

[79] Rogers, H., Theory of recursive and effective computability, McGraw Hill, 1968.

[80] Safra, S., On the complexity ofω-automata. In: Proc. 29th IEEE Symp. on Foundations

of Computer Science (FOCS1988), pages 319–327, White Plains, 1988.

[81] Sage open source mathematical software, http://www.sagemath.org/.

[82] Schnitger, G., Regular expressions and NFA’s without ǫ-transitions, In: Proc. 23rd

STACS, Lecture Notes in Computer Science 3884, pp. 432-443, 2006.

[83] Segoufin, L., Automata and logics for words and trees over an infinite alphabet, In:

Proc. of CSL 2006, Lecture Notes in Computer Science 4207, pp. 41-57, Springer, 2006.

168 BIBLIOGRAPHY

[84] Segoufin, L., Torunczyk, S., Automata based verification over linearly ordered data do-

mains, In: Proceedings of STACS 2011, pp. 81-92, Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2011.

[85] Soare, R., Recursively enumerable sets and degrees, Perspectives in mathematical

logic, Springer-Verlag, 1987.

[86] Stirling, C., Local model checking games, In: Proc. Concur’95, Lecture Notes in

Computer Science 962, pp. 1-11, 1995.

[87] Tan, T., Graph reachability and pebble automata over infinite alphabets, In: Proc. of

LICS 2009, pp. 157-166, IEEE Computer Society, 2009.

[88] Thomas, W., On the synthesis of strategies in infinite games, In: Proc. 12th STACS,

Lecture Notes in Computer Science 900 (1995), pp. 1-13, Springer, 1995.

[89] Thomas, W., Languages, automata and logic, In: Handbook of Formal languages, vol.

3, Springer-Verlag, 1997.

[90] Walukiewicz, I., Pushdown processes: Games and model checking, In: Information

and Computation 164 (2), pp. 234-263, 2001.

[91] Yu, S.: State complexity of regular languages, In: Journal of Automata, Language and

Combinatorics 6(2), pp. 221–234, 2001.

