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Abstract

The symmetry of a combinatorial graph can be measured by its automorphism group.

Graphs with a high degree of symmetry are interesting from mathematical and aesthetic

perspectives, and have also proved useful in practical contexts such as the design of efficient

networks (with good broadcast or distribution properties). In particular, the best known

graphs for the degree-diameter and cage problems (that is, the largest known connected

graphs with given degree and diameter, and the smallest known connected graphs with

given degree and girth) are often vertex-transitive or arc-transitive, and are sometimes

covers of small and well-known examples such as the 3-cube or the Petersen graph.

In this thesis, we investigate techniques for the construction of covering graphs and

regular maps. One particular focus is the construction of arc-transitive abelian regular

covering graphs of arc-transitive graphs, in order to help classify the arc-transitive abelian

regular covering graphs of small order symmetric graphs, and produce new families of

symmetric graphs, some of which may be relevant to the degree-diameter problem.

Until now, covering techniques have been used mainly for the construction of edge-

or arc-transitive cyclic and elementary abelian regular covers of small order symmetric

cubic and tetravalent graphs. In most cases, the approach has involved voltage graph

techniques. But other covers (such as homocyclic regular covers, or more general abelian

regular covers) have not received much attention, and voltage graph techniques have a

limited range of usefulness. In this thesis, a new approach is introduced that can be

used more widely, such as for classifying symmetric abelian regular covers of symmetric

graphs or regular maps. This approach use some combinatorial group theory and group
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representation theory, and other methods for determining suitable quotients.

As an application, we classify all the symmetric abelian regular covers of the complete

graph K4, the complete bipartite graph K3,3, the cube graph Q3, the Petersen graph and

the Heawood graph. We also believe that our methods would open the way for classifying

symmetric abelian regular covers of graphs of higher valency.

Also we construct some families of abelian regular covers of orientably-regular maps,

in order to show that for at least 83% of all positive integers g, there exists at least one

orientably-regular map of genus g with simple underlying graph, and conjecture that there

exists at least one such map for every positive integer g.
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Chapter 1

Introduction

This thesis presents some research on a new approach for classifying symmetric abelian

regular covering graphs of finite symmetric cubic graphs, and also constructing abelian

regular covers of orientable regular maps with simple underlying graphs.

In this Chapter, we give some background theory, in particular, including some details

of voltage graph techniques and their applications and limitations, and our new approach

for regular covering constructions.

Throughout this thesis, unless explicit exception is made, every graph X is assumed

to be finite, undirected, connected and simple — that is, with no loops and no multiple

edges. We use V (X), E(X) and A(X) to denote the vertex-set, edge-set and arc-set of

X, respectively. Definitions of many of the terms used but not defined in this Chapter

can be found in Chapter 2.

1.1 Coverings

Covering techniques are known to be a useful tool in algebraic and topological graph

theory. Application of these techniques has resulted in many important examples and

classifications of certain families of graphs. Of particular note is the technique of ‘voltage

graphs’, which was developed by Gross and Tucker [36], and is often used. In order to
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2 CHAPTER 1. INTRODUCTION

introduce these things, we begin with some background definitions.

A graph homomorphism f from a graph X̃ to graph X is a mapping from the vertex

set V (X̃) to the vertex set V (X) such that if {u, v} ∈ E(X̃) then {f(u), f(v)} ∈ E(X).

When f is surjective, X is called a quotient of X̃. For v ∈ V (X), let N(v) denote the

set of neighbours of v in X. A covering projection is defined as a graph homomorphism

p : X̃ → X which is surjective and locally bijective, which means that the restriction

p : N(ṽ)→ N(v) is a bijection, whenever ṽ is a vertex of X̃ such that p(ṽ) = v ∈ V (X).

We call X the base graph, X̃ a covering graph (or derived graph), and the pre-images

p−1(v), v ∈ V (X) the fibres. A covering projection p : X̃ → X is called regular if there

exists a semi-regular subgroup N of the group of automorphisms Aut(X̃) of X̃ such that

the quotient graph X̃/N (with vertices taken as the orbits of N on V (X̃)) is isomorphic

to X. In that case we call N the covering (transformation) group, or voltage group.

There are two special cases of interest. The regular covering projection is called cyclic

or elementary abelian if N is a cyclic or elementary abelian group. Similarly, we may say

that a regular covering projection is abelian (or homocyclic, or non-homocyclic abelian)

when the group N is abelian (or homocyclic, or non-homocyclic abelian, respectively).

Two regular covering projections p : X̃ → X and p′ : X̃ ′ → X are called equivalent if

there exists a graph isomorphism α̂ : X̃ → X̃ ′ such that p = p′α̂. Usually, regular covers

are studied up to equivalence.

1.2 Voltage techniques and applications

The above properties can be exploited to construct regular covering graphs of a given

graph, as follows.

Let X be a connected graph, and let N be a finite group. Suppose ζ : A(X) → N is

a function assigning a group element to each arc of X, such that ζ(v, u) = (ζ(u, v))−1 for

every arc (u, v) ∈ A(X). Here ζ is called a voltage assignment, N is called the voltage

group (or covering group), and the values of ζ are called voltages. In particular, ζ is



1.2. VOLTAGE TECHNIQUES AND APPLICATIONS 3

called reduced if the values of ζ on a spanning tree are trivial (equal to the identity ele-

ment of N). We may construct a larger graph X×ζN , called the (derived) voltage graph

(or covering graph), with vertex set V (X)×N and adjacency defined by (u, g) ∼ (v, h)

if and only if u ∼ v and h = gζ(u, v). Examples are given in Figure 1.1 and Figure 1.2.
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Figure 1.1: The 3-cube graph Q3 is a Z4-cover of the dipole graph with voltages as indicated
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Figure 1.2: Q3 is a Z2-cover of the complete graph K4 with voltages as indicated

The following facts are well known, and can be easily proved.

Lemma 1.2.1 If the covering graph X̃ is connected, then the covering group can be gen-

erated by the voltages.

Lemma 1.2.2 [46] Given any voltage assignment ζ : A(X) → N , there exists a reduced

voltage assignment η : A(X)→ N such that X ×ζ N isomorphic to X ×η N .

The edges of a graph that are not included in a given spanning tree are often called

co-tree edges, and the number of these is called the Betti number of the graph. The rank

of a group is the smallest cardinality of a generating set. From the above two lemmas, we
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can see that for a connected covering graph, the rank of the covering group is no larger

than the Betti number of the base graph.

Observe that a voltage assignment on arcs can be extended to a voltage assignment

on walks in a natural way, such that if C and C ′ are walks with the last vertex of C being

the same as the first vertex of C ′, then ζ(CC ′) = ζ(C)ζ(C ′) in the voltage group.

Let S be the set of voltages of closed walks in X based at a fixed vertex v ∈ V (X).

Given α ∈ Aut(X), we define a function α̂ : S → N by

(ζ(C))α̂ = ζ(Cα)

for C ∈ S. Note that if N is abelian, then α̂ does not depend on the choice of the base

vertex, and the fundamental closed walks at v can be substituted by the fundamental

cycles generated by the co-tree arcs of X. See [49] for further details.

Let p : X̃ → X be a covering projection. Suppose there exists α ∈ Aut(X) and

α̃ ∈ Aut(X̃) such that α · p = p · α̃, that is, such that the following diagram commutes:

p

X̃ −→ X

α̃ ↓ ↓ α

X̃ −→ X

p

x Then we say that α̃ is a lift of α, and that α is a projection of α̃. Observe that α

is uniquely determined by α̃, but it is not true in general that α̃ is uniquely determined

by α. The set of all lifts of a given α ∈ Aut(X) is denoted by L(α). In particular,

when α is the identity automorphism ι, we denote L(ι) by CT(p), and call it the group

of covering transformations. (That is the group of all self-equivalences of p, that is, of all

automorphisms τ ∈ Aut(X̃) such that pτ = p.) Generally, let G be a subgroup of Aut(X).

If for each α ∈ G, the set L(α) of all lifts of α is non-empty, then G̃ =
⋃
α∈G L(α) is a

group called the lift of G. We also call G a projection of G̃.

The use of covering techniques and voltage graph techniques to study symmetric

graphs has been a topic of considerable interest, see [27–32, 49–54] for example.
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A graph X is called symmetric (or arc-transitive) if it has the property that given

any two pairs of adjacent vertices (u1, v1) and (u2, v2), there is an automorphism f of X

such that f(u1) = u2 and f(v1) = v2, — in other words, the automorphism group Aut(X)

of X acts transitively on ordered pairs of adjacent vertices.

An s-arc in a graph is an ordered (s+ 1)-tuple (v0, v1, . . . , vs) of vertices of the graph

such that vi is adjacent with vi+1 for 0 ≤ i ≤ s− 1, and vi−1 6= vi+1 for 1 ≤ i ≤ s− 1; in

other words, any two consecutive vertices are adjacent, and any three consecutive vertices

are distinct. A graph X is called s-arc-transitive if its automorphism group Aut(X) acts

transitively on the set of all s-arcs of X. For a subgroup G of Aut(X), the graph X is

called (G, s)-arc-transitive (respectively, (G, s)-arc-regular) if G is transitive (respectively,

sharply–transitive) on the set of s-arcs of X. In particular, if G = Aut(X), then we call

X an (Aut(X), s)-arc-transitive (respectively, (Aut(X), s)-arc-regular) graph, or simply

an s-arc-transitive (respectively, s-arc-regular) graph.

Independently in the 1970s, Conway (see [1, Corollary 19.6]) and Djoković [25] used

graph covers to construct the first infinite family of finite 5-arc-transitive cubic graphs, as

elementary abelian covers of Tutte’s 8-cage. Also Djoković [25] used lifts of automorphisms

of graphs along covering projections to study s-arc-transitivity of graphs, and showed

that if an s-arc-transitive group of automorphisms can be lifted along a regular covering

projection, then the covering graph is at least s-arc-transitive. Subsequently Biggs [2]

developed a method for constructing certain 5-arc-transitive cubic graphs as covers of

cubic graphs that are 4-arc- but not 5-arc-transitive.

Later, Malnič, Marušič and Potočnik [49] took these ideas further in a systematic

study of regular covering projections of a given connected graph along which a given

group of automorphisms lifts, and used this to give an explicit means of construction of

such coverings when the covering group is elementary abelian. Their approach involves

taking an appropriate representation of automorphisms of the base graph (by matrices),

and then converting the conditions for lifting into a problem of finding invariant subspaces

of certain concrete groups of matrices over prime fields.
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The approach developed in [49] has been successfully applied to the classification of

elementary abelian regular covers of a number of symmetric graphs of small valency. Many

examples have been handled by this method.

For example, for cubic graphs, Malnič, Marušič, Miklavič and Potočnik [50] classified

non-isomorphic minimal semi-symmetric elementary abelian regular covers of the Möbius-

Kantor graph and the generalized Petersen graph GP(8, 3). Malnič and Potočnik [51]

classified the vertex-transitive elementary abelian regular covers of the Petersen graph.

Also Oh [53] classified all the symmetric cubic graphs of order 16p by classifying the arc-

transitive cyclic regular covers of the Möbius-Kantor graph. Malnič, Marušič and Potočnik

[49] classified the edge-transitive elementary abelian regular covers of prime-dipoles and

semi-symmetric elementary abelian regular covers of the Heawood graph. Furthermore,

Oh [52] classified all the symmetric cubic graphs of order 14p by classifying the arc-

transitive cyclic regular covers of the Heawood graph. Oh [54] classified the arc-transitive

elementary abelian regular covers of the Pappus graph. For 4-valent graphs, Kuzman [42]

classified the arc-transitive elementary abelian regular covers of the complete graph K5.

Kwak and Oh [43] classified the arc-transitive elementary abelian regular covers of the

octahedron graph.

Another method was developed by Du, Kwak and Xu [27]. Rather than using matrices

to represent the automorphisms, they obtained linear criteria for lifting automorphisms.

Using this approach, various arc-transitive cyclic or elementary abelian regular covers of

small order cubic graphs were classified.

For instance, Feng and Kwak [30] classified the arc-transitive elementary abelian reg-

ular covers of the complete graph K4, and the complete bipartite graph K3,3, and as an

application, obtained a complete list of non-isomorphic symmetric cubic graphs of orders

4p, 6p, 4p2 and 6p2, where p is prime. Also Feng and Kwak [28] gave an infinite family

of cubic 1-arc-regular graphs, which they constructed by classifying the symmetric cyclic

regular covers of the complete bipartite graph K3,3. Similarly, Feng and Wang [32] clas-

sified the symmetric cyclic covers of the 3-dimensional cube graph Q3. Also Feng, Kwak
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and Wang [31] classified the symmetric elementary abelian regular covers of Q3, and as

a further application, classified all symmetric cubic graphs of order 8p or 8p2 where p is

prime. Similarly, Feng and Zhou [59] classified the semi-symmetric elementary abelian

regular covers of the Heawood graph; and Feng and Kwak [29] classified the symmetric

elementary abelian regular covers of the Petersen graph, and all the symmetric cubic

graphs of order 10p and 10p2 where p is prime are given.

1.3 Limitations of voltage graph techniques

In the construction of symmetric (and semi-symmetric) regular covers of symmetric graphs

to date, most attention has been paid to cases where the covering group is either cyclic

or elementary abelian. The voltage graph construction works particularly well in these

cases, and can also be used to construct regular covers with homocyclic covering groups

with non-prime exponent.

Regular covers with more general covering groups have not received much attention.

In the method developed by Malnič et al [49], for elementary abelian regular covers, the

automorphism matrices are defined over prime fields. For homocyclic regular covers, the

corresponding automorphism matrices need to be defined over more general integer rings

(such as Z4 or Z9) instead of the prime fields. The associated computations for finding

invariant subspaces can be carried out easily for small dimensional matrices, but can be

much more complicated in larger dimensions. For non-homocyclic abelian regular covers,

this method is still possible (with appropriate modifications), but difficult to apply.

Similarly, in the method developed by Du et al [27], the linear criteria for lifting auto-

morphisms are equivalent to solving linear equations over prime fields. (These equations

are derived from the action of automorphisms of the voltage group on the fundamental

cycles.) Homocyclic regular covers can also be constructed and classified by solving the

equations over integer rings, but again, the computations become very difficult if the di-

mension (which is the number of co-tree edges) is large. Furthermore, it is difficult to

apply this method to the classification of non-homocyclic abelian regular covers.
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Another limitation of the voltage graph technique is that it does not help much in

determining the size of the automorphism group (and in particular, the s-arc-transitivity)

of the covering graph. For elementary abelian regular covers, Feng et al [31, 29, 28, 32]

used Sylow theorems and other techniques based on a complete list of symmetric cubic

graphs of small order given by Conder [14], to find the size of the automorphism group.

For homocyclic regular covers and more general abelian regular covers, however, these

techniques are limited and difficult to extend.

1.4 New approach for construction of covers

In this section we introduce a new approach for classifying arc-transitive abelian regular

covers of symmetric cubic graphs, using some group theory, character theory, and a study

of ‘layers’ of the covering group. As an application, we classify all of the arc-transitive

abelian regular covers of some symmetric cubic graphs of small order.

In contrast to the approaches that use voltage graph techniques, our approach is

quite general, in that it can also be taken when considering covers of other discrete

structures with large automorphism groups, such as regular maps, Hurwitz surfaces (and

other compact Riemann surfaces with large automorphism group), and abstract regular

polytopes — or indeed whenever there exist universal groups for the kinds of group actions

of interest.

Our approach was described briefly by Marston Conder at the AGTAGC 2010 work-

shop (on algebraic, topological and complexity aspects of graph covers) in Auckland in

February 2010. It was largely motivated by work by Leech [44] in determining the struc-

ture of certain normal subgroups of the (2, 3, 7) triangle group ∆ and the actions by

conjugation of the generators of ∆ on generators of those subgroups, and the use of these

by Cohen [7] to classify abelian covers of Klein’s quartic surface (or equivalently, all reg-

ular maps of type {3, 7} that cover the Klein map of genus 3). The latter covers were

critical to a complete determination of all Hurwitz surfaces (or equivalently, all regular

maps of type {3, 7}) of genus 2 to 11905, achieved by Conder in [8, 9].
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In order to explain this new approach, we need to describe some further background

theory.

Let X be a finite symmetric graph, and suppose G is a group of automorphisms of X

acting transitively on A(X). Also let v be any vertex ofX, letH = Gv = {g ∈ G : vg = v},
the stabilizer in G of the vertex v, and let a ∈ G be any automorphism of X that reverses

an arc (v, w) incident with v in X. Then the vertices of X can be identified with the right

cosets Hx of H in G, and in particular, the arc (v, w) can be identified with the ordered

pair (H,Ha). By arc-transitivity, every arc of X is of the form (Hg,Hag) for some g ∈ G,

and therefore the vertices Hx and Hy are adjacent if and only if xy−1 ∈ HaH.

These observations can be exploited to give a well-known construction for symmetric

graphs.

Let G be any group containing a subgroup H of finite index, let a be any element

of G such that a2 ∈ H, and the elements of H ∪ {a} generate G. Define a graph X =

X(G,H, a) by taking the right cosets of H in G as vertices of X, and joining Hx to Hy

whenever xy−1 ∈ HaH. The group G acts on X (as a group of automorphisms) by right

multiplication g : Hx 7→ Hxg (for g ∈ G) making X a connected arc-transitive graph of

order |G : H| and valency d = |H : H ∩ aHa−1|.

For symmetric cubic graphs, Tutte’s theorem [58] shows that every finite symmetric

cubic graph is at most 5-arc-transitive. Djoković and Miller [26] showed further that

the automorphism group must be a quotient of one of seven finitely-presented ‘universal’

groups G1, G
1
2 , G

2
2 , G3, G

1
4 , G

2
4 and G5. Indeed every arc-transitive group of automor-

phisms of a finite symmetric cubic graph is a quotient of one of these seven groups. (More

details can be seen in Section 2.4.)

Now suppose X is a symmetric cubic graph, and X̃ is a symmetric regular cover of

X. Let G be an arc-transitive group of automorphisms of X that lifts to an arc-transitive

group of automorphisms G̃ of X̃. Then G is a quotient U/K, where U is one of the

seven groups G1, G
1
2 , G

2
2 , G3, G

1
4 , G

2
4 or G5, and K is a torsion-free normal subgroup of U .

Similarly, G̃ is a quotient U/L where L is a normal subgroup of U contained in K. The



10 CHAPTER 1. INTRODUCTION

quotient K/L is the voltage group for the regular covering projection of X by X̃.

In order to find and classify all symmetric regular covers of X, for which the subgroup

G lifts, we seek to find all possibilities for a normal subgroup L of finite index in U such

that L is contained in K.

To do this, we can first use Reidemeister-Schreier theory (which is implemented as

the Rewrite command in Magma [3]) to find a presentation for K by generators and

relations, using a given presentation for U . Algebraic or computational techniques can be

applied to find the actions by conjugation of the generators of U on the generators of K.

Abelianising K allows us to classify abelian regular covers, by investigating the structure

of K/K ′, and finding all subgroups of finite index in K/K ′ that are invariant under the

action of generators of U .

1.5 Regular maps with simple underlying graph

Regular maps are highly symmetric embeddings of graphs or multi-graphs on closed sur-

faces. The formal study of regular maps was initiated by Brahana [4] in the 1920s and

continued by Coxeter (see [24]) and others decades later. Deep connections exist between

regular maps and other branches of mathematics, including hyperbolic geometry, Rie-

mann surfaces and, rather surprisingly, number fields and Galois theory. (See some of the

references, such as [39], for further background).

Regular maps on the sphere and the torus and other orientable surfaces of small genus

are now quite well understood, but until recently, the situation for surfaces of higher

genus was something of a mystery. A significant step towards answering some long-

standing questions about the genera of orientable surfaces carrying a regular map having

no multiple edges, or an ‘orientably-regular’ map that is chiral (admitting no reflectional

symmetry) was taken by Conder, Siráň and Tucker in [23], after the first author noticed

patterns in computational data about regular maps of small genus (see [13] and the

associated lists of maps available on Conder’s website).
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One question of interest has been the genus spectrum of orientably-regular maps with

simple underlying graph — that is, where the embedded graph has no loops or multiple

edges. It is well known that for every g > 0 there exists a reflexible regular map of

type {4g, 4g} on an orientable surface of genus g (with dihedral automorphism group).

It follows that there are no ‘gaps’ in the genus spectrum of orientable surfaces carrying

reflexible regular maps. On the other hand, the underlying graphs for these maps are

highly degenerate, being bouquets of 2g loops based at a single vertex.

A closely-related question concerns the genera of those orientably-regular maps with

the property that the underlying graphs of both the map and its dual are simple. From

the evidence described in [13], it was discovered that there are gaps in this spectrum:

there are no such maps of genus 20, 23, 24, 30, 38, 39, 44, 47, 48, 54, 60, 67, 68, 77, 79,

80, 84, 86, 88 or 95, but there is at least one of genus g for every other g in the range

0 ≤ g ≤ 101.

Two of the main results of [23] were that (a) If M is an orientably-regular but chiral

map of genus p+ 1, where p is prime, and p− 1 is not divisible by 5 or 8, then either M

or its topological dual M∗ has multiple edges, and (b) if M is a reflexible regular map of

genus p + 1, where p is prime and p > 13, then either M or M∗ has multiple edges, and

if also p ≡ 1 mod 6, then both M and M∗ have multiple edges.

It follows from these that if g = p + 1 for some prime p > 13 such that p − 1 is not

divisible by 5 or 8, then there exists no orientably-regular map of genus g such that the

underlying graphs of both the map and its dual are simple. Hence there are infinitely

many exceptions, well beyond the brief list given two paragraphs above.

On the other hand, if we are happy for just one of M and M∗ to have simple underlying

graph, then the situation is intriguing. The exceptions arising from (b) for reflexible

regular maps are genera of the form g = p + 1 where p is a prime congruent to 1 mod

6, but for each of these, there is an orientably-regular but chiral map of type {6, 6} of

genus g with simple underlying graph. Hence these exceptions for reflexible maps are not

exceptions for chiral maps.



12 CHAPTER 1. INTRODUCTION

In fact, it is easy to see from the Platonic maps, the toroidal regular maps and the

lists of all regular maps of small genus (associated with [13]) that for every integer g in

the range 0 ≤ g ≤ 101, there exists at least one orientably-regular map of genus g with

simple underlying graph.

Hence the obvious question arises: is there any positive integer g for which there exists

no orientably-regular map of genus g with simple underlying graph?

We are prepared to conjecture that the answer is ‘No’, but a proof would be difficult.

In this thesis, we provide further evidence in support of it, by proving the existence of

several infinite families of examples, covering various pieces of the genus spectrum.

We construct the maps via their automorphism groups (or at least their orientation-

preserving groups of automorphisms), using a range of combinatorial group-theoretic tech-

niques. These include semi-direct product constructions (as used in [16] to produce regular

maps on non-orientable surfaces of over 77% of all possible genera), and some more general

methods similar to those we use for symmetric cubic graphs.

1.6 Layout of remainder of thesis

We give some further background in Chapter 2, on various relevant topics. Then in

Chapters 3 to 6, we apply our new approach to find all the symmetric abelian regular

covers of K4, K3,3, Q3 and the Petersen graph, respectively. In Chapter 7, we do the

same for the Heawood graph. This case is more difficult than the earlier ones, but is also

more interesting, in that every arc-transitive group of automorphisms of the Heawood

graph is 1-arc-regular or 4-arc-regular, but some of its regular covers have a 2-arc-regular

automorphism group. Some details from this case are given in the Appendix.

In Chapter 8, we switch to the study of regular maps, where we construct families

of abelian regular covers of given regular maps in order to prove the existence of regular

maps with simple underlying graphs on surfaces of over 5/6 of all possible genera. Finally,

we make some concluding remarks and mention some potential topics for future research
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in Chapter 9.

Before proceeding, we note that very little of this work would have been likely without

the benefit of the use of the computational algebra system Magma [3] to produce and

analyse examples and to experiment with a number of constructions.
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Chapter 2

Preliminaries

In this Chapter, we introduce some further basic definitions and background theory re-

lated to permutation groups, finitely-presented groups, graph automorphisms, finite group

representations, symmetric cubic graphs, regular maps, and our new approach for finding

symmetric abelian regular covers.

2.1 Permutation groups

A permutation group G is a group whose elements are permutations of a given set Ω, that

is, bijective functions from Ω to Ω, and the group operation is composition of permutations

in G. In particular, any subgroup of a symmetric group is a permutation group. A

permutation representation of a group G on a finite set Ω is a group homomorphism

from the group G to Sym(Ω), the group of all permutations on Ω.

Let G be a permutation group on a set Ω and let a ∈ Ω. We denote by Ga the

stabilizer of a, that is, the subgroup {g ∈ G | ag = a} of G consisting of all elements that

fix the point a. We say that G is semi-regular on Ω if Ga = 1 for all a ∈ Ω, and regular

on Ω if G is transitive and semi-regular on Ω. The orbit of a point a in Ω is the set of

elements of Ω to which a can be moved by elements of G, that is, {ag : g ∈ G}. This is

denoted by aG.

15
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The following well known Orbit-Stabilizer Theorem can be easily found in books on

permutation groups (such as [6]) and many other texts on group theory:

Theorem 2.1.1 If G is a permutation group acting on a set Ω, then

|G| = |Ga||aG|

for all a ∈ Ω.

2.2 Finitely-presented groups

In group theory, there are many different ways of defining and describing particular groups.

One way of defining a given group G is by a presentation in terms of generators and

relations. Let S be a set of generators for G, so that every element of G can be written

as a product of elements of S and their inverses. Also let R be a set of relations involving

members of the generating set S. Each relation in R can be written in the form u = v

where u and v are words on S, such as uv−1 = 1, in which case we call uv−1 a relator.

Then we say G has presentation 〈 S | R 〉 if every relation satisfied by elements of S is a

consequence of the relations in R and the group axioms. Equivalently, G = 〈 S | R 〉 if

and only if G is isomorphic to the quotient F (S)/〈R〉F where F is the free group on the

alphabets and 〈R〉F is the normal closure in F = F (S) of the relators obtainable from R.

Example 2.2.1 The dihedral group Dn of order 2n has presentation Dn = 〈 a, b | a2 =

bn = 1, ba = b−1〉. Hence the elements a and b represent a reflection and a rotation, when

Dn is considered as the symmetry group of a regular n-gon.

2.2.1 The Reidemeister-Schreier process

Given a finitely-presented group G = 〈 S | R 〉 where S = {x1, x2, · · · , xm} is the gener-

ating set and R = {r1, r2, · · · , rn} is a set of relators, let H be a subgroup of finite index

in G. We may form a graph whose vertices are the right cosets of H and whose edges are
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of the form Hg — Hgxi for 1 ≤ i ≤ m and g ∈ G. This graph is called the Schreier

coset graph Σ(G,S,H), and gives a diagrammatic representation of the natural action of

G on right cosets of H.

In the Schreier coset graph Σ(G,S,H), a spanning tree gives a Schreier transversal

— that is, a set T = {t1, t2, · · · , tk} of coset representatives for the right cosets Hg of

H in G, with the property that every left initial sub-word of each ti also lies in T . The

elements of T can be chosen as the words tracing paths from the vertex H of Σ(G,S,H)

to each other vertex of Σ(G,S,H) in the spanning tree. For example, if the edges H —

Ha and Ha — Hab−1 lie in the spanning tree, then a and ab−1 lie in T , with a being a

left initial sub-word of ab−1 for H in G. Edges of the coset graph not used in the spanning

tree (called the co-tree edges) give a Schreier generating set for H in G: the co-tree edge

Hu — Hv given by multiplication by xt gives the Schreier generator uxtv
−1 for H.
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Figure 2.1: Schreier generators given by edges not in spanning tree

Reidemeister-Schreier theory (see [11, 12, 36], for example) provides a method for

obtaining a presentation for the subgroup H in terms of generators and relations for the

group G. This method consists of four steps, as follows:

1) Construct the Schreier coset graph Σ(G,S,H);

2) Take a spanning tree in the Schreier coset graph, giving a Schreier transversal for

H in G;

3) Label the co-tree edges with Schreier generators;

4) Apply each of the relators from R to each of the cosets in turn, to obtain the

defining relations for H.
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An implementation of this process is available in Magma [3] via the Rewrite com-

mand.

Example 2.2.2 Let G = 〈 x, y | x2 = y3 = 1 〉 be the modular group, let H be the

stabilizer of 1 in the permutation representation x 7→ (2, 3), y 7→ (1, 2, 3). Taking T =

.
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Figure 2.2: The Schreier coset graph of H

{1, y, y−1} as Schreier transversal, we find the following as Schreier generators: A =

x, B = y3, C = yxy and D = y−1xy−1. Then the relation x2 = 1 gives new relations

A2 = 1 and CD = 1, while the relation y3 = 1 gives new relation B = 1. After eliminating

redundant generators, we find that H has presentation 〈 A,C | A2 〉 via A = x and

C = yxy.

Example 2.2.3 Let G be the (2, 8, 3) triangle group, with presentation

G = 〈x, y, z | x2 = y8 = z3 = xyz = 1〉,

and let K be a normal subgroup of G of index 48. Then by Magma, there is only one

possibility for K, and this has five generators: w1 = y2xz−1y, w2 = (z−1yx)2, w3 =

xzy3xy−1, w4 = zy2xz−1yz−1 and w5 = yxzyxz−1xy−1z−1. The relations for G give

the following relations for K: w2
1 = 1, w2

2 = 1, w2
3 = 1, w2

4 = 1, (w1w5)
2 = 1 and

(w2w4w
−1
5 w3)

2 = 1. Thus K has presentation

K = 〈w1, w2, w3, w4, w5 | w2
1 = w2

2 = w2
3 = w2

4 = (w1w5)
2 = (w2w4w

−1
5 w3)

2 = 1 〉.
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2.2.2 Low index normal subgroups

In 2006, a method was developed by Firth and Holt, to find all normal subgroups of small

index in a finitely-presented group. An implementation of this is available in Magma,

via the LowIndexNormalSubgroups command.

Example 2.2.4 Let G = 〈 x, y | x2 = y3 = 1 〉 be the modular group. Using Magma, it

takes only a few minutes to find the 408 normal subgroups of G with index at most 2000.

2.3 Graph automorphisms

An automorphism of a simple graph X is a permutation π of the vertex-set V (X) with

the property that {u, v} is an edge of X if and only if {uπ, vπ} is an edge of X. The set

of all automorphisms of X with the operation of composition is called the automorphism

group of X, and denoted by Aut(X). In particular, the automorphism group Aut(X) is

a permutation group on V (X), when X is simple.

Example 2.3.1 The automorphism group of a complete graph Kn is isomorphic to the

symmetric group Sn. The automorphism group of the cycle graph Cn is the dihedral group

Dn (of order 2n).

We say a graph X is vertex-transitive if Aut(X) acts transitively on the vertex-set

V (X), or in other words, if given any two vertices u and v, there is an automorphism

π ∈ Aut(X) such that π(u) = v. For example, all Cayley graphs (see [1] for their

definition) are vertex-transitive. The action of Aut(X) on V (X) induces an action on

E(X), by the rule {x, y}π = {xπ, yπ} for {x, y} ∈ E(X), and we say X is edge-transitive

if the latter action is transitive. For example, the complete bipartite graph Km,n is edge-

transitive, but not vertex-transitive when m 6= n.

Next, a semi-symmetric graph is a graph which is edge-transitive, but not vertex-

transitive. The smallest regular semi-symmetric graph is the Folkman graph (see [33])
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which has 20 vertices, 40 edges, diameter 4 and girth 4. Another example is the Ljubljana

graph (see [21]) which has 112 vertices and 168 edges.

We say that X is arc-transitive if Aut(X) acts transitively on the arc-set A(X) =

{(x, y) : {x, y} ∈ E(X)}. For example, the simple cycle graph Cn and the complete graph

Kn are arc-transitive graphs. A graph is called half -transitive if it is vertex-transitive

and edge-transitive but not arc-transitive. The smallest half-transitive graph is the Holt

graph, which is 4-valent and has 27 vertices (see [5] for more details).

2.4 Symmetric cubic graphs

As we mentioned in Chapter 1, a graph X is called s-arc-transitive if Aut(X) acts transi-

tively on the s-arcs of X, and s-arc-regular if this action is sharply-transitive. In partic-

ular, 0-arc-transitive means vertex-transitive, while 1-arc-transitive means arc-transitive

(or symmetric). Note that under the connectedness assumption, s-arc-transitive implies

(s− 1)-arc-transitive, for all s ≥ 1.

A lot is known about symmetric graphs that are 3-valent, or cubic, thanks mostly to

two seminal theorems of Tutte [57, 58]. Tutte proved that a finite symmetric cubic graph

can be at most 5-arc-transitive (and more details can be found in [58]). He also proved

that the automorphism group of any symmetric cubic graph X acts regularly on s-arcs

of X for some s ≤ 5, in which case X is s-arc-regular. For example, K4 and Q3 are

2-arc-regular, while K3,3 and the Petersen graph are 3-arc-regular, the Heawood graph is

4-arc-regular, and Tutte’s 8-cage (on 30 vertices) is 5-arc-regular.

Tutte’s work was taken further by Goldschmidt, Sims, Djoković and others (see [35,

56, 25]). We now know that the stabilizer of a vertex in any group acting regularly on

the s-arcs of a finite connected cubic graph is isomorphic to either the cyclic group Z3,

the symmetric group S3, the direct product S3 × Z2, the symmetric group S4 or the

direct product S4×Z2, depending on whether s = 1, 2, 3, 4 or 5 respectively. In the cases

s = 2 and s = 4, there are two different possibilities for the edge-stabilizers, depending
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on whether or not the group contains an involution that reverses an arc, while for s = 1, 3

and 5 there is just one possibility (see [22, 26] for more details).

Taking into account the isomorphism type of the pair consisting of a vertex-stabilizer

and edge-stabilizer, Djoković and Miller found seven types of universal groups that act

arc-transitvely on the infinite cubic tree with finite vertex-stabilizer [26]. These seven

groups were named G1, G
1
2 , G

2
2 , G3, G

1
4 , G

2
4 and G5, and can be presented as follows (see

[17]):

G1 = 〈h, a | h3 = a2 = 1 〉 (the modular group);

G 1
2 = 〈h, p, a | h3 = p2 = a2 = 1, php = h−1, a−1pa = p 〉;

G 2
2 = 〈h, p, a | h3 = p2 = 1, a2 = p, php = h−1, a−1pa = p 〉;

G3 = 〈h, p, q, a | h3 = p2 = q2 = a2 = 1, pq = qp, php = h, qhq = h−1, a−1pa = q 〉;

G 1
4 = 〈h, p, q, r, a | h3 = p2 = q2 = r2 = a2 = 1, pq = qp, pr = rp, (qr)2 = p,

h−1ph = q, h−1qh = pq, rhr = h−1, a−1pa = p, a−1qa = r 〉;

G 2
4 = 〈h, p, q, r, a | h3 = p2 = q2 = r2 = 1, a2 = p, pq = qp, pr = rp, (qr)2 = p,

h−1ph = q, h−1qh = pq, rhr = h−1, a−1pa = p, a−1qa = r 〉;

G5 = 〈h, p, q, r, s, a | h3 = p2 = q2 = r2 = s2 = a2 = 1, pq = qp, pr = rp, ps = sp,

qr = rq, qs = sq, (rs)2 = pq, h−1ph = p, h−1qh = r,

h−1rh = pqr, shs = h−1, a−1pa = q, a−1ra = s 〉.

Now suppose G is a smooth quotient of one of the seven groups above, where ‘smooth’

means that the orders of the generators are preserved in the quotient. (This is equivalent

to supposing that G is a quotient via some torsion-free normal subgroup, since every

element of finite order in any of the above seven groups induces an automorphism of the

(infinite) cubic tree of finite order and therefore stabilizes a vertex or an edge.) Then

we may construct an arc-transitive graph X on which G acts as an arc-transitive group

of automorphisms in the following way. Let S be the generating set for G consisting of
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images of the specified generators (from {h, a, p, q, r, s}). Let H be the subgroup generated

by S\{a}. Take the coset space V = {Hg : g ∈ G} as the vertex-set, and join two vertices

Hx and Hy by an edge whenever xy−1 ∈ HaH. This adjacency relation is symmetric,

since HaH = Ha−1H in each of the seven cases. The group G acts on the right cosets

by multiplication, preserving the adjacency relation. Since HaH = Ha ∪Hah ∪Hah−1

in each of the seven cases, the graph X is cubic and symmetric. The graph X itself may

be called a double coset graph. (See [17] for more details.)

In some cases, the full automorphism group Aut(X) may contain more than one

subgroup acting transitively on the arcs of X. When G is any such subgroup, G will be

the image of one of the seven groups G1, G
1
2 , G

2
2 , G3, G

1
4 , G

2
4 and G5. Any subgroup

G will be said to be of type 1, 21, 22, 3, 41, 42 or 5, according to which of the seven groups

it comes from.

The relationships among the seven types of groups G1, G
1
2 , G

2
2 , G3, G

1
4 , G

2
4 and G5 were

considered in [26], and taken further in [22].

In order to make this thesis self-contained, some of the theorems for introducing the

relations among these seven groups are quoted here.

Proposition 2.4.1 [22]

(a) In the group G 1
2 , the subgroup generated by h and a has index 2 and is isomorphic

to G1;

(b) The group G 2
2 contains no subgroup isomorphic to G1;

(c) In the group G3, the subgroup generated by h, a and pq has index 2 and is isomorphic

to G 1
2 , while the subgroup generated by h, ap and pq has index 2 and is isomorphic

to G 2
2 , and the subgroup generated by h and a has index 4 and is isomorphic to G1;

(d) In the group G 1
4 , the subgroup generated by h and a has index 8 and is isomorphic

to G1, but there are no subgroups of index 2 isomorphic to G3, and no subgroups of

index 4 isomorphic to G 1
2 or G 2

2 ;
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(e) In the group G 2
4 , there are no subgroups of index up to 8 that are isomorphic to

G1, G
1
2 , G

2
2 or G3;

(f) In the group G5, the subgroup generated by hpq, a and pq has index 2 and is iso-

morphic to G 1
4 , while the subgroup generated by hpq, ap and pq has index 2 and

is isomorphic to G 2
4 , and the subgroup generated by h and a has index 16 and is

isomorphic to G1, but there are no subgroups of index 4 or 8 isomorphic to G 1
2 , G

2
2

or G3.

As a consequence of these relations, we also have the following:

Corollary 2.4.2 [22] Let G be an arc-transitive group of automorphisms of a finite sym-

metric cubic graph Γ. Then

• if G has type 22, then G contains no subgroup of type 1;

• if G has type 41, then G contains no subgroup of type 21, 22 or 3;

• if G has type 42, then G contains no subgroup of type 1, 21, 22 or 3;

• if G has type 5, then G contains no subgroup of type 21, 22 or 3.

In particular, we also have the following results:

Proposition 2.4.3 [22, 26] If the automorphism group of a 3-arc-regular finite cubic

graph has an arc-transitive subgroup of type 1 (and index 4), then it also has arc-transitive

subgroups of types 21 and 22 (and index 2). Similarly, if the automorphism group of a

5-arc-regular finite cubic graph has an arc-transitive subgroup of type 1 (and index 16),

then it also has arc-transitive subgroups of types 41 and 42 (and index 2).

This eliminates the possibility of the combinations {1, 21, 3}, {1, 22, 3} and {1, 3} for 3-

arc-regular cubic graphs, and {1, 41, 5}, {1, 42, 5} and {1, 5} for 5-arc-regular cubic graphs,

leaving just 17 possibilities.

The types of arc-transitive action that a finite connected symmetric cubic graph can

admit are as follows [22]:
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1-arc-regular: {1} only;

2-arc-regular: {1, 21}, {21}, {22};

3-arc-regular: {1, 21, 22, 3}, {21, 22, 3}, {21, 3}, {22, 3}, {3};

4-arc-regular: {1, 41}, {41}, {42};

5-arc-regular: {1, 41, 42, 5}, {41, 42, 5}, {41, 5}, {42, 5}, {5};

Proposition 2.4.4 [22, 26] Every symmetric cubic graph admitting actions of types 1

and 41 is a cover of the Heawood graph (the incidence graph of a projective plane of order

2), and in particular, is bipartite.

Proposition 2.4.5 [22, 26] Every symmetric cubic graph admitting actions of types 1 and

5 is a cover of the Biggs-Conway graph (of order 2352), and in particular, is bipartite.

Using the above theorems, Conder and Nedela [22] exhibited the types of arc-transitive

actions admitted by symmetric cubic graphs of order up to 768.

Example 2.4.6 The cubic graph F112B in [22] is 3-arc-regular of order 112, and admits

arc-transitive actions of types 1, 21, 22, 3.

Example 2.4.7 The cubic graph F448C in [22] is 2-arc-regular of order 448, and admits

an arc-transitive action of type 22 only.

Example 2.4.8 The cubic graph F468 in [22] is 5-arc-regular of order 468, and admits

arc-transitive actions of types 41, 42, 5.

2.5 Group representations and characters

A group homomorphism from group G to group H (each with multiplication as the

binary operation) is a function f : G→ H such that f(uv) = f(u)f(v) for all u, v in G. A

representation of a group G on a vector space V over a field F is a group homomorphism
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from G to GL(V ), the general linear group on V . In other words, a representation is a

function

ρ : G→ GL(V )

such that ρ(g1g2) = ρ(g1)ρ(g2), for all g1, g2 ∈ G. Here V is called the representation

space, and the dimension of V is called the dimension of the representation.

A subspace W of V which is invariant under the representation is called a G-invariant

subspace. If V has only two G-invariant subspaces, namely the zero-dimensional subspace

and V itself, then the representation is called irreducible; otherwise the representation is

called reducible.

The character χ of a group representation ρ : G → GL(V ) is a function on the

group which associates to each group element the trace of the corresponding matrix:

χ(g) = Trace(ρ(g)) for all g ∈ G. Each character is constant on every conjugacy class of

G. The character χ is called irreducible (respectively, reducible) if the representation ρ

is irreducible (respectively, reducible).

We will make use of characters of representations over the complex field (of character-

istic zero), but will also consider what happens to some of these in prime characteristic

when necessary.

Over the complex field C, the number of irreducible characters of a finite group G is

equal to the number of its conjugacy classes. A character table of a group G is a two-

dimensional table whose rows correspond to its irreducible group representations over

C, and whose columns correspond to conjugacy classes of group elements. The entries in

each row are the values of the corresponding character on representatives of the respective

conjugacy classes of G. (See [37] for more details.) For example, the character table of

the alternating group A4 can be seen in Table 3.1.
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2.6 Symmetric regular covers of cubic graphs

Let X be an arc-transitive cubic graph, and let X̃ be an arc-transitive regular covering

graph of X, and consider Aut(X) and Aut(X̃), the automorphism groups of X and X̃,

respectively. Suppose A is a subgroup of Aut(X) such that A is arc-transitive on X, and

that A can be lifted to a subgroup Ã of automorphisms of X̃ that is arc-transitive on X̃.

We have the following well-known fact:

Lemma 2.6.1 If A is an s-arc-transitive group of automorphisms of the graph X, then

the action of Ã on X̃ is at least s-arc-transitive.

Let G be one of the seven universal groups G1, G
1
2 , G

2
2 , G3, G

1
4 , G

2
4 or G5 introduced in

Section 2.4, and let K, L be torsion-free normal subgroups of G such that L is a subgroup

of K, and G/K ∼= A and G/L ∼= Ã, with K/L being the covering group (voltage group)

of the regular covering projection of X by X̃. This situation is illustrated in Figure 2.3.

.

....................................................................................................................................................................................................................................................................................................................................

tL

tK

tG
G/K ∼= A G/L ∼= Ã

X̃ is a regular cover of X

K/L is the covering group

Figure 2.3: A pictorial description of regular covers

Classifying all the symmetric regular covering graphs of X, for which the subgroup A

lifts, is equivalent to finding all possibilities for a normal subgroup L of finite index in G

such that L is contained in K. The symmetric abelian regular covers are those for which

K/L is abelian.

Theoretically, we can find all symmetric abelian regular covers of X if we know the

structure of the abelianisation K/K ′ = K/[K,K], and especially the subgroups of K/K ′
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that are invariant under conjugation by G. Usually the action of G by conjugation on

K/K ′ can be given by matrices representing the effects of the generators of G.

To find all finite regular covers with abelian covering groups of exponent m, we may

consider the action of G by conjugation on the generators of K/K ′K(m), where K(m) is

the characteristic subgroup of K generated by the mth powers of all elements of K. The

problem then reduces to finding all possibilities for a subgroup L of finite index in K such

that L contains K ′K(m) and L is normal in G.

If m = pe11 p
e2
2 . . . pet

t is the prime-power factorisation of m (with pi distinct primes),

then the factor group K/L is a direct product of its Sylow subgroups, each of which

is of the form K/Qi where Qi is a G-invariant subgroup of K containing K ′K(m) with

index |K :Qi| dividing pei
i . It follows that we need only find the G-invariant subgroups of

prime-power index in K/K ′, in order to find all finite abelian regular covers.

The key to this step of our approach is to take m as a prime-power, say m = pe, and

then view the group K/K ′K(m) as being made up of e consecutive ‘layers’. For 0 ≤ j ≤ e

we define Kj = K ′K(pj), which is the subgroup generated by K ′ and the (pj)th powers of

all elements of K. This is a characteristic subgroup of K and therefore normal in G. The

quotients K0/K1, K1/K2, . . . , Ke−1/Ke are what we view as the layers of K/K ′K(m), from

the top down. If K has rank d, and is generated by w1, w2, · · · , wd, say, then each layer

Kj−1/Kj is an elementary abelian p-group of rank d, generated by the cosets Kjwi
pj−1

for

1 ≤ i ≤ d. These layers are illustrated in Figure 2.4.

Similarly, if L is any G-invariant subgroup of K containing K ′K(m) and having index

|K :L| a power of p, then we can define Lj = L ∩Kj for 0 ≤ j ≤ e, and view L as being

made up of the layers L0/L1, L1/L2, . . . , Le−1/Le, again from the top down. Each layer

Lj−1/Lj of L/K ′K(m) is a G-invariant subgroup of the corresponding layer Kj−1/Kj of

K. Since Kj−1/Kj is an elementary abelian p-group, possibilities for the layers Lj−1/Lj

are relatively easy to find, in the same way that covers with elementary abelian regular

covers are found.
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. . .

Ke−1/Ke

Figure 2.4: The layers of K

Here it is helpful to consider the character table of the group G/K, which gives the

degrees (and other details) of irreducible representations of G/K in characteristic 0. If

the prime p does not divide the order of the group G/K, then these are also the degrees

of the irreducible representations of G in characteristic p, and the other character values

are helpful for finding all possibilities. (This can also be achieved using tools in Magma

[3] for dealing with modules and submodules.) More details can be seen in [37].

Once we know the G-invariant subgroups of the top layer K0/K1, including expres-

sions for their generators in terms of the (images of the) generators wi of K/K ′, we

immediately have the same for other layers Kj−1/Kj for all j > 1. For example, if one

such subgroup of the top layer is generated by the cosets K1w1 and K1w2w3
−1, then each

subsequent layer Kj−1/Kj has a G-invariant subgroup generated by the cosets Kjw
pj−1

1

and Kjw
pj−1

2 (w3
pj−1

)−1, since for any integer q > 1, conjugation of powers w q
i of the wi by

generators of G is represented by the same matrices (which are induced by the conjugation

action of the generators of G on the K/K ′) as conjugation of the wi themselves.

What is more challenging is to find all possibilities for L by piecing together the

possibilities for its layers. This, however, can be done by considering what happens for

small values of e (and hence small values of pe = m). For example, the G-invariant

subgroups of the top ‘double-layer’ group K0/K2 (of exponent p2) tell us the possibilities

for every double-layer. Also inspection of the generating sets for the G-invariant subgroups
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can tell us possibilities for ‘triple-layers’, and so on.

Our main procedures for classifying symmetric abelian regular covering graphs of

symmetric cubic graphs can be summarized as follows:

a) Fix an arc-transitive group A of automorphisms of the base graph, and the universal

group G from which the action of A is determined;

b) Find a torsion-free normal subgroup K of G such that G/K ∼= A, and find a

presentation for K (using Reidemeister-Schreier theory) and abelianise K if it is not

abelian;

c) Find all the G-invariant subgroups L of finite index in K such that K/L has prime

exponent;

d) Use the layer technique to find out all G-invariant subgroups L of finite index in

K such that K/L is an abelian p-group (for some prime p);

e) Distinguish these subgroups up to isomorphism of the corresponding covering graphs.

After classifying all these covering graphs, another important question is to determine

the level of s-arc-transitivity of each covering graph (and in particular, the size of its

automorphism group). By Lemma 2.6.1, we know a lower bound for the largest s for

which the cover is s-arc-transitive. Then with the help of the known results in Section 2.4

and other techniques, we can find all the possibilities for s.

In particular, if the G-invariant subgroup L of the kernel K is also normal in some

larger universal group F (containing G as a subgroup of finite index), then F/L is a larger

group of automorphisms of the covering graph. The size of the automorphism group of

the covering graph can be found by determining the largest possibilities for F/L.

2.7 Regular maps

A map is a 2-cell embedding of a connected graph (or multigraph) into a closed surface

without boundary. The term ‘2-cell’ means that there are no edge-crossings, and each

component (or face) of the complement S \ X of the graph in the surface is simply
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connected — that is, homeomorphic to an open disk in R2. The map M is called orientable

or non-orientable according to whether the carrier surface is orientable or non-orientable,

and the genus and the Euler characteristic of the map M are defined as the genus and

the Euler characteristic of that surface. The topological dual of an orientable map M is

obtained from M by interchanging the roles of vertices and faces in the usual way, and is

denoted by M∗.

Any map M is composed of a vertex-set, an edge-set, and the set of its faces, denoted

by V = V (M), E = E(M) and F = F (M), respectively. The Euler characteristic χ of

M is given by the Euler-Poincaré formula χ = |V | − |E| + |F |, and then the genus g of

M is given by χ = 2− 2g when M is orientable, or χ = 2− g when M is non-orientable.

Associated also with any map M is a set of darts, or arcs, which are the incident

vertex-edge pairs (v, e) ∈ V × E; these can also be viewed as ordered pairs of adjacent

vertices when the underlying graph is simple. Each dart is associated with two blades,

which consist of the dart (v, e) and a chosen side along the edge e; in the non-degenerate

cases where every edge lies in two faces, these are the incident vertex-edge-face triples

(v, e, f) ∈ V × E × F .

An automorphism of a map M is any permutation of the edges of the underlying

graph that preserves incidence (and hence preserves the embedding), or equivalently, any

automorphism of the graph induced by a homeomorphism of the carrier surface to itself. It

is important to observe that by connectedness, every automorphism of a map is uniquely

determined by its effect on any blade.

The set of all automorphisms of a map M forms a group under composition, called

the automorphism group of a map, and denoted by Aut(M). If M is orientable, then

the subgroup of all orientation-preserving automorphisms has index 1 or 2 in Aut(M),

and is denoted by Auto(M), and sometimes also called the rotation group of M . If the

orientable map M admits an orientation-reversing automorphism (so that Auto(M) has

index 2 in Aut(M)), then M is said to be reflexible, and otherwise M is chiral . On the

other hand, if M is non-orientable, there is no such distinction.
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A map M is called orientably-regular if it is orientable and Auto(M) acts regularly on

the set of all darts of M . If such a map M is reflexible, then Aut(M) acts regularly on

the set of all blades of M . Similarly, a non-orientable map M is called regular if Aut(M)

acts regularly on the set of all blades of M . In general, a map is called regular if it is

either orientably-regular, or non-orientable and regular. Just to make it clear: regular

maps fall into three classes: maps that are orientably-regular and reflexible, maps that

are orientably-regular but chiral, and maps that are non-orientable and regular.

For any regular map M , the action of Aut(M) is transitive on the darts of M , and

hence on the vertices, on the edges, and on the faces of M . It follows that every face of a

regular map M has the same size, say m, and every vertex has the same valence, say k, and

then M is said to have type {m, k}. The Platonic solids give the most famous examples,

of types {3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube), {3, 5} (icosahedron) and

{5, 3} (dodecahedron), while every regular map on the torus has type {3, 6}, {4, 4} or

{6, 3}. Note that if the regular map M has type {m, k}, then its dual (obtained by

interchanging the roles of vertices and faces) has type {k,m}.

Now suppose M is a regular map of type {m, k}, let (v, e) be any dart of M , and

let f be a face incident with e. Then by transitivity, there exists an automorphism r

of M that preserves f and induces locally a single-step rotation about the centre of f ,

and this has order m. Similarly, there exists an automorphism s of M that fixes v and

induces a single-step rotation around v, and this has order k. Moreover, we can choose

each of r and s (either locally ‘clockwise’ or ‘anti-clockwise’) so that their product rs is

an automorphism of order 2 that preserves e and acts locally like a rotation about the

mid-point of e; in particular, r and s satisfy the relations rm = sk = (rs)2 = 1. By

connectedness, r and s generate a dart-transitive group of automorphisms of M , which

must be either Aut(M) itself, or Auto(M) in the case where M is orientable and both r

and s preserve orientation.

(The existence of such automorphisms is key to the definition of an alternative term

for regular map, namely rotary map, as coined by Steve Wilson. This has the advantage
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of allowing the term ‘regular’ to be reserved for those rotary maps M with the property

that Aut(M) acts regularly on blades, but recent usage has extended this term to cover

the orientably-regular but chiral maps as well.)

It follows from the above observations that Aut(M) or Auto(M) is a quotient of the

ordinary (2, k,m) triangle group

∆o(2, k,m) = 〈x, y | x2 = yk = (xy)m = 1 〉,

under an epimorphism taking x to rs and y to s−1. Note that the dual M∗ is also regular,

with the roles of r and s (and hence the roles of xy and y−1) interchanged.

If M admits also an (involutory) automorphism a which reverses the edge e but (unlike

rs) preserves each of the two blades associated with (v, e), then the action of Aut(M)

is transitive on blades, and so M is either reflexible or non-orientable. Also in this case

ra = r−1 and (rs)a = (rs)−1 = rs, and if we define b = ar and c = bs, then a, b and c

generate Aut(M) and satisfy the relations

a2 = b2 = c2 = (ab)m = (bc)k = (ac)2 = 1,

which are the defining relations for the full (or extended) triangle group ∆(2, k,m).

Note that the automorphism a may be considered geometrically as a reflection, about

an axis passing through the midpoints of the edge e and the face f . Similarly, the

automorphisms b and c may be considered as a reflection about an axis through v and

the midpoint of f (with rb = r−1 and sb = s−1), and a reflection about an axis through v

and the midpoint of e (with (rs)c = (rs)−1 = rs and sc = s−1).

Conversely, given any epimorphism ψ : ∆o → G from the ordinary (2, k,m) triangle

group ∆o = ∆o(2, k,m) onto a finite group G, in which the orders 2, k and m of the

generators x, y and xy are preserved, a map M can be constructed using right cosets

of the images of 〈y〉, 〈x〉 and 〈xy〉 as the vertices, edges and faces of M , respectively,

with incidence given by non-empty intersection of cosets. (For example, the ordered pair

(v, e) = (〈yψ〉, 〈xψ〉) is a dart of M , incident with the face f = 〈(xy)ψ〉.) Also the group

G acts naturally and transitively by right multiplication on each of V (M), E(M) and
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F (M), preserving incidence, and transitively on the darts of M . It follows that M is a

regular map of type {m, k}, with G = Auto(M) or Aut(M).

This map M admits also the automorphisms a, b and c (described above) if and only if

the epimorphism ψ extends to an epimorphism ψ̃ : ∆→ G̃ from the full (2, k,m) triangle

group ∆ = ∆(2, k,m) onto a group G̃ containing G as a subgroup of index 1 or 2. If G has

index 2 in G̃ then M is orientable and reflexible, while if G = G̃ then M is non-orientable,

and vice versa. In both cases, the kernel K = kerψ is normal in ∆. On the other hand,

if K = kerψ is not normal in ∆, then M is orientable but chiral, and the conjugate of K

by any element of ∆ \∆o is the kernel of the epimorphism corresponding to the ‘mirror

image’ of M .

In practice, we can tell whether or not an orientably-regular map M of type {m, k} is

reflexible, either by testing for an automorphism of Auto(M) that inverts the generating

pair (r, s) (or the generating pair (rs, s)), or by testing whether the kernel K of the

epimorphism ψ : ∆o(2, k,m) → Auto(M) is invariant under conjugacy by an element of

∆ \∆o.

From this point of view, the study of regular maps can be reduced to the study of

non-degenerate quotients of triangle groups.

As is well known (and shown in [23]), the simplicity of the underlying graphs can also

be reduced to some easy group theory. If 〈s〉 stabilises the vertex v, then 〈sr〉 stabilises

the neighbouring vertex vr, and their intersection stabilises both vertices. It follows

that the existence of multiple edges between v and its neighbour vrs is equivalent to the

intersection 〈s〉 ∩ 〈srs〉 being non-trivial, and since the latter is normalised by both s and

and the involution rs, it is normal in 〈s, rs〉 = 〈r, s〉 = Auto(M) or Aut(M).

Hence if M is an orientably-regular map, then M has simple underlying graph if and

only if no non-trivial subgroup of the vertex-stabiliser is normal in Auto(M).

Note that if Auto(M) is a non-abelian simple group, or ‘almost simple’ (or more

generally, if every minimal normal subgroup of Auto(M) is a non-abelian simple group),

then every cyclic subgroup must be core-free in Auto(M), and in that case, both M and
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M∗ have simple underlying graph (see [23] for further details). The genera of such maps,

however, are somewhat sparse, and so this observation will be of little use to us when we

construct families of maps with simple underlying graphs in Chapter 8.



Chapter 3

Symmetric abelian regular covers

of the complete graph K4

In 2002, Feng and Kwak [30] classified all the symmetric cyclic and elementary abelian

regular covers of the complete graph K4, by using the method of linear criteria for lifting

automorphisms, as introduced in [27]. In particular, they showed that all these covering

graphs are 2-arc-regular. The same method can be used to classify all the symmetric

homocyclic regular covers of K4, but for more general symmetric abelian regular covers,

this method is very difficult to apply.

In this Chapter, by using the new approach we introduced in Section 2.6, we determine

all of the symmetric abelian regular covering graphs of the complete graph K4. The

numbers of covers and the largest value of s for which each cover is s-arc-transitive are

also given.

3.1 Preliminaries

As we know, the complete graph K4 is the only symmetric cubic graph on four vertices.

AlsoK4 is 2-arc-transitive, and has type 21 (as described in Section 2.4). Its automorphism

group is the symmetric group S4 of order 24, and the only other arc-transitive group of

35
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automorphisms of K4 is the alternating group A4, of order 12, which acts regularly on the

arcs of K4.

Consider the finitely-presented group G1 = 〈h, a | h3 = a2 = 1 〉, and let N be the

unique normal subgroup of G1 of index 12, for which G1/N ∼= A4. Then N is also

normal in the group G 1
2 = 〈h, a, p | h3 = a2 = p2 = (hp)2 = (ap)2 = 1 〉, with quotient

G 1
2 /N

∼= S4. By Reidemeister-Schreier theory, or by use of the Rewrite command in

Magma, we find that the subgroup N is free of rank 3, on generators

w1 = (ha)3, w2 = (ah)3 and w3 = h−1(ah)3h.

The image of w1 by the conjugation action of h is equal to h−1w1h = (ah)3 = w2.

Similarly, easy calculations show that the generators h, a and p act by conjugation as

below:

h−1w1h = w2 a−1w1a = w2 p−1w1p = w−1
2

h−1w2h = w3 a−1w2a = w1 p−1w2p = w−1
1

h−1w3h = w1 a−1w3a = w−1
1 w−1

3 w−1
2 p−1w3p = w−1

3 .

Now take the quotient G 1
2 /N

′, which is an extension of the free abelian group N/N ′ ∼=
Z⊕Z⊕Z by the group G 1

2 /N
∼= S4, and replace the generators h, a, p and all wi by their

images in this group. Also let K denote the subgroup N/N ′, and let G be G1/N
′. Then,

in particular, G is an extension of Z3 by A4.

By the above observations, we see that the generators h, a and p induce linear trans-

formations of the free abelian group K ∼= Z3 as follows:

h 7→


0 1 0

0 0 1

1 0 0

 , a 7→


0 1 0

1 0 0

−1 −1 −1

 and p 7→


0 −1 0

−1 0 0

0 0 −1

 .

These matrices generate a group isomorphic to S4, with the first two generating a

subgroup isomorphic to A4. Note that the matrices of orders 3 and 2 representing h and

a have traces 0 and −1, respectively.
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3.2 Elementary abelian regular covers

In this section, we find all of the symmetric elementary abelian regular covers of K4 that

can be obtained by lifting the 1-arc-regular subgroup A4.

The character table of the group A4 is given below in Table 3.1. By inspecting traces

of the matrices representing h and a, we see that the character of the 3-dimensional rep-

resentation of A4 over Q associated with the above action of G = 〈h, a〉 on K is the

character χ4, which is irreducible. It follows that when we reduce by any prime k that

does not divide |A4| = 12, the corresponding action of A4 on K/K(k) ∼= Zk ⊕ Zk ⊕ Zk

is also irreducible, and hence the only non-trivial subgroup of K/K(k) that is normal in

G/K(k) is K/K(k) itself.

Element order 1 2 3 3

Class size 1 3 4 4

χ1 1 1 1 1

χ2 1 1 λ λ2

χ3 1 1 λ2 λ

χ4 3 −1 0 0

Table 3.1: The character table of group A4 where λ is a primitive cube root of 1

The same argument holds for each ‘layer’ Ki/Ki+1 = K(ki)/K(ki+1) of K, since this

layer is generated by the cosets of K(ki+1) containing wk
i

1 , wk
i

2 and wk
i

3 , and the effect of

conjugation by each of h and a on these generators is given by the same matrices as above.

Similarly, when k = 3 we find that the action of G on K/K(k) is irreducible, because

there are no subgroups of K/K(3) ∼= Z3 ⊕ Z3 ⊕ Z3 of order 3 or 9 that are normalized

by both h and a. This is an easy exercise, verifiable with the help of Magma. (Note

also that the mod 3 reductions of the characters χ2 and χ3 are both trivial.) Hence in

particular, the same holds for the action of G on each layer Ki/Ki+1.
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On the other hand, when k = 2 we find that the action of G on K/K(k) is reducible —

indeed the subgroup of K/K(2) of order 4 generated by the cosets K(2)w1w2 and K(2)w1w3

normalized by both h and a — but there is no subgroup of order 2 with that property.

In fact, because the rank of K is small, we can also prove these (and more) things

directly, as follows:

For any prime k, suppose L/K(k) is a non-trivial cyclic subgroup of K/K(k) that is

normalized by both h and a, and suppose L/K(k) is generated by the coset K(k)x where

x = wα1w
β
2w

γ
3 ∈ K. Then L contains xh = wγ1w

α
2w

β
3 , so (γ, α, β) ≡ λ(α, β, γ) mod k for

some λ ∈ Zk, and then since α ≡ λβ ≡ λ2γ ≡ λ3α mod k, each of α, β and γ must be

non-zero mod k, and λ3 ≡ 1 mod k. Next, L contains xa, and so contains wβ−γ1 wα−γ2 w−γ3

and hence also wγ−β1 wγ−α2 wγ3 , and then because γ 6≡ 0 mod k, it follows that γ ≡ α + β

mod k. Similarly, α ≡ β + γ and β ≡ α + γ mod k, and then adding these congruences

gives α + β ≡ α + β + 2γ mod k, so 2γ ≡ 0 mod k, which implies that k = 2. But

then λ = 1, in which case α ≡ β ≡ γ ≡ 1 mod k, and therefore γ 6≡ α + β mod k, a

contradiction. Hence no such cyclic subgroup exists.

On the other hand, let L/K(k) be a subgroup of K/K(k) isomorphic to Zk ⊕ Zk that

is normalized by both h and a. Then L must contain all elements of the form wσ1w
τ
2w

µ
3 ,

where (σ, τ, µ) lies in a 2-dimensional subspace of Zk⊕Zk⊕Zk (as a vector space over Zk).

The latter is the orthogonal complement of a unique 1-dimensional subspace, generated

say by (α, β, γ). Since L/K(k) is normalized by h, we find that every such (σ, τ, µ) is

orthogonal also to (γ, α, β) and (β, γ, α), and so as above, we find that α ≡ λβ ≡ λ2γ

mod k for some cube root λ of 1 in Zk. Similarly, because L/K(k) is normalized by a, we

find that for any such (σ, τ, µ), also (τ−µ, σ−µ,−µ) is orthogonal to (α, β, γ), and hence

so is (τ−µ, σ−µ,−µ) + (σ, τ, µ) = (σ+τ−µ, σ+τ−µ, 0), giving 0 ≡ (σ+τ−µ)(α + β) =

(σ+τ−µ)(1 + λ)β mod k.

Now if λ 6≡ −1 mod k, then σ+τ −µ ≡ 0 mod k for all such (σ, τ, µ), in which case we

can take (α, β, γ) ≡ (1, 1,−1) mod k, but that is impossible since we need α ≡ λβ ≡ λ2γ

mod k. Thus λ ≡ −1 mod k. Moreover, since −1 ≡ λ3 ≡ 1 mod k, again we get k = 2,
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and λ = 1 and α ≡ β ≡ γ ≡ 1 mod k. Hence there is only one subgroup of rank 2 in

K/K(2), namely the subgroup generated by K(2)w1w2 and K(2)w1w3, and there are no

subgroups of rank 2 in K/K(k) when k is an odd prime.

Now we have all the elementary abelian regular covering groups. Note that the above

arguments hold also for each layer Ki/Ki+1 of K.

3.3 Abelian regular covers

In this section, we classify all the abelian covering groups by using our ‘layer’ technique

introduced in Section 2.6.

Suppose m = ke is any prime-power greater than 1, and suppose L/K(m) is any non-

trivial normal subgroup of G/K(m) contained in K/K(m).

If k is odd, then by the arguments in previous section, we know that each layer

Li/Li+1 = (L ∩ Ki)/(L ∩ Ki+1) of L (for 1 ≤ i ≤ e) is either trivial or isomorphic to

Zk ⊕Zk ⊕Zk. Let t be the smallest non-negative integer for which Lt/Lt+1 is non-trivial.

Then Lt must contain the cosets of K(kt+1) represented by each of wk
t

1 , w
kt

2 and wk
t

3 , and

hence also Lj must contain the cosets represented by wk
j

1 , w
kj

2 and wk
j

3 , for t ≤ j < e, and

it follows by an easy induction that L/K(m) ∼= Zd ⊕ Zd ⊕ Zd, where d = ke−t.

On the other hand, if k = 2, then it is possible that the first non-trivial layer Lt/Lt+1

of L is isomorphic to Z2⊕Z2 (rather than Z2⊕Z2⊕Z2). To explain what happens in that

case, we will assume that t = 0, but note that the general case (where t may be greater

than 0) is similar.

In the case t = 0, the group L/K(k) is generated by the cosets K(k)w1w2 and K(k)w1w3,

and so Lmust contain the elements x = w1w
β
2w

γ
3 and y = w1w

τ
2w

µ
3 for some odd integers β

and µ and even integers γ and τ . Then since L is normalized by h and a, it contains each of

xh, xa and xha, and therefore contains wγ1w2w
β
3 , wβ−γ1 w1−γ

2 w−γ3 and w1−β
1 wγ−β2 w−β3 . Hence

in particular, L contains the product xxhxaxha = w1+γ+β−γ+1−β
1 wβ+1+1−γ+γ−β

2 = w2
1w

2
2.

Conjugation by h then shows that L contains w2
1w

2
3 and w2

2w
2
3, and by multiplying w2

1w
2
2
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by the inverse of one of these two, we find that L contains also w2
2w
−2
3 and w2

1w
−2
3 ,

and hence L contains each of w4
1, w4

2 and w4
3. Thus L/K(m) ∼= Zm ⊕ Zm ⊕ Zm/2 or

Zm ⊕ Zm ⊕ Zm/4. In particular, if L contains one (and hence all) of w2
1, w2

2 and w2
3, then

L/K(m) ∼= Zm ⊕ Zm ⊕ Zm/2 and is generated by the cosets of K(m) represented by w1w2,

w1w3 and w2
3, while otherwise L/K(m) ∼= Zm ⊕ Zm ⊕ Zm/4 and is generated by the cosets

of K(m) represented by w1w
−1
2 , w1w

−1
3 and w2

1w
2
2.

In the general case, if L contains one (and hence all) of w2t+1

1 , w2t+1

2 and w2t+1

3 , then

L/K(m) ∼= Zd ⊕ Zd ⊕ Zd/2 where d = 2e−t, and L/K(m) is generated by the cosets of

K(m) represented by w2t

1 w
2t

2 , w2t

1 w
2t

3 and w2t+1

3 ; otherwise L/K(m) ∼= Zd ⊕ Zd ⊕ Zd/4 and

is generated by the cosets of K(m) represented by w2t

1 w
−2t

2 , w2t

1 w
−2t

3 and w2t+1

1 w2t+1

2 . The

covering group K/L is then isomorphic to Z2t⊕Z2t⊕Z2t+1 or Z2t⊕Z2t⊕Z2t+2 , respectively.

These two possibilities are illustrated in Figure 3.1 below, for the case t = 3.
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Figure 3.1: The two possibilities for non-homocyclic abelian covers of 2-power exponent

In summary, Table 3.2 provides all possibilities for a normal subgroup L of G con-

tained with finite prime-power index in K.

Index |K :L| Generating set for L Quotient K/L

`3 = k3t, any prime k {w`1, w`2, w`3} Z` ⊕ Z` ⊕ Z`
2`3 = 23t+1 {w`1w`2, w`1w`3, w2`

3 } Z` ⊕ Z` ⊕ Z2`

4`3 = 23t+2 {w`1w−`2 , w`1w
−`
3 , w2`

1 w
2`
2 } Z` ⊕ Z` ⊕ Z4`

Table 3.2: Possibilities for 〈h, a〉-invariant subgroup L of K when 〈h, a〉/K ∼= A4
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3.4 Automorphism groups of the regular covers

In this section, after classifying all the symmetric abelian regular covers that can be

obtained by lifting the 1-arc-regular group of automorphisms A4, we give the largest value

of s for all s-arc-transitive covering graphs by determine the size of their automorphism

groups.

It is easy to see that in all of the cases described in Table 3.2, the subgroup L is

normal not only in G = G1/N
′ but also in the larger group G 1

2 /N
′, since conjugation by

the additional generator p has the following effects on the relevant generators:

wi1w
i
2 7→ w−i2 w−i1 = (wi1w

i
2)
−1, wi1w

−i
2 7→ w−i2 wi1 = wi1w

−i
2 ,

wi1w
i
3 7→ w−i2 w−i3 = (wi1w

i
2)(w

i
1w

i
3)
−1, wi1w

−i
3 7→ w−i2 wi3 = (wi1w

−i
2 )(wi1w

−i
3 )−1,

wj3 7→ (wj3)
−1, wj1w

j
2 7→ w−j2 w−j1 = (wj1w

j
2)
−1.

Hence in particular, each of the resulting covers is at least 2-arc-transitive.

In fact, in each case the subgroup K/L is characteristic in the quotient G 1
2 /L. This is

clear for k /∈ {2, 3} by Sylow theory, while for k = 3 it is not difficult to see that K/L is

the largest abelian normal 3-subgroup of G 1
2 /L, and for k = 2, there is no other abelian

normal 2-subgroup of G 1
2 /L that is isomorphic to K/L (even when |K/L| is small). It

follows that each L is not G3-invariant, for if it were, then G 1
2 /L would be invariant under

the outer automorphism of G 1
2 that takes h, a and p to h, ap and p (respectively), but

then that automorphism would have to preserve the characteristic subgroup K/L and

hence preserve K, which we know is not the case (since K4 is 2-arc-regular). Hence none

of these covers can be 3-arc-regular.

Finally, by Corollary 2.4.2 (or [26, Theorem 3]), none of these covers can be 4-arc- or

5-arc-transitive, since each admits a 2-arc-regular group of automorphisms.
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3.5 Summary

We have the following:

Theorem 3.5.1 Let m = ke be any power of a prime k with e > 0. Then the arc-

transitive abelian regular covers of the complete graph K4 with abelian covering groups of

exponent m are as follows:

(a) If m is odd, there is just one such cover, namely a 2-arc-regular cover of type 21

with covering group Zm ⊕ Zm ⊕ Zm.

(b) If m = 2e for some e ≥ 2, then there are exactly three such covers, which are 2-arc-

regular covers of type 21 with covering groups Zm/4⊕Zm/4⊕Zm, Zm/2⊕Zm/2⊕Zm

and Zm ⊕ Zm ⊕ Zm.

(c) If m = 2 then there are exactly two such covers, which are 2-arc-regular covers of

type 21 with covering groups Z2 and Z2 ⊕ Z2 ⊕ Z2.

Hence in particular, every arc-transitive abelian regular cover of K4 is 2-arc-transitive.



Chapter 4

Symmetric abelian regular covers

of the complete bipartite graph

K3,3

In 2000, Feng and Kwak [30, 28] classified all the symmetric cyclic and elementary abelian

regular covers of the complete bipartite graph K3,3, by using the method of linear criteria

for lifting automorphisms, as introduced in [27]. As for K4, the same method can be

used to classify all the symmetric homocyclic regular covers of K3,3, but for more general

symmetric abelian regular covers, this method is very difficult to apply.

In this Chapter, we use our new approach to determine all the symmetric abelian

regular covering graphs of the complete bipartite graph K3,3. The numbers of covers and

the largest value of s for which each cover is s-arc-transitive are also given.

4.1 Preliminaries

We know that the complete bipartite graph K3,3 is the only symmetric cubic graph of

order 6. Also K3,3 is 3-arc-transitive, and is of the type 3 described in Section 2.4. Its

automorphism group is the wreath product S3 o S2 of the symmetric group S3 by the

43
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symmetric group S2, of order 72. This contains unique arc-transitive subgroups of type

1, 21 and 22, having orders 18, 36 and 36 respectively (see [22, §4.5]). In particular, the

minimal groups A3 o S2 (of order 18) and (A3 × A3) o C4 (of order 36) act regularly on

the arcs and 2-arcs of K3,3, with type 1 and 22 respectively.

We will investigate abelian regular covers of K3,3 using the former subgroup, and then

later consider what happens with the latter subgroup.

Take G3 = 〈h, a, p, q | h3 = a2 = p2 = q2 = [p, q] = [h, p] = (hq)2 = apaq = 1 〉, take

G1 = 〈h, a〉, and let N be the unique normal subgroup of index 72 in G3 (and index 18

in G1), with quotients G3/N ∼= S3 o S2 and G1/N ∼= A3 o S2. Note that the 2-arc-regular

group generated by the cosets Nh and Nap of N in the quotient G3/N is isomorphic to

(A3 × A3) o C4.

Using Reidemeister-Schreier theory or the Rewrite command in Magma, we find that

the subgroup N is free of rank 4, on generators

w1 = hahah−1ah−1a, w2 = h−1ahahah−1a,

w3 = hah−1ah−1aha, w4 = h−1ah−1ahaha.

Easy calculations show that the generators h, a, p and q act by conjugation as below:

h−1w1h = w−1
2 a−1w1a = w−1

1 p−1w1p = w3 q−1w1q = w2

h−1w2h = w1w
−1
2 a−1w2a = w−1

3 p−1w2p = w4 q−1w2q = w1

h−1w3h = w−1
4 a−1w3a = w−1

2 p−1w3p = w1 q−1w3q = w4

h−1w4h = w3w
−1
4 a−1w4a = w−1

4 p−1w4p = w2 q−1w4q = w3.

By the above observations, the elements h, a, ap, p and q induce linear transformations

of the free abelian group K ∼= Z4 as follows, giving a 4-dimensional representation of G3:

h 7→


0 −1 0 0

1 −1 0 0

0 0 0 −1

0 0 1 −1

 , a 7→


−1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 −1

 , ap 7→


0 0 −1 0

−1 0 0 0

0 0 0 −1

0 −1 0 0

 ,
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p 7→


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 and q 7→


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

These matrices generate a group isomorphic to S3 o S2, with the first two matrices

generating a subgroup isomorphic to A3 o S2, and the first and the third generating a

subgroup isomorphic to (A3 × A3) o C4. Note that the traces of the five matrices are

−2,−2, 0, 0 and 0, respectively.

4.2 Lifting the automorphism subgroup A3 o S2

In this section, we find all of the symmetric abelian regular covers of K3,3 that can be

obtained by lifting the 1-arc-regular subgroup A3 o S2.

4.2.1 Abelian regular covers

First, take the quotient G3/N
′, which is an extension of the free abelian group N/N ′ ∼= Z4

by the group G3/N ∼= S3 oS2, and replace the generators h, a, p, q and all wi by their images

in G3/N
′. Also let K denote the subgroup N/N ′, and let G = G1/N

′, so that G is an

extension of K by G/K ∼= A3 o S2, where K is free abelian of rank 4 with generators wi

for 1 ≤ i ≤ 4.

Note that the matrices of orders 3 and 2 representing h and a both have trace −2,

while the matrices of orders 6, 3 and 3 representing ha, [h, a] and (ha)2 (which is central

in the subgroup generated by matrices representing h and a) all have trace 1.

Next, the character table of the group A3 oS2 is as in Table 4.1. By inspecting traces of

the above matrices, we see that the character of the 4-dimensional representation of A3 oS2

over Q associated with the above action of G = 〈h, a〉 on K is the character χ3 +χ4 +χ7,

which is reducible to the sum of χ3 + χ4 and χ7, which are characters of two irreducible
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Element order 1 2 3 3 3 3 3 6 6

Class size 1 3 1 1 2 2 2 3 3

χ1 1 1 1 1 1 1 1 1 1

χ2 1 −1 1 1 1 1 1 −1 −1

χ3 1 −1 λ λ2 1 λ λ2 −λ −λ2

χ4 1 −1 λ2 λ 1 λ2 λ −λ2 −λ

χ5 1 1 λ λ2 1 λ λ2 λ λ2

χ6 1 1 λ2 λ 1 λ2 λ λ2 λ

χ7 2 0 2 2 −1 −1 −1 0 0

χ8 2 0 2λ 2λ −1 −λ −λ2 0 0

χ9 2 0 2λ2 2λ2 −1 −λ2 −λ 0 0

Table 4.1: The character table of the group A3 o S2 where λ is a primitive cube root of 1

2-dimensional representations over the rational field Q.

It follows that for every prime k 6∈ {2, 3}, the group K/K(k) ∼= (Zk)
4 is the direct sum

of two G-invariant subgroups of rank 2, and if Zk contains a non-trivial cube root of 1,

then one of these is the direct sum of two G-invariant cyclic subgroups and the other is

irreducible, while otherwise both of them are irreducible.

In fact, the rank 2 subgroup of K generated by x = w1w
−1
3 w4 and y = w2w

−1
3 is

normal in G, with xh = y−1, yh = xy−1, xa = x−1y and ya = y−1. Similarly, the rank

2 subgroup generated by u = w1w
−1
4 and v = w2w3w

−1
4 is normal in G, with uh = v−1,

vh = uv−1, ua = u−1 and va = v−1. In the quotient G/K(k), the image of the rank 2

subgroup 〈x, y〉 has no non-trivial G-invariant cyclic subgroup, and hence is irreducible.

If k ≡ 2 mod 3, then the image of 〈u, v〉 is also irreducible, while if k ≡ 1 mod 3 and λ is

a primitive cube root of 1 mod k, then the image of 〈u, v〉 is the direct sum of G-invariant

subgroups generated by the images of each of zλ = w1w
λ
2w

λ
3w

λ2

4 and zλ2 = w1w
λ2

2 w
λ2

3 w
λ
4 ,

while if k ≡ 2 mod 3 then it is irreducible.
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For k = 3, the group K/K(k) still has two G-invariant subgroups of rank 2, one

generated by the images of x = w1w
−1
3 w4 and y = w2w

−1
3 and the other generated by the

images of u = w1w
−1
4 and v = w2w3w

−1
4 ; but in this case they have non-trivial intersection,

namely the cyclic (and G-invariant) subgroup generated by K(k)w1w2w3w4, which equals

both K(k)xy and K(k)uv. In fact the only non-trivial proper G-invariant subgroups of

K/K(3) are these two subgroups of rank 2, their intersection (of rank 1), and the rank 3

subgroup that they generate together.

For k = 2, the group K/K(k) is again the direct sum of two G-invariant subgroups of

rank 2, just as in the case for any larger prime k ≡ 2 mod 3.

The above observations were made for the ‘top’ layer K0/K1 = K/K(k) of K, and give

all the elementary abelian regular covers. But also the analogous observations hold for

each other layer Ki/Ki+1 of K (with i ≥ 1).

So now suppose m = ke is any prime-power greater than 1, and suppose L/K(m) is

any non-trivial normal subgroup of G/K(m) contained in K/K(m).

If k ≡ 2 mod 3, then each layer Li/Li+1 of L is either trivial or isomorphic to Zk ⊕Zk

or Zk⊕Zk⊕Zk⊕Zk. It then follows from the above observations that there exist divisors

c and d of m = ke such that L/K(m) ∼= Zc ⊕ Zc ⊕ Zd ⊕ Zd, with L being generated by

(w1w
−1
4 )m/c, (w2w3w

−1
4 )m/c, (w1w

−1
3 w4)

m/d and (w2w
−1
3 )m/d.

On the other hand, if k ≡ 1 mod 3, and λ is a primitive cube root of 1 mod k, then

there exist divisors b, c and d of m = ke such that L/K(m) ∼= Zb ⊕ Zc ⊕ Zd ⊕ Zd, with L

generated by (w1w
λ
2w

λ
3w

λ2

4 )m/b, (w1w
λ2

2 w
λ2

3 w
λ
4 )m/c, (w1w

−1
3 w4)

m/d and (w2w
−1
3 )m/d.

The case k = 3 is not quite so straightforward. In this case, each layer can have rank 0,

1, 2, 3 or 4, depending on the layers above it. To see exactly what happens, it is helpful to

consider the case m = 32 = 9. For notational convenience, let x = w1w
−1
3 w4, y = w2w

−1
3 ,

u = w1w
−1
4 , v = w2w3w

−1
4 and z = w1w2w3w4, and let g denote the coset K(9)g, when

g ∈ K. Then an easy exercise (using Magma if necessary) shows that K/K(9) contains

exactly 24 subgroups that are normal in G/K(9), and these may be summarised as follows:

• the group K/K(9) ∼= Z9 ⊕ Z9 ⊕ Z9 ⊕ Z9 itself, generated by all the wi ;
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• one subgroup isomorphic to Z9 ⊕ Z9 ⊕ Z9 ⊕ Z3, generated by x, y, u (or v) and w4
3;

• two subgroups isomorphic to Z9 ⊕ Z9 ⊕ Z3 ⊕ Z3, one generated by x, y and all wi
3,

and the other by u, v and all wi
3;

• one subgroup isomorphic to Z9 ⊕ Z3 ⊕ Z3 ⊕ Z3, generated by z and all wi
3;

• four subgroups isomorphic to Z9 ⊕ Z9 ⊕ Z3, generated by {x, y, u3}, or {u, v, y3},
or {uw1

3, v w2
3, y3}, or {uw2

3, v w1
3, y3};

• three subgroups isomorphic to Z9 ⊕ Z3 ⊕ Z3, generated by x3 and y3 plus one of

z, z w4
3 or z w4

6, respectively;

• two subgroups isomorphic to Z9 ⊕ Z9, generated by {x, y} and {u, v};
• four subgroups isomorphic to Z9 ⊕ Z3, generated by {z w3

6, y3}, {z w4
3, y3},

{z w3
3w4

6, y3} and {z w4
6, u3};

• six G-invariant subgroups of exponent 1 or 3 lying in the second layer K(3)/K(9),

isomorphic to Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3, Z3 ⊕ Z3 ⊕ Z3, Z3 ⊕ Z3, Z3 ⊕ Z3, Z3 and Z1.

Note that if we let T0, T1, T2, T3, T4 and T5 denote the six possibilities for a G-invariant

subgroup of K/K(3) (of ranks 0, 1, 2, 2, 3 and 4 respectively), with T2 generated by the

images of x and y, and T3 generated by the images of u and v, then we can represent each

of the above subgroup types as a pair (Ti, Tj), where Ti indicates the first layer L0/L1 of

the subgroup L, and Tj denotes the second layer L1/L2. Then in order, the pairs that

occur are as follows:

• (T5, T5) once, • (T4, T5) once, • (T2, T5) and (T3, T5) once each, • (T1, T5) once,

• (T2, T4) once and (T3, T4) three times, • (T1, T4) three times,

• (T2, T2) and (T3, T3) once each, • (T1, T2) three times and (T1, T3) once,

• (T0, T5), (T0, T4), (T0, T3), (T0, T2), (T0, T1) and (T0, T0), once each.

The same argument shows that each ‘double-layer’ section Ki/Ki+2 of K has exactly

24 G-invariant subgroups, analogous to those in the summary lists above.

As a consequence of these observations, we can draw three important conclusions.

First, for m = 3e the only G-invariant cyclic subgroups of K/K(m) have orders 1

and 3, because there is no subgroup in the above list isomorphic to Z9. In fact, if any
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layer Li/Li+1 of a G-invariant subgroup L of K is non-trivial, then it contains the coset

Li+1(w1w2w3w4)
3i

, and so contains its image under conjugation by h, namely the coset

Li+1(w1w
−2
2 w3w

−2
4 )3i

, and hence contains also Li+1(w2w4)
3i+1

, in which case the layer

Li+1/Li+2 has rank 2 or more. In other words, if one layer is T1, then the next must be

T2, T3, T4 or T5.

Second, the only G-invariant proper subgroup L of K with cyclic quotient K/L of

3-power order is the subgroup generated by x, y, u and w4
3, with quotient K/L ∼= C3.

Hence if the top layer L0/L1 of a G-invariant subgroup L of K is T4 (of rank 3), then the

next layer L1/L2 is T5 (of rank 4). Furthermore, the same argument applied to deeper

layers shows that if any layer Li/Li+1 of a G-invariant subgroup L of K is T4 (of rank 3),

then the next layer Li+1/Li+2 must be T5 (of rank 4).

Third, if any layer Li/Li+1 of a G-invariant subgroup L of K has rank 2, then the

next layer Li+1/Li+2 can have rank 2, 3 or 4 (and if it has rank 3, then the subsequent

layer Li+2/Li+3 must have rank 4). In fact, the possible pairs for two successive layers in

this case are (T2, T2), (T2, T4), (T2, T5), (T3, T3), (T3, T4) and (T3, T5), and then the possi-

ble triples for three successive layers are (T2, T2, T2), (T2, T2, T4), (T2, T2, T5), (T2, T4, T5),

(T2, T5, T5), (T3, T3, T3), (T3, T3, T4), (T3, T3, T5), (T3, T4, T5) and (T3, T5, T5).

We can now put these observations together to find all possibilities for a normal

subgroup L of G = 〈h, a〉 contained in K with index |K :L| being a power m = ke of a

prime k.

When k = 3, the layers of any such L must consist of (say) e0 copies of T0 (where

e0 ≥ 0), followed by e1 copies of T1 (where e1 = 0 or 1), followed by e2 copies of either T2

or T3, followed by e3 copies of T4 (where e3 = 0 or 1), followed by e4 copies of T5 (where

e4 ≥ 0), with e0 + e1 + e2 + e3 + e4 = e. Moreover, any such combination determines

a unique L, except in the cases where a pair of successive layers is of the form (T1, T2),

(T1, T4) or (T3, T4), where there are exactly three such L.

All the possibilities for L are listed in the summary Table 4.2.
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Index |K :L| Generating set for L Quotient K/L

d4 = k4t, for any k {wd1, wd2, wd3, wd4} Zd ⊕ Zd ⊕ Zd ⊕ Zd
c2d2 = k2sk2t, with s < t, {uc, vc, xd, yd} Zc ⊕ Zc ⊕ Zd ⊕ Zd

for any k 6= 3 or {xc, yc, ud, vd}

bcd2 = krksk2t, with r < s, {z b
λ , z

c
λ2 , xd, yd} Zb ⊕ Zc ⊕ Zd ⊕ Zd

for any k ≡ 1 mod 3 or {z b
λ2 , z c

λ , x
d, yd}

3d4 = 34t+1 {xd, yd, ud, w3d
4 } Zd ⊕ Zd ⊕ Zd ⊕ Z3d

27d4 = 34t+3 {zd, w3d
2 , w

3d
3 , w

3d
4 } Zd ⊕ Z3d ⊕ Z3d ⊕ Z3d

81d4 = 34t+3 {zd, y3d, u3d, w9d
4 }, Zd ⊕ Z3d ⊕ Z3d ⊕ Z9d

or {zdw3d
4 , y

3d, u3d, w9d
4 }

or {zdw−3d
4 , y3d, u3d, w9d

4 }

c2d2 = 32s32t, with s < t {xc, yc, w d
3 , w

d
4 } Zc ⊕ Zc ⊕ Zd ⊕ Zd

or {uc, vc, w d
3 , w

d
4 }

3c2d2 = 32s+132t, {zcw−3c
4 , u3c, yd, wd4} Zc ⊕ Z3c ⊕ Zd ⊕ Zd

with s+ 1 < t or {zcw−3c
3 , y3c, ud, wd4}

or {zcw
d
3
−3c

3 w
d
3
4 , y

3c, ud, wd4}

or {zcw−
d
3
−3c

3 w
− d

3
4 , y3c, ud, wd4}

3c2d2 = 32s32t+1, {xc, yc, ud, w3d
4 } Zc ⊕ Zc ⊕ Zd ⊕ Z3d

with s+ 1 < t or {uc, vc, yd, w3d
4 }

or {ucwd1, vcwd2, yd, w3d
4 }

or {ucwd2, vcwd1, yd, w3d
4 }

9c2d2 = 32s+132t+1, {zcw−3c
3 , y3c, ud, w3d

4 } Zc ⊕ Z3c ⊕ Zd ⊕ Z3d

with s+ 2 < t or {zcwd−3c
3 , y3c, ud, w3d

4 }
or {zcw−d−3c

3 , y3c, ud, w3d
4 }

or {zcw−3c
4 , u3c, yd, w3d

4 }
or {zcwd−3c

4 , u3c, yd, w3d
4 }

or {zcw−d−3c
4 , u3c, yd, w3d

4 }

Table 4.2: Possibilities for 〈h, a〉-invariant subgroup L of K when 〈h, a〉/K ∼= A3 o S2
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4.2.2 Automorphism groups of the regular covers

To determine the size of the automorphism group of the covering graph, we consider which

of the G-invariant subgroups of K/K(m) are normalized by the additional generators p, q

and pq of the larger groups G 1
2 , G 2

2 and G3.

Note that conjugation by pq (which lies in G 1
2 /N but not G1/N) takes

x = w1w
−1
3 w4 7→ w4w

−1
2 w1 = xy−1, y = w2w

−1
3 7→ w3w

−1
2 = y−1,

u = w1w
−1
4 7→ w4w

−1
1 = u−1, v = w2w3w

−1
4 7→ w3w2w

−1
1 = u−1v,

while if λ is a cube root of 1 in Zk, then also conjugation by pq takes

zλ = w1w
λ
2w

λ
3w

λ2

4 7→ w4w
λ
3w

λ
2w

λ2

1 = (w1w
λ2

2 w
λ2

3 w
λ
4 )λ

2
= z λ

2

λ2 .

It follows that in each layer of K/K(m), the G1-invariant subgroups of rank 2 that

we encountered above are invariant under conjugation by pq, while those of rank 1 are

not, except when k = 3. Hence in particular, for k 6= 3, every G1-invariant subgroup of

K/K(m) for which each layer has rank 0, 2 or 4 is G 1
2 -invariant, but those for which some

layer has rank 1 or 3 are not. In other words, those in rows 1 and 2 of the Table 4.2 are

G 1
2 -invariant, while those in row 3 are not.

In the exceptional case (k = 3), again some more careful attention is needed, but in

fact it is easy to check that all G1-invariant subgroups of K/K(m) are G 1
2 -invariant apart

from the 3rd and 4th subgroups in each of rows 8 and 9 of Table 4.2.

Similarly, conjugation by p takes

x = w1w
−1
3 w4 7→ w3w

−1
1 w2 = u−1v, y = w2w

−1
3 7→ w4w

−1
1 = u−1,

u = w1w
−1
4 7→ w3w

−1
2 = y−1, v = w2w3w

−1
4 7→ w4w1w

−1
2 = xy−1,

and hence interchanges the two rank 2 subgroups 〈x, y〉 and 〈u, v〉 of K.

It follows that when k 6= 3, the only G3-invariant subgroups of K/K(m) are the homo-

cyclic subgroups Zd⊕Zd⊕Zd⊕Zd (for d dividing m). When k = 3, the only G 1
2 -invariant

subgroups of K/K(m) that are also G3-invariant are those in rows 1, 4 and 5 and the
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first of the subgroups in row 6 of Table 4.2; in all other cases, conjugation by p takes the

subgroup to another of the G 1
2 -invariant subgroups from the same row.

By Corollary 2.4.2 (or [26, Theorem 3]), none of the covers obtained from the subgroups

that are G 1
2 - or G3-invariant can be 4-arc- or 5-arc-transitive, since each admits a 2-arc-

or 3-arc-regular group of automorphisms. Similarly, if the subgroup L is G1-invariant

but not G 1
2 -invariant, then the cover admits a 1-arc-regular group of automorphisms, and

cannot be 3-arc-regular by Proposition 2.4.4 (or [26, Proposition 26], or [22, Proposition

2.3]).

Next, suppose the subgroup L is G1-invariant but not G 1
2 -invariant, and the cover

is 4-arc-transitive. In that case, the cover has both a 1-arc-regular and a 4-arc-regular

group of automorphisms, and so by Proposition 2.4.5 (or [26, Proposition 29], or [22,

Proposition 3.2]), the cover must be a regular cover of the Heawood graph. Hence the

quotient G1/L must have a normal subgroup J/L of index 336/8 = 42 in G1/L, with

G1/J ∼= (G1/L)/(J/L) isomorphic to an extension of C7 by C6, and J normal in the larger

group G 1
4 . In particular, |G1/L| is divisible by 7, and then since |G1/K| = |A3 o S2| = 18,

we find that |K| is divisible by 7, so m = |K/L| = 7e for some e.

Now let H = (G1)
′, the derived group of G1, which is the unique normal subgroup of

index 6 in G1 for which the corresponding quotient is cyclic of order 6. Then H contains

both J and K, since both G1/K ∼= A3 o S2 and G1/J ∼= C7 o C6 have a cyclic quotient

of order 6. Moreover, H = JK since J is maximal in H and K 6⊆ J , and so J ∩K has

index |JK/K| = |H/K| = 3 in J and index |JK/J | = |H/J | = 7 in K. It follows that

(J ∩ K)/L has order |K/L|/7 = m/7 = 7e−1, and index 3 in J/L, and is therefore a

normal Sylow 7-subgroup of J/L.

In particular, (J ∩ K)/L is characteristic in J/L, and therefore normal in G 1
4 /L.

Factoring it out gives a quotient G 1
4 /(J ∩ K) ∼= (G 1

4 /L)/((J ∩ K)/L) of G 1
4 of order

(8 · 18m)/(m/7) = 1008, which is then a 4-arc-transitive group of automorphisms of a

cubic graph of order 1008/24 = 42. (In fact this will be a 3-fold cover of the Heawood

graph.) There is, however, only one arc-transitive cubic graph of order 42, namely the
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graph F042 listed in the appendix of [22], but that graph is 1-arc-regular. Hence this

possibility can be eliminated.

Similarly, if L is G1-invariant but not G 1
2 -invariant and the cover is 5-arc-transitive,

then by Proposition 2.4.5 (or [26, Proposition 30], or [22, Proposition 3.4]), the cover

is a regular cover of the Biggs-Conway graph. In particular, its 1-arc-regular group of

automorphisms must have PSL(2, 7) as a composition factor, and hence is insoluble. But

on the other hand, G1/L is a normal extension of an abelian group by A3 o S2 and is

therefore soluble, so this possibility can also be eliminated.

Thus all of the regular covers obtained above are 1-arc-, 2-arc- or 3-arc-regular.

Next, we determine isomorphisms between the covering graphs that arise from the

G1-invariant subgroups in the Table 4.2. When the subgroup is G3-invariant, the regular

cover is 3-arc-regular, and is then unique up to isomorphism. When the subgroup is G 1
2 -

invariant but not G3-invariant, the regular cover is 2-arc-regular of type 21, but isomorphic

to the regular cover that arises from (exactly) one other subgroup in the same row of the

table. Similarly, when the subgroup is G1-invariant but not G 1
2 -invariant, the regular

cover is 1-arc-regular, and isomorphic to the regular cover that arises from (exactly) one

other subgroup in the same row of the table.

4.3 Lifting the automorphism subgroup (A3×A3)oC4

In the previous section we determined all symmetric abelian regular covers of K3,3 via

its 1-arc-regular group of automorphisms, A3 o S2. To complete the analysis, we consider

what happens with the other minimal arc-transitive group of automorphisms, which is

the 2-arc-regular group generated by the cosets Nh and Nap of N in the quotient G3/N ,

and isomorphic to the automorphism subgroup (A3 × A3) o C4.

In this case, we work inside the quotient G 2
2 /N

′, using the linear transformations of

K induced by h and ap. The character table of group (A3 × A3) o C4 is as in Table 4.3.

Since the trace of the matrix induced by h is −2, it is immediately obvious that the
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Element order 1 2 3 3 4 4

Class size 1 9 4 4 9 9

ψ1 1 1 1 1 1 1

ψ2 1 1 1 1 −1 −1

ψ3 1 −1 1 1 ξ −ξ

ψ4 1 −1 1 1 −ξ ξ

ψ5 4 0 −2 1 0 0

ψ6 4 0 1 −2 0 0

Table 4.3: The character table of the group (A3×A3) oC4 where ξ is a primitive 4th root of 1

character of the given representation is ψ5 , which is irreducible over Q. It follows that for

every prime k /∈ {2, 3}, the group K/K(k) ∼= (Zk)
4 has no non-trivial proper G 2

2 -invariant

subgroup. The same holds also for k = 2, since the mod 2 reductions of each of the

characters ψ1 to ψ4 are all trivial.

Hence for any prime k 6= 3, if L is a G 2
2 -invariant subgroup of K with index |K : L|

a power of k, then every layer of L has rank 0 or 4, and so |K : L| = d4 and K/L ∼=
Zd ⊕ Zd ⊕ Zd ⊕ Zd for some d. Every such subgroup L, however, is also preserved by

conjugation by p (and by a) and hence is G3-invariant, and so gives one of the 3-arc-

regular covers found earlier.

For k = 3, the group K/K(k) has just two non-trivial proper G 2
2 -invariant subgroup,

namely the cyclic subgroup generated by the image of z = w1w2w3w4 (which is centralized

by h and inverted under conjugation by ap), and the subgroup generated by any three of

x = w1w
−1
3 w4, y = w2w

−1
3 , u = w1w

−1
4 and v = w2w3w

−1
4 , with h conjugating x, y, u and

v to y−1, xy−1, v−1 and uv−1, and ap conjugating x, y, u and v to v−1, u−1, y and x−1y,

respectively.

Next, an easy exercise shows that K/K(9) has no G 2
2 -invariant cyclic subgroup of

order 9; equivalently, if the top layer of a G 2
2 -invariant subgroup L is cyclic, then its next
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layer must have rank at least 3. Similarly, K/K(9) has no G 2
2 -invariant rank 3 subgroup

isomorphic to Z9 ⊕ Z9 ⊕ Z9; equivalently, if the top layer of a G 2
2 -invariant subgroup L

has rank 3, then its next layer must have (full) rank 4.

Hence the only G 2
2 -invariant subgroups of K with 3-power index are those given in

rows 1, 4, 5 and 6 of Table 4.2. On the other hand, if L is one of the second or third kinds

of subgroup in row 6 of Table 4.2, generated by zdw±3d
4 , y3d, u3d and w9d

4 , then L is not

G 2
2 -invariant, since conjugation by ap takes zdw±3d

4 to z−dw∓3d
2 , which does not lie in L.

In particular, every G 2
2 -invariant subgroup of K with 3-power index is also G3-invariant,

and again gives one of the 3-arc-regular covers found earlier.

In other words, every symmetric abelian regular cover of K3,3 obtainable via the 2-

arc-regular subgroup (A3 × A3) o C4 of S3 o S2 is 3-arc-regular, and hence is obtainable

via the 1-arc-regular subgroup A3 o S2.

4.4 Summary

Our findings can be summarised as follows:

Theorem 4.4.1 Let m = ke be any power of a prime k, with e > 0. Then the arc-

transitive abelian regular covers of the complete bipartite graph K3,3 with abelian covering

group of exponent m are as follows :

(a) If k ≡ 2 mod 3, there are exactly e + 1 such covers, namely a 3-arc-regular cover

with covering group Zm ⊕ Zm ⊕ Zm ⊕ Zm, and one 2-arc-regular cover of type 21

with covering group Z` ⊕ Z` ⊕ Zm ⊕ Zm for each proper divisor ` of m.

(b) If k ≡ 1 mod 3, then there are exactly 3
2
e(e + 1) + 1 such covers, namely a 3-arc-

regular cover with covering group Zm⊕Zm⊕Zm⊕Zm, and one 2-arc-regular cover

of type 21 with covering group Z` ⊕ Z` ⊕ Zm ⊕ Zm for each proper divisor ` of m,

plus one 1-arc-regular cover with covering group Zj ⊕Zj ⊕Z`⊕Zm for each divisor

j of m and each proper divisor ` of m, plus one 1-arc-regular cover with covering

group Zj ⊕ Z` ⊕ Zm ⊕ Zm for each pair {j, `} of distinct proper divisors of m.
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(c) If k = 3 and e ≥ 3, then there are exactly 8e − 5 such covers, namely four 3-arc-

regular covers with covering groups Zm ⊕ Zm ⊕ Zm ⊕ Zm, Zm/3 ⊕ Zm ⊕ Zm ⊕ Zm,

Zm/3⊕Zm/3⊕Zm/3⊕Zm and Zm/9⊕Zm/3⊕Zm/3⊕Zm, plus one 2-arc-regular cover

of type 21 with covering group Zm/9⊕Zm/3⊕Zm/3⊕Zm, plus one 2-arc-regular cover

of type 21 with covering group Z` ⊕ Z` ⊕ Zm ⊕ Zm for each proper divisor ` of m,

plus two 2-arc-regular covers of type 21 with covering groups Z` ⊕ Z3` ⊕ Zm ⊕ Zm

and Z`⊕Z`⊕Zm/3⊕Zm for each proper divisor ` of m/3, plus three pairwise non-

isomorphic 2-arc-regular covers of type 21 with covering groups Z`⊕Z3`⊕Zm/3⊕Zm

for each proper divisor ` of m/9, plus two 1-arc-regular covers with covering groups

Z` ⊕ Z3` ⊕ Zm ⊕ Zm and Z` ⊕ Z` ⊕ Zm/3 ⊕ Zm for each proper divisor ` of m/3.

(c) If k = 3 and e = 2, then there are exactly 11 such covers, namely four 3-arc-regular

covers with covering groups Z9⊕Z9⊕Z9⊕Z9, Z3⊕Z9⊕Z9⊕Z9, Z3⊕Z3⊕Z3⊕Z9

and Z3 ⊕ Z3 ⊕ Z9, plus five 2-arc-regular covers of type 21 with covering groups

Z3 ⊕ Z3 ⊕ Z9 ⊕ Z9, Z3 ⊕ Z9 ⊕ Z9, Z3 ⊕ Z3 ⊕ Z9, Z9 ⊕ Z9 and Z3 ⊕ Z9, and two

1-arc-regular covers with covering groups Z3 ⊕ Z9 ⊕ Z9 and Z3 ⊕ Z9.

(d) If k = 3 and e = 1, then there are exactly 4 such covers, namely three 3-arc-regular

covers with covering groups Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3, Z3 ⊕ Z3 ⊕ Z3 and Z3, and one

2-arc-regular covers of type 21 with covering group Z3 ⊕ Z3.



Chapter 5

Symmetric abelian regular covers

of the cube graph Q3

By using the method of linear criteria for lifting automorphisms [27], Feng and Wang

[32] classified all the symmetric cyclic regular covers of the 3-dimensional cube graph Q3

in 2002, and Feng, Kwak and Wang [31] classified all the symmetric elementary abelian

regular covers in 2004. The same method can be used to classify all the symmetric

homocyclic regular covers of Q3, but again for more general symmetric abelian regular

covers, this method is very difficult to apply.

In this Chapter, we use our new approach to determine all the symmetric abelian

regular covering graphs of Q3. The numbers of covers and the largest value of s for which

each cover is s-arc-transitive are also given.

5.1 Preliminaries

We know that the 3-dimensional cube graph Q3 is the only symmetric cubic graph of

order 8. Also Q3 is 2-arc-transitive, and has type 21 (as described in Section 2.4). Its

automorphism group is the direct product S4 × C2, of order 48, and the only other arc-

transitive subgroups of automorphisms of Q3 are the subgroups A4 × C2 and S4, each of

57
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which acts regularly on the arcs of Q3, and has order 24.

Take G 1
2 = 〈h, a, p | h3 = a2 = p2 = [a, p] = (hp)2 = 1 〉. By Magma, we know that

this group has two normal subgroups of index 48, both with quotient S4 × C2, but these

are interchanged by the outer automorphism of G 1
2 that takes the generators h, a and p

to h, ap and p, and so without loss of generality we can take either one of them. We will

take N to be the torsion free normal subgroup of G 1
2 of index 48 that is freely generated by

w1 = (ha)4, w2 = (ah)4, w3 = h−1ahahahah−1,

w4 = ah−1ahahahah−1a and w5 = (hah−1a)3.

Easy calculations show that the generators h, a and p act by conjugation as below:

h−1w1h = w2 a−1w1a = w2 p−1w1p = w−1
2

h−1w2h = w3 a−1w2a = w1 p−1w2p = w−1
1

h−1w3h = w1 a−1w3a = w4 p−1w3p = w−1
3

h−1w4h = w−1
2 w−1

3 w−1
5 a−1w4a = w3 p−1w4p = w−1

4

h−1w5h = w−1
3 w4w

−1
5 a−1w5a = w−1

5 p−1w5p = w3w
−1
4 w5 .

Now take the quotient G 1
2 /N

′, which is an extension of the free abelian group N/N ′ ∼=
Z5 by the group G 1

2 /N
∼= S4 × C2.

The two subgroups of the latter group that act regularly on the arcs of Q3 are the

quotients (mod N) of the subgroups 〈h, a〉 and 〈h, ap〉, isomorphic to S4 and A4 × C2,

respectively. Also replace the generators h, a, p and all wi by their images in G 1
2 /N

′, and

let K denote the subgroup N/N ′.

By the above observations, the generators h, a, p and ap induce linear transformations

of the free abelian group K ∼= Z5 as follows:

a 7→



0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 −1


, h 7→



0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 −1 −1 0 −1

0 0 −1 1 −1


,
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p 7→



0 −1 0 0 0

−1 0 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 1 −1 1


and ap 7→



−1 0 0 0 0

0 −1 0 0 0

0 0 0 −1 0

0 0 −1 0 0

0 0 −1 1 −1


.

The matrices representing h and a generate a subgroup isomorphic to S4, and while

those for h and ap generate a subgroup isomorphic to A4 × C2.

5.2 Lifting the automorphism subgroup S4

In this section, we find all of the symmetric abelian regular covers of Q3 that can be

obtained by lifting the 1-arc-regular subgroup S4.

The matrices of orders 3 and 2 representing h and a both have trace −1, while the

matrices of orders 4, 3 and 2 representing ha, [h, a] and (ha)2 have trace 1,−1 and 1.

Next, the character table of the group S4 is as in Table 5.1. By inspecting traces,

we see that the character of the 5-dimensional representation of S4 over Q associated

with the above action of G = 〈h, a〉 on K is the character χ3 + χ4, which is the sum

of the characters of irreducible 2-dimensional and 3-dimensional representations over the

rational field Q.

It follows that for every prime k 6∈ {2, 3}, the group K/K(k) ∼= (Zk)
5 is direct sum

of two G-invariant irreducible subgroups of rank 2 and rank 3, and these are its only

non-trivial proper G-invariant subgroups.

In fact, the rank 2 subgroup of K generated by u = w1w
−1
2 w4w

−1
5 and v = w3w4 is

normal in 〈h, a〉, with uh = v−1, vh = uv−1, ua = u−1v and va = v, while the rank

3 subgroup generated by x = w1w2w4, y = w3w
−1
4 and z = w5 is normal in 〈h, a〉, with

xh = z−1, yh = xyz, zh = (yz)−1, xa = xy , ya = y−1 and za = z−1.

In the quotient G/K(k) for prime k 6∈ {2, 3}, the image of the rank 2 subgroup 〈u, v〉
has no non-trivial G-invariant cyclic subgroup, and hence is irreducible, and similarly, the
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Element order 1 2 2 3 4

Class size 1 3 6 8 6

χ1 1 1 1 1 1

χ2 1 1 −1 1 −1

χ3 2 2 0 −1 0

χ4 3 −1 −1 0 1

χ5 3 −1 1 0 −1

Table 5.1: The character table of the group S4

image of the rank 3 subgroup 〈x, y, z〉 has no non-trivial proper G-invariant subgroup,

and hence is irreducible.

For k = 2, the image of the rank 2 subgroup 〈u, v〉 in G/K(k) is irreducible as an G-

invariant subgroup, but in this case, it is also contained in the image of the rank 3 subgroup

〈x, y, z〉 (since K(2)xz = K(2)w1w2w4w5 = K(2)u and K(2)y = K(2)w3w
−1
4 = K(2)v), as

well as in a third non-trivial proper G-invariant subgroup, namely the rank 4 subgroup

generated by the images of the products wiwj for all i, j (which contains the image of

〈u, v〉 but not the image of 〈x, y, z〉).

In contrast, for k = 3 the image of the rank 3 subgroup 〈x, y, z〉 in G/K(k) is irreducible

as an G-invariant subgroup, while the image of the rank 2 subgroup 〈u, v〉 contains a

non-trivial cyclic G-invariant subgroup, namely the subgroup generated by the image of

uv = w1w
−1
2 w3w

2
4w
−1
5 , since (uv)h = uv and (uv)a = (uv)−1. Hence in this case, we

have also a fourth non-trivial proper G-invariant subgroup, namely the rank 4 subgroup

generated by the images of x, y, z and uv.

As before, analogous observations hold also for each other layer Ki/Ki+1 of K (with

i ≥ 1).

So now suppose m = ke is any prime-power greater than 1, and suppose L/K(m) is

any non-trivial normal subgroup of G/K(m) contained in K/K(m).

If k /∈ {2, 3}, then it is easy to see that there exist divisors c and d of m = ke such
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that L is generated by um/c, vm/c, xm/d, ym/d and zm/d, and L/K(m) ∼= (Zc)
2 ⊕ (Zd)

3.

When k = 3, we note that conjugation by h and a behave well, in that they take

the triple (xk
t
, yk

t
, zk

t
) to (z−k

t
, (xyz)k

t
, (yz)−k

t
) = ((zk

t
)−1, xk

t
yk

t
zk

t
, (yk

t
)−1(zk

t
)−1) and

to ((xy)k
t
, y−k

t
, z−k

t
) = (xk

t
yk

t
, (yk

t
)−1, (zk

t
)−1) respectively, for every positive integer t.

The same kind of thing happens also with the pair (u, v). On the other hand, conjugation

by h and a take uv to uv−2 = (uv)v−3 and u−1v2 = (uv)−1v3, and hence if any layer

Li/Li+1 of a G-invariant subgroup L of K/K(m) has rank 1 or 4 (generated by images of

(uv)i or of (uv)i, xi, yi and zi) then its next layer must have rank 2 or 5 (generated by

images of (uv)3i and v3i or of (uv)3i, v3i, x3i, y3i and z3i).

The case k = 2 is not quite so straightforward. In this case, each layer can have rank

0, 1, 2, 3, 4 or 5, depending on the layers above it. To see exactly what happens, it is

helpful to consider the case m = 23 = 8. Let g denote the coset K(8)g, when g ∈ K.

Then an easy exercise (using Magma if necessary) shows that K/K(8) contains exactly

35 subgroups that are normal in G/K(8), and these may be summarised as follows:

• the group K/K(8) ∼= (Z8)
5 itself, generated by all the wi ;

• three other homocyclic subgroups K2i
/K(8) ∼= (Z23−i)5, generated by all the wi

2i
;

• one subgroup isomorphic to (Z8)
4 ⊕ Z4, generated by {u, v, w1w4, w2w4, w5

2};
• one subgroup isomorphic to (Z4)

4 ⊕ Z2, generated by {u2, v2, (w1w4)
2, (w2w4)

2, w5
4};

• one subgroup isomorphic to (Z2)
4, generated by {u4, v4, (w1w4)

4, (w2w4)
4};

• one subgroup isomorphic to (Z8)
3 ⊕ (Z4)

2, generated by {x, y, z, (w2)
2, w4

2};
• one subgroup isomorphic to (Z8)

3 ⊕ (Z2)
2, generated by {x, y, z, (w2)

4, w4
4};

• one subgroup isomorphic to (Z4)
3 ⊕ (Z2)

2, generated by {(x)2, (y)2, (z)2, (w2)
4, w4

4};
• one subgroup isomorphic to (Z8)

2 ⊕ (Z4)
3, generated by {u, v, (w2)

2, (w4)
2, w5

2};
• two subgroups isomorphic to (Z8)

2 ⊕ (Z2)
3, generated by {u, v, (w2)

4, (w4)
4, w5

4}, and

{uw2
2w5

2, vw4
2w5

2, (w2)
4, (w4)

4, w5
4};

• one subgroup isomorphic to (Z4)
2 ⊕ (Z2)

3, generated by {(u)2, (v)2, (w2)
2, (w4)

4, w5
4};

• one subgroup isomorphic to (Z8)
2⊕(Z4)

2⊕Z2, generated by {u, v, (w1w4)
2, (w2w4)

2, w5
4};

• two subgroups isomorphic to (Z8)
2 ⊕ Z4 ⊕ (Z2)

2, generated by {u, v, (w5)
2, (w2)

4, w4
4},
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and {uw2
2, vw4

−2, (w5)
2, (w2)

4, w4
4};

• one subgroup isomorphic to (Z8)
2 ⊕ (Z2)

2, generated by {u, v, (w1w4)
4, (w2w4)

4};
• one subgroup isomorphic to (Z4)

2 ⊕ (Z2)
2, generated by {u2, v2, (w1w4)

4, (w2w4)
4};

• one subgroup isomorphic to (Z8)
3, generated by {x, y, z}, plus two other subgroups

isomorphic to (Z23−i), generated by {x2i
, y2i

, z2i} for i = 1, 2;

• two subgroups isomorphic to (Z8)
2 ⊕ Z4, generated by {uw2

2, vw4
−2, w5

2} and {uw2
−2,

vw4
2, w5

2};
• two subgroups isomorphic to (Z4)

2⊕Z2, generated by {u2, v2, w5
4} and {u2w2

4, v2w4
4, w5

4};
• four subgroups isomorphic to (Z8)

2 ⊕ Z2, generated by {u, v, w5
4}, {uw2

4, vw4
4, w5

4},
{uw2

2w5
2, vw4

−2w5
2, w5

4} and {uw2
−2w5

2, vw4
2w5

2, w5
4};

• two subgroups isomorphic to (Z8)
2, generated by {u, v} and {uw2

4, vw4
4};

• two subgroups isomorphic to (Z4)
2, generated by {u2, v2} and {u2w2

4, v2w4
4};

• one subgroup isomorphic to (Z2)
2, generated by {u4, v4}.

If we let T0, T1, T2, T3 and T4 denote the five possibilities for a G-invariant subgroup of

K/K(2) (of ranks 0, 2, 3, 4 and 5 respectively), then once again we can represent each of

the 2-layer combinations as a pair (Ti, Tj). The pairs that arise in this case can be found

from looking at G-invariant subgroups of K/K(4) (or equivalently, the top two layers or

the bottom two layers of K/K(8)), and these are easily found to be the following, counted

according to their frequency: (T4, T4) once; (T3, T4) once; (T2, T2) once; (T2, T4) once;

(T1, T1) twice; (T1, T2) twice; (T1, T3) once; (T1, T4) once; and (T0, T0), (T0, T1), (T0, T2),

(T0, T3) and (T0, T4), once each.

The 3-layer combinations that arise from the above list of G-invariant subgroups of

K/K(8) can now be summarised with their associated frequencies, as follows:

• (T4, T4, T4), once, • (T0, T4, T4), (T0, T0, T4) and (T0, T0, T0), once each,

• (T3, T4, T4), once, • (T3, T3, T4), once, • (T0, T0, T3), once,

• (T2, T4, T4), once, • (T2, T2, T4), once, • (T0, T2, T4), once,

• (T1, T4, T4), once, • (T1, T1, T4), twice, • (T0, T1, T4), once,

• (T1, T3, T4), once, • (T1, T2, T4), twice, • (T1, T1, T3), once,
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• (T0, T1, T3), once, • (T2, T2, T2), (T0, T2, T2) and (T0, T0, T2), once each,

• (T1, T2, T2), twice, • (T0, T1, T2), twice, • (T1, T1, T2), four times,

• (T1, T1, T1), twice, • (T0, T1, T1), twice, • (T0, T0, T1), once.

The same argument shows that each ‘triple-layer’ section Ki/Ki+3 of K has exactly

35 G-invariant subgroups, analogous to those in the summary list above, when k = 2.

We can now put these observations together to find all possibilities for a normal

subgroup L of G = 〈h, a〉 contained in K with index |K :L| being a power m = ke of a

prime k.

When k = 2, the layers of any such L must consist of (say) e0 copies of T0, followed

by e1 copies of T1, followed by e2 copies of T2, followed by e3 copies of T3, followed by e4

copies of T4, with e0 + e1 + e2 + e3 + e4 = e, and ei ≥ 0 for all i, but e3 ≤ 1, and e2e3 = 0.

Moreover, any such combination determines a unique L, except in some cases where a

pair of successive layers is of the form (T1, T1) or (T1, T2) and no layer is T3, namely as

follows:

a) If (e1, e2, e3) = (2, 1, 0), so that L is a tower of two copies of T1 on top of a single copy

of T2, on top of a tower of any number of copies of T4, then there are four possibilities for

L,

b) If e3 = 0 and either e1 > 1 or e1e2 > 0, but (e1, e2) 6= (2, 1), then there are two

possibilities for L.

All the possibilities for L are listed in the summary Table 5.2.
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Index |K :L| Generating set for L Quotient K/L

d5 = k5t, {wd1, wd2, wd3, wd4, wd5} (Zd)
5

for any k

c2d3 = k2sk3t, {uc, vc, xd, yd, zd} (Zc)
2 ⊕ (Zd)

3

with s 6= t,

for any k > 2

8d3 = 25t+3 {ud, vd, x2d, y2d, z2d} (Zd)
2 ⊕ (Z2d)

3

c2d3 = 22s+3t, {uc, vc, w d
2 , w

d
4 , w

d
5 } or (Zc)

2 ⊕ (Zd)
3

with s+ 1 < t {ucw
d
2
2 w

d
2
5 , v

cw
d
2
4 w

d
2
5 , w

d
2 , w

d
4 , w

d
5 }

c3d2 = 23s+2t, {xc, yc, zc, w d
2 , w

d
4 } (Zc)

3 ⊕ (Zd)
2

with s < t

4c2d3 = 22s23t+2, {uc, vc, w d
5 , w

2d
2 , w

2d
4 } or (Zc)

2 ⊕ Zd ⊕ (Z2d)
2

with s < t {ucw d
2 , v

cw d
4 , w

d
5 , w

2d
2 , w

2d
4 }

2c3d2 = 23s+122t, {ucw2c
2 , v

cw−2c
4 , w2c

5 , w
d
2 , w

d
4 } or (Zc)

2 ⊕ Z2c ⊕ (Zd)
2

with s+ 2 < t {ucw2c− d
2

2 , vcw
−2c+ d

2
4 , w2c

5 , w
d
2 , w

d
4 }

4c3d2 = 23s+222t, {ucw2c
2 w

2c
5 , v

cw−2c
4 w2c

5 , w
4c
5 , w

d
2 , w

d
4 } or (Zc)

2 ⊕ Z4c ⊕ (Zd)
2

with s+ 2 < t {ucw2c− d
2

2 w2c
5 , v

cw
−2c+ d

2
4 w2c

5 , w
4c
5 , w

d
2 , w

d
4 }

4c2d3 = 22s23t+1, {uc, vc, (w1w4)
d, (w2w4)

d, w 2d
5 } (Zc)

2 ⊕ (Zd)
2 ⊕ Z2d

with s < t

3c3d2 = 33s32t+1, {xc, yc, zc, (uv)d, v3d} (Zc)
3 ⊕ Zd ⊕ Z3d

any s and t

Table 5.2: Possibilities for 〈h, a〉-invariant subgroup L of K when 〈h, a〉/K ∼= S4
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Next, we consider which of the 〈h, a〉-invariant subgroups of K/K(m) are normalized

by the additional generator p of the larger group G 1
2 . Here we will work inside the group

G 1
2 /N

′, and adopt the same notation for images of elements in this group.

Note that conjugation by p (which lies in G 1
2 /N

′ but not G1/N
′) takes

u = w1w
−1
2 w4w

−1
5 7→ w1w

−1
2 w−1

3 w−1
5 = uv−1

v = w3w4 7→ w−1
3 w−1

4 = v−1

x = w1w2w4 7→ w−1
1 w−1

2 w−1
4 = x−1

y = w3w
−1
4 7→ w−1

3 w4 = y−1

z = w5 7→ w3w
−1
4 w5 = yz

and also preserves the subgroup generated by the products wi, wj for all i, j. Moreover,

when k = 3 this takes uv = w1w
−1
2 w3w

2
4w
−1
5 to w1w

−1
2 w−2

3 w−1
4 w−1

5 = uv.

Hence all of the 〈h, a〉-invariant subgroups of K/K(k) that we met for each prime k

are also 〈h, a, p〉-invariant. In fact it is not difficult to see that all of the 〈h, a〉-invariant

subgroups summarised in Table 5.2 are G 1
2 -invariant.

It follows that all of the resulting covers of Q3 admit a 2-arc-regular group of au-

tomorphisms. In particular, none of these covers can be 4-arc- or 5-arc-transitive, by

Proposition 2.4.1. Also by the same arguments as used for K4 (in Chapter 3), none of

them can be 3-arc-transitive, because the subgroup N itself is not normal in G3. Thus all

of the covers resulting from the above possibilities for the subgroup L are 2-arc-regular.

Moreover, again since the subgroup N itself is not normal in G3, each of them is unique

up to isomorphism.

This completes the determination of symmetric abelian regular covers of Q3 obtainable

via the 1-arc-regular group of automorphisms isomorphic to S4.

5.3 Lifting the automorphism subgroup A4 × C2

In this section, we consider what happens with the other minimal arc-transitive group of

automorphisms, namely the 1-arc-regular group generated by the cosets Nh and Nap of
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N in the quotient G 1
2 /N , which is isomorphic to the direct product A4 × C2.

The character table of the group A4×C2 is as in Table 5.3. Note that the matrices of

orders 3 and 2 representing h and ap have trace −1 and −3, while the matrices of order

6, 3, and 2 representing hap, (hap)2 and (hap)3 have trace 1,−1 and 1.

By inspecting traces, we see that the character of the 5-dimensional representation of

A4 × C2 over Q associated with the action of 〈h, ap〉 on K is the character ψ5 + ψ6 + ψ7,

which is reducible to the sum of ψ5 + ψ6 and ψ7, which are characters of two irreducible

2-dimensional and 3-dimensional representations over the rational field Q.

Element order 1 2 2 2 3 3 6 6

Class size 1 1 3 3 4 4 4 4

ψ1 1 1 1 1 1 1 1 1

ψ2 1 −1 1 −1 1 1 −1 −1

ψ3 1 1 1 1 λ −1− λ λ −1− λ
ψ4 1 1 1 1 −1− λ λ −1− λ λ

ψ5 1 −1 1 −1 −1− λ λ 1 + λ −λ
χ6 1 −1 1 −1 λ −1− λ −λ 1 + λ

ψ7 3 3 −1 −1 0 0 0 0

ψ8 3 −3 −1 1 0 0 0 0

Table 5.3: The character table of the group A4 × C2 where the λ is a primitive cube root of 1

For every prime k 6∈ {2, 3}, the group K/K(k) ∼= (Zk)
5 is direct sum of two G-invariant

irreducible subgroups of rank 2 and rank 3 generated by the images of u and v on one

hand, and of x, y and z on the other. Both of these subgroups are 〈h, ap〉-invariant, since

uap = u−1, vap = v−1, xap = x−1y−1, yap = y and zap = y−1z−1. Moreover, these two

〈h, ap〉-invariant subgroups are irreducible, unless Zk contains a cube root of 1, in which

case the rank 2 subgroup is reducible.

When k > 2 and k ≡ 2 mod 3, it follows that the 〈h, ap〉-invariant subgroups with
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index in K being a power of k are precisely the same as the 〈h, a〉-invariant subgroups,

given in the first two rows of Table 5.2.

When k > 2 and k ≡ 1 mod 3 (and m = ke for some e > 0), the rank 2 subgroup

of the quotient K/K(m) generated by the images of u and v is the direct sum of two

〈h, ap〉-invariant rank 1 subgroups, generated by the images of vλ and vλ2 , where λ is a

primitive cube root of 1 in Zm and vt = w1w
−1
2 wt3w

1+t
4 w−1

5 for t ∈ {λ, λ2}. Note that since

t2 + t+ 1 = 0 in Zm and vht = wt1w
−t
2 wt

2

3 w
−1
4 w−t5 = vtt and vapt = w−1

1 w2w
−t
3 w−1−t

4 w5 = v−1
t

modulo K(k). On the other hand, the rank 3 subgroup of K/K(m) generated by the images

of x, y and z remains irreducible under conjugation by 〈h, ap〉.

When k = 3, the 〈h, ap〉-invariant subgroup generated by the image of x, y and z

remains irreducible, and also the rank 1 subgroup generated by the image of uv is 〈h, ap〉-
invariant, with (uv)h = uv and (uv)ap = w−1

1 w2w
−1
4 w−2

3 w−1
4 w5w3 = (uv)−1. Hence the

〈h, ap〉-invariant subgroups with index in K being a power of 3 are precisely the same as

the 〈h, a〉-invariant subgroups, given in the first two rows and the last row of Table 5.2.

When k = 2 on the other hand, the 〈h, ap〉-invariant rank 2 subgroup of K/K(k)

generated by the images of u and v remains irreducible (since uh = v−1 and vh = uv−1

while uap = u−1 and vap = v−1 ). In fact, the 〈h, ap〉-invariant subgroups of K/K(2) are

precisely the same as the 〈h, a〉-invariant subgroups, namely the ones we called T0, T1,

T2, T3 and T4 above. Other possibilities arise, however, for 〈h, ap〉-invariant subgroups of

K/K(m) when m is a larger power of 2.

Again it is helpful to consider the case m = 8 = 23 , to see what happens. It is an easy

exercise (using Magma if necessary) to show that K/K(8) contains exactly 16 subgroups

that are preserved under conjugation by h and ap but not by a (or p), and these may be

summarised as follows:

• two subgroups isomorphic to (Z8)
2 ⊕ (Z2)

3, generated by {uw2
2w4

2, vw2
2w5

2, w2
4, w4

4,

w5
4} and {uw4

2w5
2, vw2

2w4
2, w2

4, w4
4, w5

4};
• two subgroups isomorphic to (Z8)

2⊕Z4⊕(Z2)
2, generated by {uw4

2, vw2
2w4

2, w5
2, w2

4,

w4
4} and {uw2

2w4
2, vw2

2, w5
2, w2

4, w4
4};
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• two subgroups isomorphic to (Z8)
2 ⊕ Z4, generated by {uw2

2w4
4, vw2

4w4
2, w5

2} and

{uw2
6w4

4, vw2
4w4

−2, w5
2};

• two subgroups isomorphic to (Z4)
2 ⊕ Z2, generated by {u2w4

4, v2w2
4w4

4, w5
4} and

{u2w2
4w4

4, v2w2
4, w5

4};
• four subgroups isomorphic to (Z8)

2 ⊕ Z2, generated by {uw4
4, vw2

4w4
4, w5

4},
{uw2

4w4
4, vw2

4, w5
4}, {uw1

−2w4
2, vw1

6w2
2, w5

4} and {uw1
2w4

−2, vw1
2w2

6, w5
4};

• two subgroups isomorphic to (Z8)
2, generated by {uw2

4w4
4, vw2

4w5
4} and {uw4

4w5
4,

vw2
4w4

4};
• two subgroups isomorphic to (Z4)

2, generated by {u2w2
4w4

4, v2w2
4w5

4} and {u2w4
4w5

4,

v2w2
4w4

4}.

The triples representing these 16 subgroups are: (T1, T1, T4) twice, (T1, T2, T4) twice,

(T1, T2, T2), twice, (T0, T1, T2) twice, (T1, T1, T2) four times, (T1, T1, T1) twice, and (T0, T1, T1)

twice, respectively.

Using these observations (and again some more for the case m = 16 for clarity),

we find that the only possibilities for a subgroup L of prime-power index in K that is

〈h, ap〉-invariant but not 〈h, a〉-invariant are those in the summary Table 5.4.

The subgroups in the last four rows of Table 5.4 all come from the case k = 2. The

‘layer combinations’ for a subgroup L from each of these rows are respectively as follows:

• Row 2: a tower of two or more copies of T1 on top of a tower of copies of T4;

• Row 3: a tower of two or more copies of T1 on top of a single copy of T2 on top of a

tower of copies of T4;

• Row 4: a single copy of T1 on top of a tower of two or more copies of T2 on top of a

tower of copies of T4;

• Row 5: a tower of two copies of T1 on top of a single copy of T2 on top of a tower of

copies of T4.

Note that there are two possibilities in each case; the triple (T1, T1, T2) which appeared

four times in the summary for m = 8 occurs twice in each of rows 3 and 5.

The covering graphs of Q3 corresponding to the subgroups of K in Table 5.4 admit
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Index |K :L| Generating set for L Quotient K/L

b3cd = k3r+s+t, {xb, yb, zb, (vλ)
c, (vλ2)d} (Zb)

3 ⊕ Zc ⊕ Zd

with s < t, or {xb, yb, zb, (vλ2)c, (vλ)
d}

for k ≡ 1 mod 3

c2d3 = 22s+3t, {ucw
d
2
2 w

d
2
4 , v

cw
d
2
2 w

d
2
5 , w

d
2 , w

d
4 , w

d
5 } (Zc)

2 ⊕ (Zd)
3

with s+ 1 < t or {ucw
d
2
4 w

d
2
5 , v

cw
d
2
2 w

d
2
4 , w

d
2 , w

d
4 , w

d
5 }

4c2d3 = 22s23t+2, {ucw d
4 , v

cw d
2w

d
4 , w

d
5 , w

2d
2 , w

2d
4 } (Zc)

2 ⊕ Zd ⊕ (Z2d)
2

with s+ 1 < t or {ucw d
2w

d
4 , v

cw d
2 , w

d
5 , w

2d
2 , w

2d
4 }

2c3d2 = 23s+122t, {ucw2c
2 w

d
2
4 , v

cw
d
2
2 w
−2c+ d

2
4 , w2c

5 , w
d
2 , w

d
4 } (Zc)

2 ⊕ Z2c ⊕ (Zd)
2

with s+ 2 < t or {ucw2c+ d
2

2 w
d
2
4 , v

cw
d
2
2 w
−2c
4 , w2c

5 , w
d
2 , w

d
4 }

4c3d2 = 23s+222t, {ucw−2c
1 w

−2c+ d
2

4 , vcw
2c+ d

2
1 w2c

2 , w
4c
5 , w

d
2 , w

d
4 } (Zc)

2 ⊕ Z4c ⊕ (Zd)
2

with s+ 3 < t or {ucw−2c+ d
2

1 w−2c
4 , vcw2c

1 w
2c+ d

2
2 , w4c

5 , w
d
2 , w

d
4 }

Table 5.4: Additional possibilities for 〈h, ap〉-invariant subgroup L of K when 〈h, ap〉/K ∼=
A4 × C2

a 1-arc-regular but not a 2-arc-regular group of automorphisms (since the subgroup is

〈h, ap〉-invariant but not 〈h, a〉-invariant). Hence in particular, by Proposition 2.4.3 (or

[26, Proposition 26], or [22, Proposition 2.3]), none of them can be 3-arc-regular.

Next, suppose the subgroup L is G1-invariant but not G 1
2 -invariant, and the cover is 4-

arc-transitive. In that case, by the same arguments as for K3,3, the cover must be a regular

cover of the Heawood graph, and since G1/K ∼= A4 ×C2 has a cyclic quotient of order 6,

this implies the existence of a group of order 336 · 4 = 1344 acting 4-arc-transitively on a

symmetric cubic graph of order 1344/24 = 56. There are, however, only three symmetric

cubic graphs of that order (namely the graphs F056A, F056B and F056C listed in [22]),

and none of them is 4-arc-transitive. Hence this possibility can be eliminated.

Similarly, if L is G1-invariant but not G 1
2 -invariant and the cover is 5-arc-transitive,
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then by the same arguments as for K3,3, the covering graph must be a regular cover of

the Biggs-Conway graph, and hence the 1-arc-regular group 〈h, ap〉/L of automorphisms

must be insoluble, which is not the case.

Hence all of the resulting covers of Q3 are 1-arc-regular.

Moreover, since conjugation by a (or p) interchanges the subgroups in each row of

Table 5.4 in pairs, these covering graphs are isomorphic in pairs.

5.4 Summary

We have the following theorem:

Theorem 5.4.1 Let m = ke be any power of a prime k, with e > 0. Then the arc-

transitive abelian regular covers of the 3-dimensional cube graph Q3 with abelian covering

group of exponent m are as follows :

(a) If k ≡ 2 mod 3 and k > 2, there are exactly 2e + 1 such covers, namely a 2-arc-

regular cover with covering group (Zm)5, plus one 2-arc-regular cover with covering

group (Z`)
2⊕ (Zm)3 and one 2-arc-regular cover with covering group (Z`)

3⊕ (Zm)2,

for each proper divisor ` of m.

(b) If k ≡ 1 mod 3, then there are exactly 1
2
e(e+ 1) + e2 + 2e+ 1 such covers, namely

a 2-arc-regular cover with covering group (Zm)5, plus one 2-arc-regular cover with

covering group (Z`)
2⊕(Zm)3 and one 2-arc-regular cover with covering group (Z`)

3⊕
(Zm)2, for each proper divisor ` of m, plus one 1-arc-regular cover with covering

group Zj ⊕ Z` ⊕ (Zm)3 for each pair {j, `} of distinct divisors of m, and one 1-arc-

regular cover with covering group (Zj)
3 ⊕ Z` ⊕ Zm for each ordered pair (j, `) of

proper divisors of m.

(c) If k = 3, then there are exactly 4e+1 such covers, namely a 2-arc-regular cover with

covering group (Zm)5, plus one 2-arc-regular cover with covering group (Z`)
2⊕(Zm)3,

one 2-arc-regular cover with covering group (Z`)
3 ⊕ (Zm)2, one 2-arc-regular cover
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with covering group Z`⊕Z3`⊕(Zm)3 and one 2-arc-regular cover with covering group

(Z`)
3 ⊕ Zm/3 ⊕ (Zm), for each proper divisor ` of m.

(d) If k = 2 and e > 2, then there are exactly 14e − 16 such covers, namely a 2-arc-

regular cover with covering group (Zm)5, plus one 2-arc-regular cover with covering

group (Zm/2)
2 ⊕ (Zm)3, plus two 2-arc-regular covers and one 1-arc-regular cover

with covering group (Z`)
2 ⊕ (Zm)3, for each proper divisor ` of m/2, plus one 2-

arc-regular cover with covering group (Z`)
3 ⊕ (Zm)2 for each proper divisor ` of

m, plus two 2-arc-regular covers and one 1-arc-regular cover with covering group

(Zm/4)
2⊕Zm/2⊕ (Zm)2, plus four 2-arc-regular covers and two 1-arc-regular covers

with covering group (Zm/8)
2⊕Zm/2⊕(Zm)2, plus two 2-arc-regular covers and one 1-

arc-regular cover with covering group (Z`)
2⊕Zm/2⊕(Zm)2 for each proper divisor ` of

m/8, plus two 2-arc-regular covers and one 1-arc-regular cover with covering group

(Z`)
2⊕Z2`⊕(Zm)2 for each proper divisor ` of m/4, plus two 2-arc-regular covers and

one 1-arc-regular cover with covering group (Z`)
2⊕Z4`⊕(Zm)2 for each proper divisor

` of m/8, and one 2-arc-regular cover with covering group (Z`)
2⊕ (Zm/2)

2⊕Zm for

each proper divisor ` of m.

(e) If k = 2 and e = 3, then there are exactly 26 such covers, namely one 2-arc-

regular cover with covering group (Z4)
r ⊕ (Z8)

5−r for each r ∈ {0, 2, 3, 4}, plus two

2-arc-regular covers and one 1-arc-regular cover with covering group (Z2)
2 ⊕ (Z8)

3,

plus one 2-arc-regular cover with covering group (Z2)
2⊕ (Z4)

2⊕Z8, plus two 2-arc-

regular covers and one 1-arc-regular cover with covering group (Z2)
2 ⊕ Z4 ⊕ (Z8)

2,

plus one 2-arc-regular cover with covering group (Z2)
3⊕(Z8)

2, plus two 2-arc-regular

covers and one 1-arc-regular cover with covering group (Z8)
3, plus four 2-arc-regular

covers and two 1-arc-regular covers with covering group Z4 ⊕ (Z8)
2, plus one 2-arc-

regular cover with covering group (Z4)
2 ⊕ Z8, plus two 2-arc-regular covers and one

1-arc-regular cover with covering group Z2⊕ (Z8)
2, and one 2-arc-regular cover with

covering group (Z8)
2.

(f) If k = 2 and e = 2, then there are exactly 12 such covers, namely one 2-arc-
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regular cover with covering group (Z2)
r ⊕ (Z4)

5−r for each r ∈ {0, 2, 3, 4}, plus two

2-arc-regular covers and one 1-arc-regular cover with covering group (Z4)
3, plus two

2-arc-regular covers and one 1-arc-regular cover with covering group Z2⊕(Z4)
2, plus

one 2-arc-regular cover with covering group (Z2)
2⊕Z4, and one 2-arc-regular cover

with covering group (Z4)
2.

(g) If k = 2 and e = 1, then there are exactly 4 such covers, namely namely one

2-arc-regular cover with covering group (Z2)
r for each r ∈ {2, 3, 4, 5}.



Chapter 6

Symmetric abelian regular covers

of the Petersen graph

In this Chapter, we deal with the Petersen graph, which turns our to be easier than

K3,3 and Q3. Using the method of linear criteria for lifting automorphisms [27], Feng

and Wang [29] classified all the symmetric cyclic and elementary abelian regular covers

of the Petersen graph in 2006, and as an application, they found all of the symmetric

cubic graphs of order 10p or 10p2 for prime p. By using the method of finding invariant

subspaces of matrix automorphisms introduced in [49], Malnič and Potočnik [51] classified

all the vertex-transitive elementary abelian regular covers of the Petersen graph in 2006

as well. The same methods can be used to classify all the symmetric homocyclic regular

covers, but again for more general symmetric abelian regular covers, these methods are

difficult to apply.

In this Chapter, we use our new approach to determine all the symmetric abelian

regular covering graphs of the Petersen graph. The numbers of covers and the largest

value of s for which each cover is s-arc-transitive are also given.

73
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6.1 Preliminaries

We know that the Petersen graph is the only symmetric cubic graph of order 10. It is

3-arc-regular, and its automorphism group is the symmetric group S5, of order 120. The

only other arc-transitive group of automorphisms is the alternating subgroup A5, which

acts regularly on the 2-arcs, with type 21.

Take G3 = 〈h, a, p, q | h3 = a2 = p2 = q2 = [p, q] = [h, p] = (hq)2 = apaq = 1 〉, let

G 1
2 = 〈h, a, pq〉, and let N be the unique normal subgroup of index 120 in G3 (and index

60 in G 1
2 ), with quotients G3/N ∼= S5 and G 1

2 /N
∼= A5. Using Reidemeister-Schreier

theory or the Rewrite command in Magma, we find that the subgroup N is free of rank

6, on generators

w1 = (ha)5, w2 = (ah)5, w3 = h−1ahahahahah−1, w4 = pqahah−1ahah−1ah,

w5 = pqhahah−1ahah−1ah−1 and w6 = pqh−1ahah−1ahah−1a.

Easy calculations show that the generators h, a, p and q act by conjugation as follows:

h−1w1h = w2 a−1w1a = w2 p−1w1p = w−1
4 q−1w1q = w6

h−1w2h = w3 a−1w2a = w1 p−1w2p = w−1
6 q−1w2q = w4

h−1w3h = w1 a−1w3a = w4w3w6 p−1w3p = w−1
5 q−1w3q = w5

h−1w4h = w5 a−1w4a = w−1
4 p−1w4p = w−1

1 q−1w4q = w2

h−1w5h = w6 a−1w5a = w−1
1 w−1

5 w−1
2 p−1w5p = w−1

3 q−1w5q = w3

h−1w6h = w4 a−1w6a = w−1
6 p−1w6p = w−1

2 q−1w6q = w1.

Now take the quotient G3/N
′, which is an extension of the free abelian group N/N ′ ∼=

Z6 by the group G3/N ∼= S5, and replace the generators h, a, p, q and all wi by their

images in G3/N
′. Also let K denote the subgroup N/N ′, and let G = G 1

2 /N
′, so that G

is an extension of K by A5.

By the above observations, the generators h, a, p and q induce linear transformations

of the free abelian group K ∼= Z6 as follows:



6.2. ABELIAN REGULAR COVERS 75

h 7→



0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0


, a 7→



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 1 0 1

0 0 0 −1 0 0

−1 −1 0 0 −1 0

0 0 0 0 0 −1


,

p 7→



0 0 0 −1 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

−1 0 0 0 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0


and q 7→



0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0


.

These matrices generate a subgroup isomorphic to S5, and the matrices representing

h, a and pq generate a subgroup isomorphic to A5. Note that the traces of the above four

matrices are 0, −2, 0 and 0, respectively.

6.2 Abelian regular covers

In this section, we find all the symmetric abelian regular covers of the Petersen graph

that can be obtained by lifting the 2-arc-regular subgroup A5.

The character table of the group A5 is given in Table 6.1, with α and β being the

zeroes of the polynomial t2 − t − 1 (or in other words, the golden ratio 1+
√

5
2

and its

conjugate 1−
√

5
2

).

By inspecting traces of the matrices induced by each of a and h, we see that the

character of the 6-dimensional representation of A5 over Q associated with the above

action of 〈h, a, pq〉 on K is the rational character χ2 + χ3, which is reducible over fields

containing zeroes of the polynomial t2 − t− 1.
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Element order 1 2 3 5 5

Class size 1 15 20 12 12

χ1 1 1 1 1 1

χ2 3 −1 0 α β

χ3 3 −1 0 β α

χ4 4 0 1 −1 1

χ5 5 1 −1 0 0

Table 6.1: The character table of the group A5

So now let k be any odd prime. Then α2 − α − 1 = 0 for some α ∈ Zk if and only

if (2α − 1)2 = 4α2 − 4α + 1 = 5 for some α ∈ Zk, or equivalently, if and only if 5 is a

quadratic residue mod k.

Hence if k ≡ ±1 mod 5, then the group K/K(k) ∼= (Zk)
6 is direct sum of two G-

invariant subgroups of rank 3. In fact, these rank 3 subgroups are the images in K/K(k)

of the two subgroups generated by {xα, yα, zα} and {xβ, yβ, zβ} where

xλ = w1w4w5w
λ
6 , yλ = w2w

λ
4w5w6 and zλ = w3w4w

λ
5w6

for λ ∈ {α, β}, the set of zeroes of t2 − t− 1 in Zk. Note that conjugation by h cyclically

permutes xλ, yλ and zλ, and conjugation by a inverts each of xλ and yλ and takes zλ

to x−λλ y−λλ zλ, while conjugation by pq interchanges xλ with y−1
λ and inverts zλ, for each

λ ∈ {α, β}. Moreover, these are the only non-trivial proper G-invariant subgroups of

K/K(k).

If k ≡ ±2 mod 5 (and k is odd), then no such zeroes of t2 − t − 1 exist in Zk, and

the corresponding 6-dimensional representation of A5 is irreducible over Zk, and it follows

that K/K(k) has no non-trivial proper G-invariant subgroups. Note that this holds just

as well when k = 3, since the representations χ2 and χ3 are distinct when defined over

GF(9).

When k = 5, the mod k reductions of the characters χ2 and χ3 coincide, and we have



6.2. ABELIAN REGULAR COVERS 77

just one non-trivial proper G-invariant subgroup of K/K(k), namely the rank 3 subgroup

generated by the images of xλ = w1w4w5w
2
6, yλ = w2w

2
4w5w6 and zλ = w3w4w

2
5w6, where

λ = 2 (the unique zero of t2 − t− 1 in Z5).

For k = 2, with the help of Magma, if necessary, it is easy to show that the group

K/K(k) has four non-trivial proper G-invariant subgroups, namely one of rank 4 generated

by the images of w1w3, w2w3, w4w5 and w5w6, plus three of rank 5 containing the latter,

with additional generators w1, w4 and w1w4, respectively.

As before, analogous observations hold also for each other layer Ki/Ki+1 of K.

Next, suppose m = ke is any prime-power greater than 1, and suppose L/K(m) is any

non-trivial normal subgroup of G/K(m) contained in K/K(m).

If k is odd and k ≡ ±2 mod 5, then every layer Li/Li+1 has rank 0 or 6, and therefore

L ∼= (Z`)
6 for some ` dividing m.

On the other hand, if k ≡ ±1 mod 5, then every layer Li/Li+1 has rank 0, 3 or 6.

Moreover, the polynomial t2−t−1 always has two zeroes α and β in Zm, and if λ ∈ {α, β},
then the elements xλ = w1w4w5w

λ
6 , yλ = w2w

λ
4w5w6 and zλ = w3w4w

λ
5w6 generate a G-

invariant subgroup of rank 3. It follows that L ∼= (Zj)
3 ⊕ (Z`)

3 for some j and ` dividing

m, with two possibilities for L for each pair (j, `) such that j > `: one generated by the

images of the (m/j)th powers of xα, yα and zα and the (m/`)th powers of xβ, yβ and zβ,

and the other with the roles of α and β reversed.

Similarly, when k = 5, every layer Li/Li+1 has rank 0, 3 or 6, but in this case the

polynomial t2 − t− 1 has a zero only in Zm only when m = k = 5, and it follows that if

some layer Li/Li+1 has rank 3, then the next layer Li+1/Li+2 must have rank 6. Hence for

e > 1, we have L ∼= (Z`)
6 or L ∼= (Z5`)

3 ⊕ (Z`)
3 for some ` dividing m/5. Any subgroup

of the latter form is generated by the images of the (m/`)th powers of the elements xλ,

yλ and zλ (given above) and the (m/5`)th powers of all the wi.

Finally, when k = 2, an easy analysis of the situation for the case m = 23 = 8 shows

that L/K(m) can have at most one non-trivial layer of rank less than 6. More specifically,

the smallest non-trivial layer (which we might call the ‘top’ layer) must have rank 4, 5 or
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6, and all other non-trivial layers have rank 6. This top layer can be specified in terms of

any one of the four non-trivial proper G-invariant subgroups of K/K(2) found above, or

have rank 6, and it then determines L/K(m) uniquely.

Putting these observations together, we find that the only possibilities for a normal

subgroup L of G contained in K with index |K :L| being a power of a prime k are those

included in the summary Table 6.2.

Index |K :L| Generating set for L Quotient K/L

d6 = k6t, for any k wdi for all i (Zd)
6

c3d3 = k3(s+t), with s < t, x cα, y
c
α, z

c
α, x

d
β , y

d
β , z

d
β , (Zc)

3 ⊕ (Zd)
3

for k ≡ ±1 mod 5 or x cβ, y
c
β , z

c
β , x

d
α, y

d
α , z

d
α

125d6 = 56s+3 x dλ , y
d
λ , z

d
λ , and all w5d

i (Zd)
3 ⊕ (Z5d)

3

2d6 = 26s+1 (w1w3)
d, (w2w3)

d, (w4w5)
d, (w5w6)

d, (Zd)
5 ⊕ Z2d

all w2d
i , and one of w d

1 , w d
4 or (w1w4)

d

4d6 = 26s+2 (w1w3)
d, (w2w3)

d, (w4w5)
d, (w5w6)

d, (Zd)
4 ⊕ (Z2d)

2

and all w2d
i

Table 6.2: Possibilities for 〈h, a, pq〉-invariant subgroup L of K when 〈h, a, pq〉/K ∼= A5

6.3 Automorphism groups of the regular covers

In this section, we consider which of the 〈h, a, pq〉-invariant subgroups of K/K(m) are

normalized by the additional generator p of the larger group G3. Here we will work inside

the group G3/N
′, and adopt the same notation for images of elements in this group.

Note first that if λ is a zero of t2− t− 1 in Zm, then so is −1− λ, and conjugation by

p (which lies in G3/N
′ but not G 1

2 /N
′) takes
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xλ = w1w4w5w
λ
6 7→ w−1

4 w−1
1 w−1

3 w−λ2 = (x−1−λ)
−1(y−1−λ)

−λ(z−1−λ)
−1,

yλ = w2w
λ
4w5w6 7→ w−1

6 w−λ1 w−1
3 w−1

2 = (x−1−λ)
−λ(y−1−λ)

−1(z−1−λ)
−1,

zλ = w3w4w
λ
5w6 7→ w−1

5 w−1
1 w−λ3 w−1

2 = (x−1−λ)
−1(y−1−λ)

−1(z−1−λ)
−λ.

Hence in particular, if t2 − t− 1 has two distinct zeroes α and β in Zm, then conjugation

by p interchanges the rank 3 subgroups generated by {x`α, y`α, z`α} and {x`β, y`β, z`β} for each

divisor ` of m, while if there is just one zero (namely in the case m = k = 5), then the

rank 3 subgroup generated by {xλ, yλ, zλ} is preserved.

On the other hand, in the case k = 2, we note that conjugation by p interchanges

w1w3 with w4w5, and w2w3 with w5w6, and w1 with w4, and so fixes w1w4. Hence p

preserves the rank 4 subgroup generated by S = {w1w3, w2w3, w4w5, w5w6} and the rank

5 subgroup generated by S ∪ {w1w4}, but interchanges the rank 5 subgroups generated

by S ∪ {w1} and S ∪ {w4}.

It follows that all of the covers of the Petersen graph that arise in the cases described

by rows 1, 3 and 5 of Table 6.2, and one of the three cases in row 4, admit a 3-arc-regular

group of automorphisms, while the others do not. Also none of these covers can be 4-arc-

or 5-arc-transitive, by Corollary 2.4.2 (or [26, Theorem 3]), and each of them is unique

up to isomorphism.

6.4 Summary

Thus we have the following theorem:

Theorem 6.4.1 Let m = ke be any power of a prime k, with e > 0. Then the arc-

transitive regular covers of the Petersen graph with abelian covering group of exponent m

are as follows :

(a) If k ≡ ±2 mod 5 and k > 2, there is exactly one such cover, namely a 3-arc-regular

cover with covering group (Zm)6.
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(b) If k ≡ ±1 mod 5, then there are exactly e + 1 such covers, namely a 3-arc-regular

cover with covering group (Zm)6 plus one 2-arc-regular cover with covering group

(Z`)
3 ⊕ (Zm)3 for each proper divisor ` of m.

(c) If k = 5, then there are exactly two such covers, namely one 3-arc-regular cover

with covering group (Zm)6 and one 3-arc-regular cover with covering group (Zm/5)
3⊕

(Zm)3.

(d) If k = 2, then there are exactly 4 such covers, namely three 3-arc-regular covers with

covering groups (Zm)6, (Zm/2)
4 ⊕ (Zm)2, and (Zm/2)

5 ⊕ Zm, plus one 2-arc-regular

cover with covering group (Zm/2)
5 ⊕ Zm.

Remark 6.4.2 In case (c) of the above theorem, taking m = 5 gives a 3-arc-regular cubic

graph of order 1250, which turns out to have diameter 10 and girth 16. In fact, at the time

of writing, this is the largest known connected 3-valent graph of diameter 10. It was found

almost by accident in 2006 by Conder, as a result of a computation to find all symmetric

cubic graphs of order up to 2048, which he has since extended to find all symmetric cubic

graphs of order up to 10000. The existence of this graph as a cover of the Petersen graph

was one of the motivation for this thesis project.



Chapter 7

Symmetric abelian regular covers

of the Heawood graph

In 2004, Malnič, Marušič and Potočnik [49] classified all the semi-symmetric elementary

abelian regular covers of the Heawood graph, using the method of finding invariant sub-

spaces. The same method may be used to classify all the symmetric homocyclic regular

covers, but is difficult to apply for other kinds of abelian regular covers.

In this Chapter, we determine all the symmetric abelian regular covering graphs of the

Heawood graph. The numbers of covers and the largest value of s for which each cover is

s-arc-transitive are also given.

One remarkable finding is that although every arc-transitive group of automorphisms

of the Heawood graph H is either 1-arc-regular or 4-arc-regular, there exist two families

of abelian regular covers of H that are 2-arc-regular. Another interesting outcome is

the appearance of examples of a regular covering graph of H with two non-isomorphic

possibilities for the covering group.

81
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7.1 Preliminaries

We know that the Heawood graph (the incidence graph of a projective plane of order

7) is the only symmetric cubic graph of order 14. This graph is 4-arc-regular, of type

41. Its automorphism group is PGL(2, 7), of order 336. Every other arc-transitive group

of automorphisms of the Heawood graph lies in a conjugacy class of eight arc-regular

subgroups of PGL(2, 7), each of which is isomorphic to a semi-direct product C7 o3 C6

(where the 3 indicates that a generator of C6 conjugates each element of C7 to its 3rd

power), of order 42.

Take the group G 1
4 , with presentation 〈h, a, p, q, r | h3 = a2 = p2 = q2 = r2 = (pq)2 =

(pr)2 = p(qr)2 = h−1phq = h−1qhpq = (hr)2 = (ap)2 = aqar = 1 〉, and observe that

the three elements h, a and p suffice as generators (because q = h−1ph and r = aqa).

This group G 1
4 has two normal subgroups of index 336, both with quotient PGL(2, 7),

but these are interchanged by the outer automorphism (induced by conjugation by an

element of the larger group G5) that takes the three generators h, a and p to h, ap and p

respectively, and so without loss of generality we can take either one of them.

We will take the one that is contained in the subgroup G1 = 〈h, a〉; this is a normal

subgroup N of index 42 in G1 with G1/N ∼= C7 o3 C6.

Using Reidemeister-Schreier theory or the Rewrite command in Magma, we find that

the subgroup N is free of rank 8, on generators

w1 = (ha)6, w2 = hah−1ah−1ahahah−1a,

w3 = (h−1a)6, w4 = h−1ahah−1ah−1ahaha,

w5 = hah−1ahah−1ah−1aha, w6 = hahah−1ahah−1ah−1a,

w7 = h−1ahahah−1ahah−1a, w8 = h−1ah−1ahahah−1aha.

Easy calculations show that the generators h, a and p act by conjugation particularly

nicely, as below:
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h−1w1h = w−1
3 a−1w1a = w−1

3 p−1w1p = w5

h−1w2h = w−1
4 a−1w2a = w−1

2 p−1w2p = w6

h−1w3h = w2w
−1
7 a−1w3a = w−1

1 p−1w3p = w7

h−1w4h = w−1
3 w6 a−1w4a = w−1

8 p−1w4p = w8

h−1w5h = w−1
8 a−1w5a = w−1

7 p−1w5p = w1

h−1w6h = w−1
7 a−1w6a = w−1

6 p−1w6p = w2

h−1w7h = w1w
−1
4 a−1w7a = w−1

5 p−1w7p = w3

h−1w8h = w5w
−1
8 a−1w8a = w−1

4 p−1w8p = w4.

Now take the quotient G 1
4 /N

′, which is an extension of the free abelian group N/N ′ ∼=
Z8 by the group G 1

4 /N
∼= PGL(2, 7), and replace the generators h, a, p and all wi by their

images in this group. Also let K denote the subgroup N/N ′, and let G be G1/N
′. Then,

in particular, G is an extension of Z8 by C7 o3 C6.

By the above observations, we see that the generators h, a and p induce linear trans-

formations of the free abelian group K ∼= Z8 as follows:

h 7→



0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0

0 0 −1 0 0 1 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0

1 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 −1



,
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a 7→



0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 0 −1 0 0 0

0 0 0 −1 0 0 0 0



,

and

p 7→



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0



.

These matrices generate a group isomorphic to PGL(2, 7), with the first two generating

a subgroup isomorphic to C7 o3 C6.

Next, the character table of the group C7 o3 C6 is as in Table 7.1.

By inspecting traces of the matrices of orders 2, 3, 6 and 7 induced by each of a, h±1,

(ah)±1 and [a, h], we see that the character of the 8-dimensional representation of C7o3C6

over Q associated with the above action of G = 〈h, a〉 on K is χ5 + χ6 + χ7, which is

expressible as the sum of χ5 +χ6 and χ7, the characters of two irreducible representations

over Q of dimensions 2 and 6.

In the next two sections, for every positive integer m we let K(m) denote the subgroup

of K generated by the mth powers of all its elements, and if m is a prime-power, say

m = ke, then we will consider G1-invariant subgroups of each layer Kj−1/Kj of K/K(m),
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Element order 1 2 3 3 6 6 7

Class size 1 7 7 7 7 7 6

χ1 1 1 1 1 1 1 1

χ2 1 −1 1 1 −1 −1 1

χ3 1 1 λ λ2 λ2 λ 1

χ4 1 1 λ2 λ λ λ2 1

χ5 1 −1 λ λ2 −λ2 −λ 1

χ6 1 −1 λ2 λ −λ −λ2 1

χ7 6 0 0 0 0 0 −1

Table 7.1: The character table of subgroup C7 o3 C6 where λ is a primitive cube root of 1

where Kj = K(kj) for every non-negative integer j, in order to find G1-invariant subgroups

of K/K(m).

7.2 Characteristic other than 7

When we reduce by any prime k, the quotient K/K(k) ∼= (Zk)
8 is the direct sum of two

G1-invariant subgroups of ranks 2 and 6, and the latter is irreducible when k 6= 7. In fact,

these two subgroups are the images of the normal subgroups U and V of ranks 2 and 6

in G generated by

u1 = w1w3w
−1
5 w−1

6 w−1
7 and u2 = w2w4w

−1
5 w−1

6 w−1
7 w8

and

v1 = w1, v2 = w2w
−1
7 , v3 = w3, v4 = w4w

−1
8 , v5 = w5w

−1
7 and v6 = w6w

−1
7 w8;

with conjugation of the respective generators by h and a given as follows:

uh1 = u−1
1 u2, uh2 = u−1

1 , ua1 = u−1
1 and ua2 = u−1

2 ,
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vh1 = v−1
3 , vh2 = v−1

1 , vh3 = v2, vh4 = v−1
3 v−1

5 v6, vh5 = v−1
1 v4, vh6 = v−1

1 v4v5,

va1 = v−1
3 , va2 = v−1

2 v5, va3 = v−1
1 , va4 = v4, va5 = v5, va6 = v−1

4 v5v
−1
6 .

Hence for every prime k 6= 7 and every pair (c, d) of integer powers of k, there exists

a G1-invariant subgroup L of K with index |K : L| = c 2d6 and with quotient K/L ∼=
(Zc)

2 ⊕ (Zd)
6, generated by the images of the elements u ci for 1 ≤ i ≤ 2 and v dj for

1 ≤ j ≤ 6.

When k ≡ 2 mod 3 and k > 2, the corresponding subgroups of K/K(k) are both

irreducible as G1-invariant subgroups, since the mod k reductions of the characters χ5+χ6

and χ7 are irreducible over Zk. The same holds also when k = 2, since there is no G1-

invariant cyclic subgroup of the rank 2 subgroup in that case. Hence for every prime k ≡ 2

mod 3, the only G1-invariant subgroups of K with index a power of k are the subgroups

with quotients K/L ∼= (Zc)
2 ⊕ (Zd)

6 described above.

When k ≡ 1 mod 3, however, the rank 2 subgroup of K/K(k) splits into the direct

sum of two G1-invariant subgroups of rank 1, generated by the images of

zt = w1w
t
2w3w

t
4w

t2

5 w
t2

6 w
t2

7 w
t
8

for t ∈ {λ, λ2}, where λ is a primitive cube root of 1 in Zk.

Here

z at = w−1
1 w−t2 w−1

3 w−t4 w−t
2

5 w−t
2

6 w−t
2

7 w−t8 = z−1
t ,

while

z ht = w−t
2

1 w−1
2 w1+t

3 wt+t
2

4 w−t5 w−t6 w1+t2

7 wt+t
2

8 ,

the image of which in K/K(k) is z−t
2

t , since t2 + t+ 1 ≡ 0 mod k in each case. The same

holds when k is replaced by a higher power of K, say m = ke : if λ is a primitive cube

root of 1 in Zm, and zt = w1w
t
2w3w

t
4w

t2

5 w
t2

6 w
t2

7 w
t
8 for t ∈ {λ, λ2}, then the image of each

of zλ and zλ2 generates a G1-invariant subgroup of rank 1 in K/K(m), and their direct

sum is a G1-invariant subgroup of rank 2. Moreover, the latter is complementary to the

image of V (of rank 6) when k 6= 7.
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It follows that for every prime k ≡ 1 mod 3, and for every triple (b, c, d) of powers of

k with b 6= c, there is also a G1-invariant subgroup L of K with index |K :L| = bcd6 and

quotient K/L ∼= Zb ⊕ Zc ⊕ (Zd)
6, generated by the images of the elements z bλ , z cλ2 and v dj

for 1 ≤ j ≤ 6. Moreover, when k 6= 7, each layer of any G1-invariant subgroup L of K

with index a power of k must have rank 1, 2, 6, 7 or 8, and it is easy to see that there are

no other possibilities for L (when k ≡ 1 mod 3 and k 6= 7).

When k = 3, the quotient K/K(k) ∼= (Z3)
8 has six G1-invariant subgroups. These

include the subgroups of ranks 0, 2, 6 and 8 that occur for every other prime k, plus

the cyclic subgroup generated by the image of z1 = w1w2w3w4w5w6w7w8 (which coincides

with the image of u1u2 = w1w2w3w4w
−2
5 w−2

6 w−2
7 w8), and the subgroup of rank 7 generated

by the images of z1 and the elements vj for 1 ≤ j ≤ 6.

In K/K(9), however, there is no G1-invariant cyclic subgroup of order 9; the only non-

trivial G1-invariant subgroups of K/K(9) of rank 1 or 2 are unique subgroups isomorphic

to Z3, Z3⊕Z3, Z9⊕Z3 and Z9⊕Z9, generated by the images of {(u1u2)
3}, {(u1u2)

3, u 3
2 }

(or {u3
1, u

3
2}), {u1u2, u

3
2 } and {u1u2, u2} (or {u1, u2}), respectively. It follows that every

G1-invariant subgroup L of K with index a power of 3 generated by the images of the

elements (u1u2)
b, u c2 and v dj for 1 ≤ j ≤ 6, where b, c and d are powers of 3 with c = b or

3b, in which case |K :L| = bcd6 and K/L ∼= Zb ⊕ Zc ⊕ (Zd)
6.

This completes the analysis of G1-invariant subgroups of K/K(m) when m is a power

of some prime k 6= 7. These will be summarised in Table 7.3 in Section 7.4.

7.3 Characteristic 7

The case k = 7 is not quite so straightforward. In this case, each layer can have rank 0,

1, 2, 3, 4, 5, 6, 7 or 8, depending on the layers above it. Here, as we will see, in K/K(7)

the images of the subgroups U and V of ranks 2 and 6 considered in the previous section

intersect non-trivially in a subgroup of rank 1.

To describe the possibilities for a G1-invariant subgroup of each layer, again it helps
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to let λ be a primitive cube root of 1 in Zm (when m = 7e), and define

zt = w1w
t
2w3w

t
4w

t2

5 w
t2

6 w
t2

7 w
t
8 for t ∈ {λ, λ2}. This time, however, we choose λ so that

λ ≡ 2 mod 7 (while λ2 ≡ 4 mod 7). Also, take v1 = w1, v2 = w2w
−1
7 , v3 = w3,

v4 = w4w
−1
8 , v5 = w5w

−1
7 and v6 = w6w

−1
7 w8 (as before), and define yt = w7w

t
8 for each

t ∈ {λ, λ2}. Then an alternative basis for the group K/K(m) is formed by the images of

the following eight elements:

x1 = zλ = w1w
λ
2 w3w

λ
4 w

λ2

5 w λ2

6 w λ2

7 w λ
8 , x2 = zλ2 = w1w

λ2

2 w3w
λ2

4 w λ
5 w

λ
6 w

λ
7 w

λ2

8 ,

x3 = v2v3v
2
4 v5v

2
6 = w2w3w

2
4w5w

2
6w
−4
7 , x4 = v3v

−2
6 = w3w

−2
6 w 2

7w
−2
8 ,

x5 = v4v
3
5 = w4w

3
5w
−3
7 w−1

8 , x6 = v6y
2
λ = w6w7w

1+2λ
8 ,

x7 = v6 = w6w
−1
7 w8, x8 = yλ2 = w7w

λ2

8 .

With help from Magma [3], we find that the group K/K(7) has exactly 22 G1-invariant

subgroups. We will denote the trivial subgroup by T0 and the group K/K(7) itself by T21,

and then the 20 non-trivial proper G1-invariant subgroups can be labelled T1 to T20 and

summarised in Table 7.2.

Rank Generated by images of Rank Generated by images of

T1 1 x1 T2 1 x2

T3 2 x1, x2 T4 2 x1, x3

T5 3 x1, x2, x3 T6 3 x1, x3, x4

T7 4 x1, x2, x3, x4 T8 4 x1, x3, x4, x5

T9 5 x1, x2, x3, x4, x5 T10 5 x1, x3, x4, x5, x6

T11 5 x1, x3, x4, x5, x2x6 T12 5 x1, x3, x4, x5, x
2
2x6

T13 5 x1, x3, x4, x5, x
3
2x6 T14 5 x1, x3, x4, x5, x

4
2x6

T15 5 x1, x3, x4, x5, x
5
2x6 T16 5 x1, x3, x4, x5, x

6
2x6

T17 6 x1, x2, x3, x4, x5, x6 T18 6 x1, x3, x4, x5, x
4
2x6, x7

T19 7 x1, x2, x3, x4, x5, x6, x7 T20 7 x1, x3, x4, x5, x
4
2x6, x7, x8

Table 7.2: The non-trivial proper G1-invariant subgroups of K/K(7)
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When the exponent m of K/L is a higher power of 7, say m = 7e with e > 1, finding

the G1-invariant subgroups of K/K(m) is much more challenging than in earlier cases

(namely in the previous Section and Chapters 3 to 6).

For all j > 0, the G1-invariant subgroups of the jth layer Kj−1/Kj = K(7j−1)/K(7j)

of K are isomorphic to the G1-invariant subgroups of K/K(7), and are generated by the

images of the (7j−1)th powers of the corresponding sets of xi in each case. In some sense,

what we have to do is see how the possibilities at each layer can fit together.

For each t ∈ {λ, λ2} the image of zt generates a G1-invariant subgroup of rank 1 in

K/K(m), and these two subgroups may be viewed as a tower of copies of T1 and a tower of

copies of T2 (from Table 7.2). The images of zλ and zλ2 together generate a G1-invariant

subgroup of rank 2, coinciding with the image of the subgroup U defined earlier, since in

K/K(m) the image of zt is the same as the image of u1u
t
2 for each t (because −1− t ≡ t2

mod m). (Also conversely, z λλ z
−1
λ2 = uλ−1

1 and z−1
λ zλ2 = uλ

2−λ
2 .) This subgroup is a tower

of copies of the subgroup T3 from Table 7.2.

Also, and again as before, the subgroup V generated by v1 = w1, v2 = w2w
−1
7 ,

v3 = w3, v4 = w4w
−1
8 , v5 = w5w

−1
7 and v6 = w6w

−1
7 w8 is G1-invariant, and so this gives a

G1-invariant homocyclic subgroup of rank 6 in K/K(m), which can be viewed as a tower

of copies of T18. (It is an easy to show that in K/K(7), the images of T18 is isomorphic to

the images of V .)

Note that the intersection of the images of the rank 6 subgroup V and the rank 2

subgroup U (or equivalently, the intersection of the T3 and T18 towers) is neither trivial

nor one of the rank 1 towers generated by zλ and zλ2 , except in the case m = 7: in fact,

it is the cyclic subgroup of order 7 generated by the image of z
m/7
λ (= x

m/7
1 ).

Next, for each t ∈ {λ, λ2}, the image of the subgroup generated by V ∪ {yt} is a

G1-invariant subgroup of rank 7 in K/K(m), since

y ht = w1w
−1
4 w t

5w
−t
8 = w1(w4w

−1
8 )−1(w5w

−1
7 )t(w7w

t
8)tw

−(1+t+t2)
8 = v1v

−1
4 v t5y

t
tw
−(1+t+t2)
8

(with 1 + t+ t2 ≡ 0 mod m), while

y at = w−1
5 w−t4 = (w4w

−1
8 )−t(w5w

−1
7 )−1(w7w

t
8)−1 = v−t4 v−1

5 y−1
t .
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These two homocyclic subgroups of rank 7 may be viewed as a tower of copies of T19

(when t = λ) and a tower of copies of T20 (when t = λ2), since in K/K(7) the images of

x2, x6 and x8 coincide with those of v1v
4
2 v3v

4
4 v

2
5 v

2
6 y

3
λ , v6y

2
λ and yλ2 respectively. Just for

the sake of interest, the other rank 6 subgroup of K/K(7), namely T17, is generated by

the images of v1v
2
6 , v2v

5
6 , v3v

5
6 , v4v

5
6 , v5v

3
6 and v6y

2
λ .

It turns out that the above towers of copies of T1, T2, T3, T18, T19 or T20 account for

all of the homocyclic G1-invariant subgroups of exponent m in K/K(m), but that will not

become clear until we have found all the G1-invariant subgroups of K/K(m), below.

To see exactly what happens, it is helpful to consider the case m = 72 = 49. Subgroups

of K/K(49) that have rank 8 must all have second layer equal to K1/K2 (and a subgroup of

K/K(7) as first layer), and are not so interesting for us. Similarly, subgroups of exponent

7 have trivial first layer, and we will ignore those for now.

There are exactly 101 non-trivial subgroups of K/K(49) of exponent 49 and rank at

most 7 that are normal in G/K(49), and these can be summarised as follows, with V (j)

denoting the set {v1
j, v2

j, v3
j, v4

j, v5
j, v6

j} of jth powers of the generators of V :

Rank 1:

• two subgroups isomorphic to Z49, generated by the images of x1 and x2;

Rank 2:

• three subgroups isomorphic to Z49 ⊕ Z7, generated by the images of

{x1, x2
7}, {x1, x3

7} and {x2, x1
7};

• one subgroup isomorphic to (Z49)
2, generated by the image of {x1, x2};

Rank 3:

• three subgroups isomorphic to Z49 ⊕ (Z7)
2, generated by the images of

{x1, x2
7, x3

7}, {x1, x3
7, x4

7} and {x2, x1
7, x3

7};
• one subgroup isomorphic to (Z49)

2 ⊕ Z7, generated by the image of {x1, x2, x3
7};

Rank 4:

• three subgroups isomorphic to Z49 ⊕ (Z7)
3, generated by the images of

{x1, x2
7, x3

7, x4
7}, {x1, x3

7, x4
7, x5

7} and {x2, x1
7, x3

7, x4
7};
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• one subgroup isomorphic to (Z49)
2⊕ (Z7)

2, generated by the image of {x1, x2, x3
7, x4

7};

Rank 5:

• 15 subgroups isomorphic to Z49 ⊕ (Z7)
4, generated by the images of

{x1, x2
7, x3

7, x4
7, x5

7}, {x1, x3
7, x4

7, x5
7, (x i

2 x6)
7} for 0 ≤ i ≤ 6,

and {x2 x6
7i, x1

7, x3
7, x4

7, x5
7} for 0 ≤ i ≤ 6;

• 7 subgroups isomorphic to (Z49)
2 ⊕ (Z7)

3, generated by the images of

{x1, x2 x6
7i, x3

7, x4
7, x5

7} for 0 ≤ i ≤ 6;

Rank 6:

• 9 subgroups isomorphic to Z49 ⊕ (Z7)
5, generated by the images of

{x1, x2
7, x3

7, x4
7, x5

7, x6
7}, {x2, x1

7, x3
7, x4

7, x5
7, x6

7}
and {x1x8

7i} ∪ V (7) for 0 ≤ i ≤ 6;

• two subgroups isomorphic to (Z49)
2 ⊕ (Z7)

4, generated by the images of

{x1, x2, x3
7, x4

7, x5
7, x6

7} and {x1x8
14, x3} ∪ V (7);

• one subgroup isomorphic to (Z49)
3 ⊕ (Z7)

3, generated by the image of

{x1x8
14, x3, x4} ∪ V (7);

• one subgroup isomorphic to (Z49)
4 ⊕ (Z7)

2, generated by the image of

{x1x8
14, x3, x4, x5} ∪ V (7);

• 7 subgroups isomorphic to (Z49)
5 ⊕ Z7, generated by the images of

{x1x8
14, x3, x4, x5, (x

4
2 x6)x6

7i} ∪ V (7) for 0 ≤ i ≤ 6;

• one subgroup isomorphic to (Z49)
6, generated by the image of V (1);

Rank 7:

• 9 subgroups isomorphic to Z49 ⊕ (Z7)
6, generated by the images of

{x1, x8
7} ∪ V (7), {x2, (x6x

−1
7 )7} ∪ V (7) and {x1x8

7i, (x6x
−1
7 )7} ∪ V (7) for 0 ≤ i ≤ 6;

• 9 subgroups isomorphic to (Z49)
2 ⊕ (Z7)

5, generated by the images of

{x1x8
14, x3, (x6x

−1
7 )7} ∪ V (7), {x1, x3, x8

7} ∪ V (7),

and {x1x8
7i, x2, (x6x

−1
7 )7} ∪ V (7) for 0 ≤ i ≤ 6;

• three subgroups isomorphic to (Z49)
3 ⊕ (Z7)

4, generated by the images of

{x1x8
14, x2, x3, (x6x

−1
7 )7} ∪ V (7), {x1x8

14, x3, x4, (x6x
−1
7 )7} ∪ V (7),
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and {x1, x3, x4, x8
7} ∪ V (7);

• three subgroups isomorphic to (Z49)
4 ⊕ (Z7)

3, generated by the images of

{x1x8
14, x2, x3, x4, (x6x

−1
7 )7} ∪ V (7), {x1x8

14, x3, x4, x5, (x6x
−1
7 )7} ∪ V (7),

and {x1, x3, x4, x5, x8
7} ∪ V (7);

• 15 subgroups isomorphic to (Z49)
5 ⊕ (Z7)

2, generated by the images of

{x1, x3, x4, x5, (x
4

2 x6)x6
7i, x8

7} ∪ V (7) for 0 ≤ i ≤ 6, {x1x8
14, x2, x3, x4, x5} ∪ V (7),

and {x1x8
14, x3, x4, x5, x

i
2 x6, (x6x

−1
7 )7} ∪ V (7) for 0 ≤ i ≤ 6;

• three subgroups isomorphic to (Z49)
6 ⊕ Z7, generated by the images of

{x1x8
14, x2, x3, x4, x5, x6} ∪ V (7), V (1) ∪ {x6

7} and V (1) ∪ {x8
7};

• two subgroups isomorphic to (Z49)
7, generated by the images of

V (1) ∪ {x6} and V (1) ∪ {x8}.

Now just as we did for the examples considered in previous Chapters, we may represent

each of the above subgroups as a pair (Ti, Tj) indicating the first layer L0/L1 and second

layer L1/L2 of the subgroup L, respectively, where Lj = L ∩Kj = L ∩K(7j) for all j. In

order, the pairs that occur are as follows:

Rank 1: (T1, T1) and (T2, T2) once each;

Rank 2: (T1, T3), (T1, T4) and (T2, T3) once each; (T3, T3) once;

Rank 3: (T1, T5), (T1, T6) and (T2, T5) once each; (T3, T5) once;

Rank 4: (T1, T7), (T1, T8) and (T2, T7) once each; (T3, T7) once;

Rank 5: (T1, Tj) for 9 ≤ j ≤ 16 once each, and (T2, T9) seven times;

(T3, T9) seven times;

Rank 6: (T1, T17) and (T2, T17) once each, and (T1, T18) seven times;

(T3, T17) and (T4, T18) once each; (T6, T18) once; (T8, T18) once;

(T14, T18) seven times; (T18, T18) once;

Rank 7: (T1, T20) and (T2, T19) once each, and (T1, T19) seven times;

(T4, T19) and (T4, T20) once each, and (T3, T19) seven times;

(T5, T19), (T6, T19) and (T6, T20) once each;

(T7, T19), (T8, T19) and (T8, T20) once each;
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(T14, T20) seven times, and (Tj, T19) for 9 ≤ j ≤ 16 once each;

(T17, T19), (T18, T19) and (T18, T20) once each;

(T19, T19) and (T20, T20) once each.

Note that these pairs are also exactly the same as the pairs that occur as G1-invariant

subgroups of any given ‘double-layer’ section Kj−1/Kj+1 of K.

One thing that is immediately clear from them is that each allowable pair occurs

either once only, or exactly seven times. Those that occur seven times are the following:

(T1, T18), (T1, T19), (T2, T9), (T3, T9), (T3, T19), (T14, T18) and (T14, T20). These are the cases

involving an extra parameter i, with 0 ≤ i ≤ 6.

Moreover, the generating sets for the subgroups that arise in the case of the pair

(T3, T9) are easily obtained from those for the pair (T2, T9), simply by adjoining x1 = zλ,

the generator of a rank 1 tower. Similarly, those for the pair (T1, T19) are easily obtained

from those for the pair (T1, T18), by adjoining (x6x
−1
7 )7 = y 7

λ , while those for the pair

(T3, T19) can be obtained from those for the pair (T1, T19) by adjoining x2 = zλ2 (or from

the pair (T2, T9) by adjoining zλ2 and y 7
λ ), and those for the pair (T14, T20) can be obtained

from those for the pair (T14, T18) by adjoining x8
7 = yλ2

7. Adjoining these extra generators

does not create any particular complications, and so for larger values of m, we need only

pay close attention to the cases involving the pairs (T1, T18), (T2, T9) and (T14, T18).

When m = 343, there are 216 G1-invariant subgroups with exponent m and rank at

most 7, and we find the following triples occur for the subgroups in the first three layers

of these subgroups:

Rank 1: (T1, T1, T1) and (T2, T2, T2) once each;

Rank 2: (T1, T1, T3), (T2, T2, T3), (T1, T3, T3), (T2, T3, T3), (T3, T3, T3) and (T1, T1, T4)

once each;

Rank 3: (T1, T1, T5), (T2, T2, T5), (T1, T3, T5), (T2, T3, T5), (T3, T3, T5) and (T1, T1, T6)

once each;

Rank 4: (T1, T1, T7), (T2, T2, T7), (T1, T3, T7), (T2, T3, T7), (T3, T3, T7) and (T1, T1, T8)

once each;
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Rank 5: (T1, T1, Tj) for 9 ≤ j ≤ 16 once each,

and (T2, T2, T9), (T1, T3, T9), (T2, T3, T9) and (T3, T3, T9) seven times each;

Rank 6: (T1, T1, T17), (T2, T2, T17), (T1, T3, T17), (T2, T3, T17), (T3, T3, T17),

(T4, T18, T18), (T6, T18, T18), (T8, T18, T18) and (T18, T18, T18) once each,

and (T1, T1, T18), (T1, T18, T18), (T14, T18, T18) seven times each;

Rank 7: (T2, T2, T19), (T2, T5, T19), (T2, T7, T19), (T2, T17, T19), (T4, T18, T19), (T6, T18, T19),

(T8, T18, T19), (T18, T18, T19), (T2, T19, T19), (Tj, T19, T19) for 4 ≤ j ≤ 19,

(T1, T1, T20), (T1, T4, T20), (T1, T6, T20), (T1, T8, T20),(T4, T18, T20), (T6, T18, T20),

(T8, T18, T20), (T18, T18, T20), (T1, T20, T20), (T4, T20, T20), (T6, T20, T20),

(T8, T20, T20), (T18, T20, T20), (T20, T20, T20) once each;

and (T1, T1, T19), (T1, T3, T19), (T2, T3, T19), (T3, T3, T19), (T2, T9, T19),

(T1, T18, T19), (T14, T18, T19), (T1, T19, T19), (T3, T19, T19), (T1, T14, T20),

(T1, T18, T20), (T14, T18, T20) and (T14, T20, T20), seven times each.

(The above observations can be confirmed with the help of Magma.)

7.4 Summary

Putting the results of Sections 7.2 and 7.3 together, we find that the only possibilities for

a normal subgroup L of G contained in K with index |K :L| being a power of a prime k

are those included in the summary Table 7.3.

Each row of this table describes a class of such subgroups, and for ease of reference,

the jth class is denoted in the left-most column by the symbol of the form ‘jS’ where

S is a single parameter or sequence of parameters, sometimes with an asterisk added.

The parameters b, c and d are powers of k, and unless otherwise indicated, we will take

b = kt, c = ku, d = kv, and e = kw. If the asterisk appears, then there are exactly seven

subgroups of that type with the given parameters, while if it does not, then there is just

one such subgroup. The second column gives conditions on the prime k and the other

parameters. The third column gives a description of the subgroup(s) in the class; when



7.4. SUMMARY 95

k 6= 7 this is an explicit generating set for L, but when k = 7, we indicate the layers of

L from the top down, by a sequence of Tj’s (for various j) followed by a term Kw (for

K(7w) = K(e)), where e = 7w is the exponent of K/L. Again we use V (j) to denote the set

{v1
j, v2

j, v3
j, v4

j, v5
j, v6

j} of jth powers of the generators of V . Finally, the fourth column

gives the structure of the quotient K/L.

For notational convenience, we use the symbol fTj to indicate a subsequence Tj, f. . ., Tj

of f successive copies of the subgroup Tj. Hence, for example, the sequence (2T2, T19, K3)

denotes a subgroup L such that K/L has exponent 73 = 343, with L3 = K3 = K(73), and

for this subgroup, L/L3 is a a copy of T19 extended by a tower of two copies of T2 (as in the

first of the rank 7 subgroups listed for the case m = 343 in the previous section). Since T2

and T19 have ranks 1 and 7, we have K/L ∼= (Z343/343)
1⊕(Z343/7)

6⊕Z343/1
∼= (Z49)

6⊕Z343

for this example .

Explicit generating sets for all these cases can be found in the Appendix.

Type Conditions Description of L Quotient K/L

1(c,d) k 6= 7 〈u c1 , u c2 , V (d)〉 (Zc)
2 ⊕ (Zd)

6

2(b,c,d) k ≡ 1 mod 3; k 6= 7; b 6= c 〈z bλ , z c
λ2 , V (e)〉 Zb ⊕ Zc ⊕ (Zd)

6

3(c,d) k = 3 〈(u1u2)
c, u 3c

2 , V
(d)〉 Zc ⊕ Z3c ⊕ (Zd)

6

4e k = 7 (wT0, Kw) (Ze)
8

5(d,e) k = 7; d < e (vT0,
w−vT1, Kw) Zd ⊕ (Ze)

7

6(d,e) k = 7; d < e (vT0,
w−vT2, Kw) Zd ⊕ (Ze)

7

7(c,d,e) k = 7; c < d < e (uT0,
v−uT1,

w−vT3, Kw) Zc ⊕ Zd ⊕ (Ze)
6

8(c,d,e) k = 7; c < d < e (uT0,
v−uT2,

w−vT3, Kw) Zc ⊕ Zd ⊕ (Ze)
6

9(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T4, Kw) Zd ⊕ Z e

7
⊕ (Ze)

6
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10(d,e) k = 7; d < e (vT0,
w−vT3, Kw) (Zd)

2 ⊕ (Ze)
6

11e k = 7; e > 1 (w−1T0, T4, Kw) (Z e
7
)2 ⊕ (Ze)

6

12(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT1,

w−v−1T3, T5, Kw) Zc ⊕ Zd ⊕ Z e
7
⊕ (Ze)

5

13(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT2,

w−v−1T3, T5, Kw) Zc ⊕ Zd ⊕ Z e
7
⊕ (Ze)

5

14(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T5, Kw) Zd ⊕ (Z e

7
)2 ⊕ (Ze)

5

15(d,e) k = 7; d < e
7

(vT0,
w−v−1T2, T5, Kw) Zd ⊕ (Z e

7
)2 ⊕ (Ze)

5

16(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T6, Kw) Zd ⊕ (Z e

7
)2 ⊕ (Ze)

5

17(d,e) k = 7; d < e
7

(vT0,
w−v−1T3, T5, Kw) (Zd)

2 ⊕ Z e
7
⊕ (Ze)

5

18e k = 7; e > 1 (w−1T0, T5, Kw) (Z e
7
)3 ⊕ (Ze)

5

19e k = 7; e > 1 (w−1T0, T6, Kw) (Z e
7
)3 ⊕ (Ze)

5

20(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT1,

w−v−1T3, T7, Kw) Zc ⊕ Zd ⊕ (Z e
7
)2 ⊕ (Ze)

4

21(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT2,

w−v−1T3, T7, Kw) Zc ⊕ Zd ⊕ (Z e
7
)2 ⊕ (Ze)

4

22(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T7, Kw) Zd ⊕ (Z e

7
)3 ⊕ (Ze)

4

23(d,e) k = 7; d < e
7

(vT0,
w−v−1T2, T7, Kw) Zd ⊕ (Z e

7
)3 ⊕ (Ze)

4

24(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T8, Kw) Zd ⊕ (Z e

7
)3 ⊕ (Ze)

4

25(d,e) k = 7; d < e
7

(vT0,
w−v−1T3, T7, Kw) (Zd)

2 ⊕ (Z e
7
)2 ⊕ (Ze)

4

26e k = 7; e > 1 (w−1T0, T7, Kw) (Z e
7
)4 ⊕ (Ze)

4

27e k = 7; e > 1 (w−1T0, T8, Kw) (Z e
7
)4 ⊕ (Ze)

4

28(c,d,e)
∗ k = 7; c < d < e

7
(uT0,

v−uT1,
w−v−1T3, T9, Kw) Zc ⊕ Zd ⊕ (Z e

7
)3 ⊕ (Ze)

3

29(c,d,e)
∗ k = 7; c < d < e

7
(uT0,

v−uT2,
w−v−1T3, T9, Kw) Zc ⊕ Zd ⊕ (Z e

7
)3 ⊕ (Ze)

3

30(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T9, Kw) Zd ⊕ (Z e

7
)4 ⊕ (Ze)

3
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31(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T10, Kw) Zd ⊕ (Z e

7
)4 ⊕ (Ze)

3

32(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T11, Kw) Zd ⊕ (Z e

7
)4 ⊕ (Ze)

3

33(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T12, Kw) Zd ⊕ (Z e

7
)4 ⊕ (Ze)

3

34(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T13, Kw) Zd ⊕ (Z e

7
)4 ⊕ (Ze)

3

35(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T14, Kw) Zd ⊕ (Z e

7
)4 ⊕ (Ze)

3

36(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T15, Kw) Zd ⊕ (Z e

7
)4 ⊕ (Ze)

3

37(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T16, Kw) Zd ⊕ (Z e

7
)4 ⊕ (Ze)

3

38(d,e)
∗ k = 7; d < e

7
(vT0,

w−v−1T2, T9, Kw) Zd ⊕ (Z e
7
)4 ⊕ (Ze)

3

39(d,e)
∗ k = 7; d < e

7
(vT0,

w−v−1T3, T9, Kw) (Zd)
2 ⊕ (Z e

7
)3 ⊕ (Ze)

3

40e k = 7; e > 1 (w−1T0, T9, Kw) (Z e
7
)5 ⊕ (Ze)

3

41e k = 7; e > 1 (w−1T0, T10, Kw) (Z e
7
)5 ⊕ (Ze)

3

42e k = 7; e > 1 (w−1T0, T11, Kw) (Z e
7
)5 ⊕ (Ze)

3

43e k = 7; e > 1 (w−1T0, T12, Kw) (Z e
7
)5 ⊕ (Ze)

3

44e k = 7; e > 1 (w−1T0, T13, Kw) (Z e
7
)5 ⊕ (Ze)

3

45e k = 7; e > 1 (w−1T0, T14, Kw) (Z e
7
)5 ⊕ (Ze)

3

46e k = 7; e > 1 (w−1T0, T15, Kw) (Z e
7
)5 ⊕ (Ze)

3

47e k = 7; e > 1 (w−1T0, T16, Kw) (Z e
7
)5 ⊕ (Ze)

3

48(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT1,

w−v−1T3, T17, Kw) Zc ⊕ Zd ⊕ (Z e
7
)4 ⊕ (Ze)

2

49(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT2,

w−v−1T3, T17, Kw) Zc ⊕ Zd ⊕ (Z e
7
)4 ⊕ (Ze)

2

50(d,e) k = 7; d < e
7

(vT0,
w−v−1T1, T17, Kw) Zd ⊕ (Z e

7
)5 ⊕ (Ze)

2

51(d,e) k = 7; d < e
7

(vT0,
w−v−1T2, T17, Kw) Zd ⊕ (Z e

7
)5 ⊕ (Ze)

2
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52(d,e)
∗ k = 7; d < e

7
(vT0,

w−v−1T1, T18, Kw) Zd ⊕ (Z e
7
)5 ⊕ (Ze)

2

53(d,e)
∗ k = 7; d < e

49
(vT0, T1,

w−v−1T18, Kw) Zd ⊕ (Z7d)
5 ⊕ (Ze)

2

54(d,e) k = 7; d < e
7

(vT0,
w−v−1T3, T17, Kw) (Zd)

2 ⊕ (Z e
7
)4 ⊕ (Ze)

2

55(d,e) k = 7; d < e
7

(vT0, T4,
w−v−1T18, Kw) (Zd)

2 ⊕ (Z7d)
4 ⊕ (Ze)

2

56(d,e) k = 7; d < e
7

(vT0, T6,
w−v−1T18, Kw) (Zd)

3 ⊕ (Z7d)
3 ⊕ (Ze)

2

57(d,e) k = 7; d < e
7

(vT0, T8,
w−v−1T18, Kw) (Zd)

4 ⊕ (Z7d)
2 ⊕ (Ze)

2

58(d,e)
∗ k = 7; d < e

7
(vT0, T14,

w−v−1T18, Kw) (Zd)
5 ⊕ Z7d ⊕ (Ze)

2

59e k = 7; e > 1 (w−1T0, T17, Kw) (Z e
7
)6 ⊕ (Ze)

2

60(d,e) k = 7; d < e (vT0,
w−vT18, Kw) (Zd)

6 ⊕ (Ze)
2

61(c,d,e)
∗ k = 7; c < d < e

7
(uT0,

v−uT1,
w−v−1T3, T19, Kw) Zc ⊕ Zd ⊕ (Z e

7
)5 ⊕ Ze

62(c,d,e)
∗ k = 7; c < d < e

7
(uT0,

v−uT2,
w−v−1T3, T19, Kw) Zc ⊕ Zd ⊕ (Z e

7
)5 ⊕ Ze

63(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT1, T4,

w−v−1T20, Kw) Zc ⊕ Zd ⊕ (Z7d)
5 ⊕ Ze

64(c,d,e)
∗ k = 7; c < d < e

7
(uT0,

v−uT2, T3,
w−v−1T19, Kw) Zc ⊕ Zd ⊕ (Z7d)

5 ⊕ Ze

65(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT1, T6,

w−v−1T20, Kw) Zc ⊕ (Zd)
2 ⊕ (Z7d)

4 ⊕ Ze

66(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT2, T5,

w−v−1T19, Kw) Zc ⊕ (Zd)
2 ⊕ (Z7d)

4 ⊕ Ze

67(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT1, T8,

w−v−1T20, Kw) Zc ⊕ (Zd)
3 ⊕ (Z7d)

3 ⊕ Ze

68(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT2, T7,

w−v−1T19, Kw) Zc ⊕ (Zd)
3 ⊕ (Z7d)

3 ⊕ Ze

69(c,d,e)
∗ k = 7; c < d < e

7
(uT0,

v−uT1, T14,
w−v−1T20, Kw) Zc ⊕ (Zd)

4 ⊕ (Z7d)
2 ⊕ Ze

70(c,d,e)
∗ k = 7; c < d < e

7
(uT0,

v−uT2, T9,
w−v−1T19, Kw) Zc ⊕ (Zd)

4 ⊕ (Z7d)
2 ⊕ Ze

71(c,d,e)
∗ k = 7; 7c < d < e (uT0, T1,

v−u−1T18,
w−vT19, Kw) Zc ⊕ (Z7c)

5 ⊕ Zd ⊕ Ze

72(c,d,e)
∗ k = 7; 7c < d < e (uT0, T1,

v−u−1T18,
w−vT20, Kw) Zc ⊕ (Z7c)

5 ⊕ Zd ⊕ Ze

73(c,d,e)
∗ k = 7; 7c < d < e

7
(uT0,

v−uT1, T18,
w−v−1T20, Kw) Zc ⊕ (Zd)

5 ⊕ Z7d ⊕ Ze
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74(c,d,e) k = 7; c < d < e
7

(uT0,
v−uT2, T17,

w−v−1T19, Kw) Zc ⊕ (Zd)
5 ⊕ Z7d ⊕ Ze

75(d,e)
∗ k = 7; d < e

7
(vT0,

w−v−1T1, T19, Kw) Zd ⊕ (Z e
7
)6 ⊕ Ze

76(c,d,e) k = 7; c < d < e (uT0,
v−uT1,

w−vT20, Kw) Zc ⊕ (Zd)
6 ⊕ Ze

77(c,d,e) k = 7; c < d < e (uT0,
v−uT2,

w−vT19, Kw) Zc ⊕ (Zd)
6 ⊕ Ze

78(d,e)
∗ k = 7; d < e

49
(vT0, T1,

w−v−1T19, Kw) Zd ⊕ (Z7d)
6 ⊕ Ze

79(d,e)
∗ k = 7; d < e

7
(vT0,

w−v−1T3, T19, Kw) (Zd)
2 ⊕ (Z e

7
)5 ⊕ Ze

80(d,e)
∗ k = 7; d < e

49
(vT0, T3,

w−v−1T19, Kw) (Zd)
2 ⊕ (Z7d)

5 ⊕ Ze

81(d,e) k = 7; d < e
7

(vT0, T4,
w−v−1T19, Kw) (Zd)

2 ⊕ (Z7d)
5 ⊕ Ze

82(d,e) k = 7; d < e
7

(vT0, T4,
w−v−1T20, Kw) (Zd)

2 ⊕ (Z7d)
5 ⊕ Ze

83(c,d,e) k = 7; 7c < d < e (uT0, T4,
v−u−1T18,

w−vT19, Kw) (Zc)
2 ⊕ (Z7c)

4 ⊕ Zd ⊕ Ze

84(c,d,e) k = 7; 7c < d < e (uT0, T4,
v−u−1T18,

w−vT20, Kw) (Zc)
2 ⊕ (Z7c)

4 ⊕ Zd ⊕ Ze

85(d,e) k = 7; d < e
7

(vT0, T5,
w−v−1T19, Kw) (Zd)

3 ⊕ (Z7d)
4 ⊕ Ze

86(d,e) k = 7; d < e
7

(vT0, T6,
w−v−1T19, Kw) (Zd)

3 ⊕ (Z7d)
4 ⊕ Ze

87(d,e) k = 7; d < e
7

(vT0, T6,
w−v−1T20, Kw) (Zd)

3 ⊕ (Z7d)
4 ⊕ Ze

88(c,d,e) k = 7; 7c < d < e (uT0, T6,
v−u−1T18,

w−vT19, Kw) (Zc)
3 ⊕ (Z7c)

3 ⊕ Zd ⊕ Ze

89(c,d,e) k = 7; 7c < d < e (uT0, T6,
v−u−1T18,

w−vT20, Kw) (Zc)
3 ⊕ (Z7c)

3 ⊕ Zd ⊕ Ze

90(d,e) k = 7; d < e
7

(vT0, T7,
w−v−1T19, Kw) (Zd)

4 ⊕ (Z7d)
3 ⊕ Ze

91(d,e) k = 7; d < e
7

(vT0, T8,
w−v−1T19, Kw) (Zd)

4 ⊕ (Z7d)
3 ⊕ Ze

92(d,e) k = 7; d < e
7

(vT0, T8,
w−v−1T20, Kw) (Zd)

4 ⊕ (Z7d)
3 ⊕ Ze

93(c,d,e) k = 7; 7c < d < e (uT0, T8,
v−u−1T18,

w−vT19, Kw) (Zc)
4 ⊕ (Z7c)

2 ⊕ Zd ⊕ Ze

94(c,d,e) k = 7; 7c < d < e (uT0, T8,
v−u−1T18,

w−vT20, Kw) (Zc)
4 ⊕ (Z7c)

2 ⊕ Zd ⊕ Ze
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95(d,e) k = 7; d < e
7

(vT0, T9,
w−v−1T19, Kw) (Zd)

5 ⊕ (Z7d)
2 ⊕ Ze

96(d,e) k = 7; d < e
7

(vT0, T10,
w−v−1T19, Kw) (Zd)

5 ⊕ (Z7d)
2 ⊕ Ze

97(d,e) k = 7; d < e
7

(vT0, T11,
w−v−1T19, Kw) (Zd)

5 ⊕ (Z7d)
2 ⊕ Ze

98(d,e) k = 7; d < e
7

(vT0, T12,
w−v−1T19, Kw) (Zd)

5 ⊕ (Z7d)
2 ⊕ Ze

99(d,e) k = 7; d < e
7

(vT0, T13,
w−v−1T19, Kw) (Zd)

5 ⊕ (Z7d)
2 ⊕ Ze

100(d,e) k = 7; d < e
7

(vT0, T14,
w−v−1T19, Kw) (Zd)

5 ⊕ (Z7d)
2 ⊕ Ze

101(d,e) k = 7; d < e
7

(vT0, T15,
w−v−1T19, Kw) (Zd)

5 ⊕ (Z7d)
2 ⊕ Ze

102(d,e) k = 7; d < e
7

(vT0, T16,
w−v−1T19, Kw) (Zd)

5 ⊕ (Z7d)
2 ⊕ Ze

103(d,e)
∗ k = 7; d < e

7
(vT0, T14,

w−v−1T20, Kw) (Zd)
5 ⊕ (Z7d)

2 ⊕ Ze

104(c,d,e)
∗ k = 7; 7c < d < e (uT0, T14,

v−u−1T18,
w−vT19, Kw) (Zc)

5 ⊕ Z7c ⊕ Zd ⊕ Ze

105(c,d,e)
∗ k = 7; 7c < d < e (uT0, T14,

v−u−1T18,
w−vT20, Kw) (Zc)

5 ⊕ Z7c ⊕ Zd ⊕ Ze

106(d,e) k = 7; d < e
7

(vT0, T17,
w−v−1T19, Kw) (Zd)

6 ⊕ Z7d ⊕ Ze

107(c,d,e) k = 7; c < d < e (uT0,
v−uT18,

w−vT19, Kw) (Zc)
6 ⊕ Zd ⊕ Ze

108(c,d,e) k = 7; c < d < e (uT0,
v−uT18,

w−vT20, Kw) (Zc)
6 ⊕ Zd ⊕ Ze

109(d,e) k = 7; d < e (vT0,
w−vT19, Kw) (Zd)

7 ⊕ Ze

110(d,e) k = 7; d < e (vT0,
w−vT20, Kw) (Zd)

7 ⊕ Ze

Table 7.3: Possibilities for G1-invariant subgroup L of K when G1/K ∼= C7 o3 C6

[Note: b = kt, c = ku, d = kv and e = kw (with t, u, v, w ≥ 0) in all relevant cases]

7.5 Additional automorphisms

In this section, we find out which of the abelian regular covers obtainable from G1-

invariant subgroups of finite prime-power index in K = N/N ′ admit a larger group of
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automorphisms than the lift of the group G1/N ∼= C7 o3 C6.

First, we note that none of these regular covers can be 5-arc-transitive, since the

Heawood graph itself is not 5-arc-transitive (and in particular, the subgroup N is not

normal in the group G5).

The next possibility we check is that the cover is 4-arc-transitive. To do this, we

consider whether or not the G1-invariant subgroup L is G 1
4 -invariant, which we can do

by checking whether L is normalised by the additional generator p of G 1
4 . If it is, then

each layer of L must also be normalised by p, since the subgroups Kj = K(kj) of K are

characteristic in K. For this reason, we begin by determining which of the G1-invariant

subgroups of K/K(k) are normalised by p. Recall that p conjugates wi to wj whenever

j ≡ i+ 4 mod 8.

Now for every prime k, it is easy to see that the rank 2 subgroup U generated by

u1 = w1w3w
−1
5 w−1

6 w−1
7 and u2 = w2w4w

−1
5 w−1

6 w−1
7 w8 is not G 1

4 -invariant, since u1
p =

w−1
1 w−1

2 w−1
3 w5w7, which does not lie in U . Also the rank 6 subgroup V generated by

v1 = w1, v2 = w2w
−1
7 , v3 = w3, v4 = w4w

−1
8 , v5 = w5w

−1
7 and v6 = w6w

−1
7 w8 is not

G 1
4 -invariant, since v1

p = w5, which does not lie in V . Similarly, when k ≡ 1 mod 3

and t is a primitive cube root of 1 mod k, the rank 1 subgroup of K/K(k) generated

by zt = w1w
t
2w3w

t
4w

t2

5 w
t2

6 w
t2

7 w
t
8 is not G 1

4 -invariant, because zt
p is not expressible as

a power of zt. On the other hand, when k = 3, the rank 1 subgroup generated by

z1 = w1w2w3w4w5w6w7w8 is G 1
4 -invariant, since z1 is centralized by p. This one, however,

does not extend to a rank 1 subgroup of K/K(m) when m is a higher power of 3, since

K/K(9) has no cyclic G1-invariant subgroup of order greater than 3.

It follows that for k 6= 7, the only G1-invariant subgroups of k-power index in K

that are also G 1
4 -invariant are the rank 8 subgroups K(m) themselves, with covering group

K/K(m) ∼= (Zm)8, for m = k` (for any such k), and the subgroups generated by the images

of z
m
3

1 and all wmi , with covering group Zm
3
⊕ (Zm)7, when m = 3` for some ` > 0. These

are the subgroups of types 1(m,m) and 3(m
3
,m) in Table 7.3.

In the case k = 7, again we let λ be a primitive cube root of 1 mod m, where m = 7` is
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the exponent of the covering group K/L, chosen such that λ ≡ 2 mod 7 and λ2 ≡ 4 mod 7.

For notational convenience, we will write x ' y when the elements x and y have the same

image in the top layer K/K(7) of K, so that (for example) zλ ' w1w
2
2w3w

2
4w

4
5w

4
6w

4
7w

2
8 .

The effect of conjugation by p on the generators x1 to x8 defined in Section 7.3 can now

be given as follows:

x1 ' w1w
2
2w3w

2
4w

4
5w

4
6w

4
7w

2
8 7→ w 4

1w
4
2w

4
3w

2
4w5w

2
6w7w

2
8 ' x 2

1x
2
2x

6
3x4x

6
5x6

x2 ' w1w
4
2w3w

4
4w

2
5w

2
6w

2
7w

4
8 7→ w 2

1w
2
2w

2
3w

4
4w5w

4
6w7w

4
8 ' x 2

2x3x
6
4x5x

4
6x

6
7x8

x3 ' w2w3w
2
4w5w

2
6w

3
7 7→ w1w

2
2w

3
3w6w7w

2
8 ' x2x

5
3x

4
4x

4
6

x4 ' w3w
5
6w

2
7w

5
8 7→ w 5

2w
2
3w

5
4w7 ' x 2

1x
5
2x

2
3x

5
5x

6
6

x5 ' w4w
3
5w

4
7w

6
8 7→ w 3

1w
4
3w

6
4w8 ' x 3

1x3x
5
5

x6 ' w6w7w
5
8 7→ w2w3w

5
4 ' x 5

1x
2
2x

4
3x

4
4x

2
6x

2
7x

5
8

x7 ' w6w
6
7w8 7→ w2w

6
3w4 ' x 6

1x2x
6
3x5x6x

3
7x

3
8

x8 ' w7w
4
8 7→ w3w

4
4 ' x 6

1x2x
5
3x

3
4x

6
5x6x

4
7x

2
8 .

Note that the images of x p1 and x p2 both lie outside the image of the subgroup generated

by x1, x2, x3, x4 and x5, and so it follows from the definition of the G1-invariant subgroups

of K/K(7) (in Table 7.2) that none of the subgroups T1 to T9 of K/K(7) is normalised by

p. Similarly, none of the subgroups T10, T11, T13, T14, T15, T16, T18 and T20 is normalised by

p, since each contains the image of x3 but not the image of x p3 , and the subgroups T17

and T19 are not normalised by p, since they contain the image of x2 but not the image of

x p2 (and contain the image of x6 but not the image of x p6 ).

On the other hand, the subgroup T12 is normalised by p, because

x p1 ' x 2
1x

2
2x

6
3x4x

6
5x6 ' x 2

1x
6
3x4x

6
5 (x 2

2x6),

x p3 ' x2x
5
3x

4
4x

4
6 ' x 5

3x
4
4 (x 2

2x6)
4,

x p4 ' x 2
1x

5
2x

2
3x

5
5x

6
6 ' x 2

1x
2
3x

5
5 (x 2

2x6)
6,

x p5 ' x 3
1x3x

5
5 , and

(x 2
2x6)

p ' x 5
1x

6
2x

6
3x

2
4x

2
5x

3
6 ' x 5

1x
6
3x

2
4x

2
5 (x 2

2x6)
3.
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Thus T12 is the only non-trivial proper G1-invariant subgroup of K/K(7) normalised

by p. Furthermore, since there are no G1-invariant subgroups of K/K(49) with T12 as both

layers, this subgroup can occur in at most one layer of L.

Hence we find that the only G1-invariant subgroups of 7-power index in K that are

also G 1
4 -invariant are the subgroups K(m), with covering group K/K(m) ∼= (Zm)8, with

m = 7` for ` ≥ 0, plus one subgroup with covering group (Zm
7

)5 ⊕ (Zm)3 where m = 7`,

for each ` > 0. These are the subgroups of types 4m and 43m in Table 7.3.

Next, we consider the possibility that the G1-invariant subgroup L of K is also G 1
2 -

invariant. Of course this is not very likely to happen, since the Heawood graph has no

2-arc-regular group of automorphisms (and in particular, the subgroup K of G/N ′ itself

is not G 1
2 -invariant), but remarkably, it does happen.

The group G 1
2 can be obtained as an extension of G1 by adjoining the involutory

automorphism θ of G1 that takes h and a to h−1 and a−1 (= a), respectively. This is like

a reflection, and takes w1 = (ha)6 to (h−1a)6 = w3, and vice versa, but takes each of

w2, w4, w5, w6, w7, w8 to an element outside of K.

(For example, w θ
8 = (h−1ah−1ahahah−1aha)θ = hahah−1ah−1ahah−1a = w6w

−1
3 h−1aha,

which does not lie in K, for otherwise K would contain [h, a] = h−1aha.)

In particular, θ does not preserve K, but takes K to another subgroup of index 42

in G1, with intersection J = K ∩ Kθ having index 7 in K (and index 294 in G1). In

fact J = K ∩ Kθ is generated by the eight elements v1 = w1, v2 = w2w
−1
7 , v3 = w3,

v4 = w4w
−1
8 , v5 = w5w

−1
7 , v6 = w6w

−1
7 w8, y2 = w7w

2
8 and w 7

8 , with:

v θ1 = w θ
1 = ((ha)6)θ = (h−1a)6 = w3 = v3,

v θ3 = w θ
3 = w1 = v1,

v θ2 = (w2w
−1
7 ) θ = (h−1w3h)θ = hw1h

−1 = w7w
−1
2 = (w2w

−1
7 )−1 = v−1

2 ,

v θ4 = (w4w
−1
8 ) θ(h−1ah−1w3hah)θ = hahw1h

−1ah−1 = w5w
−1
8 w3w

−1
6

= w3(w5w
−1
7 )(w6w

−1
7 w8)

−1 = v3v5v
−1
6 ,
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v θ5 = (w5w
−1
7 ) θ = (hah−1ahah−1ah−1ah−1ah−1ahah−1ah−1ah)θ

= h−1ahah−1ahahahahah−1ahahah−1 = w4w
−1
1 w6w

−1
2

= w−1
1 (w2w

−1
7 )−1(w4w

−1
8 )(w6w

−1
7 w8) = v−1

1 v−1
2 v4v6,

v θ6 = (w6w
−1
7 w8)

θ = (hahah−1ahahahah−1ahahahah−1aha)θ

= h−1ah−1ahah−1ah−1ah−1ahah−1ah−1ah−1ahah−1a

= w8w
−1
5 w1w

−1
4 w7 = w1(w4w

−1
8 )−1(w5w

−1
7 )−1 = v1v

−1
4 v−1

5 ,

y θ2 = (w7w
2
8 ) θ

= (h−1ahahah−1ahah−1ah−1ah−1ahahah−1ahah−1ah−1ahahah−1aha)θ

= hah−1ah−1ahah−1ahahahah−1ah−1ahah−1ahahah−1ah−1ahah−1a

= w2w
−1
3 w5w

−1
4 w7 = (w2w

−1
7 )w−1

3 (w4w
−1
8 )−1(w5w

−1
7 )(w7w

2
8 )3w−7

8

= v2v
−1
3 v−1

4 v5 y
3
2 w

−7
8 ,

(w 7
7 ) θ = ((h−1ahahah−1ahah−1a)7)θ = (hah−1ah−1ahah−1aha)7

= w2w
−1
3 w4w

−1
1 w5w7w

−1
3 w8w

−1
1 w2w4w

−1
1 w6w

−1
3 w8

= w−3
1 w 2

2w
−3
3 w 2

4w5w6w7w
2
8

= w−3
1 (w2w

−1
7 )2w−3

3 (w4w
−1
8 )2(w5w

−1
7 )(w6w

−1
7 w8)(w7w

2
8 )5w−7

8

= v−3
1 v 2

2 v
−3
3 v 2

4 v5v6 y
5
2 (w 7

8 )−1,

(w 7
8 ) θ = ((h−1ah−1ahahah−1aha)7)θ = (hahah−1ah−1ahah−1a)7

= w6w
−1
3 w7w

−1
2 w5w

−1
1 w6w5w

−1
8 w7w

−1
1 w6w

−1
3 w5w

−1
4 w7

= w−2
1 w−1

2 w−2
3 w−1

4 w 3
5w

3
6w

3
7w
−1
8

= w−2
1 (w2w

−1
7 )−1w−2

3 (w4w
−1
8 )−1(w5w

−1
7 )3(w6w

−1
7 w8)

3(w7w
2
8 )8w−21

8

= v−2
1 v−1

2 v−2
3 v−1

4 v 3
5 v

3
6 y

8
2 (w 7

8 )−3.

It follows that J = K ∩ Kθ contains V , and w 7
i for all i, as well as yλ = w7w

λ
8 (which

is the product of y2 = w7w
2
8 and a power of w 7

8 ), whenever m is a power of 7 and λ is

a primitive cube root of 1 mod m with λ ≡ 2 mod 7. On the other hand, J contains

neither u1 = w1w3w
−1
5 w−1

6 w−1
7 nor u2 = w2w4w

−1
5 w−1

6 w−1
7 w8 (from Section 7.2), but J

does contain each of u 7
1 , u 7

2 and u1u
2
2 = y2.

It is also easy to see that this subgroup J is G1-invariant, by checking the images
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of V , y2 and w 7
8 under conjugation by h and a. But in fact Kθ itself is G1-invariant,

because (Kθ)h = Kθh = Kh−1θ = Kθ and (Kθ)a = Kθa = Kaθ = Kθ, and it follows

directly from this that J = K ∩ Kθ is G1-invariant. Similarly, J is θ-invariant, since

(K ∩Kθ)θ = Kθ ∩K = K ∩Kθ.

We may view the ‘top layer’ of J as a copy of the rank 7 subgroup T19 of K/K(7),

with every subsequent layer of J being isomorphic to T21 (generated by the images of the

appropriate powers of all the wi).

Now let L be any G1-invariant subgroup of finite prime-power index in K, such that

Lθ lies in K. Then also Lθ is G1-invariant, by the same argument as used for Kθ a few

lines above. Also Lθ lies in Kθ, so lies in K ∩Kθ = J as well. In particular, the index

|K :L| must be a multiple of |K :J | = 7. Hence we may restrict our attention to the case

of characteristic 7, and the subgroups we found in Section 7.3.

Next, consider the commutator cij = [wi, wj] = w−1
i w−1

j wiwj of any two of the genera-

tors wi and wj of K. Since these two elements commute in K, and Lθ lies in K, we know

that Lθ (trivially) contains cij, and it follows that L must contain the θ-image c θ
ij , for all

such i and j.

These commutators are easily computed. For example,

c θ
12 = (w θ

1 )−1(w θ
2 )−1w θ

1w
θ
2

= (ah)6(ah−1ahahah−1ah−1ah)(h−1a)6(h−1ahahah−1ah−1aha)

= (ah)6ah−1ahahah−1ahah−1ah−1ah−1ah−1ah−1ahahah−1ah−1aha

= (ah)6(ah−1ahahah−1ahah−1)(ah−1)6hah−1ahah−1ah−1aha

= w−1
3 w−1

5 w−1
1 w5 = w−1

1 w−1
3 = v−1

1 v−1
3 .

All such θ-images c θ
ij are given below:

c θ
12 = w−1

1 w−1
3 = v−1

1 v−1
3 ,

c θ
13 = w−1

3 w−1
1 w3w1 = 1,

c θ
14 = w−1

3 w−1
6 w1w

−1
2 w5w

−1
1 w6 = v−1

2 v−1
3 v5,
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c θ
15 = w−1

3 w−1
2 w−1

1 w2 = v−1
1 v−1

3 ,

c θ
16 = w−1

3 w−1
4 w2w

−1
7 w4 = v2v

−1
3 ,

c θ
17 = w−1

3 w−1
8 w3w

−1
6 w−1

1 w6w
−1
3 w8 = v−1

1 v−1
3 ,

c θ
18 = w−1

3 w−1
7 w4w

−1
2 w5w

−1
4 w7 = v−1

2 v−1
3 ,

c θ
23 = w−1

5 w1w
−1
4 w7w

−1
6 w5w1 = v 2

1 v
−1
4 v−1

6 ,

c θ
24 = w−1

5 w1w
−1
7 w4w

−1
1 w6w

−1
3 w8w

−1
1 w6 = v−1

1 v−1
3 v4v

−1
5 v 2

6 ,

c θ
25 = w−1

5 w1w
−1
8 w4w

−1
1 w2 = v2v4v

−1
5 ,

c θ
26 = w−1

5 w1w
−1
4 w7w

−1
2 w5w

−1
1 w2w

−1
7 w4 = 1,

c θ
27 = w−1

5 w1w
−1
4 w−1

3 w4w
−1
1 w6w

−1
3 w8 = v−2

3 v−1
5 v6,

c θ
28 = w−1

5 w1w
−1
5 w2w

−1
7 w4w

−1
1 w6w

−1
3 w8w

−1
4 w7 = v2v

−1
3 v−2

5 v6,

c θ
34 = w−1

1 w−1
6 w1w

−1
4 w8w

−1
1 w6 = v−1

1 v−1
4 ,

c θ
35 = w−1

1 w−1
2 w6w

−1
7 w4w

−1
1 w2 = v−2

1 v4v6,

c θ
36 = w−1

1 w−1
4 w7w

−1
2 w5w

−1
8 w3w

−1
6 w2w

−1
7 w4 = v−1

1 v3v5v
−1
6 ,

c θ
37 = w−1

1 w−1
8 w3w

−1
7 w4w

−1
1 w6w

−1
3 w8 = v−2

1 v4v6,

c θ
38 = w−1

1 w−1
7 w8w

−1
4 w7 = v−1

1 v−1
4 ,

c θ
45 = w−1

6 w1w
−1
5 w1w

−1
4 w7w

−1
1 w2 = v1v2v

−1
4 v−1

5 v−1
6 ,

c θ
46 = w−1

6 w1w
−1
8 w6w

−1
3 w2w

−1
7 w4 = v1v2v

−1
3 v4,

c θ
47 = w−1

6 w1w
−1
8 w3w

−1
1 w6w

−1
3 w8 = 1,

c θ
48 = w−1

6 w1w
−1
5 w7w

−1
2 w5w

−1
4 w7 = v1v

−1
2 v−1

4 v−1
6 ,

c θ
56 = w−1

2 w1w
−1
4 w7w

−1
2 w5w2w

−1
7 w4 = v1v

−1
2 v5,

c θ
57 = w−1

2 w1w
−1
4 w−1

3 w8w
−1
1 w6w

−1
3 w8 = v−1

2 v−2
3 v−1

4 v6,

c θ
58 = w−1

2 w1w
−1
5 w2w

−1
7 w4w

−1
1 w5w

−1
4 w7 = 1,
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c θ
67 = w−1

4 w7w
−1
2 w1w

−1
4 w8w

−1
5 w2w

−1
7 w4w

−1
1 w6w

−1
3 w8 = v−1

3 v−1
4 v−1

5 v6,

c θ
68 = w−1

4 w7w
−1
2 w−1

6 w8w
−1
4 w7 = v−1

2 v−2
4 v−1

6 ,

c θ
78 = w−1

8 w3w
−1
6 w1w

−1
5 w2w

−1
3 w8w

−1
4 w7 = v1v2v

−1
4 v−1

5 v−1
6 .

Note that every element in the list above is expressible in terms of the generators v1

to v6 of the rank 6 subgroup V of K. In fact, each of them is expressible as a word in

the following ‘base’ elements: v1v3, v2v
−1
3 , v1v4, v1v

−1
2 v5, v2v

2
4 v6 and v 7

4 , or perhaps better

still, the elements v1v4, v2v
−1
4 , v3v

−1
4 , v5v

−2
4 , v6v

3
4 and v 7

4 .

So now let F be the subgroup generated by the six elements v1v4, v2v
−1
4 , v3v

−1
4 , v5v

−2
4 ,

v6v
3
4 and v 7

4 . Then F contains v 7
1 = (v1v4)

7v−7
4 , and similarly contains v 7

2 , v 7
3 , v 7

5 and

v 7
6 , so F has index 7 in V , with K/F ∼= Z ⊕ Z ⊕ Z7. Also it is easy to check using the

conjugacy details given at the beginning of Section 7.2 that F is G1-invariant. Similarly,

using the θ-images of the elements vi, we can see that F is preserved by θ.

The first layer of F is a copy of T14, since the images of the five elements v1v4,

v2v
−1
4 , v3v

−1
4 , v5v

−2
4 and v6v

3
4 in K/K(7) generate the same subgroup as {x1, x3, x4,

x5, x
4
2x6}, while all subsequent layers are copies of T18. It follows that F is one of

the seven subgroups of type 58(1,7)
∗ from Table 7.3, and in fact F can be generated by

{z2w7
−14, x3, x4, x5, v5v6

3}∪V (7), and is one of the seven subgroups of type 58(1,7)
∗ (see

Appendix) — a fact which can be easily checked with the help of Magma.

Now once again, let L be any G1-invariant subgroup of finite 7-power index in K, such

that Lθ lies in K. Then we know that Lθ is G1-invariant, and F ⊆ L ⊆ J . It follows that

the top layer of L is isomorphic to a subgroup of K/K(7) containing T14 and contained in

T19, and so must be a copy of one of T14, T17, T18 or T19, while every subsequent layer of

L contains a copy of T18 and hence is a copy of T18, T19, T20 or T21 itself.

Conversely, if L is any G1-invariant subgroup of K such that F ⊆ L ⊆ J , then

F = F θ ⊆ Lθ ⊆ Jθ = J , and in particular, also Lθ is a G1-invariant subgroup of K.

Moreover, Lθ has the same index in G1 as L, and hence the same index in K as L.

The relevant subgroup types from Table 7.3 are given in Table 7.4 below, with the
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asterisks dropped from types 58(1,e)
∗, 103(1,e)

∗, 104(1,d,e)
∗ and 105(1,d,e)

∗ since there is just

one subgroup containing F in each of those cases.

Type Conditions Description of L Quotient K/L

457 k = 7 (T14, K7) (Z7)
3

58(1,e) k = 7; e > 7 (T14,
w−1T18, Kw) Z7 ⊕ (Ze)

2

597 k = 7 (T17, K7) (Z7)
2

60(1,e) k = 7; e > 1 (wT18, Kw) (Ze)
2

100(1,e) k = 7; e > 7 (T14,
w−1T19, Kw) (Z7)

2 ⊕ Ze

103(1,e) k = 7; e > 7 (T14,
w−1T20, Kw) (Z7)

2 ⊕ Ze

104(1,d,e) k = 7; 7 < d < e (T14,
v−1T18,

w−vT19, Kw) Z7 ⊕ Zd ⊕ Ze

105(1,d,e) k = 7; 7 < d < e (T14,
v−1T18,

w−vT20, Kw) Z7 ⊕ Zd ⊕ Ze

106(1,e) k = 7; e > 7 (T17,
w−1T19, Kw) Z7 ⊕ Ze

107(1,d,e) k = 7; 1 < d < e (vT18,
w−vT19, Kw) Zd ⊕ Ze

108(1,d,e) k = 7; 1 < d < e (vT18,
w−vT20, Kw) Zd ⊕ Ze

109(1,e) k = 7; e > 1 (wT19, Kw) Ze

Table 7.4: Possibilities for G1-invariant subgroup L of K lying between F and J

[Note: d = kv and e = kw in all relevant cases]
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Next, the following is helpful in considering the effect of θ on these subgroups.

Proposition 7.5.1 Let L be any G1-invariant subgroup of K such that F ⊆ L ⊆ J .

(a) If K/L has exponent m = 7` where ` > 1, then the `th layer of Lθ contains the

image of x6
m
7 = (v6y

2
λ )

m
7 , and hence is a copy of T19 or T21.

(b) If the top two layers of L are copies of T14 and T18, then the top two layers of Lθ are

copies of T14 and T19, or T14 and T18, according to whether or not the third layer of

L contains a copy of T20.

(c) If the top two layers of L are copies of T14 and T19, then the top two layers of Lθ

are copies of T14 and T18, or T14 and T19, according to whether the third layer of L

has rank 7 or 8.

(d) If the top two layers of L are copies of T14 and T20, then the top two layers of Lθ

are copies of T17 and T19.

(e) If the top two layers of L are copies of T17 and T19, then the top two layers of Lθ

are copies of T14 and T20, or T14 and T21, according to whether the third layer of L

has rank 7 or 8.

(f) If j successive layers of L form a tower of j copies of T18, where j ≥ 2, then the

corresponding j layers of Lθ are either a tower of j−1 copies of T18 on top of a

single copy of T19, or a a tower of j copies of T18, depending on whether or not the

next layer of L contains a copy of T20.

(g) If two successive layers of L are copies of T18 and T19, then the corresponding layers

of Lθ are two copies of T18.

(h) If two successive layers of L are copies of T18 and T20, then the corresponding layers

of Lθ are two copies of T19.
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(i) If j is the largest non-negative integer for which j successive layers of L form a

tower of copies of T19, and j ≥ 2, then the corresponding j layers of Lθ are a copy

of T18, followed by a tower of j − 2 copies of T20, and then a copy of T21, unless the

first layer of L is a copy of T17, in which case the top layer of Lθ is a copy of T14,

and the next j layers of Lθ consist of a tower of j−1 copies of T20 followed by a

copy of T21.

(j) If j successive layers of L form a tower of j copies of T20, where j ≥ 2, then the

corresponding j layers of Lθ are a tower of j copies of T19.

Proof. We will prove just some of this, and the rest can be similarly proved. Most of

it follows from observations about the θ-images of particular elements considered earlier.

We can use those (and the θ-images of yλ and (yλ2)7) to help us see what happens to

layers of G1-invariant subgroups of K under the action of θ.

First, suppose K/L has exponent m = 7`, where ` ≥ 2. Then Lθ contains the elements

v 7
i and hence also the elements vi

m
7 , for 1 ≤ i ≤ 6, since these lie in F . But also L contains

wm
j for 1 ≤ j ≤ 8, and therefore Lθ must also contain (wm

j )θ = (w θ
j )m for all such j.

Now we know that (w 7
8 ) θ = v−2

1 v−1
2 v−2

3 v−1
4 v 3

5 v
3
6 y

8
2 (w 7

8 )−3, and it follows that Lθ contains

(wm
8 ) θ = ((w 7

8 ) θ)
m
7 = (v−2

1 v−1
2 v−2

3 v−1
4 v 3

5 v
3
6 )

m
7 y2

8m
7 (wm

8 )−3.

Hence the `th layer (Lθ)`−1/(L
θ)` of Lθ contains the image of the subgroup generated

by V (m
7

) ∪ {y2
8m
7 }, or equivalently, by V (m

7
) ∪ {y2

m
7 }. This is the same as the image of

the subgroup generated by V (m
7

) ∪ {x6
m
7 }, by observations made a few paragraphs after

Table 4.1, and so is a copy of T19. Thus the `th layer of Lθ contains a copy of T19, which

proves part (a).

Now recall that we chose λ as a primitive root of 1 mod m, with λ ≡ 2 mod 7 (and

λ2 ≡ 4 mod 7). For m divisible by 49 this means λ ≡ 30 mod 49, while for m divisible by

343 it means λ ≡ 324 mod 343, so that λ = 2 + 7d for some integer d, with d ≡ 4 mod 7

when ` > 1, and d ≡ 46 mod 49 when ` > 2. Also λ2 = 4 + 7e, where e = 4d + 7d2 ≡ 2

mod 7 when ` > 1, and e ≡ 2 mod 49 when ` > 2.
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By definition, we know that yλ = w7w
λ
8 = w7w

2+7d
8 = y2(w

7
8 )d, and then similarly, we

have yλ2 = w7w
λ2

8 = w7w
4+7e
8 = y2w

2+7e
8 .

Using the θ-images of y2 and w 7
8 we calculated earlier, we find that

y θλ = (y2(w
7
8 )d)θ = y θ2 ((w 7

8 )θ)d

= (v2v
−1
3 v−1

4 v5 y
3
2w
−7
8 ) (v−2

1 v−1
2 v−2

3 v−1
4 v 3

5 v
3
6 y

8
2 (w 7

8 )−3)d

= v−2d
1 v1−d

2 v−1−2d
3 v−1−d

4 v 1+3d
5 v 3d

6 y 3+8d
2 w−7−21d

8 .

Note that 3 + 8d ≡ 0 mod 7 (and also −7− 21d ≡ 0 mod 7), and so the image of y θλ

in K/K(7) lies in the image of the subgroup V (generated by v1 to v6).

The analogous property holds for higher powers of these elements, and so if some layer

Li/Li+1 of L is a copy of T19 (of rank 7), then the corresponding layer of Lθ can be a copy

of T18 (of rank 6), depending on what happens with the layers above and below it.

On the other hand, 3 + 8d ≡ 28 mod 49 while −7− 21d ≡ 7 ≡ 56 mod 49, and so the

image of y 3+8d
2 w−7−21d

8 in K/K2 = K/K(49) is the same as the image of (y2w
2
8 )28, and then

since yλ2 = w7w
2+7e
8 , this is the same as the image of y 28

λ2 . Hence if a layer of L is a copy

of T19, then the next layer of Lθ contains not only a copy of T18 but also the non-trivial

image of a power of x8 = yλ2 , and therefore contains a copy of T20, so must be a copy of

T20 or T21.

In fact we have more than that, because

x θ6 = (v6y
2
λ )θ = v θ6 (y θλ )2

= (v1v
−1
4 v−1

5 ) (v−2d
1 v 1−d

2 v−1−2d
3 v−1−d

4 v 1+3d
5 v 3d

6 y 3+8d
2 w−7−21d

8 )2

= v 1−4d
1 v 2−2d

2 v−2−4d
3 v−3−2d

4 v 1+6d
5 v 6d

6 y 6+16d
2 w−14−42d

8

= (v1v4)
1−4d(v2v

−1
4 )2−2d(v3v

−2−4d
4 )−3−2d(v5v

−2
4 )1+6d(v6v

3
4 )6d v−2−10d

4

y 6+16d
2 w−14−42d

8 .

Noting that −2− 10d, 6 + 16d and −14− 42d are all divisible by 7, we see from this that

the image of x θ6 in K/K(7) lies in the image of the subgroup generated by v1v4, v2v
−1
4 ,

v3v
−1
4 , v5v

−2
4 and v6v

3
4 , namely T14.
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Hence if the top layer of L is a copy of T17 (which is generated by T14 and the image

of x6), then the top layer of Lθ can be a copy of T14. On the other hand, the second layer

of Lθ contains a copy of T18 and the image of of (y2w
2
8 )28, and hence contains a copy of

T20, so must be a copy of T20 or T21.

It follows, for example, that if the top two layers of L are copies of T17 and T19, then the

top layer of Lθ contains a copy of T14 and the second layer contains a copy of T20. In fact,

since we are assuming that K/L has exponent m = 7`, and T19 has rank 7, all of the next

`−1 layers of L after the first one will be copies of T19, and so all of the corresponding layers

of Lθ must contain copies of T20. Also by (a), the `th layer of Lθ contains a copy of T19

as well, and hence must have rank 8. In particular, |K :L| = |T21 :T17||T21 :T19|`−1 = 7`+1,

while |K :Lθ| ≤ |T21 :T14||T21 :T20|`−2 = 7`+1, and since we know that |K :L| = |K :Lθ|,
this forces the top layer of Lθ to be T14 and all of the next ` − 2 layers to be T20. In

particular, this proves part (e). The proof of part (i) is similar.

Next, x8 = yλ2 = w7w
λ2

8 (= w7w
4+7e
8 = y2w

2+7e
8 ), and therefore

x θ8 = ((yλ2)7) θ = ((w7w
λ2

8 )7)θ = (w 7
7 )θ ((w 7

8 )θ)λ
2

= (v−3
1 v 2

2 v
−3
3 v 2

4 v5v6 y
5
2 (w 7

8 )−1) (v−2
1 v−1

2 v−2
3 v−1

4 v 3
5 v

3
6 y

8
2 (w 7

8 )−3)λ
2

= v−3−2λ2

1 v 2−λ2

2 v−3−2λ2

3 v 2−λ2

4 v 1+3λ2

5 v 1+3λ2

6 y 5+8λ2

2 (w 7
8 )−1−3λ2

= (v1v4)
−3−2λ2

(v2v
−1
4 )2−λ2

(v3v
−1
4 )−3−2λ2

(v5v
−2
4 )1+3λ2

(v6v
3
4 )1+3λ2

v 3−5λ2

4

y 5+8λ2

2 (w 7
8 )−1−3λ2

.

In this case 3− 5λ2 ≡ −7 ≡ 0 mod 7 while 5 + 8λ2 ≡ 37 6≡ 0 mod 7, and so the image of

x θ8 in K/K(7) lies in the subgroup generated by the images of v1v4, v2v
−1
4 , v3v

−1
4 , v5v

−2
4 ,

v6v
3
4 and y2, which is T17.

Hence if some layer of L is a copy of T20 (generated by the images of V and x8), then

the next layer up in Lθ contains a copy of T17 and so must be T17 or T19. This cannot be

a copy of T21, by (a), and moreover, it is a copy of T17 only if those layers are the second

layer of L and the top layer of Lθ. In all other cases it is a copy of T19.

Proofs of parts (d), (h) and (j) follow easily from this, and proofs of the remaining
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parts are similar to these and the ones completed above. �

The observations in Proposition 7.5.1 now make it easy to determine all of the G 1
2 -

invariant subgroups of finite prime-power index in K. For example, if L has type 100(1,49),

with the first two layers being copies of T14 and T19 and all subsequent layers having rank

8, then it follows from part (c) that Lθ has the same type, and hence L is preserved by θ.

On the other hand, if L has type 100(1,343), with the first three layers being copies of T14,

T19 and T19, and all subsequent layers having rank 8, then it follows from part (i) that

the first three layers of Lθ are copies of T14, T18 and T21, and so L is not preserved by θ.

Thus we obtain the following, which will also be used shortly when we consider iso-

morphisms between the covers:

Corollary 7.5.2 The effect of θ on the G1-invariant subgroups of K lying between F and

J is as described in Table 7.5.

Type of L Type of Lθ

457 106(1,49)

58(1,49) 100(1,343)

58(1,7w), where w ≥ 3 104(1,7w−1,7w+1)

597 597

60(1,7) 109(1,49)

60(1,7w), where w ≥ 2 107(1,7w−1,7w+1)

100(1,49) 100(1,49)

100(1,343) 58(1,49)
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Type of L Type of Lθ

100(1,7w), where w ≥ 4 105(1,49,7w−1)

103(1,7w), where w ≥ 2 106(1,7w+1)

104(1,7w−1,7w), where w ≥ 3 104(1,7w−1,7w)

104(1,7w−2,7w), where w ≥ 4 58(1,7w−1)

104(1,7v ,7w), where w − 3 ≥ v ≥ 2 105(1,7v+1,7w−1)

105(1,49,7w), where w ≥ 3 100(1,7w+1)

105(1,7v ,7w), where w > v > 2 104(1,7v−1,7w+1)

106(1,49) 457

106(1,7w), where w ≥ 3 103(1,7w−1)

107(1,7w−1,7w), where w ≥ 2 107(1,7w−1,7w)

107(1,7w−2,7w), where w ≥ 3 60(1,7w−1)

107(1,7v ,7w), where w − 3 ≥ v ≥ 1 108(1,7v+1,7w−1)

108(1,7,7w), where w ≥ 2 109(1,7w+1)

108(1,7v ,7w), where w > v > 1 107(1,7v−1,7w+1)

109(1,7) 109(1,7)

109(1,49) 60(1,7)

109(1,7w), where w ≥ 3 108(1,7,7w−1)

Table 7.5: Effect of θ on the G1-invariant subgroups from Table 7.4
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In particular, this gives us all of the G1-invariant subgroups of prime-power index in

K that are also G 1
2 -invariant:

Corollary 7.5.3 The G 1
2 -invariant subgroups of finite prime-power index in K are the

following, from Table 7.5:

• the subgroup of type 109(1,7), which is J , with quotient K/L ∼= Z7,

• the subgroup of type 597, generated by F ∪ {zλ2}, with quotient K/L ∼= (Z7)
2,

• the subgroup of type 100(1,49), with quotient K/L ∼= (Z7)
2 ⊕ Z49,

• the subgroup of type 107(1,7`−1,7`), with quotient K/L ∼= Z7`−1 ⊕ Z7`,

for each ` ≥ 2,

• one of the subgroups of type 104(1,7`−1,7`)
∗, with quotient K/L ∼= Z7 ⊕ Z7`−1 ⊕ Z7`,

for each ` ≥ 3.

Note that none of these subgroups has top layer isomorphic to T12 or T21, and so

none of them can be G 1
4 -invariant, but actually that follows also from the fact that no

finite symmetric cubic graph admits both a 2-arc-regular and a 4-arc-regular group of

automorphisms (see Corollary 2.4.2, or [26, Theorem 3]).

We still need to check for G3-invariance, but this is easy:

By Proposition 2.4.3 (or [26, Proposition 26], or [22, Proposition 2.3]), if the regular

cover resulting from a G1-invariant subgroup L has a 3-arc-regular group of automor-

phisms, then it must also admit a 2-arc-regular group of automorphisms, and so L must

come from the restricted set of G 1
2 -invariant possibilities that we found above. On the

other hand, the group G3 can be obtained from G 1
2 by adjoining the involutory automor-

phism τ that interchanges h, a and θ with h, aθ and θ (respectively). This automorphism

τ interchanges (ha)2 with hah−1a, and (h−1a)2 with h−1aha, and hence takes the element

v1 = w1 = (ha)6 to (hah−1a)3 = w5w
−1
1 hahah, which does not lie in K, let alone in any

subgroup L contained in K. Similarly, τ takes v1v4 = w1w4w
−1
8 to w5w

−1
1 w−1

7 = v−1
1 v5,

but the image of this in K/K(7) does not lie in the subgroup T14, so τ does not preserve

any G 1
2 -invariant subgroup L with T14 as its top layer. Hence τ preserves no G 1

2 -invariant
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subgroup of finite index, and therefore we have no 3-arc-regular cover.

Finally, we determine isomorphisms between the covering graphs that arise from the

G1-invariant subgroups we have found.

When the subgroup L is G 1
4 -invariant, the cover is 4-arc-regular, and unique up to

isomorphism, since the subgroup K is normal in G 1
4 but not in G5. Similarly, when the

subgroup is G 1
2 -invariant, the cover is 2-arc-regular, and unique up to isomorphism, since

K is normal in G1 but not in G 1
2 .

So now suppose L is G1-invariant, but not G 1
2 - or G 1

4 -invariant. Then the cover ob-

tained from L will be unique up to isomorphism unless there exists an outer automorphism

of G1 taking L to another G1-invariant subgroup of K. Let us suppose that happens.

The group G1 is the modular group PSL(2,Z), and isomorphic to the free product

C2 ? C3, so (as is well known) the automorphism group of G1 is the group G 1
2 , generated

by G1 and the involutory automorphism θ that inverts the two standard generators of G1,

and in particular, G 1
2
∼= PGL(2,Z). Hence we may suppose the outer automorphism takes

L to Lθ. In particular, since Lθ lies in K, we find that L must be one of the subgroups

described in Table 7.5, but not one of those that are preserved by θ.

It follows that if L is a G1-invariant subgroup of J containing F (in which case L

will certainly not be G 1
4 -invariant), then either L = Lθ and the cover is 2-arc-regular, or

Lθ 6= L but L and Lθ define the same 1-arc-regular cover of the Heawood graph. Note,

however, that in the latter case, the exponents of K/L and K/Lθ are always different —

in fact one of them is always 7 times the other — so we do not have to take much account

of them when enumerating all possibilities for L such that the covering group K/L has

given exponent.

In all other cases, where L does not contain F or is not contained in J , the cover is

unique up to isomorphism.
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7.6 Main theorem

Thus we have the following, with ‘for each d |m’ and ‘for each d ||m’ meaning ‘for each

divisor d of m’ and ‘for each proper divisor d of m’, respectively:

Theorem 7.6.1 Let m = k` be any power of a prime k, with ` > 0. Then the symmetric

abelian regular covers of the Heawood graph with covering group of exponent m are as

follows :

(a) If k ≡ 2 mod 3, there are exactly 2`+ 1 such covers, namely

• one 4-arc-regular cover with covering group (Zm)8,

• one 1-arc-regular cover with covering group (Zd)
2 ⊕ (Zm)6 and one 1-arc-regular

cover with covering group (Zd)
6 ⊕ (Zm)2, for each d ||m.

(b) If k ≡ 1 mod 3 and k 6= 7, there are exactly 3` 2 + 3`+ 1 such covers, namely

• one 4-arc-regular cover with covering group (Zm)8,

• two 1-arc-regular covers with covering group Zc⊕Zd⊕(Zm)6 and one 1-arc-regular

cover with covering group (Zc)
6 ⊕ Zd ⊕ Zm, for each ordered pair (c, d) of distinct

divisors of m.

(c) If k = 3, there are exactly 4`+ 1 such covers, namely

• two 4-arc-regular covers, with covering groups (Zm)8 and Zm
3
⊕ (Zm)7,

• one 1-arc-regular cover with covering group Zd ⊕ Z3d ⊕ (Zm)6 for each d || m
3

,

• one 1-arc-regular cover with covering group (Zd)
2⊕ (Zm)6, one 1-arc-regular cover

with covering group (Zd)
6 ⊕ (Zm)2, and one 1-arc-regular cover with covering group

(Zd)
6 ⊕ Zm

3
⊕ Zm, for each d ||m.

(d) If k = 7 and ` ≥ 3, there are exactly 54`2 − 54`+ 14 such covers, namely

• two 4-arc-regular covers, with covering groups (Zm)8 and (Zm
7

)5 ⊕ (Zm)3,

• two 2-arc-regular covers, with covering groups Z7 ⊕ Zm
7
⊕ Zm and Zm

7
⊕ Zm,

• two 1-arc-regular covers with covering group Zd ⊕ (Zm)7, for each d ||m,
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• three 1-arc-regular covers with covering group Zd ⊕ Zm
7
⊕ (Zm)6, for each d || m

7
,

• two 1-arc-regular covers with covering group Zc⊕Zd⊕ (Zm)6, for each pair {c, d}
of distinct divisors of m

49
,

• two 1-arc-regular covers with covering group (Zm
7

)2 ⊕ (Zm)6,

• one 1-arc-regular cover with covering group (Zd)
2 ⊕ (Zm)6, for each d || m

7
,

• two 1-arc-regular covers with covering group Zc⊕Zd⊕Zm
7
⊕ (Zm)5, for each pair

{c, d} of distinct divisors of m
49

,

• three 1-arc-regular covers with covering group Zd⊕ (Zm
7

)2⊕ (Zm)5, for each d || m
7

,

• one 1-arc-regular cover with covering group (Zd)
2 ⊕ Zm

7
⊕ (Zm)5, for each d || m

7
,

• two 1-arc-regular covers with covering group (Zm
7

)3 ⊕ (Zm)5,

• two 1-arc-regular covers with covering group Zc ⊕ Zd ⊕ (Zm
7

)2 ⊕ (Zm)4, for each

pair {c, d} of distinct divisors of m
49

,

• three 1-arc-regular covers with covering group Zd⊕ (Zm
7

)3⊕ (Zm)4, for each d || m
7

,

• one 1-arc-regular cover with covering group (Zd)
2⊕(Zm

7
)2⊕(Zm)4, for each d || m

7
,

• two 1-arc-regular covers with covering group (Zm
7

)4 ⊕ (Zm)4,

• fourteen 1-arc-regular covers with covering group Zc ⊕ Zd ⊕ (Zm
7

)3 ⊕ (Zm)3, for

each pair {c, d} of distinct divisors of m
49

,

• fifteen 1-arc-regular covers with covering group Zd⊕(Zm
7

)4⊕(Zm)3, for each d || m
7

,

• seven 1-arc-regular covers with covering group (Zd)
2 ⊕ (Zm

7
)3 ⊕ (Zm)3, for each

d || m
7

,

• seven 1-arc-regular covers with covering group (Zm
7

)5 ⊕ (Zm)3,

• two 1-arc-regular covers with covering group Zc ⊕ Zd ⊕ (Zm
7

)4 ⊕ (Zm)2, for each

pair {c, d} of distinct divisors of m
49

,

• nine 1-arc-regular covers with covering group Zd⊕ (Zm
7

)5⊕ (Zm)2, for each d || m
7

,

• seven 1-arc-regular covers with covering group Zd⊕(Z7d)
5⊕(Zm)2, for each d || m

49
,

• two 1-arc-regular covers with covering group (Z m
49

)2 ⊕ (Zm
7

)4 ⊕ (Zm)2,

• one 1-arc-regular cover with covering group (Zd)
2⊕(Zm

7
)4⊕(Zm)2, for each d || m

49
,
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• one 1-arc-regular cover with covering group (Zd)
2⊕(Z7d)

4⊕(Zm)2, for each d || m
49

,

• one 1-arc-regular cover with covering group (Zd)
3⊕ (Z7d)

3⊕ (Zm)2, for each d || m
7

,

• one 1-arc-regular cover with covering group (Zd)
4⊕ (Z7d)

2⊕ (Zm)2, for each d || m
7

,

• seven 1-arc-regular covers with covering group (Zd)
5⊕Z7d⊕(Zm)2, for each d || m

7
,

but with one of these for d = 1 having Z7 ⊕ Zm
7
⊕ Z7m as an alternative covering

group,

• two 1-arc-regular covers with covering group (Zm
7

)6 ⊕ (Zm)2,

• one 1-arc-regular cover with covering group (Zd)
6⊕(Zm)2, for each d || m

7
, but with

the one for d = 1 having Zm
7
⊕ Z7m as an alternative covering group,

• fifteen 1-arc-regular covers with covering group Zd ⊕ Z m
49
⊕ (Zm

7
)5 ⊕ Zm, for each

d || m
49

,

• fourteen 1-arc-regular covers with covering group Zc⊕Zd⊕ (Zm
7

)5⊕Zm, for each

pair {c, d} of distinct divisors of m
343

,

• eight 1-arc-regular covers with covering group Zc⊕Zd⊕ (Z7d)
5⊕Zm, for each pair

{c, d} of distinct divisors of m
343

,

• two 1-arc-regular covers with covering group Zc ⊕ (Zd)
2 ⊕ (Z7d)

4 ⊕ Zm, for each

ordered pair (c, d) of distinct divisors of m
49

with c < d,

• two 1-arc-regular covers with covering group Zc ⊕ (Zd)
3 ⊕ (Z7d)

3 ⊕ Zm, for each

ordered pair (c, d) of distinct divisors of m
49

with c < d,

• fourteen 1-arc-regular covers with covering group Zc ⊕ (Zd)
4 ⊕ (Z7d)

2 ⊕ Zm, for

each ordered pair (c, d) of distinct divisors of m
49

with c < d,

• fifteen 1-arc-regular covers with covering group Zd ⊕ (Z7d)
5 ⊕ Z49d ⊕ Zm, for each

d || m
49

,

• fourteen 1-arc-regular covers with covering group Zc⊕ (Z7c)
5⊕Z49d⊕Zm, for each

ordered pair (c, d) of distinct divisors of m
343

with c < d,

• eight 1-arc-regular covers with covering group Zc ⊕ (Z7d)
5 ⊕ Z49d ⊕ Zm, for each

ordered pair (c, d) of distinct divisors of m
343

with c < d,
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• nine 1-arc-regular covers with covering group Zd ⊕ (Zm
7

)6 ⊕ Zm, for each d || m
7

,

• nine 1-arc-regular covers with covering group Zd ⊕ (Z7d)
6 ⊕ Zm, for each d || m

49
,

• two 1-arc-regular covers with covering group Zc ⊕ (Zd)
6 ⊕ Zm, for each ordered

pair (c, d) of distinct divisors of m
343

with c < d,

• nine 1-arc-regular covers with covering group (Zd)
2⊕ (Z7d)

5⊕Zm, for each d || m
7

,

• seven 1-arc-regular covers with covering group (Zd)
2⊕(Zm

7
)5⊕Zm, for each d || m

49
,

• two 1-arc-regular covers with covering group (Zc)
2 ⊕ (Z7c)

4 ⊕ Z7d ⊕ Zm, for each

ordered pair (c, d) of distinct divisors of m
49

with c < d,

• three 1-arc-regular covers with covering group (Zd)
3⊕ (Z7d)

4⊕Zm, for each d || m
7

,

• two 1-arc-regular covers with covering group (Zc)
3 ⊕ (Z7c)

3 ⊕ Z7d ⊕ Zm, for each

ordered pair (c, d) of distinct divisors of m
49

with c < d,

• three 1-arc-regular covers with covering group (Zd)
4⊕ (Z7d)

3⊕Zm, for each d || m
7

,

• two 1-arc-regular covers with covering group (Zc)
4 ⊕ (Z7c)

2 ⊕ Z7d ⊕ Zm, for each

ordered pair (c, d) of distinct divisors of m
49

with c < d,

• fifteen 1-arc-regular covers with covering group (Zd)
5⊕(Z7d)

2⊕Zm, for each d || m
7

,

but with one of those for d = 1 having Z7 ⊕ Z49 ⊕ Z m
49

as an alternative covering

group, and another of those for d = 1 having Z7 ⊕ Z7m as an alternative covering

group,

• thirteen 1-arc-regular covers with covering group Z7 ⊕ Zm
7
⊕ Zm,

• fourteen 1-arc-regular covers with covering group (Zc)
5⊕Z7c⊕Z7d⊕Zm, for each

ordered pair (c, d) of distinct divisors of m
49

with c < d other than (1, m
49

), but with

one of those for each pair (c, d) with c = 1 having Z7⊕Z49d⊕Zm
7

as an alternative

covering group, and another one of those for each pair (c, d) with c = 1 having

Z7 ⊕ Zd ⊕ Z7m as an alternative covering group,

• three 1-arc-regular covers with covering group (Zd)
6 ⊕ Z7d ⊕ Zm, for each d || m

7
,

but with the three such covers in the case d = 1 having (in some order) respectively

(Z7)
2 ⊕ Zm

7
, Z49 ⊕ Zm

7
and Z7m as an alternative covering group,
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• two 1-arc-regular covers with covering group (Zc)
6 ⊕ Z7d ⊕ Zm, for each ordered

pair (c, d) of distinct divisors of m
49

with c < d other than (1, m
49

), but with the two

such covers in each case with c = 1 having (in some order) respectively Z49d ⊕ Zm
7

and Zd ⊕ Z7m as an alternative covering group,

• one 1-arc-regular cover with covering group Zm
7
⊕ Zm,

• two 1-arc-regular covers with covering group (Zd)
7 ⊕ Zm, for each d ||m, but with

one of those for d = 1 having Z7 ⊕ Zm
7

as an alternative covering group.

(e) If k = 7 and e = 2 (so that m = 49), there are exactly 122 such covers, namely

• two 4-arc-regular covers, with covering groups (Z49)
8 and (Z7)

5 ⊕ (Z49)
3,

• two 2-arc-regular covers, with covering groups (Z7)
2 ⊕ Z49 and Z7 ⊕ Z49,

• two 1-arc-regular covers with covering group Z7 ⊕ (Z49)
7,

• two 1-arc-regular covers with covering group (Z49)
7,

• three 1-arc-regular covers with covering group Z7 ⊕ (Z49)
6,

• two 1-arc-regular covers with covering group (Z7)
2 ⊕ (Z49)

6,

• one 1-arc-regular cover with covering group (Z49)
6,

• three 1-arc-regular covers with covering group (Z7)
2 ⊕ (Z49)

5,

• one 1-arc-regular cover with covering group Z7 ⊕ (Z49)
5,

• two 1-arc-regular covers with covering group (Z7)
3 ⊕ (Z49)

5,

• three 1-arc-regular covers with covering group (Z7)
3 ⊕ (Z49)

4,

• one 1-arc-regular cover with covering group (Z7)
2 ⊕ (Z49)

4,

• two 1-arc-regular covers with covering group (Z7)
4 ⊕ (Z49)

4,

• fifteen 1-arc-regular covers with covering group (Z7)
4 ⊕ (Z49)

3,

• seven 1-arc-regular covers with covering group (Z7)
3 ⊕ (Z49)

3,

• seven 1-arc-regular covers with covering group (Z7)
5 ⊕ (Z49)

3,

• nine 1-arc-regular covers with covering group (Z7)
5 ⊕ (Z49)

2,

• two 1-arc-regular covers with covering group (Z7)
4 ⊕ (Z49)

2,
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• one 1-arc-regular cover with covering group (Z7)
3 ⊕ (Z49)

2,

• one 1-arc-regular cover with covering group (Z7)
2 ⊕ (Z49)

2,

• seven 1-arc-regular covers with covering group Z7 ⊕ (Z49)
2, but with one of these

having (Z7)
2 ⊕ Z343 as an alternative covering group,

• two 1-arc-regular covers with covering group (Z7)
6 ⊕ (Z49)

2,

• one 1-arc-regular cover with covering group (Z49)
2, but with one of these having

Z7 ⊕ Z343 as an alternative covering group,

• nine 1-arc-regular covers with covering group (Z7)
6 ⊕ Z49,

• nine 1-arc-regular covers with covering group (Z7)
5 ⊕ Z49,

• three 1-arc-regular covers with covering group (Z7)
4 ⊕ Z49,

• three 1-arc-regular covers with covering group (Z7)
3 ⊕ Z49,

• fourteen 1-arc-regular covers with covering group (Z7)
2⊕Z49, but with one of these

having Z7 ⊕ Z343 as an alternative covering group,

• two 1-arc-regular covers with covering group Z7⊕Z49, but with one of these having

(Z7)
3 as an alternative covering group, and the other having Z343 as an alternative

covering group,

• two 1-arc-regular covers with covering group (Z7)
7 ⊕ Z49, and

• two 1-arc-regular covers with covering group Z49, but with one of these having

(Z7)
2 as an alternative covering group.

(f) If k = 7 and e = 1 (so that m = 7), there are exactly 21 such covers, namely

• two 4-arc-regular covers, with covering groups (Z7)
8 and (Z7)

3,

• two 2-arc-regular covers, with covering groups Z7 and (Z7)
2,

• two 1-arc-regular covers with covering group (Z7)
7,

• two 1-arc-regular covers with covering group (Z7)
6,

• two 1-arc-regular covers with covering group (Z7)
5,

• two 1-arc-regular covers with covering group (Z7)
4,

• seven 1-arc-regular covers with covering group (Z7)
3, but with one of these having
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Z7 ⊕ Z49 as an alternative covering group,

• one 1-arc-regular cover with covering group (Z7)
2, but also having Z49 as an al-

ternative covering group, and

• one 1-arc-regular cover with covering group Z7.
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Chapter 8

Regular maps with simple

underlying graphs

In this Chapter, we show that for over 83% of all positive integer g, there exists an

orientably-regular maps of genus g with simple underlying graph. We use a range of

constructions, including semi-direct products, and other methods similar to those used

for symmetric graphs in earlier Chapters. The maps we construct are all covers of a

given base map, with abelian covering groups. Background on regular maps was given in

Section 2.7.

8.1 Construction of helpful families of maps

In this Section, we construct several families of orientably-regular maps with simple un-

derlying graph, which will help us prove our main theorem.

8.1.1 Family A: Orientably-regular maps of type {3n, 4}

It is well known that a regular octahedron can be viewed as a regular embedding of its

1-skeleton (which is a 4-valent graph of order 8) on the sphere, giving a Platonic regular

map M , of type {3, 4} and genus 0. The automorphism group of this map is S4 × C2,

125
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with the S4 preserving orientation.

It is also well-known that an infinite family of regular maps of type {3n, 4} can be con-

structed as cyclic regular coverings of the octahedral map. (see [40] or [48] for example.)

These maps can be constructed in a number of ways.

One way is by using semi-direct products, in a way similar to the approach taken in

[16]: for any positive integer n, form the semi-direct product G = NH ∼= C3n o S4 of a

cyclic group N = 〈w | w3n = 1 〉 of order 3n by the symmetric group H = S4 = 〈u, v | u2 =

v4 = (uv)3 = 1 〉, with conjugation of N by H given by wu = w−1 and wv = w−1. In this

group, define x = wu and y = v; then x2 = y4 = 1 and (xy)3 = (wuv)3 = w3, which has

order n, so the subgroup of G generated by x and y has order 24n and is the rotation group

of an orientably-regular map of characteristic χ = 24n/(3n) − 24n/2 + 24n/4 = 8 − 6n

and genus g = 3n− 3.

The vertex-stabiliser (in the rotation group 〈x, y〉) is the cyclic subgroup of order 4

generated by y = v, and as this contains no non-trivial normal subgroup of 〈x, y〉, the

underlying graph of the map is simple. (On the other hand, the face-stabiliser is the cyclic

subgroup of order 3n generated by xy = wuv, which contains the cyclic normal subgroup

generated by (xy)3 = w3, and so the underlying graph of the dual map has multiple edges,

for n > 1.) Also each map is reflexible, since the involutory automorphism of H = S4

inverting each of u and v extends to an involutory automorphism of G that inverts each

of x = wu and y (and centralises w).

Another way to construct these maps is to take the group Γ with presentation Γ =

〈x, y | x2 = y4 = (xyxy2)2 = 1 〉, and consider the normal subgroup N of index 24 in Γ

generated by the element z = (xy)3. Now the relation (xyxy2)2 = 1 can be re-written

as (yxyxy)2 = 1, which gives (yx)3 = (yxyxy)x = (y−1xy−1xy−1)x = (xy)−3, and it

follows that conjugation by each of x and y−1 inverts the element z = (xy)3. Hence

in particular, z generates a cyclic normal subgroup K in Γ, of index 24, with quotient

Γ/K = 〈x, y | x2 = y4 = (xyxy2)2 = (xy)3 = 1 〉 ∼= S4. Next, by Reidemeister-Schreier

theory, or by use of the Rewrite command in Magma [3], we find that the subgroup K is
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free of rank 1, and hence infinite. Thus for each positive integer n, we can factor out the

normal subgroup generated by zn, and get an extension of Cn by S4, just as above. The

resulting orientably-regular map has type {3n, 4} and genus g = 3n− 3, and is reflexible

(because its rotation group admits an involutory automorphism that inverts the images

of the two generators x and y), and its underlying graph is simple, because the cyclic

subgroup of order 2 generated by the image of y2 is not normal in the rotation group.

A presentation for the rotation group of the nth map in this family is simply

〈 r, s | (rs)2 = s4 = (r2s−1)2 = r3n = 1 〉,

which can be obtained by taking r = xy and s = y−1. Similarly, a presentation for the

full automorphism group is

〈 a, b, c | a2 = b2 = c2 = (ac)2 = (bc)4 = (ababcb)2 = (ab)3n = 1 〉,

with the rotation group generated by r = ab and s = bc as usual. The first few members

of this family (after the first one, of genus 0) are the duals of the maps named R3.4, R6.3,

R9.11, R12.1 and R15.5 in [15].

Thus we have the following:

Proposition 8.1.1 For every positive integer n, there exists a reflexible regular map of

type {3n, 4} and genus 3n − 3, with simple underlying graph (and rotation group an ex-

tension of Cn by S4).

8.1.2 Family B: Orientably-regular maps of type {4n, 4}

In this case we can start with the toroidal map of type {4, 4}4 (see [24]), with rotation

group H = 〈u, v | u2 = v4 = (uv)4 = [u, v]2 = 1 〉, which is an extension of C2 × C2 by

D4, of order 32. and construct an infinite family of cyclic regular coverings of this.

As in the previous sub-section, for any positive integer n we can form the semi-direct

product G = NH ∼= C4n o H of a cyclic group N = 〈w | w4n = 1 〉 of order 4n by the

above group H, with conjugation of N by H given by wu = w−1 and wv = w−1. Again
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we may define x = wu and y = v in this group, and this time we find x2 = y4 = 1 while

(xy)4 = (wuv)4 = w4, which has order n, so the subgroup of G generated by x and y

has order 32n and is the rotation group of an orientably-regular map of characteristic

χ = 32n/(4n)− 32n/2 + 32n/4 = 8− 8n and genus g = 4n− 3.

Again the vertex-stabiliser 〈y〉 (of order 4) contains no non-trivial normal subgroup of

〈x, y〉, so the underlying graph of the map is simple, while the face-stabiliser 〈xy〉 (of order

4n) contains the cyclic normal subgroup generated by (xy)4 = w4, and so the underlying

graph of the dual map has multiple edges, for n > 1. Also each map is reflexible, since

the automorphism of H inverting each of u and v extends to an involutory automorphism

of G that inverts each of x = wu and y (and centralises w).

For an alternative construction, take the normal subgroup N of index 32 generated

by z = (xy)4 in the group Φ = 〈x, y | x2 = y4 = xyxy2xy−1xy2 = 1 〉. In this group, the

relation xyxy2xy−1xy2 = 1 can be re-written as yxyxy = y−1xyxy−1, giving

(yx)4 = yx(yxyxy)x = yx(y−1xyxy−1)x = (yxy−1xy)xy−1x = (y−1xyxy−1)−1xy−1x

= (yxyxy)−1xy−1x = (y−1xy−1xy−1)xy−1x = (y−1x)4 = (xy)−4,

from which it follows that z = (xy)4 is inverted under conjugation by x and y. Accordingly,

z generates a cyclic normal subgroup K of index 32 in Φ, with quotient Φ/K = 〈x, y | x2 =

y4 = xyxy2xy−1xy2 = (xy)4 = 1 〉 ∼= H, and by Reidemeister-Schreier theory, or by use of

the Rewrite command in Magma [3], we find that K is infinite.

Again for each positive integer n, we can factor out the normal subgroup generated

by zn, and get an extension of Cn by H. The resulting orientably-regular map has

type {4n, 4} and genus g = 4n − 3, and is reflexible (since 〈x, y〉 admits an involutory

automorphism that inverts x and y and centralises z = (xy)4), and its underlying graph

is simple (since 〈y2〉 is not normal in the rotation group).

In fact the group we obtain in this way has the same presentation (in terms of the

images of x and y) as the group defined using the semi-direct product construction, since

in the former case, the relations uw = w−1u and vw = w−1v imply that
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xyxy2xy−1xy2 = wuvwuv2wuv−1wuv2 = w1+1−1−1uvuv2uv−1uv2 = uvuv2uv−1uv2,

which is trivial. We will exploit this fact in the next sub-section.

Meanwhile we have the following:

Proposition 8.1.2 For every positive integer n, there exists a reflexible regular map of

type {4n, 4} and genus 4n − 3, with simple underlying graph (and rotation group an ex-

tension of Cn by the rotation group of the toroidal map of type {4, 4}4).

A presentation for the rotation group of the nth map in this family is simply

〈 r, s | (rs)2 = s4 = (rs−1)2(r−1s)2 = r4n = 1 〉,

which again can be obtained by taking r = xy and s = y−1.

Note that the relation xyxy2xy−1xy2 = 1 can be rewritten as 1 = xy2xy−1xy2xy,

and when we take r = xy and s = y−1, this gives 1 = rs−1rs−2rs−1r = (rs−1)2(s−1r)2.

On the other hand, it can also be rewritten as 1 = xy2xyxy2xy−1 = xy2xyxy−2xy−1 =

(xy2)2(y−1xy−1)2, which becomes 1 = (rs−1)2(r−1s)2. Hence we find that (r−1s)2 =

(rs−1)2 = (s−1r)2, and in particular, (rs−1)4 = (r−1s)2(r−1s)2 = (r−1s)2(s−1r)2 = 1.

Again we will use this in the next sub-section.

A presentation for the full automorphism group is

〈 a, b, c | a2 = b2 = c2 = (ac)2 = (bc)4 = (abcb)2(babc)2 = (ab)4n = 1 〉,

with the rotation group generated by r = ab and s = bc as usual. The first few members

of the resulting family (after the first one, of genus 1) are the duals of the maps named

R5.6, R9.10 and R13.4 in [15].

8.1.3 Family C: Orientably-regular maps of type {8n, 4}

Take the group Φ = 〈x, y | x2 = y4 = xyxy2xy−1xy2 = 1 〉 from the previous sub-section,

and for any positive integer n, factor out the cyclic normal subgroup K generated by

z2n = (xy)8n. The resulting quotient is the same as the one obtained using the semi-

direct product construction, and in the group G ∼= C8n oH from that, we have
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[x, y2] = xy2xy2 = wuv2wuv2 = w1−1uv2uv2 = (uv2)2,

which is an involution that centralises every power of w. Since the element (uv2)2 is

central in H = 〈u, v〉, this involution is centralised also by each of x (= wu) and y (= v),

and therefore central in G. Also the element (xy)4n is the unique involution in the cyclic

normal subgroup generated by (xy)4, and hence is central in G as well.

These two central involutions [x, y2] = (uv2)2 and (xy)4n are distinct, so their prod-

uct [x, y2](xy)4n is a third central involution. Taking the quotient of 〈x, y〉 of the cen-

tral subgroup of order 2 generated by this third involution, we obtain a group of or-

der 32(2n)/2 = 32n, generated by two elements of orders 2 and 4 with product of

order 8n. This gives an orientably-regular map of type {8n, 4}, with characteristic

χ = 32n/(8n)− 32n/2 + 32n/4 = 4− 8n, and genus g = 4n− 1.

Again the map is reflexible, since the automorphism inverting the two generators of

the earlier group centralises both [x, y2] and (xy)4n, and therefore centralises their product

as well. Also the underlying graph of the map is simple (for the same reasons as before).

Thus we have the following:

Proposition 8.1.3 For every positive integer n, there exists a reflexible regular map of

type {8n, 4} and genus 4n− 1, with simple underlying graph.

A presentation for the rotation group of the nth map in this family is simply

〈 r, s | (rs)2 = s4 = (rs−1)2(r−1s)2 = sr−1sr−1+4n = r8n = 1 〉,

although the last relation is redundant, since the fourth relation sr−1sr−1+4n = 1 gives

r4n = (rs−1)2 and therefore r8n = (r4n)2 = (rs−1)4 = 1, by what we observed in the

previous sub-section. A presentation for the full automorphism group is

〈 a, b, c | a2 = b2 = c2 = (ac)2 = (bc)4 = (abcb)2(babc)2 = bcbabc(ab)−1+4n = 1 〉,

with the rotation group generated by r = ab and s = bc as usual.

The first few members of the resulting family are the duals of the maps named R3.5,

R7.3, R11.2 and R15.6 in [15]. Also the carrier surfaces of these maps can easily be
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shown to be the same as those considered by Kulkarni in [41]. On the other hand, the

regular maps with the same parameters obtainable from Maclachlan’s surface actions in

[48] (which include the maps named R3.6, R7.4, R11.3 and R15.7 in [15]) do not have

simple underlying graphs.

8.1.4 Family D: Orientably-regular maps of type {6n, 6}

In this sub-section we exhibit three families of orientably-regular maps of type {6n, 6}
and genus 6n− 2, for n ≡ 0, 1 and 2 mod 3 respectively. The maps in the first family are

chiral, while those in the second and third families are reflexible.

We begin with the second and third families. For n 6≡ 0 mod 3, we take the group Σ

with presentation

Σ = 〈x, y | x2 = y6 = xyxy−2xy−1xy2 = 1 〉,

and consider the two elements u = (xy)2 and v = (xy2)2.

Note that the relation xyxy−2xy−1xy2 = 1 is equivalent (by inversion and conjugation)

to xyxy2xy−1xy−2 = 1. Also this relation implies that xyx = y−2xyxy2, and hence

that (yx)2 = y(xyx) = y−1xyxy2 = (y−1xy−1x)(xy2xy2) = u−1v. Similarly, the relation

xyxy−2xy−1xy2 = 1 gives xy2x = y−1xy2xy, and so (y2x)2 = y2(xy2x) = yxy2xy =

y(y−1xy2xy)y = xy2xy2 = v. From these observations, we deduce that

ux = (yx)2 = u−1v, uy = y−1xyxy2 = u−1v (as above),

vx = (y2x)2 = xy2xy2 = v, vy = y−1xy2xy3 = (y−1xy2xy)y2 = xy2xy2 = v.

In particular, the subgroup N generated by u and v is normal in Σ. The quotient Σ/N

is generated by the (involutory) images of the elements x and xy, and hence is dihedral

of order 12, so N has index 12 in Σ. Also v is centralised by both generators of Σ, and

hence by u, and therefore N is abelian. Moreover, u3 = (xy)6, while

v3 = (xy2)2(xy2)2(xy2)2 = (xy2)2(y2x)2(xy2)2 = xy2xy−2xy−2xy2

= y−1xy2xyy−2xy−2xy2 = y−1(xy2xy−1xy−2xy)y = 1.

Thus Σ is isomorphic to an extension of Z ⊕ Z3 by D6. Also (u3)x = (u3)y = (u−1v)3 =
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u−3v3 = u−3, and therefore the element u3 generates a cyclic normal subgroup of Σ, with

index 9 in N and index 108 in Σ. By Reidemeister-Schreier theory, this subgroup is

infinite. (Some of these things can also be verified with the help of Magma.)

Now for any positive integer n, we may factor out the normal subgroup generated by

u3n, and get a quotient of order 108n that is the rotation group of an orientably-regular

map of type {6n, 6}, characteristic 108n/(6n)− 108n/2 + 108n/6 = 18− 36n, and genus

18n−8. This map is reflexible, since the group Σ admits an automorphism θ which inverts

x and y, and takes u = (xy)2 to (xy−1)2 = x(y−1x)2x = (u−1)x = (u−1v)−1 = uv−1 and

v = (xy2)2 to (xy−2)2 = x(y−2x)2x = (v−1)x = v−1, and this automorphism takes u3 to

(uv−1)3 = u3, so preserves the quotient Σ/〈u3m〉.

But also the normal subgroup N/〈u3n〉 of this quotient has a characteristic abelian

subgroup of order 9 generated by un = (xy)2n and v (each of order 3).

If n ≡ 1 mod 3, say n = 3d − 2, then the element unv generates a cyclic normal

subgroup of Σ, since (unv)y = unv and

(unv)x = (u−1v)nv = u−nvn+1 = (unv)−1vn+2 = (unv)−1v3d = (unv)−1.

When we factor out this subgroup of order 3, we get a quotient of order 36n that is the

rotation group of an orientably-regular map of type {6n, 6}, characteristic 36n/(6n) −
36n/2 + 36n/6 = 6− 12n, and genus 6n− 2. The underlying graph of the map is simple

for all such n > 1, since neither 〈y2〉 nor 〈y3〉 is normal in the rotation group, but that

does not happen for the case n = 1 (since in that case v = (xy2)2 becomes trivial, so

(y2)x = y−2, which then makes 〈y2〉 normal in 〈x, y〉). Also the map is reflexible (for

all n), since the inverting automorphism θ of Σ takes unv to (uv−1)nv−1 = unv−n−1 =

(unv)v−n−2 = (unv)v−3d = unv.

Similarly, if n ≡ 2 mod 3, say n = 3d + 2, then the element unv−1 generates a cyclic

normal subgroup of Σ, since (unv−1)y = unv−1 and

(unv−1)x = (u−1v)nv−1 = u−nvn−1 = (unv−1)−1vn−2 = (unv−1)−1v3d = (unv−1)−1,

and when we factor out this subgroup of order 3, again we get a quotient of order 36n

that is the rotation group of an orientably-regular map of type {6n, 6}, characteristic
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36n/(6n) − 36n/2 + 36n/6 = 6 − 12n, and genus 6n − 2, with simple underlying graph.

Again the map is reflexible, since the inverting automorphism θ of Σ takes unv−1 to

(uv−1)nv = unv−n+1 = (unv−1)v−n+2 = (unv−1)v−3d = unv−1.

Thus we get two families of reflexible maps with the desired properties. The first few

members of these two families are the duals of the maps named R10.16, R22.9, R28.21,

R40.5, R40.5 and R46.23 in Conder’s website of orientably-regular maps of genus 2 to 101

(see [13]).

For given n 6≡ 0 mod 3, a presentation for the rotation group of the map is given by

〈 r, s | (rs)2 = s6 = r2s3rs2rs−1 = r2n(rs−3)±2 = 1 〉,

with the final superscript in the last relator being +2 for all n ≡ 1 mod 3, and −2 for all

n ≡ 2 mod 3. Correspondingly, a presentation for the full automorphism group is

〈 a, b, c | a2 = b2 = c2 = (ac)2 = (bc)6 = (ab)2(bc)3acbcabcb = (ab)2n(abcbcbcb)±2 = 1 〉,

with the rotation group generated by r = ab and s = bc as usual.

For the case n ≡ 0 mod 3, the above approach does not work; indeed there is no such

map (with the above parameters and with simple underlying graph) when n = 3, 6, 9, 12

or 15, for example. Instead, we start with a different group Λ, with presentation

Λ = 〈x, y | x2 = y6 = (xyxy2)2 = (xy2)2(xy−2)2 = 1 〉.

The relations in this group imply yxy2xy = xy−2x, and hence 1 = xy2xy2xy−2xy−2

= xy(yxy2xy)y3xy−2 = xy(xy−2x)y3xy−2, which gives us xy−2xy3 = y−1xy2x.

Now take u = xy−2xy2 and v = (xy)3(xy−1)3. Then we find ux = y−2xy2x = u−1

and vx = (yx)3(y−1x)3 = v−1, while uy = y−1xy−2xy3 = y−1y−1xy2x = u−1, and vy
−1

=

yvy−1 = (yx)3(y−1x)3 = v−1, from which it follows that also vy = v−1. Hence both u and

v are inverted under conjugation by each of x and y, and in particular, the subgroup N

generated by u and v is normal in Λ. Moreover, since v is centralised by y2, we find that

v is centralised by xy−2xy2 = u, and so N is abelian.
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Also (xy)6 = (xy)3(xy−1)3(yx)3(xy)3 = vyxyxy2xyxy = vyx(xy−2x)xy = v. It follows

from this (with the help of Magma [3] if necessary) that the quotient Λ/N has order 36,

and then by Reidemeister-Schreier theory, we find that N is isomorphic to Z3 ⊕ Z, with

the Z3 generated by u, and with v infinite. (Indeed

u3 = xy−2xy2xy−2xy2xy−2xy2 = xy−2xy2(y2xy−2x)xy−2xy2 = xy−2xy−2xy2xy2 = 1.)

It follows that the subgroup generated by v itself is normal in N , with index 108, and

when we factor out the subgroup generated by vn for any positive integer n, we get a

quotient of order 108n in which the image of xy has order 6n. Accordingly, this quotient

is again the rotation group of an orientably-regular map of type {6n, 6}, characteristic

108n/(6n)− 108n/2 + 108n/6 = 18− 36n, and genus 18n− 8. Also this map is reflexible,

since the rotation group admits an automorphism that inverts the images of x and y, and

then takes the image of u = xy−2xy2 to the image of xy2xy−2 = y2x(xy−2xy2)xy−2 =

uxy
−2

= u−1, and similarly the image of v = (xy)3(xy−1)3 to the image of (xy−1)3(xy)3 =

(y−1x)3((xy)3(xy−1)3)(xy)3 = v(xy)3 = v.

But if n is divisible by 3, say n = 3m, and we factor out the normal subgroup generated

by uvm, then we get a different quotient, of order 108m = 36n, in which the image of

xy has order 18m, since the image of v = (xy)6 has order 3m (with the image of vm

coinciding with the image of u−1). This gives an orientably-regular map of type {18m, 6},
characteristic 108m/(18m)− 108m/2 + 108m/6 = 6− 36m, and genus 18m− 2, but the

map is no longer reflexible, since any automorphism that inverts the images of x and y

must take the image of uvm (which is trivial) to u−1vm (which is not). On the other hand,

the underlying graph is simple, since the images of the subgroups generated by y2 and y3

are not normal.

Thus we have a family of chiral maps of type {6n, 6} and genus 6n− 2, for n divisible

by 3, all with simple underlying graphs.

A presentation for the rotation group (in the case n = 3m) is

〈 r, s | (rs)2 = s6 = (r2s−1)2 = (rs−1)2(rs3)2 = rs3rs−1rn/3 = 1 〉,
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again obtainable by taking r = xy and s = y−1.

The first few members of the resulting family are the duals of the maps named C16.1,

C34.1, C52.1, C70.1 and C88.1 in Conder’s website of orientably-regular maps of genus 2

to 101 (see reference [13]).

Thus we have the following:

Proposition 8.1.4 For every integer n > 1, there exists an orientably-regular map of

type {6n, 6} and genus 6n− 2, with simple underlying graph. In fact if n 6≡ 0 mod 3, then

there exists such a map that is reflexible, while if n ≡ 0 mod 3, there exists such a map

that is chiral.

Note that the four families of maps we have described so far have genera congruent to

0, 1, 3, 4, 5, 6, 7, 9, 10 and 11 mod 12. For the remaining two congruence classes (namely

2 and 8 mod 12), maps described in the next section will be helpful.

8.2 Orientably-regular maps of type {6, 6}

A well-known family of regular maps of type {6, 6} was introduced by Sherk [55] in the

1960s, using a construction based on the automorphism groups of the toroidal maps of type

{3, 6}. The maps in Sherk’s family are indexed by ordered pairs (α, β) of non-negative

integers, with rotation group of the form

Gα,β = 〈 r, s | (rs)2 = r6 = s6 = (r2s−1)2 = (r−2s−2)α(r2s2)β = 1 〉

for each such pair (α, β) 6= (0, 0). This group has order 12k where k = α2 + αβ + β2,

and the corresponding map (which we will denote by S(α,β)) has genus k + 1, and the

map S(α,β) is reflexible if and only if αβ(α − β) = 0. For example, S(0,1), S(1,0), S(0,2),

S(1,1), S(2,0), S(1,2) and S(2,1) are respectively the maps R2.5, R2.5, R5.10, the dual of R4.8,

R5.10, the dual of C8.1, and the mirror image of the dual of C8.1 in [15].

The underlying graph of S(α,β) is simple except when α+β ≤ 2, for in those cases 〈s3〉
or 〈s2〉 is normal in Gα,β (while no such degeneracy occurs when α + β > 2).
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Hence the Sherk family gives orientably-regular maps of genus g (and type {6, 6})
with simple underlying graphs, for all g expressible in the form α2 +αβ + β2 + 1 where α

and β are non-negative integers with α+ β > 2. This set of possible genera is ‘quadratic’

rather than ‘linear’, and so asymptotically is less dense than the arithmetic progressions

of genera provided by the families in the sub-sections above, but nevertheless it covers

some genera that the previous families do not, such as 8, 14, 20, 26, 32, 38, 44, 50, 62,

68, 74, 80, 92 and 98 (but not 56 or 86).

On the other hand, the underlying graph of the dual of S(α,β) is never simple, for the

relation (r2s−1)2 = 1 can be rewritten as (r3(rs)−1)2 = 1, which implies that conjugation

by the involution rs inverts r3, and hence 〈r3〉 is always normal in Gα,β.

Below we will show that there exist other families of orientably-regular maps of type

{6, 6} with simple underlying graph that not only have genera covering some of the re-

maining gaps in the genus spectrum, but also have a dual with simple underlying graph

as well. These will be obtained as covers of a particular map of type {6, 6} and genus 2,

namely the map R2.5 in [15], which has rotation group C2 × C6.

One way is via a semi-direct product construction, similar to the one used before. Let

n be any odd positive integer with the property that some unit t in Zn has multiplicative

order 6, and form the semi-direct product G = NH of a cyclic group N = 〈w |wn = 1 〉
of order n by the group H = C2 ×C6 = 〈u, v | u2 = v6 = [u, v] = 1 〉, with conjugation of

N by H given by wu = w−1 and wv = wt. In this group, define x = u and y = wv. Then

xyxy−1 = uwvuv−1w−1 = w−2uvuv−1 = w−2, which generatesN , and it follows that x and

y generate G. Clearly x has order 2, while the orders of y = wv and xy = uvw = w−1uv

are multiples of 6.

In fact, y6 = (wv)6 = w1+t+t2+t3+t4+t5 and (xy)6 = (uwv)6 = w−(1−t+t2−t3+t4−t5), so y

and xy have order 6 precisely when 1 + t + t2 + t3 + t4 + t5 and 1 − t + t2 − t3 + t4 − t5

are both congruent to 0 mod n. If these two conditions hold, then subtracting one from

the other gives 2(1 + t2 + t4) ≡ 0 mod n, and hence 1 + t2 + t4 ≡ 0 mod n. Conversely,

if 1 + t2 + t4 ≡ 0 mod n, then 1 + t + t2 + t3 + t4 + t5 = (1 + t)(1 + t2 + t4) ≡ 0 mod n
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and 1 − t + t2 − t3 + t4 − t5 = (1 − t)(1 + t2 + t4) ≡ 0 mod n, so this group G can be

constructed precisely when 1 + t2 + t4 ≡ 0 mod n.

In that case, G is the rotation group of an orientably-regular map of type {6, 6},
characteristic χ = 12n/6 − 12n/2 + 12n/6 = −2n and genus n + 1. Moreover, it is

easy to verify that xy−2xy2 = w2(t+t2) and xy−3xy3 = w2(t+t2+t3), and it follows that the

underlying graph of this map is simple if and only if t + t2 and t + t2 + t3 are non-zero

mod n. Similarly, xy−2xy2 = w2(t−t2) and xy−3xy3 = w2(t−t2+t3), so the underlying graph

of the dual map is simple if and only if t − t2 and t − t2 + t3 are non-zero mod n. Also

if the map has simple underlying graph then it must be chiral, since any automorphism

of G that inverts each of x and y must conjugate w−2 = xyxy−1 to xy−1xy = w−2, and

therefore centralises w, but on the other hand, it must also conjugate w2(t+t2) = xy−2xy2

to xy2xy−2 = w−2(1+t5), so that t+t2 ≡ −(1+t5) = −(t2+t)t5 mod n, which is impossible.

Examples include some of the Sherk maps (of genus 8, 14, 20, 32, 38, 44, 50, 62, 68,

74, 80, 92 and 98 for example), but also others for which both the map and its dual have

simple underlying graph, such as the maps C22.2, C40.2, C58.2, C92.1 and C94.2 from

[13], arising when (n, t) = (21, 10), (39, 4), (57, 46), (91, 30) and (93, 37).

Some other classes can be constructed as follows:

Let Ψ be the group with presentation Ψ = 〈x, y | x2 = y6 = (xy)6 = 1 〉.

Then the derived group Ψ′ of Ψ (which is generated by the conjugates of the element

[x, y]) has index 12 in Ψ, with quotient Ψ/Ψ′ isomorphic to C2×C6, which is the rotation

group of the regular map R2.5. In fact, by Reidemeister-Schreier theory (or by using the

Rewrite command in Magma), we find that the subgroup Ψ′ is generated by the four

elements

w1 = xy−1xy, w2 = xyxy−1, w3 = xy−2xy2, w4 = xy2xy−2,

subject to a single defining relation w−1
2 w4w

−1
3 w1w2w

−1
4 w3w

−1
2 = 1. Note that the fifth

commutator of the form xy−ixyi, namely w5 = xy−3xy3 = xy3xy−3, is easily expressible

as a product w3w
−1
1 w−1

2 w4. In particular, the above generators and single defining relation

for Ψ′ show that the abelianisation Ψ′/(Ψ′)′ of Ψ′ is free abelian of rank 4.
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Now let us move to the quotient Ψ/(Ψ′)′ of Ψ, which we will call G, and denote its

derived subgroup Ψ′/(Ψ′)′ by K. Then G is an extension of the free abelian subgroup

K ∼= Z4 by G/K ∼= C2 × C6. Also (for notational convenience) let us keep the same

symbols x and y as the generators of G, and the same symbols w1 to w4 as the generators

of K.

Then the action of the generators x and y by conjugation on the generators wi of K

may be given as follows:

w1
x = y−1xyx = w−1

1 , w2
x = yxy−1x = w−1

2 ,

w3
x = y−2xy2x = w−1

3 , w4
x = y2xy−2x = w−1

4 ,

and

w1
y = y−1xy−1xy2 = (y−1xyx)(xy−2xy2) = w−1

1 w3,

w2
y = y−1xyx = w−1

1 ,

w3
y = y−1xy−2xy3 = (y−1xyx)(xy−3xy3) = w−1

1 w3w
−1
1 w−1

2 w4,

w4
y = y−1xy2xy−1 = (y−1xyx)(xyxy−1) = w−1

1 w2.

Accordingly, the generators x and y induce linear transformations of the free abelian

group K ∼= Z4 as follows:

x 7→


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 and y 7→


−1 0 1 0

−1 0 0 0

−2 −1 1 1

−1 1 0 0

 .

These matrices generate a group isomorphic to G/K ∼= C2 × C6,

They can be reduced mod m for any positive integer m, giving the corresponding

action of x and y on the group K/K(m), where K(m) is the (characteristic) subgroup of K

generated by the mth powers of all the wi. Such actions can be used to consider subgroups

of finite index in K that are invariant under the action of x and y (or in other words,

subgroups of K that are normal in G with finite quotient), just as we did in Chapters 3

to 7 for regular covers of symmetric cubic graphs.
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In particular, when m is odd, we can change the basis of K from {w1, w2, w3, w4} to

{z1, z2, z3, z4} where

z1 = w1w
−1
4 , z2 = w2w

−1
3 , z3 = w1w

m+1
2

2 w
m−1

2
3 , z4 = w

m+1
2

1 w2w
m−1

2
4 ,

and get new matrices representing x and y, as follows:

x 7→


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 and y 7→


0 −1 0 0

1 1 0 0

0 0 −1 1

0 0 −1 0

 .

This shows that the group K/K(m) can be expressed as the direct sum of two G-

invariant subgroups of rank 2, say U and V , generated by the images of {z1, z2} and

{z3, z4} respectively. Factoring out U or V gives a quotient of G of order 12m2, which is

the rotation group of an orientable-regular map of type {6, 6}, characteristic 12m2/6 −
12m2/2 + 12m2/6 = −2m2 and genus m2 + 1.

Now the automorphism of G that inverts x and y clearly interchanges w1 = xy−1xy

with xyxy−1 = w2, and similarly interchanges w3 with w4, and hence interchanges z1 with

z2, and z3 with z4, and it follows that each of the two resulting maps is reflexible.

One of these maps has simple underlying graph, while the other does not. In the

quotient obtained by factoring U , the element z1 = w1w
−1
4 = xy−1xy(xy2xy−2)−1 =

xy−1xy3xy−2x becomes trivial, and forces 1 = xy3xy−2xxy−1 = xy3xy−3, so that y3 is

centralised by x, and hence the map obtained by factoring out U has multiple edges.

On the other hand, this does not happen in the quotient obtained by factoring V . For

example, when m = 3, these maps are R10.15 (for U) and its dual (for V ).

In fact it is not difficult to see that U and V are interchanged by an automorphism

that interchanges xy with y−1, corresponding to map duality.

But furthermore, for some values of m, the G-invariant subgroups U and V are re-

ducible, and we can factor out a larger (or smaller) subgroup L of K/K(m), and get the

rotation group of an orientable-regular map of type {6, 6} with simple underlying graph.
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Similarly for m even, we can find other kinds of non-trivial proper G-invariant subgroups

of K/K(m), and factor out those. Examples obtainable in this way for which both the pri-

mal and dual maps have simple underlying graph include R10.13, C17.3, R17.20, C22.2,

R28.9, R37.23, C40.2, C49.4, R49.36, R49.37, C50.3 and C50.4 (see [13]), with the rota-

tion groups of these examples being isomorphic to extensions by G/K ∼= C2×C6 of (C3)
2,

(C4)
2, (C2)

4, C21, (C3)
3, (C6)

2, C39, C4×C12, C4×C12, (C2)
3×C6, C7×C7 and C7×C7,

respectively.

8.3 Main theorem

The families of orientable regular maps with simple underlying graphs presented in Sec-

tion 8.1 give us the following:

Theorem 8.3.1 For every positive integer g ≡ 0, 1, 3, 4 or 5 mod 6, there exists at least

one orientably-regular map of genus g with simple underlying graph.

Note that the family D (presented in sub-section 8.1.4) did not include a map of genus

4, but the map R4.2 of type {4, 5} in [15] has simple underlying graph.

The above theorem covers 5/6 of all genera — indeed all except those congruent to

2 mod 6. Various families of maps of type {6, 6} cover some of the remaining genera, as

described in Section 8.2. It is also clear from the computational data obtained by Conder

(see [13]) that there are numerous other families and examples.

In fact Conder has recently extended the determination of all orientably-regular maps

up to genus 301, and there are no gaps at all in this range; in other words, for every

positive integer g ≤ 301, there exists at least one orientably-regular map of genus g with

simple underlying graph.

For g in the range 2 ≤ g ≤ 301 that are congruent to 2 mod 6, there is an orientably-

regular map of type {6, 6} with simple underlying graph except when g = 2, 86, 116, 146,

188, 206, 236, 254, 266 or 296, and in all those cases, there are maps of other types with
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simple underlying graph — such as the duals of R2.1 (of type {8, 3}) and R86.4 (of type

{20, 6}).

This gives us some confidence to make the following conjecture, although the question

of how to prove it remains wide open:

Conjecture 8.3.2 For every non-negative integer g, there exists at least one orientably-

regular map of genus g with simple underlying graph.
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Chapter 9

Concluding Remarks

The unique symmetric (Z5)
3-cover of the Petersen graph found in Section 6.2 is the largest

known connected 3-valent graph of diameter 10. This graph was first discovered by Conder

in his determination of all symmetric cubic graphs of order up to 2048, and was one of

the motivations for the work in this thesis. In particular, it shows that the construction

of regular covers can be used to produce large graphs of given degree and diameter. (See

[60] for further details.) By our new approach introduced in Section 2.6, it is possible to

find regular covers of symmetric graphs of small order with covering groups of small rank.

In this way, we can produce other symmetric graphs with given degree and diameter,

including some of the graphs in [61].

In fact, using this approach to find all the symmetric abelian regular covers of higher

valency graphs is more difficult, because of the larger range of classes of ‘universal’ actions.

But it is still possible to deal with particular examples, such as the complete graph K5,

which is a 2-arc-transitive, 4-valent graph of order 5. The full automorphism group of

K5 is isomorphic to the symmetric group S5, which acts 2-arc-transitively, and the only

arc-transitive subgroups are AGL(1, 5) and A5, which are 1-arc-regular and 2-arc-regular

respectively. The vertex-stabilizer subgroup in AGL(1, 5) is isomorphic to C4. We can

use the free product G = C2 ? C4 = 〈x, y | x2 = y4 = 1〉 as universal group, and find

that there exists a normal subgroup N of G of index 20 such that G/N ∼= AGL(1, 5), and

143
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studying the structure of N can lead to the construction of regular covers of K5.

We would like to conclude this thesis by mentioning a number of open problems and

potential future projects arising from this topic:

1) Find other families of regular maps with simple underlying graphs.

2) Classify the arc-transitive abelian regular covers of the complete graph K5 and the

octahedron graph (which have 6 and 7 co-tree edges, respectively).

3) Can our approach be generalized to classify the vertex-transitive abelian regular

covers of vertex-transitive cubic graph?

4) Construct higher valency symmetric graphs that are suitable candidates for en-

tries in the degree-diameter table (for general graphs, symmetric graphs, vertex-transitive

graphs, or Cayley graphs).



Appendix

In Chapter 7, we classified all of the symmetric abelian regular covers of the Heawood

graph, by considering all possible lifts of the subgroup C7 o3 C6 of the automorphism

group, and we listed all the possibilities for an abelian covering group of finite prime

power order in the summary Table 7.3.

In this Appendix, we give specific generators for the G1-invariant subgroups of K/K(m)

described in Table 7.3, when m = 7` for some `.

Generating sets of G1-invariant subgroups

Rank 1

• Two subgroups with invariants [7t] for each t > 0

.. one is of type 5d,e, with layer sequence (vT0,
w−vT1, Kw), and is generated by the

images of {x1};

.. one is of type 6d,e, with layer sequence (vT0,
w−vT2, Kw), and is generated by the

images of {x2};

Rank 2

• Two subgroups with invariants [7s, 7t] for each t > s ≥ 1

.. one is of type 7c,d,e, with layer sequence (uT0,
v−uT1,

w−vT3, Kw), and generated by

the images of {x1, x2
7t−s};

.. one is of type 8c,d,e, with layer sequence (uT0,
v−uT2,

w−vT3, Kw), and generated by
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the images of {x2, x1
7t−s};

• One subgroup with invariant [7, 7t] for each t > 1

.. one is of type 9d,e, with layer sequence (vT0,
w−v−1T1, T4, Kw), and generated by the

images of {x1, x3
7t−1};

• One subgroup with invariant [7t, 7t] for each t ≥ 1

.. one is of type 10d,e, with layer sequence (vT0,
w−vT3, Kw), and generated by the

images of {x1, x2};

• One subgroup with invariant [ 7, 7 ]

.. one is of type 11e, with layer sequence (w−1T0, T4, Kw);

Rank 3

• Two subgroups with invariants [7, 7s, 7t] for each pair (s, t) with t > s > 1

.. one is of type 12c,d,e, with layer sequence (uT0,
v−uT1,

w−v−1T3, T5, Kw), and generated

by the images of {x1, x2
7t−s

, x3
7t−1};

.. one is of type 13c,d,e, with layer sequence (uT0,
v−uT2,

w−v−1T3, T5, Kw), and generated

by the images of {x2, x1
7t−s

, x3
7t−1};

• Three subgroups with invariants [7, 7, 7t] for each t > 1

.. one is of type 14d,e, with layer sequence (vT0,
w−v−1T1, T5, Kw), and generated by

the images of {x1, x2
7t−1

, x3
7t−1};

.. one is of type 15d,e, with layer sequence (vT0,
w−v−1T2, T5, Kw), and generated by

the images of {x2, x1
7t−1

, x3
7t−1};

.. one is of type 16d,e, with layer sequence (vT0,
w−v−1T1, T6, Kw), and generated by

the images of {x1, x3
7t−1

, x4
7t−1};

• One subgroup with invariant [7, 7t, 7t] for each t > 1

.. one is of type 17d,e, with layer sequence (vT0,
w−v−1T3, T5, Kw), and generated by

the images of {x1, x2, x3
7t−1};

• Two subgroups with invariants [ 7, 7, 7 ]
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.. each one is of type 18e or 19e, with layer sequences (w−1T0, T5, Kw) and (w−1T0, T6, Kw),

respectively;

Rank 4

• Two subgroups with invariants [7, 7, 7s, 7t] for each pair (s, t) with t > s > 1

.. one is of type 20c,d,e, with layer sequence (uT0,
v−uT1,

w−v−1T3, T7, Kw), and generated

by the images of {x1, x2
7t−s

, x3
7t−1

, x4
7t−1};

.. one is of type 21c,d,e, with layer sequence (uT0,
v−uT2,

w−v−1T3, T7, Kw), and generated

by the images of {x2, x1
7t−s

, x3
7t−1

, x4
7t−1};

• Three subgroups with invariants [7, 7, 7, 7t] for each t > 1

.. one is of type 22d,e, with layer sequence (vT0,
w−v−1T1, T7, Kw), and generated by

the images of {x1, x2
7t−1

, x3
7t−1

, x4
7t−1};

.. one is of type 23d,e, with layer sequence (vT0,
w−v−1T2, T7, Kw), and generated by

the images of {x2, x1
7t−1

, x3
7t−1

, x4
7t−1};

.. one is of type 24d,e, with layer sequence (vT0,
w−v−1T1, T8, Kw), and generated by

the images of {x1, x3
7t−1

, x4
7t−1

, x5
7t−1};

• One subgroup with invariant [7, 7, 7t, 7t] for each t > 1

.. one is of type 25d,e, with layer sequence (vT0,
w−v−1T3, T7, Kw), and generated by

the images of {x1, x2, x3
7t−1

, x4
7t−1};

• Two of type [7, 7, 7, 7]

.. each one is of type 26e or 27e, with layer sequences (w−1T0, T7, Kw) and (w−1T0, T8, Kw),

respectively;

Rank 5

• Fourteen subgroups with invariants [7, 7, 7, 7s, 7t] for each pair (s, t) with t > s > 1

.. seven are of type 28c,d,e
∗, with layer sequence (uT0,

v−uT1,
w−v−1T3, T9, Kw), and

generated by the images of {x1, x2
7t−s

x6
α7t−1

, x3
7t−1

, x4
7t−1

, x5
7t−1} for 0 ≤ α ≤ 6;

.. seven are of type 29c,d,e
∗, with layer sequence (uT0,

v−uT2,
w−v−1T3, T9, Kw), and
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generated by the images of {x2x6
α7t−1

, x1
7t−s

, x3
7t−1

, x4
7t−1

, x5
7t−1} for 0 ≤ α ≤ 6;

• Fifteen subgroups with invariants [7, 7, 7, 7, 7t] for each t > 1

.. one is of type 30d,e, with layer sequence (vT0,
w−v−1T1, T9, Kw), and generated by

the images of {x1, x2
7t−1

, x3
7t−1

, x4
7t−1

, x5
7t−1};

.. seven are of types Sd,e for 31 ≤ S ≤ 37, with layer sequences (vT0,
w−v−1T1, Tα, Kw),

and generated by the images of {x1, x3
7t−1

, x4
7t−1

, x5
7t−1

, (xα−10
2 x6)

7t−1

} for 10 ≤ α ≤ 16;

.. seven are of type 38d,e
∗, with layer sequence (vT0,

w−v−1T2, T9, Kw), and generated

by the images of {x2x6
α7t−1

, x1
7t−1

, x3
7t−1

, x4
7t−1

, x5
7t−1} for 0 ≤ α ≤ 6;

• Seven subgroups with invariants [7, 7, 7, 7t, 7t] for each t > 1

.. seven are of type 39d,e
∗, with layer sequence (vT0,

w−v−1T3, T9, Kw), and generated

by the images of {x1, x2x6
α7t−1

, x3
7t−1

, x4
7t−1

, x5
7t−1} for 0 ≤ α ≤ 6;

• Eight subgroups with invariants [7, 7, 7, 7, 7]

.. each one is of type Se for 40 ≤ S ≤ 47, with layer sequences (w−1T0, Tα, Kw) for

9 ≤ α ≤ 16 respectively;

Rank 6

• Two subgroups with invariants [7, 7, 7, 7, 7s, 7t] for each pair (s, t) with t > s > 1

.. one is of type 48c,d,e, with layer sequence (uT0,
v−uT1,

w−v−1T3, T17, Kw), and gener-

ated by the images of {x1, x2
7t−s

, x3
7t−1

, x4
7t−1

, x5
7t−1

, x6
7t−1};

.. one is of type 49c,d,e, with layer sequence (uT0,
v−uT2,

w−v−1T3, T17, Kw), and gener-

ated by the images of {x2, x1
7t−s

, x3
7t−1

, x4
7t−1

, x5
7t−1

, x6
7t−1};

• Nine subgroups with invariants [7, 7, 7, 7, 7, 7t] for each t > 1

.. one is of type 50d,e, with layer sequence (vT0,
w−v−1T1, T17, Kw), and generated by

the images of {x1, x2
7t−1

, x3
7t−1

, x4
7t−1

, x5
7t−1

, x6
7t−1};

.. one is of type 51d,e, with layer sequence (vT0,
w−v−1T2, T17, Kw), and generated by

the images of {x2, x1
7t−1

, x3
7t−1

, x4
7t−1

, x5
7t−1

, x6
7t−1};

.. seven are of type 52d,e
∗, with layer sequence (vT0,

w−v−1T1, T18, Kw), and generated

by the images of {x1x8
α7t−1} ∪ V (7t−1) for 0 ≤ α ≤ 6;
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• Seven subgroups with invariants [7t−1, 7t−1, 7t−1, 7t−1, 7t−1, 7t] for each t > 2

.. seven are of type 53d,e
∗, with layer sequence (vT0, T1,

w−v−1T18, Kw), and generated

by the images of {x1x8
α7t−1} ∪ V (7) for 0 ≤ α ≤ 6;

• One subgroup with invariant [7, 7, 7, 7, 7t, 7t] for each t > 1

.. one is of type 54d,e, with layer sequence (vT0,
w−v−1T3, T17, Kw), and generated by

the images of {x1, x2, x3
7t−1

, x4
7t−1

, x5
7t−1

, x6
7t−1};

• One subgroup with invariant [7t−1, 7t−1, 7t−1, 7t−1, 7t, 7t] for each t > 1

.. one is of type 55d,e, with layer sequence (vT0, T4,
w−v−1T18, Kw), and generated by

the images of {z2w7
−14, x3} ∪ V (7);

• One subgroup with invariant [7t−1, 7t−1, 7t−1, 7t, 7t, 7t] for each t > 1

.. one is of type 56d,e, with layer sequence (vT0, T6,
w−v−1T18, Kw), and generated by

the images of {z2w7
−14, x3, x4} ∪ V (7);

• One subgroup with invariant [7t−1, 7t−1, 7t, 7t, 7t, 7t] for each t > 1

.. one is of type 57d,e, with layer sequence (vT0, T8,
w−v−1T18, Kw), and generated by

the images of {z2w7
−14, x3, x4, x5} ∪ V (7);

• Seven subgroups with invariants [7t−1, 7t, 7t, 7t, 7t, 7t] for each t > 1

.. seven are of type 58d,e
∗, with layer sequence (vT0, T14,

w−v−1T18, Kw), and generated

by the images of {z2w7
−14, x3, x4, x5, (v5v

3
6)(x6v6

−1)α7t−1} ∪ V (7) for 0 ≤ α ≤ 6;

• One subgroup with invariant [7, 7, 7, 7, 7, 7]

.. one is of type 59e, with layer sequence (w−1T0, T17, Kw);

• One subgroup with invariant [7t, 7t, 7t, 7t, 7t, 7t] for each t ≥ 1

.. one is of type 60d,e, with layer sequence (w−1T0,
w−vT18, Kw), and generated by the

images of V (1);

Rank 7

• Fourteen subgroups with invariants [7, 7, 7, 7, 7, 7s, 7t] for each t > s ≥ 2

.. seven are of type 61c,d,e
∗, with layer sequence (uT0,

v−uT1,
w−v−1T3, T19, Kw), and
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generated by the images of {x1x8
α7t−1

, x2
7t−s

, (x6x
−1
7 )7t−1} ∪ V (7t−1) for 0 ≤ α ≤ 6;

.. seven are of type 62c,d,e
∗, with layer sequence (uT0,

v−uT2,
w−v−1T3, T19, Kw), and

generated by the images of {x2, x1
7t−s

x8
α7t−1

, (x6x
−1
7 )7t−1} ∪ V (7t−1) for 0 ≤ α ≤ 6;

• One subgroup with invariant [7s−1, 7s−1, 7s−1, 7s−1, 7s−1, 7s, 7t] for each pair (s, t) with

t > s ≥ 2

.. one is of type 63c,d,e, with layer sequence (uT0,
v−uT1, T4,

w−v−1T20, Kw), and gener-

ated by the images of {z2w7
−14, x3

7t−s
, x8

7t−s+1} ∪ V (7t−s+1);

• Seven subgroups with invariants [7s−1, 7s−1, 7s−1, 7s−1, 7s−1, 7s, 7t] for each pair (s, t)

with t > s > 2

.. seven are of type 64c,d,e
∗, with layer sequence (uT0,

v−uT2, T3,
w−v−1T19, Kw), and

generated by the images of {x2, x1
7t−s

x8
α7t−s+1

, (x6x
−1
7 )t−s+1} ∪ V (7t−s+1) for 0 ≤ α ≤ 6;

• Two subgroups with invariants [7s−1, 7s−1, 7s−1, 7s−1, 7s, 7s, 7t] for each pair (s, t) with

t > s > 1

.. one is of type 65c,d,e, with layer sequence (uT0,
v−uT1, T6,

w−v−1T20, Kw), and gener-

ated by the images of {x1, x3
7t−s

, x4
7t−s

, x7t−s+1

8 } ∪ V (7t−s+1);

.. one is of type 66c,d,e, with layer sequence (uT0,
v−uT2, T5,

w−v−1T19, Kw), and gener-

ated by the images of {x2, x1
7t−s

, x3
7t−s

, (x6x
−1
7 )7t−s+1} ∪ V (7t−s+1);

• Two subgroups with invariants [7s−1, 7s−1, 7s−1, 7s, 7s, 7s, 7t] for each pair (s, t) with

t > s > 1

.. one is of type 67c,d,e, with layer sequence (uT0,
v−uT1, T8,

w−v−1T20, Kw), and gener-

ated by the images of {x1, x3
7t−s

, x4
7t−s

, x5
7t−s

, x7t−s+1

8 } ∪ V (7t−s+1);

.. one is of type 68c,d,e, with layer sequence (uT0,
v−uT2, T7,

w−v−1T19, Kw), and gener-

ated by the images of {x2, (x1x8
14)7t−s

, x3
7t−s

, x4
7t−s

, (x6x
−1
7 )7t−s+1} ∪ V (7t−s+1);

• Fourteen subgroups with invariants [7s−1, 7s−1, 7s, 7s, 7s, 7s, 7t] for each pair (s, t)

with t > s > 1

.. seven are of type 69c,d,e
∗, with layer sequence (uT0,

v−uT1, T14,
w−v−1T20, Kw), and

generated by the images of {x1, x3
7t−s

, x4
7t−s

, x5
7t−s

, (v5v6
3)7t−s

(x6v6
−1)α7t−1

, x8
7t−s+1}∪
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V (7t−s+1) for 0 ≤ α ≤ 6;

.. seven are of type 70c,d,e
∗, with layer sequence (uT0,

v−uT2, T9,
w−v−1T19, Kw), and

generated by the images of {x2x6
α7t−s

, (z2w7
−14)7t−s

, x3
7t−s

, x4
7t−s

, x5
7t−s

, (x6x7
−1)7t−s+1}∪

V (7t−s+1) for 0 ≤ α ≤ 6;

• Fourteen subgroups with invariants [7s, 7t−1, 7t−1, 7t−1, 7t−1, 7t−1, 7t] for each pair

(s, t) with t ≥ s+ 2 > 2

.. seven are of type 71c,d,e
∗, with layer sequence (uT0, T1,

v−u−1T18,
w−vT19, Kw), and

generated by the images of {z2w7
α7t−1−14, (x6x

−1
7 )7t−s} ∪ V (7) for 0 ≤ α ≤ 6;

.. seven are of type 72c,d,e
∗, with layer sequence (uT0, T1,

v−u−1T18,
w−vT20, Kw), and

generated by the images of {x1x8
14+α7t−s−1

, x8
7t−s} ∪ V (7) for 0 ≤ α ≤ 6;

• Seven subgroups with invariants [7s−1, 7s, 7s, 7s, 7s, 7s, 7t] for each pair (s, t) with

t > s+ 1 > 2

.. seven are of type 73c,d,e
∗, with layer sequence (uT0,

v−uT1, T18,
w−v−1T20, Kw), and

generated by the images of {x1x8
α7t−s

, x8
7t−s+1} ∪ V (7t−s) for 0 ≤ α ≤ 6;

• One subgroup with invariant [7s−1, 7s, 7s, 7s, 7s, 7s, 7t] for each pair (s, t) with t >

s > 1

.. one is of type 74c,d,e, with layer sequence (uT0,
v−uT2, T17,

w−v−1T19, Kw), and gener-

ated by the images of {x2, (x1x8
14)7t−s

, x3
7t−s

, x4
7t−s

, x5
7t−s

, x6
7t−s} ∪ V (7t−s+1);

• Seven subgroups with invariants [7, 7, 7, 7, 7, 7, 7t] for each t > 1

.. seven are of type 75d,e
∗, with layer sequence (vT0,

w−v−1T1, T19, Kw), and generated

by the images of {x1x8
α7t−1

, (x6x
−1
7 )7t−1} ∪ V (7t−1) for 0 ≤ α ≤ 6;

• Two subgroups with invariants [7s, 7s, 7s, 7s, 7s, 7s, 7t] for each pair (s, t) with t ≥
s+ 1 ≥ 2

.. one is of type 76d,e, with layer sequence (vT0,
v−uT1,

w−vT20, Kw), and generated by

the images of {x1, x8
7t−s} ∪ V (7t−s);

.. one is of type 77d,e, with layer sequence (vT0,
v−uT2,

w−vT19, Kw), and generated by

the images of {x2, (x6x
−1
7 )7t−s} ∪ V (7t−s);
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• Seven subgroups with invariants [7t−1, 7t−1, 7t−1, 7t−1, 7t−1, 7t−1, 7t] for each t > 2

.. seven are of type 78d,e
∗, with layer sequence (vT0, T1,

w−v−1T19, Kw), and generated

by the images of {z2w7
α7t−1−14, (x6x

−1
7 )7} ∪ V (7) for 0 ≤ α ≤ 6;

• Seven subgroups with invariants [7, 7, 7, 7, 7, 7t, 7t] for each t > 2

.. seven are of type 79d,e
∗, with layer sequence (vT0,

w−v−1T3, T19, Kw), and generated

by the images of {x1x8
α7t−1

, x2, (x6x
−1
7 )7t−1} ∪ V (7t−1) for 0 ≤ α ≤ 6;

• Nine subgroups with invariants [7t−1, 7t−1, 7t−1, 7t−1, 7t−1, 7t, 7t] for each t > 1

.. seven are of type 80d,e
∗, with layer sequence (vT0, T3,

w−v−1T19, Kw), and generated

by the images of {z2w7
α7t−1−14, x2, (x6x

−1
7 )7} ∪ V (7) for 0 ≤ α ≤ 6;

.. one is of type 81d,e, with layer sequence (vT0, T4,
w−v−1T19, Kw), and generated by

the images of {z2w7
−14, x3, (x6x

−1
7 )7} ∪ V (7);

.. one is of type 82d,e, with layer sequence (vT0, T4,
w−v−1T20, Kw), and generated by

the images of {x1, x3, x8
7} ∪ V (7);

• Two subgroups with invariants [7s, 7t−1, 7t−1, 7t−1, 7t−1, 7t, 7t] for each pair (s, t) with

t > s+ 1 > 1

.. one is of type 83c,d,e, with layer sequence (uT0, T4,
v−u−1T18,

w−vT19, Kw), and gener-

ated by the images of {z2w7
−14, x3, (x6x

−1
7 )7t−s} ∪ V (7);

.. one is of type 84c,d,e, with layer sequence (uT0, T4,
v−u−1T18,

w−vT20, Kw), and gener-

ated by the images of {z2w7
−14, x3, x8

7t−s} ∪ V (7);

• Three subgroups with invariants [7t−1, 7t−1, 7t−1, 7t−1, 7t, 7t, 7t] for each t > 1

.. one is of type 85d,e, with layer sequence (vT0, T5,
w−v−1T19, Kw), and generated by

the images of {z2w7
−14, x2, x3, (x6x

−1
7 )7} ∪ V (7);

.. one is of type 86d,e, with layer sequence (vT0, T6,
w−v−1T19, Kw), and generated by

the images of {z2w7
−14, x3, x4, (x6x

−1
7 )7} ∪ V (7);

.. one is of type 87d,e, with layer sequence (vT0, T6,
w−v−1T20, Kw), and generated by

the images of {z2w7
−14, x3, x4, x8

7} ∪ V (7);

• Two subgroups with invariants [7s, 7t−1, 7t−1, 7t−1, 7t, 7t, 7t] for each pair (s, t) with
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t > s+ 1 > 1

.. one is of type 88c,d,e, with layer sequence (uT0, T6,
v−u−1T18,

w−vT19, Kw), and gener-

ated by the images of {z2w7
−14, x3, x4, (x6x

−1
7 )7t−s} ∪ V (7);

.. one is of type 89c,d,e, with layer sequence (uT0, T6,
v−u−1T18,

w−vT20, Kw), and gener-

ated by the images of {z2w7
−14, x3, x4, x8

7t−s} ∪ V (7);

• Three subgroups with invariants [7t−1, 7t−1, 7t−1, 7t, 7t, 7t, 7t] for each t > 1

.. one is of type 90d,e, with layer sequence (vT0, T7,
w−v−1T19, Kw), and generated by

the images of {z2w7
−14, x2, x3, x4, (x6x

−1
7 )7} ∪ V (7);

.. one is of type 91d,e, with layer sequence (vT0, T8,
w−v−1T19, Kw), and generated by

the images of {z2w7
−14, x3, x4, x5, (x6x

−1
7 )7} ∪ V (7);

.. one is of type 92d,e, with layer sequence (vT0, T8,
w−v−1T20, Kw), and generated by

the images of {z2w7
−14, x3, x4, x5, x8

7} ∪ V (7);

• Two subgroups with invariants [7s, 7t−1, 7t−1, 7t, 7t, 7t, 7t] for each pair (s, t) with

t > s+ 1 > 1

.. one is of type 93c,d,e, with layer sequence (uT0, T8,
v−u−1T18,

w−vT19, Kw), and gener-

ated by the images of {z2w7
−14, x3, x4, x5, (x6x

−1
7 )7t−s} ∪ V (7);

.. one is of type 94c,d,e, with layer sequence (uT0, T8,
v−u−1T18,

w−vT20, Kw), and gener-

ated by the images of {z2w7
−14, x3, x4, x5, x8

7t−s} ∪ V (7);

• Fifteen subgroups with invariants [7t−1, 7t−1, 7t, 7t, 7t, 7t, 7t] for each t > 1

.. eight of them, each one is of type Sd,e for 95 ≤ S ≤ 102, with layer sequences

(vT0, Tα,
w−v−1T19, Kw), and generated by the images of {z2w7

−14, x3, x4, x5, x
α−9
2 x6 ,

(x6x
−1
7 )7} ∪ V (7) for 9 ≤ α ≤ 16;

.. seven are of type 103d,e
∗, with layer sequence (vT0, T14,

w−v−1T20, Kw), and generated

by the images of {z2w7
−14, x3, x4, x5, (v5v6

3)(x6v6
−1)α7t−1

, x8
7} ∪ V (7) for 0 ≤ α ≤ 6;

• Fourteen subgroups with invariants [7s, 7t−1, 7t, 7t, 7t, 7t, 7t] for each pair (s, t) with

t > s+ 1 > 1

.. seven are of type 104c,d,e
∗, with layer sequence (uT0, T14,

v−u−1T18,
w−vT19, Kw), and



154 APPENDIX

generated by the images of {z2w7
−14, x3, x4, x5, (v5v6

3)(x6v6
−1)α7t−s−1

, (x6x7
−1)7t−s} ∪

V (7) for 0 ≤ α ≤ 6;

.. seven are of type 105c,d,e
∗, with layer sequence (uT0, T14,

v−u−1T18,
w−vT20, Kw), and

generated by the images of {z2w7
−14, x3, x4, x5, (v5v6

3)(x6v6
−1)α7t−1

, (x8)
7t−s}∪V (7) for

0 ≤ α ≤ 6;

• One subgroup with invariant [7t−1, 7t, 7t, 7t, 7t, 7t, 7t] for each t > 1

.. one is of type 106d,e, with layer sequence (vT0, T7,
w−v−1T19, Kw), and generated by

the images of {z2w7
−14, x2, x3, x4, x5, x6} ∪ V (7);

• Two subgroups with invariants [7s, 7t, 7t, 7t, 7t, 7t, 7t] for each pair (s, t) with t ≥
s+ 1 > 1

.. one is of type 107c,d,e, with layer sequence (uT0,
v−uT18,

w−vT19, Kw), and generated

by the images of {x6
7t−s} ∪ V (1);

.. one is of type 108c,d,e, with layer sequence (uT0,
v−uT18,

w−vT20, Kw), and generated

by the images of {x8
7t−s} ∪ V (1);

• Two subgroups with invariants [7t, 7t, 7t, 7t, 7t, 7t, 7t] for each t > 0

.. one is of type 109d,e, with layer sequence (vT0,
w−vT19, Kw), and generated by the

images of V (1) ∪ {x6};

... one is of type 110d,e, with layer sequence (vT0,
w−vT20, Kw), and generated by the

images of V (1) ∪ {x8}.
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