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AnSTRACT

Increasing popularity of the strut-and-tie methodology among research communities and

practising engineers is due to its rational analytical approach and its superiority, compared

to the conventionally employed empirical methods for analysing disturbed regions in

structural systems. Nevertheless, this analysis methodology is not used as a routine

procedure in design offices, primarily because of the perceived ambiguity and complexity

involved in appropriate model formulation. In addition, until recently application ofthe strut-

and-tie methodology has been limited to the prediction of strength, with utilisation of this

modelling technique to capture nonlinear structural deformation being rather minimal [ACI
Bibliography (1997)1.

The research project reported herein represents an original conhibution to the development

of the strut-and-tie methodology by providing a systematic approach for applying this

modelling technique to nonlinear structural concrete analyses. The sfudy proposes a

orginally developed computer-based strut-and-tie model formulation procedure that permits

prediction of the nonlinear monotonic and cyclic response of structural systems with distinct

reinforcement details. The procedure being presented in this thesis is a refined version ofthat

reported previously [To et al. (ZAM &.2002b)]and the accur€rcy of the analytical modelling

is verified using experimental data.

Several issues pertaining to model formulation are thoroughly investigated. These issues

include the strategy of model formulation for Bernoulli (or beam) and disturbed regions of
structural systems, the satisfactory positioning of model elements, the appropriate stress-

strain material models for concrete and reinforcing steel, the suitable effective shength of
model elements, the inclined angle of diagonal concrete struts inbeam and column members,

and the concrete tension carrying capacity and associated tension stiffening effect.
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a : development length of ultimate bond stress

A, : gross section area

A, = total prestressed reinforcement area

l" : flexrual tension reinforcement area

A| : flexural compression reinforcement area

Ar, = area of concrete struts in B-regions

A"t : area of concrete ties in B-regions

4,, : area of rebar struts in B-regions

Ar, : area of rebar ties in B-regions

Ar, : total area of longitudinal reinforcement in oolumn sections

A, _ , : area of rebar strut-tie for cyclic strut-and-tie models

A, : atea of transverse rebar ties

Au, : total area of transverse reinforcement in a single layer parallel to the applied
shear

Au" : effective seaction area for carrying shear

Do : concrete core width measured from centreline to centreline of longitudinal
rebars

bn : total section width

c : neutral axis depth measuring from extreme compression edge

c" : concrete coverage

Cclnax) : maximum concrete flexural compression

C" : total reinforcement compression at yielding

d6 : flexural rebar diameter

d : eflective section depth

dn, : transverse rebar diameter

D' : diameter of circular concrete core measuring from centre to centre ofperipheral
hoops
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D" : total diameter of the circular sections

Do : depth of concrete core measured from centreline to centreline of longitudinal
rebars

D, : total depth of the rectangular column sections

E" : concrete elastic modulus

EJ" : effective section stiffiress

Ele : gross section stiffiness

E"I" : effective flexural stiffiress

E"Ir : gross flexural stiffness

E" : reinforcing steel elastic modulus

"fz : compressive stress in diagonal concrete struts

f, : concrete compressive stress

f"on, : contact stress developed acfoss concrete cracks

f", = effective strength of rebar struts in structural B-regions

f; : concrete cylinder strength

_fl" : confined concrete compressive strength

.f,, : concrete cracking strength

fr, = concrete tensile stress in a prism member

.fr,, : average concrete tensile stress in the member sections

fo : compressive strength of concrete struts in strucfural B-regions

fa, : tensile strength of concrete ties in structural B-regions

"fp 
: stress in prestressed reinforcement

"f, : stress in reinforcement

f,n : yield strength of rebar ties in structural B-regions (for monotonic models)

f,-, : yield strength of rebar ties in structural B-regions (for cyclic models)

fi : plain concrete tensile strength

-f,, : average value of cracked concrete tension carrying capacity (for cyclic models)

.fun - reinforcement ultimate tensile strength

"f, = measured yield strength of flexural reinforcement

"f, : shear stress in the member sections

fr, : measured yield strength of tansverse reinforcement

h, : P4endicular distance between diagonal concrete struts in structwal B-regions
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!." = rebars development length

{ oi 
: Iength ofjoint-links

lr: lap splice length of rebars

(',: lengfiirequired to develop firll bond stress between rebars and the surrounding
concrerc

l' : halflength ofconcrete ties

M:," = moment measured at the serviceability limit state

n : ratio of Es/ Ec

N : externally applied column axial load

P : extemally applied tension

P lp: lap splice capacity

p" : volumetric ratio of transverse reinforcement

pg : croSs-sectional length of rupture surface between the lap spliced rebars

r, : radius of circular concrete core measuring from section centre to the centreline
of longitudinal rebars

s : pitch distance between transverse reinforcement

s, : surface area of reinforcement per unit volumn of concrete

s* : flexural reinforcement spacing

7n, : maximum tension in reinforcement before yielding develops in flexural
members

r : thickness of the imaginary flexural reinforcement tube

u^ : bond stess between reinforcment and concrete

uuu : ultimate bond stress between reinforcement and concrete

v : total shear stress resisted by concrete and transverse reinforcement

Vn : Member shear strength

Z" : transverse reinforcement shear contribution

V, : conctete shear contribution

Vo : shear contribution from axial force component

x" : position of flexural compression centroid, measuring from the extreme
compression edge

x, : position of flexural tension centroid, measuing from the extreme compression
edge

oN : angle between member longitudinal axis and the line of externally applied axial



xul
I

action

B, : empirical factor dicting the slope of descending branch of the tension stiffening
model

rt : average principal tensile strain

12 : average principal compressive strain

Ec : concrete compressive strain

t', : concrete strain at ,f,
E'", : ultimate concrete compressive strain

trt : concrete compressive shain at f,,
t50 : concrete compressive strain at 0.5f0

Edt : concrete tensilestrainat fo,
r, : reinforcement tensile strain

t", : reinforcement tensile strain at the begining of strain hardening

r/ : average member strain in transverse direction

eu : reinforcement tensile strain at .furt

r, : average member strain in longitudinal direction

e, : reinforcement yield strain

y : Poisson ratio

0 : angle between diagonal concrete strut and member longitudinal axis;

p : ratio of Ar,/A",

p, = ratio of Ar,lA,

p, : ratio of ArlA,

oc, : peak stress in concrete being transferred from the rebars through bonding

6"t : average stress in concrete being transferred from the rebars through bonding

$ : half angle of the fan shaped compression sector, measured to the circular section
edge

0' : half angle of the fan shaped compression sector, measured to the centre line of
imaginary fl exural reinforcement tube

$, : 0.85, efficiency factor for evaluating the concrete compressive strength under
cyclic loading

$ o : 4/3, over strength factor for evaluating the effective strength of flexural rebar
ties in circular columns for monotonic models

$, : 314, reduction factor for evaluating the effective area of flexural rebar strut-tie




