

ResearchSpace@Auckland

http://researchspace.auckland.ac.nz

Reference

Boswijk, G (2012) Tree-ring analysis of sub-fossil kauri (Agathis australis) from Hal Harding's Farm, Pouto Road, Dargaville, Northland. School of Environment Working Paper (44). The University of Auckland, Auckland. 1179-4585. 1-29 <u>http://hdl.handle.net/2292/19533</u>

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher.

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

NEW ZEALAND TREE-RING SITE REPORT 36

Tree-ring analysis of sub-fossil kauri (*Agathis australis*) from Hal Harding's Farm, Pouto Road, Dargaville, Northland

Gretel Boswijk and Jonathan Palmer

September 2012

School of Environment Working Paper 44 ISSN 1179-4585 ISBN 978-0-9864639-5-2

Tree-Ring Laboratory, School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand

New Zealand Tree-ring Site Report 36: Hal Harding sub-fossil kauri

Tree-ring analysis of sub-fossil kauri (*Agathis australis*) from Hal Harding's Farm, Pouto Road, Dargaville

This is a technical archive report describing crossdating and chronology development of tree-ring samples from Hal Harding's Farm, Pouto Road, near Dargaville. Please note that although the tree-ring dates presented here will not change, it is possible that interpretation of the results may change as new evidence comes to light.

Summary

Collection of sub-fossil kauri samples from Northland was undertaken for a Foundation for Research, Science and Technology (FRST) funded project on *Sub-fossil Kauri Collection and Analyses*. The project aimed to improve the quality of multi-centennial and multi-millennial tree ring data sets used for palaeoclimate analyses through the addition of new data. Twenty-seven samples were collected from kauri excavated from Hal Harding's Farm (HALH) and tree-ring analysis of the samples was undertaken. There were three significant outcomes from the analysis.

- 1) Eight samples were dated to between 850 BC and AD 950, providing a modest contribution to the late-Holocene kauri data set.
- 2) Crossmatching was identified between a floating sequence HAL008 and a 489-year sequence, CHI006, from a sample recovered in the early 2000s from the Chitty's Farm near Dargaville. Ten inner rings from CHI006 had been previously radiocarbon dated to 3933 ± 39 BP (WK15530; 2468-2209 cal BC). The connection raises the potential for extension of the late-Holocene kauri chronology from its current start date of 1724 BC into the 2000s BC; however, further replication is required to link the series together across the entire period of overlap and to resolve problems in CHI006.
- 3) At least three trees (eight samples) included in a site chronology, HALH03, were growing at the site at ~6000 to 5000 BC. This finding was based on the crossmatching of HALH03 to sequences from two radiocarbon dated trees (CHI015, HAR012) that were growing on, or close to, swamp systems ~2 km to the west (HARD) and ~2.5 km to the north (CHIT). It is supported by additional radiocarbon dates for two HALH samples. These are some of the oldest Holocene-age sub-fossil kauri samples to be recovered from swamps close to Dargaville.

Tree-ring analysis of sub-fossil kauri (*Agathis australis*) timbers from Hal Harding Farm, Pouto Road, Dargaville

Introduction

Long, high-resolution palaeoclimate records from New Zealand, as well as elsewhere in the Southern Hemisphere, are required to assist interpretation of changes in past climate. Since the 1980s, but particularly during the last twelve years, multi-centennial and multi-millennial length tree ring records have been developed from modern, archaeological¹ and, predominantly, subfossil (swamp) kauri, the latter dating the late-Holocene (e.g. Boswijk et al 2006) and from before the last Glacial Maximum (Palmer et al 2006). The climate signal within these records is being investigated to understand, for example, variability of the El Niño-Southern Oscillation during the last millennium (e.g. Fowler et al 2008, 2012) whilst the late-Holocene record is also being employed in calibration of the radiocarbon timescale for the Southern Hemisphere (Hogg et al 2011). Radiocarbon analyses are also applied to generate high resolution climate data using carbon isotopes. The multi-centennial and multi-millennial kauri records from the Holocene and last Glacial period provide a unique opportunity to reconstruct annual climate change under a range of different boundary conditions; however, often sample depth in the chronologies is low (<10 samples) which may affect reliability of reconstructions derived from tree-ring data. Therefore, additional material is required to improve the quality of the tree ring records. In addition, the analysis of new material may result in an extension of the temporal span of current records, or the development of new records for time periods not currently covered.

In 2008, a two-year FRST funded project – *Sub-fossil Kauri Collection and Analyses* (SFK) – was established at the University of Auckland (UOAX0901). The project aimed to improve regional and local paleoclimate data derived from sub-fossil kauri (*Agathis australis*) tree rings for periods in the last 130,000 years before present (BP). The project encompasses collection, analyses and archiving of sub-fossil kauri, high-resolution radiocarbon analyses of dendrochronologically matched (but not calendar-dated) wood contemporary with the Younger Dryas cooling event (13.0 – 10.5 ka cal BP), and awareness raising amongst local communities so that the scientific value of the sub-fossil kauri is recognised.

¹ The term 'archaeological' is used to distinguish timbers derived from standing structures and in-ground sites from modern (living tree) or sub-fossil kauri.

This technical report describes the collection of sub-fossil kauri from one site, Hal Harding's Farm (HALH), Pouto Road, near Dargaville, and details chronology development and the calendar dating of material. Other significant outcomes are identified. The intent is to provide an archive document covering details not necessarily included in higher level academic publications, and which can also be used to convey information concerning the swamp kauri to relevant stakeholders, including the landowners, sawmillers and the Kauri Museum, Matakohe which acts as a repository for swamp kauri.

Hal Harding's Farm

Twenty-seven cross-sections (biscuits) were collected from logs excavated from Hal Harding's farm by Nelson Parker of 'Nelson's Kaihu Kauri', a sawmill specialising in swamp kauri. The farm is situated at the northern end of the North Kaipara Peninsula and the extraction site is located west of the Poutu Road and Northern Wairoa River, approximately 6 km south of Dargaville (Figure 1; NZMS260 Sheet P08 873793; 35° 59.5' S 173° 51.1' E; elevation ~18 m above sea level). Other assemblages collected from nearby swamp systems include CHIT (Boswijk 2005a) and HARD (Boswijk 2005b) and DARG from the Oruariki Swamp (D'Costa *et al* 2009).

The site is in a region that is characterised by low hills of Red Hill and Tangikiki Sand and Te Kopuru Sand, interspersed with east-west orientated valleys of Parore Peat and Kaipara peaty clay, and former estuarine flats (Kaipara Clay) adjacent to the Northern Wairoa River (see Sutherland et al 1980, and discussion by D'Costa et al 2009). Pollen analysis indicates kauri has been present in the wider Dargaville region for several thousand years (D'Costa *et al* 2009), whilst dendrochronological analysis and radiocarbon dating indicates preservation of kauri in swamps over a similar time period. No context or environmental information, such specific location and orientation of the logs in the swamp, or depth and composition of the peat, is available from the site. Elsewhere, observation of the distribution of root plates across the Korariwhero Swamp led D'Costa et al (2009) to suggest that, there, kauri grew on the swamp surface. Since human settlement in the region the vegetation cover has undergone considerable change, particularly after European colonisation in the 19th century.

Figure 1: Location of HALH site. (A) The town of Dargaville is located in Northland, north of Auckland City. (B) Hal Harding's farm is ~6km south of Darvgaville. (C) shows the approximate location of the extraction site (white circle) at ~ S $35^{\circ} 59.5' \ge 173^{\circ} 51.1'$. The Northern Wairoa River and the Pouto Road are visible in the top right corner. Images: Google Earth, 2011.

The site was 'cleaned-out' during excavation, implying that there are few logs left in the ground to recover. The logs were viewed in the timber yard of Nelson's Kaihu Kauri by one of the authors, after transportation from the farm. Most of the suitable logs were sampled for dendrochronological analysis by cutting 'biscuits', and have since been milled for timber. Four samples had been obtained previously from the site, of which three had been crossdated against the late-Holocene kauri master chronology to the first millennium AD. Therefore, it was anticipated that the assemblage would produce further material of late-Holocene date.

Dendrochronology

Dendrochronology or tree-ring analysis is based on the measurement and comparison of patterns of tree growth. The principles and methodology of tree-ring analysis are described in Baillie (1982), albeit with reference to analysis of Northern Hemisphere oak timbers, and more recently by Speer (2010). In brief, each year during the growing season trees lay down a single growth ring, formed in the cambium directly under the bark. In many species, including kauri, the annual rings are clearly defined by a boundary formed at the end of the growing season, which separates one growth season from the next. The width of the annual ring is limited by climatic conditions, as well as being influenced by local environmental factors, previous growth years and genetic make-up of the tree. Because growth conditions change from year to year, ring width also varies creating a pattern of wide and narrow rings which is unique in time, but common to trees that have grown at the same time under similar conditions. Therefore it is possible to compare the growth patterns of different trees and identify those which are contemporary. Starting with living trees where the calendar date of the outermost ring is known and overlapping series from successively older trees, timbers and/or natural deposits of preserved wood, long absolutely dated tree-ring chronologies can be built. Tree-ring series of unknown age can be compared to these and accurate calendar dates obtained. Comparison of many different living kauri from several sites throughout the upper North Island indicate that the trees have a common signal in their rings (Fowler et al 2004) and the suitability of this species for dendrochronology is well established.

Methods

Twenty-seven cross-sections were cut from the Hal Harding logs by Nelson Parker, Nelson's Kaihu Kauri, and the numbered 'biscuits' were transported to the Kauri Museum, Matakohe for storage. Whilst there, the cross-sections were further reduced in size. In most cases, two radial strips were cut from each biscuit but in some cases, size of the cross-section must have precluded this as only one radial strip per section was present in the assemblage that was subsequently delivered to the Tree-Ring Laboratory at the School of Environment, The University of Auckland. No details were available regarding dimensions of the cross-sections or unusual or notable features, and photographs were not taken prior to the biscuits being reduced to radial strips.

Once at the Tree-Ring Laboratory the site was given a four-letter code, HALH and each sample was relabelled with a unique three-letter three-number code, e.g. HAL001. The samples were further trimmed to a size² suitable to fit on a travelling stage beneath a binocular microscope and the cross-sectional surface was sanded to a fine polish so that the ring sequence could be clearly seen. Each sample was assessed for suitability for analysis prior to measurement of the growth rings, based primarily on clarity of the ring pattern and having sufficient rings for crossmatching. The latter was not a significant issue, as most samples clearly had several hundred rings. Total ring width was measured using a set-up comprised of a travelling stage fitted with a linear encoder linked to a computer, and a binocular microscope. Ring widths were recorded in Dendro Input, which is part of the Dendro for Windows (DfW) suite (Tyers, 2004).

Radii from the same tree were measured and the series crossmatched and then averaged to produce a tree-sequence. As the assemblage was measured, single radius series and tree-sequences were also compared to each other to identify those that crossmatched. Series or tree-sequences were also compared individually to an unpublished composite kauri master chronology, AGAUc07c_raw, constructed from data derived from modern trees, archaeological wood, and sub-fossil (swamp) kauri, to obtain calendar dates. The computer programs CROS (Baillie and Pilcher, 1973) and Cross84 (Munro, 1984), included in the Dendro for Window (DfW) suite (Tyers, 2004) were used to assist crossmatching. These programs compare pairs of samples and calculate the correlation co-efficient (r) for every position of overlap. Students *t* is calculated to provide a measure of the probability of the r value arising by chance, with a t-value of 3.5 or greater usually indicative of a match (Baillie, 1982). All *t* values reported here are from CROS.

All suggested matches (between series, tree-sequences and against master chronologies) were checked using line plots of the series overlaid on a light-table. Visual inspection of line plots is an important part of the crossmatching process. Kauri can produce false rings (the annual ring is

² In most cases, the width of the radial strip was reduced by about half. This produced a duplicate sample that can be used for other research purposes.

divided by an apparent boundary) and can also have locally absent rings, where the annual ring is not complete around the entire circumference of the tree. Overlaying line plots enables identification of sections that are in sequence and then which go out of sync. This guides inspection of the sample to locate the problem. False rings can be determined by close inspection of the apparent boundary across the width of the sample and comparison of the same ring on different samples. Observation of many kauri growth rings indicates that the false boundaries become diffuse and usually fade out around the ring. Locally absent rings are identified when a ring is absent from one radius but present on other same-tree samples, and on other samples from different trees. Usually inspection of the sample can locate the ring merging into the boundary with the previous year's growth. This allows for a measured value to be inserted into the series. If a ring is wholly absent from a radius a 'zero' value is inserted. If the location of missing rings cannot be reliably resolved, the series is truncated to cover only the reliable section of tree growth.

All HALH series and tree-sequences that crossmatched to each other were averaged together to form a site chronology, which reduces noise and enhances the common signal on which crossdating is dependant. Where calendar dates were identified by comparison to the late-Holocene kauri master, the position of match was checked against independent site chronologies and tree sequences to verify through replication of results that the dating was correct. In the event that no matches were identified to other series and/or tree-sequences from HALH or to the kauri master, the series or tree-sequences were also compared to undated series/tree-sequences from other site assemblages.

Occasionally, crossmatching may identify tree-ring series (not from the same biscuit) that are very similar, indicated by high *t* and r values between series, and supported by similar characteristics of the samples, such as colour of wood, form of the rings, and events such as suppression episodes. This may indicate that although the samples were cut from different logs, the logs were actually derived from a single parent tree ('same-tree'). As part of the excavation process, kauri trunks are cut into separate (shorter) logs enabling the wood to be transported to the mill on a truck. The logs are then usually stacked in piles, which in the case of the HALH assemblage were sampled for tree-ring analysis. Therefore, there is potential for a sub-fossil kauri assemblage to contain (unrecognised) duplicate samples. In cases where possible 'same-tree' material is identified, the ring width series are averaged together to produce a single tree-sequence for use in chronology development to avoid introducing bias into the site curve (English Heritage 2004).

Preservation conditions will affect the completeness of a ring sequence from a sub-fossil kauri. If the tree trunk was completely buried in an anaerobic environment, the wood and bark will be well preserved and it may be possible to obtain a reliable indication of tree age and to determine the year of tree death. However, if a trunk is partially exposed for some time before burial (or after re-exposure), the wood will start to decay and the outside, and sometimes inner, rings will be lost. In this case, only a minimum estimate for the life span of a tree is obtained.

Results

Details of all samples collected from Hal Harding's Farm, including series length, average growth rate, calendar dates and additional comments are presented in Table 1. Almost all samples were measured. The exceptions were HAL009, which had degraded wood, and HAL021, which on the basis of strong visual similarity was considered to be a duplicate of other samples including HAL016 and HAL018. There was no sample for HAL024.

Series length of the measured assemblage ranged from 154 rings (HAL007a) to 801 rings (HAL027), with an average series length of 480 rings. Several samples had additional rings at the inner or outer end that could not be measured, or which were truncated from the series during the crossmatching process due to concerns about the reliability of the sequence. Taking these rings into account, three samples were from parent trees that were >800 years old when they died.

Duplicate samples

During crossmatching three sets of probable duplicate samples were identified, indicating that that the site assemblage came from fewer than 27 trees. These sets were:

HAL100: HAL001 and HAL028. The ring patterns for these samples covered nearly the same time span (Figure 2), were very similar (t = 20.84, r = 0.72, overlap = 399 years), and the actual wood samples were also visually similar.

Figure 2: Raw ring width plots for HAL001 (dark) and HAL028 (light)

HAL101: HAL016, HAL018, HAL020, HAL022, HAL027. The ring series of these samples covered a common period. The ring width patterns were near identical (Figure 3; Table 2), displaying common characteristics such as repeated periods of suppression (with locally absent rings). All wood samples had black colouring, which is unusual as kauri is typically a warm golden-honey colour. The black tones in the wood graduated to red-brown in the outer edges of all the samples, and all had bands of lighter coloured wood coincident with the suppression episodes.

Figure 3: Raw ring width plots for HAL016, HAL018, HAL020, HAL022 and HAL027. Long vertical lines indicate position of locally absent rings, and a significant period of suppression.

HAL102: HAL014 and HAL025. As with the groups above, these two series covered a common time period (Figure 4), and the ring patterns were similar (t = 23.18, r = 0.79, overlap = 340 years). The wood samples shared the same visual characteristics, including colour.

Figure 4: Raw ring width plots for HAL014 (red) and HAL025 (blue).

Site Chronologies

Four site chronologies or two-timber sequences were produced as a result of intra-site comparison of samples. These are HALH01, HALH02, HALH03 and HALH04. Data listings of each chronology are presented in Appendix 1.

1) HALH01

This chronology is comprised of HAL100, HAL011 and HAL017a and spans 603 years (Figure 5; Table 3). The chronology was crossdated to 544 BC – AD 59 by comparison to the late-Holocene kauri master chronology. The position of match was checked against independent site chronologies and each individual series was also compared separately to the kauri master and independent chronologies (Table 4).

Figure 5: Crossdated position of calendar dated series and tree-sequences included in HALH01, HALH02 and HALH04 and independent series and tree-sequences. Shading indicates groups for HALH01 (left leaning stripes), HALH02 (vertical stripes) and HALH04 (right leaning stripes).

2) HALH02

Technically, HALH02 is a two-timber sequence, constructed from HAL012a and HAL010a (Figure 5; Table 3). The sequence spans 487 years and was calendar dated to AD 43 – AD 529 (Table 4).

3) HALH03

HALH03 includes HAL101, HAL015 and HAL019 (Figure 6; Table 5). The chronology spans 1171 years, but this includes a 150 year section at the start represented by HAL101 only and a \sim 300 year section at the end which is spanned by HAL019 only.

		1 1	1	<u> </u>	 		1					 1180
HALH03	HAL101	1										
		HAL015	5									
						Ę	HAL	019				

Figure 6: Relative positions of sequences included in HALH03.

No overlap was identified between HALH03 and the late-Holocene kauri master but crossmatching was identified between HALH03 and two floating sequences from other site assemblages: HAR012 and CHI015. These two sequences were from samples collected in the early 2000s from Robert Harding's (HARD) farm and the Chitty (CHIT) farm respectively, also located near Dargaville (Figure 7). Ten rings at relative years 411-420 of CHI015 had been radiocarbon dated to 6369 \pm 47 BP (WK15532; 5468 – 5306 cal BC; Boswijk, 2005a). HAR012 was not radiocarbon dated but was identified as being from the same log as another HARD sample, HAR009, which was radiocarbon dated to 6286 \pm 50 BP (WK15534; 5316-5042 cal BC; (Boswijk, 2005b).

Figure 7: Source location of CHIT, HALH and HARD assemblages.

Despite indications from the radiocarbon dates that CHI015 and HAR012 were likely to be contemporary, no crossmatching between these two sequences had been previously identified and there were doubts about the reliability of both ring sequences due to the occurrence of periods of very narrow and locally absent rings. The identification of a match with HALH03 prompted a review of the sequences, including careful checking of all radii from CHI015, HAR012 and the HALH03 set, and identification of the location of locally absent rings. The HALH03 set were found to be accurate, whilst locally absent rings were identified on CHI015 and HAR012. Revised versions of tree sequences CHI015 and HAR012 were made after the ring series were amended to include missing rings³. Where it was not possible to confidently resolve ring problems, such as on the inner sections (closest to pith) of HAR012 and CHI015 the series were truncated.

The position of overlap between HALH03, CHI015 and HAR012 is shown in Figure 8 and crossmatching statistics are presented in Table 6. The sequences were combined to create a new chronology, AGAU_float01. The chronology is 1282 years long.

Relative Dates	1	1300
HALH HARD	HALH03 HAR012	
CHIT		

Figure 8: Position of overlap between CHI015, HAR012 and HALH03. Wide bars indicate the span of the chronology/sequence. Narrow bars are unmeasured or excluded rings.

To assist in confirming and refining the dating of AGAU_float01 additional radiocarbon dates were obtained. Thirty rings⁴ from the inner section of HAL020b and ten rings from the outer section of HAL019b were submitted to the Radiocarbon Dating Laboratory, University of Waikato. The results (listed below) are in agreement with previous radiocarbon dates for CHI015 and HAR012 (via HAR009). Collectively they indicate that AGAU_float01 dates to ~6000 – 5000 BC.

³ HAR012 was remade from HAR012b, HAR012d and HAR012e only. HAR012a and HAR012c were not reliable. CHI015 was remade from CHI015a, CHI015b and CHI015c.

⁴ Thirty rings were sampled from HAL020b due to the difficulty in getting enough weight of wood for ¹⁴C analysis.

Sample	Waikato Code	¹⁴ C Determination	Calibrated BP ⁵	Calibrated BC ⁶
HAL019b	WK32804	6266±37 BP	7250 – 6999 cal BP	5297 – 5055 cal BC
HAL020b	WK32805	7313±35 BP	8172 – 7996 cal BP	6223 – 6032 cal BC

4) HALH04

HALH04 is a two timber sequence that includes HAL102 and HAL007a (Figure 5; Table 3). The sequence spans 386 years, but HAL007a is only 154 years long, so the bulk of the record is based on data from one tree only. HALH04 was crossdated at AD 535 to AD 920 by comparison to AGAUc07c_raw, and was crosschecked against independent site chronologies (Table 4). The dated positions of HAL102 and HAL007a were also checked independently (Table 4).

Other series

1) HAL002

In addition to the calendar dating of HALH01, HALH02 and HALH04, one sequence, HAL002 was calendar dated to 841 BC - 676 BC (Figure 5; Table 4). The sequence (based on two radii) is 166 years long. The sample had a maximum of 302 rings (HAL002b) but the ring patterns in the outer sections of HAL002a and HAL002b could not be reliably reconciled due to irresolvable ring issues.

2) HAL008

HAL008 did not crossmatch to any other series or sequences from the HALH assemblage, and did not crossdate against the late-Holocene kauri chronology. The series was compared to undated sequences from other sites and a match identified with a series, CHI006, from the CHIT assemblage. CHI006 is an interesting sample because it had at least 1049 rings, but only the inner sections of three radii from the sample could be crossmatched against each other, generating a 489-year tree sequence, CHI006i. Ten rings from inner part of radius CHI006a were radiocarbon dated to 3933 ± 39 BP (WK15530; 2468-2209 cal BC) indicating that, when the total number of rings present is taken into account, the sequence should overlap with the end of the late-Holocene kauri chronology (Boswijk, 2005a).

The inner sections of HAL008 and CHI006i crossmatched (t = 6.91, r = 0.46, overlap = 200 years) but visual comparison indicated that the outer sections were not in sync. Careful review of

⁵ Calibrated BP dates supplied by A Hogg from OxCal V4.17 using SHCal04 southern hemisphere calibration curve.

⁶ Calibrated BC dates from OxCal V4.1 (online) Bronk Ramsey (2009) using SHCal04.

the ring width series from both samples and further replication by additional material was considered necessary to confidently reconcile ring patterns. Therefore, the suggested match has been noted but has not been advanced further at this stage.

Unmatched series

The inner section of HAL003a overlapped with HAL002 (t = 5.73, r = 0.43, overlap = 149), and the position of match indicated that the series should also overlap with HALH01. However, as with HAL002, there were ring problems in the outer part of the sequence which could not be satisfactorily resolved. There was only one radius from the biscuit and although most of the annual rings were clearly defined, there were some sections with overlapping or lensing rings and locally absent rings. Reconciliation of the complete ring patterns of HAL002 and HAL003 to each other and HALH01 would provide a continuous record of annual tree growth from the HALH site between 841 BC and AD 529. (There is a very short overlap between HALH01 and HALH02.)

HAL004, HAL005, HAL006 and HAL021 could not be matched against other series from the HALH assemblage, or against the late-Holocene master chronology. It is possible that these series have unrecognised ring issues that prevent crossmatching or the sequences date to a time period for which we currently have no other data.

Discussion and Conclusion

Analysis of the swamp kauri assemblage from HALH has been successful in generating new data within an 1800-year period, between 850 BC and 950 AD and, significantly, for the mid-Holocene (~6000 – 5000 BC) as well. The clustering of samples into separate groups which date across a wide time period is similar to patterns observed in other swamp kauri assemblages from the region. For example, the CHIT assemblage produced two site chronologies and a single sequence dated to between 1718 BC and AD 842, and floating sequences radiocarbon dated to before >1724 BC (see Boswijk 2005a for details). Two long calendar-dated chronologies were established for HARD, which also had older material (> 1724 BC) in the assemblage.

The HALH assemblage was also similar to other assemblages from the region in that most samples had 'difficult' rings. This encompasses suppression episodes, where the rings become very narrow and which usually coincide with locally absent rings, lensing rings, overlapping rings (associated with lensing and locally absent rings) and false rings. The series included in HAL101 (those dating to $\sim 6000 - 5000$ BC), in particular, had an abrupt and prolonged period of suppression with locally absent rings that affected initial crossmatching between series. Careful

checking of the ring patterns was required when reconciling series from radii, and when crossmatching between tree-sequences, to ensure that all rings were accounted for and no errors were inadvertently made when amending sequences. It is possible that unrecognised ring issues may account for series from three trees (HAL004, HAL006 and HAL014) not being crossmatched. Alternatively they could date to time periods for which we currently have no other data.

The purpose of sampling kauri from swamps in the Northland region is to improve the quality of multi-centennial and multi-millennial tree ring data sets that can be used for palaeoclimate analyses by adding new data to the existing records. Additionally, new material may result in an extension of the current temporal span of the calendar dated or floating records, or development of new records for time periods not currently covered. As shown above, all the calendar dated and radiocarbon dated HALH material was of Holocene date. There were three significant outcomes from the analysis.

- Eight samples were dated to between 850 BC and AD 950, providing a modest contribution to the late-Holocene kauri data set. Across this time period, sample depth in a master chronology would increase by one, and occasionally two, trees. Reconciliation of HAL003 and HAL002 would contribute additional calendar dated series to the set.
- 2) On the basis of crossmatching to a floating sequence from the CHIT assemblage, one sample (HAL008) likely dates to the early 2000s BC. The connection raises the potential that the late-Holocene kauri chronology could be extended back in time from its current start date of 1724 BC into the 2000s BC, but further replication is required to securely link the series together and to resolve problems in CHI006.
- 3) At least three trees (eight samples) were growing at the site at ~6000 to 5000 BC and are contemporary with trees that were growing on, or close too, swamp systems ~2km to the west (HARD) and ~2.5 km north (CHIT) (Figure 7). These are some of the oldest Holocene-age swamp kauri samples to be recovered from swamps close to Dargaville, although 'ancient kauri' (alive >22 k years BP) has been extracted from swamps near the west coast to the north of the town.

Acknowledgements

We thank Nelson Parker for cutting and supplying samples from the Hal Harding log collection for the dendrochronological analysis, and the team at the Kauri Matakohe Museum for storage of wood and cutting radial strips. Jonathan Palmer arranged the collection and initial preparation of the samples. Further preparation of samples was carried out by Peter Crossley at the School of Environment. Gretel Boswijk undertook the tree-ring analysis and wrote the report, which was reviewed by Jonathan Palmer. This work was funded by the Foundation for Research, Science and Technology UOAX0901.

References

Baillie, M.G.L. (1982) Tree-ring dating and Archaeology. The University of Chicago Press, Chicago.

Baillie, M.G.L. and Pilcher, J.R. (1973) A simple crossdating program for tree ring research. *Tree-ring Bulletin* 33: 7-14

Boswijk, G. (2004) Tree-ring analysis of a buried kauri (*Agathis australis*) tree from Tikinui, north Kaipara Peninsula, Northland. *School of Geography and Environmental Science Working Paper* 21. 7 pp.

Boswijk, G. (2005a) Tree-ring analysis of sub-fossil kauri (*Agathis australis*) from the Chitty's Farm, Colville Road, Dargaville, Northland. *School of Geography and Environmental Science Working Paper* 27. Auckland: University of Auckland. 24 pp

Boswijk, G. (2005b) Tree-ring analysis of sub-fossil kauri (*Agathis australis*) from the Harding's Farm, Hilliam Road, near Dargaville, Northland. *School of Geography and Environmental Science Working* Paper 26. Auckland: University of Auckland 27 pp.

Boswijk, G. (2005c) Tree-ring analysis of sub-fossil kauri (*Agathis anstralis*) from near Maitahi Road, Dargaville, Northland. *School of Geography and Environmental Science Working Paper* 28. Auckland: University of Auckland. 18 pp.

Boswijk, G., Fowler, A., & Bridge, M. (2001) Tree-ring analysis of sub-fossil kauri (*Agathis australis*) from Furniss Road, Waikato. *Department of Geography Working Paper* 15. Auckland: University of Auckland. 28 pp

Boswijk, G., Fowler, A., Lorrey, A., Palmer, J and Ogden, J. (2006) Extension of the New Zealand kauri (*Agathis australis*) chronology to 1724 BC. *The Holocene* 16 (2): 188 – 199

Boswijk, G., and Palmer, J.G., (2003) Tree-ring analysis of sub-fossil kauri (*Agathis australis*) from near Lake Whangape, Huntly West, Waikato. *Department of Geography Working Paper* 19, Auckland: University of Auckland. 31pp.

Boswijk, G. and Palmer, J. (2004) Tree-ring analysis of sub-fossil kauri (*Agathis australis*) from Yakas' Farm, Babylon Coast Road, near Dargaville, Northland. *School of Geography and Environmental Science Working Paper* 22. Auckland: University of Auckland. 17 pp.

Bronk Ramsey, C. (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51 (1): 337-360.

D'Costa, D., Boswijk, G., Ogden, J. (2009) Holocene vegetation and environmental reconstructions from swamp deposits in the Dargaville region of the North Island, New Zealand: implications for the history of kauri (*Agathis australis*) The Holocene 19: 559- 574

English Heritage (2004) *Dendrochronology: Guidelines on producing and interpreting dendrochronological dates.* English Heritage Publications.

Fowler, A., Boswijk, G., and Ogden, J. (2004) Tree-ring studies on *Agathis australis* (kauri): a synthesis of development work on late Holocene chronologies. *Tree-ring Research* 60 (1): 15-29

Fowler, A.M., Boswijk, G., Gergis, J., Lorrey, A. (2008) ENSO history recorded in *Agathis australis* (kauri) tree rings. Part A: kauri's potential as an ENSO proxy. *International Journal of Climatology 28*: 1-20

Fowler, A.M., Boswijk, G., Lorrey, A.M., Gergis, J., Pirie, M., McCloskey, S.P.J., Palmer, J.G., and Wunder, J. (2012) Multi-centennial ENSO insights from New Zealand forest giants. *Nature Climate Change* 2: 172-176

Hogg, A., Palmer, J., Boswijk, G., & Turney, C. (2011) High-precision radiocarbon measurements of treering dated wood from New Zealand: 195 BC - AD 995. Radiocarbon 53 (3): 529-542

McCormac, F. G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., Reimer, P.J. (2004) SHCal04 Southern Hemisphere Calibration, 0 – 11.0 cal KYR BP. *Radiocarbon* 46 (3): 1087 – 1092.

Munro, M.A.R. (1984) An improved algorithm for crossdating tree-ring series. Tree-ring Bulletin 44: 17-27

Palmer, J., Lorrey, A., Turney, C.S.M., Hogg, A., Baillie, M., Fifield, K., and Ogden, J. (2006) Extension of New Zealand kauri (*Agathis australis*) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. *Journal of Quaternary Science* 21 (7): 779 – 787

Speers, J.H (2012) Fundamentals of Tree-Ring Research. Tucson: University of Arizona Press

Sutherland, C.F., Cox, J.E., Taylor, N.H. and Wright, A.C.S. (1980a) *Soil map of Mangakahia-Dargaville area* (*sheet P 06/07*), *North Island, New Zealand*. Soil Bureau, Department of Scientific and Industrial Research.

Tyers, I.G. (2004) Dendro for Windows Program Guide 3rd edition. ARCUS Report 500b. Sheffield.

Table 1: Details of all samples collected from HALH

Sample = wood; Dimensions = length of sample only; Series = radius; Rings = measured, +n indicates unmeasured or excluded heartwood (h) or sapwood (s) rings; Bark = terminal ring at waney edge present (+B), or possible bark edge (?B); AGR = Average growth rate per annum; Date Span = calendar years (BC/AD) or relative if undated; Comments = additional details about the sample.

Sample	Dimensions	Series	Rings	Bark edge	Average	Dated span	Comments
	(mm)				Growth rate		
HAL001			403	+1/2Bs	1.64	544 BC-142 BC	Same tree as HAL028; Included in HAL100;
	810 x 0	HAL001a	398+ <i>3h</i>		1.90	544 BC-147 BC	HALH01
	610 x 0	HAL001b	402	$+1/_{2}Bs$	1.40	543 BC-142 BC	
HAL002			166+ <i>147h</i>		2.37	841 BC-676 BC	Truncated as outer section not resolved. Match
	500 x 0	HAL002a	166+ <i>123h</i>		2.15	841 BC-676 BC	with HAL003
	573 x 0	HAL002b	155+ <i>147h</i>		2.58	830 BC-676 BC	
HAL003a	832 x 0		456		1.58	1-456	Not dated. Inner matches to HAL002 but outer has
							unresolved ring issues.
HAL004_a			20h+323		0.63	1-323	Not crossmatched
HAL004_b			244		1.43	1-244	
	175 x 0	HAL004aa	240		0.74	22-261	
	403 x 0	HAL004ab	<i>184h</i> +244		1.32	1-244	
	208 x 0	HAL004ba	20h+323		0.62	1-323	
	545 x 0	HAL004bb	153		1.85	10-162	
HAL005a	560 x 0		646		0.86	1-646	Not crossmatched
HAL006			223	+1/2Bs	3.50	1-223	Not crossmatched
	725 x 0	HAL006a	209	+1/2Bs	3.32	15-223	
	845 x 0	HAL006b	223	+1/2Bs	3.72	1-223	
HAL007a	340 x 0		154		2.16	AD 736-AD 889	Included in HALH04
HAL008			507	+1s+B	1.05	1-507	Match to CHI006i but ring issues to be resolved.
	315 x 0	HAL008a	301		1.02	1-301	
	552 x 0	HAL008b	<i>1h</i> +506	+1s+B	1.09	2-507	
HAL010a	432 x 0		431		1.00	AD 99-AD 529	Included in HALH02
HAL011			461	+1/2Bs	1.74	402 BC-AD 59	Hal011aa = inner section; HAL011ab = outer section;
	223 x 0	HAL011aa	89		2.43	414 BC-326 BC	Included in HALH01
	702 x 0	HAL011ab	382	+1/2Bs	1.74	323 BC-AD 59	
	785 x 0	HAL011b	461	+1/2Bs	1.65	402 BC-AD 59	
HAL012a	580 x 0		217		2.66	AD 43-AD 259	Included in HALH02
HAL014			386		0.80	AD 535-AD 920	Same tree as HAL025; included in HAL102;
	2 90 x 0	HAL014a	371		0.76	AD 535-AD 905	HALH04.
	300 x 0	HAL014b	359		0.84	AD 562-AD 920	
HAL015			496		0.73	143-638	HALH03; ~6000 – 5000 BC
	371 x 0	HAL015a	470		0.71	143-612	
	435 x 0	HAL015b	496+ <i>56h</i>		0.76	143-638	

HAL016			770		0.73	21-790	Same tree as HAL018, HAL020, HAL022, HAL027;
	600 x 0	HAL016a	767+ <i>133h</i>		0.74	1-767	Included in HAL101; HALH03; ~6000 - 5000 BC
	571 x 0	HAL016b	718+ <i>97h</i>		0.69	53-770	
							-
HAL017a	570 x 0		394		1.43	351 BC-AD 43	-
HAL018			799+ <i>79h</i>		0.80	74-872	Same tree as HAL016, HAL020, HAL022, HAL027;
	425 x 0	HAL018a	527+ <i>50b</i>		0.74	346-872	Included in HAL101; HALH03; ~6000 – 5000 BC
	692 x 0	HAL018b	799+ <i>79h</i>		0.82	74-872	
HAL019			<i>19b</i> +592		1.49	580-1171	Included in HALH03. ~6000 -5000 BC.
	790 x 0	HAL019a	<i>19b</i> +580		1.24		
	990 x 0	HAL019b	523		1.83		
HAL020	690 x 0		19h+725+129h		0.83	1-725	Same tree as HAL016, HAL018, HAL022, HAL027;
	325 x 0	HAL020aa	376+ <i>136h</i>		0.71	350-725	Included in HAL101; HALH03; ~6000 – 5000 BC
	2 07 x 0	HAL020ab	251		0.83	104-354	
HAL021							Not crossmatched. Sample broken and measured in
	427 x 0	HAL021aa	266		1.59	1-266	two parts.
	495 x 0	HAL021ab	260+4h		1.89	1-260	-
HAL022			667		0.85	60-726	Same tree as HAL016, HAL018, HAL020, HAL027;
	700 x 0	HAL022a	666+ <i>130b</i>		0.89	60-725	Included in HAL101; HALH03; ~6000 – 5000 BC
	545 x 0	HAL022b	623+ <i>125h</i>		0.78	104-726	
HAL023		HAL023a					Not measured. Likely same tree as HAL100 set
HAL024		HAL024					No sample
HAL025			340		0.81	AD 581-AD 920	Same tree as HAL014; Included in HAL102;
	310 x 0	HAL025a	293		0.81	AD 628-AD 920	HALH01
	292 x 0	HAL025b	317		0.82	AD 581-AD 897	
HAL026a	760 x 0		565	$+1/_{2}Bs$	1.33	1-565	Not crossmatched.
HAL027			801		0.86	70-870	Same tree as HAL016, HAL018, HAL020, HAL022;
	465 x 0	HAL027a	402+ <i>320b</i>		0.90	17-418	Included in HAL101; HALH03; ~6000 - 5000 BC
	745 x 0	HAL027b	801+ <i>100b</i>		0.83	1-801	
HAL028			399	$+\frac{1}{2}Bs$	1.81	540 BC-142 BC	Radius c excluded from tree sequence; Same tree as
	745 x 0	HAL028a	399	$+\frac{1}{2}Bs$	1.74	540 BC-142 BC	HAL001; Included in HAL100; HALH01.
	730 x 0	HAL028b	384		1.88	526 BC-143 BC	
	860 x 0	HAL028c	554	+1/2Bs	1.51	1-554	

Table 2: C	crossmatching	between	HAL101	sequences
------------	---------------	---------	---------------	-----------

t-value/r value; * = empty triangle

Filenames	-	-	HAL016	HAL018	HAL020	HAL022	HAL027
-	start	dates	21	74	1	60	70
-	dates	end	790	872	725	726	870
HAL016	21	790	*	15.09/0.49	20.59/0.61	26.09/0.71	27.84/0.72
HAL018	74	872	*	*	14.02/0.48	18.98/0.60	22.29/0.62
HAL020	1	725	*	*	*	19.07/0.60	18.70/0.59
HAL022	60	726	*	*	*	*	35.32/0.81
HAL027	70	870	*	*	*	*	*

 $n = 10 \min t = 14.02 \max t = 35.32 \max t = 21.80 \text{ s.d.} = 6.08$

Table 3: Crossmatching between HALH series and tree sequences included in HALH01, HALH02 and HALH04

t-value/r value; \setminus = overlap < 25 years or no overlap;- = t-values less than 3.00;* = empty triangle

				HALH01		HAL	H02	HALH04		
Filenames	-	-	HAL011	HAL017a	HAL100	HAL010a	HAL012a	HAL007a	HAL102	
-	start	dates	402 BC	351 BC	544 BC	AD 99	AD 43	AD 736	AD 535	
-	dates	end	AD 59	AD 44	142 BC	AD 529	AD 259	AD 889	AD 920	
HAL011	402 BC	AD 59	*	8.81/0.41	10.52/0.55	\	-	\	\	
HAL017a	351 BC	AD 44	*	*	8.14/0.49	\	\setminus	\	\	
HAL100	544 BC	142 BC	*	*	*	\	\setminus	\	\	
HAL010a	AD 99	AD 529	*	*	*	*	10.54/0.65	\	\	
HAL012a	AD 43	AD 259	*	*	*	*	*	\	\	
HAL007a	AD 736	AD 889	*	*	*	*	*	*	6.98/0.50	
HAL102	AD 535	AD 920	*	*	*	*	*	*	*	

 $n = 6 \min t = 0.81 \max t = 10.54 \max t = 7.63 \text{ s.d.} = 3.30$

Table 4: Crossmatching of HALH01, HALH02, HALH04 and HAL002 to AGAUc07c_raw and independent site chronologies and tree sequences. Individual series and tree sequences included in the site chronologies are also included for comparative purposes. Reference chronologies arranged by start date. *t*-values only. \setminus = overlap < 25 years; - = *t*-values less than 3.00

			Site	e chronolog	ies			Indepen	dent series	and tree se	quences		
								HALH01		HAL	LH02	HAL	H04
			HALH01	HALH02	HALH04	HAL002	HAL011	HAL017a	HAL100	HAL010a	HAL012a	HAL007a	HAL102
	start	dates	544 BC	AD 43	AD 535	841 BC	402 BC	351 BC	544 BC	AD 99	AD 43	AD 736	AD 535
	dates	end	AD 59	AD 529	AD 920	676 BC	AD 59	AD 44	142 BC	AD 529	AD 259	AD 889	AD 920
AGAUc07c_raw (TRL, unpubl)	1724 BC	AD 2002	14.53	18.73	12.02	7.59	9.47	11.08	9.14	18.61	11.12	6.99	14.29
Northland													
DARGVL01 (TRL, unpubl)	1589 BC	AD 120	13.09	-	\	9.10	6.90	9.30	12.51	\	-	\	\
HARDING2 (Boswijk, 2005b)	1466 BC	437 BC	5.56	\	\setminus	13.60	\	\	5.57	\	\	\	\
CHITTY2 (Boswijk, 2005a)	1257 BC	676 BC	\	\	\setminus	6.65	\	\	\	\	\backslash	\	\
MAITAHI (Boswijk, 2005c)	576 BC	AD 370	15.30	8.93	\setminus	N	8.42	9.81	10.46	9.63	7.82	\	\
CHITTY1 (Boswijk, 2005a)	477 BC	AD 842	16.16	14.24	7.22	N	10.02	11.68	9.58	14.95	7.27	3.71	7.86
TIK401A (TRL, unpubl)	38 BC	AD 489	7.76	16.19	\setminus	N	4.54	4.97	\	15.46	9.05	\	\
TIK001 (Boswijk, 2004)	AD 67	AD 730	\	11.02	4.73	N	\	\	\	12.52	6.48	\	4.73
HARDING1 (Boswijk, 2005b)	AD 124	AD 1152	\	11.78	10.83	N	\	\	\	12.31	7.02	8.11	12.52
YAKAS1 (Boswijk & Palmer, 2004)	AD 304	AD 1273	\	7.64	11.59	N	\	\	\	7.64	\	6.13	14.73
Waikato													
WHANGAPE (Boswijk & Palmer, 2003)	1180 BC	131 BC	4.97	\	\setminus	5.63	3.95	3.50	4.12	\	\	\	\
FURNISS1 (Boswijk et al 2001)	315 BC	AD 769	6.20	7.50	4.28	\setminus	4.61	5.18	-	7.11	5.74	-	4.56

 $n = 76 \min t = 0.80 \max t = 18.73 \max t = 8.81 \text{ s.d.} = 4.09$

t-values/r values; * empty field.

Table 5: Crossmatching between HALH03 series (HAL101, HAL015 and HAL019)

Filenames	-	-	HAL101	HAL015	HAL019
-	start	dates	1	143	580
-	dates	end	872	638	1171
HAL101	1	872	*	18.92/0.65	12.06/0.58
HAL015	143	638	*	*	5.36/0.59
HAL019	580	1171	*	*	*

 $n = 3 \min t = 5.36 \max t = 18.92 \max t = 12.11 \text{ s.d.} = 5.54$

Table 6: Crossmatching between CHI015, HAR012 and HALH03*t*-values; * empty field.

Filenames				CHI015	HAR012	HALH03
	start	dates		538	474	1
	dates	end		1095	1282	1171
CHI015	538	1095	*		18.30/0.61	17.86/0.61
HAR012	474	1282	*		*	17.40/0.55
HALH03	1	1171	*		*	*

 $n = 3 \min t = 17.40 \max t = 18.30 \max t = 17.85$ s.d. = 0.37

Appendix 1:

Raw data listings for dated and floating site chronologies.

HALH01

Ring-width AGAU data of 603 years length, dated 544 BC to AD 59 3 timbers raw data mean Average ring width 175.83 Sensitivity 0.27

544 BC							119	153	210	166							1	1	1	1
-	205	174	246	130	232	227	131	231	189	235	1	1	1	1	1	1	1	1	1	1
-	192	250	197	166	267	263	144	275	278	180	1	1	1	1	1	1	1	1	1	1
-	286	256	244	225	260	235	201	223	197	257	1	1	1	1	1	1	1	1	1	1
-	181	213	233	215	198	200	149	195	283	168	1	1	1	1	1	1	1	1	1	1
	101	-10	-00	-10	170	-00	112	170	-00	100	•			•				•	•	•
500 BC	204	195	231	189	157	125	155	145	166	159	1	1	1	1	1	1	1	1	1	1
-	285	215	248	253	246	224	162	171	179	228	1	1	1	1	1	1	1	1	1	1
_	190	194	173	214	198	143	149	158	171	161	1	1	1	1	1	1	1	1	1	1
_	167	111	147	104	159	108	92	95	176	174	1	1	1	1	1	1	1	1	1	1
_	173	77	95	111	134	211	128	231	237	222	1	1	1	1	1	1	1	1	1	1
	175	11	,,,	111	151	211	120	251	251		'	,	,	'	,	,	'	'	'	'
450 BC	294	285	302	212	283	200	253	260	200	364	1	1	1	1	1	1	1	1	1	1
-	341	200	321	316	319	233	307	273	250	262	1	1	1	1	1	1	1	1	1	1
_	255	256	269	166	208	334	318	268	286	319	1	1	1	1	1	1	1	1	1	1
-	202	314	205	302	325	253	283	200	212	322	1	1	1	1	1	1	1	1	1	1
-	214	127	295	220	352	250	205	212	262	224	1	1	1	1	1	1	1	1	2	2
-	514	137	237	230	552	339	515	237	203	224	/	1	1	/	1	1	1	1	2	2
400 BC	104	352	230	281	338	362	288	330	356	230	2	2	2	2	2	2	2	2	2	2
400 DC	250	280	260	135	101	170	182	280	206	218	2	2	2	2	2	2	2	2	2	2
-	259	250	209	250	300	267	350	209	200	210	2	2	2	2	2	2	2	2	2	2
-	252	250	341	202	202	227	202	320	241	231	2	2	2	2	2	2	2	2	2	2
-	202	201	350	293	202	337	323	300	341	201	2	2	2	2	2	2	2	2	2	2
-	155	205	263	159	271	100	141	158	194	192	2	2	2	2	2	2	2	2	2	3
350 BC	146	138	172	178	124	203	160	217	130	183	3	3	3	3	3	3	3	3	3	3
550 DC	140	220	272	217	220	106	206	21/	101	220	2	2	2	2	2	2	2	2	2	2
-	145	402	2/2 105	217	120	190	200	104	191	220	2	2	2	2	2	2	2	2	2	2
-	105	183	100	102	128	07	91	184	18/	200	2	2	2	2	2	2	2	2	2	2
-	198	210	199	241	207	1/2	184	151	135	15/	3	3	3	3	3	3	3	3	3	3
-	196	208	210	196	1/5	190	138	219	189	148	3	3	3	3	3	3	3	3	3	3
300 BC	120	130	138	168	183	05	132	121	81	07	3	3	3	3	3	3	3	3	3	3
300 BC	05	125	101	100	100	95 77	132	02	01	97	2	2	2	2	2	2	2	2	2	2
-	95	123	101	107	100	110	120	9Z 111	01	04 104	2	2	2	2	2	2	2	2	2	2
-	110	1/9	104	100	127	110	100	111	93 121	124) 2) 2) 2) 2) 2) 2	2) 2	2) 2
-	140	110	203	213	224	1/2	192	128	131	12/	3	3	3	3	3	3	3	3	3	3
-	80	92	4/	102	69	106	88	89	103	102	3	3	3	3	3	3	3	3	3	3
250 BC	90	156	00	103	155	128	170	101	01	04	3	3	3	3	3	3	3	3	3	3
230 DC	102	174	99 147	120	04	120 Q2	1/9 52	54	21 66	94 Q1	2	2	2	2	2	2	2	2	2	3
-	123	1/4	14/	127	24 20	02 00	55 0E	54 104	125	69	2	2	2	2	2	2	2	ر 2	ر 2	2
-	107	95 102	112	120	38 125	00	95	104	123	08) 2) 2) 2) 2) 2) 2	2) 2	2) 2
-	12/	103	129	95	135	155	82	89	43	118	3	3	3	3	3	3	3	3	3	3
-	109	139	131	119	142	92	83	83	121	56	3	3	3	3	3	3	3	3	3	3
200 BC	81	68	45	70	48	115	80	100	111	112	3	3	3	3	3	3	3	3	3	3
200 DC	125	05	н.) 104	79 70	40 104	62	66	80	70	122	2	2	2	2	2	2	2	2	2	3
-	120	20 101	124 151	77 71	1.04	0Z 170	116	127	110	154	2	2	2	2	2	2	2	ر 2	ر 2	2
-	150	121 115	101	/4 07	141	1 5 2	110	104	112	100	2	2 2	2	2	2	2	2	2) 2	9 2
-	100	115	130	0Z	94 170	102	1/1	184	130	190) 2) 2	2 2	2 2	2 2	2	2	2 2) 2) 2
-	204	213	210	103	1/0	130	152	139	210	240)))	3)	3	3	3	3)
150 BC	184	101	184	105	120	1/12	121	152	130	175	3	3	3	3	3	3	2	2	2	2
130 BC	104	191	104	120	63	144	131	192	120	152	2	י ר	2	2	2	2	ר י	ר י	ر د	∠ 2
-	102	ソ/	00	131	03	140	00	100	122	100	2	2	2	2	2	2	2	2	2	2

-	152	133	165	114	156	102	126	84	128	185	2	2	2	2	2	2	2	2	2	2
-	216	179	175	142	167	197	222	97	151	147	2	2	2	2	2	2	2	2	2	2
-	160	58	137	77	143	150	72	140	123	106	2	2	2	2	2	2	2	2	2	2
100 BC	142	124	108	115	74	64	80	106	80	130	2	2	2	2	2	2	2	2	2	2
-	62	96	157	131	175	138	98	83	172	167	2	2	2	2	2	2	2	2	2	2
-	141	121	160	205	120	183	117	204	285	335	2	2	2	2	2	2	2	2	2	2
-	320	307	276	248	210	264	178	206	97	201	2	2	2	2	2	2	2	2	2	2
-	125	130	115	202	207	229	239	235	233	226	2	2	2	2	2	2	2	2	2	2
							-07													
50 BC	151	144	112	114	164	85	132	207	264	331	2	2	2	2	2	2	2	2	2	2
-	191	207	131	161	138	150	173	70	143	56	2	2	2	2	2	2	2	2	2	2
-	108	148	105	156	161	89	125	45	99	122	2	2	2	2	2	2	2	2	2	2
-	132	147	113	87	182	270	216	182	47	289	2	2	2	2	2	2	2	2	2	2
-	197	282	242	297	283	174	211	128	139	230	2	2	2	2	2	2	2	2	2	2
	177	202	- 1-		200	1/1		120	157	200	-	-	-	-	-	-	-	-	-	-
AD 1	229	248	201	133	99	25	124	148	60	115	2	2	2	2	2	2	2	2	2	2
-	98	155	135	174	53	144	48	214	273	227	2	2	2	2	2	2	2	2	2	2
_	239	111	165	92	187	167	182	170	254	258	2	2	2	2	2	2	2	2	2	2
	221	152	121	96	131	107	1/3	201	70	121	2	2	2	2	2	2	2	2	2	2
-	152	207	121 174	100	265	202	220	201	241	206	2	2	2	2	2 1	∠ 1	∠ 1	2 1	∠ 1	∠ 1
-	155	207	1/4	120	203	293	<i>449</i>	505	241	290	4	2	4	2	1	1	1	1	1	/
AD 51	184	219	251	305	202	288	223	164	222		1	1	1	1	1	1	1	1	1	
111 - J1	104	21)	<i>2J</i> 1	505	202	200	445	104	<u> </u>		1	,	1	,	ı	1	1	,	,	

HALH02

Ring-width AGAU data of 487 years length, dated AD 43 to AD 529 2 timbers raw data mean Average ring width 145.27 Sensitivity 0.36

AD 43			407	402	407	394	385	267	222	315			1	1	1	1	1	1	1	1	
AD 51	81	213	192	250	246	133	155	187	206	216	1	1	1	1	1	1	1	1	1	1	
-	150	272	51	46	87	88	149	113	217	153	1	1	1	1	1	1	1	1	1	1	
-	137	162	267	76	167	76	169	298	228	224	1	1	1	1	1	1	1	1	1	1	
-	211	188	296	312	209	234	396	388	460	454	1	1	1	1	1	1	1	1	1	1	
-	218	335	208	411	205	294	318	355	77	139	1	1	1	1	1	1	1	1	2	2	
AD 101	162	103	220	164	164	235	225	142	177	154	2	2	2	2	2	2	2	2	2	2	
-	213	148	254	234	113	167	116	157	111	209	2	2	2	2	2	2	2	2	2	2	
-	243	193	164	197	206	175	228	125	169	126	2	2	2	2	2	2	2	2	2	2	
-	140	223	201	239	175	220	228	210	162	208	2	2	2	2	2	2	2	2	2	2	
-	155	119	216	157	125	184	186	175	148	160	2	2	2	2	2	2	2	2	2	2	
AD 151	165	168	131	163	138	174	147	74	101	158	2	2	2	2	2	2	2	2	2	2	
-	129	189	163	203	127	148	86	146	149	116	2	2	2	2	2	2	2	2	2	2	
-	156	86	156	157	176	103	187	214	213	199	2	2	2	2	2	2	2	2	2	2	
-	235	156	215	271	135	188	168	198	265	157	2	2	2	2	2	2	2	2	2	2	
-	203	157	177	198	167	195	95	135	150	246	2	2	2	2	2	2	2	2	2	2	
AD 201	194	177	218	168	171	196	131	291	211	270	2	2	2	2	2	2	2	2	2	2	
-	237	281	262	240	117	247	241	244	174	216	2	2	2	2	2	2	2	2	2	2	
-	217	218	225	206	290	113	199	197	278	279	2	2	2	2	2	2	2	2	2	2	
-	249	267	254	70	173	229	231	189	149	180	2	2	2	2	2	2	2	2	2	2	
-	189	157	220	131	234	261	248	274	66	236	2	2	2	2	2	2	2	2	2	2	

AD 251 - - -	254 103 103 138 143	268 127 64 131 76	153 136 50 161 127	190 114 61 127 70	229 111 91 67 114	298 103 97 80 131	180 114 83 131 95	262 65 94 68 152	169 76 53 155 106	95 58 88 94 126	2 1 1 1 1	2 1 1 1 1	2 1 1 1 1	2 1 1 1 1	2 1 1 1	2 1 1 1	2 1 1 1 1	2 1 1 1 1	2 1 1 1 1	1 1 1 1
AD 301 - - -	112 106 161 138 164	82 133 137 133 132	122 138 169 95 164	145 102 109 126 135	41 83 115 63 127	137 136 75 132 82	89 75 108 158 111	120 137 140 100 65	93 169 154 154 100	138 128 136 115 132	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1
AD 351 - - -	127 123 73 95 109	44 134 132 110 123	88 189 121 111 121	172 115 99 91 133	113 174 117 140 140	150 122 108 136 97	96 124 93 126 95	98 39 114 89 136	136 106 28 154 80	210 143 100 59 144	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1
AD 401 - - -	99 147 138 113 63	136 103 145 160 22	92 123 150 92 38	22 92 127 135 33	85 73 154 103 1	159 129 78 135 47	27 36 126 106 82	135 110 137 44 54	130 104 150 49 100	151 149 41 49 68	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1
AD 451 - - -	96 103 106 66 105	42 64 84 94 129	72 52 71 94 90	111 79 67 67 129	37 93 64 56 116	119 16 72 46 49	96 91 14 63 94	105 145 58 20 91	93 102 67 92 89	83 131 17 56 56	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1
AD 501 - -	77 108 40	123 86 100	108 132 82	43 149 115	90 160 115	86 138 64	93 72 93	83 111 62	89 94 110	73 94	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1

HALH03

Ring-width AGAU data of 1171 years length, undated; relative dates - 1 to 1171 3 timbers raw data mean Average ring width 105.06 Sensitivity 0.36

1	l 109	93	116	152	138	53	153	85	82	75	1	1	1	1	1	1	1	1	1	1
	- 106	74	57	90	67	121	57	102	67	107	1	1	1	1	1	1	1	1	1	1
	- 107	193	143	137	94	135	130	105	100	99	1	1	1	1	1	1	1	1	1	1
	- 131	139	129	82	53	112	130	72	59	78	1	1	1	1	1	1	1	1	1	1
	- 62	87	122	55	129	66	123	107	51	104	1	1	1	1	1	1	1	1	1	1
51	l 54	66	120	58	117	100	128	146	62	94	1	1	1	1	1	1	1	1	1	1
	- 131	136	117	141	147	152	128	144	123	165	1	1	1	1	1	1	1	1	1	1
	- 158	174	109	188	109	155	117	138	109	105	1	1	1	1	1	1	1	1	1	1
	- 67	121	122	65	121	196	59	149	116	102	1	1	1	1	1	1	1	1	1	1
	- 74	104	101	175	88	69	99	62	111	107	1	1	1	1	1	1	1	1	1	1
101	l 129	52	86	92	98	89	86	103	95	42	1	1	1	1	1	1	1	1	1	1
	- 82	68	90	134	66	119	85	115	37	71	1	1	1	1	1	1	1	1	1	1

25

	133	97	105	90	86	50	81	121	00	108	1	1	1	1	1	1	1	1	1	1
-	155	21	105	90	00	59	01	141	22	100	'	/	1	'	1	/	1	1	/	'
-	68	63	46	54	55	76	92	86	- 90	104	1	1	1	1	1	1	1	1	1	1
	101	4 5	124	70	107	125	07	117	100	110	1	1	2	2	2	2	2	2	2	2
-	121	45	134	/9	106	135	86	11/	102	118	1	1	2	2	2	2	2	2	2	2
151	- 91	120	153	- 93	123	118	69	131	101	144	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2
	1/2	06	117	116	125	110	152	61	117	65	2	2	2	2	2	2	2	2	2	2
-	145	90	11/	110	155	110	152	01	11/	05	2	2	2	2	2	2	2	2	2	2
-	88	88	127	142	91	85	64	97	75	80	2	2	2	2	2	2	2	2	2	2
	100	110			40	101		0.4	107	0.4	_	_	_	_	_	_	_	_	_	_
-	108	119	62	86	48	104	76	84	127	84	2	2	2	2	2	2	2	2	2	2
_	54	75	81	75	114	155	100	80	41	87	2	2	2	2	2	2	2	2	2	2
-	54	75	01	15	117	155	100	00	71	07	4	2	4	2	4	2	2	2	4	~
201	62	00	60	74	102	40	0.4	04	00	20	2	2	2	2	2	2	2	2	2	2
201	02	00	09	/4	102	49	94	94	09	39	2	2	2	2	2	2	2	2	2	2
-	42	94	71	93	80	74	124	104	108	163	2	2	2	2	2	2	2	2	2	2
	101	00	00	107	70	05		405	100	0.5	-	_	-	-	-	_	_	_	_	_
-	104	80	93	127	/0	85	97	105	131	85	2	2	2	2	2	2	2	2	2	2
_	84	90	127	145	100	117	72	58	90	65	2	2	2	2	2	2	2	2	2	2
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12/	115	100	11/		50		05	-	4	4	-	4	4	4	4	-	-
-	109	134	114	150	'/4	- 90	76	'/4	75	86	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2
251	142	- 93	85	86	64	70	- 69	82	102	109	2	2	2	2	2	2	2	2	2	2
	00	107	102	70	(0	70	101	Γ 4	01		2	2	2	2	2	2	2	2	2	2
-	99	12/	123	/9	69	12	101	54	81	/5	2	2	2	2	2	2	2	2	2	2
-	84	88	67	84	94	98	51	93	123	108	2	2	2	2	2	2	2	2	2	2
	<u> </u>	~ ~	140		107		402		440		_	_	_	-	_	_	_	_	_	~
-	84	- 96	119	44	125	78	103	72	119	- 98	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2
	55	106	37	50	61	65	47	112	45	38	2	2	2	2	2	2	2	2	2	2
-	55	100	57	59	01	05	4/	112	45	50	2	4	4	4	4	4	4	4	4	2
201	50	(0	(1	(0	40	20	< F	27	F 2	20	2	2	2	2	2	2	2	2	2	2
301	50	62	61	62	43	- 30	65	5/	55	52	2	2	2	2	2	2	2	2	2	2
_	69	55	46	53	91	71	41	36	45	66	2	2	2	2	2	2	2	2	2	2
-	07	55	40	55	71	/ 1	71	50	чJ	00	4	2	4	2	4	2	2	2	4	~
-	50	44	- 36	76	83	67	72	86	84	84	2	2	2	2	2	2	2	2	2	2
	104	74	70	70	E 1	EO	E 1	72	12	EE	2	2	2	2	2	2	2	2	2	2
-	104	/4	79	12	51	29	51	13	43	55	2	2	2	2	2	2	2	2	2	2
-	60	94	76	52	80	62	47	46	56	62	2	2	2	2	2	2	2	2	2	2
	00		10	51	00	01	• /	10	50	01	-	-	-	-	-	-	-	-	-	-
351	53	84	71	60	73	36	87	108	100	51	2	2	2	2	2	2	2	2	2	2
551	55	04	/ 1	00	15	50	07	100	100	51	2	4	4	4	4	4	4	4	4	2
-	107	68	81	62	100	104	146	86	82	47	2	2	2	2	2	2	2	2	2	2
	70	72	107	01	77	7	(0	7	70	05	2	2	2	2	2	2	2	2	2	2
-	70	13	12/	91	//	65	60	65	/0	95	2	2	2	2	2	2	2	2	2	2
-	42	77	69	75	73	81	50	56	61	64	2	2	2	2	2	2	2	2	2	2
				15	100	10		50		50	-	-	-	-	-	-	-	-	_	-
-	84	48	72	67	100	49	145	64	64	53	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2
401	77	69	94	124	65	80	91	128	112	89	2	2	2	2	2	2	2	2	2	2
	72	02	0.4	0.4	01	E/	70	100	FO	110	2	2	2	2	2	2	2	2	2	2
-	13	04	04	94	91	50	12	109	30	110	2	2	2	2	2	2	2	2	2	2
-	83	105	111	133	66	73	42	35	40	61	2	2	2	2	2	2	2	2	2	2
	00			100	70	10			101	101	-	_	_	-	_	_	_	_	_	_
-	92	66	/5	46	/9	65	97	63	104	124	2	2	2	2	2	2	2	2	2	2
_	30	37	50	87	49	50	59	92	95	65	2	2	2	2	2	2	2	2	2	2
_	57	57	50	07	77	50	57	12))	05	4	4	4	4	4	4	4	4	4	4
451	60	20	75	02	Q1	12	60	54	12	50	2	2	2	2	2	2	2	2	2	2
451	00	59	15	02	01	44	00	54	44	50	4	4	4	4	4	4	4	4	4	2
-	56	78	96	56	28	41	34	45	54	68	2	2	2	2	2	2	2	2	2	2
	21	4 -	()	7	50	41	110	102	00	27	2	2	2	2	2	2	2	2	2	2
-	51	43	62	05	52	41	112	123	80	37	2	2	2	2	2	2	2	2	2	2
-	107	71	57	77	58	58	87	69	40	47	2	2	2	2	2	2	2	2	2	2
	107		00		50			105		100	-	-	-	-	-	-	-	-	_	-
-	66	111	90	91	69	113	56	125	71	122	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2	- 2
			_	_		_	_	_			_	_	-	-	-	_	-	_	-	
501	123	51	87	82	44	82	96	86	125	44	2	2	2	2	2	2	2	2	2	2
-	74	47	21	24	70	1 4	11	= /	47	EO	2	2	2	n	2	2	2	2	2	2
-	/4	4/	30	34	/ð	44	01	20	4/	32	2	2	2	2	2	2	2	2	2	2
_	62	101	40	30	43	38	82	110	51	41	2	2	2	2	2	2	2	2	2	2
-	62	101			1.5				107		-	-	-	-	-	-	-	-	-	-
-	37	60	53	123	108	122	71	.77	102	51	2	2	2	2	2	2	2	2	2	2
	QQ	65	64	136	77	70	27	11	62	52	2	2	2	2	2	2	2	2	2	2
-	00	05	04	100	11	19	57	41	03	55	2	4	4	4	4	4	4	4	4	2
551	105	100	05	74	110	(0	111	(0	112	101	2	2	2	n	2	2	2	2	2	n
221	105	100	ŏΟ	/4	118	00	111	00	113	101	2	2	2	2	2	2	2	2	2	2
-	53	51	45	47	33	71	61	89	65	49	2	2	2	2	2	2	2	2	2	2
-	55	51	+5	T/	55					17	-	~	~	-	~	~	~	~	-	4
-	44	62	65	104	84	73	63	66	33	92	2	2	2	2	2	2	2	2	2	3
	64	121	80	01	Q1	56	73	54	105	82	3	2	3	2	3	2	2	2	2	2
-	04	141	00	91	04	50	15	54	105	04))))))))))
-	86	96	75	80	89	35	108	122	38	89	3	3	3	3	3	3	3	3	3	3
									~~~		-	-	-	-	-	-	-	-	-	
601	89	143	77	75	58	106	108	96	97	88	3	3	3	3	3	3	3	3	3	3
0.01	10	- 10						20	100		~	· ·	· ·	~	· ·	· ·	<b>`</b> `	· ·	~	~
	40	48	55	- 90	- 91	35	48	68	122	57	3	3	3	3	3	3	3	3	3	3
-	40	10																-	-	

-	78	61	59	87	49	44	27	64	43	75	3	3	3	3	3	3	3	3	3	3
	111	()	70	41	76	01	00	((	00	102	2	2	2	2	2	2	2	2	2	2
-	114	00	12	41	70	81	99	00	90	123	2	2	2	2	2	2	2	2	2	2
-	88	116	35	133	88	111	69	91	100	84	2	2	2	2	2	2	2	2	2	2
654	47	0.4	70	4 - 4	170	07	101	105	447		2	2	2	2	2	2	2	2	2	2
651	4/	94	/8	151	1/9	97	121	105	11/	5/	2	2	2	2	2	2	2	2	2	2
-	106	89	87	91	108	76	72	177	151	100	2	2	2	2	2	2	2	2	2	2
	161	02	127	70	69	115	129	45	110	115	2	2	2	2	2	2	2	2	2	2
-	101	- 05	12/	19	00	115	120	45	119	115	4	4	4	4	4	4	2	2	4	4
-	85	114	56	98	126	146	53	110	75	127	2	2	2	2	2	2	2	2	2	2
_	95	117	75	157	96	154	90	131	106	106	2	2	2	2	2	2	2	2	2	2
	20	11/	10	107	20	101	20	101	100	100	-	-	-	-	-	-	-	-	-	-
701	176	72	187	94	96	122	83	133	139	71	2	2	2	2	2	2	2	2	2	2
	123	81	152	74	175	94	154	101	176	181	2	2	2	2	2	2	2	2	2	2
_	125	1.00	152		175	101	154	101	170	101	-	~	-	-	-	~	~	~	~	2
-	131	168	148	146	197	121	1/2	121	134	148	- 2	2	- 2	2	- 2	2	-2	- 2	2	- 2
-	- 90	145	53	173	72	135	133	140	85	133	2	2	2	2	2	2	2	2	2	2
	125	17	157	120	100	110	06	116	120	6.6	2	2	2	2	2	2	2	2	2	2
-	155	4/	137	130	109	140	00	110	150	00	4	2	4	2	4	2	2	2	2	2
751	72	105	92	98	81	129	130	124	59	120	2	2	2	2	2	2	2	2	2	2
101	455	700	70	00	01		150	120	100	120	-	-	-	-	-	-	-	-	-	-
-	155	/9	/4	82	99	56	151	129	133	60	2	2	2	2	2	2	2	2	2	2
-	121	92	138	55	142	89	99	109	137	95	2	2	2	2	2	2	2	2	2	2
	125	101	125	12	79	94	125	00	07	97	2	2	2	2	2	2	2	2	2	2
-	125	101	123	43	/0	04	155	90	97	0/	2	2	2	4	2	2	2	2	2	2
-	53	98	113	56	95	128	175	127	159	124	2	2	2	2	2	2	2	2	2	2
0.01	100	00	100	0.0	00	115	110	00	125	00	2	2	2	n	2	2	2	2	2	2
801	108	99	123	98	80	115	119	88	135	99	2	2	2	2	2	2	2	2	2	2
-	148	122	99	121	126	102	112	85	70	116	2	2	2	2	2	2	2	2	2	2
	110	26	1/1	122	140	101	00	0.4	127	40	2	2	2	2	2	2	2	2	2	2
-	110	50	141	132	140	101	09	94	137	49	2	2	2	2	2	2	2	2	2	2
-	127	72	149	155	112	107	151	72	88	174	2	2	2	2	2	2	2	2	2	2
_	109	93	142	144	107	132	74	106	110	118	2	2	2	2	2	2	2	2	2	2
	107	,,	174	144	107	152	1 -	100	110	110	2	4	4	4	4	4	4	4	4	4
851	148	77	154	95	158	74	167	167	70	100	2	2	2	2	2	2	2	2	2	2
	94	1/12	61	124	103	133	90	175	114	154	2	2	2	2	2	2	2	2	2	2
-	24	142	01	124	105	155	20	175	114	134	2	~	~	~	~	~	~	~	~	4
-	140	176	263	166	122	139	145	45	128	49	2	2	1	1	1	1	1	1	1	1
_	121	72	79	144	88	158	57	146	163	147	1	1	1	1	1	1	1	1	1	1
	121	~~~	110	240	144	150	105	101	100	117	'.		'.	'.	'.					
-	268	234	146	248	164	1/3	125	191	138	167	1	7	1	1	1	7	1	1	7	1
901	175	80	207	160	211	223	94	217	149	10/	1	1	1	1	1	1	1	1	1	1
701	175	107	207	100	211	225	74	217	177	174	1		1	'.	1					
-	181	127	195	66	161	146	116	137	72	124	1	1	1	1	1	1	1	1	1	1
-	101	137	86	148	56	120	136	56	1.39	155	1	1	1	1	1	1	1	1	1	1
	1 / 1	102	160	0.4	160	207	115	210	216	111	1	1	1	1	1	1	1	1	1	1
-	141	102	100	94	108	207	115	219	210	114	/	/	/	1	/	/	/	/	/	1
-	241	239	180	159	228	163	216	244	77	264	1	1	1	1	1	1	1	1	1	1
054	202	4	024	224	011	010	1.40	100	170	170	4	4	4	4	4	4	1	1	4	
951	293	15/	234	226	211	213	140	126	1/3	1/2	1	1	1	7	1	1	1	1	1	1
-	251	130	152	85	188	192	77	253	179	133	1	1	1	1	1	1	1	1	1	1
	258	155	100	181	204	178	157	212	140	224	1	1	1	1	1	1	1	1	1	1
-	20	155	177	101	404	1/0	1.57	<u> </u>	142	44 4	'.	1	1	'.	1	1	1	1	1	1
-	138	158	183	107	183	237	163	202	218	96	1	1	1	1	1	1	1	1	1	1
-	199	157	193	156	195	100	231	153	214	250	1	1	1	1	1	1	1	1	1	1
							+													-
				. –																
1001	228	264	239	175	207	102	119	180	103	137	1	1	1	1	1	1	1	1	1	1
-	159	116	143	177	189	162	185	159	119	218	1	1	1	1	1	1	1	1	1	1
-	105	470	100	- · · ·	107	10Z	105	101		210							1	, ,		1
-	105	170	100	207	184	240	136	194	218	200	1	1	1	1	1	1	1	1	1	1
-	190	135	134	233	112	167	166	58	85	102	1	1	1	1	1	1	1	1	1	1
	110	100		100	120	111	176	75	110	121										
-	112	190	51	197	1.39	114	1/0	/ 3	119	131	1	1	1	1	1	1	1	1	1	1
1051	96	108	90	45	156	69	134	160	120	66	1	1	1	1	1	1	1	1	1	1
1001	1 - 4	144	105	105	202	(0)	174	1		105	,	, ,	, ,	,	, ,	, ,	1	1	, ,	1
-	154	114	185	125	203	68	164	15/	98	125	1	1	1	1	1	1	1	1	1	1
-	181	85	143	195	97	158	145	110	168	173	1	1	1	1	1	1	1	1	1	1
	172	00	102	115	160	120	110	102	155	100	1	1	1	1	1	1	1	1	1	1
-	1/3	00	143		100	130	114	105	100	144	1	1	1	1	1	1	1	1	1	
-	76	151	200	78	202	72	138	119	94	123	1	1	1	1	1	1	1	1	1	1
1101	10	102	40	07	100	125	E 1	100	124	117	1	1	1	1	1	1	1	1	1	1
1101	68	102	49	97	180	135	51	120	154	11/	1	1	1	1	1	1	1	1	1	1
-	148	60	146	177	120	120	89	47	149	139	1	1	1	1	1	1	1	1	1	1

-	72	108	154	116	41	134	127	60	153	56	1	1	1	1	1	1	1	1	1	1
-	159	121	129	139	155	108	129	64	126	100	1	1	1	1	1	1	1	1	1	1
-	103	48	153	138	84	159	115	43	126	108	1	1	1	1	1	1	1	1	1	1
1151	122	94	116	133	86	120	142	145	138	84	1	1	1	1	1	1	1	1	1	1
-	190	95	176	145	101	175	151	136	173	167	1	1	1	1	1	1	1	1	1	1
-	224																			

### HALH04

Ring-width AGAU data of 386 years length, dated AD 535 to AD 920 2 timbers raw data mean Average ring width 111.07 Sensitivity 0.25

Ì	AD 535					53	21	184	197	97	103					1	1	1	1	1	1
	-	114	82	63	112	95	62	112	153	112	99	1	1	1	1	1	1	1	1	1	1
	AD 551	107	65	51	125	136	80	113	108	08	08	1	1	1	1	1	1	1	1	1	1
	MD 551	107	72	103	102	74	100	07	79	50	68	1	1	1	1	1	1	1	1	1	1
	-	120	75	105	102	74	100	27	70	59	00	1	1	1	1	1	1	1	1	1	1
	-	64	82	84	48	64	22	8/	/ 5	64	68	1	1		1	1	1				1
	-	124	101	55	66	55	60	116	66	81	68	1	1	1	1	1	1	1	1	1	1
	-	102	69	70	27	90	50	85	55	55	26	1	1	1	1	1	1	1	1	1	1
	AD (01	20	72	101	77	07	05	101	75	100	02	1	1	1	1	1	1	1	1	1	1
	AD 601	38	/ 3	101	70	90	65 70	101	/ 3	108	92	1	1	1	1	1	1		1	1	
	-	99	85	/2	54	41	/9	53	3/	//	//	1	1	1	1	1	1	1	1	1	1
	-	59	56	53	43	77	61	76	80	42	73	1	1	1	1	1	1	1	1	1	1
	-	45	90	82	72	105	81	138	139	182	118	1	1	1	1	1	1	1	1	1	1
	-	172	143	161	136	143	89	165	158	83	163	1	1	1	1	1	1	1	1	1	1
	AD (54	120	0.4	105	454	110	115	170	111	105	101	4	4	4	4	4	4	4	4	4	4
	AD 651	138	94	135	154	146	115	1/2	111	185	181	1	1	1	1	1	1	1	1	1	1
	-	153	175	158	129	138	161	124	103	175	161	1	1	1	1	1	1	1	1	1	1
	-	153	140	117	142	116	204	175	203	195	109	1	1	1	1	1	1	1	1	1	1
	-	168	134	177	160	76	89	95	69	118	100	1	1	1	1	1	1	1	1	1	1
	-	60	96	117	129	115	72	104	109	87	69	1	1	1	1	1	1	1	1	1	1
										~ .											
	AD 701	121	123	69	93	61	103	93	108	86	88	1	1	1	1	1	1	1	1	1	1
	-	105	89	88	71	92	68	83	71	42	68	1	1	1	1	1	1	1	1	1	1
	-	76	84	81	58	68	58	61	56	44	48	1	1	1	1	1	1	1	1	1	1
	-	38	51	49	26	49	102	112	96	107	167	1	1	1	1	1	2	2	2	2	2
	-	118	137	144	101	96	86	116	108	124	101	2	2	2	2	2	2	2	2	2	2
	AD 751	103	58	132	119	160	91	152	146	179	192	2	2	2	2	2	2	2	2	2	2
	-	147	156	152	124	128	111	138	153	51	148	2	2	2	2	2	2	2	2	2	2
	-	131	190	176	148	153	162	125	166	160	127	2	2	2	2	2	2	2	2	2	2
	_	134	156	178	172	153	152	146	162	143	162	2	2	2	2	2	2	2	2	2	2
		153	172	164	160	1/1	152	1/8	127	130	1/7	2	2	2	2	2	2	2	2	2	2
	-	155	1/2	104	107	1 7 1	152	140	127	157	1-7/	2	2	4	2	2	2	2	2	4	2
	AD 801	126	152	137	126	145	128	101	119	143	150	2	2	2	2	2	2	2	2	2	2
	-	134	123	126	133	134	140	149	111	131	106	2	2	2	2	2	2	2	2	2	2
		131	111	157	168	151	166	136	136	130	134	2	2	2	2	2	2	2	2	2	2
	-	106	122	104	127	1151	126	142	135	146	169	2	∠ 2	2	∠ 2	2	∠ 2	2	2	2	2
	-	100	201	104	102	170	170	143	172	140	100	2	∠ 2	2	2	2	2	2	2	2	2
	-	15/	201	1/3	192	1/0	164	144	1/3	103	10/	2	2	2	2	2	2	2	2	2	2
	AD 851	176	146	168	125	204	214	165	159	193	186	2	2	2	2	2	2	2	2	2	2
-						- • •						-	-	-	-	-	-	-	-	-	_

-	193	131	189	205	148	148	161	49	139	126	2	2	2	2	2	2	2	2	2	2
-	162	136	144	138	127	171	78	164	187	122	2	2	2	2	2	2	2	2	2	2
-	101	104	87	106	68	84	95	73	107	65	2	2	2	2	2	2	2	2	2	1
-	42	79	44	85	89	84	78	91	84	92	1	1	1	1	1	1	1	1	1	1
AD 901	44	78	53	61	60	56	79	63	51	82	1	1	1	1	1	1	1	1	1	1
-	39	59	51	63	57	62	51	38	42	29	1	1	1	1	1	1	1	1	1	1
-																				

#### HAL002

Raw Ring-width AGAU data of 166 years length, dated 841 BC to 676 BC 0 sapwood rings and no bark surface Average ring width 237.28 Sensitivity 0.34

0.44 D.C										005
841 BC										235
-	222	318	94	248	402	281	388	149	324	418
-	320	421	301	488	312	432	135	371	260	255
-	272	321	168	316	245	288	200	246	116	190
-	152	314	314	357	207	269	377	357	444	366
800 BC	308	340	392	271	367	169	365	284	315	294
-	325	150	262	171	279	391	398	157	274	300
-	305	327	157	280	265	251	299	225	334	208
-	193	256	226	169	340	343	222	322	295	345
-	224	350	197	373	204	249	240	388	391	197
750 BC	300	245	373	165	306	280	262	252	283	322
-	191	303	111	242	291	249	294	134	218	216
-	147	315	326	232	233	106	169	196	254	231
-	240	139	184	85	133	74	150	165	174	148
-	159	209	132	194	99	160	160	220	243	172
700 BC	177	197	124	160	67	111	79	127	142	86
-	144	133	176	183	117	90	119	86	83	92
_	99	106	85	151	89					