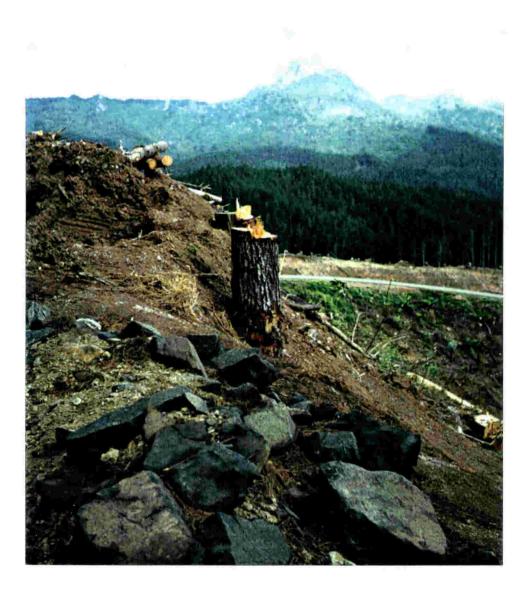


http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).


This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

"Where my imaginary line Bends square in woods, an iron spine And pile of real rocks have been founded. And off this corner in the wild, Where these are driven in and piled, One tree, by being deeply wounded, Has been impressed as Witness Tree And made commit to memory My proof of being not unbounded."

From The Moodie Forester, Robert Frost

LONG-TERM SCHEDULING of HARVESTING with ADJACENCY and TRIGGER CONSTRAINTS

A thesis presented for the Ph D degree in Engineering Science at the University of Auckland

> Alastair McNaughton 1998

Abstract

The forest harvesting problem, FHP, is described. A review of the existing literature is presented along with an analysis of the strengths and limitations of various attempted solutions. The diversity of model evident in recent papers is noted. The difference is explained between a strategic model that sets long-term harvesting goals in terms of total area to be cut each year, and a tactical model that produces a short-term schedule of actual blocks. Special attention is devoted to the development of FRI's Forestry-Oriented Linear Programming Interpreter, FOLPI, which is currently used to formulate an LP model of the strategic planning problem. Reasons are presented for the desirability of an integrated model, embracing both strategic and tactical decisions, which is capable of optimisation. Accordingly the project then proceeds to a thoughtful and detailed construction of such a model. Particular care is taken to examine the status and function of FOLPI within this model.

A column generation algorithm is then developed to solve the relaxed linear program formulation. Finally powerful constraint branching techniques are utilised to obtain the desired optimal solution to the integrated model. Throughout the development of the project the Whangapoua forest in Coromandel, New Zealand has been used as a case study. A concluding section presents numerical output from some of the exhaustive computational analysis associated with this application.

Acknowledgments

I must first thank the Forest Research Institute for their generous funding and support of this research project. Bruce Manly's advice, guidance and encouragement have been a major factor in the successful outcome. Much valuable assistance has also come from Simon Papps especially with regard to the technical aspects of FOLPI. His advice on other computer-related matters has always been helpful. The courtesy of being accepted as part of the FRI team and accorded access to their resources, contacts and library has been much appreciated. I trust the result of this project will meet the FRI expectations and that an on-going productive research relationship may continue.

Next I must express my sincere thanks to the Ernslaw One company for allowing their forest at Whangapoua to be used as a case study. Their willingness to trust me with access to confidential forest management data is sincerely appreciated. Throughout the project I have been impressed in many ways with their commitment to manage this forest with the highest regard for the long-term protection and nurturing of the environment. It is my sincere wish that the algorithm I have developed may contribute in some substantial way to this praiseworthy goal. Greg Herrick and Brent Guild on the forest management staff have helped me a great deal. So I would like to thank them both very much for all the hours they have put into looking out various specific numerical data I have needed from time to time. The foresters on site at Whangapoua have always been courteous, patient and helpful. I thank them for allowing me freedom to visit this lovely forest whenever necessary.

A major vote of thanks must be accorded to Professor D.Ryan, head of the department of Engineering Science, University of Auckland, and doctor M.Ronnqvist, Division of Optimisation, Department of Mathematics, Linkoping University, Sweden. Together they have devoted many hours to the supervision of this project. Their wisdom and experience have been invaluable, their patience and perseverance remarkable. Doctor Ronnqvist had the vision to advocate the integrated plan concept from the very start. Professor Ryan was the first to realise the appropriateness of column generation and constraint branching as the major tools in the solution process.

A number of friends have assisted me from time to time with helpful assistance and advice concerning technical aspects of computing. Development of this project has constrained me to acquire skills in a wide range of computer environments, languages, and software. In this regard I must thank Lyndon Drake (C-language), Ed Klotz (CPLEX help with both version 3.0 and 4.0), David Bullivant (PC implementation of CPLEX), Robert Chan (UNIX), Steve Butt (FORTRAN 77), Nick Vautier (windows 95), Terry Hannon (DOS), Kumar Vetharaniam (file maintenance and transfer), and Chris Bradley (UNIX implementation of CPLEX).

Preface

In 1838 Garrett Clearwater, an American whaler hailing from New Jersey, arrived at Otakou, in Dunedin harbour. Shortly afterwards he settled ashore, and established a pit sawmill at Company's Bay. Contemporaries recorded Garrett as a splendid bushman who swore by his "Sharp" American axe. Later the family shifted to Southland and the eldest son, also Garrett, operated a sawmill in the Titipua district. It was here my father's mother, Edith, was born. My mother's family had by then settled in the Henley area in Otago. Her father was a noted rural engineer who devised ingenious techniques for utilising the traction engine to set up power poles across the Taieri plain. Country New Zealand is a treasured part of my heritage, and this was one reason why I took my first degree at the University of Otago in geography. After that my interests led me more towards pure mathematics. As a consequence, it seemed the opportunity to combine serious academic work with a genuine empathy for the countryside was lost. So it was a quite unexpected pleasure in December 1993 to find an opportunity to participate in this forestry research project, for it contains a real mathematical challenge and also is of significant practical importance to the continuing development and protection of our land.

In today's world the use of land for production forestry is often a controversial topic. Some see it as an evil exploitation of nature, others as a sensible way to earn an honest living in a sustainable and responsible industry. I am well aware that the work I have done is going to impact on forestry in both New Zealand and overseas. Any planning tool in the wrong hands is capable of doing great harm. So I do not wish to appear naive. The software that will result from this project will give all participants in the forest planning arena access to a measurable and balanced assessment of likely consequences of various harvesting plans. The concept that the business profit motive should be accepted, but allowed to operate only within certain clearly defined constraints, is to me, as a Christian, very reasonable. The proposal that these constraints should be able to address specific local detail of individual locations within the forest I find very attractive.

This Saturday I again visited the Whangapoua Forest. It was extremely pleasing to see healthy regeneration on blocks that two years ago I photographed as rather desolate areas of recent harvesting. Occasional clay scars testified to three tropical cyclones and other more routine storms, but these are healing well under a splendid mat of native plants of all sorts. The new radiata seedlings are already shoulder high and provide significant protection against further erosion. Underfoot the soil retains a delicious deep friable texture almost everywhere, a tribute to the cable logging technique and the foresters that use it. Unlike the typical rural stream that turns an ugly brown after the slightest shower, the waters of the forest flow clear with clean pebbly riverbeds. Pause a moment and the beauty of wild birdcall is never far away. This is a good land, and this is one of the better ways to utilise and enjoy it.

Contents

A	bstract	2		
Acknowledgments				
P	reface	4		
A	bbreviations	15		
1	Introduction			
	 1.1 The forest harvesting problem 1.2 Terminology 1.3 Overview of the present study 	17 17 19		
2	Background and Review			
	 2.1 The first forest harvesting model 2.2 Use of linear programming 2.3 Review of literature 2.4 FRI and FHP in New Zealand 2.5 Global issues concerning FHP 2.6 FOLPI 	21 22 24 30 30 31		
3	Case study: Whangapoua Forest			
	 3.1 The Whangapoua forest 3.2 The Coromandel community 3.3 The importance of the catchment unit 3.4 Integrating catchment constraints in FHP 3.5 Other harvesting constraints 3.6 Harvesting techniques 3.7 Composite blocks 3.8 Notation for blocks and road segments 3.9 Sustainability 3.10 Present procedures for harvest planning at Whangapoua 	34 36 37 38 40 40 41 43 44		
4	4 Model formulation			
	 4.1 One fully integrated optimisation 4.2 The significance of the time intervals in the model 4.3 The objective function 4.4 General comments on constraints 4.5 Strategic constraints 4.6 Plan constraints 4.7 Road constraints 	46 47 48 50 51 55 58		

page

4.8 Road sequential constraints	60
4.9 Block constraints	62
4.10 Cable logging adjacency constraints and their aggregation	65
4.11 Green-up adjacency constraints and their aggregation	71
4.12 Initial constraints	77
4.13 Linking constraints	78
4.14 Overlap constraints	81
4.15 Residual linking constraints	81
4.16 The complete objective function	82
4.17 An over-view of the completed model	83

5 Column generation

5.1	The revised simplex method and the reduced cost	86
5.2	The nature and function of column generation methods	87
5.3	An introduction to the theory of column generation	91
5.4	Weintraub's column generation method	94
5.5	The initialisation stage of our column generation method	95
	How a new column is constructed	96
5.7	The reduced cost of a composite column	99
5.8	The selection of an entering column	101
5.9	How the column generation algorithm continues	107
5.10	A defence of the road constraint formulation	109
5.11	Column generation and the adjacency constraints	111
5.12	Alternative methods for avoiding integer-infeasible columns	112
5.13	How the constraints are up-dated during column generation	114
5.14	Wider applicability of this column generation procedure	116
	A theoretic basis for the proposed column generation scheme	116

6 Branch and Bound techniques

6.1	Types of branching available	118
6.2	Formulation of a suitable set of constraint branches	123
6.3	Equivalent and implied constraint branches	128
	The set of block constraints	132
6.5	Other possible branches	134
6.6	Tree search strategy	136
6.7	Node selection policy	140
6.8	The branch decision process	141
6.9	The relationship of branching decisions to forest management	142

7 Implementation

7.1	Computer and language selection	144
	FOLPI	144
7.3	Use of the software package CPLEX	147
7.4	Data files	147

7	5 Initialisation	147
	6 A procedure to address initial feasibility difficulties	148
7	7 Implementation of column generation	150
	8 Implementation of branch and bound	152
	9 Fathoming in the branch and bound tree	157
	10 Implementation of allied constraint branches	161
	11 The croptype need criteria for branch selection	165
7.	12 A technique to safeguard uninterrupted block-availability	168

8 Numerical analysis of results

8.1 Problem characteristics	170
8.2 The first RLP solution and analysis of column generation	171
8.3 Introductory discussion of branch and bound strategies	174
8.4 Effective node selection	177
8.5 Other types of branches investigated	184
8.6 Efficient tree search strategy	185
8.7 Testing the node selection strategy for robustness	188
8.8 Testing the model size for robustness	190
8.9 Testing green-up adjacency constraints	192
8.10 Further analysis of model behaviour: the overlap variables	192
8.11 Aggregating the adjacency constraints	193
8.12 Eligibility of infeasible columns during column generation	195
8.13 Frequency calls to column generation	197
8.14 Over-all quality of model performance	198

9 Interpretation and discussion of results

9.1 Presentation of cutting plan output	
and comparison with previous method	199
9.2 Comparing the results of the model	
with those of previous manual methods	201
9.3 Presentation of output for the road construction schedule	203

10 Conclusions

10.1	Achievement of goals	205
10.2	Discussion of further development of this project	205
10.3	Suggestions for further research	206

References

208

Appendix A: Model formulation summary

A.1	List of variables	213
A.2	List of constants	215

	A.4	List of sets List of equations in model, with page references List of equations in algorithm, with page references	216 217 221
Appendix B:	Glos	ssary	225
Appendix C:	Har	vesting plans for Whangapoua Forest	
		The strategic plan up to 2003 submitted by Ernslaw One in 1994	234
3	C.2	The tactical plan for 1995 to 1997 submitted by Ernslaw One	235
	C.3	The tactical plan up to 2001 as output from the FHP programme	237
Appendix D: Mathematical proofs			
		Theorem 1	243
		Theorem 2	244
		Theorem 3	245
		Theorem 4	247
		Theorem 5	248
	D.6	Theorem 6	249
Appendix E:	W	hangapoua data files and initialisation	
	E1 :	Data files	250
		Initialisation	254

List of Maps

Map 1: Whangapoua Forest location	35
Map 2: The major catchments of the Whangapoua Forest	38
Map 3: A composite block overlapping compartments 42 and 43.	42
Map 4: Quarry Road, an example of road sequential constraints	61
Map 5: Compartment 17 of the Whangapoua Forest	67

page

List of Photographs

facing page

Frontispiece: Castle Rock from Quarry Road	1
Plate 1: View towards Whangapoua Harbour	20
Plate 2: A riparian strip along the Waiau river	36
Plate 3: The effects of recent clear felling	38
Plate 4: Action on skid site 33/2	41
Plate 5: Anchorage of cables from the top of the tower	44
Plate 6: Catchment constraints at work in the Waingaroa valley	54
Plate 7: A cutting on a spur road in compartment 33	59
Plate 8: An adjacency constraint in action	65
Plate 9: Detail of rejuvenating forest three years after clear fell	82
Plate 10: Detail of a cable anchorage	117
Plate 11: An adjacency constraint in the Opitonui valley	142
Plate 12: Another anchor point, another adjacency constraint	161
Plate 13: Stability problems at the edge of a skid site	169
Plate 14: Integration of harvest planning and skid site activity	207

9

List of Figures

Figure 1: Constants used to represent time	47
Figure 2: Location of the strategic constraints	52
Figure 3: Typical constraints to conserve strata area	52
Figure 4: Non-declining yield constraints	53
Figure 5: Some examples of catchment constraints	54
Figure 6: Minimum total yield constraints	55
Figure 7: Plan constraints	57
Figure 8: Detail of typical road constraints	59
Figure 9: Examples of road sequential constraints	62
Figure 10: Detail of block constraints	65
Figure 11: Two pairs of cable-logging adjacency constraints	68
Figure 12: Aggregation of cable-logging adjacency constraints	71
Figure 13: Some green-up adjacency constraints	72
Figure 14: Aggregation of green-up adjacency constraints	75
Figure 15: Initial constraints due to cable-logging adjacency	77
Figure 16: Some initial constraints due to green-up adjacency	78
Figure 17: The physical interpretation of the overlap variables	80
Figure 18: Detail of linking constraints	80
Figure 19: Examples of overlap constraints	81
Figure 20: Residual linking constraints	82
Figure 21: A simplified matrix representation of the FHP model	84
Figure 22: A fragment of the FHP model as a study of a simple LP	88
Figure 23: An extra column has been added to Figure 22	89

page

	page
Figure 24: A second column added to Figure 22	90
Figure 25: An optimal column added to Figure 22	90
Figure 26: The entering column g_{114} added to the RLP matrix from Figure 22	104
Figure 27: Figure 7 has been adjusted to match Equation $(4.2')$	109
Figure 28: The complete RLP after the incorporation of all columns from Table 5	112
Figure 29: A binary tree of the start of a typical variable branching strategy for FHP.	119
Figure 30: The start of a binary tree for a constraint branching strategy for FHP	122
Figure 31: The difference in set A between a plan and a block constraint branch	127
Figure 32: Part of the FHP model (a) before and (b) after inserting the extra columns	146
Figure 33: A case of flagrant infeasibility caused by initial constraints	148
Figure 34: A new column added to Figure 33 removes the blatant infeasibility	149
Figure 35: The column generation process	151
Figure 36: The branch and bound process	155
Figure 37: A graph showing typical adjacency relationships between blocks	161

List of Tables

	page
Table 1: Numerical data used in Figure 21	83
Table 2: The sensitivity report from the LP solutionof the example in Figure 22	99
Table 3: Modified reduced costs and reduced cost corrections from Figure 22	103
Table 4: Modified reduced costs and reduced cost correctionsfrom Figure 22 during iteration 2	105
Table 5: A summary outline of the column generation processapplied to the example in Figure 22	107
Table 6: Modified reduced costs and reduced cost corrections from Figure 22 during iteration 3	108
Table 7: Various policies for selection of entering columns in column generation	172
Table 8: A comparison of two simple depth-first methods	175
Table 9: A study of the consequences of giving priority to the earlier years	179
Table 10: Decision functions with few non-zero harvest plan variables given priority	180
Table 11: Branch selection based on croptype analysis	181
Table 12: Branch selection based on RLP croptype need	182
Table 13: A branch selection strategy giving preference to later years	183
Table 14: Branch selection based on the area of the block concerned	183
Table 15: Use of single year block branches	185
Table 16: Various strategies for backtracking with croptype branch selection	186
Table 17: Croptype branch selection with reduced objective tolerance	186
Table 18: The trials in Table 11 are repeated with more efficient backtracking	189
Table 19: Croptype branch selection with various lengths of tactical harvest	190

	page
Table 20: Cable logging adjacency trials	191
Table 21: Green-up adjacency trials	192
Table 22: The result of imposing penalties on the overlap variables	193
Table 23: Comparative data on the effects of using aggregated adjacency constraints	194
Table 24: Green-up adjacency trial with 48 clicks each of 3 blocks	195
Table 25: Cable logging adjacency trials with only integer-feasible columns permitted	195
Table 26: A comparison of two types of cable logging adjacency trials	196
Table 27: Frequency of calls to column generation	197
Table 28: Values of variables in the FHP program pertaining to the 1995/6 cutting plan	200
Table 29: The cutting plan for 1995/96as output from the FHP programme	201
Table 30: The cutting plan for 1995/96 submitted by Ernslaw One	202
Table 31: The road construction output for years 1995 to 2001	204
Table C.1: The strategic plan up to 2003 submitted by Ernslaw One	234
Table C.2: The cutting plan for 1995/96	235
Table C.3: The cutting plan for 1996/97 submitted by Ernslaw One	236
Table C.4: The cutting plan for 1995/96 as output from the FHP programme	237
Table C.5: The cutting plan for 1996/97 as output from the FHP programme	238
Table C.6: The cutting plan for 1997/98 as output from the FHP programme	239
Table C.7: The cutting plan for 1998/99 as output from the FHP programme	240
Table C.8: The cutting plan for 1999/2000 as output from the FHP programme	241
Table C.9: Residue of output for incomplete years of tactical harvest	242

Table E.1: An example of an extract from a data file, dated 1 April, 1995251

	page
Table E.2: An excerpt from the road sequential input file	252
Table E.3: An excerpt from the block file	252
Table E.4: An excerpt from the adjacency data file	253

Abbreviations

CPLEX: This is a software package written to assist researchers who need to solve LPs and other related problems. The letter C has been chosen to indicate that this software is written in the C computer language.

FHP: Forest harvesting problem.

FOLPI: Forestry-Oriented Linear Programming Interpreter. This is a software package produced by FRI that makes a strategic harvest plan for a forest. It requires the assistance of an LP solving device such as CPLEX.

FORPLAN: A software package widely used in North America to analyse the strategic plan. It is purely an LP with no tactical components at all.

FRI: Forest Research Institute, Rotorua, New Zealand.

HIP: A heuristic integer planning model.

IP: A linear programme in which all the variables are binary integers.

IRPM: The integrated resources planning model, (IRPM), developed by Kirby [29], and used as the basis for some later models such as that by Weintraub et al. [62].

K11.1, K7.4, K3.7: Timber in these grades will be milled as rough sawn timber and used for framing and similar purposes. The revenue obtained for this is quite low.

LP: A linear programme.

MCIP: A Monte Carlo integer programming model.

MIP: A linear programme in which some of the variables are binary integers.

P1P2: The premium grade of timber that will fetch the top prices. This comes from correctly pruned trees and hence is largely free of knots.

PC: A personal computer, usually of the IBM-compatable type.

PNW: Present net worth. Future revenues and costs are discounted and summed.

RFHP: A RLP of a MIP, representing a FHP.

RLP: A relaxed LP. That is an MIP in which each binary variable is replaced by a real variable defined on the interval [0,1].

RMA: The Resource Management Act, a piece of New Zealand legislation passed in 1991, which details the necessary process of land users to obtain consent for all manner of activities.

S1, S2: Two grades of fine logs suitable for milling as dressed timber.

SNAP II: Scheduling and Network Analysis Program. This is a widely used software package of tactical planning including roading. It does not include any strategic planning. It was developed by J. Sessions and J.B. Sessions, in Oregon State University. It is heuristic in the Monte-Carlo tradition, providing a very fast feasible tactical plan with a discernible minimisation of optimisation.