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RBVISED ABSTRACT

(For elecffonic record only)

In this thesis, machinability of particle-reinforced aluminium metal matrix composites, Comral-

85 and DUMLCAN*, hu, been studied. Continuous turning of round composite bars, using

polycrystalline diamond (PCD) inserts has been selected as the test method. The test conditions

included cutting speeds varying from 75 to 700m/min and feed rates from 0.1 to 0.4 mm/rev with

constant depth of cut of 0.5 mm.

The main wear mechanism of machining these Al MMC materials is abrasion by the reinforcing

particles and the primary type of tool wear is flank wear. Linear regression techniques has been

used to derive Taylor equations to describe the tool performance. The results show that the time

required to reach the tool wear limit decreases with increased speed and feed rate. However, the

volume of material removed before reaching the wear limit actually increases with the higher

feed rate. This apparent anomaly has been reconciled in a modified Taylor equation.

As for surface finish, the feed rate is found to be a more dominant factor than cutting speed. The

higher the feed rate is, the worse the surface finish becomes. The surface finish is found to

improve with tool wear at early stage because of the increase of tool nose radius; after that it

starts deteriorating as a consequence of excessive tool wear.

The change of feed rate is also more influential on the variation of machining forces than that of

cutting speed. Using the same regression techniques, the general machining force-tool wear

equations are derived. The results show that the equation derived from the feed force is better

suited to monitor tool wear than that derived from the cutting force. The general relationship

between tool wear and power consumption has also been established.

The chip forming mechanism while machining DURALCA fM MMC has also been srudied by

using an explosive charged "quick-stop" device. The primary chip forming mechanism involves

the initiation of cracks due to the high shear stress, followed by the decohesion of particles and

matrix material within the chip due to the stress concentration on the edge of the particles. The

crack propagation is enhanced through the microvoid coalescence within matrix material. The

fracture and the sliding of material then follow to form semi-continuous "saw-toothed" chips.



ABSTRACT

With the increasing usage of metal matrix composites (MMCs) in various applications such as

aerospace, automotive and sports related industries. the machining of such materials has become

a very important subject to study. Owing to the addition of reinforcing materials which are

normally harder and stiffer, the machining becomes significantly more difficult than that of
conventional monolithic materials. Among many types of MMCs, the most popular types are

aluminium alloys reinforced with ceramic particles since they cost less but provide favourable

properties with only a minimum increase in density over the base alloy. These properties

include high specific strength/stiffness, wear and corrosion resistance and fatigue resistance, etc..

In this thesis' machinability of particle-reinforced aluminium metat marrix composites has been

studied.

Continuous turning of round composite bars, made from Comral-85 and DUMLCANru, using

polycrystalline diamond (PCD) inserts, with average diamond size of 25-pm, has been selected

as the test method. The test conditions included cutting speeds varying from 75 to 700m/min

and feed rates from 0.1 to 0.4 mm/rev while the depth of cut was kept constant at 0.5 mm. The

four machinability related aspects, namely tool wear. surface finish, machining forces and power

consumption. are constantly monitored during the machining process. The nature of chips

formed is also recorded for further analysis.

It has been confirmed that the main wear mechanism of machining particulate reinforced

aluminium MMC materials is abrasion by the reinforcing particles and the primary type of tool
wear is flank wear. The performance of the tools is, therefore, based on the development of
flank wear, which has been monitored by optical and scanning electron microscopy. The tool

life criterion for machining Comral-85 is 0.3-mm flank wear, whereas for machining of

DUMLCANt" .otposite, the tool life criterion is up to flank wear of 0.25 mm. The tool life
data have been analysed using linear regression techniques and a traditional Taylor model

involving cutting speed only has been established for this material. A general form of the Taylor
equation has also been developed by regression methods to describe the tool performance. The

results show that the time required to reach the tool wear limit decreases with increased speed

and feed rate. However, the volume of material removed before reaching the wear limit actually

ill



increases with the higher feed rate. This apparent anomaly has been reconciled by rewriting the

Taylor equation in a modified form.

In the aspect of surface finish. it has been found that the feed rate is a more dominant factor than

cutting speed. The higher the feed rate is. the worse the surface finish becomes. Therefore, in

the selection of machining parameters. after mking into account of the surface finish allowed, the

feed rate should be as high as possible to achieve the maximum material volume removal. On

the other hand, the change of surface roughness while machining at a constant speed is mainly

due to the progress of tool wear. The surface finish is found to improve with tool wear before

the flank wear reaches around 0.15 mm because of the rounding of tool nose radius; after that it
starts deteriorating as a consequence of excessive tool wear.

Similar to surface finish, the change of feed rate is more influential on the variation of machining

forces than that of cutting speed. Nevertheless, the change of cutting speed has a resembling

effect on machining forces as that on the growth of tool wear. Consequently, the recorded

machining force data against tool wear have also been analysed using the same regression

techniques to derive the general machining force-tool wear equations. The derived tool wear-

machining force equation can be used to indirectly monitor the development of tool wear during

machining operation for deciding the tool life. The results show that the equation derived from

the feed force data is better suited to monitor tool wear than the one derived from the cutting

force.

As the result of the direct relationship between cutting force and power consumption, the power

consumption data have also been regressively analysed. The general relationship between tool

wear and power consumption has been established. Even though this relationship is a more

conservative approach, it can be the other way of indirectly monitoring the tool wear growth

with sufficient accuracv.

Lastly, the chip forming mechanism while machining DUMLCANtM co-posite material has

also been studied by using an explosive charged "quick-stop" device. During the chip breaking

process. the primary chip forming mechanism involves the initiation of cracks from the outer

free surface of the chip due to the high shear sress. Meanwhile, some small voids are formed by

the decohesion of particles and matrix material within the chip due to the stress concentration on

the edge of the particles. The crack propagation is enhanced through the microvoid coalescence

iv
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