Economics Department

Economics Working Papers

The University of Auckland Year 1998

New Unit Root Asymptotics in the
Presence of Deterministic Trends

Peter Phillips
University of Auckland, pcb.phillups@auckland.ac.nz

This paper is posted at ResearchSpace@Auckland.
http://researchspace.auckland.ac.nz/ecwp/184



NEW UNIT ROOT ASYMPTOTICS IN THE
PRESENCE OF DETERMINISTIC TRENDS'

Peter C. B. Phillips
Cowles Foundation for Research in Economics
Yale University
&
The University of Auckland

December 1998

! This paper was written while the author was visiting the University of Auckland in July and
August of 1998 and living on Waiheke Island. Some of the results were reported by the author in the
course of a more general lecture on spurious regressions at the EC® Conference in Amsterdam in
December, 1997. The author thanks the Department of Economics at the University of Auckland for
its hospitality and the NSF for Research support under Grant No. SBR 94-22922. Computations were
carried out in Gauss and the paper was typed in SW2.5.



Abstract

Recent work by the author (1998) has shown that stochastic trends can be validly
represented in empirical regressions in terms of deterministic functions of time. These
representations offer an alternative mechanism for modelling stochastic trends. It is
shown here that the alternate representations affect the asymptotics of all commonly
used unit root tests in the presence of trends. In particular, the critical values of unit
root tests diverge when the number of deterministic regressors K — oo as the sample
size n — oo. In such circumstances, use of conventional critical values based on fixed
K will lead to rejection of the null of a unit root in favour of trend stationarity with
probability one when the null is true. The results can be interpreted as saying that
serious attempts to model trends by deterministic functions will always be successful
and that these functions can validly represent stochastically trending data even when
lagged variables are present in the regressor set, thereby undermining conventional
unit root tests.

Keywords: Deterministic trends; Divergent critical values; Large K asymptotics; Test
failure; Unit root distributions.

JEL Classification: C22



1. Introduction

Since Nelson and Plosser (1982) there has been a vast amount of empirical work con-
cerned with the issue of testing difference stationarity against trend stationarity. In
constructing such tests it is now common empirical practice to work with a general
maintained hypothesis embodying alternative specifications to a unit root model that
include a variety of deterministic trends and trend break functions. The latter offer
some interesting alternative explanations of data nonstationarity in terms of struc-
tural shifts. As is now well understood, the presence of such deterministic functions
in the regression affects the asymptotic distribution of all the usual statistical tests
for a unit root and does so under both null and local alternative hypotheses. This
means, of course, that the critical values of the tests change with the specification of
the deterministic trend functions, necessitating the use of different statistical tables
according to the precise specification of the fitted model. Figure 1 shows the asymp-
totic distributions of the coefficient based test in a regression with polynomial trends
of degrees p =0, 1,2,5. Clearly, there is substantial sensitivity in the distribution as
the trend degree changes.
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In a recent paper, the author (1998) has shown that deterministic trend specifi-
cations are not necessarily alternatives to a unit root model at all. More precisely,
unit root processes have limiting forms in terms of Brownian motion and continuous

'Here W is standard Brownian motion and W is the Lo projection residual of W on X.



stochastic processes such as Brownian motion have valid mathematical representa-
tions entirely in terms of deterministic functions. It is therefore possible to model
a unit root process in the limit with an R? of unity by regression on deterministic
trends. This result would appear to have certain important implications for unit root
modelling and testing. In particular, it indicates that cne could mistakenly ‘reject’ a
unit root model in favour of a trend ‘alternative’ when in fact the alternative model
is nothing other than an alternate representation of the unit root process itself.

The purpose of the present paper is to make the heuristic argument in the last
paragraph precise. The paper is organized as follows. Section 2 gives the background
needed for the present development. Section 3 gives some preliminary theory and a
main result for unit root asymptotics when the number of deterministic regressors
(K) tends to infinity. Section 4 shows how to derive joint limit theory for a unit root
autoregression when both the sample size (n) and K tend to infinity under the side
condition that % — (. Section 5 concludes, outlines some extensions, and discusses
some of the implications of the theory for applied work. Proofs are collected together
in Section 6 and notational conventions are summarised in Section 7.

2. Background Asymptotics

The development in this paper will concentrate on a unit root time series y; = Z4u,,
whose increments u; form a stationary time series with zero mean, finite absolute
moments to order p > 2, and long run variance ¢® > 0, and which satisfies the
functional law

Ynl By = BM(0?), (1)

vn
for which primitive conditions are well known (e.g., see Phillips and Solo, 1992). It is
convenient also to use the Hungarian strong approximation (e.g. Csorgo and Horvéth,
1993) to ¥, according to which we can construct a expanded probability space with
a Brownian motion B (-) for which

sup |yx — B(k)| = 04.5.(n'/?),
0<k<n
or

sup
0<k<n

% - (%)‘ = 04.5.(1)- (2)

This gives the direct representation

-1 _ [nr]
TT:_B(7) + Oa.s.(l)’ (3)

for t—1)/n<r<t/n, t>1.
Phillips (1998) studied the asymptotic propertics of regressions of y; on determin-
istic regressors of the type

K
-~ t —~
v=3beon(D) i (4
k=1
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or, equivalently {with @z = n~1/ 2&),
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K
¥ S g by
v ;akﬁok(n)‘}‘ﬁ (5)

when the regressors ;. are the eigenfunctions of the covariance kernel, o%r A s, of the
Brownian motion B. These functions have the form

r(r) = V2sin [(k — 1/2) 7] (6)

and constitute a complete orthonormal system in L2[0,1]. When combined with the

eigenvalues
4

~ 2k 1)2r2

of the covariance kernel, these functions deliver an orthonormal representation of the
Brownian motion B, viz.

Ak

— sin [(k — 1/2) 77]
where the components £, are independently and indentically distributed (iid) as
N(0,0?%). This series representation of B(r) is convergent almost surely and uni-
formly in r € [0,1]. The reader is referred e.g. to Shorack and Wellner (1986) for
more details on orthonormal representations of stochastic processes and to Phillips
(1998) for further discussion of (7) and related representations.

Let Gx = (d@x) be the coefficients and @g, = (v (£)) be the K—vector of re-
gressors in (5) . Let cx € R be any vector with c.cx = 1, te ax be the usual least
squares regression t-ratio for the linear combination of coefficients cyar, and let R?
be the regression coeflicient of determination. The following two results largely come
from Phillips (1998) and give the asymptotic properties of these statistics when K
is fixed and when K — oo. Lemma 2.1 extends some of the early work on spurious
regressions contained in Phillips (1986) and Durlauf and Phillips (1988). Lemma 2.2
deals with complete limit representations and shows that the empirical regression (5)
succeeds in reproducing the entire Ly orthonormal representation (i.e., (7) above) of
B(:) when K — o0 as n — oo provided that % — 0.

2.1 Lemma For fized K, as n — oo we have:
-~ r1 d
(2) ik = dy [ A @KB] 2 N0, Axex),

(b) n 230, 0 = 101 B
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(d) R®=1- [y B2, / [y B2,

-1
where B,, (1) = B(:)— (fol Br,o'K) (fol cngo’K) g (-) is the La -projection residual
of B on gy, Ax = diag(\, ..., k), and A is the eigenvalue of the covariance
function o2r A s corresponding to ;.

2.2 Lemma As K — oo, cicAxck tends to a positive constant a? = ¢ Ac, where
¢ = (ck), A = diag(A1, Az, ...) end dc = 1. Moreover, if K — oo and K/n — 0 as
n — 00, we have:

(a) 7' Y R = Ik + O (5);
(b} ckdx = N(0,02);

() n™2 3%, 3 0,

(d) n~V/ 2o oy diverges,

(e) RZ5 1.

2.3 Remarks

(a) In Lemma 2.2, the condition % — 0 ensures that the matrix n=1 37 0rdky
is positive definite and, as n — oo, it differs from the matrix

1
/0 o (5) pxc () ds = I,

where ¢ () = (4 (5)) by a term of O (£) = 0(1) as n — oc.

(b) As discussed in Phillips (1998), the divergence of the t—ratio b ax confirms
that the coefficients of the deterministic regressors will inevitably be deemed
significant as n — oo. This divergence also applies, but at a slightly reduced
rate, when robust standard errors are used in the construction of the t— ratio

(Phillips, 1998).

(c) Since R? % 1, the empirical regression successfully reproduces the full ortho-
normal representation of the limit Brownian motion corresponding to the de-
pendent variable y;. This outcome also applies to regressions on linearly inde-
pendent deterministic functions other than the orthonormal set {¢,}. Thus,
modelling of stochastic trends by deterministic functions will inevitably be suc-
cessful in large samples of data in the sense that the alternate representations
in terms of these functions will be confirmed in statistical testing.



3. Main Results

This section extends the analysis of regressions of the form (5) by the inclusion of a
lagged dependent variable in the regression. The model conforms to the usual setting
for testing the presence of a unit root against trend stationarity. Thus, we consider
the typical autoregression with trend equation

K
-~ - t ~~
Yt = pYi-1 + Zbk‘{’k(g) + UK, (8)
k=1

or such an equation augmented with lagged differences in the case of augmented
Dickey Fuller (ADF) tests. Our focus of interst will be the limit behavior of coefficient
based and t-ratio based unit root tests. At a substantial level of generality regarding
the increments wu, semiparametric Z tests (Phillips, 1987; Phillips and Perron, 1988;
and Ouliaris, Park and Phillips, 1988) and ADF tests (Said and Dickey, 1984; Xiao
and Phillips, 1998) have the same limit distributions. In particular, the coefficient
tests behave as

1
W, dW
Z, ADF, = M, (9)
P P fl W2
0 PK
and the t-ratio tests as )
W, dW
Z,,ADF, = M (10)

(wa)*

where W, (1) = W () - (fol th}() (fol (chp}{) ' @i () is the Ly -projection resid-
ual of W on ¢ and where W is standard Brownian motion.

The limit distribution (9) is shown in Fig. 2 for a selection of values of K. The
situation is analogous to that of Fig. 1, which shows a corresponding selection for the
case where @ is a polynomial of degree of K. In both cases, the limit distributions are
highly sensitive to the inclusion of additional deterministic regressors. Interestingly,
the distributions shown in Figs. 1 and 2 are very similar even though the deterministic
regressors are quite different.

Our purpose now is to find the limit form of these distributions as K — oo. Our
analysis will first use sequential limit theory, in which we consider the limit behavior
of (9) and (10) as K — oco. This is equivalent to taking limits as n — oo, followed
by K — oo, which we denote as (n, K — 00),,, - Subsequently, we will show that
the same results apply under the more general framework of joint limits whereby
n, K — oo simultaneously, which we denote as (n, K — o0), under the condition
that % — 0. A general approach to multi-index asymptotics has been developed
recently in Phillips and Moon (1999) which gives some useful background theory. In
particular, this reference provides some conditions under which sequential and joint
limit behavior is the same. Unfortunately, the theory in Phillips and Moon (1999)
cannot be applied directly here because the multi-indexed random quantities are not
constituted from panels with iid cross section observations, as they are in that paper.
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Section 4 therefore provides some alternative limit theory that applies in the present
case where the data is not multidimensional but involves two indexes which tend to
infinity as (n, K} — oc.

The following two lemmas characterize the limit behavior, as K — oo, of the
Brownian functionals that appear in the numerator and denominator of the unit root
distributions (9) and (10).

3.1 Lemma As K -
(2) 161 Wo dW —p _%5
(b) Kf()l WVZ:K —p ;12-’

3.2 Lemmma As K — o

(2) VK (fﬂl Wi dW + %) = +N(0,1);

() VE (K W2, ~2) = 5N (0,3).



Joint convergence of (a) and (b) also holds and the limit distributions are independent.

The limit behavior of the unit root test statistics now follows directly and is given
in the next result.

3.3 Theorem As K — oo

(a)

(b)

()

1 1
foW;/KQdW ~ _11'22}(’ Jo Ww;(d“; ~ _w\él_{;
1
0 ¥K (fo Wy )?
Wo o dW

. (JTL ) = N (072 + bnt);

Jo WogdW | o a2
(J_K_r(f;ng)? + 2\/17) =N (0,1+ 24).

3.4 Discussion

(a)

Both the coeflicient and t-ratio forms of the unit root limit distributions diverge
to —oo as K — oo. The critical values of these distributions that are used in
statistical tests of unit root distributions also diverge. Thus, in test situations
which are better approximated by K — oo as n — oo, we can expect that
conventional unit root tests relying on fixed K asymptotics will inevitably reject
the null hypothesis in favour of trend stationarity. Such situations may be
relevant in cases where a serious attempt is being made to model a nonstationary
series using deterministic regressors. Thus, while the conventional asymptotics
that rely on unit root distributions with detrended Brownian motion functionals
like [} W, dW/ J; W2, are formally correct for the given value of K in such a
regression, they may be considered less relevant than the large K asymptotics in
view of the serious effort being put into modeling the nonstationarity in terms
of deterministic functions. In such situations, the large K asymptotics indicate
that we can expect to reject a stochastic trend in favor of the trend stationary
alternative.

Apparently, the limiting forms of both the coefficient and t-ratio forms of the
unit root distributions are normal as K — oo when appropriately centred and
scaled. The coefficient limit theory shown in part (b) of theorem 3.3 indicates
that scaling by \/—% as well as recentering is required to achieve a well defined
limit distribution. Part (c) indicates that only recentering of the t-ratio limit
theory is required. Thus, the t-ratio test statistic is appropriately scaled, but
diverges to minus infinity as K — co.
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(c) Both the limit normal distributions for the coefficient and t-ratio cases are
corroborated in the numerical results shown in Figs. 2 and 3. Each of these
figures shows the new limiting (large K asymptotic) normal approximation that
applies for X' = 5 The approximations are surprisingly good for such a small
value of K.

4. Joint Limit Theory as (n, K — c0)

We now explore the conditions under which the main results above apply when
K — oo as n — co. Qur approach is to show that the sequential limit results as
(n, K — 00),,, that are used in the earlier derivations hold also for joint limits as
(n, K — o0) provided that the condition % — 0 holds. We will confine our attention
here to extending lemma 3.1 and the divergence result given in theorem 3.3(a).
We start by noting (see Phillips and Moon, 1999) that a multi-indexed sequence
Xkn converges in probability jointly to X, written Xx,, —p X as (n, K — 00), if
lim P{||Xknr—X{|>e}=0 Ve>0. (11)

n,K—o0
To establish (11) it is sufficient to show that as (n, K — 00)

E||Xgn—X||* = 0.

8



Using this approach we can establish the joint limits in probability for the component
statistics of unit root tests arising from the regression (8). The two statistics of
primary interest are: (i) the residual moment matrix

Y 1Qky-1, Qr=1I1-%k (‘P'K‘I‘K)_l K>

where
(pr = (CPK].! seny ‘PKn) ]

and @y, = (i (£)) as before; and (ii) the sample covariance ¥, Qxu.

We will look at the leading case where u; is 4idV (0, 02) so that we need not
have to be concerned with serial correlation corrections in the analysis that follows.
The normality assumption simplifies the derivation but is not essential and could be
replaced by a fourth moment condition. The results for the more general case can be
expected to follow in a similar way, albeit with more complex derivations that allow
for the form of the parametric or nonparametric serial correlation corrections used
in the test statistics. Also, in lemma 4.1 below we use the rate condition I—f; —Qin
proving part (¢) of the lemma. This rate places a stronger restriction on the allowable
expansion path for K than the requirement % — 0 that is used elsewhere in the paper
and is mainly the result of the line of proof adopted for part (c). It seems likely that
it could be relaxed to the weaker condition if an alternative embedding argument was
used in deriving the limit theory instead.

The limiting forms of the main statistics are given in the following result.

4.1 Lemma As (n,K — oo) with % — 0, we have:
(8) E(By1Qxy-1) =5 +0 (X +%);
) B (i) =5 +0 (5 + 4)
As (n, K — o00) with -I;(:- — 0, we have:
(©) %y ,1Qxy-1—p T
2

(d) 2vL1Qku—p —F.

The joint limit behavior of the unit root test statistics now follows directly and
we give the analogue of theorem 3.3 (a).

4.2 Theorem If (n,K — o0) and K74 — 0, then

2
Z, ADE, ~ —"—QK—, Z,, ADF, ~ _wK



4.3 Discussion  This limit theory is obviously very different from that of the

conventional Z and ADF asymptotics for fixed K. If the conditions of theorem 4.2
are relevant to the modeling approach, then the use of conventional critical values
from (9) and (10) for fixed K will lead to the false rejection of a unit root.

5. Conclusions

Earlier work by the author (1998) showed that serious attempts to model a stochas-
tic trend in terms of deterministic functions will always be successful, and is indeed
capable of producing an R? of unity in the limit. The present contribution shows
that this outcome remains true even when a lagged dependent variable is present
in the regression. In consequence, deterministic functions and lagged variables are
seen to jointly compete for the explanation of a stochastic trend in a time series.
In such a competition, the results confirm that the deterministic functions will al-
ways be successful, even when the correct model for the trend involves a unit root
autoregression.

One way of interpreting these asymptotic results is as follows. The more serious
is the attempt to model a stochastic trend by deterministic functions then the more
successful it will be, leading ultimately to the rejection of alternative explanations of
the trend like those provided by unit root processes. In interpreting the results in this
way, it is important to recognise that careful design of a deterministic trend function,
for any given realization of a time series, is certain to lead to a good deal of the low
frequency variation in the series being explained. Examples of such careful determin-
istic trend modeling abound in recent empirical work, especially in the application
of models with breaking trends. Such careful model design is, in practice, essentially
equivalent to the choice of a large number, K, of agnostic orthonormal regressors
like ¢, in performing regressions like those in (8). As such, one may expect that
regression asymptotics like those given in theorem 3.3 for multi-index asymptotics
with (n, K — oo) may well be more relevant to the practical implementation of unit
root tests than conventional asymptotics for n — oo with fixed K. It would be useful
to perform some simulations to investigate these issues further in finite samples of
data.

The fact that deterministic trend regressors and lagged regressors can both be
used to model unit root processes raises some important modelling issues that are
not discussed here. Two obvious issues are parsimony and forecasting. From both
these perspectives, there may be good reasons for prefering the simplicity of lagged
variable regressors to the complexity of deterministic trend/trend break representa-
tions. Criteria for choosing between such representations for trending time series have
been explored recently in Phillips and Ploberger (1996) and Phillips (1996). A recent
analysis of how trending data affects the capacity to reproduce the properties of the
optimal predictor is given in Ploberger and Phillips (1998,1999). It is shown there
that increasing the dimension of the parameter space carries a price in terms of the
quantitative bound of how close we can come to the ‘true’ data generating process
and, in consequence, how close we can reproduce the properties of the optimal pre-

10



dictor. Tt is further shown that this price goes up when we have trending data and
when we use trending regressors. These considerations should play an important role
in the choice between deterministic trend regressors and lagged variables in modeling
trending data.

6. Technical Appendix and Proofs
6.1 Proof of Lemma 2.1 See Phillips (1998), theorem 3.1.

6.2 Proof of Lemma 2.2 Let ®x; = @y, ¢), and note that gy = $x (L) is a
continuously differentiable matrix function with bounded derivatives of all orders in
view of (6). Write, for =2 <s < L,

Br = Ty (%) =Bk (5) + 0 (s%) (% - s)
= (s prc () + B (57) (g - ) ,

with s* on the line segment between % and s for each component of ®x. Then, since
K < n, we have

D ITT D S A OO
=1 t=1""%
n L3
n t
+Zﬁ_1 @g) (s*) (E - .s) ds
t=17 %
l )
= [ ex@extyds
n t
n t
+Z/ @2) (s%) (— —s) ds
t=1 L:—l n
— - " (1) =+ E _
= IK+;/%(I>K (s*) (n s)ds.

The elements of @%) are uniformly bounded above, so that

sup sup  sup
1<4,J<K 1t<n ge[t=] 2
n n

a4, (s)' <M

for some finite M > O that is independent of K. Also [ —s| < L uniformly for
s € [&=2,1] . Using the matrix norm ||A4|| = max; ZJ 1 las;|, we have
oy [ W (5 L
;/ﬂ@K(s)(n s)ds < Z/ @} ‘n s|ds
< --—.M/ ds:O(—) =o(l).
n 0 n

1



Part (a) follows directly. Parts (b), (c), (d) and (e) are proved in Phillips (1998)
theorem 3.3. B

6.2 Proof of Lemmas 3.1 and 3.2 It is simplest to derive these two results to-
gether. To prove Part (a), we obtain an approximate representation of the stochastic
integral fol Wy, dW which reveals its limiting form and shows that as K — oo

E (/01 Ww{dW) = —%, (12)

1
Var (f W‘pKdW) — 0, (13)
0

giving the stated result. Start by writing

/Dlwwde = /OinW—(/OiWW’K) (/{ww’x)al(/olwdw)
_ /OWdW—(/O ch’K) (/0 deW), (14)

whose expectation is
1 ¢ rl
() (] owar)] @
0 0

To evaluate (15), use the orthonormal representation (7) which we write in the form

and

W (r) = ok (r) ALEx + o1 (P AZEL, (16)

where €, &, are vectors of independent standard normal variates, Ax = diag (A1, ..., Ak) ,

AL =diag(Ak11, ), P = (P15 k) and ¢ = (P11, .-) . Then, by the Ly or-
thogonality of ¢y and ¢, we have

1 1
| oW = e ()
and since g is continuous we can apply integration by parts to fol @ dW giving
1 .
| et =exywa) - [ ow. (18)
It follows that (15) is
1 1
5 [eral (e ww ) - [ ol )]
AT 1 AT e e rY Az
= -F [giehbox 0 €kdhor )] + B [eieak ([ ol () enc ) At

12




= —tr [Axer (1) ox (1)) +tr [ (/ (1) e (r))]
= —¢x (1) Axpk (1) +/1"0 yA "DK) (r)-
0
As K — o0, (19) tends to
1
~o (1) Ap (1) + [0 o (r) A ()

o0 o0 1
= - Z)\k‘ﬂk *+ Z)‘k /0 i (1) ‘Pg} (r).
k=1 k=1

Now
1
[ o0 = [t~ [ oo,
so that . o . , ) . ,
| o =5 [o 0 - 0 0] = o 07 =1,
because

or (1) = (\/ﬁsin (k — %) 77)2 =12,

o0 [e’s] e 0]

([ rew) - Erefren
0

for all k. Hence,

since

(20)

- [B (extic) Mo W ow (/45 +or [B (i) ak ([ o (o (1) 2]

(19)



which gives the result stated above in (12) .
To prove (13), we start by writing (14) in the following form using (17) and (18)

1
| Woraw
0

%(W(1)2—1)—(flwga',<) (/OlngdW') |
1(W(1)2—1 (Km)( 1) W (1) / goﬁ)w)

L wap-1)- (Km)(w D g (1 Akéic + o (D (1) abe, )

1 1 1
e nd ( /0 D (1) e (1) ) Abse + AL ( / w%?(r)m(r)‘)fxm.

Observe that for any K — vector b

b([ AP () excr) ) 0

so that

Il

o3 ([ ok er+ [ onteld oo
= #5 (oxOex - [ ox R 07+ [ox @l ¢))b

1
= §b’90K (1) e (1),

€Ak ( / oD (r )sox(r)’) Abére = Sk bon (0 ox (1) Ak,

and thus

1
[
]

Note that

2 (W2 1) = S€hehfoon (D ox (1) Afr - Eichirox (Do, (1) Ae,
send ([ W 0o 07)ake,

% (W (1?2 - 1) — 55’;«\%{90;( (1) x (1) Adey

ek ([ oo (r)') A

—%4—5}{!\,%(90,{( 1oy (1Y AZE, + flALm( DL (1Y AZE,

ek ([ oo 0 ) Al (21)

Z My (1€ = N (0,0 (1Y Are. (1)),

k=K+1

14



and

= 2
ey () ALp (1 Z Mg (D2 = 3 TR

k=K +1 :K+I( _%) w2
It follows that

1 1 1 1 1 1
[ Weeaw =3+ ik ([ o 0000 ) afe 4 (5). @2
Hence,

Var ([ Woeaw ) =ie [ ([ o 0o 0 ) 2 ([ 00 062 7)o (1)

Now introduce the standard Brownian motion V' defined in terms of its orthonormal
representation as

V(r)= sax (M +e () A3 ing,

where 7/, = (ng_,...) is a vector of iid standard normal variates, independent of £
and £ . The process V (r) is independent of £, . Hence, in view of the continuity of
the elements of ¢ (r), we may write

1 by 1 1 1
g Al ( [ 2w (r)') Mo, = [ave, () A&+ o)
N (0,€1A1€1) [L+0p (1),

as K — o0o. Next, observe that

GALE = Y Mt

k=K+1
and
= 1
E(lAil1) = Z M= Y
k=K +1 k=K +1 (k‘ i) l
As K — oo,
K dr K 1
KE(E A ~ — - —, 23
(EL LSJ_) K41 (x_‘ 12_)2 2 (K—l— %) 2 ( )
and
had 1
Var (€1 A16,) = ) A2=O(F)
k=K+1
so that .
K€\ ALEL —p 5. (24)



Hence,

1 1 1 1
VR AL ( JIem (r)')Aisl ~ N(0,KEALEN [ +op(1)] (25)

1

We deduce that
[/ W, dW + ] =>%N(0,1),

1
1
E (/0 wadw) - =5

as required for Part (a) of lemmas 3.1 and 3.2.
For Part (b) of Lemma 3.1, observe that

and

1
/O W2 =€\ ALE),

and, thus, from (24)
1
R

as required. Next, consider

! 1 1
2 —
K[ Who-o = Kehug -

o0 o0 1

— 2

= K 3 ME-D+E Y M-
k=K+1 k=K+1

= K Z )\k —1 +O( )
k=K+1

since

> 1 K ad 1 oo dr
K ot = B __/ aE
Z e m? (k;& k“%)z JKE+1 (I_%)Q)

k=K+1

(26)



It follows that

! 1 3 1
\/I_((K/O ng_ﬁ) - szgl,\k(gﬁ_l)+op(ﬁ)

- ﬂzLK 3 mT)_?(gz—l)Jrop(%)(m

Now the variates

K2
W (& —1)
2

are independent with uniformly bounded moments of all orders for all k¥ > K and
(s 4] o0 2
K2 K2
vr( 5 Ea@on) -2 3 ()
k=K+1 (k - %) k=K+1 (k - %)
- 1
— 4

e (=)

k=K+1

oo dx
~ 2K* / —
K+ (x—1)

— EK4 1
= 3
3" (K+)
= O(K)
as K — oo. It follows by the Martingale central limit theorem that
K? 2 2
— ———————5(§k—1):N(O,—).
VR S D ;
Hence,
VE (5 [we — 2 Ln(o?2
o Wex — ) TN \03)
as required.

Finally, consider the joint distribution. From (22), (25) and (27) we have the
representation

\/I_{ fOl WdeW+%
VE(K [ W}, - %

and, since K¢ A; £, converges in probability to a constant as shown in (26), the two
elements of (28) are asymptotically independent.

[ N(OKEALE )1+ 0,(1)] ’
| F e Tk g G - ) e | Y

17



6.3 Proof of Theorem 3.3 Part (a) is an immediate consequence of Lemma 3.2.
In particular, we have

1
i WoeaW 3K

~ +o0,(1) = O(K)
1 1 P
o Wi, i
and . 1
W, . dW  —zVK
Jo W, Ql‘r+0p(1)_0(\/z_<)
1 2 P
( 0 W‘gz{) "
For Part (b), write
1 2 1
1 (fol W, dW ”21{) ) (fc, WoedW +3) + % (K [y W2, — %)
T > = :
VE\ [iwe, 2 VE w2
2 1
»/IT’(]DI W, dW + %) + %—\/I?(Kfo w2 - ;lg)
- 1
K.fo ng
2
| VO FANEY
i
w2z
— 2,1 4
= N (O,Tr + gﬂ' )’

which is the stated result. For the t— ratio limit distribution
1
(s Wor +3) + 5 (VE (5 we,)* - 1)
1
(hwz)®
1
VE (W + ) = 5VE (VE (fw3,)" - 4)

1
Jo stxdwi +—72E\/I_< _

(fwz)’

(s fiw,)*

7 2 w2

where the third line follows by a delta method calculation involving

i (v ([wn) 1) 5 (i [, - ) = 5w (03).
|
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6.4 Proof of Lemma 4.1 To prove part (a) we need to show that as (n, K — o)

K , o? K 1
E (Ey—lQKy—l) =52 +0 (Z + “I‘(“) .
Note that E (y_1y_,) = 02LL' = 0?Q, say, where L is a lower triangular matrix with
unity in all elements in and below the main diagonal. Then,

with % -0

K

B (@) = S {0 (1= 0k (B %)

n2

BN LS (1 (1 (o

t,s=1

2K§:ffolsok(r)(r/\z))wk (P)d"‘dp’“o(g)

—1/0

i
)

[}
=
| —
|
Q

k=1 k=K+1
1 1 1 d K
= o’K (——— + Ak)+0(—)
- 0'2K Z Ak+0(£ B
k=K+1

since

from (20) above (see also Gradshteyn and Ryzhik, 1994, formula 0.234-2). Also, as
in (23), we find that as K — o

'S /\k=%+o(%), (29)

k=K+1

and the stated result follows immediately.
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For part (b} we need to show that

2

1, o
E (Ey—lQKu) - -5

Note that
1 1 _
E(Ey'_lQKu> - JQEtr{(I—éK (B4 Bx) 1<I>’K) (L—I)}
2
() —
= ;t"'{(I)K (% Bx) ™ D (I—L)}
K o2&
= QE—F;SD;CL%:
K X 1 e~ t s
- o(3) "L ()n ()
=1 =1 t=s
K K 1 r
- 0o(3)-7% [oo [ ewaper
k—1 0 4]
Note that

/Olﬂpk(")/orsak(p)dpdr = 2‘/Olsin (k_

It follows from (30), (31) and (20) that

1, o? 1 K
i (Ey‘lQ"“) =23 TR (?)

Il



- Gl (@)]o(®

2
o K 1
= ‘7*0(77)’

giving the stated result.
For part (c) it is sufficient to show that under the stated conditions

o () o
Let y = Lu, where w = N (0,1,). Then, 2 = ¢2LL' and

y1@xy-1 = W' Agu, with Ag = I' |1 - @k (24@x) " 2| L.
Then

n2

K2
= g (A%). (32)

2
Var (gy'—1Qxy—1> = (E) Var (v Axu)

Evaluating tr (A%) we find

1 K 1 K
tr(A%) = tr {Q (I ~ @ +0 (;)) Q (I — ~ g +0 (F))}
= (@) 140 (5] - 2tr (@0%0k) + Ltr (3400K)%. (33)
n2 n K KT n2 K2 TEK) -
Clearly

(trQ)® = o* (ég) 2 =o! (@)2,

and the &’th diagonal element of 92 is o4 [Zf;ll P24+ K2 (n—k+ 1)} , so that

tr (QQ) = 042

j2+k2(n—k+1)}

J
(k—1)k(2k—-1)

|

- U4k { 5 -k3+k2+k2n}
{
{

1_3_1 2 l _ 3 2

(3k Sk +6k) Kk (n-i-l)}
2 .. 1 ; 1

( 3F +6’“)+'“ (”*2)}
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—1140’4_

~

Moreover

1
i (PR P?0x) =

By a similar calculati

(4

2

1n(n+1) n(n+1)(2n+1) 1
6 2 + 6 (”‘f‘g)}(fi

(34)

o‘ln“kz:l/; /01 /Olt,ok () (r Ap) (p Au) g (u)drdpdu+0(n4§)
K 1 1

4"4Z/\k ] / i () (r Ap) @y (p) drdp + O (n°K)
42)\2f

oind Z)\% +0 (n?’K) _

k=1

r)?dr + 0 (n°K)

x

on we find

t,5=1

=,;z[

k=1

>

-H
Il
—

I
Q
s
M=

b d
“H
Il
—

I

Qp

:b
NE

-
..b-
Il
—

4.4

I
3
=
™) =

==
1
—

:/01 /01 @ (1) (r Ap) ¢ (p) d’l‘dp:|

M 1
[ onorat

Z”( Janaal; )} Lsil_‘p’ () erore (%)}
55a(D) (5990 [EEa () ()2 0)

t’

s=1 fa

H&/wﬂwmﬂ+oﬁﬁg

/\% +0 (n3K2) .
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:/ol fol @ (r) (r A p) ¢x () d?‘dp] +0 (n‘iKTz)

(36)



Hence, combining (33)-(36) we get

K
tr (A%) = %n‘la’1 —nict Z Xi + O (RPK?)
k=1
1434 44l 1 3702
= gna —n'c Fzﬁ-l-o(nf()- (37)
k=1 (k- 3)

Next

o
[l
—
m|b—l

1 T 1
= — — 4+ 0| =
96+O(;.3) =+ (F'S)’ (38)
where the formula for the infinite sum in the penultimate line is given for example in

Gradshteyn and Ryzhik (1980, formula 0.234-5).
It follows from (37) and (38) that

4
tr (Ak) =0 (n°K?*) + 0 (;3)
Thus, from (32)

K K? Kt 1
Var (Ey'_IQKy_l) = FQtr (A%x) =0 (7 + f\f) =o(l),

and the stated result (c) follows immediately.
For part (d) we write

%yileu = %y’_lu - ',l;,yr_l‘PK (B k) Bxu
- %y'_lu - n—lzy'_1¢’1( [IK +0 (%)] Ppu
- M-S0 (5)] b )
Now 1 '
Y 1
=3 ke (1)

By virtue of Gaussianity and expanding the probability space as needed, we can
embed %z = oW, so that ytT_nl = oW (£1). Then, using
the represcntation (16), i.e

_ t—1 t—1\" .1 t—1Y\ 1
yt—\/T—;:UW( - ) =a [‘PK (T) ARk + ¢, (T) Aiﬁ],
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we have
1 w1 _ 1 t t—1\ 1 t—1\ 1
oo (3) 5 = 2 (2) o (5 e (5 e
1 — t t—1\ 1
= = - ) A2 1
n;‘PK(n)‘PK( n) #Ek +op (1)

1
= A;{SK +OP(1)=
in view of the orthogonality of y, and ¢, . It follows that we may write (39) as
Ly Qru =~y u— kA —=Tiu +0p (1)
n’- n’ K. /n P
1 <« t—1\ 1 t—1\' 1 11
= % ; [‘PK (T) A}z{f}( T (T) AiEJ_:| Uy — EIKAIZ(—_,’,;(D.’KU +0p (1)
1l L t—1
= 7 ;ﬂf\ﬂﬂ (T) ut + 0p (1)
1ol
= &d [ e s +o,)
= OP (1) k]
since

1 1 , L , = 1
el ([omporan)ale—ne - Y ag=0,(%)

k=K+1

from (24) above, thereby establishing part (d).

6. Notation

—a.s. almost sure convergence =, —4 weak convergence
—p convergence in probability [-] integer part of
=4 distributional equivalence TAS man(r, s
q )
= definitional equality = equivalence
W (r) standard Brownian motion 0p(1)  tends to zero in probability

BM (0?) Brownian motion with variance 02 0,4, (1) tends to zero almost surel
y
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