http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
THE SYNTHESIS AND REACTIVITY OF NEW RUTHENIUM AND OSMIUM SILYL COMPLEXES

A thesis presented to
The University of Auckland
for the degree of
Doctor of Philosophy in Chemistry

David Mark Salter

January 1993
"A wise man will hear and will increase learning"

Proverbs 1:5
The chemistry of transition metal silyl complexes still remains relatively undeveloped despite the recent advances that have been made in this area. This thesis describes the synthesis and reactivity of new ruthenium and osmium silyl complexes.

A general survey on the bonding, preparation and reactivity of transition metal silyl complexes is given in chapter one as an introduction to the chemistry discussed in the following chapters. Several reviews relating to transition metal-silicon chemistry have been published, and therefore only the major features and more recent developments are highlighted in this overview. Emphasis has been placed on those aspects not previously reviewed.

Coordinatively unsaturated transition metal silyl complexes are uncommon and the chemistry of these complexes has been virtually unexplored. The synthesis of the novel coordinatively unsaturated ruthenium and osmium silyl complexes, $M(SiR_3)Cl(CO)(PPh_3)_2$ ($M = Ru, Os; R = Cl, alkyl group, alkoxy group$), is described in chapter two. The reaction of $M(Ph)Cl(CO)(PPh_3)_2$ ($M = Ru, Os$) with a silane, in some instances, provided a facile, high yield route to complexes of the type $M(SiR_3)Cl(CO)(PPh_3)_2$ ($M = Ru; SiR_3 = SiMe_3, SiEt_3, SiCl_3, SiMe_2Cl; M = Os; SiR_3 = SiCl_3, SiMe_2Cl$). The chlorosilyl complexes were also prepared by treatment of $MHCl(CO)(PPh_3)_3$ ($M = Ru, Os$) with $HSiCl_3$ and $HSiMe_2Cl$. X-ray crystal structures were obtained of $Ru(SiEt_3)Cl(CO)(PPh_3)_2$ and $Os(SiCl_3)Cl(CO)(PPh_3)_2$.

Complexes containing chlorosilyl ligands proved synthetically useful, undergoing a variety of nucleophilic substitution reactions at silicon with retention of the transition metal-silicon bond. New complexes synthesized by this method included $Ru[Si(OEt)_3]Cl(CO)(PPh_3)_2$ and $Os(SiMe_3)Cl(CO)(PPh_3)_2$. X-ray crystal structures of these two compounds were also obtained. These exchange reactions illustrate a route to new transition metal silyl compounds that has rarely been utilised.
Also described in chapter two is the unprecedented formation of the novel compound $\text{Os(SiMe}_2\text{C}_6\text{H}_4\text{PPh}_2)(\text{C}_6\text{H}_4\text{PPh}_2)(\text{CO})(\text{PPh}_3)$, resulting from phenylation at silicon. The structure of this complex was determined by X-ray crystallography.

In chapter three, addition of the Lewis bases CO and CN(p-tolyl) to coordinatively unsaturated silyl complexes, $\text{M(SiR}_3\text{Cl(CO)(PPh}_3\text{)}_2$ ($\text{M} = \text{Ru, Os}$), is described. The coordinatively saturated osmium silyl complexes $\text{Os(SiR}_3\text{Cl(CO)L(PPh}_3\text{)}_2$ ($\text{SiR}_3 = \text{SiCl}_3$, SiMe_2Cl, SiMe_2OEt, SiMe_3; $\text{L} = \text{CO}, \text{CNR}$) were generated in this way. Similarly, addition of 4,4'-dimethyl-2,2'-bipyridine to $\text{Ru(SiEt}_3\text{Cl(CO)(PPh}_3\text{)}_2$ afforded $\text{Ru(SiEt}_3\text{Cl(dimethylbipy)(CO)(PPh}_3\text{)}_2$. The six-coordinate complex $\text{Ru(SiEt}_3\text{(η}^2\text{-S}_2\text{CNMe}_2\text{)(CO)(PPh}_3\text{)}_2$ was synthesized by displacement of the labile chloride ligand from $\text{Ru(SiEt}_3\text{Cl(CO)(PPh}_3\text{)}_2$ by the dimethylthiocarbamate anion. Characterization of $\text{Ru(SiEt}_3\text{(η}^2\text{-S}_2\text{CNMe}_2\text{)(CO)(PPh}_3\text{)}_2$ included an X-ray crystallographic analysis. The exchange of silyl groups at the metal was also observed in several reactions. For example, heating $\text{Ru(SiMe}_3\text{Cl(CO)(PPh}_3\text{)}_2$ in the presence of excess HSiEt$_3$ yielded $\text{Ru(SiEt}_3\text{Cl(CO)(PPh}_3\text{)}_2$. These reactions illustrate aspects of the chemistry that can occur at the metal centre of coordinatively unsaturated transition metal silyl complexes.

Another route to coordinatively saturated osmium silyl complexes was via oxidative addition of a silane to $\text{Os(CO)}_2(\text{PPh}_3)_3$, which yielded $\text{Os(SiR}_3\text{H(CO)}_2(\text{PPh}_3)_2$ ($\text{SiR}_3 = \text{SiMe}_3$, SiEt_3, SiPh_3, SiPh_2H). The synthesis of these complexes is also discussed in chapter three. An X-ray crystal structure determination of $\text{Os(SiEt}_3\text{H(CO)}_2(\text{PPh}_3)_2$ confirmed the presence of mutually trans carbonyl ligands.

The first thiocarbonyl-containing transition metal silyl complexes, $\text{M(SiMe}_2\text{Cl(Cl(CS)(PPh}_3\text{)}_2$ ($\text{M} = \text{Ru, Os}$), were prepared by treating $\text{M(Ph)(CS)(PPh}_3\text{)}_2$ or $\text{MCl(CS)(PPh}_3\text{)}_3$ with HSiMe$_2$Cl. The Si-Cl bond in these compounds reacted readily with nucleophiles, yielding $\text{M(SiMe}_2\text{OR)(Cl(CS)(PPh}_3\text{)}_2$ ($\text{OR} = \text{OEt, OMe, OH}$). In contrast to the addition of CO to $\text{Os(SiR}_3\text{Cl(CO)(PPh}_3\text{)}_2$, addition of CO to $\text{Ru(SiMe}_2\text{R)(Cl(CS)(PPh}_3\text{)}_2$ ($\text{R} = \text{Cl, OEt, OMe, OH}$) and to $\text{Os(SiMe}_2\text{OEt)(Cl(CS)(PPh}_3\text{)}_2$ afforded dihapto-thioacyl complexes, $\text{M[η}^2\text{-C(S)SiMe}_2\text{R]}\text{Cl(CO)(PPh}_3\text{)}_2$, via a migratory insertion reaction involving the silyl group and the thiocarbonyl ligand. This reaction represents the first formal insertion of CS into a
transition metal-silicon bond. The structure of Ru[η²-C(SiMe₂OEt)]Cl(CO)(PPh₃)₂ was obtained by X-ray crystallography and confirmed that bonding of the thioacyl ligand occurred in a dihapto fashion. These reactions are described in chapter four.

When Os(Ph)Cl(CO)(PPh₃)₂ was reacted with HSiMe₃, the formally osmium(IV) silyl complex Os(SiMe₃)H₃(CO)(PPh₃)₂ was produced. Few compounds of this type are known. The synthesis, characterization and reactivity of Os(SiMe₃)H₃(CO)(PPh₃)₂ are discussed in chapter five. The crystal structure of Os(SiMe₃)H₃(CO)(PPh₃)₂ is also depicted. In solution, Os(SiMe₃)H₃(CO)(PPh₃)₂ appeared to be in equilibrium with the highly reactive, coordinatively unsaturated species OsH₂(CO)(PPh₃)₂. The reaction of Os(SiMe₃)H₃(CO)(PPh₃)₂ with HSiR₃ (R = Et, Ph), HSn(p-tolyl)₃ and HC₂Ph was carried out, using Os(SiMe₃)H₃(CO)(PPh₃)₂ as an in situ source of OsH₂(CO)(PPh₃)₂. These reactions afforded Os(SiR₃)H₃(CO)(PPh₃)₂ (R = Et, Ph), Os[Sn(p-tolyl)₃]₂H₂(CO)(PPh₃)₂ and OsH(C₂Ph)(CO)(PPh₃)₃ respectively, most likely via a series of oxidative addition-reductive elimination reactions involving OsH₂(CO)(PPh₃)₂.

Transition metal hydroxysilyl complexes are extremely rare. Only three systems have been reported containing a hydroxysilyl group bonded to a transition metal.⁶ ⁷ ⁸ Chapter six deals with the formation of compounds of this type. Hydroxysilyl-containing complexes of ruthenium and osmium were obtained via the hydrolysis of M(SiMe₂Cl)Cl(CO)(PPh₃)₂ and M(SiCl₃)Cl(CO)(PPh₃)₂. The complexes M[Si(OH)₃]Cl(CO)(PPh₃)₂ are the first trihydroxysilyl-containing transition metal complexes and therefore represent a new class of transition metal silyl compounds. Characterization of Os[Si(OH)₃]Cl(CO)(PPh₃)₂ included an X-ray crystal structure which showed that, remarkably, no inter- or intra-molecular hydrogen bonding of the type O(H)···O or O(H)···Cl was associated with the Si(OH)₃ group. In contrast, intermolecular hydrogen bonding was found by X-ray crystallography for the dicarbonyl derivative, Os[Si(OH)₃]Cl(CO)₂(PPh₃)₂. Subsequent reactions involving Os[Si(OH)₃]Cl(CO)(PPh₃)₂ led to the synthesis of the diosmium tetrahydroxydisiloxane complex, [OsCl(CO)(PPh₃)₂Si(OH)₂]₂O. For example, [OsCl(CO)(PPh₃)₂Si(OH)₂]₂O was isolated after Os(SiCl₃)Cl(CO)(PPh₃)₂ was added to a dichloromethane solution of Os[Si(OH)₃]Cl(CO)(PPh₃)₂. Formation of this tetrahydroxydisiloxane compound is significant
and models the first condensation reaction generating a Si-O-Si linkage in the hydrolysis of organochlorosilanes to polysiloxanes. The Si-O-Si linkage was clearly visible in the X-ray crystal structure of [OsCl(CO)(PPh₃)₂Si(OH)₂]₂O.

Chapter seven provides a short conclusion, highlighting the important features of the work discussed in this thesis and identifies areas for future investigation.
TABLE OF CONTENTS

Abstract iii

List of Tables xii
List of Important Figures xv
List of Important Schemes xvii
List of Abbreviations xix

Introduction 1

Chapter One
The Chemistry of Transition Metal Silyl Complexes 3

I. Transition Metal-Silicon Bonds 3

II. Preparative Routes to Transition Metal Silyl Complexes 10
 A. Reaction between a Transition Metal Anion and a Halosilane 11
 B. Reaction of a Silyl Anion with a Transition Metal Halide 12
 C. Oxidative Addition Reactions 14
 D. Miscellaneous Methods 22
 E. Transition Metal Silylene and Related Complexes 23

III. Reactivity of Transition Metal Silyl Complexes 30
 A. Substitution of Ligands at Silicon 30
 (i) Hydrogen Replacement 31
 (ii) Halo Group Replacement 33
 (iii) Amine Group Replacement 38
 (iv) Alkoxy Group Replacement 39
 (v) Alkyl Group Replacement 40
 (vi) Sulfide Group Replacement 41
Chapter Two

Synthesis of New Coordinatively Unsaturated Ruthenium and Osmium Silyl Complexes

I. Preparation of M(SiR₃)Cl(CO)(PPh₃)₂ (M = Ru, Os; R = Cl, alkyl group) 52
 (i) Reactions using a Mercury Reagent 53
 (ii) Oxidative Addition-Reductive Elimination Reactions 61

A. Synthesis of the Ruthenium Silyl Complexes, Ru(SiR₂R')Cl(CO)(PPh₃)₂
 (R = R' = Me, Et, Cl; R = Me, R' = Cl) 62
 (a) Reactions of Ru(Ph)Cl(CO)(PPh₃)₂ with HSiR₃ 62
 (b) Reactions of RuHCl(CO)(PPh₃)₃ with HSiCl₃ and HSiMe₂Cl 74

B. Synthesis of the Osmium Silyl Complexes, Os(SiR₂R')Cl(CO)(PPh₃)₂
 (R = R' = Cl; R = Me, R' = Cl) 78
 (a) Reactions of Os(Ph)Cl(CO)(PPh₃)₂ with HSiR₃ 78
 (b) Reactions of OsHCl(CO)(PPh₃)₃ with HSiCl₃ and HSiMe₂Cl 88

(ii) Cleavage of M-Si Bonds by Electrophiles 46
(iii) Cleavage of M-Si Bonds by Other Reagents 46
(iv) Migratory Insertion Reactions
 (a) Carbon Monoxide 47
 (b) Isocyanides 48
 (c) Aldehydes and ketones 48
 (d) Alkenes, alkynes and nitriles 49
 (e) Carbon Dioxide 50
(v) Reductive Elimination 51
II. Reactivity of Coordinatively Unsaturated Ruthenium and Osmium Silyl Complexes, M(SiR₃)Cl(CO)(PPh₃)₂ (M = Ru, Os; R = Cl, alkyl group) 89

A. Substitution Reactions at Silicon 89
 (a) Alkyl Nucleophiles 91
 (b) Hydroxy Nucleophiles 95
 (c) Alkoxy Nucleophiles 96
 (d) Other Nucleophiles 106

General Experimental 121
Experimental 123

Chapter Three
Synthesis of New Coordinatively Saturated Ruthenium and Osmium Silyl Complexes 131

I. Reactions at the Metal Centre of the Five-Coordinate Complexes,
 M(SiR₃)Cl(CO)(PPh₃)₂ (M = Ru, Os) 132

A. Addition of Lewis Bases to M(SiR₃)Cl(CO)(PPh₃)₂ 132
 (a) Addition of CO and CNR 132
 (i) Synthesis of Os(SiR₃)Cl(CO)L(PPh₃)₂ (L = CO, CNR) 132
 (ii) Reactivity of Os(SiR₃)Cl(CO)L(PPh₃)₂
 (SiR₃ = SiCl₃, SiMe₂Cl; L = CO, CNR) 140
 (b) Addition of an Anionic Bidentate Ligand 142
 (c) Addition of a Neutral Bidentate Ligand 148

B. Silyl Ligand Exchange Reactions 150

II. Synthesis of Osmium Silyl Complexes via Oxidative Addition of Silanes to Os(CO)₂(PPh₃)₃ 151

Experimental 168
Chapter Four

Synthesis and Reactivity of Transition Metal Silyl Complexes Containing Thiocarbonyl Ligands

I. Synthesis of New Transition Metal Silyl Complexes Containing Thiocarbonyl Ligands, M(SiR₃)Cl(CS)(PPh₃)₂ (M = Ru, Os; SiR₃ = SiMe₂Cl, SiCl₃, SiMe₂OR, SiMe₂OH)

II. Reactivity of M(SiR₃)Cl(CS)(PPh₃)₂ (M = Ru, Os; SiR₃ = SiMe₂Cl, SiCl₃)
 (a) Substitution at Silicon
 (b) Migratory Insertion of Silyl and Thiocarbonyl Ligands in Ruthenium and Osmium Complexes

Experimental

Chapter Five

Synthesis and Reactivity of New Osmium(IV) Silyl Complexes

I. Synthesis of Os(SiMe₃)H₃(CO)(PPh₃)₂

II. Reactivity of Os(SiMe₃)H₃(CO)(PPh₃)₂
 (a) Reactions with Lewis Bases
 (b) Reactions involving HSiR₃
 (c) Reactions involving HSnR₃
 (d) Reactions with H-C Bonds

Experimental

Chapter Six

Synthesis and Reactivity of Ruthenium and Osmium Hydroxysilyl Complexes

I. Hydrolysis Reactions of Ruthenium and Osmium Chlorodimethyl and Trichlorosilyl Complexes
 (a) Preparation of M[SiMe₂(OH)]Cl(CO)(PPh₃)₂ (M = Ru, Os)
 (b) Preparation of M[Si(OH)₃]Cl(CO)(PPh₃)₂ (M = Ru, Os)
II. Reactivity of Os[SiMe$_2$(OH)]Cl(CO)(PPh$_3$)$_2$ and Os[Si(OH)$_3$]Cl(CO)(PPh$_3$)$_2$ 252
 (a) Reactivity at the Metal Centre 252
 (b) Substitution Reactions at Silicon 262

III. Formation of [OsCl(CO)(PPh$_3$)$_2$Si(OH)$_2$-]$_2$O 265
 (a) Preparation of [OsCl(CO)(PPh$_3$)$_2$Si(OH)$_2$-]$_2$O 266
 (b) Reactivity of [OsCl(CO)(PPh$_3$)$_2$Si(OH)$_2$-]$_2$O 277

Experimental 285

Chapter Seven
Conclusion 289

References 292

Acknowledgements 305
Chapter Two

Table 2.1 Important Bond Lengths (Å) for \(\text{Os(SiMe}_2\text{C}_6\text{H}_4\text{PPh}_2)(\text{C}_6\text{H}_4\text{PPh}_2)(\text{CO})(\text{PPh}_3) \) 56

Table 2.2 Important Bond Angles (°) for \(\text{Os(SiMe}_2\text{C}_6\text{H}_4\text{PPh}_2)(\text{C}_6\text{H}_4\text{PPh}_2)(\text{CO})(\text{PPh}_3) \) 56

Table 2.3 Ruthenium-Silicon Bond Distances 69

Table 2.4 Important Bond Lengths (Å) for \(\text{Ru(SiEt}_3\text{Cl}(\text{CO})(\text{PPh}_3)_2 \) 71

Table 2.5 Important Bond Angles (°) for \(\text{Ru(SiEt}_3\text{Cl}(\text{CO})(\text{PPh}_3)_2 \) 71

Table 2.6 Important Bond Lengths (Å) for \(\text{Os(SiCl}_3\text{Cl}(\text{CO})(\text{PPh}_3)_2 \) 83

Table 2.7 Important Bond Angles (°) for \(\text{Os(SiCl}_3\text{Cl}(\text{CO})(\text{PPh}_3)_2 \) 83

Table 2.8 Osmium-Silicon Bond Distances 86

Table 2.9 Important Bond Lengths (Å) for \(\text{Os(SiMe}_3\text{Cl}(\text{CO})(\text{PPh}_3)_2 \) 94

Table 2.10 Important Bond Angles (°) for \(\text{Os(SiMe}_3\text{Cl}(\text{CO})(\text{PPh}_3)_2 \) 94

Table 2.11 Important Bond Lengths (Å) for \(\text{Ru[Si(OEt}_3\text{Cl}(\text{CO})(\text{PPh}_3)_2 \) 100

Table 2.12 Important Bond Angles (°) for \(\text{Ru[Si(OEt}_3\text{Cl}(\text{CO})(\text{PPh}_3)_2 \) 100

Table 2.14 IR Spectral Data for Compounds reported in Chapter Two 112

Table 2.15 \(^1\text{H NMR Spectral Data for Compounds reported in Chapter Two} \) 114

Table 2.16 \(^{29}\text{Si NMR Spectral Data for Selected Compounds reported in Chapter Two} \) 116

Table 2.17 \(^{13}\text{C NMR Spectral Data for Compounds reported in Chapter Two} \) 117

Table 2.18 \(^{31}\text{P NMR Spectral Data for Compounds reported in Chapter Two} \) 119
Chapter Three

Table 3.1 Important Bond Lengths (Å) for Ru(SiEt₃)(η²-S₂CNMe₂)(CO)(PPh₃)₂ 147
Table 3.2 Important Bond Angles (°) for Ru(SiEt₃)(η²-S₂CNMe₂)(CO)(PPh₃)₂ 147
Table 3.3 Important Bond Lengths (Å) for Os(SiEt₃)H(CO)₂(PPh₃)₂ 155
Table 3.4 Important Bond Angles (°) for Os(SiEt₃)H(CO)₂(PPh₃)₂ 155
Table 3.5 IR Spectral Data for Compounds reported in Chapter Three 160
Table 3.6 ¹H NMR Spectral Data for Compounds reported in Chapter Three 162
Table 3.7 ¹³C NMR Spectral Data for Compounds reported in Chapter Three 164
Table 3.8 ³¹P NMR Spectral Data for Compounds reported in Chapter Three 167

Chapter Four

Table 4.1 Important Bond Lengths (Å) for Ru[η²-C(SiMe₂OEt)]Cl(CO)(PPh₃)₂ 192
Table 4.2 Important Bond Angles (°) for Ru[η²-C(SiMe₂OEt)]Cl(CO)(PPh₃)₂ 192
Table 4.3 IR Spectral Data for Compounds reported in Chapter Four 196
Table 4.4 ¹H NMR Spectral Data for Compounds reported in Chapter Four 197
Table 4.5 ¹³C NMR Spectral Data for Compounds reported in Chapter Four 198
Table 4.6 ³¹P NMR Spectral Data for Compounds reported in Chapter Four 200

Chapter Five

Table 5.1 Important Bond Lengths (Å) for Os(SiMe₃)H₃(CO)(PPh₃)₂ 210
Table 5.2 Important Bond Angles (°) for Os(SiMe₃)H₃(CO)(PPh₃)₂ 210
Table 5.3 T₁ values observed for Os(SiR₃)H₃(CO)(PPh₃)₃ (R = Me, Et, Ph) 213
Table 5.4 T₁ values observed for Os[Sn(p-tolyl)₃]₂H₂(CO)(PPh₃)₂ 228
Table 5.5 IR Spectral Data for Compounds reported in Chapter Five 236
Table 5.6 ¹H NMR Spectral Data for Compounds reported in Chapter Five 237
Table 5.7 ³¹P NMR Spectral Data for Compounds reported in Chapter Five 237
Table 5.8 ¹³C NMR Spectral Data for Compounds reported in Chapter Five 238
Chapter Six

Table 6.1 Important Bond Lengths (Å) for Os[Si(OH)₃]Cl(CO)(PPh₃)₂ 248
Table 6.2 Important Bond Angles (°) for Os[Si(OH)₃]Cl(CO)(PPh₃)₂ 248
Table 6.3 Important Bond Lengths (Å) for Os[Si(OH)₃]Cl(CO)₂(PPh₃)₂ 257
Table 6.4 Important Bond Angles (°) for Os[Si(OH)₃]Cl(CO)₂(PPh₃)₂ 257
Table 6.5 Important Bond Lengths (Å) for [OsCl(CO)(PPh₃)₂Si(OH)₂⁻]₂O 271
Table 6.6 Important Bond Angles (°) for [OsCl(CO)(PPh₃)₂Si(OH)₂⁻]₂O 272
Table 6.7 IR Spectral Data for Compounds reported in Chapter Six 279
Table 6.8 ¹H NMR Spectral Data for Compounds reported in Chapter Six 280
Table 6.9 ¹³C NMR Spectral Data for Compounds reported in Chapter Six 281
Table 6.10 ³¹P NMR Spectral Data for Compounds reported in Chapter Six 283
Table 6.11 ²⁹Si NMR Spectral Data for Selected Compounds reported in Chapter Six 284
Chapter Two

Figure 2.1 Inner Coordination Sphere of \(\text{Os(SiMe}_2\text{C}_6\text{H}_4\text{PPh}_2)(\text{C}_6\text{H}_4\text{PPh}_2)(\text{CO})(\text{PPh}_3) \) 55

Figure 2.2 Molecular Geometry of Ru(SiEt)_3Cl(CO)(PPh)_2 70

Figure 2.3 Inner Coordination Sphere of Os(SiCl)_3Cl(CO)(PPh)_2 82

Figure 2.4 Inner Coordination Sphere of Os(SiMe)_3Cl(CO)(PPh)_2 93

Figure 2.5 Inner Coordination Sphere of Ru[Si(OEt)]_3Cl(CO)(PPh)_2 99

Chapter Three

Figure 3.1 Inner Coordination Sphere of Ru(SiEt)_3(\(\eta^2\)-S_2CNMe)_2(CO)(PPh)_2 146

Figure 3.2 Inner Coordination Sphere of Os(SiEt)_3H(CO)_2(PPh)_2 154

Chapter Four

Figure 4.1 Molecular Geometry of Ru[\(\eta^2\)-C(S)SiMe_2OEt]Cl(CO)(PPh)_2 191

Chapter Five

Figure 5.1 \(^1\text{H NMR Hydride Resonances of Os(SiMe}_3\text{)H}_3(CO)(PPh)_2\) at -50 °C 207

Figure 5.2 Molecular Geometry of Os(SiMe)_3H_3(CO)(PPh)_2 209

Figure 5.3 \(T_1\) measurement of Os(SiMe)_3H_3(CO)(PPh)_2 (-50 °C) 214

Figure 5.5 \(^1\text{H NMR Hydride Resonances of Os[Sn(p-tolyl)]_3H}_2(CO)(PPh)_2\) at -50 °C 229
Chapter Six

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 6.1</td>
<td>Molecular Geometry of Os[Si(OH)₃]Cl(CO)(PPh₃)₂</td>
<td>247</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Molecular Geometry of Os[Si(OH)₃]Cl(CO)₂(PPh₃)₂</td>
<td>256</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Orientation of Molecules of Os[Si(OH)₃]Cl(CO)₂(PPh₃)₂</td>
<td>260</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Intermolecular Hydrogen-Bonding in Os[Si(OH)₃]Cl(CO)₂(PPh₃)₂</td>
<td>261</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>Inner Coordination Sphere of [OsCl(CO)(PPh₃)₂Si(OH)₂]₂O</td>
<td>270</td>
</tr>
</tbody>
</table>
LIST OF IMPORTANT SCHEMES

Chapter Two

Scheme 2.1	Possible pathways to Os(SiMe₂C₆H₄PPh₂)(C₆H₄PPh₂)(CO)(PPh₃)	58
Scheme 2.3	Reactions of Ru(Ph)Cl(CO)(PPh₃)₂ with HSiR₃	64
Scheme 2.4	Proposed pathway for the reaction of MHCl(CO)(PPh₃)₃ with chlorosilanes	75
Scheme 2.6	Reactions of Os(Ph)Cl(CO)(PPh₃)₂ with HSiR₃	80
Scheme 2.7	Reactions of M(SiMe₂Cl)Cl(CO)(PPh₃)₂ (M = Ru, Os) with nucleophiles	90
Scheme 2.8	Reactions of M(SiCl₃)Cl(CO)(PPh₃)₂ (M = Ru, Os) with nucleophiles	90

Chapter Three

| Scheme 3.1 | Addition of CO to Ru(R)X(CO)(PPh₃)₂ | 134 |
| Scheme 3.2 | Reactions of M(SiR₃)Cl(CO)(PPh₃)₂ (M = Ru, Os) with CO and CN(p-tolyl) | 139 |

Chapter Four

| Scheme 4.1 | Formation of M(SiMe₂Cl)Cl(CS)(PPh₃)₂ (M = Ru, Os) | 177 |
| Scheme 4.2 | Reactions of M(SiMe₂Cl)Cl(CS)(PPh₃)₂ (M = Ru, Os) with nucleophiles | 181 |

Chapter Five

| Scheme 5.1 | Proposed pathway for the formation of Os(SiMe₃)H₃(CO)(PPh₃)₂ | 220 |
Chapter Six

<p>| Scheme 6.1 | Hydrolysis of M(SiMe$_2$Cl)Cl(CO)(PPh$_3$)$_2$ and M(SiCl$_3$)Cl(CO)(PPh$_3$)$_2$ | 245 |
| Scheme 6.2 | Formation of Os[SiMe$_2$(OH)]Cl(CO)$_2$(PPh$_3$)$_2$ | 252 |
| Scheme 6.3 | Formation of Os[Si(OH)$_3$]Cl(CO)$_2$(PPh$_3$)$_2$ | 253 |
| Scheme 6.4 | Formation of [OsCl(CO)(PPh$_3$)$_2$Si(OH)$_2$]$_2$O | 268 |
| Scheme 6.5 | Addition of Lewis Bases to [OsCl(CO)(PPh$_3$)$_2$Si(OH)$_2$]$_2$O | 277 |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>acac</td>
<td>acetylacetonate</td>
</tr>
<tr>
<td>anal.</td>
<td>analysis</td>
</tr>
<tr>
<td>bipy</td>
<td>2,2'-bipyridine</td>
</tr>
<tr>
<td>iBu</td>
<td>i-butyl</td>
</tr>
<tr>
<td>nBu</td>
<td>n-butyl</td>
</tr>
<tr>
<td>tBu</td>
<td>t-butyl</td>
</tr>
<tr>
<td>Bz</td>
<td>benzyl</td>
</tr>
<tr>
<td>COD</td>
<td>cycloocta-1,5-diene</td>
</tr>
<tr>
<td>Cp</td>
<td>η⁵-cyclopentadienyl</td>
</tr>
<tr>
<td>Cp*</td>
<td>η⁵-pentamethylcyclopentadienyl</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>dcpe</td>
<td>1,2-bis(dicyclohexylphosphino)ethane</td>
</tr>
<tr>
<td>dimethylbipy</td>
<td>4,4'-dimethyl-2,2'-bipyridine</td>
</tr>
<tr>
<td>diphos</td>
<td>1,2-bis(diphenylphosphino)ethane (or another chelating diphosphine)</td>
</tr>
<tr>
<td>DME</td>
<td>1,2-dimethoxyethane</td>
</tr>
<tr>
<td>dppe</td>
<td>1,2-bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>dppm</td>
<td>bis(diphenylphosphino)methane</td>
</tr>
<tr>
<td>dtbpm</td>
<td>bis(di-tert-butylphosphino)methane</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>Hampy</td>
<td>2-amino-6-methylpyridine</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoric triamide, OP(NMe₃)₃</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>m. p.</td>
<td>melting point</td>
</tr>
</tbody>
</table>
Me methyl
MeCp η⁵-methylcyclopentadienyl
Mes mesityl
OTf triflate
Ph phenyl
phen 1,10-phenanthroline
iPr i-propyl
nPr n-propyl
py pyridine
s second
THF tetrahydrofuran

For clarity, non-IUPAC notation is used in this thesis for the formulae of transition metal silyl complexes which are written with the silyl group directly following the transition metal.