

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

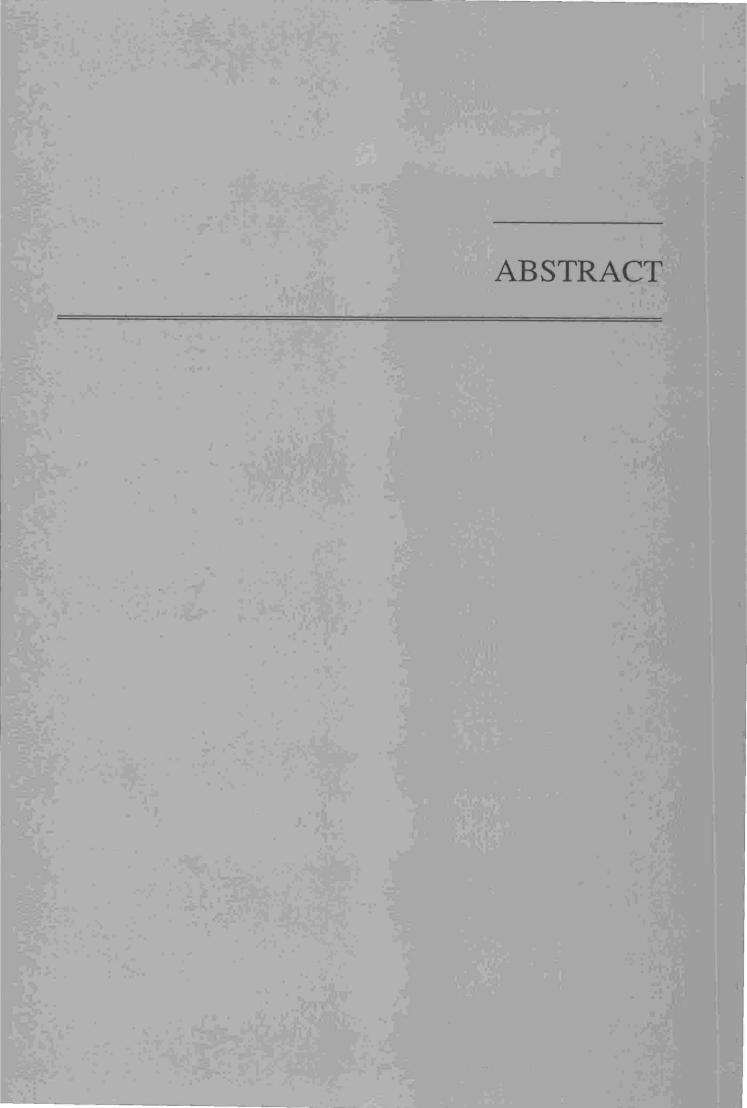
- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

THE SYNTHESIS AND REACTIVITY OF NEW RUTHENIUM AND OSMIUM SILYL COMPLEXES


A thesis presented to The University of Auckland for the degree of Doctor of Philosophy in Chemistry

David Mark Salter

January 1993

"A wise man will hear and will increase learning"

Proverbs 1:5

ABSTRACT

The chemistry of transition metal silvl complexes still remains relatively undeveloped despite the recent advances that have been made in this area. This thesis describes the synthesis and reactivity of new ruthenium and osmium silvl complexes.

A general survey on the bonding, preparation and reactivity of transition metal silyl complexes is given in chapter one as an introduction to the chemistry discussed in the following chapters. Several reviews relating to transition metal-silicon chemistry have been published, 1-5 and therefore only the major features and more recent developments are highlighted in this overview. Emphasis has been placed on those aspects not previously reviewed.

Coordinatively unsaturated transition metal silyl complexes are uncommon and the chemistry of these complexes has been virtually unexplored. The synthesis of the novel coordinatively unsaturated ruthenium and osmium silyl complexes, $M(SiR_3)Cl(CO)(PPh_3)_2$ (M = Ru, Os; R = Cl, alkyl group, alkoxy group), is described in chapter two. The reaction of $M(Ph)Cl(CO)(PPh_3)_2$ (M = Ru, Os) with a silane, in some instances, provided a facile, high yield route to complexes of the type $M(SiR_3)Cl(CO)(PPh_3)_2$ (M = Ru; SiR_3 = SiMe_3, SiEt_3, SiCl_3, SiMe_2Cl; M = Os; SiR_3 = SiCl_3, SiMe_2Cl). The chlorosilyl complexes were also prepared by treatment of MHCl(CO)(PPh_3)_3 (M = Ru, Os) with HSiCl_3 and HSiMe_2Cl. X-ray crystal structures were obtained of Ru(SiEt_3)Cl(CO)(PPh_3)_2 and Os(SiCl_3)Cl(CO)(PPh_3)_2.

Complexes containing chlorosilyl ligands proved synthetically useful, undergoing a variety of nucleophilic substitution reactions at silicon with retention of the transition metal-silicon bond. New complexes synthesized by this method included Ru[Si(OEt)₃]Cl(CO)(PPh₃)₂ and Os(SiMe₃)Cl(CO)(PPh₃)₂. X-ray crystal structures of these two compounds were also obtained. These exchange reactions illustrate a route to new transition metal silyl compounds that has rarely been utilised.

Also described in chapter two is the unprecedented formation of the novel compound $Os(SiMe_2C_6H_4PPh_2)(C_6H_4PPh_2)(CO)(PPh_3)$, resulting from phenylation at silicon. The structure of this complex was determined by X-ray crystallography.

In chapter three, addition of the Lewis bases CO and CN(p-tolyl) to coordinatively unsaturated silyl complexes, $M(SiR_3)Cl(CO)(PPh_3)_2$ (M = Ru, Os), is described. The coordinatively saturated osmium silyl complexes $Os(SiR_3)Cl(CO)L(PPh_3)_2$ (SiR₃ = SiCl₃, SiMe₂Cl, SiMe₂OEt, SiMe₃; L = CO, CNR) were generated in this way. Similarly, addition of 4,4'-dimethyl-2,2'-bipyridine to $Ru(SiEt_3)Cl(CO)(PPh_3)_2$ afforded Ru(SiEt₃)Cl(dimethylbipy)(CO)(PPh₃). The six-coordinate complex $Ru(SiEt_3)(\eta^2-S_2CNMe_2)(CO)(PPh_3)_2$ was synthesized by displacement of the labile chloride ligand from Ru(SiEt₃)Cl(CO)(PPh₃)₂ by the dimethyldithiocarbamate anion. Characterization of Ru(SiEt₃)(n²-S₂CNMe₂)(CO)(PPh₃)₂ included an X-ray crystallographic analysis. The exchange of silyl groups at the metal was also observed in several reactions. For example, heating Ru(SiMe₃)Cl(CO)(PPh₃)₂ in the presence of excess HSiEt₃ yielded Ru(SiEt₃)Cl(CO)(PPh₃)₂. These reactions illustrate aspects of the chemistry that can occur at the metal centre of coordinatively unsaturated transition metal silvl complexes.

Another route to coordinatively saturated osmium silyl complexes was via oxidative addition of a silane to $Os(CO)_2(PPh_3)_3$, which yielded $Os(SiR_3)H(CO)_2(PPh_3)_2$ (SiR₃ = SiMe₃, SiEt₃, SiPh₃, SiPh₂H). The synthesis of these complexes is also discussed in chapter three. An X-ray crystal structure determination of $Os(SiEt_3)H(CO)_2(PPh_3)_2$ confirmed the presence of mutually *trans* carbonyl ligands.

The first thiocarbonyl-containing transition metal silyl complexes, M(SiMe₂Cl)Cl(CS)(PPh₃)₂ (M = Ru, Os), were prepared by treating M(Ph)Cl(CS)(PPh₃)₂ or MHCl(CS)(PPh₃)₃ with HSiMe₂Cl. The Si-Cl bond in these compounds reacted readily with nucleophiles, yielding M(SiMe₂OR)Cl(CS)(PPh₃)₂ (OR = OEt, OMe, OH). In contrast to the addition of CO to Os(SiR₃)Cl(CO)(PPh₃)₂, addition of CO to Ru(SiMe₂R)Cl(CS)(PPh₃)₂ (R = Cl, OEt, OMe, OH) and to Os(SiMe₂OEt)Cl(CS)(PPh₃)₂ afforded *dihapto*-thioacyl complexes, M[η^2 -C(S)SiMe₂R]Cl(CO)(PPh₃)₂, via a migratory insertion reaction involving the silyl group and the thiocarbonyl ligand. This reaction represents the first formal insertion of CS into a transition metal-silicon bond. The structure of $Ru[\eta^2-C(S)SiMe_2OEt]Cl(CO)(PPh_3)_2$ was obtained by X-ray crystallography and confirmed that bonding of the thioacyl ligand occurred in a *dihapto* fashion. These reactions are described in chapter four.

v

When $Os(Ph)Cl(CO)(PPh_3)_2$ was reacted with HSiMe₃, the formally osmium(IV) silyl complex $Os(SiMe_3)H_3(CO)(PPh_3)_2$ was produced. Few compounds of this type are known. The synthesis, characterization and reactivity of $Os(SiMe_3)H_3(CO)(PPh_3)_2$ are discussed in chapter five. The crystal structure of $Os(SiMe_3)H_3(CO)(PPh_3)_2$ is also depicted. In solution, $Os(SiMe_3)H_3(CO)(PPh_3)_2$ appeared to be in equilibrium with the highly reactive, coordinatively unsaturated species $OsH_2(CO)(PPh_3)_2$. The reaction of $Os(SiMe_3)H_3(CO)(PPh_3)_2$ with HSiR₃ (R = Et, Ph), HSn(*p*-tolyl)₃ and HC₂Ph was carried out, using $Os(SiMe_3)H_3(CO)(PPh_3)_2$ as an *in situ* source of $OsH_2(CO)(PPh_3)_2$. These reactions afforded $Os(SiR_3)H_3(CO)(PPh_3)_2$ (R = Et, Ph), $Os[Sn(p-tolyl)_3]_2H_2(CO)(PPh_3)_2$ and $OsH(C_2Ph)(CO)(PPh_3)_3$ respectively, most likely via a series of oxidative addition-reductive elimination reactions involving $OsH_2(CO)(PPh_3)_2$.

Transition metal hydroxysilyl complexes are extremely rare. Only three systems have been reported containing a hydroxysilyl group bonded to a transition metal.^{6,7,8} Chapter six deals with the formation of compounds of this type. Hydroxysilyl-containing complexes of ruthenium and osmium were obtained via the hydrolysis of $M(SiMe_2Cl)Cl(CO)(PPh_3)_2$ and $M(SiCl_3)Cl(CO)(PPh_3)_2$. The complexes $M[Si(OH)_3]Cl(CO)(PPh_3)_2$ are the first trihydroxysilyl-containing transition metal complexes and therefore represent a new class of transition metal silyl compounds. Characterization of $Os[Si(OH)_3]Cl(CO)(PPh_3)_2$ included an X-ray crystal structure which showed that, remarkably, no inter- or intra-molecular hydrogen bonding of the type O(H)...O or O(H)...Cl was associated with the $Si(OH)_3$ group. In contrast, intermolecular hydrogen bonding was found by X-ray crystallography for the dicarbonyl derivative, $Os[Si(OH)_3]Cl(CO)(PPh_3)_2$ led to the synthesis of the diosmium tetrahydroxydisiloxane complex, $[OsCl(CO)(PPh_3)_2Si(OH)_2-l_2O$. For example, $[OsCl(CO)(PPh_3)_2Si(OH)_2-l_2O$ was isolated after $Os(SiCl_3)Cl(CO)(PPh_3)_2$ was added to a dichloromethane solution of $Os[Si(OH)_3]Cl(CO)(PPh_3)_2$. Formation of this tetrahydroxydisiloxane compound is significant and models the first condensation reaction generating a Si-O-Si linkage in the hydrolysis of organochlorosilanes to polysiloxanes. The Si-O-Si linkage was clearly visible in the X-ray crystal structure of [OsCl(CO)(PPh₃)₂Si(OH)₂-]₂O.

Chapter seven provides a short conclusion, highlighting the important features of the work discussed in this thesis and identifies areas for future investigation.

TABLE OF CONTENTS

Abstrac	t		iii	
List of Ta	ables		xii	
List of In	iporta	nt Figures	xv	
List of In	iporta	nt Schemes	xvii	
List of Al	obrevi	ations	xix	
Introduct	ion		1	
0	0			
Chapter		of Transition Matel Silel Const	3	
The Chemistry of Transition Metal Silyl Complexes				
Ι.	Tra	nsition Metal-Silicon Bonds	3	
II.	Prej	parative Routes to Transition Metal Silyl Complexes	10	
	Α.	Reaction between a Transition Metal Anion and a Halosilane	11	
	Β.	Reaction of a Silyl Anion with a Transition Metal Halide	12	
	C.	Oxidative Addition Reactions	14	
	D.	Miscellaneous Methods	22	
	E.	Transition Metal Silylene and Related Complexes	23	
III.	Rea	ctivity of Transition Metal Silyl Complexes	30	
	Α.	Substitution of Ligands at Silicon	30	
		(i) Hydrogen Replacement	31	
		(ii) Halo Group Replacement	33	
		(iii) Amine Group Replacement	38	
		(iv) Alkoxy Group Replacement	39	
		(v) Alkyl Group Replacement	40	
		(vi) Sulfide Group Replacement	41	

-

Β.	Ligand Substitution at the Metal Centre				
C.	Cleavage of the Transition Metal-Silicon Bond				
	(i)	Cleavage of M-Si Bonds by Nucleophiles	45		
	(ii)	Cleavage of M-Si Bonds by Electrophiles	46		
	(iii)	Cleavage of M-Si Bonds by Other Reagents	46		
	(iv) Migratory Insertion Reactions				
	(a) Carbon Monoxide				
		(b) Isocyanides	48		
		(c) Aldehydes and ketones	48		
		(d) Alkenes, alkynes and nitriles	49		
		(e) Carbon Dioxide	50		
	(v)	Reductive Elimination	51		

Chapter Two

Synthesis of New Coordinatively Unsaturated Ruthenium

		and Osmium Silyl Complexes	52
I.	Prep	paration of $M(SiR_3)Cl(CO)(PPh_3)_2$ (M = Ru, Os; R = Cl, alkyl group)	52
	(i)	Reactions using a Mercury Reagent	53
	(ii)	Oxidative Addition-Reductive Elimination Reactions	61
Α.	Synt	thesis of the Ruthenium Silyl Complexes, $Ru(SiR_2R')Cl(CO)(PPh_3)_2$	
		(R = R' = Me, Et, Cl; R = Me, R' = Cl)	62
		(a) Reactions of Ru(Ph)Cl(CO)(PPh ₃) ₂ with HSiR ₃	62
		(b) Reactions of RuHCl(CO)(PPh ₃) ₃ with HSiCl ₃ and HSiMe ₂ Cl	74
В.	Synt	hesis of the Osmium Silyl Complexes, Os(SiR ₂ R')Cl(CO)(PPh ₃) ₂	
		(R = R' = Cl; R = Me, R' = Cl)	78
		(a) Reactions of Os(Ph)Cl(CO)(PPh ₃) ₂ with HSiR ₃	78
		(b) Reactions of OsHCl(CO)(PPh ₃) ₃ with HSiCl ₃ and HSiMe ₂ Cl	88

viii

II.	Reactivity of Coordinatively Unsaturated Ruthenium and Osmium Silyl		
		Complexes, $M(SiR_3)Cl(CO)(PPh_3)_2$ (M = Ru, Os; R = Cl, alkyl group)	89
Α.	Subs	stitution Reactions at Silicon	89
	(a)	Alkyl Nucleophiles	91
	(b)	Hydroxy Nucleophiles	95
	(c)	Alkoxy Nucleophiles	96
	(d)	Other Nucleophiles	106
Gene	eral Ex	sperimental	121
Expe	rimen	tal	123

Chapter Three

Cha	apter	Thre	e			
Syn	Synthesis of New Coordinatively Saturated Ruthenium					
				and Osmium Silyl Complexes	131	
	I.	Rea	ctions	at the Metal Centre of the Five-Coordinate Complexes,		
				$M(SiR_3)Cl(CO)(PPh_3)_2$ (M = Ru, Os)	132	
		Α.	Add	lition of Lewis Bases to M(SiR ₃)Cl(CO)(PPh ₃) ₂	132	
			(a)	Addition of CO and CNR	132	
				(i) Synthesis of $Os(SiR_3)Cl(CO)L(PPh_3)_2$ (L = CO, CNR)	132	
				(ii) Reactivity of Os(SiR ₃)Cl(CO)L(PPh ₃) ₂		
				$(SiR_3 = SiCl_3, SiMe_2Cl; L = CO, CNR)$	140	
			(b)	Addition of an Anionic Bidentate Ligand	142	
			(c)	Addition of a Neutral Bidentate Ligand	148	
		Β.	Silyl	l Ligand Exchange Reactions	150	
	II.	Synt	hesis	of Osmium Silyl Complexes via Oxidative Addition of Silanes		
				to Os(CO) ₂ (PPh ₃) ₃	151	
	Expe	erimen	ital		168	

ix

Chapter Four

Synthesis and Reactivity of

	Tra	nsition Metal Silyl Complexes Containing Thiocarbonyl Ligands	174	
Ι.	Syn	thesis of New Transition Metal Silyl Complexes Containing		
		Thiocarbonyl Ligands, M(SiR ₃)Cl(CS)(PPh ₃) ₂		
		$(M = Ru, Os; SiR_3 = SiMe_2Cl, SiCl_3, SiMe_2OR, SiMe_2OH)$	175	
II.	II. Reactivity of M(SiR ₃)Cl(CS)(PPh ₃) ₂ (M = Ru, Os; SiR ₃ = SiMe ₂ Cl, SiCl ₃)			
	(a)	Substitution at Silicon	179	
	(b)	Migratory Insertion of Silyl and Thiocarbonyl Ligands in Ruthenium		
		and Osmium Complexes	181	
Exp	Experimental			
Chapter	Five			
Synthesis	s and]	Reactivity of New Osmium(IV) Silyl Complexes	205	
I.	Syn	thesis of Os(SiMe ₃)H ₃ (CO)(PPh ₃) ₂	205	
II.	Read	ctivity of Os(SiMe ₃)H ₃ (CO)(PPh ₃) ₂	224	
	(a)	Reactions with Lewis Bases	224	
	(b)	Reactions involving HSiR ₃	225	
	(c)	Reactions involving HSnR ₃	227	
	(d)	Reactions with H-C Bonds	233	
Exp	Experimental			

Chapter Six

Synthesis and Reactivity of Ruthenium and Osmium Hydroxysilyl Complexes			241
Ι.	Hyd	lrolysis Reactions of Ruthenium and Osmium Chlorodimethyl	
		and Trichlorosilyl Complexes	242
	(a)	Preparation of $M[SiMe_2(OH)]Cl(CO)(PPh_3)_2$ (M = Ru, Os)	242
	(b)	Preparation of $M[Si(OH)_3]Cl(CO)(PPh_3)_2$ (M = Ru, Os)	243

х

	II.	Reactivity of Os[SiMe ₂ (OH)]Cl(CO)(PPh ₃) ₂ and Os[Si(OH) ₃]Cl(CO)(PPh ₃) ₂ 2		
		(a)	Reactivity at the Metal Centre	252
		(b)	Substitution Reactions at Silicon	262
	III.	Form	nation of [OsCl(CO)(PPh ₃) ₂ Si(OH) ₂ -] ₂ O	265
		(a)	Preparation of [OsCl(CO)(PPh ₃) ₂ Si(OH) ₂ -] ₂ O	266
		(b)	Reactivity of [OsCl(CO)(PPh ₃) ₂ Si(OH) ₂ -] ₂ O	277
	Expe	riment	al	285
Chap	ter S	Seven		
Concl	usion			289
Refere	ences			292
Ackno	owled	gemei	nts	305

xi

Chapter Two

Table 2.1	Important Bond Lengths (Å) for	
	$Os(SiMe_2C_6H_4PPh_2)(C_6H_4PPh_2)(CO)(PPh_3)$	56
Table 2.2	Important Bond Angles (°) for	
	$Os(SiMe_2C_6H_4PPh_2)(C_6H_4PPh_2)(CO)(PPh_3)$	56
Table 2.3	Ruthenium-Silicon Bond Distances	69
Table 2.4	Important Bond Lengths (Å) for Ru(SiEt ₃)Cl(CO)(PPh ₃) ₂	71
Table 2.5	Important Bond Angles (°) for Ru(SiEt ₃)Cl(CO)(PPh ₃) ₂	71
Table 2.6	Important Bond Lengths (Å) for Os(SiCl ₃)Cl(CO)(PPh ₃) ₂	83
Table 2.7	Important Bond Angles (°) for Os(SiCl ₃)Cl(CO)(PPh ₃) ₂	83
Table 2.8	Osmium-Silicon Bond Distances	86
Table 2.9	Important Bond Lengths (Å) for Os(SiMe ₃)Cl(CO)(PPh ₃) ₂	94
Table 2.10	Important Bond Angles (°) for Os(SiMe ₃)Cl(CO)(PPh ₃) ₂	94
Table 2.11	Important Bond Lengths (Å) for Ru[Si(OEt)3]Cl(CO)(PPh3)2	100
Table 2.12	Important Bond Angles (°) for Ru[Si(OEt) ₃]Cl(CO)(PPh ₃) ₂	100
Table 2.14	IR Spectral Data for Compounds reported in Chapter Two	112
Table 2.15	¹ H NMR Spectral Data for Compounds reported in Chapter Two	114
Table 2.16	²⁹ Si NMR Spectral Data for Selected Compounds reported in Chapter Two	116
Table 2.17	¹³ C NMR Spectral Data for Compounds reported in Chapter Two	117
Table 2.18	³¹ P NMR Spectral Data for Compounds reported in Chapter Two	119

Chapter Three

Table 3.1	Important Bond Lengths (Å) for Ru(SiEt ₃)(η^2 -S ₂ CNMe ₂)(CO)(PPh ₃) ₂	147
Table 3.2	Important Bond Angles (°) for $Ru(SiEt_3)(\eta^2-S_2CNMe_2)(CO)(PPh_3)_2$	147
Table 3.3	Important Bond Lengths (Å) for Os(SiEt ₃)H(CO) ₂ (PPh ₃) ₂	155
Table 3.4	Important Bond Angles (°) for Os(SiEt ₃)H(CO) ₂ (PPh ₃) ₂	155
Table 3.5	IR Spectral Data for Compounds reported in Chapter Three	160
Table 3.6	¹ H NMR Spectral Data for Compounds reported in Chapter Three	162
Table 3.7	¹³ C NMR Spectral Data for Compounds reported in Chapter Three	164
Table 3.8	³¹ P NMR Spectral Data for Compounds reported in Chapter Three	167

Chapter Four

Table 4.1	Important Bond Lengths (Å) for $Ru[\eta^2-C(S)SiMe_2OEt]Cl(CO)(PPh_3)_2$	192
Table 4.2	Important Bond Angles (°) for $Ru[\eta^2-C(S)SiMe_2OEt]Cl(CO)(PPh_3)_2$	192
Table 4.3	IR Spectral Data for Compounds reported in Chapter Four	196
Table 4.4	¹ H NMR Spectral Data for Compounds reported in Chapter Four	197
Table 4.5	¹³ C NMR Spectral Data for Compounds reported in Chapter Four	198
Table 4.6	³¹ P NMR Spectral Data for Compounds reported in Chapter Four	200

Chapter Five

Table 5.1	Important Bond Lengths (Å) for Os(SiMe ₃)H ₃ (CO)(PPh ₃) ₂	210
Table 5.2	Important Bond Angles (°) for Os(SiMe ₃)H ₃ (CO)(PPh ₃) ₂	210
Table 5.3	T_1 values observed for Os(SiR ₃)H ₃ (CO)(PPh ₃) ₃ (R = Me, Et, Ph)	213
Table 5.4	T_1 values observed for $Os[Sn(p-tolyl)_3]_2H_2(CO)(PPh_3)_2$	228
Table 5.5	IR Spectral Data for Compounds reported in Chapter Five	236
Table 5.6	¹ H NMR Spectral Data for Compounds reported in Chapter Five	237
Table 5.7	³¹ P NMR Spectral Data for Compounds reported in Chapter Five	237
Table 5.8	¹³ C NMR Spectral Data for Compounds reported in Chapter Five	238

xiii

Chapter Six

Table 6.1	Important Bond Lengths (Å) for Os[Si(OH)3]Cl(CO)(PPh3)2	248
Table 6.2	Important Bond Angles (°) for Os[Si(OH)3]Cl(CO)(PPh3)2	248
Table 6.3	Important Bond Lengths (Å) for Os[Si(OH)3]Cl(CO)2(PPh3)2	257
Table 6.4	Important Bond Angles (°) for Os[Si(OH) ₃]Cl(CO) ₂ (PPh ₃) ₂	257
Table 6.5	Important Bond Lengths (Å) for [OsCl(CO)(PPh ₃) ₂ Si(OH) ₂ -] ₂ O	271
Table 6.6	Important Bond Angles (°) for [OsCl(CO)(PPh ₃) ₂ Si(OH) ₂ -] ₂ O	272
Table 6.7	IR Spectral Data for Compounds reported in Chapter Six	279
Table 6.8	¹ H NMR Spectral Data for Compounds reported in Chapter Six	280
Table 6.9	¹³ C NMR Spectral Data for Compounds reported in Chapter Six	281
Table 6.10	³¹ P NMR Spectral Data for Compounds reported in Chapter Six	283
Table 6.11	²⁹ Si NMR Spectral Data for Selected Compounds reported in Chapter Six	284

xiv

Chapter Two

Figure 2.1	Inner Coordination Sphere of Os(SiMe ₂ C ₆ H ₄ PPh ₂)(C ₆ H ₄ PPh ₂)(CO)(PPh ₃)	55
Figure 2.2	Molecular Geometry of Ru(SiEt ₃)Cl(CO)(PPh ₃) ₂	70
Figure 2.3	Inner Coordination Sphere of Os(SiCl ₃)Cl(CO)(PPh ₃) ₂	82
Figure 2.4	Inner Coordination Sphere of Os(SiMe ₃)Cl(CO)(PPh ₃) ₂	93
Figure 2.5	Inner Coordination Sphere of Ru[Si(OEt) ₃]Cl(CO)(PPh ₃) ₂	99
Chapter T	`hree	
Figure 3.1	Inner Coordination Sphere of $Ru(SiEt_3)(\eta^2-S_2CNMe_2)(CO)(PPh_3)_2$	146
Figure 3.2	Inner Coordination Sphere of Os(SiEt ₃)H(CO) ₂ (PPh ₃) ₂	154
Chapter F	our	
Figure 4.1	Molecular Geometry of Ru[η ² -C(S)SiMe ₂ OEt]Cl(CO)(PPh ₃) ₂	191
Chapter F	ive	
Figure 5.1	¹ H NMR Hydride Resonances of Os(SiMe ₃)H ₃ (CO)(PPh ₃) ₂ at -50 °C	207
Figure 5.2	Molecular Geometry of Os(SiMe ₃)H ₃ (CO)(PPh ₃) ₂	209
U	T_1 measurement of Os(SiMe ₃)H ₃ (CO)(PPh ₃) ₂ (-50 °C)	209
Figure 5.5	¹ H NMR Hydride Resonances of Os[Sn(<i>p</i> -tolyl) ₃] ₂ H ₂ (CO)(PPh ₃) ₂ at -50 °C	

Chapter Six

Figure 6.1	Molecular Geometry of Os[Si(OH) ₃]Cl(CO)(PPh ₃) ₂	247
Figure 6.2	Molecular Geometry of Os[Si(OH) ₃]Cl(CO) ₂ (PPh ₃) ₂	256
Figure 6.3	Orientation of Molecules of Os[Si(OH)3]Cl(CO)2(PPh3)2	260
Figure 6.4	Intermolecular Hydrogen-Bonding in Os[Si(OH) ₃]Cl(CO) ₂ (PPh ₃) ₂	261
Figure 6.6	Inner Coordination Sphere of [OsCl(CO)(PPh ₃) ₂ Si(OH) ₂ -] ₂ O	270

LIST OF IMPORTANT SCHEMES

Chapter Two

Scheme 2.1	Possible pathways to $Os(SiMe_2C_6H_4PPh_2)(C_6H_4PPh_2)(CO)(PPh_3)$	58
Scheme 2.3	Reactions of Ru(Ph)Cl(CO)(PPh ₃) ₂ with HSiR ₃	64
Scheme 2.4	Proposed pathway for the reaction of MHCl(CO)(PPh ₃) ₃ with chlorosilanes	75
Scheme 2.6	Reactions of Os(Ph)Cl(CO)(PPh ₃) ₂ with HSiR ₃	80
Scheme 2.7	Reactions of $M(SiMe_2Cl)Cl(CO)(PPh_3)_2$ (M = Ru, Os) with nucleophiles	90
Scheme 2.8	Reactions of $M(SiCl_3)Cl(CO)(PPh_3)_2$ (M = Ru, Os) with nucleophiles	90

Chapter Three

Scheme 3.1	Addition of CO to Ru(R)X(CO)(PPh ₃) ₂	134
Scheme 3.2	Reactions of $M(SiR_3)Cl(CO)(PPh_3)_2$ (M = Ru, Os)	
	with CO and CN(p-tolyl)	139

Chapter Four

Scheme 4.1	Formation of $M(SiMe_2Cl)Cl(CS)(PPh_3)_2$ (M = Ru, Os)	
Scheme 4.2	Reactions of $M(SiMe_2Cl)Cl(CS)(PPh_3)_2$ (M = Ru, Os) with nucleophiles	181

Chapter Five

Scheme 5.1	Proposed j	pathway for th	ne formation of Os	(SiMe ₃)H ₃ ($(CO)(PPh_3)_2$	220
------------	------------	----------------	--------------------	--------------------------------------	-----------------	-----

xvii

Chapter Six

Scheme 6.1	Hydrolysis of $M(SiMe_2Cl)Cl(CO)(PPh_3)_2$ and $M(SiCl_3)Cl(CO)(PPh_3)_2$	245
Scheme 6.2	Formation of Os[SiMe ₂ (OH)]Cl(CO) ₂ (PPh ₃) ₂	252
Scheme 6.3	Formation of Os[Si(OH)3]Cl(CO)2(PPh3)2	253
Scheme 6.4	Formation of [OsCl(CO)(PPh ₃) ₂ Si(OH) ₂ -] ₂ O	268
Scheme 6.5	Addition of Lewis Bases to [OsCl(CO)(PPh ₃) ₂ Si(OH) ₂ -] ₂ O	277

LIST OF ABBREVIATIONS

acac	acetylacetonate
anal.	analysis
bipy	2,2'-bipyridine
<i>i</i> Bu	<i>i</i> -butyl
<i>n</i> Bu	<i>n</i> -butyl
^t Bu	<i>t</i> -butyl
Bz	benzyl
COD	cycloocta-1,5-diene
Ср	η ⁵ -cyclopentadienyl
Cp*	η^{5} -pentamethylcyclopentadienyl
Су	cyclohexyl
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
dcpe	1,2-bis(dicyclohexylphosphino)ethane
dimethylbipy	4,4'-dimethyl-2,2'-bipyridine
diphos	1,2-bis(diphenylphosphino)ethane (or another chelating diphosphine)
DME	1,2-dimethoxyethane
dppe	1,2-bis(diphenylphosphino)ethane
dppm	bis(diphenylphosphino)methane
dtbpm	bis(di-tert-butylphosphino)methane
Et	ethyl
Hampy	2-amino-6-methylpyridine
HMPA	hexamethylphosphoric triamide, OP(NMe ₃) ₃
Hz	hertz
m. p.	melting point

Me	methyl
МеСр	η^5 -methylcyclopentadienyl
Mes	mesityl
OTf	triflate
Ph	phenyl
phen	1,10-phenanthroline
iPr	<i>i</i> -propyl
npr	<i>n</i> -propyl
ру	pyridine
S	second
THF	tetrahydrofuran

For clarity, non-IUPAC notation is used in this thesis for the formulae of transition metal silyl complexes which are written with the silyl group directly following the transition metal.