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Abstract

Light and atoms couple together via the electromagnetic interaction. The simplest
form of this interaction is the electric dipole interaction, and in its quantised form it
provides a useful starting point for the investigation of quantum effects in optics. Two
examples of quantum noise manipulation of the light field due to interaction with atoms
will be presented, as well as an analysis of a simple model for laser cooling of trapped
atoms.

The first example of quantum noise manipulation is the investigation of a quantum
non-demolition measurement scheme based on a three-level atomic system in the ladder
configuration. An effective two-level model of the atomic system is used, which enables
the inclusion of spontaneous emission noise from the upper atomic level. The system is
found to perform well, when detuned far from resonance.

The second example is the treatment of squeezing in the intensity difference between
two modes coupled by a three-level atomic system in the ladder configuration. The noise
correlations are similar to those occurring in the optical parametric oscillator, and give
rise to good squeezing when the system is well detuned from the intermediate level.

The simple model of laser cooling consists of a single two-level atom with quantised
centre-of-mass motion constrained to move in a one-dimensional harmonic potential while
interacting with a single-mode classical travelling light field. It is shown that there is an
analogy between this model and the Jaynes-Cummings model. This gives rise to interest-
ing coherent effects including quantum collapses and revivals in the atomic inversion.

Sideband cooling occurs for this model when the light field is tuned to the atom's first
lower vibrational sideband. The strong sideband and Lamb-Dicke perturbation regimes
are defined. Analytic results have previously been obtained for the latter regime, but we
carry out a numerical investigation of the steady state and time evolution behaviour in
the former regime. Differences in the behaviour in the two regimes are discussed. Finally
the possibility of observing quantum jumps between trap levels is discussed.
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