

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

� Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

� Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

� You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form and Deposit Licence.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and
contains no corrections. The print copy, usually available in the University
Library, may contain corrections made by hand, which have been
requested by the supervisor.

https://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
https://researchspace.auckland.ac.nz/docs/uoa-docs/depositlicence.htm

Distributed Algorithms in

Membrane Systems

Yun-Bum Kim

under the supervision of

Dr. Radu Nicolescu and Dr. Michael J. Dinneen

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy in Computer Science,

The University of Auckland, 2012.

ii

Abstract

Membrane systems or P systems are distributed and parallel computing models, in-

spired by the interconnected structure and function of living cells.

This thesis investigates the adequacy of synchronous membrane systems for modelling

a set of fundamental distributed algorithms. This thesis provides a coherent approach

to specify and analyse a certain class of problems related to distributed algorithms.

This thesis presents a set of P algorithms (i.e. algorithms that are implemented using

membrane systems) that are comparable (i.e. not necessarily better, but not much

worse) to the corresponding distributed algorithms, expressed as high-level pseudo-

codes, with respect to time complexity and program-size complexity.

This thesis introduces a new membrane system model. This new model incorporates

features that allow for the reduction of inherent non-determinism (such as allowing

for a total order priority on rule sets), allowing a better control of the rule execution

strategy of the considered distributed algorithms, which are complex and require

clear and well defined threads of execution. This thesis proves that this new model

is Turing complete and universal.

This thesis presents several broadcast- and echo-based P algorithms, as modular

building blocks, for building more complex algorithms. These broadcast- and echo-

based P algorithms have time complexity of e+ k and 2e+ k, respectively, where e is

the eccentricity of a source and k is an integer constant.

Next, this thesis presents two solutions to the firing squad synchronization problem

(FSSP). The first FSSP solution synchronizes digraph-structured P systems in 3e+11

steps, where e is the eccentricity of the general. The second FSSP solution synchro-

nizes tree-structured P systems in h+ 2r+ 5 steps, where h and r are the height and

radius of the tree, respectively.

iii

iv

Finally, this thesis presents solutions to two fundamental problems in graph theory:

the edge- and node-disjoint paths problems. For a given membrane system with n cells

and m links, these solutions find sets of edge- and node-disjoint paths of maximum

cardinality in O(mn) steps. These solutions are the first P algorithms for solving the

edge- and node-disjoint paths problems in membrane systems.

Acknowledgements

I would like to thank my supervisors, Dr. Radu Nicolescu and Dr. Michael J. Dinneen,

for providing me the opportunity to work under their guidance, and for their constant

advice, encouragement and support throughout my PhD program.

I am grateful to Associate Professor John Morris for his advice on general guidelines

on writing research papers and his reviews and comments.

I would like to thank my research colleagues during the period of my study for their

friendship. I would like to also thank the Department of Computer Science of the

University of Auckland for providing all the facilities necessary to conduct my re-

search.

Finally, I would like to thank my family. This work would not have been possible

without their patience, understanding and unconditional support.

v

vi

Contents

1 Introduction 1

1.1 Membrane systems . 1

1.2 Motivation . 3

1.3 Thesis outline . 5

1.4 Publications . 9

2 Membrane Systems 11

2.1 Preliminaries . 12

2.2 Transition P systems . 14

2.3 Extensions and variants . 18

2.4 Simple P systems . 20

2.5 Summary . 25

3 Turing completeness of simple P systems 27

3.1 Register machines . 27

3.1.1 Register machine instructions 28

3.1.2 Input data . 29

3.1.3 Run-time errors . 29

3.1.4 Register machine instructions for GCD algorithm 30

3.2 Universality results . 33

vii

viii CONTENTS

3.2.1 The main cell . 33

3.2.2 The provider cell . 38

3.2.3 Handling of run-time errors 40

3.2.4 Analysis of system ΠM and remarks 41

3.2.5 Constructing system ΠGCD using direct approach 43

3.2.6 Construction of system Π′GCD using indirect approach 44

3.3 Summary . 49

4 Traversal Algorithms in Membrane Systems 51

4.1 Traversal algorithms . 52

4.1.1 Preliminaries . 52

4.2 Tree traversal algorithms . 55

4.2.1 Algorithm: Broadcast with acknowledgement 56

4.2.2 Algorithm: Echo . 60

4.2.3 Algorithm: Tree height . 67

4.3 Graph traversal algorithms . 73

4.3.1 Algorithm: Number of shortest paths 74

4.3.2 Algorithm: Distance parity . 80

4.3.3 Algorithm: Echo for graphs 87

4.3.4 Algorithm: Cell heights . 96

4.4 Summary . 101

5 The Firing Squad Synchronization Problem 103

5.1 Synchronization . 103

5.1.1 Classification of the FSSP . 104

5.1.2 Formulation of the FSSP for simple P systems 104

CONTENTS ix

5.1.3 Motivations . 105

5.2 Phase-based decomposition of the FSSP 106

5.2.1 Algorithm: Phase II—Decrementing hop-counter 107

5.3 Static FSSP solution for graphs . 113

5.3.1 Algorithm: Phase I—Compute general’s eccentricity 115

5.3.2 Algorithm: Phase II—Propagation of the order 117

5.3.3 Summary of Phase I and Phase II 118

5.4 Adaptive FSSP solution for trees . 121

5.4.1 Algorithm: Phase I—Find a tree centre 123

5.4.2 Algorithm: Phase II—Propagation of the order 129

5.4.3 Summary of Phase I and Phase II 129

5.4.4 Experimental work . 132

5.5 Summary . 134

6 The Disjoint Paths Problem 139

6.1 Disjoint paths in digraphs . 140

6.1.1 Preliminaries . 141

6.1.2 Edge-disjoint paths in digraphs 142

6.1.3 Node-disjoint paths in digraphs 145

6.1.4 Pointer management . 146

6.1.5 Structural and search digraphs in membrane systems 147

6.2 Edge-disjoint paths solution . 148

6.2.1 Phase I: Algorithm—Neighbourhood discovery 152

6.2.2 Phase II: Algorithm—Edge-disjoint paths discovery 157

6.3 Node-disjoint paths solution . 161

6.4 Summary . 163

x CONTENTS

7 Conclusions 165

Bibliography 171

List of Figures

2.1 A membrane structure represented as a tree and as a Venn diagram . 14

3.1 Symbol exchanges between the main and provider cells in the READ and

HALT instructions . 40

4.1 A table of graph node attributes . 53

4.2 A sample rooted tree used as an algorithm illustration 56

4.3 Propagation of symbols in Algorithm 4.2.1 (Broadcast with acknowl-

edgement) . 60

4.4 Propagation of symbols in Algorithm 4.2.2 (Echo) 66

4.5 Propagation of symbols in Algorithm 4.2.3 (Tree height) 72

4.6 A table of membrane system cell attributes 74

4.7 Propagation of symbols in Algorithm 4.3.1 (Number of shortest paths) 77

4.8 Propagation of symbols in Algorithm 4.3.2 (Distance parity) 83

4.9 Propagation of symbols in Algorithm 4.3.3 (Graph echo) 95

4.10 Propagation of symbols in Algorithm 4.3.4 (Cell height) 100

5.1 A rooted tree and a graph used as an FSSP solution illustration . . . 107

5.2 Propagation of symbols in Algorithm 5.2.1 (Decrementing hop-counter) 110

5.3 Propagation of symbols in Algorithm 5.3.1 (Compute general’s eccen-

tricity) . 119

xi

xii LIST OF FIGURES

5.4 Propagation of symbols in Algorithm 5.4.1 (Find a tree centre) 124

5.5 Propagation of symbols in Algorithm 5.4.1 (Find a tree centre) for

locating a centre of a tree with two centres 125

5.6 An auxiliary figure for Proposition 5.14. 127

6.1 A maximum set of edge-disjoint paths 141

6.2 Edge- and node-disjoint paths of a graph 141

6.3 Residual digraphs and augmenting paths 143

6.4 The residual digraph of a given digraph 143

6.5 The node-splitting technique . 145

6.6 A set of node-disjoint paths of a graph 146

6.7 Three virtual search digraphs for a simple P system 148

List of Tables

3.1 Comparing system ΠGCD, system Π′GCD and GCD pseudo-code 50

4.1 Traces of Algorithm 4.2.1 (Broadcast with acknowledgement) 59

4.2 Traces of Algorithm 4.2.2 (Echo) . 63

4.3 Traces of Algorithm 4.2.3 (Tree height) 69

4.4 Traces of Algorithm 4.3.1 (Number of shortest paths) 78

4.5 Traces of Algorithm 4.3.2 (Distance parity) 84

4.6 Traces of Algorithm 4.3.3 (Graph echo) 91

4.7 Traces of Algorithm 4.3.4 (Cell height) 98

4.8 Comparing a synchronous distributed broadcast pseudo-code against

Algorithms 4.2.1 (Broadcast with acknowledgement) and 4.3.1 (Num-

ber of shortest paths) . 101

4.9 Comparing a synchronous distributed broadcast pseudo-code against

Algorithms 4.3.1 (Number of shortest paths) and 4.3.2 (Distance parity)101

4.10 Comparing a synchronous distributed echo pseudo-code against Algo-

rithms 4.2.2 (Echo) and 4.2.3 (Tree height) 102

4.11 Comparing a synchronous distributed echo pseudo-code against Algo-

rithms 4.3.3 (Graph echo) and 4.3.4 (Cell heights) 102

5.1 Traces of Algorithm 5.2.1 (Decrementing hop-counter) for a tree . . . 109

5.2 Traces of Algorithm 5.2.1 (Decrementing hop-counter) for a graph . . 110

xiii

xiv LIST OF TABLES

5.3 Traces of Algorithm 5.3.1 (Compute general’s eccentricity) 117

5.4 Traces of Algorithms 5.3.1 and 5.3.2 (Static FSSP solution) 120

5.5 Traces of Algorithms 5.4.1 and 5.4.2 (Adaptive FSSP solution) 131

5.6 Observed reduction in synchronization time of the adaptive FSSP so-

lution over the static FSSP solution 134

5.7 Comparing an FSSP solution of cellular automata against the static

FSSP solution of Definition 5.8 . 137

5.8 Comparing an FSSP solution of cellular automata against the adaptive

FSSP solution of Definition 5.13 . 137

5.9 Comparing a synchronous distributed broadcast pseudo-code against

Algorithm 5.2.1 (Decrementing hop-counter) 138

5.10 Comparing a synchronous distributed echo pseudo-code against Algo-

rithm 5.3.1 (Compute general’s eccentricity) 138

6.1 A set of neighbour pointer symbols 153

6.2 Traces of Algorithm 6.2.1 (Neighbourhood discovery) 156

6.3 A representation of a maximum set of edge-disjoint paths 158

6.4 A representation of a maximum set of node-disjoint paths 162

7.1 Comparing a synchronous distributed broadcast pseudo-code against

Algorithms 4.2.1 (Broadcast with acknowledgement) and 4.3.1 (Num-

ber of shortest paths) . 166

7.2 Comparing a synchronous distributed broadcast pseudo-code against

Algorithms 4.3.1 (Number of shortest paths), 4.3.2 (Distance parity)

and 5.2.1 (Decrementing hop-counter) 166

7.3 Comparing a synchronous distributed echo pseudo-code against Algo-

rithms 4.2.2 (Echo) and 4.2.3 (Tree height) 167

7.4 Comparing a synchronous distributed echo pseudo-code against Algo-

rithms 4.3.3 (Graph echo), 4.3.4 (Cell heights) and 5.3.1 (Compute

general’s eccentricity) . 167

LIST OF TABLES xv

7.5 Comparing an FSSP solution of cellular automata against the static

FSSP solution of Definition 5.8 . 168

7.6 Comparing an FSSP solution of cellular automata against the adaptive

FSSP solution of Definition 5.13 . 168

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Membrane systems

Păun pioneered membrane computing [69], which aims to define computing models,

called membrane systems (or P systems), that abstract computing ideas from the

structure and functioning of a living cell.

Membrane computing is inspired by the observation that a eukaryotic cell is subdi-

vided into several functionally distinct compartments. Further, cells are equipped

with complex distribution systems that transport molecules (contained inside a com-

partment) between compartments. A cell can perform different metabolic activities

simultaneously. Each compartment can perform its own specific function, without in-

terference from other cell functions. Thus, important features that can be identified

from this observation are:

• distributed, in that each compartment carries out its own specific functions,

• intra-compartment-parallelism, in that several reactions can be simultaneously

carried out in each compartment and

• inter-compartment-parallelism, in that several compartments in a cell carry out

their functions simultaneously.

These features are incorporated in the design of membrane systems.

1

2 CHAPTER 1. INTRODUCTION

A membrane system is a distributed and parallel computing model, which consists of a

set of autonomous computing units, called membranes or cells. Typically, membranes

in a membrane system are arranged in (i) a cell-like hierarchical structure, which can

be represented as a rooted tree, or (ii) a tissue-like network structure, which can

be represented as a graph or a directed graph. At each given time, each membrane

contains a multiset of (alphabet of) symbols. Moreover, each membrane is associated

with a finite set of evolution rules that can (i) transform the multiset of symbols

(i.e. consume existing symbols and produce new symbols) and (ii) transfer multisets

of symbols to other neighbouring membranes. A P algorithm is a set of evolution rules,

which is directly executable on a membrane system simulator [33]. In principle, such a

P algorithm should be automatically verifiable by a membrane system verifier [45]—if

these become more practical.

Membrane systems evolve via a non-deterministic maximally parallel use of evolution

rules. Membrane systems are typically synchronized, i.e. a global clock sends a signal

to all membranes of the system, and in each time unit each membrane uses a maximal

multiset of evolution rules. Starting from the initial configuration, a membrane system

repeatedly evolves via the non-deterministic maximally parallel use of evolution rules,

until it reaches a halting configuration, i.e. a configuration where no membrane can

use a rule. Classically, the result of a computation is the final multiplicity of symbols

in a designated membrane, called the output membrane. In our case, we consider

distributed results, where each cell may contain a part of the overall solution.

Broadly speaking, research on membrane systems falls into one of the following three

areas (as described by Nicolescu [56]). For a comprehensive list, refer to Păun et al.’s

survey [70].

• Theory: such as computational completeness (universality) [69, 32, 6, 31, 44,

15, 17, 68], complexity classes (e.g. polynomial solutions to NP-hard prob-

lems [83, 47]) or relationships with other models (e.g. automata, grammar sys-

tems and formal languages).

• Tools: including designers, simulators and verifiers [33, 34, 35, 45].

• Applications: such as computational biology, economics, ecosystem, linguis-

tics and distributed computing [66, 11, 46, 14, 13, 2].

1.2. MOTIVATION 3

1.2 Motivation

The goals of this thesis are to: (i) investigate the adequacy of synchronous membrane

systems for modelling a set of synchronous distributed algorithms and (ii) obtain a

library of fundamental distributed P algorithms. Many studies in membrane systems

have typically focused on obtaining theoretical results. However, there have not been

enough studies that focus on practical applications of membrane systems, especially

on fundamental problems of distributed computing.

To achieve these goals, this thesis presents several P algorithms that are comparable

(i.e. not necessarily better, but not much worse) to:

• the best-known algorithms, with respect to time complexity,

• their corresponding pseudo-code, with respect to program-size complexity (i.e. the

number of instructions or evolution rules).

This thesis shows that, even at a detailed executable level, P algorithms can still

compare favourably against pseudo-codes on the considered criteria.

Solving a distributed problem typically involves the following three phases:

1. Design phase: design a solution in an informal high-level pseudo-code. Pseudo-

code is typically used to sketch an algorithm or program and it only contains

details that are essential for understanding the algorithm or program. However,

pseudo-codes are not executable and not formal.

2. Implementation phase: implement the pseudo-code into an executable solution,

using programming languages. This phase adds many details (that were not

considered in the design phase), which make the output solution long, compli-

cated and difficult to understand.

3. Verification or testing phase: use formal models to verify that the executable

solution satisfies the requirements and specifications. Many formal models are

not directly executable and could be difficult to understand. Software designers

use various types of testing, such as regression testing and performance testing.

4 CHAPTER 1. INTRODUCTION

Membrane systems are formal, executable and can be made comparable to pseudo-

codes, with respect to time and program-size complexities. Most membrane system

models are Turing complete. Hence, theoretically, there exists a P algorithm that

can solve a given computable function. However, we want to look beyond the the-

oretical results (i.e. the mere existence of algorithms) and focus on finding practical

P algorithms that are comparable to the best-known algorithms.

As typically defined, several versions of membrane systems, such as tissue P sys-

tems [51] and hyperdag P systems [58], can represent distributed systems with the

following characteristics:

• communication is synchronous,

• all messages are transferred reliably, without being modified or lost,

• messages are transferred both one-to-one (i.e. unicast) and one-to-many (i.e. broad-

cast) manner and

• no collisions of messages that are sent at the same time over the same channel.

This may or may not be enough to efficiently use membrane systems as practical tools

for modelling distributed systems and algorithms. This thesis provides substantial

evidence to support positive answers to the following questions, provided that we

adopt a few extensions to the basic membrane system framework, which make it

more practical, without extending its theoretical power.

• Is it natural to model distributed systems using membrane systems?

• Can we use membranes to represent autonomous nodes in a distributed algo-

rithm?

• Can we use multiset of symbols to practically model crucial data required by

distributed algorithms?

• Can evolution rules play the role of instructions?

• Can we adequately model distributed message passing as multiset symbol trans-

fer?

1.3. THESIS OUTLINE 5

This thesis is also a first step towards creating a library of fundamental P algorithms

that could be useful for building other P algorithms, i.e. providing software support

(fundamental algorithms) to distributed systems (membrane systems).

1.3 Thesis outline

Chapter 2: Membrane system models

In the original membrane system [69], cells are arranged in a rooted tree structure

and evolution rules are applied in a non-deterministic and maximal manner. These

membrane system characteristics may not be suitable for designing deterministic dis-

tributed algorithms. Several extended features were introduced, which:

1. generalize the cell structure [51, 44], from rooted trees to directed graphs,

2. provide more dynamic ways of using evolution rules (e.g. rewriting modes [51,

23] and membrane polarization [64]) and

3. reduce the level of non-determinism in using evolution rules (e.g. priorities [63]).

This chapter starts with a survey of a membrane system (called a transition P sys-

tem [64]) and discusses several extended features. This chapter continues to an in-

troduction of a new membrane system, called a simple P system, which incorporates

features, such as generalized cell structure, rewriting modes and priorities. Simple

P systems will be used to study distributed algorithms in the following chapters.

Chapter 3: Turing completeness of simple P systems

In membrane systems, many studies have focused on obtaining small universal com-

puting devices [6, 31, 44, 17, 68, 15]. Some of these universality results are ob-

tained by constructing membrane systems that can simulate a universal register ma-

chine [31, 17]. Moreover, these results have used a register machine model that stores

instructions and input data in its registers. In a READ-enhanced register machine

model [9], the input data, which is not stored in the registers, is accessed using READ

instructions.

6 CHAPTER 1. INTRODUCTION

This chapter proves that simple P systems, introduced in Chapter 2, are Turing

complete (i.e. can compute anything a Turing machine [53, 42, 74] can compute) and

universal (i.e. can simulate an arbitrary Turing machine with input), by showing that

simple P systems can simulate all READ-enhanced register machines. There are two

approaches for obtaining a simple P system, Π, that computes a given function:

1. Direct approach: Specify a set of evolution rules, symbols and states of system

Π and prove its correctness.

2. Indirect (or translated) approach: First obtain a register machine, M (and

its register machine instructions), that computes the function. Then, transform

register machine M into a functionally equivalent system Π, such that Π can

simulate M .

However, in general, using the indirect approach to produce a membrane system

could have unwanted consequences. A register machine is a single computing unit

that executes a list of instructions in sequence. However, membrane systems consist

of several autonomous computing units that simultaneously use evolution rules in

parallel. Hence, a membrane system, produced by transforming a register machine,

may not use the maximal parallel processing capabilities. Further, this transformation

may introduce additional auxiliary cells, symbols or evolution rules, which could

increase the time complexity of the system without any benefit. Thus, considering

the goals of this thesis, the direct approach is adopted in the succeeding chapters.

Chapter 4: Traversal algorithms in membrane systems

The study of distributed algorithms in membrane systems has been initiated by

Ciobanu et al. [13, 14]. They present basic distributed algorithms, such as broad-

cast and convergecast, in pseudo-code, without explicit evolution rules.

This thesis extends Ciobanu et al.’s research by identifying and removing the follow-

ing limitations. First, Ciobanu et al.’s distributed algorithms are restricted to tree

structures, hence, due to additional challenges present in digraphs, these algorithms

are not applicable to general digraph-structured membrane systems (such as tissue

P systems [51] and hyperdag P systems [58, 57]). Second, presenting algorithms with

1.3. THESIS OUTLINE 7

pseudo-code (instead of explicit evolution rules) overlooks many of the challenges that

are associated in design of the algorithms. Discovering and addressing the membrane

system specific features that are used to overcome the challenges could highlight and

demonstrate their adequacy. Moreover, we propose and introduce new membrane sys-

tem features, when the existing features cannot overcome the challenges effectively.

This chapter presents several fundamental traversal algorithms, such as broadcast,

echo and structure height, for tree- and digraph-structured simple P systems. Each

of these traversal algorithms is completely defined with explicit evolution rules. Con-

ceptually, these algorithms form a library of modular building blocks, used to build

the more complex algorithms presented in Chapters 5 and 6. Modularity is a tech-

nique that solves a complex problem by: (i) subdividing the problem into simpler

sub-problems, (ii) developing and testing the sub-problems separately and (ii) assem-

bling the results of the sub-problems.

Chapter 5: The firing squad synchronization problem

The firing squad synchronization problem (FSSP), originally proposed by Myhill in

1957, is one of the most studied problems for cellular automata. The original problem

involves constructing a one-dimensional cellular automaton, such that the left-most

(or right-most) cell (“general”) causes all the other cells (“soldiers”) to enter a desig-

nated state (firing state), simultaneously and for the first time.

The FSSP has recently been studied in a framework of membrane systems, specifically

for tree-structured membrane systems. Bernardini et al. [7] (2008) provided a first

deterministic algorithm that synchronizes a transition P systems with polarization and

priority in 4n+ 2h steps, where h is the height of the underlying tree structure and n

is the number of membranes. Later, Alhazov et al. [1] (2008) provided a deterministic

algorithm that synchronizes a transition P systems with promoters and inhibitors in

3h+ 3 steps.

In both FSSP solutions, (i) the height of the tree is determined, then (ii) a decre-

menting counter (initially set to the tree height) is broadcast from the tree root to all

tree nodes; the current value of the decrementing counter corresponds to the number

of remaining steps before synchronization occurs. Bernardini et al. and Alhazov et

al. used a depth-first search (DFS) and a breadth-first search (BFS) to determine

8 CHAPTER 1. INTRODUCTION

the tree height, respectively. The FSSP solution of Alhazov et al. concluded that

using a BFS approach (which uses the parallelism available in membrane systems)

can provide a more efficient solution (than a DFS approach) to the FSSP.

However, both FSSP solutions did not consider finding a tree centre and sending out

the decrementing counter (initially set to the height of this centre) from this centre;

finding a centre of a given structure is a common strategy used in cellular automata

for solving the FSSP. Further, both FSSP solutions are designed for tree structures,

hence may not synchronize digraph-structured membrane systems, such as neural

P systems [63] and tissue P systems [51].

This chapter presents three results on membrane systems synchronization [26, 27, 25,

21]. First a deterministic algorithm that synchronizes a digraph-structured simple

P system Π in 3e+11 steps, where e is the eccentricity of the general in the underlying

graph of Π, is discussed. Next, two adaptive algorithms that delegate the role of

the general towards a digraph centre, are discussed. The first adaptive algorithm

synchronizes a tree-structured simple P system Π in h + 2r + 5 steps, where h and

r are the height and radius of the tree of system Π. The second adaptive algorithm

synchronizes a digraph-structured simple P system Π in e + 2r′ + 5 steps, where r′

is the radius of a spanning tree of the underlying graph of system Π and e is the

eccentricity of the general in the underlying graph of system Π.

Chapter 6: Disjoint paths problem

Two fundamental problems in graph theory are:

1. The edge-disjoint paths problem: find the maximum number of paths from a

source node to a target node, that have no edge in common.

2. The node-disjoint paths problem: find the maximum number of paths from a

source node to a target node that have no other node in common, except the

source and target nodes.

Maximum flow algorithms (with edge capacities of one), together with the augmenting

path technique [75], was used to solve the edge-disjoint paths problem of a given

1.4. PUBLICATIONS 9

network. Further, an edge-disjoint paths algorithm, together with the node splitting

technique [77], was used to solve the node-disjoint paths problem.

This chapter presents native membrane system versions of the edge- and node-disjoint

paths problems [22]. For a simple P system with n cells and m edges, the edge- and

node-disjoint paths P algorithms presented in this chapter take O(mn) steps. These

P algorithms are based on the standard depth-first search maximum flow algorithms

(by Ford and Fulkerson [48]) with additional constraints, such as (i) no structural

information is available initially and (ii) each membrane system cell has to learn its

immediate neighbours.

Chapter 7: Conclusions and future work

This chapter includes some final remarks and possible future work.

1.4 Publications

Journal articles:

1. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. Faster synchroniza-

tion in P systems. Natural Computing, 11:107–115, 2012.

2. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. P systems and the

Byzantine agreement. Journal of Logic and Algebraic Programming, 79(6):334–

349, 2010.

3. Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Towards structured

modelling with hyperdag P systems. International Journal of Computers, Com-

munications and Control, 2:209–222, 2010.

Conference proceedings and revised selected papers:

1. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. An adaptive algo-

rithm for P system synchronization. In Marian Gheorghe, Gheorghe Păun,

Grzegorz Rozenberg, Arto Salomaa, and Sergey Verlan, editors, Int. Conf. on

10 CHAPTER 1. INTRODUCTION

Membrane Computing, volume 7184 of Lecture Notes in Computer Science,

pages 139–164. Springer, 2011.

2. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. Edge- and node-

disjoint paths in P systems. Electronic Proceedings in Theoretical Computer

Science, 40:121–141, 2010.

3. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. A faster P solution

for the Byzantine agreement problem. In Marian Gheorghe, Thomas Hinze, and

Gheorghe Păun, editors, Conference on Membrane Computing, volume 6501 of

Lecture Notes in Computer Science, pages 175–197. Springer-Verlag, Berlin

Heidelberg, 2010.

4. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. Synchronization in

P modules. In Cristian S. Calude, Masami Hagiya, Kenichi Morita, Grzegorz

Rozenberg, and Jon Timmis, editors, Unconventional Computation, volume

6079 of Lecture Notes in Computer Science, pages 32–44. Springer-Verlag,

Berlin Heidelberg, 2010.

5. Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. New solutions to

the firing squad synchronization problems for neural and hyperdag P systems.

Electronic Proceedings in Theoretical Computer Science, 11:107–122, 2009.

6. Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Discovering the mem-

brane topology of hyperdag P systems. In Gheorghe Păun, Mario J. Pérez-

Jiménez, Agust́ın Riscos-Núñez, Grzegorz Rozenberg, and Arto Salomaa, ed-

itors, Workshop on Membrane Computing, volume 5957 of Lecture Notes in

Computer Science, pages 410–435. Springer-Verlag, 2009.

Technical report:

1. Michael J. Dinneen and Yun-Bum Kim. A new universality result on P sys-

tems. Report CDMTCS-423, Centre for Discrete Mathematics and Theoretical

Computer Science, University of Auckland, Auckland, New Zealand, July 2012.

Chapter 2

Membrane Systems

Membrane systems [64] are distributed and parallel computing models, abstracted

from the functioning and structure of living cells. Several variant membrane systems

were introduced [62, 51, 5, 44], which share the basic components of the original

P system, but with conflicting definitions for their extended features. Moreover,

the existing features do not seem to provide sufficient flexibility for constructing

P algorithms to model various distributed algorithms, due to use of global and fixed

multiset rewrite and transfer modes.

This chapter introduces a new membrane system model, called a simple P system,

which incorporates several extended features that seem useful and necessary for mod-

elling distributed algorithms. Simple P systems are used in the design and specifica-

tion of distributed algorithms in the following chapters.

This chapter is organized as follows. Section 2.1 presents some basic definitions of

graphs, strings and multisets. Section 2.2 presents a formal definition of transition

P systems. Section 2.3 presents several extended features that are introduced in

membrane systems. Section 2.4 introduces a formal definition of simple P systems

(this model is derived from transition P systems and it incorporates several extended

features, described in Section 2.3). Section 2.5 provides a summary of the new features

of simple P systems.

11

12 CHAPTER 2. MEMBRANE SYSTEMS

2.1 Preliminaries

This section covers several key mathematical concepts that are used in this thesis,

such as sets, strings, multisets, graphs and trees.

Strings and multisets

A set is a group of distinct objects called elements. An alphabet is a finite non-empty

set with elements called symbols. A string over alphabet O is a finite sequence of

symbols from O. The set of all strings over O is denoted by O∗. The length of a string

x ∈ O∗, denoted by |x|, is the number of symbols in x. The number of occurrences of

a symbol o ∈ O in a string x over O is denoted by |x|o. The empty string is denoted

by λ.

A multiset is a set with multiplicities associated with its elements; we represent a

multiset in the form of a string. The empty multiset is represented by λ. The size

of a multiset v is denoted by |v|. The multiplicity of a symbol o ∈ O in a multiset v

is denoted by |v|o. The multiplicity of a multiset u ∈ O∗ in a multiset v is denoted

by |v|u. Consider two multisets v ∈ O∗ and w ∈ O∗. We say that w is included in v,

denoted by w ⊆ v, if, for all o ∈ O, |w|o ≤ |v|o. The union of v and w, denoted by

v∪w, is a multiset x, such that, for all o ∈ O, |x|o = |v|o+ |w|o. The intersection of v

and w, denoted by v∩w, is a multiset x, such that, for all o ∈ O, |x|o = min{|v|o, |w|o}.
If w ⊆ v, then the difference of v and w, denoted by v−w, is a multiset x, such that,

for all o ∈ O, |x|o = |v|o − |w|o. The product of v by k ≥ 1, denoted by v ⊗ k, is a

multiset x, such that, for all o ∈ O, |x|o = |v|o · k.

A multiset rewriting rule is of the form u→ v, where u ∈ O∗ and v ∈ O∗ are multisets.

Given a multiset w ∈ O∗, a rule u → v is applicable, if u ⊆ w. One application of

the rule u → v on multiset w transforms w to multiset w′, such that, for all o ∈ O,

|w′|o = |w|o − |u|o + |v|o.

Graphs

A (binary) relation R over two sets X and Y is a subset of their Cartesian product,

R ⊆ X × Y . For A ⊆ X and B ⊆ Y , we set R(A) = {y ∈ Y | ∃x ∈ A, (x, y) ∈ R},

2.1. PRELIMINARIES 13

R−1(B) = {x ∈ X | ∃y ∈ B, (x, y) ∈ R}.

A graph is an ordered pair (V,E), where V is a finite set of elements called nodes (or

vertices) and E is a set of unordered pairs of V called edges. The order of a graph

(V,E) is |V |. The size of a graph (V,E) is |E|. A path of length n− 1 is a sequence

of n nodes, v1, v2, . . . , vn, such that {(v1, v2), . . . , (vn−1, vn)} ⊆ E. A simple path is

a path that does not repeat any node. A tree is a graph in which, for every pair of

nodes, there is exactly one simple path between them.

A graph is connected, if there exists a path between every pair of nodes. Given a

connected graph G = (V,E), the eccentricity of a node v ∈ V is the maximum of the

lengths of shortest paths between v and any other node. The diameter of a graph

is the maximum eccentricity of all nodes in the graph. The radius of a graph is

the minimum eccentricity of all nodes in the graph. A central node of a graph is a

node that has its eccentricity equal to the radius of the graph. A spanning tree of a

connected graph (V,E) is a tree T = (V,E ′), where E ′ ⊆ E.

Consider graphs G = (V,E) and H = (V ′, E ′). An isomorphism of G to H is a

bijection α : V → V ′ matching up the nodes, so that {v, w} is an edge of G if and

only if {α(v), α(w)} is an edge of H. Two graphs G and H are isomorphic, if there

is an isomorphism α of one onto the other.

A directed graph (digraph) is a pair (V,A), where V is a finite set of elements called

nodes (or vertices), and A is a set of ordered pairs of V called arcs, i.e. A is a binary

relation on V × V . Given a digraph D = (V,A), for v ∈ V , the parents of v are

A−1(v) = A−1({v}) = {w ∈ V | ∃w ∈ V, (w, v) ∈ A} and the children of v are

A(v) = A({v}) = {w ∈ V | ∃w ∈ V, (v, w) ∈ A}. A directed path of length n− 1 is a

sequence of n nodes, v1, v2, . . . , vn, such that {(v1, v2), . . . , (vn−1, vn)} ⊆ A. A directed

cycle is a directed path, v1, v2, . . . , vn, where n ≥ 1 and (vn, v1) ∈ A. The underlying

graph of a given digraph is a graph, which is obtained by replacing every directed

arc with an undirected edge. A directed graph is strongly connected, if there exists a

directed path between every pair of nodes. A directed graph is weakly connected, if

its underlying graph is connected.

A directed acyclic graph (DAG) is a digraph without directed cycles. A rooted tree is

a DAG that has exactly one node without a parent (called the root) and every other

node has a unique parent. A leaf in a rooted tree is a node without a child. An

14 CHAPTER 2. MEMBRANE SYSTEMS

internal node in a rooted tree is a node that has a child. The subtree of node v in a

rooted tree is the tree that consists of v and all the nodes that have a path from v.

The height of node v in a rooted tree is the length of the longest directed path from

v to a leaf.

2.2 Transition P systems

An essential feature of a membrane system is the membrane structure, a (cell-like)

hierarchical arrangement of a set of membranes. A region of a membrane is a space de-

limited by the membrane, i.e. the interior of a simple closed curve (Jordan curves [10]).

Regions represent various compartments in a cell and each region contains a multiset

of symbols (i.e. contents).

Regions can contain several membranes inside. Assume that⊂ denotes strict inclusion

and ri denotes the region of a membrane mi. A region ri is contained in a region rj, if

ri ⊂ rj. Moreover, a region ri is directly contained in a region rj, if ri ⊂ rj and there

is no region rk, such that ri ⊂ rk ⊂ rj. If a membrane mi is directly contained in a

membrane mj, then mi is a child membrane of mj and mj is the parent membrane

of mi. A membrane without a parent membrane is called the skin membrane. A

membrane without a child membrane is called an elementary membrane.

2 3 4

5 6 7

8 9

1

1
2

3

4
5

6

7

8 9

regions

elementary

skin

membranes

Figure 2.1: A membrane structure represented as a tree and as a Venn diagram.

Membrane structures are often represented as a Venn diagram and a rooted tree.

Figure 2.1 [64] illustrates a membrane structure with nine membranes, labelled as

2.2. TRANSITION P SYSTEMS 15

1, 2, . . . , 9, both as a rooted tree and as a Venn diagram.

Consider a multiset rewriting rule of the form u→ v, where u and v are multisets. In

the evolution rules of membrane systems, the communication between membranes,

i.e. passing symbols between membranes, is incorporated in the multiset rewriting

rules by specifying target indications (i.e. �, ↑, ↓) to each produced symbol of v,

where � indicates that the produced symbol remains in the current membrane, ↑
indicates that the produced symbol moves up to the parent membrane and ↓ indi-

cates that the produced symbol moves down to a non-deterministically chosen child

membrane. Multiset rewriting rules that are generalized with target indications are

called transition multiset rewriting rules.

A transition P system, defined in Definition 2.1, is a membrane system based on

transition multiset rewriting rules.

Definition 2.1. (Transition P system) A transition P system [63] (of order n ≥ 1)

is a construct of the form:

Π = (O,C, µ, w1, w2, . . . , wn, R1, R2, . . . , Rn, io)

where

1. O is the finite and non-empty alphabet of symbols;

2. C ⊂ O is the set of catalysts;

3. µ is a membrane structure, a rooted tree consisting of n membranes, labelled

with σ1, σ2, . . . , σn;

4. wi ∈ O∗, for 1 ≤ i ≤ n, is a multiset of symbols present in σi, called the

contents ;

5. Ri, for 1 ≤ i ≤ n, is a finite set of evolution rules that are associated with

membrane σi; an evolution rule r ∈ Ri is a transition multiset rewriting rule

of the form r = u → v, where u ∈ O+ (denoted by LHS(r)) and v ∈ (O × τ)∗

(denoted by RHS(r)), where target indication τ ∈ {�, ↑, ↓};

6. io the label of membrane σi of µ that presents the output membrane, i.e. a

membrane that can send multisets to the “environment”.

16 CHAPTER 2. MEMBRANE SYSTEMS

In each time unit, membranes evolve by applying evolution rules in a non-deterministic

and maximally parallel manner. First, symbols inside a region are assigned to (non-

deterministically) chosen evolution rules, such that no further assignment can be

made using the remaining unassigned symbols. Then, the assigned evolution rules

are applied in parallel: two levels of parallelism during the execution of the step,

where (i) all membranes simultaneously apply the selected evolution rules (ii) each

membrane applies its selected evolution rules in parallel.

Definition 2.2. (A maximal multiset of evolution rules) For each membrane

σi, 1 ≤ i ≤ n, a maximal multiset of evolution rules is Mi ∈ R∗i , such that⋃
r∈Mi

LHS(r) ⊆ wi

where:

1. For each rule r ∈Mi, if ∆(i) = ∅, then (o, ↓) /∈ RHS(r), for all o ∈ O.

2. There is no rule r′ ∈ Ri, such that

LHS(r′) ∪
⋃
r∈Mi

LHS(r) ⊆ wi

Definition 2.3. (Execution of evolution rules) For each membrane σi, 1 ≤ i ≤ n,

consider a maximal multiset of evolution rules, Mi, found according to Definition 2.2.

For membrane σi, multisets Ui, Vi, V
↑
i and V ↓ki (where σk is a child of σi) are defined

as follows.

• Ui =
⋃
r∈Mi

LHS(r),

• Vi =
⋃
r∈Mi

⋃
(o,�)∈RHS(r){o},

• V ↑i =
⋃
r∈Mi

⋃
(o,↑)∈RHS(r){o}.

• V ↓ki =
⋃
r∈Mi

⋃
(o,↓)∈RHS(r){o}, where σk is a child that σi non-deterministically

chosen to send symbol o.

2.2. TRANSITION P SYSTEMS 17

Each membrane σi, 1 ≤ i ≤ n, transforms its content wi to w′i, where

w′i = wi − Ui ∪ Vi ∪
⋃

h∈A(i)

V ↑h ∪
⋃

f∈A−1(i)

V ↓if

A configuration of a membrane system is identified by (i) the membrane structure

and (ii) the multiset of symbols available inside each membrane.

Definition 2.4. (Configuration) A configuration of a transition P system of order

n is an n-tuple of the form (w1, w2, . . . , wn), where, for 1 ≤ i ≤ n, wi is the current

content of membrane σi.

A transition is a transformation of a configuration (in one time unit), obtained by ap-

plying the evolution rules inside each membrane in a non-deterministic and maximally

parallel manner. A computation in a membrane system is a sequence of transitions,

starting from an initial configuration (i.e. the membrane structure and the multisets

of symbols available inside each membrane at the beginning of a computation).

Definition 2.5. (Transition) Consider two configurations of a transition P system

Π of order n, C ′ = (w′1, w
′
2, . . . , w

′
n) and C ′′ = (w′′1 , w

′′
2 , . . . , w

′′
n). A transition in

system Π is a transformation from C ′ to C ′′ in one time unit, denoted by C ′ ⇒ C ′′,

such that C ′′ is obtained from C ′. A transition C ′ ⇒ C ′′ consists of two substeps

(substep 1 and substep 2); all membranes simultaneously perform substep 2, after

every membrane has finished substep 1.

1. Substep 1: Each membrane σi, 1 ≤ i ≤ n, finds a (maximal) multiset of

evolution rules, Mi, as defined in Definition 2.2.

2. Substep 2: Each membrane σi, 1 ≤ i ≤ n, executes a multiset of evolution

rules found in substep 1, Mi, as defined in Definition 2.3,

A computation halts, if it reaches a configuration (called the halting configuration),

where no evolution rule can be applied to the existing symbols inside all membranes.

The output of a halted computation is defined by the number of symbols present inside

a designated membrane (called the output membrane) in the halting configuration.

18 CHAPTER 2. MEMBRANE SYSTEMS

Definition 2.6. (Halting and results) A transition P system Π halts, if no more

transitions are possible in Π. For a halted transition P system Π, the computational

result is the multiset of symbols that are contained inside the output membrane io.

2.3 Extensions and variants

This section presents several extensions and variants introduced in membrane systems.

Generalized membrane structure

Neural P systems [63] (and tissue P systems [51]) generalize the structure of a mem-

brane system from a (cell-like) hierarchical arrangement of membranes to a (tissue-

like) net of cells, where cells are placed in the nodes of an arbitrary digraph. In tissue

P systems, the direction of structural arcs represent the direction of unidirectional

communication; given a structural arc (σi, σj), cell σi can communicate (i.e. transfer

symbols) to cell σj, but σj cannot communicate to σi.

Priority

This extension considers a total order (≤) on the set of evolution rules. There are

two interpretations of priority: strong priority and weak priority.

• Strong priority scheme: In the strong interpretation of the priority, if a

higher priority rule was applied, then a lower priority rule cannot be applied

at all. That is, in every transition, each cell applies the applicable rule with

the maximal priority. More precisely, in the first substep, the applicable rule

with the maximal priority assigns as many symbols as possible. The remaining

unassigned symbols remain unassigned in the current step, even if there are

other applicable rules.

• Weak priority scheme: In the weak interpretation of the priority, rules are

applied in decreasing order of their priorities—where a lower priority rule can

only be applied after all higher priority rules have been applied (as required by

2.3. EXTENSIONS AND VARIANTS 19

the rewriting modes). More precisely, in the first substep, the applicable rule

with the maximal priority assigns as many symbols as possible. We repeat the

following on the remaining unassigned symbols, until there is no applicable rule.

The remaining unassigned symbols are assigned, as many symbols as possible,

by the next rule in the decreasing priority order.

Example 2.7. Assume that, at step t, a cell σi has content wi = a4b2c3 and has set

of evolution rules with priorities {r1, r2, r3}, where r1 = 1 ab → c, r2 = 2 a → ab

and r3 = 3 cc → b. Under the strong priority scheme, at step t + 1, cell σi applies

rule r1 twice and does not apply other rules; only the applicable rule with the highest

priority is applied. After step t+ 1, σi ends with content wi = a2c5. Under the weak

priority scheme, at step t + 1, cell σi applies: (i) rule r1 twice, (ii) rule r2 twice and

(iii) rule r3 once. After step t+ 1, σi ends with content wi = a2b3c3.

Cell states

Cell states are introduced in neural P systems [63] (and tissue P systems [51]). Each

cell possesses a state, as well as contents and rules, which are used, together with

contents, to control the applications of evolution rules. Consider an evolution rule of

a transition P system, r = u → v. An evolution rule r with cell states s and s′ has

the form

r = s u→ s′ v

where s and s′ are called the source and target states of rule r, respectively.

Presence of states in an evolution rule introduces additional conditions in the appli-

cation of rules. A cell executing rule r must be in state s. Further, if several rules

are executed together, then all these rules must have the same target state. A cell

transforms its current cell state s to s′ by executing rule r.

Example 2.8. Assume that, at step t, a cell σi is in state s, has content wi = a4b2c3

and has set of evolution rules {r1, r2, r3}, where r1 = s ab → s′ c, r2 = s a → s′′ ab

and r3 = s′ cc→ s′′ b. At step t+ 1, cell σi cannot apply rule r3, because the source

state of rule r3 does not equal σi’s current state. At step t + 1, cell σi can either

apply: (i) rule r1 twice or (ii) rule r2 four times; σi cannot apply rule r1 together with

20 CHAPTER 2. MEMBRANE SYSTEMS

rule r2, because rules r1 and r2 have different target state. If cell σi applies rule r1

twice at step t+ 1, then σi will end in state s′ with content wi = a2c5.

Rewriting operators

Neural P systems [63] (and tissue P systems [51]) introduced rewriting operators

(min, par, max) that provide alternative ways to apply evolution rules. At the initial

configuration of a system Π, one of these operators is chosen and is adopted by all

cells of Π. Operator min restricts each cell to select one applicable evolution rule and

apply it once. Operator par restricts each each cell to select one applicable evolution

rule and apply it as many times as possible. Operator max allows each cell σi to select

and apply evolution rules as defined in Definitions 2.2 and 2.3, respectively.

Hyperdag P systems [58] generalized these rewriting operators by specifying a rewrit-

ing operator for each cell. Then, P modules [24, 23] further generalized these rewrit-

ing operators by specifying a rewriting operator for each evolution rule; note, only

min and max operators are considered. An evolution rule r with rewriting operators

α ∈ {min, max} is of the form

r = u→α v

where: (i) if α = min, then rule r is applied once, and (ii) if α = max, then rule r is

applied as many times as possible.

Example 2.9. Assume that, at step t, a cell σi has content wi = a4b2c3 and set of

evolution rules {r1, r2, r3}, where r1 = ab→max c, r2 = a→min ab and r3 = cc→max b.

At step t+ 1, cell σi applies: (i) rule r1 twice, (ii) rule r2 once and (iii) rule r3 once.

Cell σi can only execute rule r2 once at step t+ 1, because the rewriting mode of rule

r2 is set to min. After step t+ 1, cell σi ends with content wi = a2b2c3.

2.4 Simple P systems

Simple P systems incorporate several extended features described in Section 2.3, such

as: (i) generalized cell structure, (ii) cell states, (iii) weak priority scheme and (iv)

rewriting operators of P modules. The definition of a simple P system is given below.

2.4. SIMPLE P SYSTEMS 21

Definition 2.10. (Simple P system) A simple P system of order n is a system

Π = (O,K,∆), where:

1. O is a finite non-empty alphabet of symbols.

2. K = {σ1, σ2, . . . , σn} is a finite set of cells, where each cell σi ∈ K is of the

form:

σi = (Qi, si0, wi0, Ri)

where

• Qi is a finite set of states,

• si0 ∈ Qi is the initial state (si ∈ Qi denotes the current state),

• wi0 ∈ O∗ is the initial content and (wi ∈ O∗ denotes the current content),

• Ri is a finite linearly ordered set of evolution rules (i.e. transition multiset

rewriting rules with priority and rewrite operator). An evolution rule

r ∈ Ri has the form:

r : j s u→α s
′ v

where:

◦ α ∈ {min, max} is a rewriting operator of r, denoted by rewrite(r),

◦ j ∈ N is the priority of r, denoted by priority(r), where the lower

value j indicates higher priority,

◦ s, s′ ∈ Qi, where s is the source state of r, denoted by source(r), and

s′ is the target state of r, denoted by target(r),

◦ u ∈ O+, denoted by LHS(r),

◦ v ∈ (O × τ)∗, denoted by RHS(r), where τ ∈ {�, ↑, ↓, l}.

The initial configuration of σi is denoted by (si0, wi0) and the current configu-

ration of σi is denoted by (si, wi).

3. ∆ is an irreflexive and asymmetric relation, representing a set of arcs between

cells with bidirectional communication capabilities.

22 CHAPTER 2. MEMBRANE SYSTEMS

Definition 2.11. (Target indicator) The meaning of each element of {�, ↑, ↓, l} is

as follows. For cell σi, consider an evolution rule r ∈ Ri with (o, τ) ∈ RHS(r), where

o ∈ O.

• If τ = �, then symbol o will remain in σi.

• If τ = ↑, then symbol o will be replicated and sent to each σj ∈ ∆−1(i), if any.

• If τ = ↓, then symbol o will be replicated and sent to each σj ∈ ∆(i), if any.

• If τ = l, then symbol o will be replicated and sent to each σj ∈ ∆−1(i) ∪∆(i),

if any.

Definition 2.12. (Applications of an evolution rule) Given a multiset w ∈ O∗
and an evolution rule r ∈ R, where LHS(r) ⊆ w, the number of applications of r over

w is

apply(r, w) =

{
1 if rewrite(r) = min,

|w|LHS(r) if rewrite(r) = max.

Definition 2.13. (A maximal multiset of evolution rules) For cell σi, in state

si with content wi and a set of evolution rules Ri, a maximal multiset of evolution

rules, Mi, is obtained by the procedure below.

Input: a set of evolution rules Ri and a multiset w := wi.

Output: a maximal multiset Mi.

Mi := ∅
for each rj ∈ Ri, 1 ≤ j ≤ |Ri| (in an increasing priority order)

if (Mi = ∅ || ∀rk ∈Mi (target(rj) = target(rk))) then

if (LHS(rj) ⊆ w and source(rj) = si) then

m := apply(rj, w)

Mi := Mi ∪ {rmj }
w := w − LHS(rj)

m

endif

endif

endfor

2.4. SIMPLE P SYSTEMS 23

Definition 2.14. (Execution of evolution rules) For each cell σi, 1 ≤ i ≤ n,

consider a maximal multiset of evolution rules, Mi, found according to Definition 2.13.

For cell σi with the current content wi, multisets Ui, Vi, V
↓
i , V ↑i and V

l
i , for each

σk ∈ ∆(i) ∪∆−1(i), are defined as follow:

• Ui =
⋃
rj∈Mi

LHS(rj), denotes the multiset of symbols that will be consumed

from wi.

• Vi =
⋃
rj∈Mi

⋃
(o,�)∈RHS(rj){o}, denotes the multiset of symbols that will be pro-

duced and added to wi.

• V ↓i =
⋃
rj∈Mi

⋃
(o,↓)∈RHS(rj){o}, denotes the multiset of symbols that will be sent

to each σk ∈ ∆(i).

• V ↑i =
⋃
rj∈Mi

⋃
(o,↑)∈RHS(rj){o}, denotes the multiset of symbols that will be sent

to each σk ∈ ∆−1(i).

• V li =
⋃
rj∈Mi

⋃
(o,l)∈RHS(rj){o}, denotes the multiset of symbols that will be sent

to each σk ∈ ∆(i) ∪∆−1(i).

For each cell σi in state si with content wi:

• If Mi = ∅, then σi remains in state si with content wi.

• Otherwise, σi transforms:

◦ its current state to si = target(rf), where rf ∈Mi.

◦ its current content wi to w′i, where

w′i = wi − Ui ∪ Vi ∪
⋃

f∈∆−1(i)

V ↓f ∪
⋃

g∈∆(i)

V ↑g ∪
⋃

h∈∆(i)∪∆−1(i)

V
l
h

Definition 2.15. (Configuration) A configuration of a simple P system of order n

is an n-tuple of the form (s1 w1, s2 w2, . . . , sn wn), where, for 1 ≤ i ≤ n, si and wi

are the current state and content of cell σi, respectively.

24 CHAPTER 2. MEMBRANE SYSTEMS

Definition 2.16. (Transition) Consider two configurations of a simple P system

Π of order n, C ′ = (s′1 w
′
1, s
′
2 w

′
2, . . . , s

′
n w

′
n) and C ′′ = (s′′1 w

′′
1 , s
′′
2 w

′′
2 , . . . , s

′′
n w

′′
n). A

transition in system Π is a transformation from C ′ to C ′′ in one time unit, denoted

by C ′ ⇒ C ′′, such that C ′′ is obtained from C ′. A transition C ′ ⇒ C ′′ consists of two

substeps (substep 1 and substep 2); first, all cells synchronously perform substep 1,

then, after all cells have finished substep 1, all cells synchronously perform substep 2.

1. Substep 1: Each cell σi, 1 ≤ i ≤ n, finds a maximal multiset of evolution

rules, Mi, as defined in Definition 2.13.

2. Substep 2: Each cell σi, 1 ≤ i ≤ n, executes this maximal multiset of rules

found in substep 1, Mi, as defined in Definition 2.14.

Remark 2.17. An evolution trace table is a table that contains the history of tran-

sitions of a considered system, i.e. the history of configurations. Note, trace tables

do not indicate the multiset of applicable rules used to obtain the resulting contents.

Trace tables are a good representation to show the system evolutions. A Sevilla

carpet [16, 18] provides a graphical presentation that indicates the number of rule

applications in a considered system.

Definition 2.18. (Computation) A simple P system Π halts, if no more transitions

are possible in Π. The results of a halted simple P system is the final configuration,

i.e. the configuration of a halted system.

Definition 2.19. (Deterministic system) A simple P system is considered a de-

terministic system, if for every transition C ⇒ C ′, C ′ is unique.

Definition 2.20. (Time complexity) The time complexity of a simple P system Π

is the number of steps needed for Π to halt.

Definition 2.21. (Message complexity) The message complexity of a simple P sys-

tem Π is the total number of symbols that are transferred between cells until Π halts.

2.5. SUMMARY 25

2.5 Summary

In this chapter, I introduced a new membrane system, called a simple P system, which

will be used to design distributed P algorithms in Chapters 4, 5 and 6.

The properties of simple P systems that are relevant to distributed algorithms are

described below.

1. System Π is synchronous, i.e. Π assumes a global clock, which indicates the

time and transition steps for all cells.

2. Cells can only communicate with their neighbours. Any communication to a

remote cell, i.e. a non-neighbour, is relayed through intermediate cells.

3. Transferred symbols are always guaranteed to arrive, without being modified or

lost.

4. Cells receive every incoming symbol, i.e. cells do not have a choice whether to

receive the incoming symbols or not.

5. Initially, cells do not have the knowledge of the global topology, i.e. membrane

structure, and local neighbourhood, i.e. the number and existence of neighbours.

Additional properties of a simple P system Π, that are typically considered in the

P algorithm design, are listed below.

1. All cells share the same alphabet, cell states sets and set of evolution rules.

2. System Π terminates after a finite number of steps.

3. All cells start from a quiescent state.

4. The source is the only cell with an applicable evolution rule from the initial

quiescent state.

Each P system will be presented and analysed according to the following sequence.

1. Overview: The overview describes the main idea of the algorithm. We include

a visual description that illustrates the manner in which cells communicate

(i.e. symbol transfers) during the algorithm.

26 CHAPTER 2. MEMBRANE SYSTEMS

2. Precondition: Denotes the initial configuration of cells.

3. Postcondition: Denotes the final configuration of cells, after applying the

evolutions rules according to the rule description.

4. Symbols and states (optionally, where required): Explain the meaning

of symbols and states used, i.e. what each symbol and state represent in the

algorithm.

5. Evolution rules: Provide a set of evolution rules that enable cells to achieve

the algorithm objective.

6. Rules description: Informally describes the effect of the evolution rules. We

provide an evolution trace table, using an example system, that shows the history

of cells’ evolutions during each algorithm.

7. Time and message complexities: Indicate (i) the number of steps needed

to terminate an algorithm and (ii) the number of symbols exchanged between

cells during an algorithm.

Chapter 3

Turing completeness of simple

P systems

This chapter shows that simple P systems, introduced in Chapter 2, are Turing com-

plete (i.e. can compute anything a Turing machine [42, 74] can compute) and universal

(i.e. can simulate an arbitrary Turing machine with input), by proving that simple

P systems can simulate all READ-enhanced register machines [9]. This register ma-

chine model allows input data (denoted as a sequence of bits or characters), which are

accessed using READ instructions that return the next unread bit. Several universality

results in membrane systems have used register machines that need to store input

data in the registers, e.g. [49].

This chapter is organized as follows. Section 3.1 recalls the definition of READ-

enhanced register machines [9]. Section 3.2 presents simple P systems that simulate

READ-enhanced register machines (with binary input data). Additionally, using the

greatest common divisor (GCD) function, this section provides two simple P systems,

obtained via direct and indirect approaches, respectively. Finally, a summary of this

chapter is given in Section 3.3.

3.1 Register machines

A register machine, as presented in [9], has n > 1 instructions and m > 0 registers,

where each register may contain an arbitrarily large non-negative integer. Register

27

28 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

machines are Turing-complete and universal. A register machine program consists of

a finite list of instructions, EQ, SET, ADD, READ and HALT, with the restriction that

the HALT instruction appears only once, as the last instruction of the list, followed

by input data. The first instruction of a program is indexed by the value 0. Here, a

program is presented in symbolic instruction form.

3.1.1 Register machine instructions

A set of instructions of a register machine M [9] is listed below. In the instructions

below, r1, r2 and r3 denote registers and k denotes a non-negative binary integer

constant.

1. Instruction (EQ r1 r2 r3) or (EQ r1 k r3):

Assume that j denotes the content of r3. If the content of r1 equals (i) the

content of r2 or (ii) the constant k, then the execution of M continues at the

j-th instruction. If the content of r1 does not equal (i) the content of r2 or (ii)

the constant k, then the execution of M continues at the next instruction in

the sequence.

2. Instruction (SET r1 r2) or (SET r1 k):

The content of r1 is replaced by (i) the content of r2 or (ii) the constant k.

3. Instruction (ADD r1 r2) or (ADD r1 k):

The content of r1 is replaced by (i) the sum of the contents of r1 and r2 or (ii)

the sum of the contents of r1 and constant k.

4. Instruction (READ r1):

One bit is read into r1, so the numerical value of r1 becomes either 0 or 1. Any

attempt to read past the last data-bit results in a run-time error.

5. Instruction (HALT):

This is the last instruction of a register machine program.

3.1. REGISTER MACHINES 29

3.1.2 Input data

In a register machine program, its input data, denoted as a sequence of bits (or

characters), follows immediately after the halt instruction. Note, some programs

may not have input data and it is up to the program to know how to process the data

in the chosen encoding format. A variation of the following two encoding formats is

used to represent register machine input data within a simple P system.

1. A sequence of non-negative integers, a1, a2, . . . , ak, ai ∈ Z, 1 ≤ i ≤ k, is encoded

as 10a110a21 . . . 10ak1. Following [19] as an example, the sequence [3, 0, 2] is

represented by the integer 281(10) = 100011001(2).

2. A self-delimiting representation of a sequence of bits b1b2 · · · bk, bi ∈ {0, 1},
1 ≤ i ≤ k, is encoded as 1b11b2 · · · 1bk0. Note, if used to represent a positive

integer n in base 2, then we need only O(k) = O(log2 n) bits, but twice the

number of ‘real’ bits.

3.1.3 Run-time errors

A register machine program, with n ≥ 1 instructions, can encounter the following

run-time errors:

1. Illegal branch error: This error occurs when an EQ instruction is executed

where the value indicated by its third register is greater or equal to n.

2. Under-read error: This error occurs if a register machine halts with unread

input data, i.e. when the HALT instruction is encountered and there exist unread

input data.

3. Over-read error: This error occurs if a register machine attempts to read past

the last data-bit, i.e. when a READ instruction is encountered and the entire input

data has already been read.

30 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

3.1.4 Register machine instructions for GCD algorithm

The Euclidean algorithm, based on modular operation, for computing greatest com-

mon divisor (GCD) function is given in Definition 3.1.

Definition 3.1. (GCD based on modular operation (%))

Input: x ≥ 1 and y ≥ 1.

Output: the final value of y = GCD(x, y).

1. function GCD(x, y)

2. if (y == 0)

3. return x

4. else

5. return GCD(y, x%y)

6. endif

7. return x

Note, the chosen register machine model [9] does not provide modular operation as a

primitive operation. Modular operation can be implemented as subroutine, using SET,

ADD and EQ operations. The Euclidean algorithm, based on subtraction operation, for

computing GCD function is given in Definition 3.2.

Definition 3.2. (GCD based on subtraction)

Input: x ≥ 1 and y ≥ 1.

Output: the final value of y = GCD(x, y).

1. function GCD(x, y)

2. while (x 6= 0)

3. if (x < y)

4. z := x

5. x := y

6. y := z

7. endif

8. x := x− y
9. endwhile

10. return x

3.1. REGISTER MACHINES 31

Register machine instructions, in symbolic instruction forms, that correspond to the

steps of the GCD algorithm of Definition 3.2 is given below. Assume that, the input

data is of form 0x10y1, which represents a sequence of two integers x and y. This

register machine implementation has exactly 37 instructions, where it reads any input

values x and y from its data.

• Initialize registers a, b, c, d, e, f, g, h, i with the instruction line numbers (to be

used as targets in branching EQ instructions).

Line number Symbolic instruction

0 SET a La

1 SET b Lb

2 SET c Lc

3 SET d Ld

4 SET e Le

5 SET f Lf

6 SET g Lg

7 SET h Lh

8 SET i Li

• Initialize registers x and y, using auxiliary register z, with the first and the

second values of the input data, respectively.

Line number Symbolic instruction

9 La : READ z

10 EQ z 1 b

11 ADD x 1

12 EQ a a a

13 Lb : READ z

14 EQ z 1 c

15 ADD y 1

16 EQ b b b

32 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

• Check the condition x = 0.

Line number Symbolic instruction

17 Lc : EQ x 0 i

• Check the condition x < y.

Line number Symbolic instruction

18 SET z x

19 SET w y

20 Ld : EQ z y f

21 ADD z 1

22 ADD w 1

23 EQ x w f

24 EQ y z e

25 EQ d d d

26 Le : SET y x

27 SET x z

• Execute x := x− y.

Line number Symbolic instruction

28 Lf : SET z y

29 SET w 0

30 Lg : EQ x z h

31 ADD z 1

32 ADD w 1

33 EQ g g g

34 Lh : SET x w

35 EQ c c c

• Halt.

Line number Symbolic instruction

36 Li : HALT

3.2. UNIVERSALITY RESULTS 33

3.2 Universality results

For a given READ-enhanced register machine M [9] with n ≥ 1 instructions, m ≥ 0

registers and input data bits β = b1b2 · · · bν , build a simple P system ΠM = (O,K,∆)

that simulates M , where:

1. K = {σm, σp}, where σm is called the main cell and σp is called the provider

cell. The descriptions of these cells are given in Sections 3.2.1 and 3.2.2.

2. ∆ = {(σm, σp)}.

3. O = {ri | 0 ≤ i < k} ∪ {δ, γ, µ, φ, π, θ}, where symbols r0, r1, . . . , rk−1 represent

the registers of M . Symbols π, γ and θ are auxiliary symbols, used only by

the main cell, for executing the evolution rules that correspond to HALT and

EQ instructions. Symbols µ, φ and δ are used as communication messages,

i.e. requests and responses, between the main and provider cells during the

execution the evolution rules that correspond to READ and HALT instructions—

Section 3.2.3 describes the manner in which these symbols are exchanged.

3.2.1 The main cell

The role of the main cell is to simulate every instruction of M , except data-bit

extraction—this operation is handled by the provider cell. The main cell, σm, is

of the form σm = (Qm, sm0, wm0, Rm), where:

• Qm = {si, s′i, s′′i | 0 ≤ i < n} ∪ {s}, where states si, s
′
i and s′′i , 0 ≤ i < n,

represent the i-th instruction of M , state sn−1 represents the “halting” state

and state s represents the “springboard jump” state. From state s, cell σm

transits to state sj−1, where j ≤ n is the multiplicity of symbol t that σm

currently contains; if j > n, then σm remains at state s.

• sm0 = s0, indicates the first instruction, i.e. 0-th instruction.

• wm0 = {ri | 0 ≤ i < k} ∪ {π}, indicates the initial content of cell σm, where the

value of each register ri, 0 ≤ i < k, corresponds to the multiplicity of ri minus

one, i.e. |wm|ri − 1.

34 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

• Rm corresponds to the instructions of M , described next.

Evolution rules for a SET instruction

An i-th instruction of the form, either (SET ri1 ri2) or (SET ri1 ki), is translated into

the following evolution rules. The rules below first consume, all but one, copies of

symbol ri1 and then produce j additional copies of symbol ri1 , where: (i) j is the

multiplicity of symbol ri2 , i.e. the value of the register ri2 , or (ii) j = ki, i.e. the value

of constant ki.

Instruction Corresponding evolution rules

(SET ri1 ri2) 1 si ri1 →max si+1

2 si ri2 →max si+1 ri1 ri2

Using the rules above, the main cell consumes all copies of symbol ri1 , i.e. set the

value of register ri1 to 0. At the same time, the main cell rewrites every copy of

symbol ri2 into multiset ri1ri2 , i.e. set the value of register ri1 to the value of register

ri2 .

Instruction Corresponding evolution rules

(SET ri1 ki) 1 si ri1 →min si+1 r
ki+1
i1

2 si ri1 →max si+1

Using the rules above, the main cell: (i) rewrites one copy of symbol ri1 into ki + 1

copies of symbol ri1 and (ii) consumes all the remaining copies of symbol ri1 , i.e. set

the value of register ri1 to constant ki.

Evolution rules for an ADD instruction

An i-th instruction of the form, either (ADD ri1 ri2) or (ADD ri1 ki), is translated into

the following evolution rules. The rules below produce j additional copies of symbol

ri1 , where: (i) j is the multiplicity of symbol ri2 , i.e. the value of register ri2 or (ii)

j = ki, i.e. the value of the constant ki.

3.2. UNIVERSALITY RESULTS 35

Instruction Corresponding evolution rules

(ADD ri1 ri2) 1 si ri2 →min si+1 ri2

2 si ri2 →max si+1 ri1 ri2

Using the rules above, except one copy of symbol ri2 , the main cell rewrites every

copy of symbol ri2 into multiset ri1ri2 , i.e. set the value of register ri1 to the sum of

values of registers ri1 and ri2 .

Instruction Corresponding evolution rule

(ADD ri1 ki) 1 si ri1 →min si+1 r
ki+1
i1

Using the rules above, the main cell rewrites one copy of symbol ri1 into ki + 1 copies

of symbol ri1 , i.e. set the value of register ri1 to the sum of the value of register ri1

and constant ki.

Evolution rules for an EQ instruction

An i-th instruction of the form, (EQ ri1 ri1 ri3), (EQ ri1 ri2 ri3) or (EQ ri1 ki ri3), is

translated into the following evolution rules. If the first two indicated registers (or

the first register and the constant) have the same value, then the main cell produces

j copies of symbol θ, where j corresponds to the value of register ri3 , and transits

to the “springboard” state. Otherwise, the main cell transits to state si+1, i.e. the

next instruction. Note, in the rules for instruction (EQ ri1 ri2 ri3), the multiplicity of

symbol γ corresponds to the difference in the values of registers ri1 and ri2 .

Instruction Corresponding evolution rule

(EQ ri1 ri1 ri3) 1 si ri3 →max s ri3 θ

36 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

Instruction Corresponding evolution rules

(EQ ri1 ri2 ri3) Rules for state si:

1 si ri1 ri2 →max s
′
i ri1 ri2

2 si ri1 →max s
′
i ri1 γ

3 si ri2 →max s
′
i ri2 γ

Rules for state s′i:

1 s′i γ →max si+1

2 s′i ri3 →max s ri3 θ

Instruction Corresponding evolution rules

(EQ ri1 ki ri3) 1 si r
ki+2
i1
→min si+1 r

ki+2
i1

2 si r
ki+1
i1
→min s r

ki+1
i1

3 si ri1 →min si+1 ri1

4 si ri3 →max s ri3 θ

The “springboard” state mimics the manner in which a register machine performs a

“GOTO” operation to move to l-th instruction, 0 ≤ l ≤ n−1. The springboard state

contains one rule designated for each value 1, 2, . . . , n, such that 1 ≤ j ≤ n copies of

symbol θ will lead the main cell to transit to state sj−1. Additionally, the springboard

state contains one extra rule designated for all values greater than n, such that j > n

copies of symbol θ will lead the main cell to infinite loop state transitions.

Rules for the “springboard” state s:

1 s θn+1 →min s θ
n+1

2 s θn →min sn−1

3 s θn−1 →min sn−2

...

n+ 1 s θ →min s0

3.2. UNIVERSALITY RESULTS 37

Evolution rules for a READ instruction

An i-th instruction of the form (READ ri1) is translated into the following evolution

rules in the main cell. The rules below set the multiplicity of symbol ri1 to either one

or two (indicating a data-bit of value 0 or 1, respectively).

Setting the multiplicity of symbol ri1 as described above requires interactions with

the provider cell. Symbol µ represents the “last unread data-bit” request from the

main cell to the provider cell. Symbols φ and δ represent the provider cell’s responses,

where (i) symbol φ indicates that the entire data has been read and (ii) symbol δ

indicates that the last unread data-bit is 1. The provider cell’s other response is not

to send any symbol—this response indicates that the last unread data-bit is 0.

According to the provider cell’s three possible responses, the main cell sets the mul-

tiplicity of symbol ri1 as follows. Note, the main cell initially contains one copy of

symbol ri1 . If the main cell receives: (i) symbol δ, then the main cell rewrites the

received symbol δ into symbol ri1 , such that the final multiplicity of symbol ri1 is two,

or (ii) symbol φ, then the main cell enters infinite loop state transitions. Otherwise,

the main cell remains idle, such that the final multiplicity of symbol ri1 remains at

one.

Instruction Corresponding evolution rules

(READ ri1) Rules for state si:

1 si ri1 →min s
′
i ri1 (µ, ↓)

2 si ri1 →max s
′
i

Rules for state s′i:

1 s′i ri1 →min s
′′
i ri1

Rules for state s′′i :

1 s′′i φ→min s
′′
i φ

2 s′′i δ →min si+1 ri1

3 s′′i ri1 →min si+1 ri1

38 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

Evolution rules for a HALT instruction

The last instruction must be HALT, which is translated into the following evolution

rules. According to the rules below, the main cell reaches either: (i) a halting config-

uration or (ii) an infinite loop configuration. The rules below involve the interaction

between the main and provider cells, where the responses from the provider cell are as

described in the READ instruction. If the provider cell’s response is symbol φ, then the

main cell reaches a halting configuration. Otherwise, the main cell enters an infinite

loop configuration.

Instruction Corresponding evolution rules

(HALT) Rules for state sn−1:

1 sn−1 π →min s
′
n−1 π (µ, ↓) (µ, ↓)

Rules for state s′n−1:

1 s′n−1 π →min s
′′
n−1 π

Rules for state s′′n−1:

1 s′′n−1 φ π →min sn−1

2 s′′n−1 π →min s
′′
n−1 π

3.2.2 The provider cell

The role of the provider cell is to obtain and send the last unread bit to the main cell.

For input data of ν bits, β = b1b2 · · · bν , where bi ∈ {0, 1} and 1 ≤ i ≤ ν, the provider

cell initially contains the multiset δk, where k is the value of the binary-encoded

integer β′ = 1bνbν−1 · · · b1. The bit of value 1 at the first position of β′, which is not

part of β, ensures that if the last k ≥ 1 bits of β, i.e. bν−kbν−k+1 · · · bν , are of value 0,

then we do not lose them.

Let x > 1 denote the current multiplicity of symbol δ in the provider cell, σp. At the

i-th READ instruction, cell σp performs “mod 2” operation on value x to obtain the

i-th bit. Then σp performs a “div 2” operation on the value of x to prepare for the

next READ instruction, if any. For example, if cell σp has x = 11(10) = 1011(2) copies

of symbol δ, then the next three successive bits returned to the main cell are 1, 1 and

0.

3.2. UNIVERSALITY RESULTS 39

The provider cell, σp, is of the form (Qp, sp0, wp0, Rp), where:

• Qp = {s, s′}.

• sp0 = s.

• wp0 = {δβ′}, where β′ = 1bnbn−1 · · · b1(2).

• Rp is the following rules, which correspond to the READ and HALT instructions

of M .

Rules for state s:

1 s δ δ µ→min s
′ δ

2 s δ µ→min s
′ δ (φ, ↑)

3 s δ →min s δ

4 s δ δ →max s
′ δ

5 s δ →min s
′ (δ, ↑)

Rules for state s′:

1 s′ δ µ →min s

2 s′ δ →min s δ

The provider cell receives at most two copies of symbol µ from the main cell in

a single step. Using the first copy of symbol µ, if any, the provider cell performs

the “mod 2” and “div 2” operations on the current multiplicity of symbol δ as

described above. Using the second copy of symbol µ, if any, the provider cell

reaches a halting configuration.

Let j denote the current multiplicity of symbol δ. The provider cell notifies the

results of a “mod 2” operation on the value j to the main cell by: (i) not sending

any symbol to indicate that j mod 2 = 0 (ii) sending one copy of symbol δ to

indicate that j mod 2 = 1, or (iii) sending one copy of symbol φ to indicate that

j = 1, i.e. the all data-bits b1b2 · · · bν have been read.

40 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

3.2.3 Handling of run-time errors

Section 3.1.4 described the run-time errors of a register machine program. This

section describes the manner in which the cells of system ΠM detect and handle the

run-time errors. Figure 3.1 illustrates the provider cell’s three possible responses,

upon receiving a data-bit request (i.e. symbol µ) from the main cell. From these

responses, the main cell detects the over-read and under-read errors.

Main Provider

sends one copy
of symbol µ

No response from
the provider cell

cell cell

Case 2: x ≥ 2 and x mod 2 = 0

Main Provider

sends one copy
of symbol µ

of symbol δ
one copy

sends

cell cell
Main Provider

sends one copy
of symbol µ

of symbol φ
one copy

sends

cell cell

Case 3: x = 1Case 1: x ≥ 2 and x mod 2 = 1

Figure 3.1: Symbol exchanges between the main and provider cells in the READ

and HALT instructions, where x indicates the current multiplicity of symbol δ in the

provider cell.

Over-read error

This error can be detected in a READ instruction. When the main cell encounters a

READ instruction, it sends one copy of symbol µ to the provider cell. The purpose of

this symbol µ is to request the next unread bit. The main cell interprets the provider

cell’s responses as follows.

• One copy of symbol δ indicates that the next bit is 1.

• “No response”, i.e. case 2, indicates that the next bit is 0.

• One copy of symbol φ indicates that the entire input data has been read, i.e. an

over-read error. In this case, the main cell enters an infinite loop, hence system

ΠM does not halt.

3.2. UNIVERSALITY RESULTS 41

Under-read error

This error can be detected in the HALT instruction. When the main cell encounters

the HALT instruction, it sends one copy of symbol µ to the provider cell. The purpose

of this symbol µ is to confirm that the entire input data have been read. The main

cell interprets provider’s responses as follows.

• One copy of symbol φ indicates that the entire input data has been read. In

this case, both the main and provider cell do not apply rules any more, hence

system ΠM halts.

• One copy of symbol δ or “no response” (i.e. case 2) indicates that there are

unread input data, i.e. an under-read error. In this case, the main cell enters

an infinite loop, hence system ΠM does not halt.

Illegal branching error

This error can be detected in an EQ instruction. If the values of the first two indicated

registers (or the first register and the constant) of an EQ instruction are the same,

then the main cell produces j+ 1 copies of symbol θ, where j is the value of the third

register of the EQ instruction. Let n denote the number of instructions. If j + 1 ≥ n

then the value of the third register must be greater or equal to n. Thus, the main cell

detects (in the “springboard” state s) an illegal branching error and enters an infinite

loop. Hence, system ΠM does not halt.

3.2.4 Analysis of system ΠM and remarks

When system ΠM halts, the configuration of (i) the provider cell is (s, ∅) and (ii) the

main cell is (sn−1, wm), where wm = {ri | 0 ≤ i < n}∗. The computational results

of a halted system ΠM is the final content of the main cell, where the multiplicity

of symbol ri minus one, 0 ≤ i < n, indicates the value of the register ri of register

machine M .

42 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

Theorem 3.3. Simple P systems are universal.

Proof. Section 3.2 presented the details of building a simple P system ΠM that sim-

ulates any register machine M [9] (with input data). Thus, simple P systems are

universal.

The number of evolution rules in system ΠM , which simulates a given machine M

with n instructions, is proportional to n. The lower and upper bounds on the number

of evolution rules of system ΠM are indicated in Proposition 3.4.

Proposition 3.4. For register machine M with n instructions, there are nSET SET

instructions, nADD ADD instructions, nEQ EQ instructions, nREAD READ instructions and

one HALT instruction, such that n = nEQ + nSET + nADD + nREAD + 1. The corresponding

system ΠM contains ntotal evolution rules, where nEQ + 2 · nSET + nADD + 6 · nREAD +

(nEQ/nEQ)·(n+1)+12 ≤ ntotal ≤ 5·nEQ+2·nSET+2·nADD+6·nREAD+(nEQ/nEQ)·(n+1)+12.

Proof. Recall the set of evolution rules given in Sections 3.2.1 and 3.2.2.

There are two evolution rules for each of instructions (SET ri1 ri2) and (SET ri1 ki).

Thus, for nSET number of SET instructions, there are 2 · nSET evolution rules.

There are two and one evolution rules for each of instructions (ADD ri1 ri2) and

(ADD ri1 ki), respectively. If all nADD instructions are of type (ADD ri1 ri2), then there

are nADD number of evolution rules. If all nADD instructions are of type (ADD ri1 ki),

then there are 2 · nADD number of evolution rules.

There are one, five and four evolution rules for instructions (EQ ri1 ri1 ri3), (EQ ri1 ri2 ri3)

and (EQ ri1 ki ri3), respectively, and n+ 1 additional evolution rules for the “spring-

board” state. If all nEQ instructions are of type (EQ ri1 ri1 ri3), then there are nEQ+n+1

number of evolution rules. If all nEQ instructions are of type (EQ ri1 ri2 ri3), then there

are 5 · nEQ + n + 1 number of evolution rules. If all nEQ instructions are of type

(EQ ri1 ki ri3), then there are 4 · nEQ + n+ 1 number of evolution rules.

The main cell contains (i) six evolution rules for each READ instruction and (ii) four

evolution rules for the HALT instruction. The provider cell contains seven evolution

rules, which are associated with READ and HALT instructions.

3.2. UNIVERSALITY RESULTS 43

3.2.5 Constructing system ΠGCD using direct approach

Definition 3.5 provides the details of a simple P system, obtained via direct approach,

which computes the GCD function.

Definition 3.5. (Simple P system for GCD function—using direct imple-

mentation) A simple P system, obtained via direct approach, that computes the

GCD function is ΠGCD = (O,K,∆), where

1. O = {a, b}, where the multiplicities of symbols a and b correspond to the GCD

algorithm’s input values x and y, respectively.

2. ∆ = ∅.

3. K = {σm}. Cell σm = (Q, sm0, wm0, R), where:

• Q = {s0}.

• sm0 = s0, indicates the initial state.

• wm0 = {ax by}, where the multiplicities of symbols a and b correspond to

the GCD algorithm’s input values x and y, respectively.

• R is a set of evolution rules below.

Rules for state s0:

1 s0 ab→max s0 b

2 s0 b→max s0 a

Precondition of system ΠGCD

The input of ΠGCD is the values of x and y, which are represented by the multiplicity

of symbols a and b, respectively, i.e. the initial content of σm is ax by.

Postcondition of system ΠGCD

The result of ΠGCD is the final multiplicity of symbol a in cell σm.

44 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

Overview of system ΠGCD

Starting from the initial configuration, described in Precondition, cell σm repeatedly

performs the following two steps, until all copies of symbol b are consumed.

1. Rewrite every pair of symbols a and b, into one copy of symbol b (rule 0.1).

2. Rewrite every remaining copy of symbol b into one copy of symbol a (rule 0.2).

Correctness of system ΠGCD

Cell σm initially contains x > 0 copies of symbol a and y > 0 copies of symbol b.

Assume that, at the end of step t, cell σm contains x′ ≤ x copies of symbol a and

y′ ≤ y copies of symbol. Let k = min{x′, y′}. At step t+ 1, σm rewrites: (i) k copies

of symbol a and k copies of symbol b into k copies of symbol b and (ii) y′−k copies of

symbol b into y′ − k copies of symbol a. Hence, at the end of step t+ 1, cell σm ends

with (x′−k) + (y′−k) copies of symbol a and k copies of symbol b, which correspond

to the computations in lines 2, 4, . . . , 8 of the GCD algorithm of Definition 3.2.

3.2.6 Construction of system Π′GCD using indirect approach

The formal definition of a simple P system Π′GCD that simulates the GCD register

machine instructions (given in Section 3.1.4), is the system described in the proof of

Theorem 3.3 with the following evolution rules. For each instruction line number j,

the following tables contain: (i) j-th register machine instruction and (ii) correspond-

ing evolution rules to j-th instruction.

• The following rules in “springboard” state, s, are needed for EQ instructions.

1 s θ30 →min s t
30

2 s θ29 →min s28

3 s θ28 →min s27

...

30 s θ →min s0

3.2. UNIVERSALITY RESULTS 45

• Rules for initializing registers a, b, c, d, e, f, g, h, i with the instruction line num-

bers (to be used as targets in branching EQ instructions).

Line number Symbolic instruction Evolution rules

0 SET a La 1 s0 a→min s1 a
10

2 s0 a→max s1

1 SET b Lb 1 s1 b→min s2 b
14

2 s1 b→max s2

2 SET c Lc 1 s2 c→min s3 c
18

2 s2 c→max s3

3 SET d Ld 1 s3 d→min s4 d
21

2 s3 d→max s4

4 SET e Le 1 s4 e→min s5 e
27

2 s4 e→max s5

5 SET f Lf 1 s5 f →min s6 f
29

2 s5 f →max s6

6 SET g Lg 1 s6 g →min s7 g
31

2 s6 g →max s7

7 SET h Lh 1 s7 h→min s8 h
35

2 s7 h→max s8

8 SET i Li 1 s8 i→min s9 i
37

2 s8 i→max s9

• Rules for initializing registers x and y, using auxiliary register z, with the first

and the second values of the input data, respectively.

Line number Symbolic instruction Evolution rules

9 La : READ z 1 s9 z →min s
′
9 z (µ, ↓)

2 s9 z →max s
′
9

1 s′9 z →min s
′′
9 z

1 s′′9 φ→min s
′′
9 φ

2 s′′9 δ →min s10 z

3 s′′9 z →min s10 z

46 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

Line number Symbolic instruction Evolution rules

10 EQ z 1 b 1 s10 z
3 →min s11 z

3

2 s10 z
2 →min s z

2

3 s10 z →min s11 z

4 s10 b→max s b θ

11 ADD x 1 1 s11 x→min s12 x
2

12 EQ a a a 1 s12 a→max s a θ

13 Lb : READ z 1 s13 z →min s
′
13 z (µ, ↓)

2 s13 z →max s
′
13

1 s′13 z →min s
′′
13 z

1 s′′13 φ→min s
′′
13 φ

2 s′′13 δ →min s14 z

3 s′′13 z →min s14 z

14 EQ z 1 c 1 s14 z
3 →min s15 z

3

2 s14 z
2 →min s z

2

3 s14 z →min s15 z

4 s14 c→max s c θ

15 ADD y 1 1 s15 y →min s16 y
2

16 EQ b b b 1 s16 b→max s b θ

• Rules for checking the condition x = 0.

Line number Symbolic instruction Evolution rules

17 Lc : EQ x 0 i 1 s17 x
2 →min s18 x

2

2 s17 x
1 →min s x

1

3 s17 x→min s18 x

4 s17 i→max s i θ

3.2. UNIVERSALITY RESULTS 47

• Rules for checking the condition x ≥ y.

Line number Symbolic instruction Evolution rules

18 SET z x 1 s18 z →max s19

2 s18 x→max s19 z x

19 SET w y 1 s19 w →max s20

2 s19 y →max s20 w y

20 Ld : EQ z y f 1 s20 z y →max s
′
20 z y

2 s20 z →max s
′
20 z γ

3 s20 y →max s
′
20 z γ

1 s′20 γ →max s21

2 s′20 f →max s f θ

21 ADD z 1 1 s21 z →min s22 z
2

22 ADD w 1 1 s22 w →min s23 w
2

23 EQ x w f 1 s23 y z →max s
′
23 y z

2 s23 y →max s
′
23 y γ

3 s23 z →max s
′
23 y γ

1 s′23 γ →max s24

2 s′23 e→max s e θ

24 EQ y z e 1 s24 x w →max s
′
24 x w

2 s24 x→max s
′
24 x γ

3 s24 w →max s
′
24 x γ

1 s′24 γ →max s25

2 s′24 f →max s f θ

25 EQ d d d 1 s25 d→max s d θ

26 Le : SET y x 1 s26 y →max s27

2 s26 x→max s27 y x

27 SET x z 1 s27 x→max s28

2 s27 z →max s28 x z

48 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

• Rules for executing x := x− y.

Line number Symbolic instruction Evolution rules

28 Lf : SET z y 1 s28 z →max s29

2 s28 y →max s29 z y

29 SET w 0 1 s29 w →min s30 w
1

2 s29 w →max s30

30 Lg : EQ x z h 1 s30 x z →max s
′
30 x z

2 s30 x→max s
′
30 x γ

3 s30 z →max s
′
30 x γ

1 s′30 γ →max s31

2 s′30 h→max s h θ

31 ADD z 1 1 s31 z →min s32 z
2

32 ADD w 1 1 s32 w →min s33 w
2

33 EQ g g g 1 s33 g →max s g θ

34 Lh : SET x w 1 s34 x→max s35

2 s34 w →max s35 x w

35 EQ c c c 1 s35 c→max s c θ

• Rules for the HALT.

Line number Symbolic instruction Evolution rules

36 Li : HALT 1 s36 π →min s
′
36 π (µ, ↓) (µ, ↓)

1 s′36 π →min s
′′
36 π

1 s′′36 φ π →min s36

2 s′′36 π →min s
′′
36 π

3.3. SUMMARY 49

3.3 Summary

This chapter presented a new universality result [20] in P systems, by providing the

details of building a simple P system ΠM that simulates any READ-enhanced register

machine M [9] (with input data). Each constructed system ΠM has the following

properties:

• There are two cells—the purpose of having two cells is to designate specific

functions to different cells, i.e. the provider cell handles IO operations on the

input data and the main cell handles all other operations.

• The number of states and evolution rules are proportional to the number of

instructions of a given register machine.

• The number of P system steps required for each register machine instruction

during the simulation is constant.

This Turing completeness result indicates that we can compute any computable func-

tion using simple P systems. Hence, we have two approaches for obtaining a simple

P system, Π, that computes a given computable function:

1. Direct approach: Specify a set of evolution rules, symbols and states of system

Π and prove its correctness.

2. Indirect (or translated) approach: First obtain a register machine, M , that

computes the given function. Then, transform machine M into a functionally

equivalent system Π.

Using the GCD function, Table 3.1 compares:

• system ΠGCD, obtained via direct approach (Section 3.2.5),

• system Π′GCD, obtained via indirect approach (Section 3.2.6) and

• GCD pseudo-code (Definition 3.1).

50 CHAPTER 3. TURING COMPLETENESS OF SIMPLE P SYSTEMS

The comparison uses the following criteria:

• for pseudo-code: the number of lines,

• for simple P systems: the number of evolution rules, states and symbols.

Based on the statistics of Table 3.1, this GCD example seems to support that the

direct approach is more suitable than the indirect approach for obtaining a simple

P system that computes a given function, with respect to the considered criteria.

Table 3.1: Comparing system ΠGCD, system Π′GCD and GCD pseudo-code.

System ΠGCD System Π′GCD GCD pseudo-code

(Section 3.2.5) (Section 3.2.6) (Definition 3.1)

Number of evolution rules 2 rules 121 rules 7 lines

or pseudo-code lines

Number of states 1 48 -

Number of symbols 2 19 -

Chapter 4

Traversal Algorithms in Membrane

Systems

Complex problems in distributed computing can typically be subdivided into smaller

parts called phases ; each phase performs a specific task, where the result of this

phase is an input for the subsequent phase. Presenting an algorithm as a sequence of

phases enables us to analyse each phase separately, which makes it easier to describe

the computations performed within an algorithm and to verify the correctness of the

algorithm.

In this chapter, several basic traversal P algorithms are presented, which form com-

ponents of a library of fundamental algorithms in membrane systems. The presented

P algorithms are variant algorithms to the standard broadcast and echo algorithms.

These P algorithms are compared to broadcast and echo algorithms, with respect to

time complexity and program-size complexity (i.e. the number of evolution rules or

pseudo-code lines).

Section 4.1 describes the characteristics of the considered traversal algorithms, and in-

dicates the presentation organization of the traversal algorithms. Sections 4.2 and 4.3,

present tree and graph traversal algorithms, respectively. Finally, Section 4.4 provides

a summary that includes the comparison between P algorithms against broadcast and

echo algorithms pseudo-codes, with respect to time and program-size complexities.

51

52 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

4.1 Traversal algorithms

We can consider traversal algorithms on the underlying graph of a given weakly-

connected digraph as follows. A traversal algorithm starts from one node of the

(underlying) graph, called the source, and visit all nodes that are reachable from the

source. If a given digraph is a rooted tree, then the source is the tree root, otherwise,

the source is an arbitrary digraph node.

Simple P systems in this chapter satisfy the following constraints: (i) system halts in

a finite number of steps, (ii) all cells start from a designated quiescent state, where

the source is the only cell with an applicable evolution rule using its initial content,

and (iii) all cells have the same set of evolution rules and cell states.

4.1.1 Preliminaries

In the following definitions, for a given digraph (V,∆), the source is denoted by s ∈ V .

Given a digraph (V,∆), for v ∈ V , Neighbour(v) = ∆(v) ∪ ∆−1(v). The relation

Neighbour is always symmetric and defines a graph structure, which will be here

called the virtual communication graph defined by ∆.

The depth of a node v, denoted by depths(v) ∈ N, is the length of any shortest path

between s and v, over the Neighbour relation. The eccentricity of a node v is denoted

by ecc(v). Note, the eccentricity of the source s ∈ V is ecc(s) = max{depths(v) |
v ∈ V }.

Given nodes v and w, (i) v is a predecessor of w and (ii) w is a successor of v, if

w ∈ Neighbour(v) and depths(w) = depths(v) + 1; a pair (v, w) is called a depth-

increasing arc. Similarly, a node x is a peer of v, if x ∈ Neighbour(v) and depths(x) =

depths(v). A terminal is a node without a successor. For node v, Preds(v) = {w |
w is a predecessor of v}, Peers(v) = {w | w is a peer of v} and Succs(v) = {w |
w is a successor of v}. Note, for node v, Preds(v), Peers(v) and Succs(v) are disjoint.

If a given digraph (V,∆) is a rooted tree and the root is the source, then, for each node

v ∈ V , v’s children correspond to Succs(v) and v’s parent corresponds to Preds(v).

The depth-increasing arcs form a spanning breadth-first search DAG (spanning BFS

DAG) rooted at the source s, where each path from s to a node v is a shortest path,

4.1. TRAVERSAL ALGORITHMS 53

over the Neighbour relation. The height of v in the spanning BFS DAG is denoted

by heights(v) and the number of shortest paths from s to v in the spanning BFS

DAG is denoted by pathss(v).

(a) (b)

1

2 3

4 5

6 7

Node Neighbours Preds Peers Succs depths pathss

1

2

3

4

5

6

2, 3

1, 3, 4, 5

1, 2

2, 6

2, 7, 8

4, 5

−
1

2

−
3

2

−

2, 3

4, 5

7, 8

−

0

1

1

2

2

3

1

1

1

1

1

2

(d)

6

heights

3

2

0

1

1

0

7 5, 6 5 6 3 10

1

2

4, 5

−
−

−

−

(c)

1

2 3

4 5

6 7

1

2 3

4 5

6 7

Figure 4.1: (a) A digraph G with the source cell σs = σ1. (b) The communication

graph of G, i.e. the underlying graph of G. (c) The spanning BFS DAG of G. (d) A

table of node attributes introduced in this section.

Figure 4.1 (a) illustrates a digraph G with the source s = 1. Figure 4.1 (b) illustrates

the communication graph of G. Figure 4.1 (c) illustrates the spanning BFS DAG

of G. For each node v, Figure 4.1 (d) indicates Neighbour(v), Preds(v), Peers(v),

Succs(v), depths(v), heights(v) and pathss(v).

Given a simple P system Π = (O,K,∆) with the source cell σs ∈ K, for each

cell σi ∈ K, Preds(i) = Predσs(σi), Succs(i) = Succσs(σi), Peers(i) = Peerσs(σi),

depths(i) = depthσs(σi), heights(i) = heightσs(σi), pathss(i) = pathsσs(σi).

The standard synchronous distributed broadcast [3] and echo [79] algorithms are given

in Definitions 4.1 and 4.2, respectively, as pseudo-codes. The time and program-size

complexities of these algorithms will be compared against the P algorithms of this

chapter.

54 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Definition 4.1. (Spanning tree broadcast algorithm [3])

1. Initially M is in transit from pr to all its children in the spanning tree.

2. Code for pr:

3. 1: Upon receiving no message: //first computation event by pr

4. 2: terminate

5. Code for pi, o ≤ i ≤ n− 1, i 6= r:

6. 3: Upon receiving M from parent:

7. 4: send M to all children

8. 5: terminate

Definition 4.2. (The echo algorithm [79])

1. var recp : integer init 0; (*Counts number of received messages *)

2. fatherp : P init udef ;

3. For the initiator:

4. begin forall q ∈ Neighp do send 〈tok〉 to q;

5. while recp < #Neighp do

6. begin receive 〈tok〉; recp := recp + 1 end;

7. decide

8. For non-initiators:

9. begin receive 〈tok〉 from neighbour q; fatherp := q; recp := recp + 1;

10. forall q ∈ Neighp, q 6= fatherp do send 〈tok〉 to q;

11. while recp < #Neighp do

12. begin receive 〈tok〉; recp := recp + 1 end;

13. send 〈tok〉 to fatherp

14. end

For synchronous distributed algorithms, the broadcast algorithm of Definition 4.1,

Attiya and Welch [3], has time complexity of d, where d is the depth of a rooted

spanning tree, and the echo algorithm of Definition 4.2 [79], has time complexity of

2d [12], where d is the depth of a tree.

4.2. TREE TRAVERSAL ALGORITHMS 55

4.2 Tree traversal algorithms

This section presents tree traversal algorithms. First, two basic algorithms in dis-

tributed computing are presented: a broadcast and an echo algorithm. Then, ad-

ditional algorithms are presented, derived from the broadcast and echo algorithms,

which find structural characteristics of a tree, such as the tree height.

Simple P systems that implement the tree traversal algorithms of this section differ

only by their evolution rules. Hence, the framework of a simple P system, Ψ, of

Definition 4.3, describes all the components of a simple P system, except a set of

evolution rules. For each algorithm, a formal description of the corresponding simple

P system Π is presented, by completing the framework Ψ (of Definition 4.3) with a

set of evolution rules that implements the algorithm.

Definition 4.3. (Framework of a simple P system for tree traversal algo-

rithms) The framework of a simple P system (of order n), for designing the tree

traversal algorithms, is Ψ = (O,K,∆), where:

1. O = {a, b, c, e, h, t, v}.

2. K = {σ1, σ2, . . . , σn}, where σs ∈ K is the root cell, i.e. the source cell.

Each cell σi ∈ K has an initial form σi = (Q, si0, wi0, R), where:

• Q = {s0, s1, s2}, where s0 is the quiescent state.

• si0 = s0, is the initial state.

• wi0 =

{
b if σi = σs,

∅ if σi 6= σs,
is the initial content.

• R is a set of evolution rules, which is given in each algorithm of this section.

3. ∆ is a rooted tree.

Figure 4.2 illustrates the tree that will be used for the visual description figures and

evolution trace tables.

56 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

Figure 4.2: A sample rooted tree used as an algorithm illustration.

4.2.1 Algorithm: Broadcast with acknowledgement

This algorithm performs a broadcast operation, initiated from the root cell, which

visits all cells and determines the number of children of every cell. A set of evolution

rules that transforms the framework Ψ (of Definition 4.3) into a simple P system Π of

Algorithm 4.2.1 is given below. Additionally, the description and analysis of system

Π are provided.

Precondition of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 4.3.

Postcondition of system Π

When Π halts, the configuration of cell σi ∈ K is (s2, wi), where:

• |wi|a = 1.

• |wi|c = |Succs(i)|, i.e. the number of σi’s children.

States and symbols of system Π

Symbol b represents broadcast symbol and symbol c represents acknowledgement

symbol. Symbol a indicates the “visited” status. State s0 is a quiescent state, where

a cell remains idle until it receives symbol b. State s1 is an auxiliary state and state

s2 is a terminal state.

4.2. TREE TRAVERSAL ALGORITHMS 57

Evolution rules of system Π

0. Rules for state s0:

1. s0 b→min s1 a (c, ↑) (b, ↓)

1. Rules for state s1:

1. s1 a→min s2 a

Overview of system Π

Initially, the root cell σs has one copy of broadcast symbol b. At step 1, σs: (i) sends

down one copy of symbol b to each of its children and (ii) rewrites the symbol b into

symbol a (rule 0.1). After cell σj 6= σs receives symbol b, σj: (i) acknowledges the

sender (i.e. its parent) by sending up one copy of acknowledgement symbol c, (ii)

forwards one copy of symbol b to each of its children, if any, and (iii) rewrites the

received symbol b into symbol a (rule 0.1).

Cell σi receives one copy of symbol b from its parent at step depths(i) (Proposi-

tion 4.4). Further, cell σi receives |Succs(i)| copies of symbol c at step depths(i) + 2

(Proposition 4.6). A cell that does not receive any symbol c at step depths(i) + 2 is

a tree leaf (Proposition 4.7).

Proposition 4.4. At step depths(i), cell σi 6= σs receives one copy of symbol b from

its parent. At step depths(i)+1, σi sends one copy of symbol b to each of its children.

Proof. Proof by induction on m = depths(i) ≥ 1. At step 1, the root σs sends down

one copy of symbol b to each of its children. Hence, at step 1, each cell σf in depth 1

receives one copy of symbol b. Then, at step 2, cell σf sends (i) one copy of symbol

c to its parent and (ii) one copy of symbol b to each of its children.

Assume that the induction hypothesis holds for each cell σj at depth m. Consider cell

σk in depth m′ = m+ 1. By induction hypothesis, at step m+ 1, each σj ∈ Preds(k)

sends (i) one copy of symbol c to its parent and (ii) one copy of symbol b to each of

its children (which includes σk). Thus, at step m′ = m+ 1, cell σk receives one copy

of symbol b from σj. Then, at step m′ + 1, cell σk sends (i) one copy of symbol c to

its parent and (ii) one copy of symbol b to each of its children, if any.

58 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Proposition 4.5. At step depths(i)+1, cell σi makes transition s0 ⇒ s1, and reaches

configuration (s1, a).

Proof. As indicated in Proposition 4.4, at step depths(i), cell σi obtains one copy of

symbol b and reaches configuration (s0, b). At step depths(i) + 1, cell σi:

• Rewrites one copy of symbol b, received at step depths(i), into one copy of

symbol a.

• Enters state s1, from the transition s0 ⇒ s1.

Proposition 4.6. At step depths(i)+2, cell σi makes transition s1 ⇒ s2, and reaches

configuration (s2, ac
k), where k = |Succs(i)|.

Proof. As indicated in Proposition 4.5, at step depths(i)+1, cell reaches configuration

(s1, a). At step depths(i) + 2, cell σi:

• Receives one copy of symbol c from each of its children, i.e. each σh ∈ Succs(i),

such that, in total, σi receives |Succs(i)| copies of symbol c.

From Proposition 4.4, at step depths(h)+1, each cell σh ∈ Succs(i) sends up one

copy of symbol c to each its parent. Hence, at step depths(h)+1 = depths(i)+2,

σi receives one copy of symbol c from each σh ∈ Succs(i).

• Enters state s2, from the transition s1 ⇒ s2.

Proposition 4.7. If cell σi does not receive a copy of symbol c at step depths(i) + 2,

then σi is a tree leaf.

Proof. Follows from Proposition 4.6.

Table 4.1 contains the traces of system Π of Figure 4.2. Figure 4.3 provides a vi-

sual description of system Π of Figure 4.2. In Table 4.1 and Figure 4.3, the final

multiplicity of symbol c in each cell represents the number of that cell’s children.

4.2. TREE TRAVERSAL ALGORITHMS 59

Table 4.1: The traces of system Π of Algorithm 4.2.1 of Figure 4.2. The final multi-

plicity of symbol c in cell σi, 1 ≤ i ≤ 8, represents the number of σi’s children. For

example, cell σ4 has two children, cells σ6 and σ7. Hence, at step 5, σ4 contains two

copies of symbol c.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0 b s0 s0 s0 s0 s0 s0 s0

1 s1 a s0 b s0 b s0 b s0 s0 s0 s0

2 s2 ac
3 s1 a s1 a s1 a s0 b s0 b s0 b s0

3 s2 ac
3 s2 ac s2 a s2 ac

2 s1 a s1 a s1 a s0 b

4 s2 ac
3 s2 ac s2 a s2 ac

2 s2 a s2 ac s2 a s1 a

5 s2 ac
3 s2 ac s2 a s2 ac2 s2 a s2 ac s2 a s2 a

Correctness and complexity of system Π

Proposition 4.8 indicates the correctness and time complexity of system Π. Proposi-

tion 4.9 indicates the message complexity of system Π.

Proposition 4.8. System Π halts in heights(s)+2 steps and the final configuration

of each cell corresponds to the postcondition.

Proof. At step depths(i) + 2, cell σi ∈ K reaches the configuration (s2, ac
k), where

k = |Succs(i)|, as indicated in Proposition 4.6.

There are no rules in state s2, hence, cell σi cannot evolve once it enters state s2.

For a farthest cell σf (with respect to the source cell σs), depths(f) ≥ depths(g),

for all σg ∈ K, such that depths(f) = heights(s). Cell σf enters state s2 at step

depths(f) + 2 = heights(s) + 2.

Therefore, system Π halts at step heights(s) + 2, and the final configuration of each

cell σi ∈ K is (s2, ac
k), where k = |Succs(i)|.

Proposition 4.9. The total number of symbols that are transferred between cells of

system Π is 2 · |∆|.

Proof. In each tree arc (σj, σk) ∈ ∆, (i) cell σj sends down one copy of symbol b to

σk and (ii) cell σk sends up one copy of symbol c to σj. Thus, the total number of

60 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ5 σ6 σ7

σ8 σ8

b b
b

c c
c

b bb

b

c c
c

c3

c

c3

c c2

c3

c c2

c

Step 1 Step 2 Step 3

Step 4 Step 5

σ1 σ1

σ2 σ3 σ4

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

Figure 4.3: The propagation of symbols b and c in Algorithm 4.2.1, for the tree of

Figure 4.2. Cells that have received symbol b (i.e. reached by the broadcast) are

shaded. The multiplicity of symbol c in cell σi, 1 ≤ i ≤ 8, represents the number of

σi’s children.

symbols b and c that are transferred between cells is 2 · |∆|.

4.2.2 Algorithm: Echo

In this echo algorithm, the root initiates a search that visits all cells of a tree and

returns back to the root, in the reverse order in which the cells are visited. A set

of evolution rules that transforms the framework Ψ (of Definition 4.3) into a simple

P system Π of Algorithm 4.2.2 is present below. Additionally, the description and

analysis of system Π are provided.

Precondition of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 4.3.

4.2. TREE TRAVERSAL ALGORITHMS 61

Postcondition of system Π

When Π halts, the configuration of cell σi is C = (s3, ∅). Further, each cell reaches

configuration C, after all its children have reached C.

States and symbols of system Π

Symbols b and c represent the broadcast and acknowledgement symbols (in Phase I),

respectively, and symbol e represents the convergecast symbol (in Phase II). Symbol

a is used to check if a cell has received symbol e from all its children (in Phase II).

Symbol t indicates that a cell has sent symbol e to its parent (in Phase II). In state

s2, each cell checks, if it has received symbol e from all its children. State s3 is a

terminal state. The meaning of states s0 and s1 are described in Algorithm 4.2.1.

Evolution rules of system Π

Rules used in Phase I

(Algorithm 4.2.1):

0. Rules for state s0:

1. s0 b→min s1 a (c, ↑) (b, ↓)

1. Rules for state s1:

1. s1 a→min s2 a

Rules used in Phase II

(convergecast):

2. Rules for state s2:

1. s2 t→min s3

2. s2 ce→max s2

3. s2 ac→min s2 ac

4. s2 a→min s2 t (e, ↑)

Overview of system Π

Each cell of system Π progresses through two conceptual phases, Phase I (Algo-

rithm 4.2.1) and Phase II (convergecast), independent of other cells.

Phase I (Algorithm 4.2.1):

• The source cell (i.e. tree root) starts Phase I at the beginning of the algorithm.

Each non-source cell starts Phase I, when it receives broadcast symbol b.

62 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

• The root cell σs (i) sends down one copy of symbol b to each of its children and

(ii) produces one copy of symbol a (rule 0.1).

• When cell σj 6= σs receives symbol b, σj: (i) sends up one copy of acknowledge-

ment symbol c to its parent, (ii) sends down one copy of symbol b to each of

its children, if any, and (iii) rewrites the received symbol b into symbol a (rule

0.1).

• At the end of Phase I, each cell contains one copy of symbol a and |Succs(i)|
copies of symbol c, as indicated in the postcondition of Algorithm 4.2.1. Note,

each leaf cell has zero copies of symbol c.

Phase II (convergecast):

• Each cell starts Phase II, immediately after completing Phase I.

• Each leaf cell (i.e. a cell that has not received any symbol c in Phase I) (i) sends

up one copy of convergecast symbol e to its parent and (ii) rewrites symbol a

into symbol t (rule 2.4).

• Each cell consumes one copy of symbol c with one copy of symbol e (rule 2.2).

When a non-leaf cell σj consumes all copies of symbol c (i.e. σj has received

symbol e from all its children in Phase II), σj: (i) sends one copy of symbol e

to its parent, if any, and (ii) rewrites symbol a into symbol t (rule 2.4).

◦ In cell σi, having at least one copy of symbol c indicates that σi has not

received symbol e from all its children.

◦ In each step, rule 2.3 (which has higher priority than rule 2.4) rewrites

multiset ac into multiset ac, such that, if at least one copy of symbol c

exists, then symbol a will not be available for rule 2.4 in the current step.

◦ Therefore, in each step, rule 2.3 prevents each cell σi from sending symbol

e to its parent, until σi receives symbol e from all its children.

• Each cell consumes symbol t and enters the terminal state s3 (rule 2.1).

Table 4.2 contains the traces of system Π of Figure 4.2. Figure 4.4 provides a visual

description of system Π of Figure 4.2.

4.2. TREE TRAVERSAL ALGORITHMS 63

Table 4.2: The traces of the system Π of Algorithm 4.2.2, for the tree of Figure 4.2.

For each column of σi, 1 ≤ i ≤ 8, the first shaded table cell indicates the start of

Phase I, the second shaded table cell indicates the start of Phase II (equivalently, the

end of Phase I) and the third shaded table cell indicates the end of Phase II.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0 b s0 s0 s0 s0 s0 s0 s0

1 s1 a s0 b s0 b s0 b s0 s0 s0 s0

2 s2 ac
3 s1 a s1 a s1 a s0 b s0 b s0 b s0

3 s2 ac
3 s2 ac s2 a s2 ac

2 s1 a s1 a s1 a s0 b

4 s2 ac
3e s2 ac s2 t s2 ac

2 s2 a s2 ac s2 a s1 a

5 s2 ac
2 s2 ace s3 s2 ac

2e s2 t s2 ac s2 t s2 a

6 s2 ac
2e s2 t s3 s2 ac s3 s2 ace s3 s2 t

7 s2 ac s3 s3 s2 ace s3 s2 t s3 s3

8 s2 ace s3 s3 s2 t s3 s3 s3 s3

9 s2 t s3 s3 s3 s3 s3 s3 s3

10 s3 s3 s3 s3 s3 s3 s3 s3

Proposition 4.10 indicates the step in which each cell receives convergecast symbols

from all its children.

Proposition 4.10. By step depths(i) + 2 · heights(i) + 2, each non-leaf cell σi

receives |Succs(i)| copies of convergecast symbol e from all its children. At step

depths(i) + 2 · heights(i) + 3, each non-source cell σi sends up one copy of symbol e

to its parent.

Proof. Proof by induction, on cell σi’s height, h = heights(i).

In the base case, where h = 0, cell σi is a leaf cell. Clearly, cell σi has no children

and therefore does not receive any acknowledgement symbol c at step depths(i) + 2.

Thus, at step depths(i) + 2 · heights(i) + 3 = depths(i) + 3, cell σi sends one copy

of convergecast symbol e to its parent.

Assume that the induction hypothesis holds for each cell σk at height heights(k) ≤
h. Consider a non-leaf cell σi at height heights(i) = h + 1. Each σi’s children,

64 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

σj, has height heights(j) ≤ h, thus it satisfies the induction hypothesis. Cell σj

sends up one copy of symbol e to cell σi at step depths(j) + 2 · heights(j) + 3.

For cell σi, depths(i) = depths(j) − 1 for each child σj, and max{heights(j) |
σj is a child of σi} = heights(i)− 1. Thus, by step (depths(i) + 1) + 2(heights(i)−
1) + 3 = depths(i) + 2 · heights(i) + 2, cell σi receives ki ≥ 1 copies of symbol e

from its children, where ki corresponds to the number of σi’s children. Then, at step

depths(i) + 2 · heights(i) + 3, cell σi sends up one copy of symbol e to its parent.

Proposition 4.11. From step depths(i) + 3 until step depths(i) + 2 · heights(i) + 2,

cell σi makes transition s2 ⇒ s2 and reaches configuration (s2, ac
hef), where 1 ≤ h ≤

|Succs(i)| and 0 ≤ f ≤ h.

Proof. From Proposition 4.6, at step depths(i) + 2, cell σi reaches configuration

(s2, ac
k), where k = |Succs(i)|. From step depths(i) + 3, cell σi consumes each

copy of symbol c together with one copy of symbol e.

As indicated in Proposition 4.10, cell σi receives, in total, |Succs(i)| copies of symbol

e by step depths(i) + 2 · heights(i) + 2.

Therefore, until step depths(i) + 2 · heights(i) + 2, cell σi reaches configuration

(s2, ac
hef), where 1 ≤ h ≤ |Succs(i)| and 0 ≤ f ≤ h.

Proposition 4.12. At step depths(i) + 2 · heights(i) + 3, cell σi makes transition

s2 ⇒ s2 and reaches configuration (s2, t).

Proof. From Proposition 4.10, cell σi receives |Succs(i)| copies of symbol e by step

depths(i) + 2 · heights(i) + 2. At step depths(i) + 2 · heights(i) + 3, cell σi:

• Consumes all |Succs(i)| copies of symbol c, received at step depths(i)+2 (Propo-

sition 4.6), together with |Succs(i)| copies of symbol e.

• Rewrites one copy of symbol a into one copy of symbol t.

• Remains at state s2, from the transition s2 ⇒ s2.

Proposition 4.13. At step depths(i) + 2 · heights(i) + 4, cell σi makes transition

s2 ⇒ s3, and reaches configuration (s3, ∅).

4.2. TREE TRAVERSAL ALGORITHMS 65

Proof. From Proposition 4.12, at step depths(i) + 2 · heights(i) + 3, cell σi reaches

configuration (s2, t). At step depths(i) + 2 · heights(i) + 4, cell σi:

• Consumes one copy of symbol t, produced at step depths(i)+2 ·heights(i)+3.

• Enters state s3, from the transition s2 ⇒ s3.

Correctness and complexity of system Π

Proposition 4.14 indicates the correctness and time complexity of system Π. Propo-

sition 4.15 indicates the message complexity of system Π.

Proposition 4.14. System Π halts in 2 · heights(s) + 4 steps and the final configu-

ration of each cell corresponds to the postcondition.

Proof. At step depths(i) + 2 · heights(i) + 4, cell σi ∈ K reaches the configuration

C = (s3, ∅), as indicated in Proposition 4.13. For each cell σj ∈ Succs(i), depths(i) +

1 = depths(j). Thus, cell σi reaches configuration C, after all its children have reaches

configuration C.

There are no rules in state s3, hence, cell σi cannot evolve once it enters state s3.

For a farthest cell σf (with respect to the source cell σs), depths(f) ≥ depths(g),

for all σg ∈ K, such that depths(f) = heights(s). Cell σf enters state s3 at step

depths(f) + 2 · heights(f) + 4 = 2 · depths(f) + 4 = 2 · heights(s) + 4. Therefore,

system Π halts at step 2 · heights(s) + 4.

Proposition 4.15. The total number of symbols that are transferred between cells

of Π is 3 · |∆|.

Proof. In each tree arc (σj, σk) ∈ ∆, (i) cell σj sends down one copy of symbol b to σk

in Phase I, (ii) cell σk sends up one copy of symbol c to σj in Phase I and (iii) cell σk

sends up one copy of symbol e to σj in Phase II. Thus, the total number of symbols

that are transferred between cells is 3 · |∆|.

66 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ5 σ6 σ7

σ8

σ1

σ2 σ4

σ6

σ8

b b
b

c c
c

b bb

b

c c
c

c3

c

c3

c c2

c2

c c2

c

Step 1 Step 2 Step 3

Step 4 Step 5

σ1

σ4

σ6

c2

c

c

Step 6

σ1

σ1

σ2 σ3 σ4
e

e
e

e

c

σ1

σ4

c

c

Step 7

e

σ1 c
Step 8

e

Step 9

σ3

σ5 σ7

σ2 σ3

σ5 σ7

σ8

σ2 σ3

σ5 σ6 σ7

σ8

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

Figure 4.4: The propagation of symbols b, c and e in Algorithm 4.2.2, for the tree

of Figure 4.2. The multiplicity of symbol c (that initially incremented according to

acknowledgement symbols received from children in Phase I) decrements according to

the number of the received convergecast symbol e in Phase II; thus, the multiplicity

of symbol c represents the number of remaining children that have not sent a con-

vergecast symbol. Cells that have received symbol e from all their children, if any,

are shaded. A cell sends up one copy of symbol e to its parent, after it consumes all

copies of symbol c.

4.2. TREE TRAVERSAL ALGORITHMS 67

4.2.3 Algorithm: Tree height

This algorithm, derived from Algorithm 4.2.2, computes the height of each cell in

a rooted tree. A set of evolution rules that transforms the framework Ψ (of Def-

inition 4.3) into a simple P system Π of Algorithm 4.2.3 is presented. Then, the

description and analysis of system Π are provided.

Precondition of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 4.3.

Postcondition of system Π

When Π halts, the configuration of cell σi ∈ K is (s3, wi), where:

• |wi|h = heights(i), the height of σi.

States and symbols of system Π

The final multiplicity of symbol h in a cell indicates the height of that cell. Symbol

v is an auxiliary symbol used to produce symbol h. The meaning of the remaining

states and symbols are described Algorithm 4.2.2.

Evolution rules of system Π

The set of evolution rules below computes the height of each cell σi ∈ K. Note,

the evolution rules below are the evolution rules used in Algorithms 4.2.2 with the

following changes: rule 2.3 is modified to accumulate 2 · heights(i) copies of symbol

v, and rule 2.5 is added to rewrite every two copies of symbol v into one copy of

symbol h.

68 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Rules used in Phase I:

0. Rules for state s0:

1. s0 b→min s1 a (c, ↑) (b, ↓)

1. Rules for state s1:

1. s1 a→min s2 a

Rules used in Phase II:

2. Rules for state s2:

1. s2 t→min s3

2. s2 ce→max s2

3. s2 ac→min s2 acv

4. s2 a→min s2 t (e, ↑)

5. s2 vv →max s3 h

Overview of system Π

Recall the Phase I and Phase II of Algorithm 4.2.2. For cell σi, consider two steps, ti

and t′i, where:

• ti = depths(i)+2, i.e. two steps after σi receives the broadcast symbol in Phase I

(Proposition 4.4),

• t′i = depths(i) + 2 · heights(i) + 2, i.e. the step in which σi has received the

convergecast symbols from all its children in Phase II (as indicated in Proposi-

tion 4.10).

Note that, t′i = ti + 2 · heights(i), where heights(i) is the height of cell σi.

Cell σi ∈ K obtains heights(i) copies of symbol h in the following manner. First,

cell σi accumulates 2 ·heights(i) copies of symbol v by producing one copy of symbol

h (rule 2.3) in each step, from step ti + 1 until step t′i (both inclusive). Then, cell σi

rewrites every two copies of symbol v into one copy of symbol h (rule 2.5).

Table 4.3 contains the trace of system Π, for the tree of Figure 4.2. Figure 4.5 provides

a visual description of Π, for the tree of Figure 4.2. In Table 4.3 and Figure 4.5, the

final multiplicity of symbol h in each cell represents its tree height.

Proposition 4.16. From step depths(i) + 3 until step depths(i) + 2 · heights(i) + 2,

cell σi ∈ K remains in state s2 and produces one copy of symbol v in each step.

4.2. TREE TRAVERSAL ALGORITHMS 69

Table 4.3: The traces of the system Π of Algorithm 4.2.3 that computes the height

of a cell, for the tree of Figure 4.2. The final multiplicity of symbol h in cell σi,

1 ≤ i ≤ 8, corresponds to the height of σi. The height of σ1 is three. Thus, at step

10, σ1 contains three copies of symbol h.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s0 b s0 s0 s0 s0 s0 s0 s0

1 s1 a s0 b s0 b s0 b s0 s0 s0 s0

2 s2 ac
3 s1 a s1 a s1 a s0 b s0 b s0 b s0

3 s2 ac
3v s2 ac s2 a s2 ac

2 s1 a s1 a s1 a s0 b

4 s2 ac
3ev2 s2 acv s2 t s2 ac

2v s2 a s2 ac s2 a s1 a

5 s2 ac
2v3 s2 acev

2 s3 s2 ac
2ev2 s2 t s2 acv s2 t s2 a

6 s2 ac
2ev4 s2 tv

2 s3 s2 acv
3 s3 s2 acev

2 s3 s2 t

7 s2 acv
5 s3 h s3 s2 acev

4 s3 s2 tv
2 s3 s3

8 s2 acev
6 s3 h s3 s2 tv

4 s3 s3 h s3 s3

9 s2 tv
6 s3 h s3 s3 h

2 s3 s3 h s3 s3

10 s3 h3 s3 h s3 s3 h
2 s3 s3 h s3 s3

Proof. At step depths(i) + 2, each cell σi enters state s2 with |Succs(i)| copies of

symbol c (Proposition 4.6). Cell σi consumes each copy of symbol c together with

one copy of symbol e.

From step depths(i) + 3, if σi contains at least one copy of symbol c, then σi: (i)

remains in state s2 and (ii) produces one copy of symbol v in each step.

As indicated in Proposition 4.10, by step depths(i) + 2 · heights(i) + 2, each cell σi

receives, in total, |Succs(i)| copies of symbol e from its children.

Thus, from step depths(i) + 3 until step depths(i) + 2 · heights(i) + 2, σi remains in

state s2 and produces one copy of symbol v in each step.

Proposition 4.17. At step depths(i) + 2 · heights(i) + 3, cell σi makes transition

s2 ⇒ s2, and reaches configuration (s2, tv
k), where k = 2 · heights(s).

Proof. From Proposition 4.12, at step depths(i) + 2 · heights(i) + 2, cell σi reaches

configuration C = (s2, ac
hef), where 1 ≤ h ≤ |Succs(i)| and 0 ≤ f ≤ h. Note, cell σi

70 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

receives one copy of symbol e from all its children by step depths(i)+2·heights(i)+2

(Proposition 4.10). Hence, C = (s2, ac
heh). Further, from Proposition 4.16, by step

depths(i) + 2 · heights(i) + 2, cell σi accumulates 2 · heights(s) copies of symbol v.

Thus, at step depths(i)+2 ·heights(i)+2, cell σi reaches configuration (s2, ac
hehvk),

where k = 2 · heights(s).

At step depths(i) + 2 · heights(i) + 3, cell σi:

• Consumes h copies of symbol c together with h copies of symbol e.

• Rewrites one copy of symbol a into one copy of symbol t.

• Remains at state s2, from the transition s2 ⇒ s2.

Proposition 4.18. At step depths(i) + 2 · heights(i) + 4, cell σi makes transition

s2 ⇒ s3 and reaches configuration (s3, h
j), where j = heights(s).

Proof. From Proposition 4.17, at step depths(i) + 2 · heights(i) + 3, cell σi reaches

configuration (s2, tv
k), where k = 2·heights(s). At step depths(i)+2·heights(i)+4,

cell σi:

• Consumes one copy of symbol t.

• Rewrites every two copies of symbol v into one copy of symbol h.

• Enters state s3, from the transition s2 ⇒ s3.

Correctness and complexity of system Π

Proposition 4.19 indicates the correctness and time complexity of system Π. Propo-

sition 4.20 indicates the message complexity of system Π.

Proposition 4.19. System Π halts in 2 · heights(s) + 4 steps and the final configu-

ration of each cell corresponds to the postcondition.

4.2. TREE TRAVERSAL ALGORITHMS 71

Proof. At step depths(i) + 2 · heights(i) + 4, cell σi ∈ K reaches the configuration

C = (s3, h
j), where j = heights(s), as indicated in Proposition 4.18.

There are no rules in state s3, hence, cell σi cannot evolve once it enters state s3.

For a farthest cell σf (with respect to the source cell σs), depths(f) ≥ depths(g),

for all σg ∈ K, such that depths(f) = heights(s). Cell σf enters state s3 at step

depths(f) + 2 · heights(f) + 4 = 2 · depths(f) + 4 = 2 · heights(s) + 4. Therefore,

system Π halts at step 2 · heights(s) + 4.

Proposition 4.20. The total number of symbols that are exchanged between cells

of Π is 3 · |∆|.

Proof. This algorithm is derived from Algorithm 4.2.2 and cells in this algorithm do

not send any additional symbols. Thus, this proof follows from Proposition 4.15.

72 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ5 σ6 σ7

σ8

σ1

σ2 σ4

σ6

σ8

b b
b

c c
c

b bb

b

c c
c

v

c

Step 1 Step 2 Step 3

Step 4 Step 5

σ1

σ4

σ6

Step 6

σ1

σ1

σ2 σ3 σ4
e

e
e

e

c

σ1

σ4

Step 7

e

σ1

Step 8

e

Step 9

σ3

σ5 σ7

σ2 σ3

σ5 σ7

σ2 σ3

σ5 σ6 σ7

σ8

σ8

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

v2

v v

v3

v2 v2

v

v4

v2 v3

v2

v5

h v4

v2

v6

h v4

h

v6

h h2

h

Step 10

σ2 σ3

σ5 σ6 σ7

σ8

h3

h h2

h

σ1

σ4

Figure 4.5: The propagation of symbols b, c and e in Algorithm 4.2.3 that determines

the height of cells in a rooted tree, for the tree of Figure 4.2. In each cell σi, 1 ≤ i ≤ 8,

the final multiplicity of symbol h represents the height of σi (i.e. heights(i)).

4.3. GRAPH TRAVERSAL ALGORITHMS 73

4.3 Graph traversal algorithms

This section presents graph traversal algorithms, such as (i) an algorithm that deter-

mines the number of shortest paths from the source cell to every cell in Section 4.3.1,

(ii) an algorithm that determines distance parity of cells (i.e. even- or odd-distances

from the source cell) in Section 4.3.2, (iii) an echo algorithm in Section 4.3.3 and (iv)

an algorithm that determines the heights of cells in the spanning BFS DAG (rooted

at the source cell) in Section 4.3.4.

In general, the algorithms presented in this section differ from the tree traversal

algorithms of Section 4.2, in that (i) the source cell is located at an arbitrary node

of a graph (instead of the tree root) and (ii) transfer operator l is used in evolution

rules (instead of ↑ and ↓).

Simple P systems that implement the algorithms of this section differ only by their

evolution rules. Hence, the framework of a simple P system, Ψ, presented in Def-

inition 4.21, describes all the components of a simple P system Π, except a set of

evolution rules. For each algorithm, a formal description of the corresponding system

Π is presented by, completing the framework Ψ (of Definition 4.21) with a set of

evolution rules that implements the algorithm.

Definition 4.21. (Framework of a simple P system for graph traversal algo-

rithms) The framework of a simple P system (of order n), for designing the traversal

algorithms of this section, is Ψ = (O,K,∆), where:

1. O = {a, c, e, h, o, v, x, s, t}.

2. K = {σ1, σ2, . . . , σn}, where σs ∈ K is the source cell.

Each cell σi ∈ K has an initial form (Q, si0, wi0, R), where:

• Q = {s0, s1, s2, s3, s4, s5, s6}, where s0 is the initial quiescent state.

• si0 = s0, is the initial state.

• wi0 =

{
s if σi = σs,

∅ if σi 6= σs,
is the initial content.

• R is a set of evolution rules, which is given in each algorithm of this section.

3. ∆ forms a connected (communication) graph.

74 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

In Figure 4.6, (a) is a digraph G with the source cell σs = σ1, (b) is the communication

graph of G, which will be used for the visual description figures and evolution trace

tables, (c) is the spanning BFS DAG of G and (d) is a table that contains the number

of shortest paths (pathss(i)) and height (heights(i)), for each cell σi, 1 ≤ i ≤ 7.

(a) (b)

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ1

σ2 σ3

σ4 σ5

σ6 σ7

(c)

σ1

σ2 σ3

σ4 σ5

σ6 σ7

pathss

1

1

1

1

1

2

heights

3

2

0

1

1

0

1 0

Cell

σ1

σ2

σ3

σ4

σ5

σ6

σ7

(d)

Figure 4.6: (a) A digraph G with the source cell σs = σ1. (b) The communication

graph of G, i.e. the underlying graph of G. (c) The spanning BFS DAG of G. (d) A

table that contains the number of shortest paths (pathss(i)) and height (heights(i)),

for each cell σi, 1 ≤ i ≤ 7.

4.3.1 Algorithm: Number of shortest paths

This algorithm determines the number of the shortest paths from the source cell to

each cell. Further, each cell determines the total number of shortest paths from the

source to all its peers and successors. A set of evolution rules that transforms the

framework Ψ (of Definition 4.21) into a simple P system Π of Algorithm 4.3.1 is

presented. Then, the description and analysis of system Π are provided.

Precondition of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 4.21.

Postcondition of system Π

When Π halts, the configuration of cell σi ∈ K is (s3, wi), where:

• |wi|u = pathss(i), is the number of the shortest paths from σs to σi.

4.3. GRAPH TRAVERSAL ALGORITHMS 75

• |wi|y =
∑

σj∈Peers(i) pathss(j), is the number of the shortest paths from σs to

all σi’s peers.

• |wi|z =
∑

σj∈Succs(i) pathss(j), is the number of the shortest paths from σs to

all σi’s successors.

States and symbols of system Π

State s0 is an initial quiescent state, where cells remain until they receive a broadcast

symbol. States s0, s1 and s2 represent the states, where a cell expects to receive

symbols from its predecessors, peers and successors, respectively, if any. State s3 rep-

resents the terminal state. Symbol a is the broadcast symbol. The final multiplicity

of symbol u in cell σi indicates the number of shortest paths from the source cell to σi.

The final multiplicities of symbols y and z in cell σi indicate the number of shortest

paths from the source cell to σi’s peers and successors, respectively.

Evolution rules of system Π

The set of evolution rules below determines the number of the shortest paths from

the source to each cell σi ∈ K.

0. Rules for state s0:

1. s0 s→min s1 u (a, l)

2. s0 a→max s1 u (a, l)

1. Rules for state s1:

1. s1 u→min s2 u

2. s1 a→max s2 y

2. Rules for state s2:

1. s2 u→min s3 u

2. s2 a→max s3 z

Overview of system Π

In this algorithm, broadcast symbol a is propagated from the source cell to all other

cells in the following manner.

1. The source cell starts this algorithm by sending one copy of symbol a to each

of its neighbours (rule 0.1).

2. A non-source cell σj participates in this algorithm, when it receives symbol a.

For every copy of symbol a that cell σj receives, σj sends one copy of symbol a

to each of its neighbours (rule 0.2).

76 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

As indicated in Propositions 4.22, each cell σi receives pathss(i) copies of symbol a

from its predecessors, which corresponds to the number of shortest paths from the

source cell. Further, cell σi receives
∑

σj∈Peers(i) pathss(j) copies of symbol a from its

peers and
∑

σj∈Succs(i) pathss(j) copies of symbol a from its successors, as indicated

in Propositions 4.23 and 4.24, respectively. Cell σi stores the number of the shortest

paths from the source cell:

• to itself, by rewriting all copies of symbol a received from its predecessors (at

step depths(i)) into symbol u (rule 0.2); the source cell obtains one copy of

symbol u by rewriting the initial symbol s into u (rule 0.1).

• to all its peers, by rewriting all copies of symbol a received from its peers (at

step depths(i) + 1) into symbol y (rules 1.2).

• to all its successors, by rewriting all copies of symbol a received from its suc-

cessors (at step depths(i) + 2) into symbol z (rules 2.2).

Table 4.4 contains the traces of system Π, for the graph of Figure 4.6 (b). Figure 4.7

provides a visual description of Π, for the graph of Figure 4.6 (b).

Proposition 4.22. At step depths(i), cell σi 6= σs receives pathss(i) copies of symbol

a from its predecessors. At step depths(i)+1, cell σi sends pathss(i) copies of symbol

a to each of its successors.

Proof. Proof by induction, on m = depths(i) ≥ 1. At step 1, the source cell sends

one copy of symbol a to each of its neighbours. Hence, at step 1, each cell σi in depth

depths(i) = 1 receives one copy of symbol a. Then, at step 2, σi sends one copy of

symbol a to each of its neighbours.

Assume that the induction hypothesis holds for each cell σj at depth m. Consider

cell σi in m′ = m + 1. By induction hypothesis, at step m + 1, each σj ∈ Preds(i)

sends pathss(j) copies of symbol a to all its neighbours. Thus, at step m+1 = m′, σi

receives
∑

σj∈Preds(i) pathss(j) = pathss(i) copies of symbol a. At step depths(i) + 1,

σi sends pathss(i) copies of symbol a to each of its neighbours (which include its

successors).

4.3. GRAPH TRAVERSAL ALGORITHMS 77

a a a a
a

a
aa a a

a a a

a
a2

a

a2 a2

uz2

u u uy uy

u

uz2

uyz2 uy

u u

uz2

uyz2 uy

uz2 uz3

u2y uy2u2 u

σ1

σ2 σ3

σ4 σ5

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 1 Step 2 Step 3

Step 4 Step 5

σ4 σ5 σ4 σ5 u

σ4 σ5 σ4 σ5

σ1

σ2 σ3

Step 6

σ4 σ5

uz2

uyz2 uy

uz2 uz3

u2y uy2

σ6 σ7 σ6 σ7 σ6 σ7

σ6 σ7 σ6 σ7 σ6 σ7

u u

Figure 4.7: The propagation of symbol a in Algorithm 4.3.1 that determines the

number of shortest paths from the source to each cell, for the graph of Figure 4.6 (b),

where σ1 is the source cell. In each cell σi, 1 ≤ i ≤ 7, the final multiplicity of

symbol u corresponds to the number of shortest paths from σs to σi. Further, the

final multiplicities of symbols y and z correspond to the number of shortest paths

from σs to σi’s peers and successors, respectively.

Proposition 4.23. At step depths(i) + 1, cell σi makes transition s0 ⇒ s1, and

reaches configuration (s1, wi), where |wi|u =
∑

σj∈Preds(i) pathss(j) and

|wi|a =
∑

σk∈Peers(i) pathss(k).

Proof. As indicated in Proposition 4.22, at step depths(i), cell σi receives pathss(i)

copies of symbol a from its predecessors, and σi reaches configuration (s0, wi), where

|wi|a =
∑

σj∈Preds(i) pathss(j).

At step depths(i) + 1, cell σi:

• Receives pathss(k) copies of symbol a from each σk ∈ Peers(i).

From Proposition 4.22, at step depths(k) + 1, each cell σk ∈ Peers(i) sends

pathss(k) copy of symbol a to each of its neighbours. Hence, at step depths(k)+

1 = depths(i) + 1, σi receives pathss(i) copies of symbol a from each σk ∈

78 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Table 4.4: The traces of the system Π of Algorithm 4.3.1, for the graph of Fig-

ure 4.6 (b), where σ1 is the source cell. In each cell σi, 1 ≤ i ≤ 7, the final mul-

tiplicities of symbols u, y and z correspond to paths1(i),
∑

σj∈Peer1(i) paths1(j) and∑
σj∈Succ1(i) paths1(j), respectively. For example, cell σ2 has one predecessor, one

peer and two successors. Cell σ2 has one shortest path from σ1 and each of σ2’s peer

and successors has one shortest path from σ1. Thus, at step 6, σ2 contains multiset

uyz2.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 s0 s s0 s0 s0 s0 s0 s0

1 s1 u s0 a s0 a s0 s0 s0 s0

2 s2 a
2u s1 au s1 au s0 a s0 a s0 s0

3 s3 uz
2 s2 a

2uy s2 uy s1 u s1 u s0 a
2 s0 a

4 s3 uz
2 s3 uyz

2 s3 uy s2 a
2u s2 a

3u s1 au
2 s1 a

2u

5 s3 uz
2 s3 uyz

2 s3 uy s3 uz
2 s3 uz

3 s2 u
2y s2 uy

2

6 s3 uz
2 s3 uyz2 s3 uy s3 uz

2 s3 uz
3 s3 u

2y s3 uy
2

Peers(i). Hence, in total, cell σi receives
∑

σk∈Peers(i) pathss(k) copies of symbol

a.

• Rewrites each symbol a, received at step depths(i), into one copy of symbol u,

to obtain
∑

σj∈Preds(i) pathss(j)} copies of symbol u.

• Enters state s1, from the transition s0 ⇒ s1.

Proposition 4.24. At step depths(i) + 2, cell σi makes transition s1 ⇒ s2, and

reaches configuration (s2, wi), where |wi|u =
∑

σj∈Preds(i) pathss(j),

|wi|y =
∑

σk∈Peers(i) pathss(k) and |wi|a =
∑

σh∈Peers(i) pathss(h).

Proof. As indicated in Proposition 4.23, at step depths(i)+1, cell σi reaches configura-

tion (s1, wi), where |wi|u =
∑

σj∈Preds(i) pathss(j) and |wi|a =
∑

σk∈Peers(i) pathss(k).

At step depths(i) + 2, cell σi:

4.3. GRAPH TRAVERSAL ALGORITHMS 79

• Receives pathss(h) copies of symbol a from each σh ∈ Succs(i).

From Proposition 4.22, at step depths(h) + 1, each cell σh ∈ Succs(i) sends

pathss(h) copy of symbol a to each of its neighbours. Hence, at step depths(h)+

1 = depths(i) + 2, σi receives pathss(h) copies of symbol a from each σh ∈
Peers(i). Hence, in total, cell σi receives

∑
σh∈Succs(i) pathss(h) copies of symbol

a.

• Rewrites each symbol a, received at step depths(i) + 1, into one copy of symbol

y, to obtain
∑

σk∈Peers(i) pathss(k) copies of symbol y.

• Enters state s2, from the transition s1 ⇒ s2.

Proposition 4.25. At step depths(i) + 3, cell σi makes transition s2 ⇒ s3, and

reaches configuration (s3, wi), where |wi|u =
∑

σj∈Preds(i) pathss(j),

|wi|y =
∑

σk∈Peers(i) pathss(k) and |wi|z =
∑

σh∈Peers(i) pathss(h).

Proof. As indicated in Proposition 4.24, at step depths(i) + 2, cell σi reaches config-

uration (s2, wi), where |wi|u =
∑

σj∈Preds(i) pathss(j), |wi|y =
∑

σk∈Peers(i) pathss(k)

and |wi|a =
∑

σh∈Peers(i) pathss(h).

At step depths(i) + 3, cell σi:

• Rewrites each symbol a, received at step depths(i) + 2, into one copy of symbol

z, to obtain
∑

σh∈Succs(i) pathss(h) copies of symbol z.

• Enters state s3, from the transition s2 ⇒ s3.

Correctness and complexity of system Π

Proposition 4.26 indicates the correctness and time complexity of system Π. More-

over, Proposition 4.27 indicates the message complexity of system Π.

Proposition 4.26. System Π halts at step ecc(s) + 3 and the configuration of each

cell corresponds to the postcondition.

80 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Proof. As indicated in Proposition 4.25, at step depths(i)+3, cell σi ∈ K reaches con-

figuration (s3, wi), where |wi|u =
∑

σj∈Preds(i) pathss(j), |wi|y =
∑

σk∈Peers(i) pathss(k)

and |wi|z =
∑

σh∈Peers(i) pathss(h).

There are no rules in state s3, hence, cell σi cannot evolve once it enters state s3.

For a farthest cell σf (with respect to the source cell σs), depths(f) ≥ depths(g),

for all σg ∈ K, such that depths(f) = ecc(s). Cell σf enters state s3 at step

depths(i) + 3 = ecc(s) + 3.

Therefore, system Π halts at step ecc(s) + 3, and the final configuration of each cell

corresponds to the postcondition of Algorithm 4.3.1.

Proposition 4.27. The total number of symbols that are transferred between cells

of Π is
∑

σi∈K(pathss(i) · |Neighbour(i)|).

Proof. From Proposition 4.22, each cell σi receives pathss(i) copies of symbol a

and sends pathss(i) copies of symbol a to each of its neighbours. Hence, σi sends

pathss(i) · |Neighbour(i)| copies of symbol a. Therefore, in total,
∑

σi∈K(pathss(i) ·
|Neighbour(i)|) copies of symbol a are transferred between cells of Π.

4.3.2 Algorithm: Distance parity

In this algorithm, each cell determines its distance parity with respect to the source

cell, i.e. even or odd distance from the source cell. Further, each cell determines

the number of its predecessors, peers and successors. A set of evolution rules that

transforms the framework Ψ (of Definition 4.21) into a simple P system Π of Algo-

rithm 4.3.2 is presented. Then, the description and analysis of system Π are provided.

For cell σi ∈ K, symbols µi and µ̄i are defined as follow. If σi is an odd-parity cell,

then µi = o and µ̄i = x. If σi is an even-parity cell, then µi = x and µ̄i = o.

Precondition of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 4.21.

4.3. GRAPH TRAVERSAL ALGORITHMS 81

Postcondition of system Π

When Π halts, the configuration of cell σi ∈ K is (si, wi), where:

• si =

{
s3 if depths(i) is even,

s4 if depths(i) is odd.

• |wi|a = 1.

• |wi|b = |Preds(i)|, is the number of σi’s predecessors.

• |wi|c = |Peers(i)|, is the number of σi’s peers.

• |wi|d = |Succs(i)|, is the number of σi’s successors.

States and symbols of system Π

State s0 is an initial quiescent state, where each cell remains idle until it receives a

broadcast symbol. States s0, s1 and s2 represent the states where each cell receives

broadcast symbols from its predecessors, peers and successors, respectively, if any.

States s3 and s4 represent the terminal state for even- and odd-parity cells, respec-

tively. Symbols o and x are the broadcast symbols for even- and odd-parity cells,

respectively. Symbols a and e are produced when a cell in state s0 receives symbols x

and o, respectively. Symbol e is later used to guide an odd-parity cell to end in state

s4; at the same time, symbol e is rewritten into symbol a. Symbols b, c and d are

produced from the broadcast symbol (x or o) received from predecessors, peers and

successors, respectively.

Evolution rules of system Π

The set of evolution rules below determines the distance parity of cell σi ∈ K.

82 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

0. Rules for state s0:

1. s0 s→min s1 a (o, l)

2. s0 x→min s1 ab (o, l)

3. s0 o→min s1 eb (x, l)

4. s0 x→max s1 b

5. s0 o→max s1 b

1. Rules for state s1:

1. s1 a→min s2 a

2. s1 e→min s2 e

3. s1 o→max s2 c

4. s1 x→max s2 c

2. Rules for state s2:

1. s2 a→min s3 a

2. s2 e→min s4 a

3. s2 x→max s3 d

4. s2 o→max s4 d

Overview of system Π

In this algorithm, broadcast symbols (o and x) are propagated from the source cell

to all other cells, where (i) the initial broadcast symbol is o and (ii) at every step, the

current broadcast symbol alternates between symbols o and x. The details are given

below.

1. The source cell starts this algorithm by sending one copy of broadcast symbol

o to each of its neighbours.

2. A non-source cell σj participates in this algorithm, when it receives a broadcast

symbol µi (either symbol o or x) for the first time.

• If µi = o, then σj sends one copy of symbol µ̄i = x to each of its neighbours.

• If µi = x, then σj sends one copy of symbol µ̄i = o to each of its neighbours.

Propositions 4.28, 4.29 and 4.30 indicate the broadcast symbols that each cell receives

from its predecessors, peers and successors, respectively.

Specifically, each cell σi, 1 ≤ i ≤ n,

1. sends one copy of symbol µ̄i to each of its neighbours (rule 0.1 for an even-parity

cell; rule 0.2 for an odd-parity cell).

2. stores the number of its predecessors, peers and successors by rewriting:

• every copy of symbol µi (received from its predecessors) into one copy of

symbol b (rules 0.2 and 0.4 for an even-parity cell; rules 0.3 and 0.5 for an

odd-parity cell),

4.3. GRAPH TRAVERSAL ALGORITHMS 83

• every copy of symbol µ̄i (received from its peers) into one copy of symbol

c (rule 1.3 for an even-parity cell; rule and 1.4 for an odd-parity cell),

• every copy of symbol µi (received from its successors) into one copy of

symbol d (rule 2.3 for an even-parity cell; rule 2.4 for an odd-parity cell).

Table 4.5 contains the traces of system Π of Figure 4.6 (b). Figure 4.8 provides a

visual description of Π of Figure 4.6 (b).

o o x x
x

x
xx o o

o o o

x
x

x

x x

d2

b b bc bc

b

d2

bcd2 bc

b b

d2

bcd2 bc

bd bd2

b2c bcb2 b

σ1

σ2 σ3

σ4 σ5

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 1 Step 2 Step 3

Step 4 Step 5

σ4 σ5 σ4 σ5 b

σ4 σ5 σ4 σ5

σ1

σ2 σ3

Step 6

σ4 σ5

d2

bcd2 bc

bd bd2

b2c bc

σ6 σ7 σ6 σ7 σ6 σ7

σ6 σ7 σ6 σ7 σ6 σ7

Figure 4.8: The propagation of symbols o and x in Algorithm 4.3.2 that determines

the distance parity of cells, for the graph of Figure 4.6 (b), where σ1 is the source

cell. Even- and odd-parity cells receive symbols x and o from their predecessors,

respectively. In each cell σi, 1 ≤ i ≤ 7, the final multiplicities of symbols b, c and d

represent the number of σi’s predecessors, peers and successors, respectively.

Proposition 4.28. At step depths(i), cell σi 6= σs receives |Preds(i)| copies of symbol

µi from its predecessors. At step depths(i) + 1, cell σi sends one copy of symbol µ̄i

to each of its successors.

Proof. Proof by induction, on m = depths(i) ≥ 1. At step 1, the source σs sends one

copy of symbol o to each of its neighbours. Hence, at step 1, each cell σi in depth 1

84 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Table 4.5: The traces of the system Π of Algorithm 4.3.2, which determines the

distance parity of cells with respect to the source cell, for the graph of Figure 4.6 (b),

where σ1 is the source cell. Even- and odd-parity cells end in states s3 and s4,

respectively. In each cell σi, 1 ≤ i ≤ 7, the final multiplicities of symbols b, c and d

correspond to |Pred1(i)|, |Peer1(i)| and |Succ1(i)|, respectively. For example, σ2 has

one predecessor, one peer and two successors. Thus, at step 6, σ2 contains multiset

bcd2.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 s0 s s0 s0 s0 s0 s0 s0

1 s1 a s0 o s0 o s0 s0 s0 s0

2 s2 ax
2 s1 bex s1 bex s0 x s0 x s0 s0

3 s3 ad
2 s2 bceo

2 s2 bce s1 ab s1 ab s0 o
2 s0 o

4 s3 ad
2 s4 abcd

2 s4 abc s2 abx s2 abx
2 s1 b

2ex s1 bex

5 s3 ad
2 s4 abcd

2 s4 abc s3 abd s3 abd
2 s2 b

2ce s2 bce

6 s3 ad
2 s4 abcd2 s4 abc s3 abd s3 abd

2 s4 ab
2c s4 abc

receives one copy of symbol o = µi. Then, at step 2, cell σi sends one copy of symbol

x = µ̄i to each of its neighbours.

Assume that the induction hypothesis holds for each cell σj at depth m. Consider

cell σi in m′ = m + 1. By induction hypothesis, at step m + 1, each σj ∈ Preds(i)

sends one copy of symbol µ̄j to each its neighbours. Thus, in step m + 1 = m′, σi

receives |Preds(i)| copies of symbol µ̄j = µi. At step depths(i) + 1, cell σi sends one

copy of symbol µ̄i to each of its neighbours (which includes its successors).

Proposition 4.29. At step depths(i) + 1, cell σi makes transition s0 ⇒ s1, and

reaches configuration: (i) (s1, ab
jµ̄ki), if σi is an even-parity cell, where j = |Preds(i)|

and k = |Peers(i)|, and (ii) (s1, eb
jµ̄ki), if σi is an odd-parity cell.

Proof. From Proposition 4.28, cell σi receives |Preds(i)| copies of symbol µi and

reaches configuration (s0, µ
j
i), where j = |Preds(i)|.

At step depths(i) + 1, cell σi:

• Rewrites one copy of symbol µi, received at step depths(i), into one copy of:

4.3. GRAPH TRAVERSAL ALGORITHMS 85

◦ symbol a, if σi is an even-parity cell or

◦ symbol e, if σi is an odd-parity cell.

• Rewrites each remaining copy of symbol µi, received at step depths(i), into one

copy of symbol b.

• Receives |Peers(i)| copies of symbol µ̄i from its peers.

From Proposition 4.28, each cell σj ∈ Peers(i) sends one copy of symbol µ̄j to

each of its neighbours at step depths(j) + 1. Hence, at step depths(j) + 1 =

depths(i) + 1, cell σi receives one copy of symbol µ̄j = µ̄i from cell σj. Thus,

at step depths(i) + 1, cell σi receives |Peers(i)| copies of symbol µ̄i.

• Enters state s1 from the transition s0 ⇒ s1.

Proposition 4.30. At step depths(i) + 2, cell σi makes transition s1 ⇒ s2, and

reaches configuration: (i) (s2, ab
jckµhi), if σi is an even-parity cell, where j = |Preds(i)|,

k = |Peers(i)| and h = |Succs(i)|, or (ii) (s2, eb
jckµhi), if σi is an odd-parity cell.

Proof. From Proposition 4.29, at step depths(i) + 1: (i) an even-parity cell reaches

configuration (s1, ab
jµ̄ki), where j = |Preds(i)| and k = |Peers(i)|, and (ii) an odd-

parity cell reaches configuration (s1, ebjµ̄
k
i).

At step depths(i) + 2, cell σi:

• Rewrites each copy of symbol µ̄i, received at step depths(i) + 1, into one copy

of symbol c.

• Receives |Succs(i)| copies of symbol µi from its successors.

From Proposition 4.28, each cell σj ∈ Succs(i) sends one copy of symbol µ̄j to

each of its neighbours at step depths(j) + 1. Hence, at step depths(j) + 1 =

depths(i) + 2, cell σi receives one copy of symbol µ̄j = µi from cell σj. Thus,

at step depthc(i) + 2, cell σi receives |Succs(i)| copies of symbol µi.

• Enters state s2 from the transition s1 ⇒ s2.

86 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Proposition 4.31. At step depths(i) + 3, an even-parity cell σi makes transition

s2 ⇒ s3 and reaches configuration (s3, ab
jckdh), where j = |Preds(i)|, k = |Peers(i)|

and h = |Succs(i)|.

Proof. From Proposition 4.30, at step depths(i) + 2, an even-parity cell σi reaches

configuration (s2, ab
jckµhi), where j = |Preds(i)|, k = |Peers(i)| and h = |Succs(i)|.

At step depths(i) + 3, cell σi:

• Rewrites each copy of symbol µi into one copy of symbol d.

• Enters state s3 from the transition s2 ⇒ s3.

Proposition 4.32. At step depths(i) + 3, an odd-parity cell σi makes transition

s2 ⇒ s4 and reaches configuration (s4, ab
jckdh), where j = |Preds(i)|, k = |Peers(i)|

and h = |Succs(i)|.

Proof. From Proposition 4.30, at step depths(i) + 2, an odd-parity cell σi reaches

configuration (s2, eb
jckµhi), where j = |Preds(i)|, k = |Peers(i)| and h = |Succs(i)|.

At step depths(i) + 3, cell σi:

• Rewrites one copy of symbol e into one copy of symbol a.

• Rewrites each copy of symbol µi into one copy of symbol d.

• Enters state s4 from the transition s2 ⇒ s4.

Proposition 4.33. Cell σi is a terminal, if σi does not receive a copy of symbol µi

at step depths(i) + 2.

Proof. Follows from Proposition 4.30.

4.3. GRAPH TRAVERSAL ALGORITHMS 87

Correctness and complexity of system Π

Proposition 4.34 indicates the correctness of system Π. Proposition 4.35 indicates the

message complexity of system Π.

Proposition 4.34. System Π halts in ecc(s) + 3 steps and the final configuration of

each cell corresponds to the postcondition.

Proof. As indicated in Propositions 4.31 and 4.32, at step depths(i) + 3, cell σi ∈ K
reaches the configuration (si, ab

jckdh), where j = |Preds(i)|, k = |Peers(i)| and

h = |Succs(i)|, and si = s3 if σi is an even-parity cell or si = s4 if σi is an odd-

parity cell.

There are no rules in states s3 and s4, hence, cell σi cannot evolve once it enters

state s3 or s4. For a farthest cell σf (with respect to the source cell σs), depths(f) ≥
depths(g), for all σg ∈ K, such that depths(f) = ecc(s). Cell σf enters state s3 at

step depths(i) + 3 = ecc(s) + 3.

Therefore, system Π halts at step ecc(s) + 3 and the final configuration of each cell

corresponds to the postcondition of Algorithm 4.3.2.

Proposition 4.35. The total number of symbols that are transferred between cells

of Π is 2 · |∆|.

Proof. Each cell sends one copy of the broadcast symbol to each of its neighbours.

Hence, two copies of the broadcast symbol are sent over each arc of ∆. Thus, in total,

2 · |∆| copies of symbols are transferred between cells of Π.

4.3.3 Algorithm: Echo for graphs

This algorithm is an extension of Algorithm 4.2.2 for graphs, where the source is not

restricted to a distinguished node, such as the tree root. Specifically, (i) a broadcast

operation, initiated from the source cell, travels along the arcs of the spanning BFS

DAG (rooted at the source cell), followed by (ii) a convergecast operation, initiated

from the spanning BFS DAG leaves, that backtracks along the arcs of the BFS DAG

towards the source cell.

88 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

A set of evolution rules that transforms the framework Ψ (of Definition 4.21) into a

simple P system Π of Algorithm 4.3.3 is presented. Then, the description and analysis

of system Π are provided.

For cell σi, 1 ≤ i ≤ n, symbols µi and µ̄i are defined as follow. If σi is an odd-parity

cell, then µi = o and µ̄i = x. If σi is an even-parity cell, then µi = x and µ̄i = o.

Precondition of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 4.21.

Postcondition of system Π

When Π halts, the configuration of cell σi ∈ K is (s6, ∅).

States and symbols of system Π

In each cell, the multiplicity of: (i) symbol b indicates the number of its predeces-

sors, (ii) symbol c indicates the number of its peers and (iii) symbol d indicates the

number of its successors. Symbols o and x represent both the broadcast symbols (in

Phase I) and the convergecast symbols in (Phase II), for even- and odd-parity cells,

respectively. Symbol t is used to indicate that a cell has sent convergecast to its

predecessors. In states s3 and s4, even- and odd-parity cells, respectively, check if

the current number of convergecast symbols received in Phase II equals the number

of successors (determined in Phase I). In state s5, each cell discards symbols b and c

together with the convergecast symbols that are received from its peers and prede-

cessors. State s6 is the terminal state, indicating that a cell has completed Phase II.

The meaning of states s0, s1, s2 are described in Algorithm 4.3.2.

Evolution rules of system Π

The set of evolution rules below corresponds to Algorithm 4.3.3.

4.3. GRAPH TRAVERSAL ALGORITHMS 89

Rules used in Phase I (Algorithm 4.3.2):

0. Rules for state s0:

1. s0 s→min s1 a (o, l)

2. s0 x→min s1 ab (o, l)

3. s0 o→min s1 eb (x, l)

4. s0 x→max s1 b

5. s0 o→max s1 b

1. Rules for state s1:

1. s1 a→min s2 a

2. s1 e→min s2 e

3. s1 o→max s2 c

4. s1 x→max s2 c

2. Rules for state s2:

1. s2 a→min s3 a

2. s2 e→min s4 a

3. s2 x→max s3 d

4. s2 o→max s4 d

Rules used in Phase II (convergecast):

3. Rules for state s3:

1. s3 t→min s5

2. s3 xd→max s3

3. s3 ad→min s3 ad

4. s3 a→min s3 at (o, l)

4. Rules for state s4:

1. s4 t→min s5

2. s4 od→max s4

3. s4 ad→min s4 ad

4. s4 a→min s4 at (x, l)

5. Rules for state s5:

1. s5 ob→max s5

2. s5 xb→max s5

3. s5 oc→max s5

4. s5 xc→max s5

5. s5 ab→min s5 ab

6. s5 ac→min s5 ac

7. s5 a→min s6

Overview of system Π

In this echo algorithm, each cell progresses through two conceptual phases, Phase I

(Algorithm 4.3.2) and Phase II (convergecast), independent of other cells.

1. Phase I (Algorithm 4.3.2):

• The source cell starts Phase I at the beginning of the algorithm. Each

non-source cell starts Phase I, when it receives a broadcast symbol.

• In Phase I, each cell σi sends one copy of broadcast symbol µ̄i to each of

its neighbours, as described in Algorithm 4.3.2.

• At the end of Phase I, each cell σi contains one copy of symbol a, Preds(i)

copies of symbol b, Peers(i) copies of symbol c and Succs(i) copies of

90 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

symbol d, as indicated in the postcondition of Algorithm 4.3.2. Note, a

cell that does not contain any copy of symbol d is a terminal.

2. Phase II (convergecast):

• Each cell starts Phase II, immediately after completing Phase I.

• In Phase II, each cell sends one copy of convergecast symbol to each of

its neighbours, after it receives one copy of convergecast symbol from each

of its successors. Each cell can receive the convergecast symbols from its

successors and peers. Hence, each cell needs to distinguish the converge-

cast symbols that are originated from its successors, from the convergecast

symbols that are originated from its peers.

The convergecast symbol each cell σi sends (in Phase II) is µ̄i. That is,

for each cell, the broadcast symbol (sent in Phase I) and the convergecast

symbol (sent in Phase II) are the same. Hence, the convergecast symbol

that cell σi receives from its: (i) predecessors is µi (Proposition 4.28), (ii)

peers is µ̄i (Proposition 4.29) and (iii) successors is µi (Proposition 4.30).

Thus, each cell σi can recognize that it has received convergecast symbols

from all its successors, if σi has received the first |Succs(i)| copies of symbol

µi (Proposition 4.37).

• At the end of Phase I, each cell σi contains |Succs(i)| copies of symbol d.

Cell σi consumes each copy of symbol d with one copy of symbol µi, such

that, having zero copies of symbol d indicates that σi has received symbol

µi from all its successors. Cell σj uses symbol a to check whether all copies

of symbol d are consumed (rule 3.3 for an even-parity cell; rule 4.3 for an

odd-parity cell).

Cell σi sends one copy of symbol µ̄i to each of its neighbours (rule 3.4 for an

even-parity cell; rule 4.4 for an odd-parity cell), after it receives |Succs(i)|
copies of symbol µi from its successors (Proposition 4.38). Each terminal

cell σt has zero copies of symbol d, thus, σt sends one copy of symbol µ̄t

at the start of Phase II.

• In Phase II, each cell receives convergecast symbols from its peers and

predecessors. At the end of Phase I, each cell σi contains |Preds(i)| copies

of symbol b and |Succs(i)| copies of symbol c.

4.3. GRAPH TRAVERSAL ALGORITHMS 91

Cell σi receives |Preds(i)| copies of symbol µi from its predecessors and

|Peers(i)| copies of symbol µ̄i from its peers (Proposition 4.39). Cell σi

consumes symbols b and c together with symbols µi and µ̄i that are re-

ceived from its predecessors and peers, respectively (rules 5.1, 5.2, 5.3,

5.4). Cell σj uses symbol a to check whether all copies of symbols b and c

are consumed (rules 5.5 and 5.6).

Cell σi enters terminal state s6, after it consumes all copies of symbols

b and c (rule 5.7); at the same time, σi consumes one copy of symbol a.

Once cell σi enters state s6, σi does not receive any further symbol.

Table 4.6 contains the traces of system Π of Figure 4.6 (b). Figure 4.9 provides a

visual description of Π of Figure 4.6 (b).

Table 4.6: The traces of the system Π of Algorithm 4.3.3, for the graph of Fig-

ure 4.6 (b) with the source cell σ1. In each column of cell σi, 1 ≤ i ≤ 7, the first

shaded table cell indicates the start of Phase I, the second shaded table cell indicates

the start of Phase II (equivalently, the end of Phase I) and the third shaded table cell

indicates the end of Phase II.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 s0 s s0 s0 s0 s0 s0 s0

1 s1 a s0 o s0 o s0 s0 s0 s0

2 s2 ax
2 s1 bex s1 bex s0 x s0 x s0 s0

3 s3 ad
2 s2 bceo

2 s2 bce s1 ab s1 ab s0 o
2 s0 o

4 s3 ad
2 s4 abcd

2 s4 abc s2 abx s2 abx
2 s1 b

2ex s1 bex

5 s3 ad
2x s4 abcd

2x s4 abct s3 abd s3 abd
2 s2 b

2ce s2 bce

6 s3 ad s4 abcd
2x s5 abc s3 abd s3 abd

2 s4 ab
2c s4 abc

7 s3 ad s4 abcd
2x s5 abc s3 abdx s3 abd

2x2 s4 ab
2ctx s4 abctx

8 s3 ad s4 abcd
2o2x s5 abc s3 abt s3 abt s5 ab

2co2x s5 abcox

9 s3 adx s4 abctx s5 abcx s5 abx s5 abx s5 a s5 a

10 s3 at s5 abcox s5 aco s5 a s5 a s6 s6

11 s5 a s5 a s5 a s6 s6 s6 s6

12 s6 s6 s6 s6 s6 s6 s6

92 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Proposition 4.36. By step depths(i) + 2 · heights(i) + 3, each non-leaf cell σi

receives |Succs(i)| copies of symbol µi from all its successors. At step depths(i) + 2 ·
heights(i) + 4, each cell σi sends one copy of symbol µ̄i to each of its neighbours.

Proof. Proof by induction, on cell σi’s height, h = heights(i).

In the base case, where h = 0, cell σi is a terminal cell. Clearly, cell σi has no successors

and therefore does not receive any symbol µi at step depths(i) + 2 · heights(i) + 3 =

depths(i) + 3. Thus, at step depths(i) + 4, cell σi sends one copy of symbol µ̄i to

each of its neighbours.

Assume that the induction hypothesis holds for each cell σk at height heights(k) ≤ h.

Consider a non-terminal cell σi at height heights(i) = h+ 1. Each cell σj ∈ Succs(i)

has height heights(j) ≤ h, thus it satisfies the induction hypothesis. Cell σj ∈
Succs(i) sends one copy of symbol µ̄j = µi to cell σi at step depths(j)+2·heights(j)+

4. For cell σi, depths(i) = depths(j)−1 for each σj ∈ Succs(i), and max{heights(j) |
σj ∈ Succs(i)} = heights(i)−1. Thus, by step (depths(i)+1)+2(heights(i)−1)+4 =

depths(i) + 2 · heights(i) + 3, cell σi receives |Succs(i)| copies of symbol µi from all

its successors. Then, at step depths(i) + 2 · heights(i) + 4, cell σi sends one copy of

symbol µ̄i to each σz ∈ Neighbour(i) = Preds(i) ∪ Peers(i) ∪ Succs(i).

Proposition 4.37. The first |Succs(i)| copies of symbol µi that cell σi receives are

sent from σi’s successors.

Proof. Each σk ∈ Preds(i) needs convergecast symbol µ̄i from σi, before it can send

its convergecast symbol µ̄k. Thus, the first |Succs(i)| copies of symbol µi that σi

receives must have originated from σi’s successors.

Proposition 4.38. A non-terminal cell σi (i) receives |Succs(i)| copies of symbol

µi from its successors by step depths(i) + 2 · heights(i) + 2 and (ii) sends one copy

of symbol µ̄i to each of its predecessors, peers and successors at step depths(i) + 2 ·
heights(i) + 3.

Proof. Proof by induction, on cell σi’s height, h = heights(i).

In the base case, where h = 0, cell σi is a terminal cell. Clearly, cell σi has no

successors and therefore does not receive any symbol µi at step depths(i) + 2. Thus,

4.3. GRAPH TRAVERSAL ALGORITHMS 93

at step depths(i)+2 ·heights(i)+3 = depths(i)+3, cell σi sends one copy of symbol

µ̄i to each of its neighbours.

Assume that the induction hypothesis holds for each cell σk at height heights(k) ≤ h.

Consider a non-terminal cell σi at height heights(i) = h+ 1. Each cell σj ∈ Succs(i)

has height heights(j) ≤ h, thus it satisfies the induction hypothesis. Cell σj ∈
Succs(i) sends one copy of symbol µ̄j = µi to cell σi at step depths(j)+2·heights(j)+

3. For cell σi, depths(i) = depths(j)−1 for each σj ∈ Succs(i), and max{heights(j) |
σj ∈ Succs(i)} = heights(i)−1. Thus, by step (depths(i)+1)+2(heights(i)−1)+3 =

depths(i) + 2 · heights(i) + 2, cell σi receives |Succs(i)| copies of symbol µi from all

its successors. Then, at step depths(i) + 2 · heights(i) + 3, cell σi sends one copy of

symbol µ̄i to each σz ∈ Neighbour(i) = Preds(i) ∪ Peers(i) ∪ Succs(i).

Proposition 4.39. In Phase II, each cell σi receives: (i) |Preds(i)| copies of symbol

µi from its predecessors and (ii) |Peers(i)| copies of symbol µ̄i from its peers.

Proof. For each σj ∈ Peers(i), depths(j) = depths(i), hence µj = µi and µ̄j = µ̄i.

For each σk ∈ Preds(i), depths(k) = depths(i)− 1, hence µk = µ̄i and µ̄k = µi.

In Phase II, each cell σi sends one copy of symbol µ̄i to each of its neighbours. Thus,

cell σi receives |Preds(i)| copies of symbol µi from its predecessors and |Peers(i)|
copies of symbol µ̄i from its peers.

Correctness and complexity of system Π

Proposition 4.40 indicates the correctness of system Π.

Proposition 4.40. When system Π halts, the configuration of each cell corresponds

to the postcondition.

Proof. At the end of Phase I, each cell σi contains one copy of symbol a, Preds(i)

copies of symbol b, |Peers(i)| copies of symbol c and |Succs(i)| copies of symbol d.

In Phase II, cell σi consumes: (i) all copies of symbol b with symbol µi received from

its predecessors (Proposition 4.39), (ii) all copies of symbol c with symbol µ̄i received

from its peers (Proposition 4.39) and (iii) all copies of symbol d with symbol µi re-

ceived from its successors (Proposition 4.38). Further, after all copies of symbols b,

c and d are consumed, cell σi consumes symbol a to enter state s6. Thus, σi ends in

configuration (s6, ∅).

94 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Time and message complexities of system Π

The time and message complexities of system Π of Algorithm 4.3.3 are indicated in

Propositions 4.41 and 4.42, respectively.

Proposition 4.41. System Π halts in 2 · ecc(s) + 6 steps.

Proof. Phase I takes ecc(s) + 3 steps (Proposition 4.34). Propagating the converge-

cast to the source cell σs from its farthest cell takes ecc(s) steps. After cell σs receives

the convergecast symbols from all its successors, σs takes three additional steps to

enter the end state s6. Thus, in total, Π halts in 2 · ecc(s) + 6 steps.

Proposition 4.42. The total number of symbols that are transferred between cells

of Π is 4 · |∆|.

Proof. The total number of transferred symbols in Phase I is 2·|∆| (Proposition 4.35).

In Phase II, each cell sends one copy of the convergecast symbol to each of its neigh-

bours, i.e. two copies of the convergecast symbols are sent over each arc of ∆. Thus,

in Phase II, 2 · |∆| copies of symbols are transferred between cells of Π. Therefore,

the total number of transferred symbols in Phase I and Phase II is 4 · |∆|.

Remark 4.43. The purpose of distinguishing cells according to their distance parity

is to identify which of the received convergecast symbols have originated from the

successors. The convergecast symbols a cell σi receives from (i) its successors are µ̄i

and (ii) its peers are µi. Thus, in Phase II, each cell can correctly detect that it

has received convergecast symbols from all its successors, and ignore the convergecast

symbols received from its peers. For example, in Figure 4.9, when cell σ2 receives

symbol x = µ2 from its peer σ3 at step 5, σ2 can correctly identify that this symbol

x is a convergecast symbol originated from one of its peers.

4.3. GRAPH TRAVERSAL ALGORITHMS 95

o o x x
x

x
xx o o

o o o

x
x

x

x x

d2

b b bc bc

b

d2

bcd2 bc

b b

d2

bcd2 bc

bd bd2

b2c bcb2 b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 1 Step 2 Step 3

Step 4 Step 5

σ4 σ5 σ4 σ5 b

σ4 σ5 σ4 σ5

σ1

σ2 σ3

Step 6

σ4 σ5

d

bcd2x bc

bd bd2

b2c bc

x

x

x
x

xx
bcx bc

bcx c

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 8 Step 9

Step 10 Step 11

σ4 σ5

σ4 σ5 σ4 σ5

σ1

σ2 σ3

σ4 σ5

d

bcd2x bc

b b

b2cx bcx

o o

d

b b
o o o

o o

σ1

σ2 σ3

Step 7

σ4 σ5

d

bcd2x bc

bd bd2

b2c bc

x
x

x

x x

σ1

σ2 σ3

Step 12

σ4 σ5

σ6 σ7 σ6 σ7

σ6 σ7 σ6 σ7 σ6 σ7

σ6 σ7 σ6 σ7 σ6 σ7

σ6 σ7 σ6 σ7 σ6 σ7

Figure 4.9: The propagation of symbols o and x in Algorithm 4.3.3, for the graph of

Figure 4.6 (b), where σ1 is the source cell.

96 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

4.3.4 Algorithm: Cell heights

This algorithm, derived from Algorithm 4.3.3, determines the height of each σi,

heights(i).

A set of evolution rules that transforms the framework Ψ (of Definition 4.21) into a

simple P system Π of Algorithm 4.3.4 is presented. Then, the description and analysis

of system Π are provided.

Precondition of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 4.21.

Postcondition of system Π

When Π halts, the configuration of cell σi ∈ K is (s6, wi), where:

• |wi|h = heights(i), the height of σi.

States and symbols of system Π

The final multiplicity of symbol h in each cell represents the height of that cell. The

meaning of other symbols and states are described in Algorithm 4.3.3.

Evolution rules of system Π

The set of evolution rules below determines the height of each cell σi, heights(i).

Note, the evolution rules below are the evolution rules used in Algorithm 4.3.3, with

the following changes: rules 3.3 and 4.3 are modified to produce 2 · heights(i) copies

of symbol v, and rules 3.5 and 4.5 are added to rewrite every two copies of symbol v

into one copy of symbol h.

4.3. GRAPH TRAVERSAL ALGORITHMS 97

Rules used in Phase I:

0. Rules for state s0:

1. s0 s→min s1 a (o, l)

2. s0 x→min s1 ab (o, l)

3. s0 o→min s1 eb (x, l)

4. s0 x→max s1 b

5. s0 o→max s1 b

1. Rules for state s1:

1. s1 a→min s2 a

2. s1 e→min s2 e

3. s1 o→max s2 c

4. s1 x→max s2 c

2. Rules for state s2:

1. s2 a→min s3 a

2. s2 e→min s4 a

3. s2 x→max s3 d

4. s2 o→max s4 d

Rules used in Phase II:

3. Rules for state s3:

1. s3 t→min s5

2. s3 xd→max s3

3. s3 ad→min s3 adv

4. s3 a→min s3 at (o, l)

5. s3 vv →max s5 h

4. Rules for state s4:

1. s4 t→min s5

2. s4 od→max s4

3. s4 ad→min s4 adv

4. s4 a→min s4 at (x, l)

5. s4 vv →max s5 h

5. Rules for state s5:

1. s5 ob→max s5

2. s5 xb→max s5

3. s5 oc→max s5

4. s5 xc→max s5

5. s5 ab→min s5 ab

6. s5 ac→min s5 ac

7. s5 a→min s6

Overview of system Π

In Algorithm 4.3.3, each cell σi (i) receives broadcast symbols from all its predeces-

sors (in Phase I) at step depths(i) (Proposition 4.28) and (ii) receives convergecast

symbols from all its successors (in Phase II) by step depths(i) + 2 · heights(i) + 3

(Proposition 4.38).

For cell σi, consider two steps, ti and t′i, where:

• ti = depths(i) + 3, i.e. three steps after σi receives the broadcast symbols in

Phase I,

• t′i = depths(i) + 2 · heights(i) + 3, i.e. when σi receives convergecast symbols

from all its successors in Phase II.

98 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Note that, t′i = ti + 2 · heights(i), where heights(i) is the height of cell σi.

Each cell σi produces one copy of symbol v between steps ti+1 and t′i (both inclusive)

(rule 3.3 for an even-parity cell; rule 4.3 for an odd-parity cell) to accumulate 2 ·
heights(i) copies of symbol v. Then, at step t′i + 1, each cell σi rewrites every two

copies of symbol v into one copy of symbol h (rule 3.5 for an even-parity cell; rule

4.5 for an odd-parity cell) to obtain heights(i) copies of symbol h. Thus, each cell

σi determines its height, heights(i), according to the final multiplicity of symbol h.

Table 4.7 contains the traces of system Π, for the graph of Figure 4.6 (b). Figure 4.10

provides a visual description of Π, for the graph of Figure 4.6 (b).

Table 4.7: The traces of the system Π of Algorithm 4.3.4, which determines the height

of each cell, for the graph of Figure 4.6 (b), where σ1 is the source cell. The final

multiplicity of symbol h in each cell σi, 1 ≤ i ≤ 7, corresponds to the height of σi.

For example, the height of σ1 is three. Thus, at step 12, σ1 ends with three copies of

symbol h.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 s0 s s0 s0 s0 s0 s0 s0

1 s1 a s0 o s0 o s0 s0 s0 s0

2 s2 ax
2 s1 bex s1 bex s0 x s0 x s0 s0

3 s3 ad
2 s2 bceo

2 s2 bce s1 ab s1 ab s0 o
2 s0 o

4 s3 ad
2v s4 abcd

2 s4 abc s2 abx s2 abx
2 s1 b

2ex s1 bex

5 s3 ad
2v2x s4 abcd

2vx s4 abct s3 abd s3 abd
2 s2 b

2ce s2 bce

6 s3 adv
3 s4 abcd

2v2x s5 abc s3 abdv s3 abd
2v s4 ab

2c s4 abc

7 s3 adv
4 s4 abcd

2v3x s5 abc s3 abdv
2x s3 abd

2v2x2 s4 ab
2ctx s4 abctx

8 s3 adv
5 s4 abcd

2o2v4x s5 abc s3 abtv
2 s3 abtv

2 s5 ab
2co2x s5 abcox

9 s3 adv
6x s4 abctv

4x s5 abcx s5 abhx s5 abhx s5 a s5 a

10 s3 atv
6 s5 abch

2ox s5 aco s5 ah s5 ah s6 s6

11 s5 ah
3 s5 ah

2 s5 a s6 h s6 h s6 s6

12 s6 h3 s6 h
2 s6 s6 h s6 h s6 s6

4.3. GRAPH TRAVERSAL ALGORITHMS 99

Correctness and complexity of system Π

Proposition 4.44 indicates the correctness of system Π.

Proposition 4.44. When system Π halts, the configuration of each cell corresponds

to the postcondition.

Proof. Even- and odd-parity cells use rules 3.3 and 4.3, respectively, to produce one

copy of symbol v in each step. Each cell σi can start applying rule 3.3 or 4.3, when

it enters state s3 or s4, respectively. Further, σi cannot apply rule 3.3 or 4.3, when it

receives |Succs(i)| copies of symbol µi from its successors.

Each cell σi enters state s3 or s4 at step depths(i) + 3. Hence, cell σi can start to

produce one copy of symbol v in each step from step depths(i)+4. Further, σi receives

|Succs(i)| copies of symbol µi from its successors by step depths(i)+2 ·heights(i)+3

(Proposition 4.38). Hence, cell σi cannot produce symbol v after step depths(i) + 2 ·
heights(i) + 3.

Between steps depths(i) and depths(i) + 2 · heights(i) + 3, both inclusive, cell σi

produces one copy of symbol v in each step. Thus, σi accumulates 2 · heights(i)
copies of symbol v. Then, using transition s3 ⇒ s5 or s4 ⇒ s5, σi rewrites every two

copies of symbol v into one copy of symbol h and ends in state s5. Cell σi ends in

state s6 using transition s5 ⇒ s6.

Therefore, σi ends in state s6 with heights(i) copies of symbol h.

Time and message complexities of system Π

The time and message complexities of system Π of Algorithm 4.3.4 are indicated in

Propositions 4.45 and 4.46, respectively.

Proposition 4.45. System Π halts in 2 · ecc(s) + 6 steps.

Proof. Follows from Proposition 4.41.

Proposition 4.46. The total number of symbols that are transferred between cells

of Π is 4 · |∆|.

Proof. Follows from Proposition 4.42.

100 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

o o x x
x

x
xx o o

o o o

x
x

x

x x

d2

d2v

d2

d2v2

d2v

d d2

σ1

σ2 σ3

σ4 σ5

σ7 σ8

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 1 Step 2 Step 3

Step 4 Step 5

σ4 σ5

σ7 σ8

σ4 σ5

σ7 σ8

σ4 σ5

σ7 σ8

σ4 σ5

σ7 σ8

σ1

σ2 σ3

Step 6

σ4 σ5

σ7 σ8

dv3

d2v2

dv d2v

x

x

x
x

xx
v4

h2

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 8 Step 9

Step 10 Step 11

σ4 σ5

σ7 σ8

σ4 σ5

σ7 σ8

σ4 σ5

σ7 σ8

σ1

σ2 σ3

σ4 σ5

σ7 σ8

dv5

d2v4

o o

dv6

h h
o o o

o o

σ1

σ2 σ3

Step 7

σ4 σ5

σ7 σ8

dv4

d2v3

dv2 d2v2

x
x

x

x x

σ1

σ2 σ3

Step 12

σ4 σ5

σ7 σ8

v6 h3 h3

v2 v2

h h

h2

h h

h2

h h

Figure 4.10: The propagation of symbols o and x in Algorithm 4.3.4 that determines

the height of each cell, for the graph of Figure 4.6 (b), where σ1 is the source cell. In

each cell σi, 1 ≤ i ≤ 7, the final multiplicity of symbol h represents the height of σi

(i.e. heights(i)).

4.4. SUMMARY 101

4.4 Summary

Using the standard synchronous distributed broadcast algorithm (Definition 4.1) and

echo algorithm (Definition 4.2), this chapter presented broadcast-based and echo-based

P algorithms (i.e. broadcast and echo algorithms that perform additional computa-

tions, such as count the number of children and compute the tree height). Explicit

evolution rules are presented for each of these P algorithms.

As indicated in Tables 4.8, 4.9, 4.10 and 4.11, these broadcast- and echo-based P al-

gorithms are comparable to the standard synchronous distributed broadcast and echo

algorithms, with respect to time and program-size complexities.

Table 4.8: Comparing a synchronous distributed broadcast pseudo-code against Al-

gorithm 4.2.1 (Broadcast with acknowledgement), on trees, where h denotes the tree

height.

Algorithm Time complexity Program-size complexity

Synchronous distributed broadcast h 8 pseudo-code lines

pseudo-code (Definition 4.1)

Algorithm 4.2.1 h+ 2 2 evolution rules

(Broadcast with acknowledgement)

Table 4.9: Comparing a synchronous distributed broadcast pseudo-code against Al-

gorithms 4.3.1 (Number of shortest paths) and 4.3.2 (Distance parity), on digraphs,

where e denotes the eccentricity of the source.

Algorithm Time complexity Program-size complexity

Synchronous distributed broadcast e 8 pseudo-code lines

pseudo-code (Definition 4.1)

Algorithm 4.3.1 e+ 3 6 evolution rules

(Number of shortest paths)

Algorithm 4.3.2 e+ 3 13 evolution rules

(Distance parity)

102 CHAPTER 4. TRAVERSAL ALGORITHMS IN MEMBRANE SYSTEMS

Table 4.10: Comparing a synchronous distributed echo pseudo-code against Algo-

rithms 4.2.2 (Echo) and 4.2.3 (Tree height), on trees, where h denotes tree height.

Algorithm Time complexity Program-size complexity

Synchronous distributed echo 2h 14 pseudo-code lines

pseudo-code (Definition 4.2)

Algorithm 4.2.2 2h+ 4 6 evolution rules

(Echo)

Algorithm 4.2.3 2h+ 4 7 evolution rules

(Tree height)

Table 4.11: Comparing a synchronous distributed echo pseudo-code against Algo-

rithms 4.3.3 (Graph echo) and 4.3.4 (Cell heights), on digraphs, where e denotes the

eccentricity of the source.

Algorithm Time complexity Program-size complexity

Synchronous distributed echo 2e 14 pseudo-code lines

pseudo-code (Definition 4.2)

Algorithm 4.3.3 2e+ 6 28 evolution rules

(Graph echo)

Algorithm 4.3.4 2e+ 6 30 evolution rules

(Cell heights)

Chapter 5

The Firing Squad Synchronization

Problem

The concept of synchronization in a system is that all components of the system per-

form a particular task simultaneously. One of the most well studied synchronization

problems in cellular automata is known as the firing squad synchronization prob-

lem (FSSP). This chapter presents two FSSP solutions that synchronize tree- and

digraph-structured simple P systems, respectively.

This chapter is organized as follows. Section 5.1 provides the formulation of the FSSP-

equivalent in simple P systems. Section 5.2 describes a phase-based decomposition of

the FSSP. Sections 5.3 and 5.4 present FSSP solutions that synchronize graph- and

tree-structured simple P systems, respectively. Finally, Section 5.5 summarizes this

chapter.

5.1 Synchronization

The firing squad synchronization problem (FSSP) was devised by Myhill in 1957 and

introduced by Moore [54] in 1964. The original FSSP can be described as follows.

Consider a finite one-dimensional array of synchronous finite state machines, i.e. all

machines evolve in synchronous steps. The state of each machine at step t+1 depends

on the states of itself and its (left and right, if any) neighbours at step t. The left-most

(or right-most) machine is called the general and all other machines are called the

103

104 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

soldiers. The problem is to specify the states and transition functions for the soldiers,

such that the general can make all the soldiers to enter a particular state (called the

firing state) simultaneously and for the first time.

The minimal time FSSP solutions (i.e. 2n−2 steps, where n is the length of an array)

was presented by Goto [38], Waksman [81], Balzer [4] and Mazoyer [52].

5.1.1 Classification of the FSSP

After the original problem was introduced, several generalizations of the problem have

been proposed and studied. The FSSP can be classified according to the following

criteria.

1. Number of generals: [72]

There can be a single or multiple generals.

2. Network of the general(s) and soldiers: [59, 78, 39, 60, 8, 40]

The general(s) and soldiers are arranged in a line, a tree, a ring or an arbitrary

graph.

3. Position of a general: [55]

A general is located at (i) an arbitrary node of a network or (ii) a distinguished

node of a network (such as left-most or right-most position in a line and at the

root of a tree).

4. Communications between neighbours: [61, 29]

Either bidirectional or unidirectional communications between network nodes.

5.1.2 Formulation of the FSSP for simple P systems

In simple P systems, we can consider the FSSP for a network, where: (i) the network

is a tree or an arbitrary graph, (ii) there is a single general, located at the root of the

tree or at an arbitrary node of a graph and (iii) bidirectional communications between

the neighbours. Under this criteria, the FSSP for simple P systems is formulated as

follows.

5.1. SYNCHRONIZATION 105

Problem 5.1. (The formulation of the FSSP for simple P systems) For a

simple P system Π = (O,K,∆), the problem is to specify:

• a finite non-empty alphabet of symbols O,

• a finite set of states Q that contains

◦ sq ∈ Q, a quiescent state and

◦ sf ∈ Q, sf 6= sq, a firing state,

• a finite linearly ordered set of evolution rules R,

such that, given

• any finite set of cells, K, and

• any weakly connected digraph (K,∆),

the following three conditions are satisfied:

1. All cells start from state sq.

2. Cell σs is the only cell with an applicable rule in state sq (i.e. σs can evolve)

with its initial content (each other cell has an empty content).

3. During the last step of the Π’s evolution, all cells enter state sf , simultaneously

and for the first time.

Minimizing the synchronization time, i.e. the number of steps needed for all cells to

enter the firing state, is the main performance criterion considered for a solution to

the FSSP of Problem 5.1.

5.1.3 Motivations

There are several applications that require synchronization.

At the biological level, cell synchronization is a process by which cells at different

stages of the cell cycle (division, duplication, replication) in a culture are brought

106 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

to the same phase. There are several biological methods used to synchronize cells

at specific cell phases [43]. Once synchronized, monitoring the progression from one

phase to another allows us to calculate the timing of specific cells’ phases.

A second example relates to operating systems [73], where process synchronization is

the coordination of simultaneous threads or processes to complete a task without race

conditions. In distributed computing, consensus (e.g. Byzantine agreement problem,

see Lynch [50]) may not be possible unless participating processes are synchronized.

Finally, in telecommunication networks [30], we often want to synchronize computers

to the same time, i.e. primary reference clocks should be used to avoid local clock

offsets.

5.2 Phase-based decomposition of the FSSP

The general issues a “sealed” order, which is delivered to all soldiers in a breadth-

first search (BFS) manner. The content of this order commands a soldier to enter the

firing state. However, the general may not have direct communication channels to all

soldiers. In this case, the order is relayed through intermediate soldiers, which results

in some soldiers to receive the order before others. To ensure that all soldiers open

and execute the order simultaneously, each solider (upon receiving the order) needs to

wait until all other soldiers receive the order. Thus, the general needs to incorporate

some timing mechanism (to the order) that indicates the remaining number of steps

(with respect to the global clock) before the received order can be (opened and)

executed.

The general incorporates a hop-counter to the order, initially set to its eccentricity,

that decrements by one in each step. Note that, the eccentricity of the general (i.e. the

maximum of the shortest distances from the general to all other soldiers) corresponds

to the minimum number of steps needed to deliver the order from the general to

all soldiers. Further, for each soldier, the difference between (i) the eccentricity of

the general and (ii) the number of steps needed for the order to reach this solider,

corresponds to the number of remaining steps before all other soldiers receive the

order. This hop-counter decreases according to the distance from the general to a

soldier. Hence, the current hop-counter of the received order corresponds to the

5.2. PHASE-BASED DECOMPOSITION OF THE FSSP 107

number of remaining steps before all other soldiers receive the order.

Each of the two FSSP solutions (given in Sections 5.3 and 5.4, respectively) consists

of two phases, Phase I and Phase II, where:

1. Phase I: the general σs determines its eccentricity, ecc(s).

2. Phase II: the general issues the order with a hop-counter, initially set to ecc(s).

The two FSSP solutions use different approaches to compute the eccentricity of the

general in Phase I. However, the same approach is used in Phase II. Hence, prior to

presenting the FSSP solutions, I first present the details of Phase II in Section 5.2.1.

Figure 5.1 illustrates a rooted tree and a graph that are used as an illustration in the

FSSP solutions.

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

(b)

σ1

σ2 σ3

σ4 σ5

σ6 σ7

(a)

Figure 5.1: A rooted tree and a graph that are used as an illustration in the FSSP

solutions.

5.2.1 Algorithm: Phase II—Decrementing hop-counter

This section presents a simple P system with a decrementing hop-counter mechanism

that corresponds to Phase II of both FSSP solutions presented in this chapter.

Assume that the order is propagated from the general σs, in a breadth-first search

(BFS) manner, at step t ≥ 1, where t corresponds to the step in which Phase I

has ended. Each cell σi obtains the order at step t + depths(i), as described in

Proposition 4.28. Further, all cells receive the order by step t + ecc(s). Thus, when

cell σi obtains the order at step t + depths(i), the number of steps that σi needs

108 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

to wait until all other cells receive the order is (t + ecc(s)) − (t + depths(i)) =

ecc(s)− depths(i).

The order is paired with a hop-counter, initially set to the eccentricity of the general,

i.e. ecc(s). Starting from the general, when a cell obtains the order, it decrements

the current hop-counter by one, before forwarding the received order. Each cell σi (in

depth depths(i)) obtains the order with a hop-counter of ecc(s)− depths(i) at step

t+depths(i). Thus, each cell σi can recognize that after ecc(s)−depths(i) steps, all

cell have received the order.

A simple P system Π = (O,K,∆) that performs the decrementing counter mechanism

using a hop-counter is given in Definition 5.2, followed by the analysis of system Π.

Definition 5.2. (A simple P system with a decrementing counter) A simple

P system that implements the decrementing counter is Π = (O,K,∆) (of order n),

where:

1. O = {h, s, u, v}.

2. ∆ is a weakly connected digraph, without irreflexive and asymmetric arcs.

3. K = {σ1, σ2, . . . , σn}, where σs ∈ K is the general.

Each cell σi ∈ K is of the form (Q, si0, wi0, R), where:

• Q = {s6, s7, s8}, where s6 is the initial quiescent state in Phase II and s8

is the firing state.

• si0 = s6.

• wi0 =

{
hecc(s)s if σi = σs,

∅ if σi 6= σs.

• R is a set of evolution rules given below.

6. Rules for state s6:

1. s6 hs→max s7 u (s, l)

2. s6 h→max s7 v (h, l)

3. s6 s→max s8

7. Rules for state s7:

1. s7 uv →max s7 u

2. s7 u→max s8

3. s7 s→max s8

4. s7 h→max s8

5.2. PHASE-BASED DECOMPOSITION OF THE FSSP 109

Precondition of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 5.2.

Postcondition of system Π

When system Π halts, the configuration of cell σi ∈ K is (s8, ∅). Moreover, during

the last of the Π’s evolution, all cells simultaneously enter firing state s8 for the first

time.

States and symbols of system Π

The multiplicity of symbol h represents the value of the hop-counter. Symbols s

and u are used by each cell to determine and record the number of shortest paths

from the general, respectively. Symbol v (together with symbol u) is used to indicate

the number of remaining steps before all cells receive the firing order. State s6 is a

quiescent state, where each cell remains idle until it receives symbol h. State s7 is a

“wait” state (entered after obtaining the firing order symbols), where each cell waits

until all other cells receive the firing order. State s8 is the firing state.

Tables 5.1 and 5.2 contain the traces of system Π, for the tree of Figure 5.1 (a) and

the graph of Figure 5.1 (b), respectively. Figure 5.2 illustrates the visual description

of system Π, for the graph of Figure 5.1 (b).

Table 5.1: The evolution traces of the system Π of Definition 5.2, for the tree of

Figure 5.1 (a).

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0 s6 h
3s s6 s6 s6 s6 s6 s6 s6

1 s7 uv
2 s6 h

2s s6 h
2s s6 h

2s s6 s6 s6 s6

2 s7 h
3s3uv s7 uv s7 uv s7 uv s6 hs s6 hs s6 hs s6

3 s7 h
3s3u s7 su s7 u s7 s

2u s7 u s7 u s7 u s6 s

4 s8 s8 s8 s8 s8 s8 s8 s8

110 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Table 5.2: The traces of the system Π of Definition 5.2, for the graph of Figure 5.1 (b).

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 s6 h
3s s6 s6 s6 s6 s6 s6

1 s7 uv
2 s6 h

2s s6 h
2s s6 s6 s6 s6

2 s7 h
2s2uv s7 hsuv s7 hsuv s6 hs s6 hs s6 s6

3 s7 h
2s2u s7 hs

3u s7 hsu s7 u s7 u s6 s
2 s6 s

4 s8 s8 s8 s8 s8 s8 s8

h2s

s s

s s s

σ1

σ2 σ3

σ4 σ5

σ7 σ8

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 1 Step 2 Step 3 Step 4

σ4 σ5

σ7 σ8

σ4 σ5

σ7 σ8

σ4 σ5

σ7 σ8

uv2

h2s

uv u

uv uv
hs hs

hs

hs
hs

hs

u u

u u

Figure 5.2: The propagation of the order from the general σ1, with an initial hop-count

of ecc(1) = 3.

Correctness of construction of system Π

At the start of Phase II, the general σs sends: (i) ecc(s) − 1 copies of symbol h

(rule 6.1) and (ii) one copy of symbol s to each of its neighbours (rule 6.2). The

one copy of symbol s is propagated as described in Algorithm 4.3.1, which results

each cell σi to receive pathss(i) copies of symbol s. Further, ecc(s) − 1 copies

of symbol h are also propagated as described in Algorithm 4.3.1, such that each

cell receives (ecc(s) − 1)pathss(i) copies of symbol h. However, when σi receives

k ≤ (ecc(s)−1)pathss(i) copies of symbol h, σi sends k−pathss(i) copies of symbol

h to each of its neighbours. Specifically:

• At step depths(i), cell σi receives:

◦ pathss(i) copies of symbol s (Propositions 5.5) and

◦ (ecc(s)− depths(i))pathss(i) copies of symbol h (Propositions 5.4).

5.2. PHASE-BASED DECOMPOSITION OF THE FSSP 111

• Then, at step depths(i) + 1, cell σi sends:

◦ pathss(i) copies of symbol s to each of its neighbours (rule 6.1) (Proposi-

tions 5.5) and

◦ (ecc(s)− depths(i)− 1)pathss(i) copies of symbol h to each of its neigh-

bours (rule 6.2) (Propositions 5.4).

At step depths(i), for σi, the value ecc(s)− depths(i) corresponds to the number of

remaining steps until all other cells receive the order. Thus, σi needs to extract the

value ecc(s) − depths(i) from (ecc(s) − depths(i))pathss(i), such that, from step

depths(i), σi can remain idle for the next ecc(s) − depths(i) steps before it enters

the firing state.

If depths(i) = ecc(s), then σi receives pathss(i) copies of symbol s and zero copy of

symbol h. In this case, σi is one of the last cells to receive the order. Thus, at step

depths(i) + 1 = ecc(s) + 1, σi enters the firing state s8 (rule 6.3); at the same time,

σi discards pathss(i) copies of symbol s.

If depths(i) < ecc(s), then σi obtains (ecc(s)−depths(i))pathss(i) copies of symbol

h and pathss(i) copies of symbol s. In this case, at step depths(i) + 1, σi sends

symbol s and h as described earlier, and at the same time, σi produces: (i) pathss(i)

copies of symbol u (rule 6.1) and (ii) (ecc(s)− depths(i))pathss(i) copies of symbol

v (rule 6.2). From step depths(i) + 2, σi rewrites every copy of multiset uv (i.e. one

copy of symbol u and one copy of symbol v) into one copy of symbol u (rule 7.1).

Since σi has pathss(i) copies of symbol u, consuming all copies of symbol v take

ecc(s) − depths(i) steps. Thus, σi can remain idle for ecc(s) − depths(i) steps.

Then, at step depths(i) + (ecc(s)− depths(i)) + 1 = ecc(s) + 1, σi enters the firing

state s8 (rule 7.2) and discards pathss(i) copies of symbol u; further, σi discards

symbols s and h that are received from its peers and successors (rules 7.3 and 7.4).

Proposition 5.3. All cells of system Π enter the firing state at step ecc(s) + 1 with

empty contents. Thus, the postcondition of Π is satisfied.

Proposition 5.4. Cell σi receives (ecc(g)− depths(i))pathss(i) copies of symbol h

from its predecessors at step depths(i), and sends (ecc(s)− depths(i)− 1)pathss(i)

copies of symbol h to each of its successors, if any, at step depths(i) + 1.

112 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Proof. Proof by induction, on depth m = depths(i) ≥ 1.

At step 1, the general sends ecc(s) − 1 copies of symbol h to each of its neigh-

bours. Thus, at step 1, each cell σk in depth 1 receives ecc(s) − 1 = (ecc(s) −
depths(k))pathss(k) copies of symbol h. Then, at step 2, cell σk sends ecc(s)− 2 =

(ecc(s)− depths(k)− 1)pathss(k) copies of symbol h to each of its neighbours.

Assume that the induction hypothesis holds for each cell σj at depth m. Consider

cell σi in m′ = m + 1. By induction hypothesis, at step m + 1, each σj ∈ Preds(i)

sends (ecc(s)− depths(i)− 1)pathss(i) copies of symbol h to each of its neighbours.

Thus, at step m+ 1 = m′, σi receives
∑

σj∈Preds(i)(ecc(s)−m− 1)pathss(j) copies of

symbol h, where∑
σj∈Preds(i)(ecc(s)−m− 1)pathss(j) = (ecc(s)−m− 1) ·∑σj∈Preds(i) pathss(j)

= (ecc(s)−m− 1)pathss(i)

= (ecc(s)− (depths(i)− 1)− 1)pathss(i)

= (ecc(s)− depths(i))pathss(i)

Then, at step depths(i) + 1, σi removes pathss(i) copies of symbol h and sends the

remaining (ecc(s)− depths(i)− 1)pathss(i) copies of symbol h to each of its neigh-

bours (which include its successors).

Proposition 5.5. Cell σi receives pathss(i) copies of symbol s from its predecessors

and sends pathss(i) copies of symbol s to each of its successor.

Proof. Follows from Proposition 4.22.

Time and message complexities of system Π

The time and message complexities of system Π are indicated in Propositions 5.6 and

5.7, respectively.

Proposition 5.6. System Π halts in ecc(s) + 1 steps.

Proof. The general σs sends the firing order in a BFS manner. Each cell σi receives the

firing order at step depths(i) with the counter of value (ecc(s)−depths(i))pathss(i).
From step depths(i), cell σi decrements the current counter by pathss(i) in each step.

The value of the counter becomes 0 at step depths(i)+(ecc(s)−depths(i)) = ecc(s).

5.3. STATIC FSSP SOLUTION FOR GRAPHS 113

Thus, at step ecc(s) + 1, all cells enter the firing state.

Proposition 5.7. The total number of symbols exchanged between cells is∑
σi∈K((ecc(s)− depths(i)− 1)pathss(i) · |Neighbour(i)|).

Proof. Each cell σi sends (ecc(s)−depths(i)−1)pathss(i) copies of symbol h to each

of its neighbours (Proposition 5.4). Hence, σi sends (ecc(s)−depths(i)−1)pathss(i)·
|Neighbour(i)| copies of symbol h.

Further, σi sends pathss(i) copies of symbol s to each of its neighbours (Proposi-

tion 5.5). Hence, σi sends pathss(i) · |Neighbour(i)| copies of symbol s.

Thus, the total number of symbols sent by σi is (ecc(s) − depths(i))pathss(i) ·
|Neighbour(i)|.

Therefore, the total number of symbols transferred between cells is
∑

σi∈K((ecc(s)−
depths(i))pathss(i) · |Neighbour(i)|).

5.3 Static FSSP solution for graphs

This section presents an FSSP solution that synchronizes digraph-structured simple

P systems. This solution is considered static, in that the position of the general

remains the same. The simple P system of Definition 5.8 solves the FSSP for any

arbitrary digraph, where the position of the general remains the same. This FSSP

solution consists of two phases, where: (i) Phase I (derived from Algorithm 4.3.3)

determines the eccentricity of the general, and (ii) Phase II (Algorithm 5.2.1) the

general sends the order with a hop-counter, initially set to its eccentricity.

Definition 5.8. (Simple P system for solving FSSP) A simple P system that

solves the FSSP for any arbitrary weakly-connected digraph is Π = (O,K,∆), where:

1. O = {a, b, c, d, e, h, o, r, s, v, x}.

2. ∆ is a weakly connected digraph.

3. K = {σ1, σ2, . . . , σn}, where σs ∈ K is the general.

Each cell σi ∈ K is of the form (Q, si0, wi0, R), where:

114 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

• Q = {s0, s1, s2, s3, s4, s5, s6, s7, s8}, where s0 is the initial quiescent state

and s8 is the firing state.

• si0 = s0.

• wi0 =

{
s if σi = σs,

∅ if σi 6= σs.

• R is defined by the following set of evolution rules.

Rules used in Phase I: (derived from Algorithm 4.3.3)

0. Rules for state s0:

1. s0 s→min s1 as (o, l)

2. s0 x→min s1 ab (o, l)

3. s0 o→min s1 eb (x, l)

4. s0 x→max s1 b

5. s0 o→max s1 b

1. Rules for state s1:

1. s1 a→min s2 a

2. s1 e→min s2 e

3. s1 o→max s2 c

4. s1 x→max s2 c

2. Rules for state s2:

1. s2 a→min s3 a

2. s2 e→min s4 a

3. s2 x→max s3 d

4. s2 o→max s4 d

3. Rules for state s3:

1. s3 t→min s5

2. s3 xd→max s3

3. s3 ads→min s3 adsv

4. s3 ad→min s3 ad

5. s3 a→min s3 at (o, l)

6. s3 vv →max s5 h

4. Rules for state s4:

1. s4 t→min s5

2. s4 od→max s4

3. s4 ad→min s4 ad

4. s4 a→min s4 at (x, l)

5. Rules for state s5:

1. s5 ob→max s5

2. s5 xb→max s5

3. s5 oc→max s5

4. s5 xc→max s5

5. s5 ab→min s5 ab

6. s5 ac→min s5 ac

7. s5 a→min s6

Rules used in Phase II: (Algorithm 5.2.1)

6. Rules for state s6:

1. s6 hs→max s7 u (s, l)

2. s6 h→max s7 v (h, l)

3. s6 s→max s8

7. Rules for state s7:

1. s7 uv →max s7 u

2. s7 u→max s8

3. s7 s→max s8

4. s7 h→max s8

5.3. STATIC FSSP SOLUTION FOR GRAPHS 115

5.3.1 Algorithm: Phase I—Compute general’s eccentricity

Phase I (derived from Algorithm 4.3.3) of system Π finds the eccentricity of the

general σs, ecc(s). The details of Phase I of system Π are as follow.

Precondition of Phase I of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 5.8.

Postcondition of Phase I of system Π

The configuration of each cell σi ∈ K at the end of Phase I is (s6, wi), where

• |wi|s = 1, if σi = σs.

• |wi|h = heights(i) = ecc(s), if σi = σs.

States and symbols of Phase I of system Π

The resulting multiplicity of symbol h in the general σs corresponds to ecc(s). The

meaning of other symbols and states are described in Algorithm 4.3.3.

Evolution rules of Phase I of system Π

The set of evolution rules given in Definition 5.8 is the set of evolution rules of

Algorithm 4.3.3, with the following changes: (i) rule 0.1 is modified to keep symbol s

in σs, (ii) rule 3.3 is added to accumulate 2 · heights(s) copies of symbol v in σs and

(iii) rule 3.6 is added to rewrite every two copies of symbol v into one copy of symbol

h in σs.

Overview of Phase I of system Π

In Algorithm 4.3.3, each cell σi (i) obtains broadcast symbols at step depths(i)

(Proposition 4.28) and (ii) receives convergecast symbols from all its successors by

step depths(i) + 2 · heights(i) + 3 (Proposition 4.38).

116 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

The general σs can accumulate 2 · heights(s) copies of symbol v, if σs produces one

copy of symbol v in each step, from step ts until step t′s (both inclusive), where:

• ts = depths(s) + 3 = 3, i.e. two steps after σs sends a broadcast symbol to its

successors,

• t′s = depths(s) + 2 · heights(s) + 3 = 2 · heights(s) + 3, i.e. when σs receives

convergecast symbols from all its successors.

Then, σs can obtain heights(s) copies of symbol h by rewriting every two copies of

symbol v into one copy of symbol h. Note that, heights(s) = ecc(s). Thus, σs can

determine its eccentricity, ecc(s), according to the resulting multiplicity of symbol h.

Table 5.3 contains the traces of Algorithm 5.3.1 (i.e. system Π in Phase I), for the

graph of Figure 5.1 (b). Figure 5.3 provides a visual description of Algorithm 5.3.1.

Rules description of Phase I of system Π

For the general σs produces one copy of symbol v from step ts until step t′s (rule 3.3),

both inclusive, where steps ts and t′s are described in the overview. After receiving

convergecast symbols from the successors, σs rewrites every two copies of symbol v

into one copy of symbol h (rule 3.6). The other rules are described in Algorithm 4.3.3.

Correctness of construction of Phase I of system Π

From Algorithm 4.3.3, all cells end in state s6 with empty contents. The changes

to the evolution rules of Algorithm 4.3.3 enable the general σs to (i) keep one copy

of symbol s and (ii) obtain ecc(s) copies of symbol h. Thus, the postcondition of

Phase I of system Π is satisfied.

Time and message complexities of Phase I of system Π

The time and message complexities of Phase I of system Π are indicated in Proposi-

tions 5.9 and 5.10, respectively.

Proposition 5.9. Phase I of system Π takes 2 · ecc(s) + 6 steps.

5.3. STATIC FSSP SOLUTION FOR GRAPHS 117

Table 5.3: The traces of Phase I of the system Π, that determines the eccentricity

of the general, for the graph of Figure 5.1 (b), where σ1 is the general. The result-

ing multiplicity of symbol h in cell σ1 corresponds to the eccentricity of σ1. The

eccentricity of σ1 is three. Thus, at step 12, σ1 contains three copies of symbol h.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 s0 s s0 s0 s0 s0 s0 s0

1 s1 as s0 o s0 o s0 s0 s0 s0

2 s2 asx
2 s1 bex s1 bex s0 x s0 x s0 s0

3 s3 ad
2s s2 bceo

2 s2 bce s1 ab s1 ab s0 o
2 s0 o

4 s3 ad
2sv s4 abcd

2 s4 abc s2 abx s2 abx
2 s1 b

2ex s1 bex

5 s3 ad
2sv2x s4 abcd

2x s4 abct s3 abd s3 abd
2 s2 b

2ce s2 bce

6 s3 adsv
3 s4 abcd

2x s5 abc s3 abd s3 abd
2 s4 ab

2c s4 abc

7 s3 adsv
4 s4 abcd

2x s5 abc s3 abdx s3 abd
2x2 s4 ab

2ctx s4 abctx

8 s3 adsv
5 s4 abcd

2o2x s5 abc s3 abt s3 abt s5 ab
2co2x s5 abcox

9 s3 adsv
6x s4 abctx s5 abcx s5 abx s5 abx s5 a s5 a

10 s3 astv
6 s5 abcox s5 aco s5 a s5 a s6 s6

11 s5 ah
3s s5 a s5 a s6 s6 s6 s6

12 s6 h3s s6 s6 s6 s6 s6 s6

Proof. Follows from Proposition 4.41.

Proposition 5.10. The total number of symbols that are transferred between cells

in Phase I of Π is 4 · |∆|.

Proof. Follows from Proposition 4.42.

5.3.2 Algorithm: Phase II—Propagation of the order

Phase II (Algorithm 5.2.1) of system Π starts at the end of Phase I, where the

general σs issues the order, paired with a hop-count with an initial value set to its

eccentricity ecc(s), to inform all soldiers the correct step to enter the firing state.

Refer Section 5.2.1 for full details of Phase II.

118 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

5.3.3 Summary of Phase I and Phase II

The time and message complexities of system Π are indicated in Propositions 5.11

and 5.12, respectively. Table 5.4 contains the traces of system Π in Phase I and

Phase II, for the graph of Figure 5.1 (b).

Theorem 5.11. System Π halts (i.e. synchronizes) in 3 · ecc(s) + 7 steps.

Proof. Phase I takes 2 · ecc(s) + 6 steps (Proposition 5.9). Phase II takes ecc(s) + 1

steps (Proposition 5.6). Thus, in total, Π synchronizes in 3 · ecc(s) + 7 steps.

Theorem 5.12. The total number of symbols transferred between cells of Π is

4 · |∆|+ ∑
σi∈K((ecc(s)− depths(i))pathss(i) · |Neighbour(i)|).

Proof. The number of symbols transferred between cells in Phase I is 4 · |∆| (Proposi-

tion 5.10). The number of symbols transferred between cell in Phase II is
∑

σi∈K((ecc(s)−
depths(i))pathss(i) · |Neighbour(i)|) (Proposition 5.7).

Therefore, the total number symbols transferred between cells is 4·|∆|+∑
σi∈K((ecc(s)−

depths(i))pathss(i) · |Neighbour(i)|).

5.3. STATIC FSSP SOLUTION FOR GRAPHS 119

o o x x
x

x
xx o o

o o o

x
x

x

x x

d2

d2v

d2

d2v2

d2

d d2

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 1 Step 2 Step 3

Step 4 Step 5

σ4 σ5 σ4 σ5

σ4 σ5 σ4 σ5

σ1

σ2 σ3

Step 6

σ4 σ5

dv3

d2

d d2

x

x

x
x

xx

σ1

σ2 σ3

σ1

σ2 σ3

σ1

σ2 σ3

Step 8 Step 9

Step 10 Step 11

σ4 σ5

σ4 σ5 σ4 σ5

σ1

σ2 σ3

σ4 σ5

dv5

d2

o o

dv6

o o o

o o

σ1

σ2 σ3

Step 7

σ4 σ5

dv4

d2

d d2

x
x

x

x x

σ1

σ2 σ3

Step 12

σ4 σ5

v6 h3 h3

σ6 σ7 σ6 σ7

σ6 σ7 σ6 σ7 σ6 σ7

σ6 σ7 σ6 σ7 σ6 σ7

σ6 σ7 σ6 σ7 σ6 σ7

Figure 5.3: The general σ1 produces one copy of symbol v in each step, from step t1

until step t′1, where t1 is the two steps after it sends its broadcast symbol o and t′1

is the step in which it receives convergecast symbol x from all its successors. Then,

at step t′1 + 1, σ1 rewrites every two copies of symbol v into one copy of symbol h.

The resulting multiplicity of symbol h corresponds to the eccentricity of σ1. The

multiplicity of symbol d in each cell σi, 1 ≤ i ≤ 7, indicates the remaining number of

successors that have not sent convergecast symbol to σi.

120 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Table 5.4: The traces of the static FSSP solution (i.e. system Π of Definition 5.8),

where cell σ1 is the general. The shaded tables cells indicate the start of Phase II

(equivalently, the end of Phase I). At the last step, all cells simultaneously enter the

firing state s8 for the first time. Note, the table rows for Phase I are same as Table 5.3

and the table rows for Phase II are same as Table 5.2.

Step σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 s0 s s0 s0 s0 s0 s0 s0

1 s1 as s0 o s0 o s0 s0 s0 s0

2 s2 asx
2 s1 bex s1 bex s0 x s0 x s0 s0

3 s3 ad
2s s2 bceo

2 s2 bce s1 ab s1 ab s0 o
2 s0 o

4 s3 ad
2sv s4 abcd

2 s4 abc s2 abx s2 abx
2 s1 b

2ex s1 bex

5 s3 ad
2sv2x s4 abcd

2x s4 abct s3 abd s3 abd
2 s2 b

2ce s2 bce

6 s3 adsv
3 s4 abcd

2x s5 abc s3 abd s3 abd
2 s4 ab

2c s4 abc

7 s3 adsv
4 s4 abcd

2x s5 abc s3 abdx s3 abd
2x2 s4 ab

2ctx s4 abctx

8 s3 adsv
5 s4 abcd

2o2x s5 abc s3 abt s3 abt s5 ab
2co2x s5 abcox

9 s3 adsv
6x s4 abctx s5 abcx s5 abx s5 abx s5 a s5 a

10 s3 astv
6 s5 abcox s5 aco s5 a s5 a s6 s6

11 s5 ah
3s s5 a s5 a s6 s6 s6 s6

12 s6 h
3s s6 s6 s6 s6 s6 s6

13 s7 uv
2 s6 h

2s s6 h
2s s6 s6 s6 s6

14 s7 h
2s2uv s7 hsuv s7 hsuv s6 hs s6 hs s6 s6

15 s7 h
2s2u s7 hs

3u s7 hsu s7 u s7 u s6 s
2 s6 s

16 s8 s8 s8 s8 s8 s8 s8

5.4. ADAPTIVE FSSP SOLUTION FOR TREES 121

5.4 Adaptive FSSP solution for trees

This section presents an FSSP solution that synchronizes tree-structured simple P sys-

tems, where the initial general is the tree root and the final general is a tree centre,

i.e. a cell with the eccentricity that equals the tree radius.

A well-known strategy used in one-dimensional cellular automata for solving the FSSP

is to locate the midpoint (i.e. a centre) of a one-dimensional array [80], which was

used in the minimal time FSSP solutions of cellular automata [38, 81, 4, 52]. By

locating one of this array’s centres, the number of steps needed to propagate the

order in Phase II can be reduced, since the distance from a centre to all other cells

is minimal. This strategy suggests that finding a centre of a given network should be

one of the main considerations in an FSSP solution design.

In other network structures, such as trees and digraphs, sending the order from a

centre can reduce the propagation time. Thus, for a given network, first find a soldier

located at a network centre, if any, then “promote” this soldier as the new general

and “demote” the original general to a soldier, such that the eccentricity of the new

general equals the network radius. If the initial general is already a centre, then it

continues to function as the general. The problem of finding a centre of a network

corresponds to the centre problem of the facility location problems [41].

The simple P system of Definition 5.13 solves the FSSP for any arbitrary tree. This

FSSP solution consists of two phases, where: (i) Phase I locates a cell with eccen-

tricity that equals the tree radius, sets this cell as the new general and computes its

eccentricity, and (ii) Phase II (Algorithm 5.2.1) the new general (which could be the

initial general) found in Phase I sends the order with a hop-counter, initially set to

its eccentricity. Note, the centre cell found in Phase I is referred to as the middle cell.

Definition 5.13. (Simple P system for solving the FSSP) A simple P system

that solves the FSSP for any arbitrary tree is Π = (O,K,∆), where:

1. O = {a, b, c, e, h, o, s, t, u, v}.

2. ∆ is a rooted tree, where the general σs ∈ K is the tree root.

3. K = {σ1, σ2, . . . , σn}, where σs ∈ K is the general.

122 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Each cell σi ∈ K is of the form (Q, si0, wi0, R), where:

• Q = {s0, s1, s2, s3, s6, s7, s8}, where s0 is the initial quiescent state and s8

is the firing state.

• si0 = s0.

• wi0 =

{
s if σi = σs,

∅ if σi 6= σs.

• R is a set of evolution rules given below.

Rules used in Phase I: (find a tree centre)

0. Rules for state s0:

1. s0 s→min s1 ao (b, ↓)

2. s0 b→min s1 a (c, ↑) (b, ↓)

1. Rules for state s1:

1. s1 a→min s2 a

3. Rules for state s3:

1. s3 ao→min s6

2. s3 ae→min s6

2. Rules for state s2:

1. s2 aot→min s6 a

2. s2 at→min s3 a

3. s2 ce→max s2

4. s2 acc→min s2 acch

5. s2 acooo→min s2 aet (o, ↓)

6. s2 aco→min s2 achoo

7. s2 aooo→min s2 aot (e, ↓)

8. s2 ao→min s2 aot (e, ↓)

9. s2 ac→min s2 ach

10. s2 a→min s2 at (e, l)

11. s2 hh→max s6 h

12. s2 h→max s3

Rules used in Phase II: (Algorithm 5.2.1)

6. Rules for state s6:

1. s6 hs→max s7 u (s, l)

2. s6 h→max s7 v (h, l)

3. s6 s→max s8

7. Rules for state s7:

1. s7 uv →max s7 u

2. s7 u→max s8

3. s7 s→max s8

4. s7 h→max s8

5.4. ADAPTIVE FSSP SOLUTION FOR TREES 123

5.4.1 Algorithm: Phase I—Find a tree centre

This phase performs a breadth-first search (BFS) from the root, which propagates

symbol b from the root to all other cells. When the symbol b from the BFS reaches

a leaf cell, symbol e is reflected back up the tree, in the same manner as described

Algorithm 4.2.2.

Finding a tree centre (i.e. the middle cell) is based on the following idea. Assume

that, at step t, the root receives symbol e from all its children, except one child (σc).

If the root does not receive symbol e from cell σc by step t + 2, then the height of

σc must be at least two greater than all other children of the root. In this case, a

tree centre is must be contained inside the subtree rooted at cell σc. At step t + 3,

the root sends another symbol, o, to σc, as the “next general” notification. Thus, σc

becomes the new general at step t + 3 and σc searches for a subtree that contains a

tree centre in the same manner. Note, the propagation speed of symbol o is 1/3 of

the propagation speed of symbols b and c.

A visual description of the propagations of symbols b, e and o is provided in Figure 5.4

(for a tree with one centre) and Figure 5.5 (for a tree with two centres).

Precondition of system Π

Each cell starts with the initial configuration described in Definition 5.13.

Postcondition of system Π

When system Π halts the final configuration of cell σi ∈ K is (s6, wi), where

• |wi|s = 1 and |wi|h = heights(i), if σi = σm.

• wi = ∅, if σi 6= σm.

States and symbols of system Π

Symbol h represents one unit of tree height. Symbol o represents the “next general”

notification sent from the current general to the next general, i.e. a cell that contains

124 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

b b

b b

e

b b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

b b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

b

e

o
σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

b

e

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

e

e

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

e

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

e

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

e

o

oo ooo

oo

ooo

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7 Step 8

Step 9 Step 10

o o

o o

Figure 5.4: Propagations of symbols b, e and o, in a tree with one centre. The symbols

e and o meet at the middle cell σ5. Cells that have sent symbol e or o are shaded. The

propagation of symbol o to a shaded cell is omitted. In cell σj, j ∈ {1, 3}, |wj|o − 1

represents the number of steps since σj received symbol e from all of its children but

one.

5.4. ADAPTIVE FSSP SOLUTION FOR TREES 125

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

b b

b b

e

b b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

b b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

b

e

o
σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

e

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

e

e

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

e

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

e

oo

ooo

oo ooo

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8 Step 9

o

o

o o

e

Figure 5.5: Propagations of symbols b, e and o, in a tree with two centres. The

symbols e and o meet at the middle cell σ3. Cells that have sent symbol e or o

are shaded. The propagation of symbol o to a shaded cell is omitted. In cell σj,

j ∈ {1, 3}, |wj|o − 1 represents the number of steps since σj received symbol e from

all of its children but one.

126 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

a tree centre in its subtree. Symbols b, c and e represent the broadcast, acknowledge-

ment and convergecast symbols, respectively, as described in Algorithm 4.2.2. The

description of states s0, s1 and s2 are as described in Algorithm 4.2.2. State s3 is an

idle state, where a cell remains until it receives symbol e or o from its parent. State

s6 is the end state.

Evolution rules of system Π

The evolution rules are given in Definition 5.13.

Rules description of system Π

Symbols b, e and o are propagated in the following manner.

• Propagation of symbol b: The root cell sends symbol b to all its children

(rule 0.1). A non-root cell forwards the received symbol b to all its children

(rule 0.2), if any. After applying rule 0.1 or 0.2, each cell produces a copy of

symbol h in each step, until it receives symbol e from all its children (rules 1.1,

2.5 and 2.10).

• Propagation of symbol e: A leaf cell (Proposition 4.7) sends one copy of

symbol e to its parent (rule 2.11). If a non-leaf cell receives symbol e from all

its children, then it sends symbol e to its parent (rule 2.11), consumes all copies

of symbol h and enters state s6 (rule 3.2).

• Propagation of symbol o: The root cell initially contains the symbol o. Let

σj denote the current cell that contains symbol o and has not entered state s6.

Assume, at step t, σj received symbol e from all but one subtree rooted at σv.

Starting from step t + 1, σj produces a copy of symbol o in each step, until it

receives symbol e from σv (rule 2.8), That is, |wj|o − 1 indicates the number of

steps since σj received symbol e from all of its children except σv.

If σj receives symbol e from σv by step t+2, i.e. |wj|o ≤ 3, then σj is the middle

cell; σj keeps all copies of symbol h and enters state s6 (rule 2.1). Otherwise, σj

sends a copy of symbol o to σv at step t+ 3 (rule 2.6 or 2.7); in the subsequent

5.4. ADAPTIVE FSSP SOLUTION FOR TREES 127

steps, σj consumes all copies of symbol h and enters state s6 (rules 2.2 and 3.2).

Note, using current setup, σj cannot send a symbol to a specific child; σj has

to send a copy of symbol o to all its children. However, all σj’s children, except

σv, would have entered state s6.

Correctness of construction of system Π

Proposition 5.14 indicates the step in which σm receives symbol c from all its children

and Proposition 5.15 indicates the number of steps needed to propagate symbol o

from σs to σm.

Proposition 5.14. Cell σm receives the symbol c from all its children by step

heights(s) + heights(m) + 2.

Proof. Follows from Proposition 4.10.

σm

σg

w

x

z

σiσ1 σ2 σk

(a) (b)

Tm(1) Tm(2)

Tm(k)

σm
1

Figure 5.6: (a) k subtrees of σm, Tm(1), Tm(2), . . . , Tm(k). (b) The structure of subtree

Tm(j), which contains σs.

Proposition 5.15. The propagation of the symbol o from σs to σm takes at most

heights(s) + heights(m) + 2 steps.

Proof. For a given tree Ts, rooted at σs, we construct a tree Tm, which re-roots Ts

at σm. Recall, Tm(i) denotes a subtree rooted at σi in Tm. Assume that σm has

k ≥ 2 subtrees, Tm(1), Tm(2), . . . , Tm(k), such that heightm(1) ≥ heightm(2) ≥
· · · ≥ heightm(k) and heightm(1) − heightm(2) ≤ 1. Figure 5.6 (a) illustrates the

subtrees of σm.

128 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Assume Tm(i) is a subtree of σm, which contains σs. In Tm(i), let z be the height of

σs and x+w ≥ 0 be the distance between σs and σi. Figure 5.6 (b) illustrates the z,

x and w in Tm(i).

To prove Proposition 5.15, we determine the number of steps needed to propagate

symbol o from σs to σm. In Tm(i), let p be a path from σi to its farthest leaf

and t be the number of steps needed to propagate symbol o from σs to σm. Note,

heightm(m) = heights(m) and x+ w + 1 = heights(s)− heights(m).

If σs is a part of path p, then z + x + w + 1 = heightm(i) + 1 = heightm(m) − j,
j ≥ 0, and t = 2z + 3(x+ w + 1). Hence,

t = 2(z + x+ w + 1) + (x+ w + 1)

= 2(heightm(m)− j) + (heights(s)− heights(m))

= heights(s) + heights(m)− 2j

If σs is not a part of p, then z+x+w+1 < v+w+1 = heightm(i)+1 = heightm(m)−j,
j ≥ 0, and t = x+ 2v + 3(w + 1). Hence,

t = 2(v + w + 1) + (x+ w + 1)

= 2(heightm(m)− j) + (heights(s)− heights(m))

= heights(s) + heights(m)− 2j

Note, when a leaf receives a copy of broadcast symbol, it takes two additional steps

before it sends convergecast symbol. Thus, t = heights(s)+heights(m)−2j+2.

Time and message complexities of system Π

The time and message complexities of system Π are indicated in Propositions 5.16

and 5.17, respectively.

Proposition 5.16. System Π halts in heights(s) + heights(m) + 4 steps.

Proof. From Propositions 5.14 and 5.15, symbols o and e meet in the middle cell σm

at step heights(s)+heights(m)+2. Cell σm enters state s6 by applying rules 2.9 and

2.1, which take two steps. Thus, finding cell σm takes heights(s) + heights(m) + 4

5.4. ADAPTIVE FSSP SOLUTION FOR TREES 129

steps.

Proposition 5.17. The total number of symbols exchanged in Π is at most 4 · |∆|.

Proof. In each tree arc (σj, σk) ∈ ∆, (i) cell σj sends down one copy of symbol b to

σk, (ii) cell σk sends up one copy of symbol c. Further, cell σk could up one copy of

symbol e and cell σj could send down one copy of symbol o. Thus, over each tree arc,

at least two symbols are sent and two additional symbols could be sent. Therefore,

the total number of symbols exchanged between cells of Π is at most 4 · |∆|.

5.4.2 Algorithm: Phase II—Propagation of the order

Phase II (Algorithm 5.2.1) of system Π starts at the end of Phase I, where the new

general σm (i.e. the middle cell found in Phase I) issues the order paired with a hop-

counter, initially set to its eccentricity ecc(m), to inform all soldiers the correct step

to enter the firing state. Refer Section 5.2.1 for full details of Phase II.

5.4.3 Summary of Phase I and Phase II

The time and message complexities of system Π are indicated in Propositions 5.18

and 5.19, respectively. Table 5.5 contains the traces of this adaptive FSSP solution

(i.e. system Π of Definition 5.13), for the tree of Figure 5.1 (c), where σ1 is the original

general and σ5 is the new general (i.e. a tree centre).

Theorem 5.18. System Π halts (i.e. synchronizes) in ecc(s) + 2 · ecc(m) + 5 steps,

where σs is the original general and σm is the middle cell.

Proof. Phase I takes ecc(s) + ecc(m) + 4 steps (Proposition 5.16). Phase II, which

starts at the end of Phase I, takes ecc(m) + 1 steps (Proposition 5.6). Thus, in total,

system Π takes ecc(s) + 2 · ecc(m) + 5 steps.

Theorem 5.19. The total number of symbols transferred between cells of Π is

bounded by 4 · |∆|+ ∑
σi∈K((ecc(s)− depths(i))pathss(i) · |Neighbour(i)|).

130 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Proof. The number of symbols transferred between cells in Phase I is bounded by

4 · |∆| (Proposition 5.17). The number of symbols transferred between cell in Phase II

is
∑

σi∈K((ecc(s)− depths(i))pathss(i) · |Neighbour(i)|) (Proposition 5.7).

Therefore, the total number symbols transferred between cells is bounded by 4 · |∆|+∑
σi∈K((ecc(s)− depths(i))pathss(i) · |Neighbour(i)|).

5.4. ADAPTIVE FSSP SOLUTION FOR TREES 131
T

ab
le

5.
5:

T
h
e

tr
ac

es
of

th
e

sy
st

em
Π

of
D

efi
n
it

io
n

5.
13

,
fo

r
th

e
tr

ee
of

F
ig

u
re

5.
4,

w
h
er

e
σ

1
is

th
e

or
ig

in
al

ge
n
er

al
an

d
σ

5
is

th
e

n
ew

ge
n
er

al
(i

.e
.

a
tr

ee
ce

n
tr

e)
.

T
h
e

sh
ad

ed
ta

b
le

ce
ll
s

in
d
ic

at
e

th
e

st
ep

s
in

w
h
ic

h
P

h
as

e
II

b
eg

in
s

(e
q
u
iv

al
en

tl
y,

P
h
as

e
I

en
d
s)

.
D

u
ri

n
g

th
e

la
st

st
ep

of
Π

’s
ev

ol
u
ti

on
,

al
l

ce
ll
s

si
m

u
lt

an
eo

u
sl

y
en

te
r

th
e

fi
ri

n
g

st
at

e
s 8

fo
r

th
e

fi
rs

t
ti

m
e.

S
te

p
σ

1
σ

2
σ

3
σ

4
σ

5
σ

6
σ

7
σ

8
σ

9
σ

1
0

σ
1
1

0
s 0
s

s 0
s 0

s 0
s 0

s 0
s 0

s 0
s 0

s 0
s 0

1
s 1
a
o

s 0
b

s 0
b

s 0
s 0

s 0
s 0

s 0
s 0

s 0
s 0

2
s 2
a
c2
o

s 1
a

s 1
a

s 0
b

s 0
b

s 0
s 0

s 0
s 0

s 0
s 0

3
s 2
a
c2
h
o

s 2
a

s 2
a
c2

s 1
a

s 1
a

s 0
b

s 0
b

s 0
s 0

s 0
s 0

4
s 2
a
c2
eh

2
o

s 2
a
t

s 2
a
c2
h

s 2
a
c

s 2
a
c

s 1
a

s 1
a

s 0
b

s 0
b

s 0
s 0

5
s 2
a
ch

3
o2

s 3
a

s 2
a
c2
h

2
s 2
a
ch

s 2
a
ch

s 2
a
c

s 2
a
c

s 1
a

s 1
a

s 0
b

s 0

6
s 2
a
ch

4
o3

s 3
a

s 2
a
c2
h

3
s 2
a
ch

2
s 2
a
ch

2
s 2
a
ch

s 2
a
ch

s 2
a

s 2
a
c

s 1
a

s 0
b

7
s 2
a
eh

4
t

s 3
a
o

s 2
a
c2
h

4
o

s 2
a
ch

3
s 2
a
ch

3
s 2
a
ce
h

2
s 2
a
ch

2
s 2
a
t

s 2
a
ch

s 2
a
c

s 1
a

8
s 3
a
e

s 6
s 2
a
c2
h

5
o

s 2
a
ce
h

4
s 2
a
ch

4
s 2
a
h

2
t

s 2
a
ch

3
s 3
a
e

s 2
a
ch

2
s 2
a
ch

s 2
a

9
s 6

s 6
s 2
a
c2
eh

6
o

s 2
a
h

4
t

s 2
a
ch

5
s 3
a
e

s 2
a
ch

4
s 6

s 2
a
ch

3
s 2
a
ce
h

2
s 2
a
t

10
s 6

s 6
s 2
a
ch

7
o2

s 3
a

s 2
a
ch

6
s 6

s 2
a
ch

5
s 6

s 2
a
ce
h

4
s 2
a
h

2
t

s 3
a
e

11
s 6

s 6
s 2
a
ch

8
o3

s 3
a

s 2
a
ch

7
s 6

s 2
a
ce
h

6
s 6

s 2
a
h

4
t

s 3
a
e

s 6

12
s 6

s 6
s 2
a
eh

8
t

s 3
a
o

s 2
a
ce
h

8
o

s 6
s 2
a
h

6
t

s 6
s 3
a
e

s 6
s 6

13
s 6

s 6
s 3
a
e

s 6
s 2
a
h

8
ot

s 6
s 3
a
e

s 6
s 6

s 6
s 6

14
s 6

s 6
s 6

s 6
s 6
h

4
s

s 6
s 6

s 6
s 6

s 6
s 6

15
s 6

s 6
s 6
h

3
s

s 6
s 7
u
v

3
s 6

s 6
h

3
s

s 6
s 6

s 6
s 6

16
s 6
h

2
s

s 6
s 7
u
v

2
s 6
h

2
s

s 7
h

4
s2
u
v

2
s 6

s 7
u
v

2
s 6

s 6
h

2
s

s 6
s 6

17
s 7
u
v

s 6
h
s

s 7
h

2
s2
u
v

s 7
u
v

s 7
h

4
s2
u
v

s 6
h
s

s 7
h
su
v

s 6
s 7
u
v

s 6
h
s

s 6

18
s 7
su

s 7
u

s 7
h

2
s2
u

s 7
su

s 7
h

4
s2
u

s 7
u

s 7
h
su

s 6
s

s 7
su

s 7
u

s 6
s

19
s 8

s 8
s 8

s 8
s 8

s 8
s 8

s 8
s 8

s 8
s 8

132 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

5.4.4 Experimental work

This section compares the synchronization time of the adaptive FSSP solution (Al-

gorithm 5.4) against the synchronization time of the static FSSP solution (Algo-

rithm 5.3), for synchronizing tree-structured simple P systems.

Aim

To estimate the expected reduction in the number of steps needed to synchronize tree-

structured P systems using the adaptive FSSP solution of Algorithm 5.4 (h+ 2r+ 5)

over the FSSP solution of Algorithm 5.3 (3h+ 7), where h and r are the tree height

and tree radius, respectively. The reduction in synchronization time is denoted by

reduce (i.e. (3h + 7) − (h + 2r + 5)), and the percentage of reduce with respect to

the synchronization time of 3h+ 7 is denoted by reduce% (i.e. reduce/(h+ 2r+ 5)).

Hypothesis

Theoretically, for a given tree with the radius r, height h and diameter d, the reduce

and reduce% are:

• In the worst-case scenario, where h = r, the synchronization time of the adaptive

FSSP solution is 3h+5, such that reduce = (3h+7)−(3h+5) = 2. In this case,

reduce% = 200/(3h+ 7), such that reduce% converges to zero as h increases,

i.e. there is no reduction in synchronization time.

• In the best-case scenario, where h = d = 2r, the synchronization time of the

adaptive FSSP solution is 2h+5, such that reduce = (3h+7)−(2h+5) = h+2.

In this case, reduce% = 100(h+ 2)/(3h+ 7), such that reduce% converges to

value 33 as h increases, i.e. about 33% reduction in synchronization time.

Thus, for trees, the adaptive FSSP solution (Algorithm 5.4) can yield up to about

33% reduction in synchronization time over the static FSSP solution (Algorithm 5.3),

i.e. 0 ≤ reduce% ≤ 33.

5.4. ADAPTIVE FSSP SOLUTION FOR TREES 133

Method

For uniformly random trees of order n ∈ {1000, 2000, . . . , 20000}, which are generated

using the well-known Prüfer correspondence [82] (using the implementation given in

Sage [76]), I compute reduce and reduce% as follows.

1. For each n, generate ten uniformly random labelled trees using the Prüfer cor-

respondence. Each of the ten generated trees of order n is denoted by T ni ,

1 ≤ i ≤ 10.

2. For each tree T ni , its radius by r(T ni) and consider its height, are denoted by

h(T ni), as the average eccentricity of all of its nodes.

3. For the ten trees of order n, i.e. T ni , 1 ≤ i ≤ 10,

reduce =
1

10

∑
i∈{1,2,...,10}

(3h(T ni) + 7)− (h(T ni) + 2r(T ni) + 5)

reduce% =
100

10

∑
i∈{1,2,...,10}

(3h(T ni) + 7)− (h(T ni) + 2r(T ni) + 5)

3h(T ni) + 7

Results

The values of reduce and reduce% for ten uniformly random trees of order n, n ∈
{1000, 2000, . . . , 20000}, are presented in the last two columns of Table 5.6. Moreover,

Table 5.6 includes the auxiliary columns radT and hT, which correspond to the average

radius and average height of the ten trees of order n, respectively.

Discussions

As shown in column reduce% of Table 5.6, the adaptive FSSP solution (Algo-

rithm 5.4) yields on randomly generated trees, at least 20% reduction in the syn-

chronization time over the static FSSP solution (Algorithm 5.3). Furthermore, the

observed 20% reduction in synchronization time is closer to the best-case scenario

(about 33% reduction in synchronization time) than the worst-case scenario (no re-

duction in synchronization time).

134 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Table 5.6: The observed reduction in synchronization time for uniformly random

trees.

n radT hT reduce reduce%

1000 47.1 71.3 48.4 22.3

2000 77.6 117.0 78.8 22.2

3000 90.9 137.4 93.0 22.3

4000 105.3 158.2 105.7 22.1

5000 118.1 177.1 118.0 22.1

6000 116.1 175.8 119.5 22.5

7000 139.9 210.8 141.8 22.4

8000 139.3 211.5 144.3 22.6

9000 155.6 234.4 157.5 22.2

10000 156.1 232.4 152.7 21.8

n radT hT reduce reduce%

11000 158.3 236.3 155.9 21.9

12000 177.6 268.7 182.2 22.5

13000 191.3 283.9 185.2 21.6

14000 193.9 292.4 196.9 22.3

15000 190.6 284.0 186.9 21.8

16000 208.6 311.3 205.5 21.9

17000 228.8 342.3 227.0 22.1

18000 210.0 314.1 208.2 22.0

19000 224.0 333.6 219.1 21.9

20000 236.3 356.5 240.4 22.4

5.5 Summary

This chapter presented two FSSP solutions, static FSSP solution (Section 5.3) and

adaptive FSSP solution (Section 5.4). Both FSSP solutions consist of two independent

phases, where:

1. Phase I computes the eccentricity of the general and determines the maximum

number of steps needed to send the order to all soldiers.

2. Phase II propagates the order with a hop-counter (from the general to all other

soldiers), which is used to indicate the precise step to synchronize, i.e. enter the

firing state.

The features used in the design of the FSSP solutions are listed below.

• Feature 1: Locate the best general position to issue the firing order, i.e. find

a centre of a given structure.

◦ Used: Phase I of the adaptive FSSP solution.

5.5. SUMMARY 135

◦ Contribution: Minimizes the the number of steps needed to deliver the

firing order to all soldiers in Phase II.

• Feature 2: Compute the minimum number of steps it takes to deliver the firing

order from the current general position.

◦ Used: Phase I of the static and adaptive FSSP solutions.

◦ Method: Half of the round-trip time from the current general to its far-

thest soldier.

◦ Contribution: Minimizes the number of steps needed to deliver the firing

order from the current general position in Phase II.

• Feature 3: Incorporate a timing-mechanism into the order.

◦ Used: Phase II of the static and adaptive FSSP solutions.

◦ Method: The firing order is a decrementing counter, initially set to the

eccentricity of the current general, and the current counter decreases by

one in every step.

◦ Contribution: Enables each soldier to determine the remaining number

of steps before all other soldiers receive the firing order.

The two FSSP solutions use the same approach in Phase II. However, in Phase I,

different approaches are used to compute the eccentricity of the general. The summary

of the FSSP solutions is as follows.

1. The static FSSP solution [27] (Section 5.3):

• Structure: a weakly connected digraph.

• The general: one general located at an arbitrary digraph node.

• Synchronization time: 3e + 7 steps, where e is the eccentricity of the

general.

• Phase I: the general computes its eccentricity (using Feature 2).

• Phase II: the general sends the firing order with the decrementing counter,

initially set to its eccentricity, in a BFS manner (using Feature 3).

136 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

2. The adaptive FSSP solution [26] (Section 5.4):

• Structure: a rooted tree.

• The general: one general located at the tree root.

• Synchronization time: h + 2r + 5 steps, where h is the height of the

tree and r is the radius of the tree.

• Phase I: locates a tree centre and computes the tree radius (using Features

1 and 2).

• Phase II: the centre (found in Phase I) sends the firing order with the

decrementing counter, initially set to the tree radius, in a BFS manner

(using Feature 3).

The static and adaptive FSSP solutions, presented in this chapter, are compared

against the FSSP solutions of cellular automata (CA), for tree and digraph structures,

with respect to time and program-size complexities. In CA, for trees, the FSSP

solution described by Romani [71] synchronizes trees in h + 2r steps, where h and r

are the tree height and radius, respectively. This CA FSSP solution uses the same idea

as the adaptive FSSP solution of Definition 5.13, discovered independently. This CA

FSSP solution is not formally described and is not implemented. The adaptive FSSP

solution of Definition 5.13 is presented with explicit evolution rules and extended to

synchronize digraphs [26]. In CA, for digraphs, the FSSP presented by Nishitani and

Honda [59] synchronizes digraphs in 3e + 1 steps, where e is the eccentricity of the

general. As indicated in Tables 5.7 and 5.8:

• Time complexity: the static and adaptive FSSP solutions require 7 and 5 ad-

ditional steps than CA FSSP solutions, respectively. Note, CA models assume

several features that are typically not present in standard membrane system

models, such as bounded input and output connections—this is not assumed

in the FSSP formulation for membrane systems. This could explain the better

additive constants obtained by CA.

• Program-size complexity: the static and adaptive FSSP solutions require less

instructions than CA FSSP solutions.

5.5. SUMMARY 137

Hence, for synchronizing trees and digraphs, the FSSP solutions presented in this

chapter are comparable with the FSSP solutions in CA, with respect to time and

program-size complexities.

Table 5.7: Comparing the FSSP solution [59] of cellular automata (CA) against the

static FSSP solution of Definition 5.8, where e denotes the eccentricity of the general.

Algorithm Time complexity Program-size complexity

CA FSSP solutions 3e+ 1 135 transition rules

Nishitani and Honda [59]

Static FSSP solution of 3e+ 7 37 evolution rules

Definition 5.8

Table 5.8: Comparing the FSSP solution [71] of cellular automata (CA) against the

adaptive FSSP solution of Definition 5.13, where h and r denote the tree height and

radius, respectively.

Algorithm Time complexity Program-size complexity

CA FSSP solutions h+ 2r Not available

Romani [71]

Adaptive FSSP solution of h+ 2r + 5 24 evolution rules

Definition 5.13

Additionally, the FSSP solutions of this chapter contain a broadcast-based P algo-

rithm, Algorithm 5.2.1 (Decrementing hop-counter), and an echo-based P algorithm,

Algorithm 5.3.1 (Compute general’s eccentricity). Tables 5.9 and 5.10 contain com-

parison results of these P algorithms against the synchronous broadcast pseudo-code

(Definition 4.1) and echo pseudo-code (Definition 4.2).

Hence, with respect to the goals of this thesis, I have obtained in this chapter: (i) two

comparable P algorithms that solve the FSSP, (ii) one comparable broadcast-based

P algorithm and (iii) one comparable echo-based P algorithm.

138 CHAPTER 5. THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Table 5.9: Comparing a synchronous distributed broadcast pseudo-code (Defini-

tion 4.1) against Algorithm 5.2.1 (Decrementing hop-counter), on digraphs, where

e denotes the eccentricity of the source.

Algorithm Time complexity Program-size complexity

Synchronous distributed broadcast e 8 pseudo-code lines

pseudo-code (Definition 4.1)

Algorithm 5.2.1 e+ 1 7 evolution rules

(Decrementing hop-counter)

Table 5.10: Comparing a synchronous distributed echo pseudo-code (Definition 4.2)

against Algorithm 5.3.1 (Compute general’s eccentricity), on digraphs, where e de-

notes the eccentricity of the source.

Algorithm Time complexity Program-size complexity

Synchronous distributed echo 2e 14 pseudo-code lines

pseudo-code (Definition 4.2)

Algorithm 5.3.1 2e+ 6 30 evolution rules

(Compute general’s eccentricity)

Chapter 6

The Disjoint Paths Problem

This chapter presents native membrane system versions of two fundamental problems

in graph theory:

1. The edge-disjoint paths problem: find the maximum number of paths from a

source node to a target node, that have no edge in common.

2. The node-disjoint paths problem: find the maximum number of paths from a

source node to a target node that have no other node in common, except the

source and target nodes.

Starting from the standard Ford-Fulkerson’s depth-first search maximum flow algo-

rithms [48], totally distributed approach is used, where (i) no structural information

is available initially and (ii) each membrane system cell has to learn its immediate

neighbours. In the case of node-disjoint paths, the presented membrane system evo-

lution rules are designed to enforce (i) node weight capacities of one and (ii) edge

capacities of one.

This chapter is organized as follows. Section 6.1: (i) summarizes the standard net-

work flow approaches for finding edge- and node-disjoint paths in digraphs, (ii) dis-

cusses alternative strategies that are more appropriate for membrane systems and

(iii) describes three possible relations between the structural digraph of a membrane

system and the search digraph used for determining paths. Section 6.2 presents:

(i) breadth-first search based evolution rules for discovering the local cell topologies,

139

140 CHAPTER 6. THE DISJOINT PATHS PROBLEM

i.e. neighbouring cells, (this is a common preliminary phase for both the edge- and

node-disjoint paths implementations) and (ii) depth-first search based evolution rules

for finding a maximum set of edge-disjoint paths. Section 6.3 presents depth-first

search based evolution rules for finding a maximum set of node-disjoint paths. Fi-

nally, a summary of this chapter is given in Section 6.4.

6.1 Disjoint paths in digraphs

This section describes the basic algorithms for finding sets of edge- or node-disjoint

paths, based on network flow, particularized for unweighted edges (i.e. all edge ca-

pacities are one), see Ford-Fulkerson [48]. The presentation will largely follow the

standard approach (i.e. finding augmenting paths in residual graphs [37]), specifi-

cally targeted for running on highly distributed, parallel and synchronous computing

models, such as membrane systems.

Consider a digraph G = (V,E) and two nodes, a source node, s ∈ V , and a target

node, t ∈ V . A set of edge-disjoint paths, from s to t, satisfies:

1. each of these paths starts from s and ends at t,

2. any two paths in the set have no edge in common.

A set of node-disjoint paths, from s to t, satisfies:

1. each of these paths starts from s and ends at t,

2. any two paths in the set have no other node in common, except s and t.

We consider the following two optimization problems: (i) find a maximum set of

edge-disjoint paths from s to t; and (ii) find a maximum set of node-disjoint paths

from s to t. Any set of node-disjoint paths is also a set of edge-disjoint paths, but

the converse is not true. For example:

• Figure 6.1 (a) shows a maximum set of edge-disjoint paths of size two, which is

also a maximum set of node-disjoint paths.

6.1. DISJOINT PATHS IN DIGRAPHS 141

• Figure 6.1 (b) shows another maximum set of edge-disjoint paths of size two,

which is not a set of node-disjoint paths.

• Figure 6.2 shows a digraph, where the maximum size of any edge-disjoint paths

set is greater than the maximum size of any node-disjoint paths set.

s t

(a)

w x

y z

s t

(b)

w x

y z

Figure 6.1: Let p1 = s.w.x.t, p2 = s.y.z.t, p3 = s.y.x.z.t, p4 = s.w.x.z.t and

p5 = s.y.x.t. The set {p1, p2} of (a) is a maximum set of edge-disjoint paths and

the maximum set of node-disjoint paths. The sets {p1, p3} and {p4, p5} of (b) are

maximum sets of edge-disjoint paths, but neither of these sets is a maximum set of

node-disjoint paths.

s t

u

v

w

x

y

Figure 6.2: This digraph admits two maximum sets of edge-disjoint paths of size

two: {s.u.w.x.t, s.v.w.y.t} and {s.u.w.y.t, s.v.w.x.t}. This digraph admits four maxi-

mum sets of node-disjoint paths of size one: {s.u.w.x.t}, {s.u.w.y.t}, {s.v.w.x.t} and

{s.v.w.y.t}.

6.1.1 Preliminaries

For a given digraph G = (V,E), consider two nodes s ∈ V and t ∈ V , and a set of

edge-disjoint paths from s to t, denoted by P . Nodes in P are called flow-nodes and

arcs in P are called flow-arcs.

142 CHAPTER 6. THE DISJOINT PATHS PROBLEM

Given a path π ∈ P , each flow-arc (u, v) ∈ π has a natural incoming and outgoing

direction–the flow is from the source to the target; with respect to π, u is the flow-

predecessor of v and v is the flow-successor of u.

The residual digraph is the digraph R = (V,E ′), where the arcs in P are reversed,

i.e. E ′ = (E \ {(u, v) | (u, v) ∈ P}) ∪ {(v, u) | (u, v) ∈ P}. Any path from s to t in R

is called an augmenting path.

Given augmenting path α, each flow-arc (u, v) ∈ α has also a natural incoming and

outgoing direction–the flow is from the source to the target; with respect to α, u is

the search-predecessor of v and v is the search-successor of u.

6.1.2 Edge-disjoint paths in digraphs

In both edge- and node-disjoint cases, the basic algorithms repeatedly search paths

(called augmenting paths) in an auxiliary structure (called residual network or resid-

ual digraph). First, an edge-disjoint paths set is considered, since a node-disjoint

paths set can be considered as an edge-disjoint paths problem, with additional con-

straints.

For the following “network flow” definition for digraphs with non-weighted arcs, an

arc (u, v) is in a set of paths P , denoted by the slightly abused notation (u, v) ∈ P ,

if there exists a path π ∈ P that uses arc (u, v).

Fact 6.1. Augmenting paths can be used to construct a larger set of edge-disjoint

paths. More precisely, consider a digraph G and two nodes s and t. A set of edge-

disjoint paths Pk of size k from s to t and an augmenting path α from s to t can be

used together to construct a set of edge-disjoint paths Pk+1 of size k+ 1. First, paths

in {α} ∪ Pk are fragmented, by removing “conflicting” arcs, i.e. arcs that appear in

Q∪Q̃, where Q = P ∩α̃ (where ˜ indicates arc reversal). Then, new paths are created

by concatenating resulting fragments. For the formal definition of this construction,

refer to Ford and Fulkerson [48]. Note that including a reversed arc in an augmenting

path is known as flow pushback operation.

This construction, described in Fact 6.1, is illustrated in Figure 6.3. Figure 6.3 (a)

illustrates a digraph G and a set of edge-disjoint paths P1 from s to t, currently

6.1. DISJOINT PATHS IN DIGRAPHS 143

the singleton {π0}, where π0 = s.y.x.t. Figure 6.3 (b) shows its associated residual

digraph R (note the arcs reversal). Figure 6.3 (c) shows an augmenting path α in

R, α = s.w.x.y.z.t. Figure 6.3 (d) shows the extended set P2 (after removing arcs

(x, y) and (y, x)), consisting of a set of edge-disjoint paths of size two from s to t,

{π1 = s.w.x.t, π2 = s.y.z.t}. Figure 6.4 shows a similar scenario, where another

augmenting path is found. Note that the two paths illustrated in Figure 6.3 (d) form

both a maximum edge-disjoint set and a maximum node-disjoint set; however, the

two paths sets shown in Figure 6.4 (d) form two other maximum edge-disjoint paths

sets, but none of them is node-disjoint.

s t

(a) (b) (c) (d)

w x

y z

s t

w x

y z

s t

w x

y z

s t

w x

y z

Figure 6.3: (a) A digraph G and one (edge-disjoint) path π0 from s to t (indicated by

bold arrows). (b) The residual digraph R0 associated to digraph G and path π0. (c)

An augmenting path α in R0 (indicated by hollow arrows). (d) Two new edge-disjoint

paths π1 and π2, reconstructed from π0 and α (both indicated by bold arrows).

(a) (b) (c) (d)

s t

w x

y z

s t

w x

y z

s t

w x

y z

s t

w x

y z

Figure 6.4: The residual digraph of Figure 6.3 with another augmenting path and

two new paths sets, {s.w.x.t, s.y.x.z.t}, {s.w.x.z.t, s.y.x.t}, which are edge-disjoint

but not node-disjoint.

The pseudo-code of Algorithm 6.2 effectively finds the maximum number (and a

representative set) of edge-disjoint paths from s to t. A potential speed-up approach

for Algorithm 6.2 is given in [22].

144 CHAPTER 6. THE DISJOINT PATHS PROBLEM

Definition 6.2. (Basic edge-disjoint paths algorithm)

Input: A digraph G = (V,E) and two nodes s ∈ V , t ∈ V .

Output: Pk and k, where Pk is a maximum set of edge-disjoint paths and k is the

size of Pk.

1. k = 0 (the stage counter)

2. P0 = ∅ (the current set of edge-disjoint paths)

3. R0 = G (the current residual digraph)

4. loop

5. α = an augmenting path in Rk, from s to t, if any (this is a search operation)

6. if α = null then break

7. k = k + 1 (next stage)

8. Pk = the larger paths set constructed using Pk−1 and α (Fact 6.1)

9. Rk = the residual digraph of G and Pk

10. endloop

Typically, the internal implementation of search at step 6 alternates between a for-

ward mode in the residual digraph, which tries to extend a partial augmenting path,

and a backwards backtrack mode in the residual digraph, which retreats from an

unsuccessful attempt, looking for other ways to move forward. The internal imple-

mentation of step 9 (i.e. Fact 6.1) walks backwards in the residual digraph, as a

consolidation phase, which recombines the newly found augmenting path with the

existing edge-disjoint paths.

This algorithm runs in k + 1 stages, if we count the number of times it looks for an

augmenting path, and terminates when a new augmenting path is not found. The

actual procedure used (in step 6) to find the augmenting path separates two families

of algorithms: (i) algorithms from the Ford-Fulkerson family [48] use a depth-first

search (DFS) and (ii) algorithms from the Edmonds-Karp family [28] use a breadth-

first search (BFS). As usual, both DFS and BFS use “bread crumb” symbols, as

markers, to avoid cycles; at the end of each stage, these markers are cleaned, to start

again with a fresh context. A DFS based membrane system algorithms from the

Ford-Fulkerson family is developed in this chapter.

6.1. DISJOINT PATHS IN DIGRAPHS 145

6.1.3 Node-disjoint paths in digraphs

The edge-disjoint version can be also used to find a maximum set of node-disjoint

paths. The textbook solution for the node-disjoint paths problem is usually achieved

by a simple procedure, called the node-splitting technique [77], which transforms the

original digraph in such a way that, on the transformed digraph, the edge-disjoint

paths problem is identical to the node-disjoint paths problem of the original digraph.

Essentially, this procedure globally replaces every node v, other than the source s and

the target t, with two nodes, an entry node v1 and an exit node v2, connected by a

single arc (v1, v2). That is, the new digraph G′ = (V ′, E ′) has V ′ = {s, t} ∪ {v1, v2 |
v ∈ V \ {s, t}}, E ′ = {(v1, v2) | v ∈ V \ {s, t}} ∪ {(u2, v1) | (u, v) ∈ E}, where,

for convenience, assume that s1 = s2 = s and t1 = t2 = t are aliases. Figure 6.5

illustrates this standard node-splitting technique. It is straightforward to see that

the newly introduced arcs (w1, w2), (x1, x2), (y1, y2) and (z1, z2), constrain any edge-

disjoint paths set to be also a node-disjoint paths set.

s

w x

y z

t

w1

y1 z1

w2

y2 z2

s t

x1 x2

Figure 6.5: The node-splitting technique [77].

However, in this case, each node is identified with a membrane systems cell, hence,

the node-disjoint paths problem cannot be solved using the standard node-splitting

technique. Two non-standard search rules are proposed, which together limit

the out-flow capacity of each v ∈ V \ {s, t} to one, by simulating the node-splitting

technique, without actually splitting the nodes. These rules could be used in other

distributed network models, where the standard node-splitting technique is not ap-

plicable. These rules are illustrated by the scenario presented in Figure 6.6, where we

assume that we have already determined a first flow-path, s.x.y.z.t, and we are now

trying to build a new augmenting path.

1. Consider the case when the augmenting path, consisting of s, tries flow-node y

via the non-flow arc (s, y). We cannot continue with the existing non-flow arc

146 CHAPTER 6. THE DISJOINT PATHS PROBLEM

(y, t) (as the edge-disjoint version would do), because this will exceed node y’s

capacity, which is one already. Therefore, we continue the search with just the

reversed flow-arc (y, x). Note that, in the underlying node-splitting scenario,

we are only visiting the entry node y1, but not its exit pair y2.

2. Consider now the case when the augmenting path, extended now to s.y.x.z,

tries again the flow-node y, via the reversed flow-arc (z, y). It may appear

that we are breaking the traditional search rules, by re-visiting the already

visited node y. However, there is no infringement in the underlying node-

splitting scenario, where we are now trying the not-yet-visited exit node y2 (to

extend the underlying augmenting path s.y1.x2.z1). From y, we continue with

any available non-flow arc, if any, otherwise, we backtrack. In this example,

we continue with arc (y, t). We obtain a new augmenting “path”, s.y.x.z.y.t

(corresponding to the underlying augmenting path s.y1.x2.z1.y2.t). We further

recombine it with the already existing flow-path s.x.y.z.t, and we finally obtain

a set of node-disjoint paths of size two, i.e. {s.x.z.t, s.y.t}.

s x y z t s x1 y1 z1 tx2 y2 z2

(a) (b)

Figure 6.6: Node-disjoint paths. (a) Non-standard search: flow path s.x.y.z.t and

augmenting “path” s.y.x.z.y.t. (b) Node-splitting: flow path s.x1.x2.y1.y2.z1.z2.t and

augmenting path s.y1.x2.z1.y2.t.

Theorem 6.3. If the augmented path search in step 6 of Algorithm 6.2 is modified

as indicated above, the algorithm will terminate with a set of edge-disjoint paths,

forming a maximum set of node-disjoint paths.

6.1.4 Pointer management

With respect to the implementation, the edge-disjoint version provides its own ad-

ditional challenge, not present in the node-disjoint version. In the node-disjoint ver-

sion, each flow-node needs only one pointer to its flow-predecessor and another to

6.1. DISJOINT PATHS IN DIGRAPHS 147

its flow-successor. However, in the edge-disjoint version, a flow-node can have k ≥ 1

flow-predecessors and k flow-successors, where each combination is possible, giving

rise to k! different paths sets, each of size k, passing through this node. A naive

approach would require recording full details of all k! possible size-k paths sets, or,

at least, full details for one of them.

In this simplified approach, full path details are not kept; instead, a node needs only

two size-k lists: (i) its flow-predecessors list and (ii) its flow-successors list. Using this

information, any of the actual k! paths sets can be formed, by properly matching flow-

predecessors with flow-successors. As an example, consider node x of Figure 6.4 (d),

which has two flow-predecessors, w and y, and two flow-successors, t and z; thus w is

part of four distinct paths. Node w needs only two size-k lists: its flow-predecessors

list, {w, y}, and its flow-successors list {z, t}.

6.1.5 Structural and search digraphs in membrane systems

Various ways are considered to reformulate the digraph edge- and node-disjoint paths

problems as a native membrane system problem. The considered membrane system is

“physically” based on a digraph, but this digraph is not necessarily the virtual search

digraph G = (V,E), on which edge- and node-disjoint paths need to be found. Given

a simple P system Π = (O,K,∆), where ∆ is its structural digraph, first identify

cells as nodes of interest, V ' K. However, after that, there are three fundamentally

distinct scenarios, which differ in the way how the forward and backward modes

(i.e. backtrack and consolidation) of Algorithm 6.2 map to the residual arcs and

finally to the structural arcs.

1. Set E ' ∆. In this case, the forward mode follows the direction of parent-child

arcs of ∆, while the backward modes follow the reverse direction, from child to

parent.

2. Set E ' {(v, u) | (u, v) ∈ ∆}. In this case, the the backward modes follow the

direction of parent-child arcs of ∆, while the forward mode of the search follows

the reverse direction, from child to parent.

3. Set E ' {(u, v), (v, u) | (u, v) ∈ ∆}. In this case, the resulting search digraph

148 CHAPTER 6. THE DISJOINT PATHS PROBLEM

is symmetric, and each of the arcs followed by the forward or backward modes

of the search can be either a parent-child arc in the original ∆ or its reverse.

Cases (1) and (2) are simpler to develop. However, solutions to case (3) are considered,

where all messages must be sent to all neighbours, i.e. parents and children together.

Therefore, the presented evolution rules use the target indicator τ =l. Figure 6.7

illustrates a simple P system and these three scenarios.

σ1

σ2 σ3

σ4 σ5

σ6 σ1

σ2 σ3

σ4 σ5

σ6 σ1

σ2 σ3

σ4 σ5

σ6

(a) (b) (c)

Figure 6.7: Three virtual search digraphs for the same simple P system. (a) Same

“physical” and search structure. (b) The search structure reverses the “physical”

structure. (c) The search structure covers both the “physical” structure and its

reverse.

Note that, in any of the three cases, Algorithm 6.2 needs to be able to follow both the

parent-child and the child-parent directions of membrane system structure. Therefore,

the structural arcs must support bidirectional communication channels.

After fixing the directions used by the virtual graph G, the next problem is to let the

nodes discover their neighbours, i.e. discover the local network topology.

6.2 Edge-disjoint paths solution

This section provides a simple P system specification of the edge-disjoint paths algo-

rithm presented in Section 6.1. A maximum set of edge-disjoint paths from the source

cell to the target cell is computed. In Problem 6.4, the considered edge-disjoint paths

problem in terms of expected input and output is explicitly stated. Definition 6.5

provides the formal description of a simple P system that solves Problem 6.4.

Problem 6.4. (Edge-disjoint paths problem)

6.2. EDGE-DISJOINT PATHS SOLUTION 149

Input: A simple P system Π = (O,K,∆), where the source cell σs ∈ K contains a

token tt identifying the ID of the target cell σt ∈ K.

Output: If σs 6= σt, then each cell σi ∈ K contains a set of predecessor pointer

symbols Pi = {pj | (j, i) is a flow-arc} and a set of successor point symbols Ci = {cj |
(i, j) is a flow-arc} that represent a maximum set of edge-disjoint paths from σs to

σt, where the following constraints hold:

1. flow-arcs: ci /∈ Ci, pi /∈ Pi, cj ∈ Ci ⇔ pi ∈ Pj and

cj ∈ Ci ⇒ σj ∈ ∆(i) ∪∆−1(i).

2. source and target: Ps = ∅ and Ct = ∅.

3. in flow = out flow: If i /∈ {s, t} then |Ci| = |Pi|.

4. only paths: With S(I) =
⋃
i∈I{cj | cj ∈ Ci},

Sn−1(I) = S(S(· · ·S(I) · · ·)) = ∅.

Definition 6.5. (Simple P system for finding a maximum set of edge-disjoint

paths) A simple P system (of order n) that solves the edge-disjoint paths problem,

described in Problem 6.4, is Π = (O,K,∆), where:

1. O = {o, u, v, w, z} ∪ {aj, āj, cj, dj, ej, gj, hj, lj,mj, nj, pj, qj, rj | j ∈ {1, 2, . . . , n}}
∪ {bjk, fjk, xjk, yjk | j, k ∈ {1, 2, . . . , n}}.

2. K = {σ1, σ2, . . . , σn}, where σs ∈ K is the source cell and σt ∈ K is the target

cell. Each cell σi ∈ K has an initial form σi = (Q, si0, wi0, R), where:

• Q = {s0, s1, . . . , s11}, is a set of state.

• si0 = s0, is the initial quiescent state.

• wi0 =

{
ailt if σi = σs,

ai if σi 6= σs,
is the initial content.

• R is a set of evolution rules, which is given below.

3. ∆ forms a connected graph.

150 CHAPTER 6. THE DISJOINT PATHS PROBLEM

Evolution rules used in Phase I:

0. Rules for state s0:

1 s0 aili →min s0

2 s0 ailj →min s1 aio (ni, l) (gj, l)

3 s0 aigi →min s1 aiz (ni, l) (gi, l)

4 s0 aigj →min s1 ai (ni, l) (gj, l)

1. Rules for state s1:

1 s1 ai →min s2 ai

2. Rules for state s2:

1 s2 o→min s3 o

2 s2 z →min s4 z

3 s2 ai →min s5 ai

4 s2 gj →max s3

5 s2 gj →max s4

6 s2 gj →max s5

Evolution rules used in Phase II:

3. Rules for state s3:

1 s3 ainj →min s3 āidj (fij, l)

2 s3 āidjyijnk →min s10 aicjnkww (v, l)

3 s3 āidjyijo→min s11 aicjww (u, l)

4 s3 āidjxijnk →min s3 aimjnk

5 s3 āidjxijo→min s11 aimjww (u, l)

6 s3 āibji →min s3 āi (xji, l)

7 s3 āifji →min s3 āi (xji, l)

8 s3 fjk →min s3

9 s3 bjk →min s3

10 s3 yjk →min s3

11 s3 xjk →min s3

6.2. EDGE-DISJOINT PATHS SOLUTION 151

4. Rules for state s4:

1 s4 ainjfji →min s4 aipj (yji, l)

2 s4 v →min s10 ww (v, l)

3 s4 uz →min s11 ww (u, l)

4 s4 fjk →min s4

5 s4 bjk →min s4

6 s4 yjk →min s4

7 s4 xjk →min s4

5. Rules for state s5:

1 s5 v →min s10 ww (v, l)

2 s5 u→min s11 ww (u, l)

3 s5 ainjfji →min s6 aiqj

4 s5 aicjbji →min s6 aiej

5 s5 aihj →min s9 aicj (xji, l)

6 s5 pjqk →min s8 pjqk

7 s5 aiqj →min s5 aimj (xji, l)

8 s5 aifji →min s5 ai (xji, l)

9 s5 fjk →min s5

10 s5 bjk →min s5

11 s5 yjk →min s5

12 s5 xjk →min s5

6. Rules for state s6:

1 s6 ainj →min s7 aidj (fij, l)

2 s6 ai →min s8 ai

7. Rules for state s7:

1 s7 aidjyijek →min s5 aicjmk (yki, l)

2 s7 aidjyijqk →min s5 aicjpk (yki, l)

3 s7 aidjxij →min s6 aimj

4 s7 aicjbji →min s7 aicj (xji, l)

5 s7 ainjfji →min s7 aimj (xji, l)

6 s7 fjk →min s7

7 s7 bjk →min s7

8 s7 yjk →min s7

9 s7 xjk →min s7

8. Rules for state s8:

1 s8 aipj →min s9 airj (bij, l)

2 s8 aiej →min s5 aicj (xji, l)

3 s8 aiqj →min s5 aimj (xji, l)

152 CHAPTER 6. THE DISJOINT PATHS PROBLEM

9. Rules for state s9:

1 s9 airjyijek →min s5 aimjmk (yki, l)

2 s9 airjyijqk →min s5 aimjpk (yki, l)

3 s9 airjxij →min s8 aitj

4 s9 aicjbji →min s5 aihj

5 s9 ainjfji →min s9 aimj (xji, l)

6 s9 fjk →min s9

7 s9 bjk →min s9

8 s9 yjk →min s9

9 s9 xjk →min s9

10. Rules for state s10:

1 s10 w →min s10

2 s10 v →max s10

3 s10 mj →min s10 nj

4 s10 tj →min s10 pj

5 s10 o→min s3 o

6 s10 z →min s4 z

7 s10 ai →min s5 ai

11. Rules for state s11:

1 s11 w →min s11

2 s11 u→max s11

3 s11 ai →min s0 ai

4 s11 tj →min s0 pj

5 s11 nj →min s0

6 s11 mj →min s0

6.2.1 Phase I: Algorithm—Neighbourhood discovery

Phase I is a preliminary phase that discovers the neighbours of every cell, prior to

Phase II (the edge-disjoint paths set discovery phase). In Phase I, each cell σi ∈ K
notifies its own cell ID, i, by sending one copy of its neighbour pointer symbol ni to

each of its neighbours.

At the end of Phase I, each cell σi ∈ K obtains one copy of neighbour pointer symbol

nj from each σj ∈ Neighbour(i). For each cell σi ∈ K, the set of neighbour pointer

symbols is denoted by Ni = {nj | σj ∈ Neighbour(i)}. Table 6.1 illustrates the

expected algorithm output of Phase I (i.e. a set Ni, for each σi ∈ K), for system Π

of Figure 6.7 (c).

6.2. EDGE-DISJOINT PATHS SOLUTION 153

Table 6.1: A set of neighbour pointer symbols for each cell of system Π of Fig-

ure 6.7 (c). Symbol nj in cell σi indicates that cell σj is a neighbour of σi.

Cell Neighbours Neighbour pointer symbols, Ni

σ1 {σ2, σ4} {n2, n4}
σ2 {σ1, σ3, σ4} {n1, n3, n4}
σ3 {σ2, σ4, σ5, σ6} {n2, n4, n5, n6}
σ4 {σ1, σ2, σ3, σ5} {n1, n2, n3, n5}
σ5 {σ3, σ4, σ6} {n3, n4, n6}
σ6 {σ3, σ5} {n3, n5}

Precondition of Phase I of system Π

Each cell σi ∈ K starts with the initial configuration described in Definition 6.5.

Postcondition of Phase I of system Π

At the end of Phase I, the configuration of cell σi ∈ K is (si, wi), where:

• si = s3, if σi = σs, where s3 is the designated state for the source cell.

• si = s4, if σi = σt, where s4 is the designated state for the target cell.

• si = s5, if i /∈ {s, t}, where s5 is the designated state for an intermediate cell.

• |wi|ai = 1, where ai is cell ID symbol that σi uses to operate with its own cell

ID, i.

• For each σj ∈ Neighbour(i), |wi|nj
= 1, where nj is a neighbour pointer symbol.

• |wi|o = 1, if σi = σs, where symbol o is the marker for the source cell.

• |wi|z = 1, if σi = σt, where symbol z is the marker for the target cell.

154 CHAPTER 6. THE DISJOINT PATHS PROBLEM

States and symbols of Phase I of system Π

Symbol ai is cell ID symbol that cell σi uses to operate with its own cell ID, i. Symbol

o is the marker for the source cell σs. Symbol z is the marker for the target cell σz.

Symbol ni is a neighbour pointer symbol sent by cell σi; symbol ni in cell σj indicates

that σi is one of σj’s neighbours. Symbols lt and gt are used to identify the target

cell σt, where the subscript t indicates the cell ID of the target cell σt.

State s0 is the state, where each cell expects to receive one copy of symbol gt and one

copy of symbol nj from σj ∈ Preds(i). State s1 is the state, where each cell expects

to receive one copy of symbol gt and one copy of symbol nj from σj ∈ Peers(i). State

s2 is the state, where each cell expects to receive one copy of symbol gt and one copy

of symbol nj from σj ∈ Succs(i).

Overview of Phase I of system Π

Initially, the source cell σs contains one copy of symbol lt, where the subscript t is

the cell ID of the target cell. If the subscript t matches the source cell’s cell ID, s,

then algorithm terminates (rule 0.1). Otherwise, σs broadcasts the σt’s cell ID, t, to

all cells.

Each cell σi ∈ K compares its own cell ID, i (obtained from the initial symbol ai),

against σt’s cell ID, t (obtained from the received symbol gt). If i = t, then cell σi is

the target cell.

The σt’s cell ID, t, is propagated from σs to all other cells in the following manner.

• The source cell σs:

◦ sends one copy of symbol gt and one copy of symbol ns to each of its

neighbours,

◦ marks itself as the source cell by producing one copy of symbol o (rule 0.2).

• When an intermediate cell σi receives symbol gt for the first time, σi:

◦ sends one copy of symbol gt and one copy of symbol ni to each of its

neighbours (rule 0.3).

6.2. EDGE-DISJOINT PATHS SOLUTION 155

• When the target cell σt receives symbol gt for the first time, σt:

◦ sends one copy of symbol gt and one copy of symbol nt to each of its

neighbours,

◦ marks itself as the target cell by producing one copy of symbol z (rule 0.4).

Cell σi ∈ K receives:

• one copy of symbol gt and one copy of symbol nj from each σj ∈ Preds(i) at

step depths(i) (Proposition 6.6).

• one copy of symbol gt and one copy of symbol nk from each σk ∈ Peers(i) at

step depths(i) + 1 (Proposition 6.7).

• one copy of symbol gt and one copy of symbol nh from each σh ∈ Succs(i) at

step depths(i) + 2 (Proposition 6.8).

Proposition 6.6. At step depths(i), cell σi receives one copy of symbol gt and one

copy of symbol nj from each σj ∈ Preds(i). At step depths(i) + 1, cell σi sends one

copy of symbol gt and one copy of symbol ni to each of its neighbours.

Proposition 6.7. At step depths(i) + 1, cell σi reaches configuration (s1, wi), where

• |wi|ai = 1,

• for each σj ∈ Preds(i) ∪ Peers(i), |wi|nj
= 1,

• |wi|gt = |Preds(i)|+ |Peers(i)| − 1,

• |wi|o = 1, if σi = σs,

• |wi|z = 1, if σi = σz.

Proof. At step depths(i)+1, cell σi makes transition s0 ⇒ s1, where σi: (i) sends one

copy of symbol gt and one copy of symbol ni to each of its neighbours, (ii) receives one

copy of symbol gt and one copy of symbol nk from each σk ∈ Peers(i), (iii) produces

one copy of symbol o, if σi = σs, (iv) produces one copy of symbol z, if σi = σt, (v)

156 CHAPTER 6. THE DISJOINT PATHS PROBLEM

enters state s1.

Proposition 6.8. At step depths(i) + 2, cell σi makes transition s1 ⇒ s2, where σi:

(i) receives one copy of symbol gt and one copy of symbol nh from each σh ∈ Succs(i),

(ii) enters state s2.

Proposition 6.9. At step depths(i)+3, cell σi makes transition s2 ⇒ s3, where σi: (i)

discards all copies of symbol gt that are accumulated at steps depths(i), depths(i)+1

and depths(i) + 2, (ii) enters state s3.

Table 6.2 contains the traces of Phase I of system Π, for the graph of Figure 6.7.

Table 6.2: The traces of Phase I (Algorithm 6.2.1) of system Π, of Figure 6.7 (c),

where σ1 is the source cell and σ5 is the target cell. As indicated at step 5, cell σ3

ends with neighbour pointer symbols, n1, n2, n4 and n5, which correspond to σ3’s

neighbours, σ1, σ2, σ4 and σ5, respectively.

Step σ1 σ2 σ3 σ4 σ5

0 s0 a1 s0 a2 s0 a3 s0 a4 s0 a5

l5

1 s1 a1o s0 a2 s0 a3 s0 a4 s0 a5

g5n1 g5n1

2 s2 a1o s1 a2 s1 a3 s0 a4 s0 a5

g2
5n2n3 g5n1n3 g5n1n2 g2

5n2n3 g5n3

3 s3 a1o s2 a2 s2 a3 s1 a4 s1 a5z

n2n3 g2
5n1n3n4 g3

5n1n2n4n5 g2
5n2n3n5 g5n3n4

4 s3 a1o s5 a2 s5 a3 s2 a4 s2 a5z

n2n3 n1n3n4 n1n2n4n5 g2
5n2n3n5 g5n3n4

5 s3 a1o s5 a2 s5 a3 s5 a4 s4 a5z

n2n3 n1n3n4 n1n2n4n5 n2n3n5 n3n4

6.2. EDGE-DISJOINT PATHS SOLUTION 157

Correctness and complexity of Phase I of system Π

Proposition 6.10 indicates the correctness and time complexity of Phase I of system

Π. Proposition 6.11 indicates the message complexity of Phase I of system Π.

Proposition 6.10. Phase I of system Π halts at step ecc(s)+3 and the configuration

of each cell corresponds to the postcondition.

Proof. Thus, at step depths(i) + 3, cell σi ends in state s3 with

• one copy of symbol ai,

• a set of neighbour pointer symbols, Ni = {nj | σj ∈ Neighbour(i)},

• one copy of symbol o, if σi = σs,

• one copy of symbol z, if σi = σt.

There are no rules in state s3, hence, cell σi cannot evolve once it enters state s3.

For a farthest cell σf (with respect to the source cell σs), depths(f) ≥ depths(g),

for all σg ∈ K, such that depths(f) = ecc(s). Cell σf enters state s3 at step

depths(f) + 3 = ecc(s) + 3.

Therefore, system Π in Phase I halts at step ecc(s) + 3, and the final configuration

of each cell in Phase I corresponds to the postcondition.

Proposition 6.11. The total number of symbols that are transferred between cell

of Π in Phase I is 4 · |∆|.

Proof. Each cell σi sends one copy of symbol ni and one copy of symbol gt to each

of its neighbours. For each arc (σj, σk) ∈ ∆: (i) one copy of symbol nj, (ii) one copy

of symbol nk and (iii) two copies of symbol gt are transferred. Therefore, the total

number of transferred symbols is 4 · |∆|.

6.2.2 Phase II: Algorithm—Edge-disjoint paths discovery

Phase II is the edge-disjoint paths discovery phase, that finds a maximum set of edge-

disjoint paths from the source cell to the target cell. For each cell σi ∈ K: (i) a set of

158 CHAPTER 6. THE DISJOINT PATHS PROBLEM

flow-predecessor pointer symbols is denoted by Pi = {pj | σj is a flow-predecessor of σi}
and (ii) a set of flow-successor pointer symbols is denoted by Ci = {cj | σj is a flow-successor of σi}.

Table 6.3 illustrates the expected algorithm output of Phase II, i.e. a set of flow-

predecessor and flow-successor symbols of every cell, for the graph of Figure 6.7 (c).

For each cell σi ∈ K, all the neighbour pointer symbols from Phase I are listed,

Ni = {nj | σj ∈ Neighbour(i)}, which are discarded at the end of Phase II.

Table 6.3: A representation of a maximum set of edge-disjoint paths, for simple P sys-

tem of Figure 6.7 (c). Cell σ2 has one flow-predecessor σ1 and one flow-successor σ3.

Cell Neighbour pointer Flow-predecessor Flow-successor

symbols, Ni pointer symbols, Pi pointer symbols, Ci

σ1 {n2, n3} ∅ {c2, c4}
σ2 {n1, n3, n4} {p1} {c3}
σ3 {n2, n4, n5, n6} {p2, p4} {c5, c6}
σ4 {n1, n2, n3, n5} {p1} {c3}
σ5 {n3, n4, n6} {p3} {c6}
σ6 {n3, n5} {p3, p5} ∅

Precondition of Phase II of system Π

Each cell σi ∈ K starts with the configuration described in the postcondition of

Algorithm 6.2.1.

Postcondition of Phase II of system Π

At the end of Phase II, the configuration of cell σi ∈ K is (s0, wi), where:

• |wi|ai = 1, where ai is cell ID symbol that σi uses to determine its own cell ID,

i.

• For each pj ∈ Pi, |wi|pj = 1, where cell σj is a flow-predecessor of σi.

• For each cj ∈ Ci, |wi|cj = 1, where cell σj is a flow-successor of σi.

6.2. EDGE-DISJOINT PATHS SOLUTION 159

States and symbols of Phase II of system Π

Phase II uses the symbols used in Phase I, plus the following additional symbols:

{u, v, w} ∪ {cj, dj, ej, hj,mj, pj, qj, rj, tj | j ∈ {1, 2, . . . , n}} ∪ {bij, fij, xij, yij | i, j ∈
{1, 2, . . . , n}}. In each cell σi, i ∈ {1, 2, . . . , n}, these symbols have the following

meanings:

• Symbol āi is specifically used by the source cell σs, to indicate that σi is waiting

for a response from its search successor.

• Symbol cj indicates that σj is a flow-successor of σi.

• Symbol pj indicates that σj is a flow-predecessor of σi.

• Symbol dj indicates that σj is a search-successor of σi.

• Symbol qj indicates that σj is a search-predecessor of σi.

• Symbol fij indicates a search-extension request sent from cell σi to its neighbour

σj.

• Symbol bij indicates a flow-pushback request sent from cell σi to its flow-predecessor

σj.

• Symbol xij indicates cell σj’s rejection response to σi’s search-extension or flow-

pushback request.

• Symbol yij indicates cell σj’s acceptance response to σi’s search-extension or

flow-pushback request.

• Symbol rj indicates that cell σi sent a flow-pushback request to its flow-predecessor

σj.

• Symbol tj indicates that cell σi received a rejection response from its flow-

predecessor σj, regarding σi’s flow-pushback request sent to σj.

• Symbol ej indicates that not-yet-visited cell σi has received a flow-pushback

request from its flow-successor σj.

160 CHAPTER 6. THE DISJOINT PATHS PROBLEM

• Symbol hj indicates that already-visited cell σi has received a flow-pushback

request from its flow-successor σj.

• Symbol mj indicates that cell σj is: (i) one of cell σi’s former search-predecessor,

where σi was not able to find a flow successor or (ii) one of cell σi’s former flow-

successor, where σi was able to find an another flow successor.

• Symbol v indicates a reset request that sets the status of all visited neighbours

to unvisited.

• Symbol u indicates that all edge-disjoint paths are found, which prompts each

cell σi to discard all symbols except its cell ID symbol ai, pj ∈ Pi and ck ∈ Ci.

• Each copy of symbol w prompts σi to remain idle in its current state for one

step.

The following states are used in Phase II.

• State s3 is the designated state for the source cell σs, where σs: (i) finds

search-successors and flow-successors and (ii) rejects push-back requests and

flow-extension requests.

• State s4 is the designated state for the target cell σt, where σt waits for search-

extension requests.

• States s5, s6, s7, s8, s9 are the designated states for an intermediate cell σi.

◦ In state s5, cell σi receives: (i) a search-extension request from its search-

predecessor or (ii) a flow-pushback request from a flow-successor.

◦ In state s6, cell σi searches for a search-successor.

◦ In state s7, cell σi waits for a response from its search successor.

◦ In state s8, cell σi sends a flow-pushback request to one of its flow-predecessors.

◦ In state s9, cell σi waits for a response from its flow-predecessor, regarding

the flow-pushback request sent in state s8.

• States s10 and s11 are the states for all cells.

◦ In state s10, each cell resets the status of all visited neighbours to unvisited.

6.3. NODE-DISJOINT PATHS SOLUTION 161

◦ In state s11, each cell discards all symbols, except its cell ID symbol, flow-

predecessor pointer symbols and flow-successor pointer symbols.

This P algorithm is a direct implementation of Ford-Fulkerson’s network flow al-

gorithm [48]. Thus, this edge-disjoint paths P algorithm finds a maximum set of

edge-disjoint paths from the source cell to the target cell in polynomial number of

steps, as indicated in Theorem 6.12.

Theorem 6.12. For a simple P system with n cells and m = |∆| edges, this P algo-

rithm finds a maximum set of edge-disjoint paths from the source cell to the target

cell in O(mn) steps.

6.3 Node-disjoint paths solution

A simple P system specification of the node-disjoint paths algorithm, presented in

Section 6.1, is provided. The problem is explicitly stated in terms of expected input

and output. A maximum set of node-disjoint paths from a source cell to a target cells

is computed.

Problem 6.13. (Node-disjoint paths problem)

Input: A simple P system Π = (O,K,∆), where the source cell σs ∈ K contains a

token tt identifying the ID of the target cell σt ∈ K.

Output: If s 6= t, each cell σi ∈ K contains a set of predecessor pointer symbols

Pi = {pj | (j, i) is a flow-arc} and a set of successor pointer symbols Ci = {cj |
(i, j) is a flow-arc} that represent a maximum set of node-disjoint paths from σs to

σt, where the following constraints hold:

1. flow-arcs: ci /∈ Ci, pi /∈ Pi, cj ∈ Ci ⇔ pi ∈ Pj and cj ∈ Ci ⇒ j ∈ ∆(i)∪∆−1(i).

2. source and target: Ps = ∅ and Ct = ∅.

3. node-disjoint: If i /∈ {s, t} then |Ci| = |Pi| ≤ 1.

4. only paths: With S(i) =

{
t if i ∈ {s, t} or |Ci| = 0

j when Ci = {cj}

}
,

Sn−1(i) = S(S(· · ·S(i) · · ·)) = t.

162 CHAPTER 6. THE DISJOINT PATHS PROBLEM

Due to the network flow properties, |Cs| = |Pt|, which also represents a maximum

set of node-disjoint paths. Notice the constraints to require only paths has been

simplified in that the successor S(i) of non-source cell σi is a single cell instead of a

set of cells that was needed for the general edge-disjoint problem.

Table 6.4 illustrates the expected algorithm output, for a simple P system with the

cell structure corresponding to Figure 6.7 (a). For convenience, although these are

deleted near the algorithm’s end, all neighbour pointer symbols are listed, Ni = {nj |
j ∈ ∆(i) ∪∆−1(i)}, for i ∈ {1, 2, . . . , n}, which are determined in Phase I.

Table 6.4: A representation of a maximum set of node-disjoint paths, for simple P sys-

tem of Figure 6.7 (a).

Cell Neighbour pointer Flow-predecessor Flow-successor

symbols, Ni pointer symbols, Pi pointer symbols, Ci

σ1 {n2, n3} ∅ {c2, c4}
σ2 {n1, n3, n4} {p1} {c3}
σ3 {n2, n4, n5, n6} {p2} {c6}
σ4 {n1, n2, n3, n5} {p1} {c5}
σ5 {n3, n4, n6} {p4} {c6}
σ6 {n3, n5} {p3, p5} ∅

The rules of this node-disjoint paths P algorithm are exactly the rules of the edge-

disjoint paths P algorithm described in Definition 6.5, where the rules for state s5 are

replaced by the following group of rules. The rules of state s5 implement the proposed

non-standard technique described in Section 6.1.3, for enforcing node capacities to

one, without node-splitting.

This P algorithm is a direct implementation of Ford-Fulkerson’s network flow al-

gorithm [48]. Thus, this node-disjoint paths P algorithm finds a maximum set of

node-disjoint paths from the source cell to the target cell in polynomial number of

steps, as indicated in Theorem 6.14.

Theorem 6.14. For a simple P system with n cells and m = |∆| edges, this P algo-

rithm finds a maximum set of node-disjoint paths from the source cell to the target

cell in O(mn) steps.

6.4. SUMMARY 163

5. Rules for a cell σi in state s5:

1 s5 v →min s10 ww (v, l)

2 s5 u→min s11 ww (u, l)

3 s5 ainjfjipk →min s8 aiqjpk

4 s5 ainjfji →min s6 aiqj

5 s5 aicjbji →min s6 aiej

6 s5 hj →min s6 ej

7 s5 rj →min s9 rj

8 s5 aiqj →min s5 aimj (xji, l)

9 s5 aifji →min s5 ai (xji, l)

10 s5 fjk →min s5

11 s5 bjk →min s5

12 s5 yjk →min s5

13 s5 xjk →min s5

6.4 Summary

Using the simple P system framework, this chapter presented native membrane system

versions of the edge- and node-disjoint paths problems, which are based on standard

network flow ideas, with additional constraints, such as cells that start without any

knowledge about the local and global structure.

The P algorithms presented here use a depth-first search technique and iteratively

build routing tables, until they find a maximum set of edge- or node-disjoint paths.

For finding a maximum set of node-disjoint paths, an alternate set of search rules

is proposed, which can be used for other synchronous network models, where the

standard node-splitting technique is not applicable. In the Byzantine Agreement

problem [24, 23], in the case of non-complete graphs, the standard solution allows for

k faulty nodes (within a set of nodes of order at least 3k + 1), if and only if there

are at least 2k + 1 node-disjoint paths between each pair of nodes, to ensure that

a distributed consensus can occur [50]. Hence, these P algorithms can be used to

determine the number of node-disjoint paths in the Byzantine Agreement problem.

These P algorithms run in polynomial time, comparable to the standard versions

of the Ford-Fulkerson algorithms [48]. The P algorithms contain O(n3) number of

evolution rules, while the disjoint paths pseudo-code of Definition 6.2 contains 10

pseudo-code lines. Note, the pseudo-code of Definition 6.2 does not explain how to:

164 CHAPTER 6. THE DISJOINT PATHS PROBLEM

1. Perform a search operation of line 5,

2. Find augmenting paths of line 8 and

3. Find residual graphs of line 9.

Properly explaining lines 5, 8, 9, even at this pseudo-code level, will substantially

increase the number of pseudo-code lines. Note, fixed size rule sets can be obtained

using the newly proposed generic membrane system framework [56].

With respect to the goals of this thesis, this chapter presented two distributed P al-

gorithms, that solve the edge- and node-disjoint paths problems. These P algorithms

can form a component of a library of fundamental distributed algorithms in membrane

systems.

Chapter 7

Conclusions

This thesis provided a coherent approach to specify and analyse a certain class of

problems related to distributed algorithms, and provided evidence that membrane

systems are adequate for modelling fundamental distributed algorithms. This thesis

has taken a first step towards creating a library of fundamental distributed algorithms

in membrane systems, which could be useful for building more complex distributed

algorithms.

This thesis presented a set of P algorithms (i.e. algorithms that are implemented

using membrane systems) that are comparable (i.e. not necessarily better, but not

much worse) to:

• the best-known algorithms, with respect to time complexity,

• their corresponding pseudo-code, with respect to program-size complexity (i.e. the

number of instructions or evolution rules).

Consider three levels of algorithm description [74]: (i) high-level description, (ii)

implementation description and (ii) formal description. A pseudo-code is a high-

level description, while a P algorithm is a formal description. Chapters 4, 5 and

6 presented a set of distributed P algorithms and showed that, even at a detailed

executable level, these P algorithms compare favourably against high-level pseudo-

codes on the considered criteria.

165

166 CHAPTER 7. CONCLUSIONS

Chapter 4 presented a set of broadcast-based P algorithms (i.e. broadcast algorithms

that perform additional computation) and echo-based P algorithms (i.e. echo algo-

rithms that perform additional computation). As indicated in Tables 7.1, 7.2, 7.3 and

7.4, these P algorithms are comparable to the corresponding distributed synchronous

broadcast (Definition 4.1) and echo (Definition 4.2) algorithms, with respect to time

and program-size complexities.

Table 7.1: Comparing a synchronous distributed broadcast pseudo-code against Al-

gorithm 4.2.1 (Broadcast with acknowledgement), on trees, where h denotes the tree

height.

Algorithm Time complexity Program-size complexity

Synchronous distributed broadcast h 8 pseudo-code lines

pseudo-code (Definition 4.1)

Algorithm 4.2.1 h+ 2 2 evolution rules

(Broadcast with acknowledgement)

Table 7.2: Comparing a synchronous distributed broadcast pseudo-code against Al-

gorithms 4.3.1 (Number of shortest paths), 4.3.2 (Distance parity) and 5.2.1 (Decre-

menting hop-counter), on digraphs, where e denotes the eccentricity of the source.

Algorithm Time complexity Program-size complexity

Synchronous distributed broadcast e 8 pseudo-code lines

pseudo-code (Definition 4.1)

Algorithm 4.3.1 e+ 3 6 evolution rules

(Number of shortest paths)

Algorithm 4.3.2 e+ 3 13 evolution rules

(Distance parity)

Algorithm 5.2.1 e+ 1 7 evolution rules

(Decrementing hop-counter)

167

Table 7.3: Comparing a synchronous distributed echo pseudo-code against Algo-

rithms 4.2.2 (Echo) and 4.2.3 (Tree height), on trees, where h denotes tree height.

Algorithm Time complexity Program-size complexity

Synchronous distributed echo 2h 14 pseudo-code lines

pseudo-code (Definition 4.2)

Algorithm 4.2.2 2h+ 4 6 evolution rules

(Echo)

Algorithm 4.2.3 2h+ 4 7 evolution rules

(Tree height)

Table 7.4: Comparing a synchronous distributed echo pseudo-code against Algo-

rithms 4.3.3 (Graph echo), 4.3.4 (Cell heights) and 5.3.1 (Compute general’s eccen-

tricity), on digraphs, where e denotes the eccentricity of the source.

Algorithm Time complexity Program-size complexity

Synchronous distributed echo 2e 14 pseudo-code lines

pseudo-code (Definition 4.2)

Algorithm 4.3.3 2e+ 6 28 evolution rules

(Graph echo)

Algorithm 4.3.4 2e+ 6 30 evolution rules

(Cell heights)

Algorithm 5.3.1 2e+ 6 30 evolution rules

(Compute general’s eccentricity)

168 CHAPTER 7. CONCLUSIONS

Chapter 5 presented two P algorithms that solve the FSSP for tree- and graph-

structured simple P systems. These FSSP solutions are comparable to the best-

known FSSP solutions in cellular automata (CA), as indicated in Tables 7.5 and

7.6, respectively. Additionally, this chapter presented a broadcast-based P algorithm,

Algorithm 5.2.1 (Decrementing hop-counter), and an echo-based P algorithm, Algo-

rithm 5.3.1 (Compute general’s eccentricity). As indicated in Tables 7.2 and 7.4,

these P algorithms are comparable to the distributed synchronous broadcast (Defini-

tion 4.1) and echo (Definition 4.2) algorithms.

Table 7.5: Comparing the FSSP solution [59] of cellular automata (CA) against the

static FSSP solution of Definition 5.8, where e denotes the eccentricity of the general.

Algorithm Time complexity Program-size complexity

CA FSSP solutions 3e+ 1 135 transition rules

Nishitani and Honda [59]

Static FSSP solution of 3e+ 7 37 evolution rules

Definition 5.8

Table 7.6: The FSSP solution [71] of cellular automata (CA) against the adaptive

FSSP solution of Definition 5.13, where h and r denote the tree height and radius,

respectively.

Algorithm Time complexity Program-size complexity

CA FSSP solutions h+ 2r Not available

Romani [71]

Adaptive FSSP solution of h+ 2r + 5 24 evolution rules

Definition 5.13

Chapter 6 presented two P algorithms that solve the edge- and node-disjoint paths

problems. These P algorithms run in polynomial time, comparable to the standard

versions of the Ford-Fulkerson algorithms [48], however, these P algorithms contain

O(n3) number of evolution rules, where n is the number of cells, while the disjoint

paths pseudo-codes of Definition 6.2 contain 10 pseudo-code lines. Thus, while the

169

edge- and node-disjoint paths P algorithms are comparable with respect to time

complexity, they are not comparable with respect to program-size complexity. (i.e. 10

pseudo-code lines against O(n3) number of evolution rules). Even though these two

P algorithms are not comparable with respect to size, they still form a component of

the library of distributed algorithms in membrane systems.

As future work, we can consider using the newly proposed generic membrane system

framework [56] for developing P algorithms, such that we can avoid generating P al-

gorithms with polynomial number of evolution rules. Additionally, we can expand

the library of fundamental distributed P algorithms, by presenting more distributed

P algorithms, which could improve the usability of membrane systems for developing

and designing distributed algorithms.

170 CHAPTER 7. CONCLUSIONS

Bibliography

[1] Artiom Alhazov, Maurice Margenstern, and Sergey Verlan. Fast synchronization

in P systems. In David W. Corne, Pierluigi Frisco, Gheorghe Păun, Grzegorz

Rozenberg, and Arto Salomaa, editors, Workshop on Membrane Computing, vol-

ume 5391 of Lecture Notes in Computer Science, pages 118–128. Springer, 2008.

[2] Joshua J. Arulanandham. Implementing bead-sort with P systems. In Cristian

Calude, Michael J. Dinneen, and Ferdinand Peper, editors, UMC, volume 2509

of Lecture Notes in Computer Science, pages 115–125. Springer, 2002.

[3] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simu-

lations and Advanced Topics. John Wiley & Sons, 2004.

[4] Robert Balzer. An 8-state minimal time solution to the firing squad synchro-

nization problem. Information and Control, 10(1):22–42, 1967.

[5] Francesco Bernardini and Marian Gheorghe. Population P systems. J. UCS,

10(5):509–539, 2004.

[6] Francesco Bernardini and Marian Gheorghe. Cell communication in tissue P sys-

tems: universality results. Soft Comput., 9(9):640–649, 2005.

[7] Francesco Bernardini, Marian Gheorghe, Maurice Margenstern, and Sergey Ver-

lan. How to synchronize the activity of all components of a P system? Int. J.

Found. Comput. Sci., 19(5):1183–1198, 2008.

[8] André Berthiaume, Todd Bittner, Ljubomir Perkovic, Amber Settle, and Janos

Simon. Bounding the firing synchronization problem on a ring. Theor. Comput.

Sci., 320(2-3):213–228, 2004.

171

172 BIBLIOGRAPHY

[9] Cristian S. Calude and Michael J. Dinneen. Exact approximations of Omega

numbers. I. J. Bifurcation and Chaos, 17(6):1937–1954, 2007.

[10] Constantin Carathéodory. Theory of Functions of a Complex Variable. Chelsea,

1954.

[11] Mónica Cardona, M. Angels Colomer, Antoni Margalida, Antoni Palau, Ignacio

Pérez-Hurtado, Mario J. Pérez-Jiménez, and Delf́ı Sanuy. A computational mod-

eling for real ecosystems based on P systems. Natural Computing, 10(1):39–53,

2011.

[12] Ernest J. H. Chang. Echo algorithms: Depth parallel operations on general

graphs. IEEE Trans. Software Eng., 8(4):391–401, 1982.

[13] Gabriel Ciobanu. Distributed algorithms over communicating membrane sys-

tems. Biosystems, 70(2):123–133, 2003.

[14] Gabriel Ciobanu, Rahul Desai, and Akash Kumar. Membrane systems and dis-

tributed computing. In Păun et al. [67], pages 187–202.

[15] Gabriel Ciobanu, Linqiang Pan, Gheorghe Păun, and Mario J. Pérez-Jiménez.

P systems with minimal parallelism. Theor. Comput. Sci., 378(1):117–130, 2007.

[16] Gabriel Ciobanu, Gheorghe Păun, and Gheorghe Ştefănescu. Sevilla carpets as-

sociated with P systems. In Matteo Cavaliere, Carlos Mart́ın Vide, and Gheorghe

Păun, editors, BWMC, pages 135–140, 2003.

[17] Erzsébet Csuhaj-Varjú, Maurice Margenstern, György Vaszil, and Sergey Verlan.

On small universal antiport P systems. Theor. Comput. Sci., 372(2-3):152–164,

2007.

[18] Daniel Dı́az-Pernil, Pilar Gallego-Ortiz, Miguel A. Gutiérrez-Naranjo, Mario J.

Pérez-Jiménez, and Agustin Riscos-Núñez. Descriptional complexity of tissue-

like P systems with cell division. In Cristian S. Calude, José Félix Costa, Nachum

Dershowitz, Elisabete Freire, and Grzegorz Rozenberg, editors, UC, volume 5715

of Lecture Notes in Computer Science, pages 168–178. Springer, 2009.

[19] Michael J. Dinneen. A program-size complexity measure for mathematical prob-

lems and conjectures. In Michael J. Dinneen, Bakhadyr Khoussainov, and André

BIBLIOGRAPHY 173

Nies, editors, Computation, Physics and Beyond, volume 7160 of Lecture Notes

in Computer Science, pages 81–93. Springer, 2012.

[20] Michael J. Dinneen and Yun-Bum Kim. A new universality result on P sys-

tems. Report CDMTCS-423, Centre for Discrete Mathematics and Theoretical

Computer Science, University of Auckland, Auckland, New Zealand, July 2012.

[21] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. New solutions to

the firing squad synchronization problems for neural and hyperdag P systems.

Electronic Proceedings in Theoretical Computer Science, 11:107–122, 2009.

[22] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. Edge- and node-disjoint

paths in P systems. Electronic Proceedings in Theoretical Computer Science,

40:121–141, 2010.

[23] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. A faster P solution

for the Byzantine agreement problem. In Marian Gheorghe, Thomas Hinze,

and Gheorghe Păun, editors, Conference on Membrane Computing, volume 6501

of Lecture Notes in Computer Science, pages 175–197. Springer-Verlag, Berlin

Heidelberg, 2010.

[24] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. P systems and the

Byzantine agreement. Journal of Logic and Algebraic Programming, 79(6):334–

349, 2010.

[25] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. Synchronization in

P modules. In Cristian S. Calude, Masami Hagiya, Kenichi Morita, Grzegorz

Rozenberg, and Jon Timmis, editors, Unconventional Computation, volume 6079

of Lecture Notes in Computer Science, pages 32–44. Springer-Verlag, Berlin Hei-

delberg, 2010.

[26] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. An adaptive algorithm

for P system synchronization. In Gheorghe et al. [36], pages 139–164.

[27] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. Faster synchronization

in P systems. Natural Computing, 11:107–115, 2012.

[28] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic

efficiency for network flow problems. J. ACM, 19(2):248–264, 1972.

174 BIBLIOGRAPHY

[29] Shimon Even, Ami Litman, and Peter Winkler. Computing with snakes in di-

rected networks of automata. J. Algorithms, 24(1):158–170, 1997.

[30] Roger L. Freeman. Fundamentals of Telecommunications, 2nd Edition. Wiley-

IEEE Press, 2005.

[31] Rudolf Freund, Lila Kari, Marion Oswald, and Petr Sośık. Computationally uni-

versal P systems without priorities: two catalysts are sufficient. Theor. Comput.

Sci., 330(2):251–266, 2005.

[32] Rudolf Freund and Andrei Păun. Membrane systems with symport/antiport

rules: Universality results. In Păun et al. [67], pages 270–287.

[33] Manuel Garćıa-Quismondo, Rosa Gutiérrez-Escudero, Ignacio Pérez-Hurtado,

Mario J. Pérez-Jiménez, and Agustin Riscos-Núñez. An overview of P-lingua

2.0. In Păun et al. [65], pages 264–288.

[34] Marian Gheorghe, Florentin Ipate, and Ciprian Dragomir. Formal verification

and testing based on P systems. In Păun et al. [65], pages 54–65.

[35] Marian Gheorghe, Florentin Ipate, Raluca Lefticaru, and Ciprian Dragomir. An

integrated approach to P systems formal verification. In Int. Conf. on Membrane

Computing, pages 226–239, 2010.

[36] Marian Gheorghe, Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, and

Sergey Verlan, editors. Membrane Computing - 12th International Conference,

CMC 2011, Fontainebleau, France, August 23-26, 2011, Revised Selected Papers,

volume 7184 of Lecture Notes in Computer Science. Springer, 2012.

[37] Andrew V. Goldberg, Éva Tardos, and Robert E. Tarjan. Network flow algo-

rithms. In Algorithms and Combinatorics, volume 9, pages 101–164. Springer-

Verlag, 1990.

[38] Eiichi Goto. A minimal time solution of the firing squad problem. Course notes

for Applied Mathematics 298, Harvard University, 1962.

[39] John J. Grefenstette. Network structure and the firing squad synchronization

problem. J. Comput. Syst. Sci., 26(1):139–152, 1983.

BIBLIOGRAPHY 175

[40] Jozef Gruska, Salvatore La Torre, and Mimmo Parente. Optimal time and com-

munication solutions of firing squad synchronization problems on square arrays,

toruses and rings. In Cristian Calude, Elena Calude, and Michael J. Dinneen,

editors, Developments in Language Theory, volume 3340 of Lecture Notes in

Computer Science, pages 200–211. Springer, 2004.

[41] Gabriel Y. Handler and Pitu B. Mirchandani. Location on Networks: Theory

and Algorithms. MIT Press, 1979.

[42] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

[43] Tim Carter Humphrey. Cell Cycle Control: Mechanisms and Protocols. Humana

Press, 2005.

[44] Mihai Ionescu, Gheorghe Păun, and Takashi Yokomori. Spiking neural P systems.

Fundam. Inform., 71(2-3):279–308, 2006.

[45] Florentin Ipate, Raluca Lefticaru, Ignacio Pérez-Hurtado, Mario J. Pérez-

Jiménez, and Cristina Tudose. Formal verification of P systems with active

membranes through model checking. In Gheorghe et al. [36], pages 215–225.

[46] Tseren-Onolt Ishdorj and Mihai Ionescu. Replicative - distribution rules in P sys-

tems with active membranes. In Zhiming Liu and Keijiro Araki, editors, ICTAC,

volume 3407 of Lecture Notes in Computer Science, pages 68–83. Springer-Verlag,

2004.

[47] Tseren-Onolt Ishdorj, Alberto Leporati, Linqiang Pan, and Jun Wang. Solving

NP-complete problems by spiking neural P systems with budding rules. In Păun

et al. [65], pages 335–353.

[48] Lester R. Ford Jr. and D. Ray Fulkerson. Maximal flow through a network.

Canadian Journal of Mathematics, 8:399–404, 1956.

[49] Ivan Korec. Small universal register machines. Theor. Comput. Sci., 168(2):267–

301, 1996.

[50] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1996.

176 BIBLIOGRAPHY

[51] Carlos Mart́ın-Vide, Gheorghe Păun, Juan Pazos, and Alfonso Rodŕıguez-Patón.

Tissue P systems. Theor. Comput. Sci., 296(2):295–326, 2003.

[52] Jacques Mazoyer. A six-state minimal time solution to the firing squad synchro-

nization problem. Theor. Comput. Sci., 50:183–238, 1987.

[53] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1967.

[54] Edward F. Moore. The firing squad synchronization problem. In E.F. Moore,

editor, Sequential Machines, Selected Papers, pages 213–214. Addison-Wesley,

Reading MA., 1964.

[55] F. R. Moore and G. G. Langdon. A generalized firing squad problem. Information

and Control, 12(3):212–220, 1968.

[56] Radu Nicolescu. Parallel and distributed algorithms in P systems. In Gheorghe

et al. [36], pages 35–50.

[57] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Discovering the mem-

brane topology of hyperdag P systems. In Păun et al. [65], pages 410–435.

[58] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Towards structured

modelling with hyperdag P systems. International Journal of Computers, Com-

munications and Control, 2:209–222, 2010.

[59] Yasuaki Nishitani and Namio Honda. The firing squad synchronization problem

for graphs. Theor. Comput. Sci., 14:39–61, 1981.

[60] Rafail Ostrovsky and Daniel Shawcross Wilkerson. Faster computation on di-

rected networks of automata. In In Proceedings of the Fourteenth Annual ACM

Symposium on Principles of Distributed Computing, pages 38–46. ACM, 1995.

[61] Rafail Ostrovsky and Daniel Shawcross Wilkerson. Faster computation on di-

rected networks of automata (extended abstract). In James H. Anderson, editor,

PODC, pages 38–46. ACM, 1995.

[62] Andrei Păun and Gheorghe Păun. The power of communication: P systems with

symport/antiport. New Generation Comput., 20(3):295–306, 2002.

BIBLIOGRAPHY 177

[63] Gheorghe Păun. Membrane Computing: An Introduction. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2002.

[64] Gheorghe Păun. Introduction to membrane computing. In Applications of Mem-

brane Computing, pages 1–42. Springer-Verlag, 2006.

[65] Gheorghe Păun, Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez, Grzegorz

Rozenberg, and Arto Salomaa, editors. Membrane Computing, 10th Interna-

tional Workshop, WMC 2009, Curtea de Argeş, Romania, August 24-27, 2009.

Revised Selected and Invited Papers, volume 5957 of Lecture Notes in Computer

Science. Springer-Verlag, 2010.

[66] Gheorghe Păun and Radu A. Păun. Membrane computing as a framework for

modeling economic processes. In SYNASC, pages 11–18. IEEE Computer Society,

2005.

[67] Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, and Claudio Zandron, edi-

tors. Membrane Computing, International Workshop, WMC-CdeA 2002, Curtea

de Argeş, Romania, August 19-23, 2002, Revised Papers, volume 2597 of Lecture

Notes in Computer Science. Springer-Verlag, 2003.

[68] Andrei Păun and Gheorghe Păun. Small universal spiking neural P systems.

Biosystems, 90(1):48–60, 2007.

[69] Gheorghe Păun. Computing with membranes. J. Comput. Syst. Sci., 61(1):108–

143, August 2000.

[70] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. The Oxford Handbook

of Membrane Computing. Oxford University Press, Inc., New York, NY, USA,

2010.

[71] Francesco Romani. Cellular automata synchronization. Inf. Sci., 10(4):299–318,

1976.

[72] Hubert Schmid and Thomas Worsch. The firing squad synchronization problem

with many generals for one-dimensional CA. In Jean-Jacques Lévy, Ernst W.

Mayr, and John C. Mitchell, editors, IFIP TCS, pages 111–124. Kluwer, 2004.

178 BIBLIOGRAPHY

[73] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System

Concepts, Seventh Edition. Wiley, 2004.

[74] Michael Sipser. Introduction to the theory of computation. PWS Publishing

Company, 1997.

[75] Steven Skiena. Implementing discrete mathematics - combinatorics and graph

theory with Mathematica. Addison-Wesley, 1990.

[76] William A. Stein et al. Sage Mathematics Software (Version 4.6). The Sage

Development Team.

[77] J. W. Suurballe and Robert Endre Tarjan. A quick method for finding shortest

pairs of disjoint paths. Networks, 14(2):325–336, 1984.

[78] Helge Szwerinski. Time-optimal solution of the firing-squad-synchronization-

problem for n-dimensional rectangles with the general at an arbitrary position.

Theor. Comput. Sci., 19(3):305–320, 1982.

[79] Gerard Tel. Introduction to distributed algorithms. Cambridge University Press,

New York, NY, USA, 1994.

[80] Hiroshi Umeo, Naoki Kamikawa, Kouji Nishioka, and Shunsuke Akiguchi.

Generalized firing squad synchronization protocols for one-dimensional cellular

automata—a survey. Acta Physica Polonica B Proceedings Supplement, 3(2):267–

289, 2010.

[81] Abraham Waksman. An optimum solution to the firing squad synchronization

problem. Information and Control, 9(1):66–78, 1966.

[82] Eric W. Weisstein. Prüfer code, from MathWorld—a Wolfram web resource.

[83] Claudio Zandron, Claudio Ferretti, and Giancarlo Mauri. Solving NP-complete

problems using P systems with active membranes. In Ioannis Antoniou, Cris-

tian S. Calude, and Michael J. Dinneen, editors, UMC, pages 289–301. Springer-

Verlag, 2000.

