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Abstract

Two groups of applied econometricians have figured prominently in empirical studies
of growth convergence. In terms of a popular caricature, one group believes it has found a
black hat of convergence (evidence for growth convergence) in the dark room of economic
growth, even though the hat may not exist (the task may be futile). A second group
believes it has found a black coat of divergence (evidence against growth convergence) even
though this object also may not exist (empirical reality, including the nature of growth
divergence, is ever more complex than the models used to characterize it). The present
paper seeks to light a candle to see whether there is a hat, a coat or another object of
identifiable clothing in the room of regional and multi-country economic growth. After our
examination, we find that the candle power of applied econometrics is too low to clearly
distinguish a black hat in the huge dark room of economic growth. However, in our theory
model, we find an important new role for heterogeneity over time and across economies in
the transitional dynamics of economic growth; and, in our empirical work, these transitional
dynamics reveal an elusive shadow of the conditional convergence hat in both US regional
and inter-country OECD growth patterns.
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1 Introduction

For the last two decades, numerous studies have searched for empirical evidence in favour or
against growth convergence. The task is important in helping to shape our understanding of
the economic growth trajectories of nations and in judging which, if any, theory of economic
growth fits the evidence. Cross-sectional, time series, and panel studies have all been used
to examine growth convergence using several concepts of convergence. However, when these
conceptualizations are incorporated in econometric specifications, the null hypotheses that are
tested do not necessarily imply growth convergence or divergence. This is because heterogeneity
in the speed of convergence can discombobulate the evidence. For instance, the concept of
‘beta-convergence’ that is commonly implemented in cross-sectional tests can be justified only
when there is homogeneity in the speed of convergence over time across individual units.
Moreover, conventional cointegration tests applied to cross country income are also valid only
under homogeneity of the speed of convergence.

Growth convergence has been used to evaluate the fundamental question of whether poor
countries can eventually catch up to rich countries in terms of their overall standard of living
and whether that is actually happening. Empirical studies to address this question commonly
start with the notion of transition to the steady state. A simple formulation of the transition
dynamics of log per capita real income in neoclassical growth theory with labor augmented
technological progress consists of the following three terms

log yi(t) = gi(0) + bie
−βit + xit, (1)

where i and t stand for the cross-sectional unit and time, βi represents the speed of conver-
gence and is a function of the growth rate of technological progress xi. The first term, gi(0),
in (1) represents initial conditions and steady state levels, while the second term bi stands for
the distance between the steady state and initial condition (see equation (2) below). Growth
convergence between economies i and j does not necessarily require homogeneity of βi and xi
across units, but asymptotic homogeneity of xi over time is required. That is, if xi changes
over time, then its limit needs to be identical across units as t becomes large. Existing em-
pirical studies of growth convergence typically assume homogeneity of xi over time and across
countries, so that technology is effectively treated as a public international good bestowed on
all economies. This assumption of homogeneity in technology growth is often accompanied by
the assumption of homogeneity in the speed of convergence also, so that the only source of
heterogeneity across economies lies in the initial condition gi(0). Empirical work on growth con-
vergence within the framework of these homogeneity restrictions include both cross sectional
study and time series/panel studies (for example, Barro and Sala-i-Martin, 1992, Mankiw,
Romer and Weil, 1992, Bernard and Durlauf, 1995, 1996, Evans and Karras, 1996, and Quah,
1996).

Cross-sectional homogeneity is often assumed for empirical convenience, because if xi differs
across economies during the transitional period, then the growth paths of the transitional
economies can diverge and testing convergence becomes a very difficult task. The assumption
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Figure 1: Average Real per Capita Income over the 30 year period 1960-1989 with Country
Groupings based on Initial Income Orderings.2

of homogeneity of xi across economies seems much more plausible near the steady state.
One effect of the assumption of homogeneity in xi on empirical growth is the appearance of

conditional convergence. Fig. 1 shows five groupings of cross sectional averages of per capita
real income for 120 countries (from the Penn World Table) over 1960 to 1989. The groups
(which consist of 25 countries) are selected according to initial income level and the averages
are shown over the five successive panels in the figure covering the same 30 year period. For
instance, the initial period average income for the poorest country group in 1960 was around
$503 and the last period average income in 1989 for the same group was $788. So, for this
group there was around 1.9% growth on average over the 30 year period. For the richest group,
the corresponding initial period and the final period figures for average income were $6,012
and $13,065, giving an annual growth of 4% for this group.

Fig. 2 shows quantiles of the bootstrap distribution (based on 5,000 replications) of real
per capita income for the same country groupings (the groups are formed using initial income
ordering). Fig. 3 shows the cross section average trajectories against the maximum and the
minimum, using actual (rather than bootstrapped) data. These curves give some idea of the
variability in the actual growth trajectories over time within these groupings. The outcomes
in Fig. 3 indicate that some members of each group have substantial prospects of transitioning
into higher growth groups over the 30 year period. Table A in the Appendix gives numerical

2Each panel in Fig. 1 (and subsequently Figs. 2-3) refers to the same 30 year period. For example, Panel C
tracks average real per capita income in the middle income category over the same 30 year period as the other
panels. Dating on the horizontal axis is reset at the beginning of each panel. Thus, 60 in Panel B refers to the
end of the 1960-1989 period for the poor income category while 61 refers to the beginning of the period for the
middle income category in Panel C.
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Figure 2: 2.5%, 50% and 97.5% Quantiles of Bootstrap Distribution of Real per Capita Income
over 1960-1989.

details of the distributions displayed in these three figures.
Assuming homogeneity of xi and βi rules out the possibility of transitional divergence and

focuses attention on convergence to a common steady state from different initial conditions.
In consequence, empirical studies commonly treat poor (rich) countries as poor (rich) because
of a state of low (high) initial income, leading to the view that there is evidence of growth
convergence when poor countries grow faster. This view generates two conclusions. First,
those poor countries that have grown slower than rich countries over the last 30 years will
never catch up to the rich countries because homogeneous growth rates over time are assumed.
Second, countries in similar income groupings often show evidence of convergence, suggesting
that convergence may be conditional.

An alternate perspective is that poor countries are poor partly because of their low initial
levels of technology, whereas rich countries are rich in part because of higher initial levels of
technology. In that event and using simple neoclassical growth theory, what circumstances
would give rise to the high degree of cross-sectional divergence that we observe during transi-
tional periods while ultimately permitting growth convergence in the steady state? First, we
consider the case where there is homogeneity in xi over time across units but heterogeneity
in the speed of convergence. In this case we find that neoclassical economies can generate a
high degree of divergence during transitional periods but only under rather unrealistic values
for the speed of convergence. A poor country (e.g. one with $800 of initial per capita income)
may have a very low value of β, but without allowing for heterogeneity in xi over time, such a
country will need more than two thousand years to attain 90% of the income of a rich country
in which per capita income is $4000.

Only when we allow heterogeneity in xi over time and across units (while at the same time
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Figure 3: Average, Minimum and Maximum trajectories of Actual Distribution of Real per
Capita Income over 1960-1989

requiring that the xi converge to a common constant over time to ensure convergence) do we
obtain more realistic results covering transitional periods and the long term. In this case a poor
country may grow faster because its speed of technological learning (or technological transfer)
is faster than the speed of technological creation in a rich country. When the speed of learning
is lower than the speed of creation, the growth rate may be lower than that of a rich country
and it may be much lower when the poor country’s learning speed is very slow. In such cases,
divergence in growth paths may occur in the early transitional period.

We ask whether there is evidence in the data for such behavior. Unfortunately, growth
convergence tests based on time series or panel cointegration methods are not really adequate
empirical tools for eliciting this information from the data because these econometric methods
search for long run patterns in the data and therefore presume that the data is already around
the steady state. In cases where there are some cross sectional units with long transitional
regimes, such tests can be expected to bias results in favor of divergence. Panel tests that take
account of cross sectional dependence, such as those developed in Phillips and Sul (2002) and
Moon and Perron (2002), are known to improve the size and power properties of panel unit
root tests in general and may mitigate the effects of bias from transitional regimes because
of the averaging effects over correlated units in different stages of transition and convergence.
These tests are applied to determine whether there is growth convergence in the 48 contiguous
U.S. States from 1929 to 1998. They provide evidence only in support of certain regional (or
conditional) growth convergence among the U.S. States.

Next, we take a different approach to testing growth convergence. Since we allow the speed
of convergence as well as the growth of technological progress to be heterogenous over time
and across units, we use filtering techniques to extract estimates of a ‘transition parameter’
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over time and examine the evidence for growth convergence by testing whether this transition
parameter diverges or converges. In the case where the transition parameter converges mono-
tonically, economic growth follows the now famous rule that ‘initially poorer countries grow
faster’ (β−convergence) and ‘cross-sectional income distribution should decrease over time’
(σ−convergence). With data for the 48 contiguous U.S. States from 1929 to 1998 as well as
data for 21 OECD countries from 1950 to 1992, we find evidence for growth convergence on
this criterion.

The transition parameter approach is also applied to the Penn World Table (PWT) panel
from 1960 to 1989 across 120 countries. When economies have different speeds of convergence,
different growth rates for technological progress, and heterogeneous initial income, neither
β−convergence nor σ−convergence is possible. Instead, we rely on the following descriptive
characteristics. First, among similar initial period income countries, the transition param-
eter should diverge when there is heterogeneity in βi and xi. Second, among similar final
period income countries, the transition parameter should converge. The evidence for conver-
gence from this approach cannot be clearly distinguished from what is sometimes called condi-
tional β-convergence. This is because conditional β−convergence can also generate divergence
in the early stages among countries in different convergence groups. Moreover, conditional
β−convergence generates convergence within countries in a convergence group. Thus, if condi-
tional β-convergence holds for each group in Fig. 1, one implication is that a poor group will
become relatively poorer in comparison to rich groups over time. Some of these comparative
issues are confronted at the end of the paper, although we do not claim to have fully resolved
them.

The plan of the paper is as follows. Section 2 studies some of the conflicts between the-
ory and evidence on growth convergence, giving an important new role to heterogeneity in
the growth convergence process. Section 3 considers the bridge between theory and empirical
models setting up some econometric specifications that are useful for considering convergence,
divergence and the measurement of convergence. Section 4 discusses panel unit root and coin-
tegration analyses of convergence and provides some new empirical evidence that takes account
of cross section dependence. Section 5 examines techniques for estimating the transition pa-
rameter and gives some associated tests. Section 6 concludes and a short appendix follows. To
make the paper more accessible to a general audience, we make extensive use of graphs in the
text and discussion.

2 Theory, Evidence and the Role of Heterogeneity in Conver-
gence

We start from the neoclassical theory of growth convergence and attempt to build some connec-
tions between the theoretical formulations and observed empirical regularities. In this respect,
our discussion draws on the wide ranging overview of the subject by Durlauf and Quah (1999),
who document some of the empirical characteristics of cross country growth For instance, rich
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countries grow slower than some of the newly developed countries, such as the Asian Drag-
ons and some other rapidly growing developing countries like China. The remaining countries
appear to grow at similar rates or slower rates than the rich countries.

Write the production function in the neoclassical theory of growth with labor augmented
technological progress as Y = F (K,LHA) and define

ỹ = f(k̃), ỹ = Y/LHA, k̃ = K/LHA, y = ỹHA = ỹA

where Y is total output, L is the quantity of labor input, H is the stock of human capital (here
normalized to unity), A is the state of technology, K is physical capital, and ỹ is output per
effective labor unit. Using a Cobb-Douglas technology, the conventional transitional growth
path for country i is given by

log yi(t) = log ỹ
∗
i + [log ỹi(0)− log ỹ∗i ] e−βit + logAi(0) + xit (2)

where yi is per capital real income, ỹ∗i is the corresponding steady state level,

βi = f(αi−
, δi
+
, vi
+
, xi
+
, γ
+
), (3)

αi is the technology parameter in the Cobb-Douglas function, δi is the rate of depreciation,
vi is the population growth rate, and xi is the growth rate of technical progress for country
i. Appropriate sign effects are indicated beneath these parameters in (3). It is assumed that
technological progress for country i follows

Ai(t) = Ai(0)e
xit. (4)

We follow the definition of growth convergence proposed by Bernard and Durlauf (1995,
96) given by3

lim
k→∞

(log yi(t+ k)− log yj(t+ k)) = 0 (5)

That is, growth convergence requires that log per capital real income in country i should be
the same as that in county j in the long run. We consider the following three cases that arise
within our framework (2).

Case 1: xi 6= xj if i 6= j. When this condition is sustained over time, growth convergence
simply cannot hold. For, even when the other parameters in (2) are homogenous across i, as
long as xi 6= xj is sustained, the two economies will diverge. Hence, the only possibility for
growth convergence in this case is convergence of xi = xi(t) over time, viz.

lim
t→∞xi(t)→ x. (6)

In other words, if xi is time dependent4, then it needs to converge to a common value as
t → ∞ for convergence to apply. There are, in fact, several ways to specify stochastic or

3We ignore the conditional expectation operator in equation (5) since at least for the time being all variables
are assumed to be non-stochastic.

4Of course, when xi is dependent on time t, the transitional technology (4) is more complex than simple
exponential growth.
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deterministic growth in technological progress in place of (4). However, as Durlauf and Quah
(1999) point out, such adjustments are ad hoc and do not reconcile directly with neoclassical
theory. For the time being, we rule out this case and assume that xi = x over time, focusing
on the initializations of log yi(0) and logAi(0), and the term e−βit. The case of time varying
movement of xi will be considered in a later section.

Case 2: xi = x, Ai(0) 6= Aj(0). This case provides a key element in the discussion of
Durlauf and Quah (1999). Since the initial conditions of technology are not necessarily the
same across i, we have

lim
t→∞ [log yi(t)− log yj(t)] = log

ỹ∗i
ỹ∗j
+ log

Ai(0)

Aj(0)
. (7)

Then, if Ai(0) is randomly distributed, pairs of economies do not converge according to (5).
In this event, neoclassical growth theory does not provide any meaningful information about
convergence. Hence, for the time being at least, we also rule out this case. We note, however,
that when βi and xi are both time dependent, this problem can be resolved and we address
this issue below. For now, we simply assume Ai(0) = A(0) for all i.

Case 3: xi = x, Ai(0) = A(0), βi 6= βj . Note that the steady state level ỹ
∗
i can be written

as a function of other parameters, viz., ỹ∗i = g((δi + vi + x)−1si) where si is the saving rate,
and g(·) is a continuous function. If δi, vi and si are identical across i or if (δi + vi + x)−1si is
the same across i, then it implies that the steady state value of ỹi(t) is identical over i, and the
heterogeneity of βi comes from different parameters αi. The analysis in the following subsection
does not depend on the heterogeneity of ỹ∗i , so we simply assume ỹ

∗
i = ỹ∗. Hence, there are

only two heterogenous parameters in this case — initial income and the speed of convergence.
We examine this case in detail to see how cross-sectional heterogeneity may be linked to

certain empirical regularities.

2.1 Cross-Sectional Heterogeneity of Initial Income and Speed of Conver-
gence

After imposing homogeneity restrictions on xi, ỹ
∗
i , and Ai(0), the transition dynamics of real

per capita income have the form

log yi(t) = log ỹ
∗ + [log ỹi(0)− log ỹ∗] e−βit + logA(0) + xt (8)

Accordingly, the per capita real income differential between two economies i and j is given by

log yi(t)− log yj(t) = [log ỹi(0)− log ỹ∗] e−βit − [log ỹj(0)− log ỹ∗] e−βjt

If βi > 0 for all i, limt→∞ e−βit = 0. Hence, as long as βi > 0, growth convergence holds
regardless of the value of log yi(0).

Barro and Sala-i-Martin (1992) impose a homogeneity restriction on β. If βi = β, then

log
yi(t)

yi(t− 1) − log
yj(t)

yj(t− 1) = (1− eβ)e−βt [log ỹi(0)− log ỹj(0)] ,

8



so that

log
yi(t)

yi(t− 1) < log
yj(t)

yj(t− 1) ⇐⇒ log ỹi(0) > log ỹj(0), (9)

giving the so called β−convergence condition.
However, even when βi 6= βj , the β−convergence condition can be obtained as long as5

βi ≤ βj ⇐⇒ log ỹi(0) > log ỹj(0) (10)

Equation (10) is, in fact, a more general condition than (9). Since the growth rate of tech-
nology is assumed to be identical across economies, heterogeneity in the convergence speed is
attributed to the parameter αi. One economic interpretation of α comes from international
trade theory. If αi > αj , country i has a relatively capital intensive production technology.
From equation (3), the speed of convergence is faster the lower is α. In other words, a coun-
try characterized by labor intensive production grows faster than other countries with more
capital intensive production when the technological growth rate is the same across economies.
So, condition (10) implies that initially poor countries can grow faster if they produce a more
labor intensive product than richer countries. However, in spite of the additional flexibility
in (10) and its underlying economic interpretation, neither (10) nor (9) explains the observed
cross-country income differences that are presented in the PWT.

Next, consider the case when βi ≥ βj but log ỹi(0) > log ỹj(0). The growth rate differential
between the two countries, g is given by

g = log
yi(t)

yi(t− 1) − log
yj(t)

yj(t− 1)
= (1− eβi)e−βit [log ỹi(0)− log ỹ∗]− (1− eβj )e−βjt [log ỹj(0)− log ỹ∗] .

The sign of the growth rate difference depends on time in the following manner

sign(g) R 0⇔ sign

·
log ỹi(0)− log ỹ∗
log ỹj(0)− log ỹ∗

eβi − 1
eβj − 1e

−(βi−βj)t
¸
R 1. (11)

The first factor in the square bracket of (11) is less than one if log ỹ∗ > log ỹi(0) > log ỹj(0). If
βi < βj , then the second factor is also less than one. Finally, if βi > βj then the third factor
in (11) is less than unity. Combining these factors, we have the following potential growth
scenario. At the beginning of the period (or when t is small), the growth rate of an initially
poor country may be lower than the growth rate of an initially rich country and divergence can
occur during the early period of transition, while ultimate convergence can hold in the long
run. Figure 4 shows a stylized illustration of how such an ‘Asian Miracle’ can happen in the
neoclassical world with heterogeneous β0s. Economy 3 is a rich economy with higher initial
income while economies 1 and 2 are initially poor countries. Economy 2 has a higher β than
economy 3 while economy 1 has the lowest β. Then, between economies 2 and 3, β-convergence

5Suppose that at time T < ∞ we have log yi(T ) = log yj(T ). Then [log ỹi(0)− log ỹ∗] e−βiT =

[log ỹj(0)− log ỹ∗] e−βjT , and hence, βi ≤ βj .

9
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Figure 4: Transitional Divergence and Ultimate Convergence

holds since β2 > β3 but log ỹ2(0) < log ỹ3(0). Economy 1 has a similar initial endowment as
economy 2, but this country’s growth diverges initially from both economy 2 and 3. This
divergence arises because β1 < β3 < β2.

The next question is how many years does it take for convergence to occur between
economies 1 and 3. For example, let β3 = 0.03, while β1 = 0.005.

6 Initial income for economy
3 is assumed to be log y3(0) = 8.3 ($e8.3 ≈ $4, 000), while that for economy 1 is log y1(0) = 6.9
($e6.9 ≈ $800). Recall that log yi(0) = log ỹi(0) + logA(0). Since log ỹi(0) > 0, we take
logA(0) ∈ (0.1, 6.8). Let c = log ỹ∗− log ỹ3(0).We allow c values in the range c ∈ (1, 10), which
implies a difference between ỹ3(0) and ỹ∗ of $3 and $22,000 for c = 1 and 10, respectively.
Finally we compute the time value t∗ for which per capita real income of the poor country
reaches (k × 100)% of the per capita real income of the rich country. Then,

log
y3(t

∗)
y1(t∗)

= log
1

k
,

and
log ỹ∗

h
e−β1t

∗ − e−β3t
∗i
+ log ỹ3(0)e

−β3t∗ − log ỹ1(0)e−β1t∗ = − log k.
6 It is worth noting that a number of empirical studies on growth convergence have centered on the estimation

of β and the range of resulting estimates varies from positive to negative depending on the choice of the cross
section units in the panel (particularly, whether developing countries are included or not; see Mankiw, Romer
and Weil, 1992). Empirical studies for industrialized country panels suggest a range of β values between 0.01
and 0.04. Rappaport (2000) reports that the values of β in poor country panels are between -0.004 and 0.009
while that in rich country panel lies between 0.04 and 0.045.
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We found t∗ ∈ (450, 910) for k = 0.9, and t∗ ∈ (107, 534) for k = 0.5. In the worst case
scenario, it takes more than 900 years for a poor country to catch up with a rich country.

We consider another experiment with different values of β3.When β3 = 0.01, t
∗ ∈ (296, 527)

for k = 0.9, and t∗ ∈ (55, 266) for k = 0.5. When β3 = 0.001, t∗ ∈ (2970, 5049) for k = 0.9,

t∗ ∈ (366, 2669) for k = 0.5. When the initial income differential is increased, the time period
t∗ gets larger still.

Such low values of β for developing countries and such long convergence times are both
questionable. The next section provides a possible solution to these empirical issues.

2.2 Time Series Heterogeneity of Speed of Convergence

Barro and Sala-i-Martin (1992) assume that xi = xi(t) converges to a common steady state
value x, adding a condition to the formulation (4). Accordingly, we rewrite the transitional
dynamics of log yi(t) as

log yi(t) = log ỹ
∗
i + [log ỹi(0)− log ỹ∗i ] e−βi(t)t + logAi(t), (12)

where
logAi(t) = logA(0) + xi(t)t,

and where βi = βi(t) as a function of time because it depends on xi = xi(t). The assumption
of a common steady state value implies that

lim
t→∞βi(t) = βi,

and

lim
t→∞Ai(t) =

(
A <∞ if limt→∞ xi(t)t = const
∞ if limt→∞ xi(t) = x

.

We assume the other parameters are homogenous across i except for αi and xi, so that

lim
t→∞ ỹ∗i = ỹ∗.

However
lim
t→∞ log yi(t) =∞, if lim

t→∞xi(t) = x > 0.

Hence, during transition, relative growth rates depend on xi(t) both directly and indirectly,
viz.,

log
yi(t)

yi(t− 1) = [log ỹi(0)− log ỹ
∗]
³
e−βi(t)t − e−βi(t−1)teβi(t−1)

´
+ [xi(t)− xi(t− 1)] .

Suppose we have a panel data set covering time q to time T , and let the first observation be
the initial condition. If there is no time series heterogeneity in β and x, this initial condition
does not matter in the analysis. In contrast, under time series heterogeneity of β and x, it
does matter. To see this, write

log yi(q) = log ỹi(q) + logAi(q).
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Under time series homogeneity of xi, βi is time invariant and

log ỹi(q + t) = log ỹ∗ + [log ỹi(0)− log ỹ∗] e−βi(q+t)
= log ỹ∗ + [log ỹi(q)− log ỹ∗] e−βit (13)

However, when βi changes over time, this relation no longer holds. Let β
1
i be the value of βi

at time q + t, β0i be the value at time q, and define the differential as

β1i = β0i +∆i. (14)

Under time invariance of the other parameters in (3), the change in βi over time is due to the
change in technological progress. We can then write (3) as βi(t) = g (xi (t)) and, if g is analytic,
βi(t+ q) has a power series representation about βi(t), and we can write the differential (14)
in the form

∆i = ϕ (xi(t+ q)− xi(q)) = ϕ (∆xi) , say,

where ∆xi = xi(q + t)− xi(q).

In place of (13), the transition now has the form

log ỹi(q) = log ỹ∗ + [log ỹi(0)− log ỹ∗] e−β0i q,
log ỹi(q + t) = log ỹ∗ + [log ỹi(0)− log ỹ∗] e−β1i qe−β1i t

= log ỹ∗ + [log ỹi(q)− log ỹ∗] eβ0i qe−β1i qe−β1i t
= log ỹ∗ + [log ỹi(q)− log ỹ∗] e−β

+
i t,

where
β+i = β0i +∆i

t+ q

t
.

Take the case where i = {poor, rich} and suppose that β0poor = β0rich at time q. If the speed of
technological creation (which we take as the relevant factor in the rich country) is faster than
the speed of learning or technological transfer (the relevant factor for the poor country) over
the period (q, t+ q), then the inequality ∆rich > ∆poor holds and we have β+poor < β+rich.When
the speed of creation is slower than the speed of learning, then β+poor > β+rich.

The differential in the rate of technological progress is ∆xi = xi(q+ t)− xi(q) and we have

logAi(q + t) = logAi(0) + xi(q)q +∆xiq + xi(q + t)t

= logAi(q) +∆xiq + xi(q + t)t.

The i’th country’s transitional growth path is then given by

log yi(q + t) = log ỹ∗ + logAi(q) +∆xiq + [log ỹi(q)− log ỹ∗] e−β
+
i t + xi(q + t)t. (15)

The log per capital income differential between two countries i and j now has three components:

log yi(q + t)− log yj(q + t) = B(t) + C(t) + C(t), (16)
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where

B(t) = logAi(q) +∆xiq − logAj(q)−∆xjq

C(t) = [log ỹi(q)− log ỹ∗i ] e−β
+
i t − £log ỹj(q)− log ỹ∗j ¤ e−β+j t (17)

D(t) = xi(q + t)t− xj(q + t)t

Growth convergence therefore requires the following conditions to hold:

C-1 limt→∞B(t) = 0 ⇐⇒ limt→∞
¡
∆xj −∆xi

¢
q = logAi(q)− logAj(q)

C-2 limt→∞C(t) = 0 ⇐⇒ β+i > 0

C-3 limt→∞D(t) = 0 ⇐⇒ xi(q + t)− x = o
¡
1
t

¢
.

Conditions (C-2) is obvious and has previously been considered in the growth literature.
A necessary condition for (C-3) is that there is some ultimate rate x for which limt→∞ xi(q +

t) = x, although this alone is not sufficient because the convergence rate must be at least
1/t. Condition (C-1) says that, whatever the initial technological conditions, ultimate growth
convergence can take place provided there is appropriate adjustment in the rate of technological
transfer or technological creation. Thus, if logAi(q)−logAj(q) > 0, and limt→∞

¡
∆xj −∆xi

¢
=

d > 0 with d = (logAi(q)− logAj(q))/q, then the technological deficit is made up and growth
convergence will be ultimately achieved. On the contrary, if xi is not time varying, growth
convergence does not occur whenever initial technological conditions differ across units, c.f.,
equation (7). In this sense, time series heterogeneity can compensate for heterogeneity in initial
conditions.

Now consider the time to convergence when allowance is made for time series heterogeneity.
Suppose that economy 3 is in steady state at time q in the sense that x3(q) = x and β3(q) = β,

while for economy 1, x1(q) < x3(q). This inequality results in β1(q) < β3(q) and y1(q) < y3(q).

The poor country is poor here because of its low technology. Set q = 0 without loss of generality
and write (16) as

log y3(t)− log y1(t) = B31(t) + C31(t) +D31(t),

using the explicit indices 3 and 1 in place of i and j. If x1(t)→ x3 = x, then β1(t)→ β3 = β.

The speed of growth convergence is heavily dependent on the speed of adjustment in the rate
of technological progress. Convergence time can be substantially reduced if the convergence
speed of x1(t) is fast enough to make up for initial differentials in technology.7

3 Econometric Specifications

The previous section showed how the passages to a steady state can be complex and varied
across individual units, so that simple cross-sectional tests for growth convergence can easily

7Howitt and Mayer-Foulkes (2002) illustrate such a situation. They consider three groups of countries. For
one group (the rich countries), xi = x. For another group (those catching up with the rich countries), xi(t) > x.

For the last group, xi(t) < x.
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discombobulate the evidence and may therefore have low discriminatory capability in applica-
tions. This section builds econometric specifications suitable for testing growth convergence
using panel data and also examines time series convergence tests that are based on cointegra-
tion analysis. We start by setting up an empirical specification under the null hypothesis of
growth convergence and then consider the alternative of divergence. We denote yi(t) as yit, in
keeping with discrete time modeling convention.

3.1 Growth Convergence

Under homogeneity, the transition path of log per capita real income can be written as

log yit = log ỹ∗ + logA0 + xt+ [log ỹi0 − log ỹ∗] e−βt
= at + kict = ki(at/ki + ct) = kigit,

and, allowing for heterogeneity, we have the same general representation

log yit = log ỹ∗ + logAi0 + xitt+ [log ỹi0 − log ỹ∗] e−βitt
= ait + kicit = ki(ait/ki + cit) = kigit.

This path can be written in the equivalent form

log yit = bitµt, (18)

where µt has the interpretation of a common growth component across economies (git = γitµt,

say), and bit (= kiγit) is the proportional deviation of individual i’s growth from the common
component. During the transitional period, bit is a function of the speed of convergence βi,
the growth rate of technological progress xi and the initial growth component level yi0.

We start by considering the following two empirical models:

Model A : log yit = biµt + εit, εit = ai + ρiεit−1 + uit, (19)

Model B : log yit = bitµt + εit, εit = ai + ρiεit−1 + uit, (20)

where uit ≡ iid (0, σ2u), and bi and bit can be either stochastic or deterministic. For the
moment, we will take bit to be deterministic (and use ordinary limiting operations), but there
is no serious loss of generality in doing so and stochastic cases will be considered later. We
deliberately keep the time series structure of εit simple in recognition of the fact that the
number of time series observations is often quite limited.

The conditions for growth convergence are given by

Model A

C1 : bi = b for all i and t.

C2 : |ρi| < 1 for all i.
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Model B

C1 : lim
t→∞ bit = b for all i

C2 : |ρi| < 1 for all i.

It is straightforward to show that Model B satisfies the definition of growth convergence and
Model B clearly nests Model A. We have the following proposition.

Proposition 1: Under conditions C1 and C2 for each model, both A and B satisfy the
definition of growth convergence

Model A assumes that all economies are in steady state or near steady state. In other
words, the growth rate of technological progress is constant during the time period over which
the convergence hypothesis is being tested. Model B does not assume either that the economies
are near steady state, or that they are in transition. Model B states only that if we have enough
time series data and all economies converge, then bit will converge to a single value, b, which
is the growth rate in the steady state. Section 3.3 discusses this transition in more detail. The
speed of convergence of bit in this case should be faster than the speed of divergence of µt, i.e.,
bit − b = o

¡
µ−1t

¢
if µt →∞ as t→∞. Then,

bitµt = bµt + (bit − b)µt = bµt + o (1) , as t→∞. (21)

If the growth component µt is stochastic and µt = Op(t
a) as t→∞, then (21) holds with o (1)

replaced by op (1) provided bit − b = o(t−a).
Model A requires no such side condition because bit = b for all i and t and the difference

between per capita income for economies i and j is Op(µ
−1
t ).

Within this framework for growth convergence, most time series and panel empirical studies
have relied on model A to test convergence. The approach is particularly inviting with panel
data sets because, under model A, panel unit root tests can be used in a straightforward way to
assess the evidence for growth convergence (GC). When A is the true data generating process
(dgp), it is easy to see that the following equivalences hold:

log yit − log yjt =
(

I(0) for all i and j ⇐⇒ GC holds
I(1) for any i and j ⇐⇒ GC not hold

,

and

log yit − 1

N

NX
i=1

log yit =

(
I(0) for all i ⇐⇒ GC holds
I(1) for any i ⇐⇒ GC not hold

.

On the other hand, if Model B is the true dgp, then for sample data with t = 1, ..., T and
fixed T,

log yit − log yjt =
(

I(0) for all i and j =⇒ GC holds
I(1) for some i and j ; GC not hold

,
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and

log yit − 1

N

NX
i=1

log yit =

(
I(0) for all i. =⇒ GC holds
I(1) for some i ; GC not hold

.

Obviously, the difference between models A and B arises because we may well have different
trend growth behavior for finite t (i.e., bit 6= bjt for finite t). In that case, log yit − log yjt may
test as I(1) for some i and j, even though as t becomes large the I(1) effect diminishes because
of condition C1. On the other hand, if log yit − log yjt tests as I(0) for all i and j over the
sample data, then C1 ensures that I(0) behavior obtains over the long run and so GC holds.

Model B appears more realistic than model A in that B allows for heterogeneity in β and
some degree of divergence for finite t, but requires convergence in the limit. Model A is much
simpler and permits easy testing of growth convergence, but may be too restrictive in practical
applications.

3.2 Growth Divergence

There are many ways of characterizing divergence8. We consider two specific alternatives here.
In the first, log per capita real income follows an individual random walk with drift. That is,

log yit = ξit, ξit = ci + ξit−1 + εit. (22)

where εit ≡ iid (0, σ2ε) across t.We may allow εit to be correlated across i provided the random
walks have full rank N , so there is no cointegration between ξit and ξjt for i 6= j. Since log yit
diverges and there is growth divergence between log yit and log yjt for all i 6= j. Suppose we
now write (22) in the form of (18), viz.

log yit = bitµt.

More specifically, we can write (22) as

log yit = cit+
tP

s=1
εis =

·
ci +

1

t

tP
s=1

εis

¸
t, (23)

so that µt = t and bit = ci +
1
t

Pt
s=1 εis →a.s. ci as t→∞. Clearly, the same result will hold if

εit is stationary and ergodic.
A second possibility is that log per capita real income follows a trend stationary process

whose deterministic part is given by

log yit = ai + cit =
hai
t
+ ci

i
t (24)

8The ultimate requirement for convergence is xi(t)→ x. Under this condition, log per capita real income will
be trend stationary in the steady state. However, during transition, it could well be stochastically nonstationary
depending on the manner in which xit and βit evolve over time. For instance, xit could follow a martingale that
converged almost surely to a constant value x.
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where the stationary error component is ignored. As long as ci 6= cj for i 6= j, log yit − log yjt
is divergent as t→∞. There is an observational equivalence problem in transition if ci is the
inverse of ai. To see this, suppose ci = 1/ai, and observe that

log yit − log yjt = ai − aj +
aj − ai
aiaj

t,

giving
log yit = log yjt, at t∗ = aiaj .

Accordingly, log yit and log yjt may seem to converge as the economies evolve toward time t∗

(which will be large if ai and aj are large) and diverge subsequently. In fact, the growth curves
cross and have different slopes because ci = 1/ai 6= 1/aj = cj . So this case can be excluded.

3.3 A Transition Parameter to Assess Convergence

Irrespective of whether economies converge, the growth component of log per capita real income
for country i can be written as

log yit = bitµt. (25)

We can add in a stochastic component to this equation to capture cyclical and random com-
ponents in the actual data and define logwit to be actual observed log per capita real income

logwit = log yit + vit, (26)

where vit is an additive shock.
Suppose log yit is known or observable to the econometrician and (25) holds. Taking ratios

to cross-sectional averages gives the standardized quantity

hitN =
log yit

1
N

PN
i=1 log yit

=
bit

1
N

PN
i=1 bit

. (27)

Under the null hypothesis of growth convergence and fixed N we have

lim
t→∞ bit = b, lim

t→∞
1

N

NP
i=1

bit = b, (28)

so that
lim
t→∞hitN = 1. (29)

In the steady state, log per capita real income follows the trend bµt. This implies the limit
of bit determines the growth rate in the steady state (it is the growth rate when µt = t). If
the cross-sectional average of bit is b as N → ∞, then hitN can be regarded as the degree
of departure from the steady state. Hence we call hitN a ‘transition parameter’ because its
behavior as t→∞ reflects the convergence of bit in (28).
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Asymptotic Behavior of the Transition Parameter
We first consider the asymptotic behavior of hitN as t → ∞ with N fixed. Let σ2tN =

1
N

PN
i=1(hitN − 1)2 be the sample cross section variation of hitN . Under convergence, the fol-

lowing properties hold, the first being (29) above.

(i) limt→∞ hitN = 1;

(ii) limt→∞ σ2tN = 0.

If the alternative hypothesis of divergence holds, we have limt→∞ bit = ci < ∞, with ci 6= cj
for i 6= j, in place of (28). Define

c̄N =
1

N

NX
i=1

ci, c2N =
1

N

NX
i=1

c2i .

With N fixed, we now have:

(iii) limt→∞ hitN = φiN := ci/c̄N ; and

(iv) limt→∞ σ2tN =
1
N

PN
i=1(φiN − 1)2 = 1

N

PN
i=1

³
ci−c̄N
c̄N

´2
=

c2N−c̄2N
c̄2N

= dN > 0.

Result (ii) is immediate. For (iii) and (iv), it is convenient to show the result using the
previous two examples — a stochastic trend with drift, and a linear trend. In the case of a unit
root process with drift, we have (c.f. (23))

bit = ci +
1

t

tP
s=1

εis (30)

and by the strong law of large numbers

bit →a.s. ci, as t→∞, (31)

which is the slope coefficient of the linear drift. In the case of a linear trend, we have (c.f.
(24))

lim
t→∞ bit = lim

t→∞

hai
t
+ ci

i
= ci, (32)

and again the limit is the slope coefficient of the linear trend. In both cases, we get

hitN = bit/
1

N

NP
i=1

bit →a.s. ci/c̄N = φiN , (33)

giving (iii) and (iv). The limit dN in (iv) is non zero under divergence, representing the
heterogeneity in the coefficients ci which, in turn, reflects the heterogeneity in the fundamental
parameters βi and xi.
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Next consider the properties of hitN for fixed (large) t and asymptotically large N. We
confine our attention to the case (30), allowing εis to be cross sectionally correlated but re-
quiring that laws of large numbers apply as N →∞. In particular, we require that the sample
moments (c̄N , c2N ) have finite limits, viz.,

c̄N → c̄, c2N → c2 as N →∞, (34)

and assume that

1

N

NP
i=1

εis,
1

N

NP
i=1

ciεis →a.s. 0,
1

N

NP
i=1

ε2is →a.s. σ
2, as N →∞. (35)

We further require that

E

µ
TP
s=1

εis

¶2
= Tω2i + o (T ) , uniformly in i (36)

where ω2i = 2πfεi (0) is the long run variance of εis and fεi is its spectral density, and that

1

N

NP
i=1

ω2i → ω2. (37)

Primitive conditions under which limits such as these hold are provided in Phillips and Moon
(1999). Under the additional requirements (34) - (37), it is easily seen that

(v) plimN→∞ 1
N

PN
i=1 b

2
it = c2 + ω2

t + o
¡
1
t

¢
;

(vi) plimN→∞ 1
N

PN
i=1 h

2
itN =

c2+ω2

t
+o( 1t )
c̄2

; and

(vii) plimN→∞ 1
N

PN
i=1(hitN − 1)2 =

c2−c̄2+ω2

t
+o( 1t )

c̄2 .

We may use property (vii) to compare the sample variation, σ2tN , of hitN for large N at
two points in time t = T1 = [Tr1] and t = T2 = [Tr2] with r2 > r1. In this case, we have the
approximate relation

σ2T2N
σ2T1N

' c2 − c̄2 + ω2

T2

c2 − c̄2 + ω2

T1

< 1, for T2 > T1 (38)

suggesting that the sampling variability σ2tN may decrease as t increases, but not to zero when
there is growth divergence.

The finite sample properties of the transition parameter hitN depend on the distribution
of initial income, technological progress, and the speed of convergence. Testing convergence
using the transition parameter involves estimating hitN and assessing evidence in support of
the above properties.
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4 Empirical Panel Unit Root Analysis with Cross Section De-
pendence

The following are two popular panel regression models used to test economic convergence based
on Model A.

A1 : logwit − logw·t = αi + ρi(logwit−1 − logw·t−1) +
piX
s=1

ωis∆ {logwit−s − logw·t−s}+ uit

A2 : logwit − logwjt = αi + ρi(logwit−1 − logwjt−1) +
piX
s=1

λijs∆ {logwit−s − logwjt−s}+ uit

Here wit is as defined in (26) and panel unit root tests are frequently used to study convergence.
Regression A1 is studied by Evans and Karras (1996) and Evans (1998) while Regression A2
is examined by Bernard and Durlauf (1995). None of these studies account for cross-sectional
dependence in the residuals, which seems to be an important feature of the data in empirical
work. We therefore seek to take this dependence into account. The empirical analysis that
follows uses this panel unit root approach to examine the evidence for regional convergence
among the 48 contiguous US States over 1929 to 1998, a context where cross section dependence
is to be expected. We report empirical results only for Regression A1 since the results are
similar for Regression A2.

As the degree of cross-sectional dependence becomes greater, it is known (Phillips and Sul,
2002) that panel unit root tests that fail to take account of cross-sectional dependence quickly
become very unsatisfactory. A conventional way of dealing with cross-sectional dependence is
to include a common time effect, but this approach is also unsatisfactory when the common
time effect has a different impact on different series9. To allow for some extra generality,
therefore, we suppose the regression residuals have the following parametric cross-sectional
structure (used in Barro and Sala-i-Martin, 1992, and Phillips and Sul, 2002)

uit = δiθt + eit, (39)

where the eit are iid and independent of θt, and δi is nonstochastic. Under this form of cross
sectional dependence, conventional panel unit root tests fail because of nuisance parameter
dependencies. Phillips and Sul (2002) proposed an orthogonalization procedure (OP) to elim-
inate the idiosyncratic loading parameters δi in the model (39), which makes it possible to
conduct asymptotically similar tests for a panel unit root. A related approach was suggested
independently by Moon and Perron (2002).

The null hypothesis for both regressions A1 and A2 is a common panel unit root, i.e.,
HA
0 : ρi = 1 for ALL i.With a common panel unit root, all economies diverge so that rejection

9Regression A includes a common time effect. However, the common time effects work only when the cross-
sectional dependence is identical. For example, if uit = δiθt+eit as in (39), then uit−u·t = (δi− δ̄)θt+eit−e·t.
So, cross-sectional dependence is not eliminated by using a common time effect when the idiosyncratic loadings
δi differ across i. The consequences of using a common time effect when the errors uit have different factor
loadings are investigated in Phillips and Sul (2002).
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of HA
0 does not itself imply overall convergence. To allow for the fact that some units may

converge and others may not, subgroup analyses can be used to confirm overall convergence
and check for conditional convergence. This approach raises the question of how to construct
subgroups. Three somewhat crude classifications are used here to determine subgroupings.
The classifications involve cross sectional correlation10, geographical distance, and the level
of income11. Alternative subgrouping methods are possible, some of which are data based.
For example, Sun (2001) considers a clustering algorithm to find a small group of so-called
convergence clubs; and Hobijin and Franses(2000) rely on individual p-value of the KPSS test
statistic to construct regional convergence groups.

Table 1: Panel Unit Root Evidence on Regional Convergence among US States over
1929-1998

G+ Z % of ρ̂emu = 1
P-values

All (48) 0.032 0.003 40
Subgroupings According to Income Level

High (10) 0.282 0.259 33
Mid (17) 0.003 0.003 20
Low (21) 0.090 0.055 34
Subgroupings According to Cross-Sectional Error Correlation
High (25) 0.361 0.071 100∗

Mid (11) 0.005 0.019 27
Low (12) 0.262 0.136 43
Subgroupings According to Broad Regional Specification

Northeast (16) 0.024 0.019 18
West (18) 0.000 0.004 17
South (14) 0.000 0.001 13

(*) signifies use of a seemingly unrelated median unbiased estimator (see Phillips and Sul, 2002).

10We consider the following iterative strategy for the selection of sub-panels based on cross section correlation.
This is a likelihood-based algorithm for producing state clusters. First, we construct k-state subpanels where k is
a small number like 3. Second, we estimate ρ by using seemingly unrelated median unbiased estimator proposed
by Phillips and Sul (2002) and calculate the corresponding imputed likelihood. Drop those cross sectional units
that fall in the lowest 1 % of likelihood values. Finally, we increase k and construct another set of sub-panels
from the smaller overall group. Then repeat first 2 steps as long as the lowest 1% and highest 1% are distinct,
dropping the lowest 1% until the lowest and highest 1% are no longer distinct. At this point, collect all the
States that have been dropped - these constituted the lowest 1%. The highest 1% are those that stay in the
highest 1% classification until the final iteration. The remaining States constitute a middle group. The lowest,
average, and highest cross sectional correlations are (0.85, 0.92, 0.99), (0.74, 0.84, 0.95) and (0.56, 0.79, 0.95)
for the high, middle, and low cross-sectional panel, respectively.
11Those States for which the average income over the 70 years is more than $14,000 are classified as the high

income group. States with average income between $14,000 and $12,000 are classified as mid-income, and those
below $12,000 as low income.
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Table 1 summarizes the empirical results. The first two columns show the p-values of
Phillips and Sul’s (2002) two test statistics (G+ and Z) for panel unit roots allowing for
cross-sectional error dependence of the form (39) in regression A1.

For all 48 States, the p-values are lower than 5%, so the null hypothesis of panel unit roots
(i.e., all States diverge) is rejected strongly. As discussed earlier, rejection does not imply
that all States converge, only that some States converge. To confirm whether rejection implies
overall convergence here, we estimate ρi individually using an exact median unbiased (EMU)
estimator to avoid small sample bias (see Andrews, 1991, and Phillips and Sul, 2002) and
calculate how many EMU estimates, ρ̂emu, are equal to unity (Note that EMU estimates can
equal to unity with positive probability in finite samples). We use these numbers as weak
supplementary evidence about the convergence properties in a mixed panel, i.e, a panel whose
elements contain both non-stationary and stationary time series. This value for regression A1
is displayed in the third column. About 20 estimates of ρi out of 48 (43%) in these regressions
equal unity. However, the interpretation of this result is not that 43% of the States diverge or
that 57% converge. For, even if the true ρi = 1, then only 50% of the sampled EMU estimates
would be equal to unity because the estimator is median unbiased. The correct interpretation
of the number 43% is that it is highly likely that some of the ρ’s are unity or very close to
unity.

Interestingly, the empirical results shown in Table 1 seem to tell us that high income
States diverge, and the same is so (at least marginally) for low-income States, but mid-income
States may converge, although the fractional percentage of ρ̂emu’s equal to unity is still 20%
or greater in this latter case. A subpanel analysis based on cross-sectional error correlation
confirms these findings. For the highly dependent States, there is little evidence of economic
convergence. Nor is there for States with low dependence. With subgroupings based on broad
regional groups, however, there appears to be evidence for economic convergence, in contrast
to the other classifications.

5 Fitting the Transition Parameter

Fitting hitN from data using a regression approach inevitably encounters difficulties because
the number of unknowns is the same as the number of observations. Smoothing methods
offer an obvious alternative approach to extracting hitN from logwit. Accordingly, we employ
the Whittaker-Hodrick-Prescott (WHP) filter12 to estimate the trend component bitµt. The
procedure is flexible, requires only the input of a smoothing parameter, and does not require
prior specification of the number of common trends µt in logwit. Having computed the WHP
estimate

f̂it = dbitµt (40)

12Whittaker (1923) first suggested this penalized method of smoothing or ‘graduating’ data. The approach has
been used regularly in empirical work in time series macroeconomics since Hodrick and Prescott (1982/1997),
although the link to the earlier work by Whittaker and the large literature on smoothing (e.g. see Kitagawa
and Gersch, 1996) seems not to have been generally acknowledged in the economics literature.
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of fit = bitµt, we take cross-sectional averages as in (27), leading directly to estimates,

ĥit =
f̂it

1
N

PN
i=1 f̂it

of hitN . For notational simplicity and because N is given, we use ĥit rather than ĥitN here and
in what follows. Writing

f̂it = fit + eit =

·
bit +

eit
µt

¸
µt,

it is clear that under growth convergence (where bit → b as t→∞) we have

ĥit =

h
bit +

eit
µt

i
1
N

PN
i=1

h
bit +

eit
µt

i →p 1, uniformly in i as t→∞, (41)

if eit
µt
= op (1)

13 uniformly in i as t→∞. Under the same conditions

σ̂2t =
1

N

NP
i=1
(ĥit − 1)2 →p 0, as t→∞, (42)

giving empirical versions of the earlier properties (i) - (ii) of hitN . In effect, under conditions
of convergence, when the parameters βi and xi take similar cross section values and bit tends
to a common value over time, the cross sectional variance of ĥit will decline to zero over time.

Under the alternative of no convergence we have

ĥit →p
ci
c̄
, lim

t→∞ σ̂2t > 0,

corresponding to the earlier properties (iii) - (iv) of hitN , which provides evidence on divergent
behavior. In effect, when the βi and xi are heterogeneous and there is heterogeneity over bit
as t → ∞, the cross sectional variance of ĥit will not decline to zero. Similarly, empirical
estimates σ̂2t /σ̂

2
q of the variance ratio for t > q and its behavior as t increases can be compared

to that of the asymptotic approximation of σ2tN/σ
2
qN given by (38).

6 Some Empirical Findings on Convergence

We provide two different empirical illustrations. The first involves two separate panels in each
of which there appear to be similar speeds of convergence: the 48 contiguous U.S. States
panel; and a panel of national output of 21 OECD countries. The second involves the full
PWT (version 5.6) panel where there is clearly heterogeneity over time in convergence rates.

13Since eit is the error in the WHP filter estimate of fit and µt is the common trend across units i = 1, ...,N ,
the condition eit

µt
→p 0 uniformly in i seems reasonable. Primitive conditions under this holds will depend, inter

alia, on the choice of the smoothing parameter in the WHP filter and its asymptotic behavior as the sample size
increases. Phillips and Jin (2002) provide some asymptotic theory for the WHP filter under various assumptions
about the smoothing parameter in the filter.
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Figure 5: Time Profile of Regional Averages of Transition Parameter Estimates: 48 Contiguous
U.S. States.

6.1 Panels with Similar Speed of Convergence

Fig. 5 shows the cross-sectional average of ĥit over 9 regions for the contiguous U.S. States
data, the importance of regional groupings of the US States data having shown up earlier in
Table 1. The time profile of these cross sectional averages shows clear evidence that the hitN
have been converging over the last 70 years. Figure 6 shows the corresponding time profiles of
ĥit for the national output of 21 OECD countries taken from the Summers and Heston data
set (PWT 5.6) from 1950 to 1992. Evidently, these two data sets tell much the same story —
that these regional groupings and national economies are apparently converging over time.

The cross-sectional variance of ĥit about the sample mean for given t is

σ̂2tN =
1

N

NP
i=1
(ĥit − 1

N

NP
i=1

ĥit)
2.

Under the null hypothesis of growth convergence, σ̂2tN → 0 as t → ∞, while under the alter-
native, σ̂2tN → d > 0. Graphs of the empirical estimates of σ̂2tN over time are shown in Figs. 7
and 8 for the US States and OECD data. An approximate 95% confidence band for the path is
shown in each case and is computed by bootstrapping14 the estimated fit. In both cases there

14The WHP filtered data is f̂it from (40). For each t there are N cross-sectional units. The nonparametric
bootstrap procedure is as follows:

1. Draw N random samples with replacement from f̂it, giving bootstrap data f̂∗it

2. Construct the bootstrap sample ĥ∗it and calculate the bootstrap sample variance σ̂
∗2
t .

3. Repeat the above steps 5,000 times and construct upper and lower 2.5% confidence intervals from the
resulting bootstrap distribution of σ̂∗2t .
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Figure 6: Time Profile of Transition Parameter Estimates: 21 OECD Countries.

is evidence of steady decline in σ̂2tN over time, as would be expected under convergence. The
confidence bands do not include the origin and this is the result of the bootstrap construction,
which uses an empirical distribution of sample variances, all of which have positive values.

6.2 Dealing with Time Heterogeneity

Fig. 9 shows the maximum, median and minimum estimates ĥit computed as above using the
WHP filter for 120 countries in the PWT Panel15. Country choice is based on data availability.
Evidently the pattern in Fig. 9 is indicative of lack of convergence over the time frame of the
data (1960 to 1989). But this profile does not necessarily imply that the 120 countries are
diverging. As showed earlier, when there is cross-sectional and time series heterogeneity of xi
(and βi), during transition we can expect some degree of divergent behavior. Hence, Fig. 9
does not of itself provide unequivocal evidence of divergence.

Our approach to assessing the empirical evidence for divergence is to compare the observed
behavior of the transition parameter estimates ĥit to the asymptotic properties known to hold
for hit from Section 3.3. Under divergence, from property (iii), ĥit should not converge to the
same value, nor should its sampling variability decline to zero. It is of particular interest to
look at the behavior of these transition estimates in certain subpanels where we may expect
to find more evidence of convergence. The following characterization of the subgroupings is
useful.

Take a subgroup for which initial income levels are similar. If initial income is independent
of βi and xi, then the speed of growth convergence within the subgroup will depend totally on

15We also used panel data from 1960 to 2000 for 97 countries from the World Bank Development Indicator
(WBDI). The empirical results discussed in the remainder of this Section are generally stronger with the WBDI
data. The results are available on request from the authors.

25



0

1

2

3

29 39 49 59 69 79 89 99
Year

Va
ria

nc
e 

x 
10

3

CI 97.5% Actual

CI 2.5%

Figure 7: Time Path of σ̂2t with Bootstrap Confidence Interval for the 48 US States Panel.
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Figure 9: Transition Parameters in PWT. (From 1960 to 1989 over 120 Countries)

βi and xi. Provided βi 6= βj , log per capita real incomes in this subgroup should diverge over
time. Hence, when panel clustering is based on initial income, the following behavior might
be expected. In view of (33), even though log yit diverges over time, the transition parameter
hit is ultimately constant. Accordingly, for a subpanel in which initial incomes are similar, the
transition parameters should stabilize over time regardless the level of initial income. But when
βi 6= βj and there is growth divergence, there will be also be heterogeneity in the constant
levels to which the transition parameters stabilize and this will be reflected in the cross section
variance estimates.

Subgroup analysis based on an ordering of final period income is also helpful to detect
heterogeneity in βi and xi. The followings outcome might be expected when the panel clustering
is based on final period income. Among countries for which final period incomes are similarly
high, the transition parameter should converge over time relatively faster according as initial
period income is more heterogenous.

We examine the evidence for these theory-based claims using data for 120 countries from
the PWT (version 5.6) which covers the period from 1960 to 1989. We split the 120 countries
into five groups. Each group contains 24 countries based on a sequential income ordering.
That is, the first 24 poorest countries (classified here according to both initial period and final
period income orderings) become the members of the first group, the next 24 poorest countries
form the next group, and so on. We also considered the ad hoc income ordering followed by
Durlauf and Quah (1999) and found that the particular selection rule for the subgrouping did
not alter the results in any major way. We report here only the results based on sequential
income ordering16.

Figs. 10 and 11 display some supportive evidence for growth convergence among the 120

16The ad hoc income ordering results can be obtained from the authors on request.
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countries based on the above criteria. Fig. 10 shows the ratio of the variance of the latest period
transition parameter ĥit to that of the first value ĥi1 when the data are clustered according to
initial income. If the transition parameters converge (diverge) over time, then the variance ratio
should decrease (increase) over time. As neoclassical theory suggests under cross-sectional and
time series heterogeneity, when initial incomes are similarly high, the transition parameters do
not converge or diverge. But, on the contrary, when initial incomes are similar and moderately
low, the ĥit seem to diverge rapidly - as seen in Fig. 10. The economic implication of Fig.
10 is simply that early divergence of the transition parameters can occur in situations where
there may also be ultimate growth convergence.

Similarly, Fig. 11 shows the ratio of the variance of the latest period transition parameter
ĥit to that of the first value ĥi1 when the data are clustered according to final period income.
In all cases, it appears that the variance ratio declines, and the rate of decay seems to be
greatest for clusters with the highest income.

Do these results provide confirmatory evidence of growth convergence in the PWT across so
many nations? Unfortunately, the evidence is not persuasive enough to support such as strong
conclusion. It turns out that similar behavior can obtain under conditional convergence, as we
proceed to show in the next section.

6.3 Conditional β−Convergence
Suppose that there is no cross-sectional heterogeneity in βi or time series heterogeneity of xi.
Then the transition dynamics of growth convergence should rely only on initial incomes. Sup-
pose, in addition, that we successfully picked five conditional convergence groups. The question
then is whether figures 10 and 11 could be generated under conditional β− convergence.

Use the notation in section 2 and assume there are two different steady states involving
two groups of countries, G1 and G2. The number of countries in G1 and G2 are N1 and N2,

respectively, with N = N1 +N2. Observe that

log yi(t) = log ỹ
∗
s + [log ỹi(0)− log ỹ∗s ] e−βt + logAs(0) + xst, for i ∈ Gs and s = 1, 2. (43)

lim
t→∞ bit = bs for i ∈ Gs and s = 1, 2, (44)

and

lim
t→∞hitN =

(
c1 = b1/ (kb1 + (1− k)b2) if i ∈ G1
c2 = b2/ (kb1 + (1− k)b2) if i ∈ G2

for k = N1/N

Suppose that we take the two groups together and estimate the transition parameters.
During transition, the transition parameters in G1 approach c1 while those in G2 approach c2.
Figure 12 shows 6 hypothetical economies with two conditional convergence groups. The per
capita real income in economies 1, 2 and 3 converge to each other but diverge from those in
economies 4, 5 and 6. If β−convergence holds in the two groups, final period income ordering
results in convergence among economies {1, 2, 3}, or {4, 5, 6}. Conditional β− convergence
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Figure 12: Conditional β-Convergence

then explains how the transition parameters can converge over time faster when initial period
income is more heterogenous.

By contrast, initial income ordering yields divergence between economies 1 and 4, 2 and 5,
or 3 and 6. Also, some countries (e.g. 3 and 6) with similarly low initial incomes diverge, as do
some countries (e.g., 1 and 4) with similarly high initial incomes. The paths of the transition
parameters for these countries will not converge, reflecting that divergence.

Therefore, absolute convergence with cross-sectional and time series heterogeneity or con-
ditional β− convergence (possibly with initial income variance differentials across groups) can
both generate the observed divergence among these 6 economies in transition.

The example illustrates how elusive the shadow of growth convergence can be. In effect,
the transitional time paths that arise under absolute convergence where there is cross-sectional
and time series heterogeneity can have observational similarities to those that hold under
conditional β− convergence. Yet there is a huge difference between the long term economic
implications of absolute convergence and conditional convergence. For, if conditional β− con-
vergence holds, some poor countries will remain poor and may never catch up with the rich
countries or the Asian Dragons. Whereas under absolute convergence, all poor countries will
eventually catch up.

The final question bears directly on this issue. Can we distinguish empirically between
these two hypotheses about convergence. In particular, is it possible to distinguish whether
the 120 countries in the PWT are on growth trajectories consistent with absolute convergence
or conditional β− convergence? With only 30 time series observations on these economies, the
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task of making this empirical distinction seems almost impossibly elusive. Nonetheless, it is
possible to characterize some relevant changes that have been taking place over this 30 year
period that do bear on this issue.

Suppose we sort the countries into groups according to per capita real income at an in-
termediate (middle) time observation, say tM . Transition parameters in each group should
converge if countries are en route to convergence. If conditional β− convergence holds in the
group, then the transition parameters should converge further after tM . If absolute convergence
holds because there is cross-sectional and time series heterogeneity that accomplishes this after
tM , then the transition parameters should correspondingly reveal this heterogeneous behavior
after tM .

We select the middle year, tM = 1974, in our panel data set and sort the countries ac-
cordingly. Fig. 13 shows the results of this exercise giving the ratio of the variance of the
latest period transition parameter ĥit to that of the first value ĥi1 when the data are clustered
according to middle year income. For all groups, conditional β− convergence does not seem
to hold because the variance ratios of the transition parameters evidently starts to diverge
following 1975 for these particular groups.

There is, of course, the possibility that conditional β− convergence holds for only k% of
the countries in a group. In that case, the divergence observed in Fig. 12 may arise from
the behavior of the remaining (1 − k)% of the countries in the group. We examined this
possibility by selecting subgroups in a mechanical way by adding and subtracting countries
from each group according to their initial income levels17. This process showed little evidence
for conditional β−convergence within the given country groupings.

7 Conclusion

The paper seeks to adopt an agnostic position on the issue of growth convergence and to let
the data speak on the issue in a manner that is not overly restrictive. In particular, we allow
for the presence of heterogeneity across countries and regions as well as over time when we
study patterns of growth to investigate convergence or divergence. By doing so, we catch an

17Details of the method used are as follows. We chose the first K countries in a group based on their income
level at tM . If there were a group of countries for which conditional β−convergence held, then the variance
ratio of σ̂21989/σ̂

2
1974 (or σ̂

2
T /σ̂

2
TM
) should be less than unity, or at most near unity. Let the critical value for the

variance ratio be ‘Vc’. If the variance ratio is less than Vc, then we drop the first low income country and add
the next higher income country in 1975 to maintain K. We repeat this recursion until there is no remaining
country unconsidered. For given K, the total number of cases is T −K + 1. We set Vc = 1, the minimum K to
be 10, and the maximum K to be 40. With this selection process, we were not able to find any case where the
variance ratio was less than Vc out of 2945 cases. Increasing Vc up to 1.2 still did not yield any case.
We set tM = 1979 and repeated this whole exercise. If the distribution of initial income in a particular

conditional β−convergence group is wide, then selecting a larger tM should help to identify the convergence
group. In this case, we found one subgroup with Vc = 1.1 and K = 13 while another subgroup with Vc = 1.2

and K = 33.
Overall these exercises indicate that there is little evidence for conditional β−convergence within the given

country groupings.
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Figure 13: Sorted by the middle observation. tM = 1975

empirical glimmer of absolute growth convergence among the 120 nations of the Penn Tables.
Assuming that growth rates of technological progress converge to a constant in the long run, we
can generate the cross-sectional divergence that is present in the data. To do so is important
because when the growth rate of technological progress in a poor country is lower than it is in a
rich country, temporary divergence in the transitional growth paths can occur. Reconciling this
divergence in transitional paths within an overall pattern of growth convergence is a challenge
that stretches existing panel data to its limits and explains our characterization of convergence
as an elusive shadow.

These findings corroborate some of the arguments made in Lucas (2002), where it is sug-
gested that the world economy diverges during transition and then starts to converge. Lucas’s
conjecture is based on heterogeneity in the speed of human capital accumulation. While it is
not a sequential growth path but instead represents the average growth of clusters of countries
with widely different incomes, our Fig. 1 is similar in shape to the 1,500 year growth path
plotted by Lucas (2002). In the early stages of an economy’s growth, the cumulative human
capital stock is low and growth is slow. As an economy learns, imports or creates technology,
the economy grows faster. These stages of growth are reflected in Lucas’s growth path and in
Fig. 1.

One implication of the analysis in this paper is that technological progress and its de-
pendence on time can play an important role in growth convergence, affecting the speed of
convergence as well as the final steady state. However, the growth rate of technological progress
and its time path are assumed to be exogenous and unknown. In consequence, like many other
studies of economic growth and convergence, this paper fails to cast light on the growth path
of technological progress, which continues to be in large part mysterious. In the absence of
light on this path, our understanding of economic growth and convergence is inevitably very
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limited. As such, the black hat of convergence and the coat of divergence remain somewhat
elusive empirical shadows.
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Table A: World Income Distribution from Poor to Rich18 (unit: US$)

Ordering T=1960 T=1989
Initial Income Ordering with Actual Data
Min Mean Max Min Mean Max

Poorest 315 503 673 424 788 2,567
Poor 673 977 1,151 350 1,377 5,793
Middle 1,174 1,393 1,673 676 3,164 11,077
Rich 1,763 2,193 3,434 1,479 5,389 14,333
Richest 3,594 6,012 9,997 4,563 13,065 17,739

Last Income Ordering with Actual Data
Min Mean Max Min Mean Max

Poorest 344 586 1,223 350 637 879
Poor 315 1,016 1,788 879 1,379 2,168
Middle 420 1,427 2,772 2,169 3,002 3,672
Rich 824 2,154 6,657 3,683 5,729 8,229
Richest 1,483 5,830 9,997 8,597 13,569 17,739

Initial Income Ordering: Confidence Intervals from Boostrap
2.5% 50% 97.5% 2.5% 50% 97.5%

Poorest 452 490 530 706 855 1,051
Poor 889 947 1,007 1,090 1,394 1,775
Middle 1,316 1,383 1,455 2,063 2,753 3,575
Rich 2,158 2,350 2,573 3,949 4,947 6,177
Richest 5,414 6,031 6,734 9,984 11,660 13,245

Last Income Ordering: Confidence Intervals from Boostrap
2.5% 50% 97.5% 2.5% 50% 97.5%

Poorest 550 639 749 576 630 687
Poor 738 886 1,047 1,252 1,381 1,530
Middle 1,133 1,361 1,605 2,685 2,869 3,068
Rich 1,824 2,201 2,691 5,127 5,677 6,288
Richest 4,513 5,476 6,426 12,096 13,060 14,027

18Actual data for Fig. 1 and Fig. 3 and bootstrap data for Fig. 2 based on 5,000 replications of the observed
trajectories.
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