

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

## Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

## General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

## HIGH-RESOLUTION MEASUREMENTS OF RAINFALL

JOHN GORDON HOSKING

Submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

University of Auckland

December 1984

PLATE 1 Maritime Cumulonimbus, Abel Tasman National Park, New Zealand, February 1982.

> UNIVERSITY OF AUGKLAND LIBRARY SCIENCE THESIS 85 - 147 Op. 2



#### ABSTRACT

A field system capable of making high-resolution measurements of rainfall is described. The system incorporates a disdrometer, an array of high-resolution raingauges, a general-purpose data acquisition system and ancillary equipment. In an evaluation of the disdrometer, a theory allowing calculation of the effects of windspeed on detection efficiency is presented which has wide applicability. The raingauges are an improved design allowing 10-s temporal resolution of rainfall intensity and 100 m spatial resolution of rain-patch size when used in the array.

An extensive data base of measurements made using the field system is described. Duration of rainfall is shown to be approximately log-normal and is consistent with a log-normal distribution of precipitation region size. The fractional duration of rainfall above a threshold intensity varies considerably between rain periods, a result which may be important for electromagnetic attenuation models. Estimation of the shapes of rain patches using the raingauge array is demonstrated and shows considerable promise.

Raindrop fallspeeds, measured using the disdrometer, generally show much less deviation from stagnant air terminal velocities than indicated by previously reported results. Much of the spread in the results is shown to be consistent with instrumentation errors although significant residual deviations are still apparent; the fallspeeds are generally slower than stagnant air values would suggest. Measurements of the arrival rate of raindrops at the disdrometer indicate clustering of drops rather than the often assumed Poisson distribution. The clustering is associated with small drops and has reasonable correlation with rainfall intensity. Examination of the cross-correlation of arrival rates of different sized drops show results in contradiction to previous results; small drops are found to lead other sized drops. Using a normalisation method, the shapes of raindrop size distributions measured are shown to be depressed in the mid-radius region.

ii

### DEDICATION

## This thesis is dedicated to my father

### LESLIE HOWARD HOSKING

( 1917 - 1977 )

"In framing an ideal we may assume what we wish, but should avoid impossibilities"

Aristotle.

#### ACKNOWLEDGEMENTS

There are many people who deserve thanks for their contributions to this thesis and I would particularly like to thank: my parents, for early encouragement of my academic pursuits; the Departments of Computer Science and Physics for financial assistance; the staff of the Physics Workshops for advice and assistance in hardware implementation; the New Zealand Meteorological Service, for supplementary data; Murray Johns, Gary Bold and Dave Ash, for the plotting subroutines and cross-assembler used; David Schwartz, Warren Gray and Kevin Paulson, for assistance with the field installation; Stuart Bradley, for much practical and theoretical advice.

Special thanks must be given to my supervisor, Dave Stow, for his vital encouragement throughout the duration of this project.

Finally I would like to thank my wife, Janne, for her continual patience and for the excellent job she has made of typing this thesis.

## CONTENTS

|                  |                             | Page |
|------------------|-----------------------------|------|
| ABSTRACT         |                             | ii   |
| DEDICATION       |                             |      |
| ACKNOWLEDGEMENTS |                             |      |
| CONTENTS         |                             |      |
| CHAPTER 1: I     | NTRODUCTION                 | 1    |
| 1.1              | Introduction                | 1    |
| 1.2              | Raindrop size distributions | 2    |
| 1.3              | Raindrop fallspeeds         | 5    |
| 1.4              | Drop arrival rates          | 7    |
| 1.5              | Rainfall intensity          | 8    |
| 1.6              | A field system              | 10   |
| 1.7              | Summary                     | 11   |

V

# Page

vi

## PART I THE FIELD SYSTEM

| CHAPTER 2: | MEASUREMENT OF INDIVIDUAL RAINDROPS             | 12 |
|------------|-------------------------------------------------|----|
| 2.         | 1 Introduction                                  | 12 |
| 2.         | 2 The disdrometer                               | 13 |
| 2.         | 3 Disdrometer data error detection              | 14 |
| 2.         | 4 Disdrometer calibration and performance       | 15 |
| 2.         | 5 Sampling errors                               | 18 |
| 2.         | 6 Drop overlap                                  | 20 |
| 2.         | 7 Splashing                                     | 20 |
| 2.         | 8 Horizontal wind                               | 22 |
| 2.         | 9 Vertical air motion                           | 30 |
| 2.         | 10 Turbulence                                   | 31 |
| 2.         | 11 Summary                                      | 33 |
|            | à                                               |    |
| CHAPTER 3: | MEASUREMENT OF RAINFALL INTENSITY               | 35 |
| 3.:        | Introduction                                    | 35 |
| 3.2        | 2 Evaluation of the Norbury and White raingauge | 36 |
| 3.3        | 5 Improved dropper design                       | 38 |
| 3.4        | Calibration and performance                     | 39 |
| 3.5        | Field performance                               | 41 |
| 3.6        | Conclusion                                      | 42 |
|            |                                                 |    |
| CHAPTER 4: | THE DATA ACQUISITION SYSTEM                     | 44 |
| 4.1        | Introduction                                    | 44 |
| 4.2        | The data acquisition computer                   | 45 |
| 4.3        | The remote interface unit                       | 47 |
| 4.4        | Disdrometer interfacing electronics             | 48 |

|      |                           | Page |
|------|---------------------------|------|
| 4.5  | Data acquisition software | 49   |
| 4.6  | Disdrometer data sampling | 50   |
| 4.7  | Cyclic sampling           | 51   |
| 4.8  | Runtime parameters        | 52   |
| 4.9  | RIU software              | 53   |
| 4.10 | Apple software            | 53   |
| 4.11 | Fault tolerance           | 54   |
| 4.12 | Summary                   | 55   |
|      |                           |      |

# CHAPTER 5: THE ARDMORE FIELD SYSTEM

| 5.1 | Site description           | 57 |
|-----|----------------------------|----|
| 5.2 | Equipment layout           | 58 |
| 5.3 | Operational considerations | 59 |
| 5.4 | Off-site processing        | 61 |
| 5.5 | Summary                    | 61 |

# PART II MEASUREMENTS AND ANALYSES

| CHAPTER 6: PRELIMINARY DATA ANALYSIS |     | RELIMINARY DATA ANALYSIS            | 62 |
|--------------------------------------|-----|-------------------------------------|----|
|                                      | 6.1 | Introduction                        | 62 |
|                                      | 6.2 | The data base                       | 63 |
|                                      | 6.3 | The frequency of rain periods       | 64 |
|                                      | 6.4 | Duration of rain periods            | 65 |
| 6.                                   | 6.5 | Cumulative rainfall and drop counts | 66 |
|                                      | 6.6 | Disdrometer data classification     | 68 |
|                                      | 6.7 | Drop trajectories                   | 69 |
|                                      | 6.8 | Conclusions                         | 71 |

57

|                                               |                                          | Page |
|-----------------------------------------------|------------------------------------------|------|
| CHAPTER 7: MEASUREMENTS OF RAINFALL INTENSITY |                                          |      |
| 7.1 Introd                                    | luction                                  | 73   |
| 7.2 Durati                                    | on of rainfall                           | 75   |
| 7.3 The size of precipitation regions         |                                          | 76   |
| 7.4 Fracti                                    | onal duration of rainfall                | 79   |
| 7.5 The ra                                    | ingauge array                            | 80   |
| 7.6 Conclu                                    | sions                                    | 83   |
|                                               |                                          |      |
| CHAPTER 8: RAINDROP                           | FALLSPEEDS                               | 86   |
| 8.1 Introdu                                   | uction                                   | 86   |
| 8.2 Field r                                   | neasurements                             | 88   |
| 8.3 Instrum                                   | mental effects                           | 90   |
| 8.4 Residua                                   | al effects                               | 94   |
| 8.5 Conclus                                   | sions                                    | 96   |
|                                               |                                          |      |
| CHAPTER 9: RAINDROP                           | ARRIVAL RATES AND SIZE DISTRIBUTIONS     | 99   |
| 9.1 Drop ar                                   | rival rates                              | 99   |
| 9.2 Drop ar                                   | rival rates - case study i               | 100  |
| 9.3 Drop ar                                   | rival rates - case study ii              | 103  |
| 9.4 Raindro                                   | p size distributions                     | 105  |
| 9.5 Tempora                                   | l variation of drop size distributions   | 106  |
| 9.6 Paramet                                   | erization of raindrop size distributions | 109  |
| 9.7 Conclus                                   | ion                                      | 111  |
|                                               |                                          |      |
| CHAPTER 10: CONCLUSION 1                      |                                          |      |
| 10.1 Introduc                                 | ction                                    | 113  |
| 10.2 Instrume                                 | entation and field system                | 114  |

10.4 Further work 117

115

10.3 Measurements and analysis

|                               | Page |
|-------------------------------|------|
| APPENDIX I: AQUA              | 120  |
|                               |      |
| APPENDIX II: CIRCUIT DIAGRAMS | 127  |
|                               | * "k |
| REFERENCES                    | 132  |