Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Cellular trafficking of rotavirus NSP4 in epithelial cells

Andrea Bugarčić

Biochemistry and Cellular Biology
School of Biological Sciences
University of Auckland

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy
July 2007
Abstract

Rotavirus is a non-enveloped dsRNA virus that belongs to the family Reoviridae and is associated with severe dehydrating diarrhea in infants and young children throughout the world. Rotavirus targets the fully differentiated epithelial cells lining the tips of the small intestinal villi. Although different aspects of the rotavirus replication cycle have been researched extensively, the mechanism underlying the assembly of mature viral particles and the precise method by which rotavirus is able to induce diarrheal disease have not been fully elucidated.

The rotavirus replication cycle involves budding of immature progeny virus particles, termed DLPs, from the site of replication and assembly into the lumen of ER via an interaction of the particle with the cytoplasmic domain of a virally encoded non-structural protein, NSP4. Recent studies confirm subcellular localisation of this protein in distinct membrane lipid microdomains at the later stages of the viral replication cycle in polarised epithelial cells and further classify these structures as a final assembly location for mature viral particles. Overall aim of the study presented in Chapter 3 was to characterise the domain of NSP4 responsible for such interaction and to further elucidate the significance of proposed interaction in the context of the rotavirus replication cycle.

In order to assess this interaction in vitro, separate domains of the NSP4 protein, expressed by several different recombinant protein expression systems, were applied to a Caco-2 cell lysate and examined by floatation gradient and subsequent Western blot analysis. The NSP4-lipid microdomain interaction was mapped to a part of a coiled-coil domain including amino acids 85 to 122. The potential involvement of NSP4 in translocation progeny DLPs to the site of final viral assembly was also examined.

Recent studies suggest involvement of this protein in the pathophysiology of rotavirus-induced diarrhea by acting as an enterotoxin. To mediate enterotoxic effects in vivo, NSP4 needs to be secreted or released from rotavirus-infected cells in a soluble form, but studies indicate that this is a transmembrane glycoprotein located
in the ER membrane. Overall aim of the studies outlined in Chapter 4 was to identify and further characterise secretion of NSP4 from rotavirus-infected fully polarised Caco-2 cells.

These studies reveal that NSP4 is actively secreted into the culture medium of polarised, but not non-polarised cells. The secretion was detected preferentially from the apical surface and was found to be dramatically inhibited by addition of BFA and monensin, suggesting a Golgi-dependent pathway is involved in release of this protein. In accordance with this finding, the secreted NSP4 isoform was found to undergo additional post-translational modification and is partially resistant to deglycosylation by EndoH and PNGaseF. Furthermore, apical secretion was not blocked by addition of glucosidase- or cholesterol- inhibitors, and no evidence was found that NSP4 was packaged in exosomes for its release.

Taken together, these studies outline the pool of NSP4 that is able to actively participate in an assembly of mature progeny virus particles through its interaction with lipid microdomains and further identify a novel, soluble form of NSP4 secreted from rotavirus-infected polarised cells.
Acknowledgments

My sincere gratitude goes to my supervisor, Dr John Taylor. A special thanks to Dr Judith O’Brien and Prof Dick Bellamy for all advice and constant encouragement. The understanding and support over the years were very much appreciated. Thanks especially to Dr Taylor for assistance in the final preparation of this thesis.

Thank you to Hillary Holloway and Jacquie Ross from Bioimaging Research Unit, University of Auckland for guidance with confocal microscopy.

Extreme thanks to all the members of Molecular Virology lab, both past and present. Special thanks to Jan Meyer for kind words, interesting discussions and her brilliant proof reading skills. To my good friends Sarah Greig and Julie Hill - certain things seemed so much better after a good talk and a few laughs. Thank you for always being there! Thank you to Kevin Ke, for all your words of encouragement and endless DIY skills. Thank you also to Kristy Manning and Carol Wang, for help when the help was needed.

Thanks to the many people in SBS who have helped me over the years. In particular, Adrian Turner and Iain MacDonald, for help with the EM and graphics. A special thanks to members of various labs that made certain things more bearable. A very special thanks to my friends Bronwen Jongbloed, Shanthi Jayawaradena, Mel Ragget, David and Rachel Goldstone and Jo Dodd for both practical advice and infinite capacity to make me laugh. Thank you for being my friends even when that seemed not to be reciprocated. A special thanks to Leo Payne, Haylyn Wong and Peter Brown.

Lastly, a very special thank you to my family – my boys, Marko and Nikola, my husband, Mum, Dad and my sisters – Daša, Jaca and Brana. All of this would not be possible without your endless support, encouragement and most of all love.

This project was supported by Auckland Medical Research Foundation Senior PhD and University of Auckland PhD scholarships.
Table of contents

Abstract .. i
Acknowledgments ... iii
Table of contents ... iv
List of figures ... viii
List of tables .. x
Abbreviations .. xi

Introduction

1.1 Rotavirus Disease .. 1
 1.1.1 General Features ... 1
 1.1.2 Pathophysiology of rotavirus disease ... 2

1.2 The rotavirus particle ... 6
 1.2.1 The architecture of rotavirus particles as revealed by cryoelectron microscopy 7
 1.2.2 Insights into rotavirus protein structure from X-ray crystallography 10
 1.2.3 Genome structure and coding assignments ... 11
 1.2.4 Classification of rotaviruses ... 13

1.3 The rotavirus replication cycle ... 13
 1.3.1 Attachment and entry .. 13
 1.3.2 Transcription, translation and the assembly of rotavirus particles 16
 1.3.3 Maturation and release of virions ... 19

1.4 The role of NSP4 in the replication and pathogenesis of rotavirus 24
 1.4.1 Structure and membrane topology of NSP4 ... 24
 1.4.2 NSP4 receptor activity .. 27
 1.4.3 NSP4 and intracellular calcium ion (Ca^{2+}) homeostasis 28
 1.4.4 Interaction of NSP4 with cellular proteins .. 29
 1.4.5 NSP4 release as an enterotoxin ... 30

1.5 Aims of this project .. 33
Materials and Methods

2.1 Materials

2.1.1 Growth media

2.1.2 Antibiotics

2.1.3 Bacterial strains

2.1.4 Mammalian cell lines

2.1.5 Viruses

2.1.6 Plasmids

2.1.7 Primers

2.1.8 Chemicals

2.1.9 Enzymes

2.1.10 Antibodies

2.1.11 Buffers and Solutions

 a) General buffers
 b) Glutathione-agarose chromatography buffers
 c) SDS PAGE solutions
 d) Western blotting solutions
 e) Optiprep™ solutions
 f) Enzyme assay solutions

2.2 Methods

2.2.1 Growth of mammalian cells

2.2.2 Cryopreservation of mammalian cells

2.2.3 Virus titration

 a) Rotavirus – fluorescent focus assay
 b) Vaccinia virus – plaque assay

2.2.4 Recombinant vaccinia virus construction

 a) Homologous recombination in CV1 cells
 b) Recombinant virus selection

2.2.5 DLP preparation

2.2.6 Virus infection

2.2.7 Transfection of mammalian cells

2.2.8 Growth of bacteria

 a) Agar plates
 b) Liquid cultures

2.2.9 Purification of GST fusion proteins

2.2.10 Electrophoresis SDS-PAGE

2.2.11 Western blotting

2.2.12 Isolation of lipid microdomains

2.2.13 AP and DPP IV assays

 a) Alkaline phosphatase (AP) assay
 b) Dipeptidyl peptidase (DPP IV) assay

2.2.14 Enzyme-linked immunosorbent assay (ELISA)

 a) NSP4 ELISA
 b) TLP ELISA
Association of NSP4 with lipid microdomains in Caco-2 cells

3.1 Introduction ... 60
 3.1.1 Lipid microdomains and the replication of animal viruses 60
 3.1.2 Lipid microdomains in the assembly of rotavirus 62

3.2 Results .. 65
 3.2.1 NSP4 associates with lipid microdomains in RV-infected Caco-2 cells 65
 3.2.2 Localisation of NSP4 in rotavirus infected Caco-2 cells 68
 3.2.3 Construction of vaccinia virus vectors for the expression of NSP4 in Caco-2
cells .. 70
 3.2.4 The NSP4 C-terminus is responsible for lipid microdomain association 74
 3.2.5 Localisation of NSP4 variants in epithelial cells ... 75
 3.2.6 Recombinant NSP485-175 (C90) associates with lipid microdomains in vitro.. 77
 3.2.7 NSP4 redistributes GFP in non-polarised mammalian cells.................... 78
 3.2.8 Residues 85-122 of NSP4 contain a raft-association domain 82
 3.2.9 Purified triple-layered particles (TLPs) interact with lipid microdomains 84
 3.2.10 NSP4 partially colocalises with maturing particles at the apical surface of the
epithelial cells .. 86

3.3 Discussion ... 90
Polarised secretion of NSP4 from rotavirus infected Caco-2 cells

4.1 Introduction .. 98

4.2 Results .. 101
 4.2.1 Isolation and biochemical analysis of secreted NSP4 isoform..................... 101
 4.2.1.1 Detection and quantification of NSP4 and TLPs in cell culture medium ... 101
 4.2.1.2 NSP4 is secreted from differentiated Caco-2 cells infected with rotavirus ... 103
 4.2.1.3 NSP4 is released from nonpolarised MA104 following cell death.......... 106
 4.2.1.4 NSP4 is preferentially secreted from the apical surface of polarised Caco-
 2 cells grown on microporous filters... 108
 4.2.1.5 Analysis of carbohydrate residues attached to NSP4. 110
 4.2.1.6 Secretion of NSP4 from Caco-2 cells is blocked by Golgi-disrupting drugs
 ... 112
 4.2.1.7 Secretion of NSP4 is not inhibited by methyl-β-cyclodextran (MβCD) 114
 4.2.1.8 Differential effects of glucosidase inhibitors on secretion of NSP4 from
 Caco-2 cells. .. 115
 4.2.1.9 The polarity of NSP4 secretion is not effected by either MβCD or BGN
 ... 119
 4.2.2 Biophysical analysis of secreted NSP4 isoform 122
 4.2.2.1 Secreted NSP4 remains in the supernatant after centrifugation at
 100,000xg ... 122
 4.2.2.2 Secreted NSP4 is not associated with virus particles 123
 4.2.2.3 NSP4 is not associated with exosomes .. 125
 4.2.2.4 Analysis of secreted NSP4 by size-exclusion chromatography 128
 4.2.2.5 Electron microscopy of medium from rotavirus infected Caco-2 cells.. 130

4.3 Discussion .. 132

Discussion

5.1 Role of NSP4 and lipid microdomains in rotavirus assembly 141
5.2 Secretion of NSP4 from rotavirus-infected Caco-2 cells.............................. 144
5.3 Future directions 147

References ... 151

Appendix I ... 189
Appendix II .. 190
Appendix III .. 191
Appendix IV .. 193
List of figures

Introduction

Figure 1.1: Estimated global distribution of 600,000 deaths per year that occur from rotavirus infections (reproduced from Glass R.I. (129)) ... 2
Figure 1.2: Schematic representation of cells in the intestinal villus and crypt (reproduced from Crosnier et al (72)) ... 3
Figure 1.3: Schematic representation of rotavirus particle (reproduced from Glass R.I. (129) and Pesavento et al (291)) .. 9
Figure 1.4: Schematic representation of rotavirus replication cycle in non-polarised cells (adapted from Estes M.K. (106)). .. 22
Figure 1.5: Schematic representation of rotavirus maturation and release in polarised cells (adapted from Delmas et al (89)) ... 23
Figure 1.6: Schematic diagram showing the topology of NSP4 as defined by Bergmann et al (28). .. 26
Figure 1.7: Schematic summary of NSP4 protein functional domains (adapted from Ball et al (20)) ... 33

Association of NSP4 with lipid microdomains in Caco-2 cells

Figure 3.1: Distribution of alkaline phosphatase (AP) and dipeptidyl peptidase IV (DPP IV) activity in fractions collected from Optiprep™ gradients. 66
Figure 3.2. NSP4 and VP6 associate with lipid microdomains in rotavirus-infected Caco-2 cells. .. 67
Figure 3.3: Distribution of NSP4 and flotillin-1 in rotavirus infected Caco-2 cells. ... 69
Figure 3.4: NSP4 and flotillin-1 localise to the apical surface in rotavirus infected Caco-2 cells. .. 70
Figure 3.5: Construction of recombinant vFL-NSP4 .. 72
Figure 3.6: Construction of recombinant vF94NSP4 .. 73
Figure 3.7: The NSP4 C-terminus possesses the intrinsic ability to partition to the lipid microdomain fraction. ... 74
Figure 3.8: Cellular distribution of NSP4 and truncated derivatives expressed in Caco-2 cells using vaccinia virus vectors .. 76
Figure 3.9: Purified NSP485-175 associates with raft membranes when added exogenously to cell lysates. .. 78
Figure 3.10: Schematic representation of GFP-NSP4 progressive mutants cloning and expression. .. 79
Figure 3.11: Progressive NSP4 truncation mutants redistribute eGFP fluorescence in transfected HeLa cells. ... 81
Figure 3.12: Cross-reactivity between α-FLAG monoclonal antibody and epitope(s) present in HeLa cells. .. 82
Figure 3.13: NSP4 amino acids 85-122 are responsible for lipid microdomain association.

Figure 3.14: Exogenously added TLPs, but not DLPs associate with lipid microdomains.

Figure 3.15: Spatial analysis of VP7, NSP4 and flotillin-1.

Figure 3.16: NSP4 colocalises with VP7 within lipid microdomains.

Polarised secretion of NSP4 from rotavirus infected Caco-2 cells

Figure 4.1: Detection of NSP4 (C90) and TLPs by ELISA.

Figure 4.2: Secretion of NSP4 from Caco-2 cells infected with bovine rotavirus.

Figure 4.3: Secretion of NSP4 from Caco-2 cells infected with simian rotavirus.

Figure 4.4: Distribution of NSP4 in cell and medium fractions following rotavirus infection of MA104 cells.

Figure 4.5: Distribution of NSP4 in apical and basolateral media following infection of filter-grown Caco-2 cells with bovine rotavirus.

Figure 4.6: Sensitivity of cell-associated and secreted NSP4 to enzymatic deglycosylation.

Figure 4.7: Time course of EndoH digestion of cell-associated and secreted forms of NSP4.

Figure 4.8: Brefeldin A (BFA) and monensin inhibit secretion of NSP4.

Figure 4.9: MβCD does not block NSP4 secretion from rotavirus infected Caco-2 cells.

Figure 4.10: Schematic representation of N-glycans structure and effects of glucosidase inhibitors used (reproduced from Potter et al (307)).

Figure 4.11: Effect of glucosidase inhibitors on secretion of NSP4 from Caco-2 cells.

Figure 4.12: Effect of MβCD on the polarity of secretion from filter-grown Caco-2 cells.

Figure 4.13: Effect of BGN on the polarity of NSP4 secretion from filter-grown Caco-2 cells.

Figure 4.14: NSP4 is found in a supernatant of a 100,000xg centrifugation.

Figure 4.15: Secreted NSP4 is not associated with progeny particles.

Figure 4.16: Analysis of secreted NSP4 after differential centrifugation.

Figure 4.17: Analysis of secreted NSP4 by sucrose floatation gradient.

Figure 4.18: NSP4 secreted from rotavirus infected Caco-2 cells forms high MW complexes.

Figure 4.19: Electron microscopy analysis of high-speed supernatant.

Figure 4.20: Structure of O-glycans and effects of BGN (adapted from Potter et al (307)).
List of tables

Chapter 1:

Table 1.1: Summary of the coding assignments of each RNA segment 12
Table 2.1: Outline of methods used for different antibodies on western blots 51
Abbreviations

S.I. (Système Internationale) abbreviations for units and standard notations for chemical elements, formulae and chemical abbreviations are used throughout this work. Other abbreviations used in the text are defined below.

2D..two-dimensional
3D..three-dimensional
α-...anti-
A..absorbance
aa..amino acid
Å..angstroms
ATP...adenosine-5'-triphosphate
BCA...bicinchoninic acid
BGN...benzyl-N-acetyl-α-galactosamine
bp...base pair
BSA...bovine serum albumin
BTV...bluetongue virus
C-terminalcarboxyl terminal
C90...C-terminal 90 amino acids of NSP4
cryoEM......................................cryo-electron microscopy
CV...column volume
DLP...double layered particle of rotavirus
DMEM......................................Dulbecco’s modified Eagle’s medium
DMJ...deoxymannojirimycin
DMSO.......................................dimethyl sulphoxide
DNA..deoxyribonucleic acid
DRM..detergent-resistant membranes
dsRNA.....................................double-stranded RNA
E. coliEscherichia coli
ECL...enhanced chemiluminescence
EDTA..ethylenediaminetetraacetic acid
ELISA.......................................enzyme-linked immunosorbent assay
EM..electron microscopy
ECM..extracellular matrix
ENS..enteric nervous system
ER...endoplasmic reticulum
FBS..foetal bovine serum
FFT..fast Fourier transform
G serotypeglycoprotein serotype
GST..glutathione-S-transferase
HBV..hepatitis B virus
HDL..high density lipoprotein
HIV..human immunodeficiency virus
hpi...hours post infection
Hsc70 ..heat shock cognate protein 70
HSV ..herpes simplex virus
ICP ...inner core particle
IPTG ..isopropyl-\(-\)D-thiogalactopyranoside
kDa ..kilodaltons
moi ...multiplicity of infection
mAb ..monoclonal antibody
mRNA ..messenger RNA
MW ...molecular weight
MPa ..mega pascals
N-terminal ...amino terminal
NA ..neuraminidase
NSP ..non-structural protein of rotavirus
\(^\circ\)C ..degrees Celsius
P serotype ..protease-sensitive serotype
PAGE ...polyacrylamide gel electrophoresis
pfu ..plaque-forming units
RNA ..ribonucleic acid
RNase ..ribonuclease
RNAi ...RNA interference
rpm ..revolutions per minute
RV ..rotavirus
SA ..sialic acid
SDS ..sodium dodecyl sulphate
Sf9 ..Spodoptera frugiperda
SG ..subgroup
siRNA ...small interfering RNA
ssRNA ...single-stranded RNA
SV40 ...simian vacuolating virus 40
SW ..swainsonine
T ...triangulation number
TCA ..trichloroacetic acid
TEM ..transmission electron microscopy
TEMED ..N,N,N\(,\)N\(,\) tetramethylmethylenediamine
TGN ..trans Golgi network
TLP ..triple layered particle of rotavirus
Tris ..2-amino-2-(hydroxymethyl)-1,3
.................................propanediol
TX-100 ...Triton X-100
U ...units of enzyme (defined by
.................................manufacturer)
UV ..ultraviolet light
v/v ..volume per volume
VLP ..virus-like particle
VP ..structural viral protein
w/v ..weight per volume
w/w ..weight per weight
xg ... relative centrifugal force
ρ .. density