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Abstract

Control charts are widely used to monitor stability and performance of pro-
cesses with an aim of detecting abnormal variations in process parameters.
Control charts typically work in two phases: the retrospective phase (Phase
I) and the monitoring phase (Phase II). Phase I involves estimating the in-
control state of a process by using a historical dataset, whereas, in Phase II
the focus mainly lies in the quick detection of process parameters from their
in-control values.

Chapter 2 of this thesis investigates a wide range of Shewhart type disper-
sion control charts in Phase II for normal and a variety of non-normal parent
distributions. These charts are based on the sample range, the sample stan-
dard deviation, the inter-quartile range, Downton’s estimator, the average
absolute deviation from median, the median absolute deviation, Sn and Qn
estimates. The Phase I analysis of these charts together with the charts ba-
sed on the pooled sample standard deviation and the distribution-free scale
rank statistic is investigated in Chapter 3. The performance of a variety of
Phase IT EWMA dispersion charts is evaluated and compared in Chapter 4,
using different run length characteristics (the average run length, the median

run length and the standard deviation of the run length distribution). The
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overall effectiveness of these EWMA charts is examined using the extra qua-
dratic loss and the relative ARL measures.

Chapter 5 investigates the effect of two component measurement error (mo-
del) on the performance of the EWMA location chart, for the monitoring of

analytical measurements. The two component model proposed by Rocke and

Lorenzato (1995) combines both additive and multiplicative errors in analy-
tical measurements in a single model. It is shown that the two component
measurement error can seriously effect the detection ability of the EWMA
location chart and this effect can be reduced by the use of multiple measure-
ments at each sample point. A cost function approach is used to determine
appropriate choices of the sample size and the number of multiple measure-
ments per sample to maximize the detection ability of the EWMA chart in
presence of two component measurement error. Chapter 6 proposes two run
rule schemes for the CUSUM dispersion chart. The run length characteris-
tics of the proposed schemes are evaluated using the Markov chain approach
and compared with the simple dispersion CUSUM and the relevant EWMA
dispersion charts for individual observations. Finally, Chapter 7 proposes
a nonparametric progressive mean control chart for the quick detection of
out-of-control signals in the process target or location.

This thesis, in general, will help quality practitioners to choose efficient

control charts for the monitoring of process dispersion and location.
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Chapter 1
Introduction

Statistical process control (SPC) is a collection of tools that helps in impro-
ving the quality of products by reducing dispersion in the process. The seven

basic tools of SPC tool kit, often referred to as the “magnificent seven”, in-

clude histogram, Pareto chart, scatter plot, control chart, check sheet, cause-

and-effect diagram and defect concentration diagram (IM@MQJ M))
Moreover ) introduced seven new tools that include affinity dia-
gram, interrelationship diagram, tree diagram, prioritization matrix, matrix
diagram, process decision program chart and activity network diagram. A
major objective of implementing these tools is to differentiate between the
two main types of variations: common cause variation and assignable cause

variation.

Common cause variation is an inherent part of any process and is due
to some random or chance causes. This can also be referred as the “natu-
ral variation” or the “background noise”. In the presence of common cause
variation, the process remains stable as expected and results in the random
distribution of output around the average value. Assignable cause variation,
on the other hand, is a result of certain factors that can not be treated as

a part of chance causes, such as improperly adjusted or controlled machines,

operator errors or raw material (Montgomery (2009)). Assignable cause va-
riations can have a significant impact on the performance of a process and

it is extremely necessary to detect the sources of these assignable causes as
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soon as possible for the implementation of corrective actions at an early stage.
The control chart is a well known tool used for this purpose.

A process is said to be in a state of statistical control if only common
causes are at work. If there are some assignable causes present, the process

is declared to be out-of-control.

1.1 Control Charts

Control charts, introduced by Walter A Shewhart in 1920’s, act as the most
important and widely used process monitoring tool in Statistical Process
Control (SPC). The basic purpose of implementing control chart procedures
is to detect abnormal variations in the process (location & scale) parame-
ters. Although first proposed for the manufacturing industry, control charts
have now been applied in a wide variety of disciplines, such as in nuclear
engineering (IHwanq et alJ (IZM)), health care lem:Laﬂ (IZDD_d)), education
(IWang and Liang (2008)) and analytical laboratories (IAA@SJ (M), M

(Il)ﬂﬂ)) MQnLnggr;zl (Iﬂ)ﬂd) reported the following main reasons for control

charts popularity in such a wide range of disciplines:

e Control charts are a proven technique for improving productivity

Control charts are effective in defect prevention

Control charts prevent unnecessary process adjustments

Control charts provide diagnostic information

Control charts provide information about process capability

The monitoring of quality characteristics help in improving the quality
of products. Quality characteristics can be measured on a quantitative scale
(such as pressure, weight, diameter etc) or a qualitative scale (such as confor-
ming/ non-conforming units etc). The charts used for the monitoring of
these characteristics are well known as the variable and attribute control

charts, respectively. This thesis will focus on the variable control charts. For
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quantitative characteristics, it is useful to monitor both the location and the

dispersion of the concerned variable.

For the application of control charts, samples are usually collected from
a process in the form of rational subgroups. The concept of rational sub-
groups was introduced by Shewhart, which means that, in the presence of
assignable causes, “the chance for differences between subgroups will be maxi-

mized while the chance for differences within subgroups will be minimized”

)). The design of a typical control chart is based on plot-
ting some summary statistic (such as the subgroup mean X), computed from
these rational subgroups, against time or sample number. The chart further
contains three horizontal lines, namely the upper control limit (UCL), the
center line (CL) and the lower control limit (LCL). CL is mostly set at the
target or average of all the plotted data points, while the control limits are
generally plotted at a distance of 30 from the CL. These control limits help
to determine the state of the process; the process is said to be in control if all
the sample points should appear as random scatter around the target value
within the control limits. Otherwise, if one or more points lie outside the
control limits or if the plotted points show some pattern (such as a trend,

shift etc), the process is said to be out-of-control.

1.1.1 Control Chart Phases

There are typically two phases in implementing a control chart: retrospective
phase (Phase I) and monitoring phase (Phase II). Phase I is more of an explo-
ratory analysis on a set of observations assumed to come from an in-control
process (often referred as the historical data set). From an in-control process,
we mean a process that is stable and predictable. The goal of Phase I is to
screen out any inconsistent observations/samples from the historical data set
and then compute control limits for real time Phase II process monitoring.
In Phase II, the focus is more on the quick detection of departures of the

process parameters from their in-control values M (IM)) The per-
formance of the control chart in Phase II largely depends on the parameter
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estimates and the control limits computed as a result of Phase I analysis. It
is not necessary to use the same control chart for both phases. One needs to
search for a control chart that performs efficiently for a particular phase.

The cleaning of the historical dataset is very important because, in most
real life processes, contaminations do occur and the presumed data set is not
purely represented as coming from an in-control process. Different ways for
screening of out-of-control samples from the historical data set have been
proposed in the literature. The most common procedure is to set the trial
limits based on an initial set of observations. If one or more points of the
plotted sample statistic (such as X) lie outside the trial limits, there is a need
to remove these samples after searching for an assignable cause. Sometimes
it is difficult to find assignable causes for the out-of-control points, but it is
usually recommended to remove these points from the initial data set and
to recompute the unknown parameters and limits based on the remaining
samples. This procedure continues until all the observations lie inside the
trial limits.

Vining (Il)ﬂd) recommended setting the initial trial limits based on a set

of observations (e.g. 20 subgroups of size 5). Preliminary limits are then

computed after the removal of out-of-control samples lying outside the trial
limits. His procedure then uses these preliminary limits for the monitoring of
the next 20 samples, investigates any out-of-control samples, and updates the
estimates and limits using these 20 new samples. He recommended to conti-
nue this process for 80-100 presumed in-control subgroups. The resulting

estimates and control limits are then used for Phase II monitoring.

Shiau and Sun (|2Q1d) proposed to remove only one extreme out-of-control
point at a time, lying outside the trial limits. The limits are computed again
after the removal of this extreme point and the procedure continues until all
points lie inside the limits. They showed that this strategy maintains the
same out-of-control detection ability of charts but with an added advantage
of a reduced false alarm rate.

In Phase I, the probability to signal is mostly used as a measure to eva-
luate the performance of a control chart. As all the sample points are plotted

against the same set of control limits, so the signaling events are not inde-
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pendent. Hence the control limits should be computed for a fixed overall
false alarm rate instead of fixing the false alarm rate for individual points.
In Phase II, the probability to signal for a single point or some characteris-
tic of the run length distribution is mostly used as a performance measure,
where run length is defined as the number of samples until an out-of-control
signal is detected by a control chart.

The paper by M (IM) (with discussions) gives an excellent des-
cription regarding Phase I and Phase II control charts. For details one may

also see the studies by |Jensen et al.| QOOd) |Vinin9| (|200d) and Chakraborti

et al. (IMQ)

1.1.2 Control Chart Types

Control charts are divided in to three main types: the Shewhart chart, the
CUSUM chart and the EWMA chart. Shewhart charts can be put in the list
of memoryless control charts, whereas CUSUM and EWMA charts as the
memory control charts.

Let X represents a quality characteristic of interest distributed with mean
p and variance 2. Further, let X, X5, ..., X, represent a sample of size n

from this distribution.

1.1.2.1 Shewhart Control Charts

The control charts based on the original structure of Walter A. Shewhart
are well known as the Shewhart control charts. The introduction of control
charts began a new era of improving the quality of products by the use
of simple statistical methods. Although there exist other types of control
charts, Shewhart charts are the most widely used due to the combination of
simplicity and effectiveness. Process location is mostly monitored by the X
chart whereas process scale or dispersion by the R or S charts.

The control limits for a Shewhart type (location) control chart, for the

parameter known case, are given as:

UCL=pu+Lo/vn, CL=p,  LCL=pu—Loyvn (1.1)
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where L is the control chart multiplier, usually set at 3. In most real life
situations, parameters are unknown and need to be estimated from an histo-
rical data set. u is mostly estimated by the average of subgroup means (i.e.
?) whereas o by the average of sample ranges or sample standard deviations
(i.e. S or R). The estimated control limits (when o is estimated by R) are
hence given as:

_ I _ _ I
L=X4+ L L=X, ILOL=X-1L
UcC tlo= C , C o

Similarly the design of the dispersion R chart is based on the following set

(1.2)

of limits:

UCL =R+ L@, CL =R, LCL =R — L@ (1.3)
do dy
where dy and ds are the control chart constants dependent on sample size n.
These are defined as the mean and the standard deviation of the distribution
of relative range (W = R/0), i.e. dy = E(W) and d3 = oW (provided in most
SPC books for normally distributed quality characteristic, see —

(2009) or Ryanl (2000)).

The Shewhart charts trigger an out-of-control signal for any point of the

plotted statistic (e.g. X or R) lying outside the control limits.

Shewhart charts are only based on the current sample information. Due
to this, they are effective for the detection of large process shifts but are well
known to be inefficient for the detection of small shifts in process parame-
ters. The detection ability of the Shewhart charts can be increased by the
application of some other signaling rules that use an additional set of limits

called the warning limits — for details see Section 1.2.

1.1.2.2 Cumulative Sum (CUSUM) Control Charts

To increase the ability of control charts for the detection of small persistent
process shifts, [Page (@) proposed Cumulative sum (CUSUM) control
charts. The CUSUM control chart uses information of both the current
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as well as the past sample/samples. This makes the CUSUM charts effec-
tive for detecting small shifts in process parameters. CUSUM charts can be
represented in two ways: 1) V-mask CUSUM and ii) tabular CUSUM.

The V-mask CUSUM procedure was proposed by Barnard (IL%}J) and

is based on superimposing a V-mask on the plot of cumulative sums. The

origin of the V-mask is always positioned at the recent cumulative sum point
and the previous cumulative sums are examined to determine the state of the
process. If all the previous points lie inside the two arms of the V-mask, the
process is declared to be in-control. If any of the points lie outside the arms,
the process is declared to be out-of-control. The V-mask procedure has been
mentioned as laborious and confusing by many researchers and its use has

been mostly criticized (for details — see [Rgmﬂ (IZDDd), |Msmhgmn&u| (IZDDfJ))

The tabular CUSUM procedure, however, is more popular and easy to
follow. For ease we will refer to the tabular CUSUM as simply the CUSUM
chart for the rest of the study.

For a tabular CUSUM chart, the deviations from the target value of the

parameter are accumulated in the upward and downward directions separa-

tely, using two different statistics: one for the upward shift (e.g. C*) and
the other for the downward shift (e.g. C'~). For monitoring process location,
C* and C~ can be defined as:

C;" = maz|0, (X; — k) + C;"{] (1.4)
C; =mazx)0, (=X, — k) + C_]

where k is known as the reference/allowance/slack value and it is often chosen
to be about half of the shift (in standard units) we want to detect quickly.
The statistics C* and C~ (known as the upper and lower CUSUMs) are
initially set to zero (i.e. Cf = C; = 0). The values of these two statistics
are calculated for each sample and are plotted against time on a chart which
has control limits superimposed. The CUSUM control chart indicates an

out-of-control signal when any of the two statistics plot beyond a prefixed

control limit (h) (for details see |A.bmn| (IZDDd), |BQEM]| (IZDDd) andIMQULgQII]_QQLI
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(@)) The choice of h and k depends on achieving a desired in-control
performance of the CUSUM chart. The V-mask CUSUM becomes equivalent
to the tabular CUSUM at some specific choices of the design parameters
tMQnLnger;gl (IMd))

Since the introduction of CUSUM charts by @ (@), many resear-
chers have examined these charts from different perspectives - see for example
|Br00 and Evans (1 7j), Nort 198j , IRevnolds and _Arnol 99d) Haw-
kins (1981), [Hawkins (1993), [H and M/ (1985). |Jones et al. (2004) and Chat-
terjee and Qiu (2009). CUSUM charts are widely used for the efficient mo-
nitoring of internal quality control parameters and their use in analitical

laboratories has been emphasized by many researchers, including

<|19~9-5|)7 |M.ullm&] (IZQO_EJ) and |H1.bberﬂ (IZQOj) As compared to Shewhart or

EWMA chart (described below), “the CUSUM chart seems more suitable

to the needs of control in laboratory” (Kateman and Buydgng (|L9_9j)) CU-

SUM charts are effective even with rational subgroups of size one, which

makes them an attractive option for many applications in chemical and pro-

cess industries (see MQnLnger;gl (IZOQ}J)) The book by [Hawkins and Olwell

) includes a comprehensive description of the construction of CUSUM

charts.

1.1.2.3 Exponentially Weighted Moving Average (EWMA)
Control Charts

Exponentially weighted moving average (EWMA) is the third main type of
control chart, proposed by EMA (IL%.d) The EWMA chart is based on

using the entire sequence of sample information. The chart uses a varying

weight scheme, assigning highest weight to the most recent observation and
the weights decrease exponentially for less recent observations. For a random
observation X at time ¢, the EWMA statistic W, is defined as:

Wi = AXe + (1= AWy (1.5)

where A (0 < A < 1) is the weight assigned to the current sample observation
and Wy is usually set at a target value (u or X). The design of the EWMA
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location chart (under parameter known case) is based on the following set of

limits.

UCL /L—l—L\/_\/— 1—(1—=X)% (1.6)
CL=pu

A

LCL =y — L2 g (1= (1= 2]

\/_
The above control limits for the EWMA chart are known as the exact or
the time varying limits (as they depend on time t). As ¢ — oo (i.e. for a
process to be running for a long time), the time varying limits reduce to the

asymptotic limits, as given below:

UCL ,u+L\/, T (1.7)
CL=pu
LOL =p — - A

7

For the purpose of ease in computation, asymptotic limits are mostly used
for the EWMA charts but the use of these limits makes the EWMA chart

insensitive to start up quality problems.

Selection of A\ allows the practitioners to adjust the EWMA chart to
a specific purpose. If small shifts in the process parameters are of major
concern, it is better to use small values of X\. For the detection of large
shifts, large values of A\ are mostly recommended. It is to be noted that
the Shewhart chart becomes a special case of the EWMA chart at A\ = 1.
An advantage of using the EWMA charts with small value of A is to make

it robust to the normality assumption, as investigated by several authors

including |Bilrmr_e:cﬁa|..| ) and is ). This robustness

is mostly limited to location charts and EWMA dispersion charts have been
shown in literature to be affected by non-normality (see |Abbasi and MIHQLI
(20114)).
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The sensitivity of EWMA charts can be increased by the use of fast initial
response feature as studied byh&mmnd_w (|199d), |B_b£md.s_eicﬁ.lJ (|l99_d)
and @ (@) for EWMA location charts. Recently i

) also investigated the effect of time varying and fast initial response

features on the performance of EWMA dispersion charts.

1.2 Literature Review

Control charts were introduced by Walter, A. Shewhart in 1924 during his
work in Bell Labs. At the start, Shewhart proposed X, R and S charts
(known as the variable control charts) for the monitoring of quantitative
quality characteristics and p,np,c and w charts (known as the attribute
control charts) for the monitoring of qualitative characteristics. Although
these charts are widely used, they are only based on current sample infor-
mation, which makes them insensitive to small shifts in process parameters.
Memory control charts, in the form of the CUSUM chart and the EWMA

chart, proposed by EQ (@) and |BQM§J (IL%.d) respectively, help in

quick detection of small shifts in process parameters. The theory, design,

implementation and application of these charts have been extended in many
different directions. A brief literature review concerning the control chart

issues investigated in this thesis is described below.

Effect of Parameter Estimation and Norn-Normality: Most SPC
charts are based on the assumption of known parameters, but for the mo-
nitoring of real life processes these parameters are usually estimated from
sample data in Phase I. For quantitative characteristics, the location and
dispersion parameters are of major concern. Process location (u) is mostly
estimated by the overall sample mean (?), whereas process dispersion (o)
by the average sample range (R) or the average sample standard deviation
(S). Control charts based on these standard estimates can perform efficiently
under the (ideal) assumption of normality for the quality characteristic of in-

terest but are well known to be inefficient when this assumption is violated.
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The estimation of ¢ is well known to be affected more than the estima-
tion of p under the violation of the normality assumption (cf. );
lBrﬁunﬁ.ndﬂI_k' (iZDDé)) Keeping this in mind, researchers have investigated
different estimates of o for the purpose of achieving efficient and resistant
charting — see IR cke (1989). \Crver_and Rvan (1990), [Rock 1992)_,_01"11—
this and Rigdon lQ_Qj) Derman _and Rosd (1995), Pappanastos and Ada.msl
(1996), T 997). (Chen (1998). |Abu-Shawieshl (2008). Riaz (2008): Riaz
and Saghir (2009), Mukherjee and Chakraborti ZOﬁ) and references therein.
Recently, Wu_et a|.| dZQOj examined the effects of different estimators of o
on the performance of the Shewhart X chart when measurements are taken
from contaminated normal distributions. Braun and Parkl (120&4) investiga-
ted the effects of different o estimators on the performance of the EWMA

location chart for individual measurements from contaminated normal and ¢

distributions. |Schoonhoven et al. (@Eé) and |Schoonhoven and Dgeg (2!!1!])

use different estimates of o to examine their effects on the performance of X

chart under the existence and the violation of normality assumption. Schoon-
hoven et al. (2011) and ISchoonhoven and Does (2012) investigated the effect

of estimating o in Phase I on control chart’s performance in Phase II for

monitoring process dispersion. LJmms;Fﬁ.rmﬂj.ndﬁhamﬂ (iZQld) proposed a

distribution-free structure for monitoring dispersion and compared the per-

formance of this proposal with R and S charts.

Most of the research is focused on investigating the dispersion charts for
normal or contaminated normal distributions. Little work has been done
to investigate the performance of a wide range of Phase I and Phase II
dispersions charts for processes following non-normal distributions. Many
quality characteristics such as capacitance, insulation resistance, surface fi-
nish, roundness, mold dimension, customer waiting time and the impurity
levels in semi conductor process chemicals follow non-normal distributions
(cf. l&gsfﬂ 1994). |Alwan and Robertsl 1995]) |Jamesl (|198d) and Levinson

and Polny (1999)). The underlying distributional environment can have a

significant impact on the detection ability of control charts. This has been

investigated in detail in Chapters 2-4.
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The Effect of Measurement Error: For a unit in the population, the
value of the concerned characteristic is sometimes contaminated with measu-
rement errors. The presence of this contamination can seriously affect the per-
formance of control charts. Researchers have investigated the performance of
control charts considering different measurement error models. Many resear-
chers including Bennett 19_5_4]), |Abrahad (Ilf)_lﬂ), Kanazukd (Il%_d), [Mmf.d

) and Mittag and Stemann (1 ) examined the effects of the additive

error model on the performance of control charts. The additive error model

is given as:
Y=X+e¢ (1.8)

where Y represents the observed value, X the true value (distributed normally

with mean g and variance 02) and e is the error term (distributed normally

with mean 0 and variance 0?). [Benn 1954) examined the effect of the
above error model on the performance of X chart. He concluded that if
the variance due to the measurement errors is smaller than the variance due
to the process, it can be overlooked. M (|L9_7_ﬂ) considered the same
model and studied process variation in the presence of measurement errors.

Ilhnamﬂml (IJ.M) examined the effects of measurement errors on the process
variance of the joint X — R chart. He remarked that the power of the chart

to detect shifts diminished in the presence of measurement errors and one
had to use a larger sample size to increase power. Mittag 199&) and Mittag

and Stemann (19984) examined the measurement error effects on the joint

X — S chart assuming the error model given in Equation (1.8).

Linna and Woodall (M) and [Linn ] (M) monitored the effects

of measurement errors on univariate and multivariate Shewhart type control

charts respectively, using, the additive model with covariates, given as:
Y=A+BX +e¢ (1.9)

where A and B are constants. They concluded that the power of the Shew-
hart control chart to detect shifts in process location diminishes with an
increase in the magnitude of measurement error. [Maravelakis et alJ M)

and |Ma.ra3&lak1&] (IZM) investigated the performance of the EWMA and CU-
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SUM charts under the covariate model given in (1.9). They showed that the
detection of out-of-control signals becomes difficult in the presence of measu-
rement error. Compared to the no measurement error case, the control chart
requires more samples to detect the same magnitude of shift in presence of

measurement error.

Control charts are also widely used for the monitoring of analytical mea-
surements, particularly for internal quality control undertaken by analytical
laboratories. Measurement error in analytical measurements is not accurately
described by the additive model (given in Equation (1.8) or (1.9)) because
these measurements are mostly subject to two types of error: i) additive er-
ror that dominates for zero and near zero concentrations, ii) proportional or
multiplicative error that dominates at higher concentrations (@),

|Huim.llx| (|19_7d), IB&le_eIﬁ.LI (IZM_EJ)) IB.Q_lej.nd_LQrﬂlZﬁ.IA ) proposed

a two component model for analytical measurements, given as:

}/:f =+ ﬁXtem + € (110)

Where Y is response at concentration X observed at time ¢, o and [ are
the intercept and the slope of the linear calibration curve, random distur-
bances n and € are distributed normally and independently with mean 0 and
variances o and o7 respectively (i.e. n~ N (0,07) and € ~ N (0,0?)). Here

71 represents multiplicative error and e represents additive error.

The literature on exploring the performance of control charts for measure-

ment errors described by the TCME model is Vel"f limited. I am only aware

f ICocchi and Scagliarini (@)D_ﬂ and m

performance of Shewhart and EWMA charts respectlvely (for details — see
Chapter 5).

which investigate the

The use of Sensitizing/Runs Rules: For a control chart, a process is
declared to be out-of-control whenever a point lies outside the control limits,
which are usually set at a distance of 30 from the centre line. To increase the
sensitivity of the chart for the detection of small shifts, some supplementary

rules have been proposed by researchers that use an additional set of limits
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called the warning limits. The Western Wgsigern-ElggLrigl (M) contained a

set of rules to declare a process to be out-of-control, if:

e Any one point falls outside the 3o control limit or
e 2 out of the last 3 points fall outside the 20 warning limits or
e 4 out of the last 5 points fall outside the 1o warning limits or

e Eight consecutive points fall on one side of the centre line.

A number of studies appeared in SPC literature that not only investigated
different control chart structures based on these rules but also to propose
new rules to increase the detection ability of control charts.

Champ and Woodall (Il%j) used the Markov chain approach for providing

exact results for the run length properties of Shewhart X chart supplemented

with run rules. They provided a comparison of these results with ARL results
of X chart and the CUSUM chart. m

chain method to provide tables for the run length percentiles of the run rules
schemes for the Shewhart X chart. w (ILQQJ) investigated the false
alarm rates of the X chart based on eight different runs test. They showed

) also employed the Markov

that the false alarm rate is directly related with the number of runs tests

applied with the X chart. bhammmw (Ile)j investigated signal

probabilities of the run rules schemes for the X chart. Kl el ) proposed

two new run rules schemes for the X chart suggesting a process to be out-of-
control for any 2 out of 2 or 2 out of 3 successive points plotting outside the
adjusted control limits. The comparison of his proposed schemes with the
usual X chart showed superiority for the detection of small shifts. Shmueli
and Cohen (IZDD} provided exact expressions for the run rules schemes used
for the X chart. ) presented plots to determine the control limits

of different run rules schemes for the Shewhart chart to fix the average run

length at a particular level. [Zhamgﬁﬂdm (IZM ) presented some interesting
features concerning different run rules schemes. Olﬂ%:l)o roposed im-
provements over the run rules schemes introduced by [Klein (2000). Lim and
Cho (IZDDEJ) investigated the economic statistical properties of the X chart
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supplemented with both 1 out of 1 and m out of m rules (m out of m rules
indicate a process to be out-of-control if all the recent m values lie outside
the warning limits). They also used cost function to study the sensitivity of
the design parameters of different run rules schemes.

Some researchers also investigated the effect of run rules on the perfor-
mance of Shewhart type variability control charts. Acosta-Mejia and Pi-
gnatiello (2008), |Acosta-Mejia_and Pignatielld (2009) and Antzoulakos and
Rakitzis ) analyzed the performance of Shewhart type variability R and

S charts supplemented with some r out of m and m out of m rules. They
showed that the R and S charts supplemented with run rules outperformed

the simple R and S charts for the detection of shifts in the process dispersion.

The literature on the use of these rules with CUSUM and EWMA control
structures is very limited. Westgard et aI.I (Ilf)_lﬂ) studied some control rules
for combined Shewhart-CUSUM structures and demonstrated the superiority
of their approach to the Shewhart chart. Recently |Riaz et a1.| 201]J) and Ab-
bas et al. M) have extended the run rules approach to the CUSUM and

EWMA type charts for the monitoring of the process location parameter.

Nonparametric Structures: Most of the Statistical Process Control (SPC)
charts are based on the assumption that the parametric distribution of the
quality characteristic of interest is normal. The statistical properties of these
charts may not remain valid for processes following non-normal (heavy tailed
symmetric or skewed) distributions. When the distributional assumption is
invalid, the use of parametric control charts for the monitoring of process

parameters can give unfavorable results in the form of low detection ability

and high false alarm rates. Many researchers including [Nobld (1951). Bakir
and Reynolds (1979), |Gunter leS_d) and Iﬁlhakrﬁmmm 2001) recom-

mend that distribution-free/nonparametric charts should be developed for

the purpose of process monitoring. A brief literature review regarding the

development of nonparametric charts is as follows:

Bakir and Bgyngldé (192d) proposed CUSUM location charts using the Wil-

coxon sign-rank statistic. (IJ.M) proposed distribution
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free Shewhart and CUSUM type control charts for the monitoring of pro-

cess location using the linear placement statistic. Alloway and Raghava-

chari (1991) and Ea@pmlas_t&zm]d_AdamA 1996) investigated Shewhart type

control charts for process median based on the Hodges-Lehman estimator,

while the proposal of |McD0nald| 199d) is based on sequential ranks. Amin
and Searcy (|19_9_].|) proposed a non parametric EWMA control chart based
on the Wilcoxon signed-rank statistic. They investigated the proposed chart

for normal, non-normal and autocorrelated processes and further provided a

comparison with the performance of the usual EWMA control chart. Amin

and Widmaier L%d) proposed Shewhart type nonparametric control charts
with variable sampling intervals using the sign test statistic for the monito-

ring of process location and variability. A review of nonparametric control

charts until 2001 can be seen in klhakmimm_emﬂ (IZDQ]J)

M (M) proposed three distribution-free location charts based on the

sign rank statistic. His procedure estimates the process location from an

in-control reference sample. The comparison with parametric structures sho-

wed the superiority of these charts for (heavy tailed symmetric) double ex-

ponential and Cauchy distributions. ) proposed
a nonparametric control chart for monitoring process dispersion based on
the two sample rank-sum test. The comparison with the Shewhart S chart
revealed that his variability structure is robust for the in-control case but

out-of-control performance is relatively poor. |B3Jaknshnana_eulj (IZD_Qd)

proposed a nonparametric chart using the Wilcoxon type rank sum statistic

and showed the superiority of this proposal in terms of in-control robust-

ness. i i ) proposed nonparametric Shewhart
structures using the Wilcoxon-signed rank statistic and further provided a

comparison of their proposals with the X chart. |(Chakraborti et alJ (Iﬂ)ﬂd)

made use of the precedence statistic for the design of nonparametric charts

and also investigated the signaling ability of charts based on runs rules. Khi-
lare and Shirke 2!!1!]) proposed a synthetic Shewhart type location control
chart by combing the sign chart and the conforming run length chart. The

synthetic chart showed better performance for various symmetric distribu-
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tions than the X chart and the location chart simply based on sign statistic.

|Li_eML| (IZQld) proposed nonparametric CUSUM and EWMA charts based
on Wilcoxon rank sum test. Their proposed charts showed superiority over
other location charts when the assumption of normality is violated. They
also investigated the effect of reference sample size and the number of sub-

groups on the detection ability of control charts. |[Li and Wang 12{!1{]) pro-

posed nonparametric EWMA and nonparametric CUSUM charts based on

the Man-Whitney statistics; [Zsmam:l_'l“s_ung (IZQ]_]J) proposed a multivariate

EWMA control chart using the weighted version of sign test: while Graham

et al. (IM) proposed nonparametric EWMA sign chart for monitoring pro-
cess location using individual observations, ) proposed two
nonparametric EWMA control charts, namely the nonparametric EWMA
sign chart and the nonparametric Arcsine EWMA sign chart; and Yang and
Cheng (IZQ]_]J) proposed a nonparametric CUSUM chart for quick detection

of shifts from the process target using the sign statistic.

1.3 Thesis Contribution

This thesis investigates new control charts for the efficient monitoring of
process parameters in Phase I and II. The thesis contains material that is

included in the following studies (see next page).
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1.4 Outline of the Thesis

The thesis is divided in to eight chapters. The contents of Chapters 2-7 are
based on different research studies, as described in Section 1.3. We recom-
mend these chapters should be read out in individual capacity.

Chapter 2 investigates a wide range of Shewhart type dispersion charts in the
monitoring phase (Phase IT) under the assumption that a sufficiently large
and clean historical dataset is available for the estimation of control limits in
Phase I. Chapter 3 presents a comparison of a variety of dispersion charts for
Phase I of SPC when only a limited number of samples are available for the
estimation of parameters and control limits. Chapter 4 investigates different
dispersion charts using the EWMA structure for the efficient detection of
small shifts in process dispersion. These chapters provide a comparison of
a range of dispersion charts considering normal and a variety of non-normal
parent distributions. The performance of the EWMA location chart in the
presence of two component measurement error is investigated in Chapter 5.
Chapter 6 implements run rules schemes for the CUSUM dispersion chart.
Chapter 7 proposes an efficient nonparametric progressive mean control chart
and finally Chapter 8 presents summary of results and a discussion on future

research issues. A brief description of the chapters is given below:

Chapter 2 investigates the effects of different estimators of o on the perfor-
mance of dispersion charts for Phase II quality control. The performances of
some existing and some newly proposed charts have been investigated consi-
dering normal and non-normal processes. In particular, a comparison of
the eight dispersion chart structures based on the sample range, the sample
standard deviation, the inter-quartile range, Downton’s estimator, the mean
deviation, the median absolute deviation, Sn and @n is provided. The perfor-
mance of these dispersion charts is examined under normal and a wide range
of non-normal distributions. This will aid quality practitioners in choosing

the best dispersion control charts when the assumption of normality is ques-

tionable. This chapter is based on |Abbasi and Millg;l (2!!12).
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Chapter 3 investigates the effects of different estimators of o on the per-
formance of dispersion control charts for Phase I quality control. The per-
formance of eleven control charting structures is evaluated and compared
for normal and non-normal processes, using probability to signal as a per-
formance measure. The control structures are based on the sample range,
the sample standard deviation, the pooled sample standard deviation, the
inter-quartile range, Downton’s estimator, the mean deviation, the median
absolute deviation, S,,, @,, and the distribution free scale-rank statistic. This
study will help quality practitioners to choose an efficient dispersion control
chart for Phase I SPC. This chapter is based on IAMSM (IM)

Chapter 4 investigates the Phase II performance of EWMA dispersion
charts based on different estimates of ¢ — as was done in Chapter 2 for
Shewhart charts. The performance of all the charts is evaluated and com-
pared using run length characteristics (the average run length, the median
run length and the standard deviation of the run length distribution). The
overall effectiveness of the EWMA charts have been examined using extra
quadratic loss (EQL) and relative ARL (RARL) measures. This chapter is
based on |Abbasi_and Millerl 20114), |Abbasi et alJ 20123]) and Abbasi and
Miller (M)

Chapter 5 examines the effects of two component measurement error on
the performance of the EWMA control chart for the monitoring of analytical
measurements. The two component error model for analytical measurements,

proposed by [Rmmaud_[&mum:cd (IlBle), combines both the additive and

multiplicative errors into a single model. This model has gained immense

importance in analytical chemistry and environmental settings. A cost func-
tion approach is used to determine appropriate choices of sample size and
the number of multiple measurements per sample to maximize the detection
ability of the EWMA chart in presence of two component measurement error.

The comparison with the EWMA chart performance in the presence of one

component (additive) error model is also provided. This chapter is based on
géésg (5(!Iil)
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Chapter 6 proposes the implementation of sensitizing rules in CUSUM dis-
persion charts to enhance their ability for the detection of smaller changes
in process dispersion. The performance of the proposed schemes is evalua-
ted using Markov Chains and compared with the simple dispersion CUSUM
chart, the EWMS chart, the M-EWMS chart and the COMB chart, in terms

of run length characteristics. This chapter is based on |Abbasi et alJ (2012a).

Chapter 7 proposes a nonparametric progressive mean control chart, na-
mely the NPPM chart, for efficient detection of disturbances in process
location or target. Progressive mean (PM) is defined as the cumulative
average of the sample values observed over time. The benefit of using the
PM statistic is its quick convergence to the process target compared to the
Shewhart, EWMA or CUSUM monitoring statistics. The proposed chart is
compared with the recently proposed nonparametric EWMA and nonpara-
metric CUSUM charts, using different run length characteristics (the average
run length, the standard deviation of the run length and the percentile points
of the run length distribution). This chapter is based OHMMLIJ (IM)

Chapter 8 presents a summary of the main findings and a discussion on

future research issues.
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Chapter 2

Shewhart Control Charts for
Monitoring Process Dispersion
in Phase 11

Control charts are an important statistical process control tool, used to moni-
tor changes in process location and dispersion. This chapter addresses issues
regarding the structure of a Shewhart control chart for the efficient Phase II
monitoring of process dispersion. The performance of eight control charts,
based on different estimates of process standard deviation, is investigated for
normal and non-normal parent distributions. Control chart constants requi-
red for setting control limits are provided for all these dispersion charts. This
chapter aims at providing guidance to quality practitioners for choosing the
appropriate Shewhart type Phase II dispersion control chart for normal and

non-normal processes. The contents of this chapter are based on Abbasi and

Miller (2012).

2.1 Introduction

Control charts are widely used to monitor stability and performance of manu-
facturing processes with an aim of detecting unfavorable variations in process

(location and spread) parameters. Although first proposed for the manufac-
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turing industry, control charts have now been applied in a wide variety of

disciplines, such as in nuclear engineering (IHwanq et alJ (IZDDé)), health care
ZDDd)) education (IMIIE and Lian )), analytical laborato-
1

ries (I&@Q 2010), Masson (2007)) etc. The application of control charts

consists of two phases: a retrospective phase and a monitoring phase. In the

retrospective phase, historical data are analyzed to estimate the in-control
state of the process, while the monitoring phase focuses on the current state
of the process by analyzing the current data. The goal for the monitoring

phase is the quick detection of departures of the process parameters from

their in-control values (IWMJ (IM))

Parameter estimation significantly affects the performance of control charts

in both phases and has attracted the attention of many researchers in recent

years, Some important studies in this area are Quesenberrv (1993). Roes

et al. (IL%B) Rigdon et all (1994), Jones et all (IZDQI), Jensen et all (IZD_O_d)

and the references therein. The choice of parameter estimator(s) is an im-

portant issue related to parameter estimation. Proper choice of estimator(s)
plays a critical role in developing an efficient and robust control chart design.
Samples from a process are usually taken in the form of rational subgroups of
size n. When the process is absolutely stable (the process parameters do not
change at all over time), then the most efficient way to estimate the process
dispersion is to use an estimate based on the set of observations formed by
combining the subgroups into a single group. However, if some instability
exists in the process, then this procedure will tend to over-estimate the short
term dispersion and a more reliable approach is to estimate the dispersion
for each subgroup separately and then pool these estimates. The mean u
is generally estimated from the overall sample mean X while process stan-
dard deviation o can be estimated in many different ways, the most popular
choices are based on sample range (R) or sample standard deviations (.59).
Control charts based on these standard estimates perform reasonably well
under the usual assumptions that observations come from a normal distri-
bution but are known to be inefficient when the assumption of normality is

violated. Many authors have reported that the estimate of ¢ is more affected

by non-normality than the estimate of p (see Il?mm:l dl%j), |B_rﬁd.mjl]£1_]?jﬂk|
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(2008)) .

Researchers have investigated different estimates of ¢ with the aim of

improving the efficiency and robustness of control charts performance (see

), [Cruthis and Rigdonl (1992), [Derman and Ross (1995)

and )). There has been considerably more quality literature pu-

blished on investigating the effect of o estimators on the performance of loca-
tion charts than on the performance of dispersion charts. Recently,

) examined the effect of different estimators of o on the performance of
the Shewhart X chart when measurements are taken from contaminated nor-

mal distributions. |Blﬁ.llllﬁlld_ﬂ“ﬂk| (IZDDg) investigated the effect of different

o estimators on the performance of the EWMA location chart for individual

measurements from contaminated normal and ¢ distributions. Schoonhoven
et al. (IM)é) and |Schoonhoven and D 2010) use different estimates of o to

examine their effect on the performance of the X chart under the existence

and violation of normality assumption.
The problems in the estimation of ¢ due to non-normality should be ex-

pected to have a greater impact on the performance of dispersion charts than

on the performance of location charts. According to MQnLnggr;zl (Iﬂ)ﬂd) “the

R chart (a dispersion chart) is more sensitive to departures from normality
than the X chart (a location chart)”. |Jensen et al. (IZDDd) states “the es-
timation effect appears to be more severe for charts monitoring chanies in

dispersion than for those monitoring changes in the mean” — see also
(IZDDd) and |Qh_eu| (Ilf)f)g) for further discussion on this issue. For monitoring

process dispersion, there exist some proposals which are based on robust o

estimates and have shown their superiority over the classical R or S charts un-

der non-normality or contamination in the data m M), IBJ.aZJ (|2Q0_§),
|Alu.tSha&i&shm1d.AMﬂlaﬂ (IZDQd)) However, the choice of the best estima-

tor to be used for dispersion charts has not been made clear in the literature.

Also, there exist some other estimators of ¢ which have not been properly
investigated. Moreover, the performance of most of the existing dispersion
charts has not been thoroughly studied for non-normal processes.

The purpose of this chapter is to evaluate and compare the performance

of various dispersion charts in the monitoring phase. The performance is
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evaluated for processes following normal and non-normal distributions (both
heavy tailed symmetric and skewed distributions are used). The rest of this
chapter is organized as follows. In section 2.2, we describe different dispersion
statistics that can be used to estimate 0. A general control chart structure is
presented in section 2.3, which is then used to create dispersion charts based
on these statistics. Methods of evaluating control chart performance and the
details of the simulation study are explained in section 2.4. In section 2.5,
the performance of the dispersion charts is investigated under the ideal as-
sumption of normal observations. Section 2.6 presents a comparison of the
dispersion charts when measurements come from non-normal distributions.

Conclusions are made in section 2.7.

2.2 Dispersion Statistics

In this section, the dispersion statistics that are the basis for a dispersion
control chart are described. Two important attributes of these dispersion
statistics are their efficiency and their robustness, which are briefly discussed.

Let X be the quality variable of interest and let X, X5,---, X, be a
random sample of size n. Further, let X(;) be the ith order statistic (smallest
to largest), X be the sample mean, X be the sample median and | X| be the

absolute value of X.

Sample Range

The sample range (R) is the most widely used dispersion statistic for control
charts and is defined as
R=X@m = Xa) (2.1)

As R only depends on the smallest and largest observations, it is an

efficient estimate of dispersion for small sample sizes but loses efficiency as

the sample size increases. MQnLnggr;zl (IM) recommends using the sample

standard deviation instead of R for moderate to large sample sizes. It is also

very sensitive to outliers and departures from normality.
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Sample Standard deviation

Another commonly used dispersion statistic is the sample standard deviations

(9):

1 _

S=.|— ;(XZ- - X)2. (2.2)

For normally distributed quality characteristics, S is the most efficient esti-
mator of dispersion. However, studies have shown that it can be sensitive to
departures from normality and outliers. Dispersion control charts based on
R and S (the R chart and S chart) can be found in almost all statistical pro-

cess control (SPC) books — for example, see |Alwan (|L9_9_d) and MQHLngQI";[I

Interquartile Range

The interquartile range (IQR) has been proposed as a dispersion statistic
which results in control charts that are more robust to departures from nor-
mality and outliers than either the R chart or the S chart. IQR is de-
fined as the difference between the third and first quartiles. For sample
data, these quartiles can be estimated using the 75" and the 25 sample
quantiles respectively. Several different ways of estimating these sample
quantiles exist in literature. (@) proposed the Ry chart using
IQR = X(n_|nja)) — X(|njaj+1), Where |[x] represents the “floor” function
and is defined as the largest integer less than or equal to z. M )

showed that this R¢ chart is superior to the R chart for detecting changes in

dispersion in the presence of outliers. M ) pointed out the irregulari-
ties in the structure of R chart due to the use of (n— nj and (|n/4]+1)
order statistics, which are integers — see Table 1 of . He further

proposed the ) chart using an alternative estimator of IQR, given as:

IQR = (Qs — Q1)/1.34898 (2.3)
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where ()7 and ()3, respectively, represent the lower and upper sample quar-
tiles. He further investigated the performance of R, S and @ charts for
exponential and Student’s ¢ distribution.

The definition of IQR used by (@) is more attractive and is also

used in this study. The quartiles (); and ()3 have been computed using

sample quantiles. [Hyndman and F 1996) described six desirable proper-
ties of sample quantiles and presented nine different ways of defining them.
Although they have shown that Type 5 (of the nine definitions presented) sa-
tisfies all the six of the desirable properties, in this study we have computed
sample quantiles by quantile function in R statistical language (Ihaka and
Gentleman (Ile)_d)) using Type 6 which satisfies five of the six desirable pro-

perties (for definitions of Type 5 & 6 — see anﬁmﬂd (|l99d)) The

reason behind choosing Type 6, for the computation of quantiles is because

this definition is also used by other commonly used statistical packages such
as Minitab and SPSS. If the sample quartiles do not correspond to a particu-
lar order statistic in the sample, these are computed by linear interpolation
between the two nearest order statistics.

In later sections, we will see that the dispersion chart based on IQR is
superior to R and S charts for some non-normal distributions, but there are

alternatives available that perform even better than the IQR chart.

Downton’s Estimator

Downton (Il%_d) proposed the following estimator of o

1) X
1)

_ T zn: [z - %(n + 1)]X(i> (2.5)

n(n—1)

(2.4)

D:ﬁz(%;{;:

=1

which is unbiased for normally distributed quality characteristics. It should

be noted that the sampling distribution of D is not symmetric for small and

moderate sample sizes. LélntShaﬂlﬁshmm_Ammmﬂ (IZDDd) proposed the
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S* chart for monitoring process dispersion using Downton’s estimator at the
stage of the computation of control limits while using the sample standard
deviation S as the monitoring statistic. They showed that, in the presence
of outliers and non-normality, the S* chart performs better than the R chart
and is as efficient as the S chart.

The dispersion chart, (entirely) based on D proposed in this study, shows
clear superiority over both R and S charts and over many other dispersion
charts as well, especially for non-normal processes (see Section 6). Further

discussion on the use of Downton’s estimator in statistical quality control

can be seen in (@) and |Abbasi and Mill (2!!113]).

Average Absolute Deviation from the Median

The next dispersion estimator we consider is average absolute deviation from

the median:

] — N
MD = — ’XZ-—X‘ 2.6
n; (2.6)

where X represents sample median. Although MD incorporates a robust

estimate of location, it is still sensitive to outliers but not as sensitive as

either R or S. |B_Lazms_agh].r| (I2DD§) proposed a MD chart which showed

less sensitivity to non-normality than either the R or S charts.

A closely related estimator, M DM is based on taking absolute deviations
from the sample mean X. Some authors have advocated M DM estimator

in place of S (@)) but this has not been considered in this study.
Median Absolute Deviation
The median absolute deviation (MAD)

MAD = 1.4826 med ’XZ- - X‘ (2.7)

has the highest possible breakdown point (50%) and is therefore a very robust
estimator of o, where the breakdown point is the proportion of data that can

be given unusually high or low values without having a significant effect on



Shewhart Control Charts for Monitoring Process Dispersion in
30 Phase 11

the estimator. [Wu et aJ.I M) show that for contaminated normal data,

MAD outperformed some other robust estimators. However, MAD does

have two main drawbacks that were pointed out by [Rousseeuw and QZI”QHA

): low Gaussian efficiency (36.74%) and its reliance on the distribution

being symmetric. Dispersion charts based on MAD have not received much

attention in the SPC literature.

S, and @,

To overcome the drawbacks of MAD, IBm&deﬂsz (|19_9_EJ) proposed

two alternatives, S,, and @),,, which both have breakdown points of 50% (same

as MAD), but significantly higher Gaussian efficiencies. S,,, defined as

is based on the use of repeated medians: the inner median (med;) is the
| (n/2)+1]™" order statistic, while the outer median (med;) is the | (n+1)/2]%"
order statistic. (I;I.M) described these as “high” and

“low” medians. Similarly, (),, is defined as

Qu = 22219 {|X; — X;| ;i < j}y where k = ( L”/QQJ o ) . (29
In simple terms, @, is the k' order statistic of the n-choose-2 interpoint
distances. Note that, unlike MD and MAD, S,, and (Q,, do not incorporate an
estimate of location. Both S, and (),, have much higher Gaussian efficiencies
than MAD: 58% for S, and 82% for Q,,. Dispersion charts based on S,, or
.Q” have not been investigated in the SPC literature.

Rousseeuw and Croux (@) suggested that MAD, S, and @, are par-

ticularly useful as estimators of o for heavy-tailed (symmetric) distributions

and skewed distributions. They showed through simulations that (), is more
efficient then either S,, or MAD.
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In short, we investigated the following estimators of o:

(
S based on squared deviations from mean

R, IQR,D  based on order statistics
MD,MAD Dbased on absolute deviations from median

Sn, Qn based on interpoint distances
\

2.3 Control Chart Structure

In this section, we present a general structure that will allow us to construct
dispersion charts based on different statistics described in section 2.2. Sup-
pose T represents a dispersion statistic computed from a subgroup of size n
obtained from a process which has been scaled to estimate o (7T can be any
of the above mentioned dispersion statistics). Let Z be the standardized ver-
sion of the dispersion statistic 7: Z = T'/o (similar to W = R/o, for R chart;
MQnLngQr;LI (Il)ﬂd) and D = @ /o, for () chart; m )). To develop

control limits for the dispersion chart based on T', estimates of ¢ and o are

required, where o represents the standard deviation of the distribution of
the dispersion statistic 7.

By applying expectation on Z, we get:

E(Z) = E(T/o) = E(T)/o

Let E(Z) = to, for a given parent distribution and particular choice of T'; t5

depends on sample size n (Mahgng;zl (|L9_9§), Kao and Hd (Il)ﬂjl)) E(T) can

be replaced with the average of sample T's, computed from an appropriate

number of random samples obtained from a process during normal operating
conditions. An unbiased estimator of ¢ is thus defined as & = T'/t,. Similarly,
for an estimate of or, we have 0, = o7 /0. Let 05 = t3 and by substituting

6 for o, the estimate for o7 is defined as 64 = t37T /t,.
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Hence, the L-sigma control limits (based on statistic T'), are given as:

LCL = max(0,T — Lt3T/t,)
CL=T
UCL =T + Lt;T [ty

where L is the control chart multiple, usually set at 3 but it can be adjusted
to get a specified false alarm rate for an in-control situation.

In most books on SPC, the control chart constants (¢t and t3) for R
and S charts are provided under the assumption of normality of quality

characteristics. When the assumption of normality is disturbed, the use
of these constants no longer remains valid, as shown by Mahgne;gl (|L9_9§)

and Md_ﬂgl dZMj) They considered several non-normal distributions

and examined their effect on the values of ¢, and t; for Shewhart X and

R charts. They concluded that the inappropriate use of t, and t3 values
increase/decrease the false alarm rate of both X and R charts. Hence, there
is a need to compute these values for different choices of T' by giving proper
consideration to the parent distribution.

Probability limits can also be used to develop the design structure of a
control chart. For a dispersion chart (based on the statistic T'), these limits
can be computed by using the quantile points of distribution of Z. Let a be
the specified probability of making a Type-I error and Z, the a-quantile of
the distribution of Z. The probability limits for the dispersion chart, based

on statistic T, are thus given as:

LCL = Z(Q/Q)T/tg with Pr(Z < Z(a/g)):a/Q
UCL = Z(l_a/g)T/tQ with Pl“(Z > Z(l_a/2)> = 04/2

For a particular parent distribution, the (a/2)" and (1 — a/2)" quantile
points of the distribution of Z depend on the choice of T" and the subgroup

size n d&mﬂﬂm (|2DDL4)) Similarly, the use of quantile points that

have been computed under the assumption of normality is inappropriate for
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setting up probability limits for processes following non-normal distributions.
Hence, these quantile points must also be computed by giving proper conside-
ration to the parent distribution. In this study, we use the probability limit
approach for the performance evaluation of different dispersion charts under
the assumption that a large number of in-control samples are available for
the estimation of ¢ in Phase I.

For the computation of the control chart constants (¢5 and ¢3) and quantile
points, we need to know the distributional results of Z for every combina-
tion of T" and parent distribution, which are not well known for most of the
dispersion statistics considered in section 2.2, particularly for non-normal
parent distributions. However, one can estimate the characteristics of any
distribution such as mean, standard deviation and cumulative probabilities
through repeated generation of random samples. Hence, we use a compre-
hensive Monte Carlo simulation study to compute the required results. The
simulation steps will be explained in the next section. For the rest of this
chapter we will refer to the control charts based on R, S, IQR, D, MD,
MAD, S, and @, as the R chart, the S chart, the IQR chart (@) chart), the
D chart, the M D chart, the M AD chart, the S,, chart and the @), chart,

respectively.

2.4 Simulation Study

To evaluate the performance of various control chart schemes considered in
section 2.3, a comprehensive Monte Carlo simulation study has been perfor-
med. A total of eight dispersion charts have been studied, based on different
choices of T" as described in section 2.2. A wide range of continuous distri-
butions have been considered to investigate the performance of these charts.
The density function of these continuous distributions together with para-
meter values used in this study and the corresponding skewness and excess

kurtosis are given in Table 2.1.

Figure 2.1 shows density plots of these distributions; panel (a) presents plots

for symmetric normal, logistic and Student’s ¢ distributions, while panel (b)
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Table 2.1: Density functions and parameter values used for different

continuous distributions

Distribution Density Function Parameter values Skewness Excess Kurtosis
Normal(u, o?) 1 —(o—p)?/20° B B
pweR,o>0 2moZ p=00=1 0 0
Logistic(u, k) o (=) /k B B
N c R’k > 0 k(l—i—e_(z_“)/k)Q N - Oyk — ]. 0 ].2
Student’s t (tx)  r((k+1)/2] (1 + zi) - k=5 0 6
k>0 VknD(k/2) k B
i ~1
VXe;bgnﬂ(";%) 2 ()" ety n=158=1 1072 1.390
Chi-square(x?) (k/2)—1,—a/2
i T k=5 1.265 2.4
?7&?%“%”; ﬁ) Ll n=2p8=1 1.414 3
Expo;\leilt(;al()\) N Ao N1 5 6
2 (In(@)—w)?
Loinzrgf(i’ N ) A e p=00=1 6.185 110.936

presents density plots for skewed Weibull, chi-square, Gamma, exponential
and lognormal distributions.

As described in section 2.3, it is inappropriate to use the normal based
coeflicients and quantile points in the construction of control chart limits
when the assumption of normality is violated. Hence, these are computed
independently under every parent distribution: 100,000 random samples of
size n = 3,5,7,10 and 12 are simulated from every distribution and the dis-
tribution of Z is obtained for every combination of 7" and parent population.
Control chart constants (¢ and t3) have been computed as the mean and
the standard deviation of the empirical distribution of Z for every choice

of T and are provided in Appendix Tables A.1 and A.2. Similarly, for a
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-x- ot [ -%- Gamma
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Figure 2.1: Density Curve of Distributions

specified Type-I error probability a = 0.002, the (a/2)" and (1 — «/2)™
quantile points have been computed from the distribution of Z and are given
in Appendix Tables A.3 and A.4. These quantile points help in establishing
probability limits for different dispersion charts. The simulated results, as
shown in Appendix Tables A.1-A .4, for the case of R and S are similar to
those of exact results reported in most SPC books assuming normality of the
quality characteristic (e.g. see Tables of M M)) For the case of non-
normal distributions, the results are also similar to the results reported for

R chart by Mahgne;gl (|L9_9§), Kao and Hd (IM)j) and [Sim and WQHQ M),

which confirms the validity of our simulation routines.

The power of control charts to detect shifts in process dispersion is used

as a jerformance measure following [Duncan (1951)), Nelson (IL%&) and

). In our case, the process is said to be out-of-control whenever the

process standard deviation o shifts from an in control value, say ¢ to another
value say o7, where oy is defined as o1 = o9 + dog. We expect the false
alarm rate to be close to a prespecified nominal value («) for an in-control
process(c = ). When the process is out-of-control, the power of control

charts should be high to detect any inconsistencies in the data.
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Efficiency Comparison

To measure the precision of the dispersion statistics defined in section 2.2,

standardized variances have been computed for each of these estimators follo-

wing the recommendations of nd Cr M) For each parent
distribution, 100,000 samples of size n are simulated and are used for the
computation of standardized variances for each of the dispersion statistics
and the results are provided in Table 2.2. Standardized variance (SV') of a
dispersion statistic 71" is defined as

n var(T)

Vi = (e (2.10)

SV gives a direct measure of the accuracy of a dispersion estimator (Bickel

and Lehmann (1976)). From Table 2.2, we can observe that:

For parent normal distribution:

e For all values of n, S estimator has the smallest SV, with D and M D

as close competitors.

e For small values of n, R and IQR estimators also have similar SV as

S, but the difference between them increases for large values of n.

e The SV for MAD, S, and @, are significantly higher than the rest
of the estimators. Hence, we can expect the worst performance of

dispersion charts based on these estimators for all values of n.
For parent non-normal distributions:

e For a particular choice of n, the SV for all the estimators increases
with an increase in the excess kurtosis for heavy tailed symmetric dis-

tributions.

e For a particular choice of n, the SV for all the estimators increases

with an increase in the skewness for skewed distributions.

e We can observe a significant change in the SV of the usual R and S

estimators as parent distribution moves away from normal.
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e Relatively, the D and M D estimators seem to be least affected for most

of the parent non-normal distributions (except lognormal).

e For the extreme case of lognormal distribution, the ),, estimator gets

an edge over others.
In general, we can observe that:

e For n = 3, the MAD, S, and @), estimators are having higher SV

compared to other estimators for every parent environment.

e For a particular choice of parent distribution and dispersion estimator,

the SV decreases with an increase in the sample size n.

Further more, Appendix Table A.5 presents results of the relative efficiency
(RE) of these estimators. RE is defined as

min(SVr)

RE =
SV

% 100. (2.11)
where min(SVr) represents the minimum standardized variance, taken over
all choices of T'. The RE will help us to identify the dispersion estimators that
will perform well for specific parent distributions. Figures 2.2 and 2.3 present
a graphical comparison of the relative efficiency (RE) of these estimators
for heavy tailed symmetric and skewed distributions. The normal case is
included in both the figures for comparison purposes. From Figures 2.2 and

2.3, we can observe that:

e For a normally distributed quality characteristic, the most efficient way
to estimate o is by using S, but it quickly loses efficiency for non-normal

parent distributions.

e D and M D estimators have maintained good efficient behavior for nor-

mal parent case.

e For most of the non-normal cases, D and MD estimators have the

highest relative efficiencies.
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e R and S based dispersion estimators are mostly affected by departures

from normality.

e MAD represents the least efficient estimator of o for most of the distri-

butional environments.
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Table 2.2: Standardized Variance of different dispersion estimators un-
der normal and non-normal distributions

Distribution n R S IQR D MD MAD S, Qn
Normal 3 0.822 0.816 0.822 0.822 0.822 2.032 2.033 2.033
5 0.691 0.656 0.700 0.667 0.700 1.704 1.513 1.442
7 0660 0.601 1.072 0.612 0.656 1.586 1.272 1.188
10 0.674 0.573 0.986 0.584 0.640 1.370 1.132 0.903
12 0.683 0.558 1.066 0.570 0.626 1.368 1.089 0.869
Logistic 3 1.006 1.002 1.006 1.006 1.006 2.277 2.277 2.277
5 0914 0.860 0.853 0.849 0.853 1.859 1.686 1.619
7 0945 0.831 1.234 0.807 0.812 1.743 1.452 1.365
10 1.019 0.817 1.114 0.776 0.786 1.510 1.270 1.086
12 1.078 0.806 1.196 0.761 0.768 1.492 1.230 1.036
Student’s t 3 1.222 1.235 1.222 1.222 1.222 2412 2412 2412
5 1.200 1.147 1.030 1.069 1.030 1.940 1.780 1.718
7 1.295 1.150 1.315 1.016 0.967 1.794 1.530 1.446
10 1478 1.164 1.163 0.980 0.925 1.529 1.314 1.153
12 1.610 1.185 1.255 0.974 0.915 1.531 1.286 1.114
Weibull 3 1.035 1.052 1.035 1.035 1.035 2.217 2.217 2217
5 0.908 0.907 0.884 0.862 0.884 1.864 1.678 1.604
7 0910 0.875 1.283 0.808 0.838 1.749 1.465 1.311
10 0.964 0.861 1.169 0.776 0.815 1.501 1.339 1.016
12 1.003 0.855 1.260 0.762 0.799 1.505 1.308 0.971
Chi-square 3 1.146 1.169 1.146 1.146 1.146 2.316 2.316 2.316
5 1.051 1.052 0.986 0978 0.985 1.925 1.744 1.663
7 1.080 1.038 1.405 0.930 0.940 1.804 1.522 1.377
10 1.173 1.038 1.271 0.897 0.910 1.581 1.397 1.090
12 1.237 1.039 1.367 0.883 0.897 1.560 1.361 1.028
Gamma 3 1235 1.267 1.235 1.235 1.235 2.410 2.410 2410
5 1.148 1.159 1.069 1.066 1.069 2.018 1.836 1.760
7 1.191 1.147 1.488 1.014 1.017 1.907 1.632 1.460
10 1.298 1.150 1.337 0.972 0976 1.639 1.493 1.150
12 1.373 1.155 1.438 0.964 0.966 1.639 1.465 1.097
Exponential 3 1.682 1.742 1.682 1.682 1.682 2.984 2.985 2.985
5 1.641 1.670 1.479 1.504 1.480 2.608 2.442 2.360
7 1.742 1.687 1.966 1.447 1.412 2.466 2.244 2.020
10 1.923 1.719 1.793 1.409 1.371 2.172 2.135 1.694
12 2,039 1.727 1.910 1.385 1.341 2.159 2.107 1.628
Lognormal 3 4119 4.397 4119 4.119 4.119 4.279 4.277 4.278
5 4.425 4.650 3.453 3.799 3.454 3.399 3.218 3.164
7 5233 5239 3444 3.846 3.362 3.136 2.889 2.687
10 6.224 5.774 2.940 3.793 3.212 2.714 2.741 2.339
12 7128 6.322 3.072 3.891 3.257 2.676 2.666 2.196
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2.5 The Case of the Normal Distribution

First, we consider the case when the quality characteristic can safely be as-
sumed to come from a normal distribution. Using control chart constants
and quantile points from Appendix Tables A.1-A.4, for the case of normal
distribution, probability limits have been determined for every control chart
considered in section 2.3. The power of all the control charts is computed
considering shifts of different magnitudes in process dispersion. To save space
and aid in visual clarity, power curves have been constructed instead of pre-
senting the results in tabular form. In each plot, the shift in o, measured as
a multiple ¢ of the in-control standard deviation, is plotted on the horizon-
tal axis while the power of the different dispersion charts is plotted on the

vertical axis.

The power curves of the different dispersion charts for normally distri-
buted quality characteristics for n = 3,5,7 and 12 are shown in Figure 2.4.
One sample of results has been presented in Table 2.3, which shows the power
of different charts to detect shifts in process standard deviation at different
magnitudes for the case of normal distribution when n = 10. Power curves
and sample results reported in Table 2.3 provide useful information about
the detection ability of various control charts. For example, we can see that
the S chart has a 90% chance to detect a 1.5790 shift in process standard
deviation (highest power among all charts) while MAD chart has only 55.8%
chance to detect a shift of this magnitude (lowest power among all charts)

when n = 10.

As expected, for a zero sigma shift in process standard deviation, the false
alarm rate is very close to 0.002 for all choices of T" and for every sample size,
representing the case for an in control process. The power of all the charts
has increased with an increase in n and the magnitude of shift. For sample
size n = 3 and 5, it seems hard to differentiate between the power curves of
the S chart and other charts, except for the MAD, S,, and @,, charts. The
performance of these charts is extremely poor for n = 3 and 5. In relative
terms, we can see that the power of R and IQR charts decreases as sample

size increases, while the power of S,, and (),, charts increases with an increase
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in n. The D chart appears to behave similarly to the S chart, which has the
highest power for all the cases. The MD chart also performed reasonably
well, although it is slightly less efficient than the S and D charts but better
than all the others. Hence, from power curves in Figure 2.4, we can conclude

that under the ideal assumption of normality:
e the S chart has the best performance,
e the D chart can be treated as a strong competitor to the S chart,

e the MD chart is slightly less efficient than the S and D charts but
better than other charts,

e the relative power of the R and IQR charts decreases with an increase

in n, and

e the MAD chart shows the worst performance due to low Gaussian effi-
ciency of MAD.
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Table 2.3: Power of different dispersion charts for normally distributed
quality characteristic when n = 10 and o = 0.002

J

R

S

IQR

D

MD

MAD

Sn

@n

0.000
0.316
0.632
0.947
1.263
1.579
1.895
2.211
2.526
2.842
3.158
3.474
3.789
4.105
4.421
4.737
5.053
5.368
5.684
6.000

0.0020
0.0478
0.2340
0.4982
0.7080
0.8404
0.9171
0.9571
0.9769
0.9888
0.9938
0.9972
0.9984
0.9996
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.0020
0.0573
0.2916
0.5923
0.7880
0.8998
0.9558
0.9839
0.9892
0.9955
0.9982
0.9996
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.0020
0.0328
0.1544
0.3394
0.5325
0.6837
0.7842
0.8572
0.9038
0.9335
0.9561
0.9710
0.9807
0.9877
0.9909
0.9938
0.9957
0.9965
0.9978
0.9986

0.0020
0.0568
0.2890
0.5870
0.7810
0.8918
0.9473
0.9751
0.9886
0.9949
0.9976
0.9990
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.0020
0.0464
0.2435
0.5144
0.7292
0.8581
0.9246
0.9629
0.9818
0.9905
0.9958
0.9981
0.9994
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.0020
0.0274
0.1193
0.2682
0.4177
0.5579
0.6649
0.7513
0.8092
0.8560
0.8893
0.9132
0.9336
0.9504
0.9627
0.9714
0.9763
0.9807
0.9848
0.9875

0.0020
0.0279
0.1368
0.3116
0.4864
0.6317
0.7384
0.8138
0.8661
0.9067
0.9333
0.9517
0.9650
0.9750
0.9816
0.9851
0.9889
0.9911
0.9935
0.9945

0.0020
0.0397
0.1861
0.4035
0.5977
0.7374
0.8295
0.8920
0.9306
0.9568
0.9695
0.9800
0.9869
0.9901
0.9933
0.9952
0.9966
0.9973
0.9980
0.9988
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2.6 The Case of Non-Normal Distributions

In the previous section, the performance of control charts was evaluated
under the ideal assumption of normality. This assumption is widely used
in statistics and almost all SPC charts are based on it. However, in prac-
tice, data from many real world processes follow non-normal distributions:
(@) points out that quality characteristics such as capacitance, in-
sulation resistance and surface finish do not follow a normal distribution;

ames ) reported that characteristics such as roundness, mold dimen-

sions and customer waiting times follow non-normal distributions; Levinson

and Polny (1999) indicate that impurity levels in semiconductor process che-

micals follow a gamma distribution; and in nuclear reactions, the interval

between beta particle emissions follows an exponential distribution (Miller

and Miller (1995)). In these situations (and many others), it is inappro-

priate to use the control charts based on the assumption of normality and
hence there is a need to study the performance of various dispersion charts
for non-normal distributions. Hence, in this section, the performance of the
dispersion charts is investigated for a wide variety of non-normal distribu-
tions. For the case of heavy-tailed symmetric distributions, we have conside-
red logistic and Student’s ¢ distributions. To cover skewed distributions, we
have used the Weibull, gamma, chi-square, exponential and lognormal dis-
tributions. The performance of each dispersion chart is evaluated for every
distribution to give us a clear picture of overall performance. The control
chart constants and quantile points required for setting up the probability
limits for non-normal processes have been computed in a similar manner to

the normal distribution and are reported in Appendix Tables A.1-A 4.

2.6.1 The performance of control charts for heavy
tailed symmetric distributions
The power curves for all of the dispersion charts for the symmetric logistic

and Student’s t distributions (the constants and quantile points for these

charts are given in Appendix Tables A.1 - A.4) are shown in Figures 2.5 and
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2.6 for n = 3,5,7 and 12. For the logistic distribution, the D and M D charts
have shown better overall performance than the other charts. The S chart,
although less efficient than the D and MD charts, has higher power than the
rest of the charts. The R and IQR charts show good performance for small
sample sizes (n = 3 and 5) but, as the sample size increases, the detection
ability of both of these charts reduces significantly relative to other charts.
The Q,, chart performs better for large sample sizes, while the MAD chart
has the worst overall performance.

For the Student’s t distribution, we see that most of the charts have
shown better performance than the classical R and S charts. The MD chart
shows the best overall performance. The power of the IQR chart again starts
to decrease relative to other charts with an increase in n. There seems to
be a significant gain in the powers of S, and (), charts as the sample size
increases. The D chart has shown better performance than the S,, and @,
charts for large shifts in o, while for the detection of small shifts, .S,, and @,
charts are performing better than the D chart. In short, we can say that for

logistic processes:

e the performance of the D and MD charts is almost the same and is
better than for all of the other charts,

e the S chart also seems to perform reasonably well,

e most control charts perform better than the R chart for n > 5, and

e the performance of the MAD chart is the worst among all the charts.
Similarly, for t-distributed quality characteristics:

e the MD chart is the most efficient,

e the (), and D charts are close competitors to the MD chart, and

e all of the other charts have higher discriminatory powers than the R

and S charts, particularly for moderate to large sample sizes.
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Figure 2.5: Power curves of different dispersion charts for n = 3,5,7
and 12 under logistic distribution (with g =0,k = 1) when « = 0.002
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2.6.2 The performance of control charts for skewed

distributions

In this section, we evaluate the performance of various dispersion schemes
when the monitoring data is generated from skewed distributions. Figure 2.7
presents the power curves of the dispersion charts when the quality charac-
teristic is assumed to follow a Weibull distribution. We can observe that the
D chart has shown the best overall performance with slightly higher power
than the MD chart. The S,,, @, and M AD charts still perform very poorly
for n = 3 and 5, but a significant gain in the power of the (),, chart is seen as
n increases. The power of the S chart is affected but not as much as that of
the R and IQR charts, which are extremely affected for n > 5. Figures 2.8
and 2.9 present power curves of dispersion schemes when the distribution of
the quality characteristic is assumed to be chi-square or gamma. The power
curves of the D and MD charts are always higher than those for all of the
other charts, indicating these charts have better detection ability. The IQR
chart has again performed well for small sample sizes, while, for large n, the
(), chart appears to be a better choice after the D and MD charts. The S,
chart shows its superiority over the S chart under the gamma distribution,
while, for the chi-square distribution, the S chart appears to perform better
than the S, chart. The R chart is extremely affected by skewed distributions

and has the lowest discriminatory power than most of the charts.

Figure 2.10 presents the power curves when the monitoring data are gene-
rated from the exponential distribution. The best detection ability is shown
by the MD chart followed by the D chart. The power of the R and S charts is
extremely affected and a significant gain in the power of the @),, chart can be
observed for large sample sizes. The power curves presented in Figure 2.11
for the lognormal distribution present a different picture. The Q,, MAD
and S, charts have outperformed the other control charts in this case. This
is due to the fact that the lognormal distribution with 4 =0 and 0 = 1 is
extremely skewed and its excess kurtosis is also very high. Hence, the charts
based on dispersion estimators with high breakdown point are performing

better than the rest. The ),, chart has the highest power among all control
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charts. The R and S charts have been again extremely affected, presenting
the worst performance for every sample size. The IQR chart also appears to
be better than the D and MD charts in this case. In short, we can say that

when data follow a skewed distribution (other than the lognormal):
e the D and MD charts are superior than the other charts,

e the (), chart is a close competitor to the D and MD charts for large

sample sizes,
e the IQR chart has reasonable performance for small sample sizes, and
e the performance of R and S charts is greatly affected.
For the case of lognormal distribution:
e the (), chart has the best performance,
e the S, and MAD charts are close competitors to the (), chart,

e the D and MD charts are less efficient then the IQR chart, and

e the R and S charts have the lowest discriminatory power compared to

rest of the charts.

Comparing the power curves in Figure 2.4 for the case of a normally distribu-
ted quality characteristic to the power curves in Figures 2.5-2.11, when the
distribution of a quality characteristic is assumed to be heavy tailed symme-
tric or skewed, we can clearly observe that the power of most of the control
charts decreases with an increase in the value of skewness and excess kurto-
sis. This reduction in the power is more significant for control charts based
on R, S and IQR estimators compared to the control charts based on other
estimators. The D and M D charts are least affected for most of the non-
normal cases. These results are also in close agreement with the findings of
Figures 2.2 and 2.3, which present relative efficiencies of different dispersion

estimators.
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Figure 2.7: Power curves of different dispersion charts for n = 3,5,7
and 12 under Weibull distribution (with n = 1.5, 8 = 1) when a = 0.002
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Figure 2.8: Power curves of different dispersion charts for n = 3,5,7
and 12 under chi-square distribution (with k¥ = 5) when a = 0.002
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Figure 2.9: Power curves of different dispersion charts for n = 3,5,7
and 12 under gamma distribution (with n = 2.0, 5 = 1) when a = 0.002
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Figure 2.10: Power curves of different dispersion charts for n = 3,5,7
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2.7 Conclusions

In this study, we investigated the performance of various dispersion charts
for normal and different non-normal processes. There is always one chart
which performs best for a particular case. For normally distributed quality
characteristics, the S chart is superior to the rest of control charts. We have
shown that the performance of the D chart is similar to that of the S chart.
The R and IQR charts have shown reasonable performance for small sample
sizes, but a significant decrease in the relative power of these charts has been
observed for larger sample sizes. For the case of heavy-tailed symmetric
distributions, D and M D charts performed better than the other charts.
The @Q,, chart is also performing reasonably well. The relative power of the
R and S charts decreased significantly with an increase in the value of excess
kurtosis. For the case of skewed distributions, the D and M D charts again
showed better overall performance compared to the rest of the dispersion
charts, except for the lognormal distribution where the @),, chart has shown
its superiority. The IQ)R chart has shown reasonable performance for small
sample sizes. The performance of R and S charts is extremely affected for the
distributions with high skewness. We also observed that, compared to the
normal case, relatively larger sample size is required to detect a particular
amount of shift under the non-normal parent environments.

We have shown that the power of a dispersion chart is strongly related
to the efficiency of the dispersion estimator used in its construction, under a
particular distributional environment. If one needs to select a chart for the
monitoring of dispersion in Phase II, it is recommended to check its relative

efficiency as compared to the other available estimators.
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Chapter 3

Shewhart Control Charts for
Monitoring Process Dispersion
in Phase 1

Control charts are usually implemented in two phases: the retrospective
phase (Phase I) and the monitoring phase (Phase II). The performance of
any control chart structure depends on the preciseness of the control limits
obtained from Phase I analysis. In SPC, the performance of Phase I disper-
sion charts has mostly been investigated for normal or contaminated normal
distributions of the quality characteristic of interest. Little work has been
done to investigate the performance of a wide range of Phase I dispersion
charts for processes following non-normal distributions. The current study
deals with the proper choice of a control chart for the evaluation of process
dispersion in Phase [. We have analyzed the performance of a wide range of
dispersion control charts, including two distribution-free structures. The per-
formance of the control charts is evaluated in terms of probability to signal,
under normal and non-normal process setups. These results will be useful for

quality control practitioners in their decision making. This chapter is based

on [Abbasi et all (20121).
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3.1 Introduction

We perform retrospective analysis during Phase I in order to get a controlled
structure for the prospective analysis. In the retrospective phase, historical
data are analyzed to estimate the in-control state of the process, whereas
the prospective phase involves assessing the current state of the process by
analyzing the current data. In Phase I, we expect that if there are some
inconsistencies in the initial set of samples, there should be high chances
for their detection during retrospective analysis. The goal for the monitoring
phase (Phase 1) is the quick detection of departures of the process parameters
from their in-control values. The focus of this study is Phase I analysis,
particularly with reference to the monitoring of the dispersion parameter.

For a good discussion on Phase I and Phase II control charts, one may see

the studies by lJensen et al. (m_d), yining (IZM) and |Chakraborti et al.
).

The performance of any Phase II control chart depends on the preciseness

of the control limits obtained from the Phase I analysis. In SPC applications,
process (location and dispersion) parameters are usually unknown and need
to be estimated from the historical dataset. If the historical dataset is known
to consist entirely of observations from the in-control process then the Phase
I procedure would simply involve using the most efficient estimator (for a
particular parent distribution) for the estimation of unknown parameters
and control limits (for Phase II monitoring). However, mostly the historical
dataset is contaminated with some unusual samples/observations, that affect
the estimation process and also the detection ability of control charts. The
focus of this study is on monitoring process dispersion so we are mostly
concerned with the estimation of ¢. The usual estimates of ¢ are based
on sample range R or sample standard deviation S. Both these estimators
perform well under the ideal assumption of normality but are well known to

be inefficient when the assumption of normality is violated.

Following Shewhart’s pioneering proposals of R and S charts, many re-

searchers have developed different control charts having resistant design struc-

tures, e.g. see —|B&dd (Il%d, |l9_9j), mﬂ&ﬂ&wﬂﬁdﬁmg (|19_9d), hhmm|
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(IlQQ_ﬂ),IAlntShaﬂlﬁsﬂ 0 EJ) |Riaz] 200§);|Riaz and Sa_gt_]jﬂ 20Qd) Mukher-

jee and Chakraborti ) and the references therein. In recent years, the

estimation effects of o have been investigated by different researchers. Wu
et al. (IZQOj) examined the effects of different estimators of o on the perfor-
mance of the Shewhart X chart when measurements are taken from conta-
minated normal distributions. |Braun and Parg (Iﬂﬁ) investigated the effect

of different o estimators on the performance of the EWMA location chart

for individual measurements from contaminated normal and ¢ distributions.

Schoonhoven et al. (Iﬂé) and [Schoonhoven and DQQA 12{!1{]) used different

estimates of ¢ to examine their effect on the performance of X chart under

the existence and the violation of the normality assumption. Schoonhoven
et al. 2Q1J.|) and [Schoonhoven and Does (IZQlZ) investigated the effect of esti-

mating o in Phase I on control chart’s performance in Phase II for monitoring

process dispersion. LJm&s;Fﬁmﬂjmdﬁ_hamﬁ (IZQld) proposed a distribution-

free structure for monitoring dispersion and compared the performance of his

proposal with R and S charts.

No study, as yet, has investigated a wide range of dispersion charts in
Phase I for processes following non-normal parent distributions. Many qua-
lity characteristics such as capacitance, insulation resistance, surface finish,
roundness, mold dimension, customer waiting time and the impurity levels
in semi conductor process chemicals follow non-normal distributions (cf. Bis-

sell (IM), ,]ameg (IL%LQ) and [Levinson and Pan;zI (@&d)) The underlying

distributional environment can have a significant impact on the detection
ability of control charts. As reported by Mﬁﬂ (|2Q0d), “As one works

in Phase I to remove assignable causes and to achieve process stability, the

form of the hypothesized underlying distribution becomes more important in
determining control limits and in assessing process capability. To interpret a
chart in Phase I, practitioners need to be aware that the probability to signals
can vary considerably depending on the shape of the underlying distribution
for a stable process”. This is the focus of the current study. We will study
how the probability to signal of dispersion charts varies for different parent

distributions of the quality characteristic of interest in Phase I.

The purpose of this study is to evaluate and compare the performance
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of various dispersion charts during Phase I for normal and non-normal pa-
rent environments, using probability to signal as a performance measure. For
representing non-normal cases, we have considered both heavy-tailed symme-
tric (logistic & Student’s t) and skewed (Gamma & exponential) distributions.
The dispersion control charts investigated in this study are based on the

sample range, the sample standard deviation, the pooled sample standard

deviation rdem (IL%_EJ)), the interquartile range, Downton estimator,

the average absolute deviation from median, the median absolute deviation,

S, statistic, @, statistic and the distribution-free scale rank statistic (Jones-
Farmer and Champ 2!!1!])).

The organization of the rest of this chapter is: Section 3.2 presents dif-

ferent dispersion estimators and their corresponding control chart structures;
Section 3.3 describes steps taken for the performance evaluations of these
dispersion charts in Phase I; Section 3.4 offers the discussion of the results
and gives comparisons of different charting structures; Section 3.5 includes
illustrative examples with real data application; and Section 3.6 summarizes
and concludes the findings of the study along with the recommendations for

some future research in this direction.

3.2 Monitoring of Process Dispersion

Parameter

The monitoring of a process dispersion parameter is carried out using disper-
sion control charts. A dispersion control chart that can perform better under
the existence and violation of ideal assumptions is of more practical value.
In this section, we describe different ways of estimating the process standard
deviation ¢ in Phase I and further provide control chart structures based on

these o estimators.
Dispersion Estimators

Suppose the historical dataset comprises of m subgroups of size n. Let
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Xij,1=1,2,--- ,mand j =1,2,--- ,n denote the observations of this histo-
rical dataset from a process distributed with mean p and standard deviation
o. Further let X; be the sample mean, X; be the sample median and | X;| be
the absolute value of X for the i"® sample. Below we define different ways of
estimating o in Phase I. Most of these estimators have been investigated in

Chapter 2 for Phase II monitoring of process dispersion.

Sample Range: R; = X)) — Xju), where X;) and Xj(,) represents the
extreme observations in the i*" sample. An unbiased estimator of ¢ based on
R is given as: 6g = R/ds,(n), where R = L3R

Sample Standard deviation: 5; = ﬁzgﬁ(){ij — X;)2. An unbia-

sed estimator of o based on S is given as: 65 = S/da.(n).

In most SC books, ds,(n) and da,(n) are given as dy and ¢4, but we are

using these notations in this chapter for consistency.

Pooled standard deviation: |ﬁrdﬁmm]| (|19_9£i) considered different forms
of combining sample ranges and sample standard deviations to estimate o.
He recommended that the most efficient estimate of ¢ is a biased estimate

based on the pooled sample standard deviation given as: g, = dag(v+1)S),
where S, = /= >, SZ and v = m(n — 1)

Interquartile Range: IQR; = (Q;3) —Qi1))/1.34898, where Q;1) and Q;(3)
respectively represents the lower and the upper quartiles of the i** sample.

These quartiles have been computed using Type 6 of the quantile function

in R statistical language (IlBQd)) The reason behind
choosing Type 6 for the computation of quantiles is because this definition is
also used by other commonly used statistical packages such as Minitab and
SPSS.

An unbiased estimator of o based on Q) is given as: 6¢ = IQR/da,(n).

Downton’s Estimator: D; = n?ﬂ—\/_;l) > i —3(n+1)]X;;). An un-
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biased estimator of ¢ based on D is given as: 6p = D/dy,(n). For nor-
mally distributed quality characteristic, D is an unbiased estimate of o (i.e.
dy,(n) = 1). Two other estimators, namely the probability weighted mo-
ments (5,,,) and the Gini’s estimator (G), are equivalent to the Downton’s es-
timator (D), where Sy, and G are defined as: Sp,,; = g > i1 (25 —n—1) X

and G; = @ <4ﬁ Z?:l 2 ;Z_lXi(j)>. The exact relationship among these

three estimators is given by: D = G = 255, (cf.

(2011)). a

In this study we are only using D estimator for comparison purposes. For

the other two estimators (i.e. S, and G), we can expect a similar behavior.

Average Absolute Deviation from Median: MD; = %Z?:l X, — Xi

An unbiased estimator of o based on M D is given as: oy p = MD/ds,,,(n).

Y

Studies have pointed out the efficient behaviour of M D estimator for non-

normal processes (cf. |Abbasi and Millell 12{!1£), Abbasi and Millg;l (2!!113)).

Median absolute deviation: MAD,; = 1.4826 med ‘Xj — Xz

sed estimator of o based on MAD is given as: dyap = MAD/dy,,,,(n).
With a breakdown point of 50%, the M AD estimator can be considered as

a very robust estimator to contaminations in the data. However, MAD does

An unbia-

have two main drawbacks that were pointed out by nd Cr
): low Gaussian efficiency (36.74%) and its reliance on the distribution

being symmetric.

S, estimate: S,; = 1.1926 med; {med; | X;; — X;|;j # (}. The inner me-
dian (med,) is the | (n/2)+1]™ order statistic while the outer median (med,)
is the |(n + 1)/2]™ order statistic. [Rousseeuw and QZI”QHA (|L9_9j) described

Y

these as “high” and “low” medians. An unbiased estimator of o based on S,

is given as: 7g, = S, /dag (n).

2
In simple terms, @, is the k' order statistic of the n-choose-2 interpoint

2 1
Qn estimate: Qn,i = 2.2219 {|ng _ le| < l}(k) where k — ( Ln/ J + )
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distances. An unbiased estimator of o based on @), is given as: 0g, =
Qn/dag, (n).

Unlike MD and MAD, S, and @), do not incorporate an estimate of loca-
tion. Moreover, both .S,, and @,, have much higher Gaussian efficiencies than
MAD: 58% for S,, and 82% for Q,,.

Scale-rank statistic: |Jones-Farmer and glhamﬂ (2!!1!]) proposed a distri-

bution free structure for estimating process dispersion based on ranks. Let

P;; represent the absolute deviations of X;; taken from the overall median
(M), ie. Py =|X;; — M]|. Let C;; be the rank of P;; in the pooled sample
of size n x m. Lkm&&nmndﬁhamﬂ (IZQld) considered 4 different trans-
formations of the ranks C; and showed that their proposed 75 chart based

on the squared ranks (C’fj) had the best overall performance. Hence, in this
study we are only using 75 chart for comparison purposes. For T; chart, the
scale-rank statistic is defined as T ; = (1/n) ?7:1 CZ (cf. Jones-Farmer and
Champ (2010)).

We will refer to the dispersion charts based on R, S, S,, IQR, D, MD,
MAD, S,, Q, and T, as the R chart, the S chart, the Sy chart, the @) chart,
the D chart, the M D chart, the M AD chart, the S, chart, the ),, chart and
the Ty chart for the rest of this study. These charts are based on plotting

their respective monitoring statistics against the following set of control li-

mits:
] - d3p (n)

R Chart. max |:07 R <1 :]: Ld2§(n)):|
) = dsg (n)

S Chart: max [O, S (1 + Lde(n))]

S, Chart: max [0, dag (v + 1)S, (dag(n) £ Ldsg(n))]
. S dzg (n)

() Chart: max [0, IQR <1 + Lde(n))]

D Chart: max [O,b <1 + Ld3D(n)>}

dap, (n)
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MD Chart: max [O,m <1 + L%)}

MAD Chart: max [O,W <1 + L%ﬂ

S, Chart: max 0,5, (1 L7205 )|

@, Chart: max [07@ <1 + szz: EZ;)]

T, Chart: ?2 = L (Spr/caw) /v

where ﬁ and S, represent the overall mean and the pooled standard devia-
tion based on the squared ranks C’fj For a particular parent distribution, the
control chart constants dy,(n), ds,(n), da, (n), ds,(n) etc., depend on sample
size (n) and are available in Appendix Tables A.1 and A.2 for a variety of

continuous distributions.

Modified Scale-Rank (V5) Chart: In 75 charting structure of Jones-

Farmer and Champ (2010)), the control limits are computed by estimating

the location and the dispersion of the squared ranks (C’fj) by Ty and S,
respectively. These estimates can be seriously affected in the presence of
contaminations in the Phase I dataset. To overcome this deficiency of the T,
chart, we proposed a modified charting structure, namely the V5, chart. The
V5 chart is based on plotting the squared scale-rank statistic (Tg’i) against

the following set of control limits.

UCL =T, + LDy /vn, CL=T, and LCL=T, —LDy/vn

where T}, represents the median of sample Tgﬂ- and ﬁTQ represents the Down-
ton’s estimator based estimate of the variation in the Tgﬂ-. The use of T,
and Dz, in the V5 charting structure helps significantly in better detection

of inconsistent samples in the Phase I dataset — see Section 3.5.
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3.3 Performance Evaluation of Charts in
Phase 1

The performances of all the charts discussed in Section 3.2 are evaluated using
the signal probability as the performance measure for normal and non-normal
parent environments. The density functions of the continuous distributions
together with parameter values used in this study, the skewness and the

excess kurtosis are provided in Table 3.1.

Table 3.1: Density functions and parameter values used for different
continuous distributions

Distribution Density Function Parameter values Skewness Excess Kurtosis
Ligeisﬂéiyclgi;, £) % p=0k=1 0 1.2
Student’s ¢ (ty,) Dl(k+1)/2] (1 + ﬁ) - k=5 0 6
k>0 VEaT (k/2) k
Ciar;rg’aéa; %) Fﬂ(_Z)zailﬁiﬁm a=2p8=1 1.414 3

Exponential(\)

— Az _ .
A>0 Ae A=1 2 6

For the application of control charts, samples are usually collected from
a process in the form of rational subgroups. The concept of rational sub-
groups was introduced by Shewhart and it means that, in the presence of
assignable causes, “the chance for differences between subgroups will be maxi-
mized while the chance for differences within subgroups will be minimized”

(IM&ngmnﬂgJ (lZLELd)) We have considered m = 30 subgroups, each of size

n =5 & 9 from different probability models; mg of these subgroups are as-

sumed to be stable and the remaining m; have inconsistencies in the form
of shifted samples. The goal of Phase I analysis is the quick detection of
these inconsistent samples. The stable (in-control) samples are supposed to
be distributed with the parameter settings specified in Table 1 for different
normal and non-normal distributions. Without loss of generality, the obser-

vations from different probability models are rescaled to have the in-control



Shewhart Control Charts for Monitoring Process Dispersion in
68 Phase 1

mean and standard deviation as py = 0 and oy = 1, while the contaminated
samples correspond to rescaled observations with shifted standard deviation
as 01 = Aoy (here the value of A will indicate the intensity of inconsistency).

The control limits multipliers L are appropriately chosen for all the charts
so that false alarm probability (FAP) may be achieved for the prefixed «, as-
suming the Phase I data set consists of m in-control samples with no conta-
mination. It is to be mentioned that we have chosen a* as the probability
of signal on a single sample and worked out the overall FAP («) for the m
samples using the relationship o« = 1 — (1 — o*)™ (cf. Jones-Farmer and

Champ (Il)ﬂ), Shiau and Sunl 12(!1{])). After setting the limits of a specific

control chart, we use its respective sample statistic (like R;, S;, T4, etc.) as

monitoring statistic to detect any out-of-control signals. This procedure is
repeated 10,000 times and the values of L using m = 30 and n =5 & 9 are
chosen to fix the FAP, o = 0.01 for all the charts, as provided in Table 3.2.
We have investigated the signaling probabilities for m; = 3,6,9 & 12,
i.e. when 3, 6, 9 or 12 samples out of 30 are considered to be contaminated
with shift A\. To save space, the resulting signaling probabilities for varying
values of \ are presented graphically for only m; = 6 & 12 in the form of
power curves. These curves are provided in Figure 3.1 for normal distribution,
Figure 3.2 for logistic distribution, Figure 3.3 for ¢ distribution, Figure 3.4 for
Gamma distribution and Figure 3.5 for exponential distribution for all the
eleven charts investigated in this study. For other combinations of n,m, m,
and «, one may obtain similar outcomes at varying values of A for different

choices of parent distributions.



Table 3.2: Control chart multiplier L to fix FAP, o = 0.01 for all the

charts

Distribution n R S S, IQR D MD MAD Sn Qn T, Va
Normal 5 3.983 3875 3.744 4.018 3917 4.025 4.514 4.309 4.545 3.645 3.893
9 3.967 3.739 3.662 3.983 3.787 3.841 4.125 3.908 4.069 3.585 3.788
Logistic 5 4793 4.712 4489 4501 4.584 4.503 4.856 4.818 4.885 3.661 3.904
9 4.793 4578 4.417 4.283 4.296 4.179 4.538 4.283 4.427 3.606 3.782
Student’st 5 6.893 6.957 6.111 5.795 6.341 5.792 5.218 5.091 5.329 3.633 3.904
9 7.218 7339 6.569 4.568 5.991 5.349 4.672 4.569 4.737 3.606 3.782
Gamma 5 95.309 5.349 4.895 4.901 4975 4.921 5.258 4.979 5.392 3.685 3.992
9 5.141 5.029 4.772 4.664 4.532 4.461 4.681 4.635 4.519 3.608 3.792
Exponential 5 5.579 5.632 5.072 5.091 5.272 5.119 5.656 5.587 5.771 3.654 3.904
9 5.559 5397 4.994 4897 4.793 4.714 5.167 5.088 5.026 3.534 3.734

I @seyJ ul sjprey ) JO UOIJeNn[eAf] 9OURWLIOJIdJ €°C
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3.4 Discussion and Comparative Analysis

In this section, we provide a comparison of all the dispersion charts described
in Section 3.2. For a fixed FAP («), the chart that has the highest probability
to signal out-of-control samples will be considered as better than others. We

can expect signaling probabilities of the charts to change for different parent

environments 11 (2000)). The goal is to identify charts that perform
well for particular parent environments and further to find out a chart that

performs better for most of the situations (if not all).

The specific findings for each of the parent environments considered in

this study are given below.

Normal Distribution: In the normally distributed process environment,
we have observed that M AD, S, and @),, charts have the worst performance.
The structures of the S, D and M D charts have exhibited the best perfor-
mance for smaller choices of m; which deteriorates with an increase in the
value of my. For the larger values of m; the proposed scale-rank V5 char-
ting structure has the highest signaling probability to detect out-of-control
subgroups. The relative performance of the S, chart has shown an inverse
relation with m; and A. The detection ability of the T5 chart is lower than
the S, D, M D and R charts. R and IQR charts perform well for n = 5 but
loses relative efficiency for n = 9. In general, the detection ability of all the
charting structures increases with an increase in the values of n and A\ (cf.
Figure 3.1).

Logistic Distribution: In the logistic distribution we have noticed that
detection abilities of all the charting structures, except 15 and V5, are se-
riously affected (relative to the normal case) due to an increase in the value
of excess kurtosis (cf. Figures 3.1 & 3.2). The V; chart is performing signifi-
cantly better than the T, chart as m, increases. The M AD,S,, S, and @,
charts have shown poor performance (like in the normal case) and the widely
used R and S charts are also seriously affected. The best performance has
been shown by the V5 chart, followed by the D & M D charts for m; = 6 and
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T5 chart for m; = 12.

Student’s t Distribution: For the case of ¢ distributed process scena-
rio, the V5 chart has shown the best performance for all the cases, followed
by the T5 chart. Apart from these two, the design structures of all the charts
are significantly affected (relative to the normal case), particularly for smal-
ler choices of n and larger values of m;. Although less efficient than V5 and
T, charts, the MAD, S, and @), charts have shown better detection ability
compared to R, S, D and S, charts. The worst performance has been shown
by the S, chart, with R/S charts as close competitors. The effect on the
probability to signal for the case of ¢ distribution is even more severe than
for the case of logistic distribution (cf. Figures 3.2 & 3.3) due to the increase

in the excess kurtosis.

Gamma Distribution: For the gamma distributed process setup, the V5
chart again showed the best performance followed by the T, chart, irres-
pective of the choices of n and m;. The worst performance is shown by
the S, chart as in the other distributional environments. In general the
R,S, MAD,S, and @, charts have shown poor detection abilities because of
increase in the excess kurtosis along with the skewed behavior of parent dis-
tribution. The larger choices of n and the smaller values of m; have provided
a reasonable safeguard against serious deterioration of signaling probabilities

for these charting structures (cf. Figure 3.4).

Exponential Distribution: In an exponentially distributed process situa-
tion, the relative superiority orders of different charting structures under
investigation stay in close agreement, in general, with the orders observed
under Gamma distribution, i.e. V5 and T5 charts are performing significantly
better than the rest of charts. The higher intensity of skewness and excess
kurtosis (cf. Table 3.1) for exponential model presses the curves even lower

than those of the gamma distributed process characteristic. (cf. Figure 3.4

& 3.5).

In a nutshell, we observed that the V5 chart outperforms all the compe-
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ting charts in normal and non-normal setups (in general), for the detection
of out-of-control samples in the historical dataset. S, D and M D charts offer
superior performances for the normal parent distribution when my is small.
The T, charting structure appears as a second best choice for non-normal
distributions. On the inferior side, the S, chart gives the worst performance
under non-normal processes while the M AD chart under normally distribu-
ted situation. The signalling ability of all the charts (except V4 and T5) is
significantly affected with increase in the skewness and excess kurtosis for

non-normal parent environments compared to the normal case.
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3.5 Illustrative Examples

To illustrate the application of the charts under discussion in this study (par-
ticularly V5 versus T, charting structures) for Phase I analysis, we provide
here a numerical example using a real dataset given by Jones-Farmer and
Champ ([Zﬂld) The data consist of patients waiting time (in minutes) for a

colonoscopy procedure. We have provided plots for the V5 and T, charts in

the said numerical example. The other charting structures may be worked

out on similar lines.

In order to highlight the ability of the two charting structures for efficient
detection of changes in process dispersion parameter in Phase I, we have in-
troduced contaminations in the original data in two forms: using i) m; = 6
with A = 3 and ii) m; = 12 with A = 4, i.e. the last 6 or 12 samples of the
original data have been multiplied with A to represent contaminated samples.
The resulting data sets are used to carry out computations for the V5 and
T, charting structures for a fixed FAP, o = 0.01. The graphical displays of
both the control charts for cases (i) and (ii) are provided in Figures 3.6 and
3.7 respectively. The sample numbers are shown on the horizontal axis while
the sample statistic Ty, is plotted on the vertical axis in these figures. LCL,
CL and UCL of the V, and Ty charts are represented by the dashed (- - -)

and dotted (...) horizontal lines respectively

It is evident from Figures 3.6 and 3.7 that the T, charting structure of

Lhnﬁs;ﬁmmndﬁhamﬁ (|2Q1d) detects out-of-control signals at five sample

points, while the V5 chart detects all the six problem points for the case when
m1=6 and A = 3 (cf. Figures 3.6). For case (ii), when m;=12 and A = 4,
the V5 chart has signaled ten out-of-control points while the 75 chart has

indicated eight such points (cf. Figures 3.7). Moreover, we can see from
Figure 3.7 that the T5 chart is giving 6 extra false signals compared to the V5
chart. It shows that the proposed V5 charting structure not only detects more

out-of-control samples but has an added advantage of producing significantly
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less false signals. The superiority of the design structure of the V5 chart
keeps improving, relative to the T35 chart, with increasing values of m and .
Note that the V; chart also plots T, as the monitoring statistic but with a
modified set of control limits. The similar superior detection ability may also
be expected for the V5 chart relative to the other charting structures covered

in this study, based on the findings of Section 3.4.

3.6 Conclusions

This study has investigated the choice of an appropriate control charting
structure for efficient monitoring of process dispersion parameter during
Phase I. We have analyzed the performance of eleven dispersion charts, in-
cluding two distribution-free structures, based on ranks. The performance of
control charts is evaluated in terms of probability to signal, under different
distributional setups covering normal, logistic, t, gamma and exponential
models. The comparative analysis under different process setups has advo-
cated that the worst performance is exhibited by S, chart under non-normal
processes and M AD chart under the normal environment. The inferior per-
formance of the S, chart is due to the fact of having contaminations in
the Phase I samples as for this situation a better way of estimating o is to
estimate the variability for each subgroup separately and then pool these
estimates (cf. |A i and Mill (IQjﬁ))

The newly suggested V5 charting structure offers the best ability in most

of the practical situations. The T, structure has attractive detection abilities
in non-normal environments, while in normal setup it becomes relatively less
efficient. The structures of S, D and M D charts appear as efficient choices
in normally distributed case when m is smaller, while for larger values of
my the V5 chart gets an edge. The design structures of D, IQR, M D and
(), charts have also shown reasonable performance for skewed distributions,
especially when m, is large.

To sum up, the V5 charting structure has shown the best ability for the
detection of out-of-control subgroups in Phase I under different normal and

non-normal processes considered in this study. It may be used as a powerful
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tool by quality control practitioners and researchers for efficient monitoring

and decision making in their practice.

20000
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Figure 3.6: T and V5 charts for my =6 and A = 3
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Figure 3.7: T, and V5 charts for m; = 12 and A =4
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Chapter 4

EWMA Dispersion Control
Charts

EWMA dispersion charts are used for the quick detection of small and mode-
rate shifts in process dispersion or variability. Most of the EWMA dispersion
charts that have been proposed are based on the assumption that the parent
distribution of the quality characteristic is normal, which is not always the
case. In this chapter we develop new EWMA charts based on a wide range
of dispersion estimates for processes following normal and non-normal parent
distributions. The performance of all the charts is evaluated and compared
using run length characteristics (the average run length (ARL), the median
run length (MDRL) and the standard deviation of the run length distri-
bution (SDRL)). Extra Quadratic Loss (EQL) and Relative Average Run
Length (RARL) measures are also used to examine the overall effectiveness
of the EWMA dispersion charts. This chapter is based on IAMMM

(2011d), [Abbasi et a1l (20124) and [Abbasi and Milled (20111).

4.1 Introduction

Shewhart type dispersion charts, as discussed in Chapters 2 and 3, are most
effective when large shifts in the process parameters are of concern. For

the efficient detection of small or moderate shifts in the process parameters,
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the use of an EWMA chart is usually recommended. Monitoring process

dispersion using an EWMA chart has attracted the attention of different

researchers — some important contributions are Wortham and Ringer (Im_ﬂ);
|Nq and CasA (Ilf)ﬁd) |D0manque and Patchl (IlQﬂ]J) Iﬁlrgmﬂﬂj.mi_Ham]I&d
): MacGregor_and Harris (1993); |Stoumbos and Revnoldsj QOOd): Chen
et al. (M) and [Shu and Jian M)

\

Most of the proposed EWMA dispersion charts are based on the assump-
tion of normality of the quality characteristic, which is not always the case. In
fact, many real life processes do follow non-normal distributions (cf.

(|l99_4|), LLam.QéJ (Il%d) and lefmnsmjﬂd_ﬂ)lnyl (IlM)) It has been obser-

ved in Chapter 2 that a Shewhart type dispersion chart that is superior for

the normal environment may not remain the same for non-normal parent
distributions. This can also be expected for the EWMA dispersion charts.

LMbm&dakis_emj.lJ (IZDQSI) showed that the run length behaviour of the EWMA

dispersion charts can be seriously affected when the assumption of normality

is violated. Hence, there is a need to investigate a wide range of EWMA
dispersion charts for normal and non-normal parent distributions, to identify
a chart (or a set of charts), that performs well for both the cases or at least
under a particular distributional environment.

The purpose of this chapter is to develop new EWMA dispersion charts
that can be used for the efficient detection of shifts in process dispersion,
considering normal and non-normal parent distributions. We considered the
Student’s t and Gamma distributions for representing the non-normal cases:
the Student’s ¢ is a heavy tailed distribution and the Gamma is a skewed
distribution. EWMA dispersion charts investigated in this chapter are based
on sample range (R), sample standard deviation (S), inter quartile range
(IQR), average absolute deviation from median (M D), median absolute de-
viation (M AD), S,, and @,, estimates. These dispersion statistics have been
studied in Chapter 2 for the Shewhart charts.

The rest of this chapter is organized as follows: Section 4.2 briefly des-
cribes different dispersion estimates that form the basis of the EWMA disper-
sion charts; the design structure of these charts is developed in Section 4.3; a

discussion of the performance measures used to evaluate control charts and
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a description of the simulation study is given in Section 4.4; the results of
the study are then used to compare all the dispersion charts under normal
and non-normal parent environments in Section 4.5; and finally, the chapter

ends with conclusions in Section 4.6.

4.2 Dispersion Estimates

Let X be the quality variable of interest and let X, X5, -+, X, be a random
sample of size n from a distribution with mean p and standard deviation
o. Further let X(;) be the ith order statistic (smallest to largest), X be the
sample mean, X be the sample median and | X'| be the absolute value of X.

The definitions of different dispersion estimates are given as:

Sample Range: R = X(,) — X

Sample Standard deviation: S = \/ﬁ Yo (X —X)?
Interquartile range: IQR = (Q3 — ()1)/1.34898

Downton’s Estimate: D = n(zfl) S li— 3+ 1)) X

Average Absolute Deviation from Median: M D = %Z?:l )Xi — X‘
Median Absolute Deviation: MAD — 14826 med | X; — |

S, estimate: S, = 1.1926 med; {med; | X; — Xj|;i # j}

Qn estimate: Q, = 2.2219{|X; — X;|;i < j},, where k = ( )

In/2] +1 )

The details regarding these dispersion estimates can be seen in Chapter 2
(Section 2.2). All these estimates will be used to develop EWMA dispersion

charts.



86 EWMA Dispersion Control Charts

4.3 Design of the EWMA dispersion charts

In this section, a general design structure is developed for the EWMA disper-
sion charts. Let T" define a dispersion statistic and 7; (t = 1,2,---) be the
sequence of the observed values for T computed from the subgroup of n obser-
vations, taken at time t. Note that T" can be any of the dispersion estimates
described in Section 4.2. As we are only interested in monitoring changes in
process standard deviation, we assume that the process mean is stable at a
fixed level. Let the EWMA statistic W;, for the dispersion estimate E, be
defined as

Wy, =X+ (1 = W4 (4.1)

where ) is the smoothing parameter lying between 0 and 1. By continuous
substitution of W;_;, the EWMA statistic W; can be written as (see

(1959) and Montgomeryl (2009))

t—1
Wy=A> (1=NTi+(1=NWy;  Wo=T (4.2)

=0

As t gets larger, we have

A
W, N oA ——— 4.
oW, oT, 2 _ )\ ( 3)
It can be easily shown that (cf. MQnLnger;gl (Iﬂ)ﬂd), IB@ M))
o1 = t3T [t (4.4)

where t5 and t3 are the control chart coefficients based on sample statistic 7.
These are defined as the mean and the standard deviation of the distribution
of relative dispersion (Z = T/o), i.e. ts = E(Z) and t3 = o4. For a particular
parent distribution, these coefficients depend on the sample size (n) (see
Mahgne;gl (|L9_9§), Kao and Hd (m_ﬂ), MQnLnger;gl (IQJQ_d)) The constant ¢,
is required to obtain an unbiased estimate of ¢ using the dispersion statistic
T.
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From Equations (4.3) and (4.4) we have

PN % % (4.5)
The upper control limit (UCL) of the EWMA chart based on the dispersion
statistic F is thus defined as
— t3T A

UC’L:T—FLE CIpY (4.6)
where L is the control chart multiplier. L is usually set at 3 but can be
adjusted to set the false alarm rate to a specified value. The major concern
of this study is to detect the upward shifts in process dispersion, hence we
are only considering a one-sided UC'L. For a two-sided chart, the control
chart multiplier L needs to be adjusted accordingly.

After setting the UC'L for the EWMA dispersion chart, the EWMA statis-
tic given in Equation (4.1) is plotted against time. For an in-control process
all of the W, values should lie below the UCL, whereas an out-of-control
process is signaled by one or more of the W; values exceeding the UC'L.
It is desirable that an out-of-control situation is detected as early as pos-
sible so that corrective actions can be implemented. For the choice of T' as
R, S, IQR,D,MD, MAD,Sn and Qn, we will refer to the EWMA charts as
the Rp chart (INgMSA (IM)), the S chart, the Qg chart, the Dg
chart, the M Dg chart (IAhm&jI]d_Mﬂ]ﬂfl 2£l]_1£J)), the MADg chart, the
S Ng chart and the QNg charts for the rest of this chapter.

4.4 Performance Evaluation

To evaluate the performance of control charts, the average run length (ARL),
the mean of the run length distribution, is the most important and widely

used measure. The performance can be evaluated by two ARL values:

e ARL(: the average number of samples until an out-of-control signal

is detected by a control chart when the process standard deviation is
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in-control.

e ARL;: the average number of samples until an out-of-control signal
is detected by a control chart when the process standard deviation is

shifted to an out-of-control value.

Large values of ARL and small values of ARL; are preferable for any control
chart setting. In this study, a Monte Carlo simulation approach with 10,000
iterations is used to approximate the run length distribution of the EWMA

dispersion charts, following the methods of [Maravelakis et al ([2005) Neu-

baer (1997), Zhang and Chen (2004), [Abbasi (2010) and Abbasi and Millex
). Note that K E (M and |Schaffer and Kim (hﬂlﬂ indicate that

5000 replications are sufficient to estimate the ARL to an acceptable level

of precision in many control chart settings. Due to the skewed nature of
the run length distribution, the sole use of ARL measure in interpreting a
chart’s performance is criticized by some authors including, IM (|L95_€J),
|Gﬁ1]| (I.L9.9.EJ, |L9_9_4|) and Mﬂ (Il%j) It is usually recommended to report
median run length (MDRL) and the standard deviation of the RL distribu-
tion (SDRL) (cf. IM dL%j), Maravelaki 1. (IM)) Similarly to the
ARL, low values for MDRL and SDRL are also desirable.

The goal of this study is to propose efficient EWMA dispersion charts
for Phase II of SPC. Hence, we assume that a sufficiently large and clean
historical data set is available which represents the state of an in-control
process. From this historical data set, control limits are computed for all the
dispersion charts using their respective control chart constants (o and t3).
The control chart multipliers L are chosen to fix the in-control ARL (ARLy)
at the desired level for all the charts. In each simulation run, samples of a
particular size (n) are generated and the dispersion statistic 7" are computed
to be used as the monitoring statistic. The run length (RL) is defined as the
number of samples until the plotting statistic exceeds the upper control limit.
The run length was simulated 10,000 times and the average, the median and
the standard deviation of the RL distribution (ARL, MDRL and SDRL) were

computed.
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The performance of all the charts is evaluated and compared under the
usual normality assumption and for cases where this is violated. For the non-
normal cases, we used the Student’s ¢ distribution to investigate a heavy-
tailed symmetric distribution and a Gamma distribution to investigate a
skewed distribution. The density functions of these distributions are given

below.

Normal(p, 02), p € R,0 >0

Student’s ¢ (), k>0

In our simulation study, we used Normal distribution with 4 = 0 and 02 = 1,
Student’s t distribution with £ = 5 and Gamma distribution with o = 2 and
g =1.

The run length results are reported for subgroups of sizes n = 5 & 10
and A\ = 0.05,0.25,0.50 & 0.75. The ARL, SDRL and MDRL for one of
the charts (i.e. the M Dpg chart) are provided in Tables 4.1-4.3 for normal,
Student’s ¢ and Gamma distributed quality characteristic respectively. The
results for the remaining seven charts are reported in Appendix Tables B.1
- B.21. The relative standard errors of the results reported in these tables
are found to be around 1.5%, as checked by repeating the simulations. This
is quite acceptable in control chart studies - for details see (@) and

(2007).

In these tables, ¢ represents the multiplicative change in the process stan-

dard deviation relative to the in-control scenario: that is § = 1 represents
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the in-control situation where the standard deviation is ¢ and § = 1.5 re-
presents an out-of-control scenario where the process standard deviation is
1.5 x 0. For each scenario, the control chart multiplier L was chosen to give
an in-control average run length of 200 (i.e. ARLy = 200) for all the charts —
these values are reported in Table 4.4. Control chart coefficients (¢ and t3),
used for setting control limits for all the dispersion charts, are provided in
Appendix Tables A.1 and A.2, for some representative values of n considering
normal and a range of non-normal distributions.

Run length characteristics evaluate the detection ability of a chart for a
specific shift value. To evaluate the overall effectiveness of a control chart
over an entire shift range, the measures such as Extra Quadratic Loss (EQL)
and Relative ARL (RARL) can be used. EQL and RARL are described

below:

Extra Quadratic Loss (EQL)

EQL is defined as the weighted average ARL over the entire shift domain
(Opmin < 0 < Omaz) using the square of shift (§?) as the weight. Mathematically
EQL is given as:

1 6maz

EQL= ——— / §2ARL(8) do (4.7)
5mar - 5mzn Smin

where ARL(6) is the ARL of a particular chart at shift 5. The above ex-

pression of EQL is based on the assumption that the process shift § has a

uniform distribution over the interval [d,in, Omaz]. Thus, the density function

1

is 5 — over this interval. The uniform distribution for ¢ is assumed by

max _6mzn

many researchers including \[Domangue and Patchl 199]J) Reynolds Jr. and
Stoumbos M) and (Wu et all (2009).

Ou et al. ([Zﬂlj) also investigated the effect of non-uniform distributions
for 0 on the EQL values. They showed that the distribution of § has a limited

influence on the relative performance of control charts based on EQL. They

mentioned that if a chart is performing better in terms of EQL compared

to the other chart under a uniform distribution for ¢, it also has better
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performance under different non-uniform distributions for ¢.
Many researchers used EQL as a criterion to measure the overall perfor-
mance of a control chart (Reynolds Jr. and Stoumbog (|2004a|); Zhang and

Tian (IZDDEI), QUMJ.J (IZQ]_Z)) The smaller value of EQL indicates a better

overall performance of a chart compared to other competitive charts.

Relative ARL (RARL)

RARL is another measure that can be used to evaluate the overall effecti-
veness of a control structure. RARL calculates the average of the ratios
between the ARL of a particular chart (ARL(9)) with the ARL of the bench-
mark chart (ARLpenchmark(9)). Mathematically, RARL is defined as:

1 Smaz  ARL(6)
ARL= — —
R R 5ma:c - 5min /5 ARLbenchmark(é)

min

ds (4.8)

The benchmark can be selected as a chart with lowest EQL. This will produce
RARL = 1 for the benchmark chart and RARL > 1 for the other charts.
The distance between the RARL of different charts and the benchmark chart
(RARL - 1) shows the extent of inferior performance of a chart as compared
to the benchmark chart.

The expressions of EQL and RARL are evaluated using numerical integra-
tion method and the results are reported in Tables 4.5 and 4.6 respectively,
for all the EWMA dispersion charts considering normal, ¢ and Gamma parent

distributions using d,,;, = 1.1 and d,,., = 4.0.
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Table 4.1: RL characteristics of the M Dg chart for normally distribu-
ted quality characteristic when ARLy = 200

n
5 10

A A
0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL  201.02 200.35 200.41 201.06 | 199.75 199.59 200.70 201.74
MDRL 140.00 140.00 140.00 140.00 | 138.00 137.00 138.00 141.00
SDRL 197.69 200.73 200.87 198.67 | 194.08 193.33 196.40 203.47

1.10  ARL 3431  43.36 53.04 61.00 | 21.41 2745 36.13  44.69
MDRL 27.00 31.00 37.00 44.00 | 17.00  20.00  25.00  31.00
SDRL  26.96 40.69 51.80 58.59 | 15.13 25.18 34.65  43.32

1.20  ARL 1589  17.63 2194  25.80 9.89 10.20 1245  15.83
MDRL 13.00 13.00 16.00  18.00 9.00 8.00 9.00 11.00
SDRL  10.40 15.01 20.39  25.38 5.39 7.85 11.14  15.29

1.30  ARL 10.13  10.10 11.66  13.61 6.40 2.77 6.37 7.73
MDRL  9.00 8.00 9.00 10.00 6.00 5.00 5.00 6.00
SDRL  5.73 7.73 10.34  12.86 3.02 3.75 5.07 6.81

1.40 ARL 7.44 6.73 7.38 8.60 4.79 3.99 4.17 4.67
MDRL  7.00 5.00 6.00 6.00 4.00 3.00 3.00 3.00
SDRL  3.86 4.77 6.15 7.71 2.00 2.35 2.99 3.93

1.50  ARL 9.95 5.12 5.32 5.99 3.85 3.11 3.02 3.23
MDRL  5.00 4.00 4.00 4.00 4.00 3.00 3.00 2.00
SDRL  2.95 3.38 4.14 5.21 1.53 1.68 1.99 2.49

1.60  ARL 5.00 4.16 4.11 4.50 3.29 2.57 2.45 2.49
MDRL  5.00 4.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.38 2.59 3.07 3.79 1.25 1.29 1.50 1.74

1.80  ARL 3.76 3.00 2.86 3.00 2.55 1.94 1.78 1.77
MDRL  3.00 3.00 2.00 2.00 2.00 2.00 2.00 1.00
SDRL  1.68 1.74 1.93 2.31 0.91 0.90 0.95 1.06

2.00 ARL 3.09 243 2.25 2.25 2.12 1.61 1.46 1.43
MDRL  3.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.33 1.32 1.41 1.56 0.75 0.70 0.69 0.72

250 ARL 2.21 1.71 1.59 1.55 1.54 1.22 1.14 1.12
MDRL  2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL  0.93 0.84 0.84 0.87 0.57 0.44 0.37 0.34

3.00 ARL 1.77 1.41 1.32 1.29 1.26 1.07 1.04 1.04
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.74 0.63 0.59 0.58 0.45 0.27 0.21 0.20

3.50 ARL 1.52 1.24 1.19 1.17 1.12 1.03 1.02 1.01
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.63 0.48 0.44 0.43 0.33 0.17 0.13 0.12

4.00 ARL 1.36 1.17 1.12 1.10 1.06 1.01 1.00 1.01
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.53 0.41 0.35 0.32 0.23 0.10 0.06 0.07
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Table 4.2: RL characteristics of the M D g chart for t-distributed quality
characteristic when ARLy = 200

n
5 10

A A
) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.11 201.02 200.91 200.97 | 201.02 200.11 199.49 200.20
MDRL 137.00 141.00 140.00 140.00 | 142.00 143.00 142.00 142.00
SDRL  196.07 203.37 201.00 202.69 | 199.06 199.43 201.79 200.98

1.10 ARL 43.51  67.08 86.02 100.17 | 28.33  42.79  58.56  72.34
MDRL 33.00 48.00 60.00 69.00 | 22.00 31.00 40.00  51.00
SDRL  36.35 64.39 84.88 100.43 | 21.58 40.09 57.23 71.04

1.20 ARL 20.52  30.58  41.99 53.70 | 1292 16.08 23.14  31.68
MDRL 17.00 22.00 30.00 37.00 | 11.00 12.00 16.00  22.00
SDRL  14.75 2784 40.99 53.17 7.71 13.22  22.00 31.15

1.30  ARL 1286  16.68  24.12  32.11 8.20 8.81 11.77  15.81
MDRL 11.00 13.00 17.00  22.00 7.00 7.00 9.00 11.00
SDRL 7.95 14.35  22.79  31.55 4.15 6.42 10.26  14.90

1.40 ARL 9.46 11.04 15.04  20.69 6.09 5.86 7.26 9.57
MDRL  8.00 9.00 11.00  15.00 6.00 5.00 6.00 7.00
SDRL  5.40 8.79 13.72  19.92 2.83 3.84 5.84 8.62

1.50 ARL 7.45 7.92 1045  13.82 4.87 4.36 4.90 6.27
MDRL  7.00 6.00 8.00 10.00 5.00 4.00 4.00 5.00
SDRL  4.03 5.76 9.14 13.00 2.07 2.56 3.74 5.46

1.60 ARL 6.17 6.24 7.85 10.27 4.07 3.52 3.79 4.50
MDRL  6.00 5.00 6.00 7.00 4.00 3.00 3.00 3.00
SDRL  3.08 4.33 6.50 9.54 1.67 1.95 2.58 3.66

1.80  ARL 4.65 4.35 4.87 6.17 3.14 2.58 2.54 2.83
MDRL  4.00 4.00 4.00 5.00 3.00 2.00 2.00 2.00
SDRL 2.20 2.72 3.78 5.47 1.19 1.28 1.55 2.06

2.00 ARL 3.75 3.35 3.55 4.25 2.57 2.08 1.98 2.08
MDRL  3.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00
SDRL  1.72 1.95 2.55 3.49 0.95 0.96 1.07 1.33

250 ARL 2.66 2.26 2.23 2.37 1.86 1.48 1.38 1.37
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.14 1.17 1.37 1.67 0.68 0.61 0.61 0.66

3.00 ARL 2.12 1.77 1.70 1.76 1.50 1.23 1.16 1.14
MDRL  2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.90 0.86 0.92 1.07 0.56 0.44 0.39 0.38

3.50 ARL 1.80 1.53 1.46 1.46 1.29 1.11 1.07 1.06
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.76 0.69 0.71 0.76 0.47 0.32 0.27 0.25

4.00 ARL 1.59 1.37 1.30 1.30 1.16 1.05 1.03 1.03
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.67 0.58 0.56 0.59 0.36 0.22 0.17 0.16
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Table 4.3: RL characteristics of the M Dg chart for Gamma distributed
quality characteristic when ARLg = 200

5
0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00 ARL 200.01 199.49 200.07 199.18 | 199.07 200.66 209.84 200.90
MDRL 138.00 138.00 139.00 138.00 | 138.00 141.00 142.00 142.00
SDRL  206.32 198.47 198.72 200.72 | 196.97 199.04 199.28 196.90
1.10  ARL 44.74  60.11  75.64 83.75 | 2858 39.87 5213  62.90
MDRL 34.00 43.00 53.00 59.00 | 23.00 29.00 36.00  44.00
SDRL  38.41 5729 7391 81.90 | 21.33 3743 51.21 62.02
1.20  ARL 20.67 2740 36.08 43.11 | 13.04 15.27 20.56  26.42
MDRL 17.00 20.00 25.00 30.00 | 11.00 12.00  15.00  19.00
SDRL  14.77  24.88  34.86  42.16 7.79 1241 19.19  25.33
1.30  ARL 13.16  15.62  20.25  24.85 8.42 8.50 10.46  13.59
MDRL 11.00 12.00 14.00  18.00 8.00 7.00 8.00 10.00
SDRL  8.41 13.15  19.10  24.15 4.37 6.18 9.10 12.83
1.40  ARL 9.55 10.17  13.01  15.97 6.19 5.68 6.68 8.19
MDRL  8.00 8.00 10.00  11.00 6.00 5.00 5.00 6.00
SDRL 5.55 7.93 11.78  15.25 2.93 3.72 5.46 7.42
1.50  ARL 7.58 7.55 9.05 11.31 4.93 4.31 4.76 .64
MDRL  7.00 6.00 7.00 8.00 5.00 4.00 4.00 4.00
SDRL  4.17 5.62 7.84 10.40 2.18 2.56 3.58 4.85
1.60  ARL 6.26 5.96 6.90 8.34 4.15 3.51 3.63 4.17
MDRL  6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL  3.25 4.18 5.70 7.55 1.73 1.96 2.51 3.36
1.80 ARL 4.77 4.21 4.59 5.20 3.20 2.56 2.50 2.63
MDRL  4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.36 2.66 3.53 4.49 1.27 1.30 1.53 1.87
2.00 ARL 3.84 3.35 3.43 3.81 2.63 2.09 1.97 2.02
MDRL  4.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00
SDRL 1.82 2.04 2.44 3.05 1.00 1.00 1.10 1.31
250 ARL 2.73 2.23 2.19 2.27 1.88 1.49 1.38 1.36
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.21 1.20 1.35 1.60 0.71 0.64 0.61 0.64
3.00 ARL 2.17 1.78 1.71 1.73 1.53 1.23 1.17 1.16
MDRL  2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.93 0.90 0.93 1.04 0.58 0.46 0.41 0.40
3.50 ARL 1.84 1.53 1.46 1.45 1.32 1.12 1.08 1.07
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.79 0.71 0.72 0.75 0.49 0.33 0.28 0.26
4.00 ARL 1.62 1.37 1.31 1.29 1.19 1.06 1.04 1.03
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.69 0.59 0.57 0.58 0.40 0.25 0.20 0.18
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Table 4.4: Control chart coefficients L to fix the ARLgy = 200 for the
EWMA dispersion charts
Distribution n A RE SE QE DE MDE MADE SNE QNE
Normal 5 0.05 1.869 1.867 1.852 1.819 1.883 1.887 1.888 1.874
0.25 2.588 2.566 2.606 2.585 2.609 2.735 2.688 2.711
0.50 2.823 2.782 2.830 2.795 2.829 3.063 2.942 3.025
0.75 2.925 2.865 2.949 2.895 2931 3.215 3.057 3.173
10 0.05 1.835 1.823 1.843 1.801 1.805 1.851 1.826 1.797
0.25 2.562 2508 2581 2502 2.513 2.607 2.582 2.519
0.50 2.792 2.686 2.813 2.689 2.740 2.861 2.845 2.731
0.75 2.893 2.765 2923 2.771 2.836 2.979 2.953 2.826
Student’s ¢ 5 0.05 1.892 1.891 1.879 1.885 1.883 1.937 1.891 1.916
0.25 2.981 2984 2.866 2.921 2.892 2.902 2.834 2.894
0.50 3.527 3.545 3.361 3.425 3.329 3.336 3.255  3.317
0.75 3.849 3.851 3.567 3.682 3.581 3.546 3.443 3.554
10 0.05 1.921 1.884 1.851 1.862 1.889 1.884 1.882 1.882
0.25 3.041 2.989 2.686 2.811 2.758 2.719 2.696 2.693
0.50 3.627 3.538 3.025 3.252 3.117 3.019 3.015 3.023
0.75 3.946 3.829 3.171 3.492 3.302 3.190 3.164 3.165
Gamma 5 0.05 1.883 1.896 1.864 1.915 1.879 1.881 1.923 1.891
0.25 2.867 2.895 2.801 2.827 2.784 2.863 2.853 2.878
0.50 3.327 3.351 3.181 3.232 3.172 3.299 3.261  3.320
0.75 3.545 3.578 3.375 3.421 3.355 3.531 3.461 3.539
10 0.05 1.898 1.890 1.912 1.875 1.879 1.871 1.882 1.861
0.25 2.851 2.802 2.762 2.703 2.695 2.708 2.759 2.682
0.50 3.293 3.198 3.097 3.012 2.991 3.041 3.106 2.997
0.75 3.518 3.401 3.261 3.179 3.140 3.209 3.299 3.162
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Table 4.5: Extra Quadratic Loss (EQL) for different EWMA dispersion
charts for Normal, Student’s ¢ and Gamma distributed quality characte-
ristic (57711'77, = 11, 5mar = 40)

Distribution ~ Chart  0.05 0.25 0.50 0.75 ‘ 0.05 025 050 0.75
Normal REg 16.19 13.75 13.67 14.31 | 11.71 10.28 10.35 10.81
SE 15.73 13.31 13.21 13.70 | 10.94 9.63 9.59  9.92

QE 16.17 13.93 13.81 14.68 | 13.78 11.91 11.91 1249

Dg 15.65 13.52 13.33 13.89 | 10.94 9.72  9.65 10.03

MDg 1627 13.88 13.88 14.41 | 11.40 10.02 10.06 10.50

MADE 25.05 2249 2294 24.28 | 1597 13.77 13.85 14.65

SNg 23,54 20.61 20.55 21.52 | 14.50 12.56 12.77 13.41

QNg 2294 2048 21.09 2240 | 13.14 1142 11.36 11.82

Student’s ¢ REg 21.37 21.44 2513 29.86 | 17.23 17.06 20.19 24.03
SE 20.86 21.04 24.94 29.52 | 15.18 14.88 1747 20.71

QE 19.72 1873 21.17 23.74 | 1493 13.25 13.84 14.89

Dg 20.15 19.69 2242 2588 | 13.92 12,79 14.11 16.10

MDg 19.71 1897 20.87 24.05 | 13.64 12.28 12.92 14.27

MADg 2730 2579 2791 30.39 | 17.11 15.19 1548 16.71

SNg  25.75 2418 26.04 28.03 | 15.93 13.96 14.46 15.56

QNg 2562 2437 2631 29.34 | 1496 13.15 13.68 14.69

Gamma REg 20.87 19.77 21.85 24.24 | 16.03 14.74 16.07 17.98
SE 20.99 20.07 2212 24.62 | 15.08 13.64 14.58 16.18

QE 19.96 18.46 19.57 21.50 | 16.27 14.33 15.01 16.26

Dg 20.19 1848 1991 21.76 | 13.87 12.26 12.63 13.70

MDpg 20.14 1843 19.63 21.37 | 13.90 12.19 12.55 13.47

MADgE 2746 26.29 2826 30.81 | 17.59 15.64 16.17 17.47

SNg 2642 2456 26.29 28.54 | 16.89 1520 16.00 17.59

QNg 2561 2460 26.75 29.49 | 14.92 13.13 13.62 14.74
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Table 4.6: Relative ARL (RARL) for different EWMA dispersion charts
for Normal, Student’s t and Gamma distributed quality characteristic

(Bmin = 1.1, 6pmaz = 4.0)

)
Distribution ~ Chart 0.05 0.25 0.50 0.75 | 0.05 0.25 0.50 0.75
Normal Rp 1.03 1.03 1.03 1.04 | 1.07 1.07 1.08 1.09
SE 1.01 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00
QRE 1.03 1.04 1.04 107|127 126 1.27 1.28
Dg 1.00 1.01 1.01 1.01|1.00 1.01 1.01 1.01
MDgr 104 104 105 1.05|1.04 1.04 1.05 1.06
MADr 161 1.71 1.78 1.83 | 147 147 1.49 1.53
SNg 151 156 1.58 1.61|1.33 133 136 1.38
QNg 147 155 162 166|121 120 120 1.21
Student’s ¢ RE 1.08 1.14 1.20 1.26 | 1.26 1.38 1.55 1.69
Sk 1.06 111 1.17 1.23|1.11 1.19 131 1.40
QRE 1.00 1.00 1.01 1.00 | 1.09 1.09 1.08 1.07
Dg 1.02 1.05 1.07 1.08 | 1.02 1.04 1.08 1.10
MDg 100 1.01 1.00 1.01 | 100 1.00 1.00 1.00
MADrp 139 140 1.39 1.36 | 126 1.24 1.23 1.22
SNg 131 131 129 124|117 114 114 1.12
QNg 130 132 130 1.29|1.10 1.08 1.07 1.05
Gamma RE 1.0 1.07r 1.11 113|116 1.21 1.27 1.32
Sk 1.05 1.09 1.12 1.15|1.09 112 1.15 1.18
QRE 1.00 1.00 1.00 1.00 | 1.17 1.18 1.20 1.21
Dg 1.01 100 1.02 1.01 | 1.00 1.00 1.00 1.01
MDg 101 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00
MADp 138 144 147 148|127 1.29 1.30 1.32
SN 133 134 137 136|122 125 128 1.31
QNg 129 134 138 140 |1.08 1.08 1.08 1.09
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4.5 Comparison of Control Charts

Performance

In this section, the performance of the all the EWMA dispersion charts is
compared for processes following normal or non-normal parent distributions
using ARL, EQL and RARL measures. The MDRL and SDRL measures are
closely related to the ARL, as can be seen from the results in Table 4.1-4.3
and Appendix Tables B.1-B.21. The recommendations based on ARL are
also valid when using MDRL and SDRL as performance measures.

To make comparisons easy, ARL curves for all the charts have been plot-
ted for various combinations of n, A\ and ¢ in Figures 4.1-4.6. In each plot,
the multiplicative shift ¢ is plotted on the horizontal axis while the corres-
ponding value of Log (ARLy) for the different charts is plotted on the vertical
axis. The log scale is used for better visual comparison. These charts have
all been designed to have ARLy = 200 so that the values of ARL; can be
compared directly - the lower the better. These plots are presented in Figures
4.1-4.2 for normal distribution, Figures 4.3-4.4 for ¢ distribution and Figures
4.5-4.6 for Gamma distribution using n = 5 & 10 respectively. The purpose
is to identify a control structure that performs better for both normal and

non-normal parent distributions.

Normal Distribution: Comparing the run length performance of different
dispersion charts for normally distributed quality characteristic, we observed
that the best performance is shown by the Sg chart because the ARL curves
for the Sg chart are lower than other competing charts for every combination
of n, A and §. The Sk chart also has the lowest EQL value (see Table 4.5)
and has been used as a benchmark chart, hence attaining RARL = 1 for
almost all the cases (see Table 4.6). When n is small (i.e. n = 5), there is
a very little difference between the Sg chart and the Rg, Dg, M Dg and Qg
charts in terms of ARL; and EQL. For n = 10, the Dr and M Dpg charts
have RARL values that are approximately 1 while the Rp and Qg charts
start to lose efficiency (e.g. for Qg chart, the RARL increases from 1.04 (for
n =15) to 1.26 (for n = 10) when A = 0.25). The ARL curves and the EQL
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values for MADg, SNg and QNg charts are always higher than the other
charts, indicating the worst performance and low detection ability of these
charts. The detection ability (in terms of ARL) of all the charts increases
with an increase in the sample size (i.e. as we move from n = 5 to n = 10,
the ARL; and EQL decreases for all the charts considering every choice of \).
The relative performance of the QNg chart gets better with an increase in
the sample size, whereas for Rg and Qg charts, this phenomenon is opposite.
From EQL tables, we can also observe that all the charts have better overall

performance for either A = 0.25 or A = 0.50.

Student’s ¢t Distribution: For ¢-distributed quality characteristic, we ob-
served that (in general) the M Dg chart is performing better than the rest of
the charts because the ARL curves and the EQL values of the M Dp chart
are lower than that for the other charts for almost all combinations of n, A
and 0. The Qg chart is almost as efficient as the M Dpg chart for n = 5.
When n = 10, the Dg chart has the closest RARL to that of the M Dy chart
for A < 0.50 while for A = 0.75, the Q) Ng chart is slightly efficient than the
Dpg chart. Rg and Sg charts are extremely affected for all combinations of
n and A but these charts are performing better than the M ADg, SNg and
QNg charts for n = 5 while for n = 10 this phenomenon is opposite. For a
fixed value of n and A, the ARL; and EQL of all the charts increases when
the parent distribution is ¢, compared to the ARL; and EQL for the normal
case. From the EQL table, we can also observe that all the dispersion charts
are having better overall performance for either A = 0.05 or A = 0.25 when
n = 5 while for n = 10, the overall performance of these dispersion charts is
better for A = 0.25.

Gamma Distribution: We observed that, for the skewed Gamma case,
the performance of the Dg, M Dg and QQg charts is almost similar and better
than the other charts when n is small. As n increases, the ARL; and EQL
of the Qg chart increases, whereas the performance of the Q Ng chart starts
getting better. The difference between the Dy and M Dpg charts, compared

to the other charts, increases with an increase in A. The performance of
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the Sg chart is better than the M ADg and SNg charts for n = 5 and 10
while the QNg chart is performing better than the Sg chart for n = 10.
The M ADpg chart has shown the worst performance like in the normal case.
Compared to the normal case, the ARL; and the EQL for all the charts
increases for the parent Gamma distribution. From the EQL table, we can

observe that all the charts are having better overall performance for A = 0.25

Run length distribution curves

To get more insight into the run length distributions of all the EWMA dis-
persion charts, Figure 4.7 presents the run length distribution curves (RLCs)
of these charts, considering n = 10, A = 0.25 and ¢ = 1.2 for normal and non-
normal cases. These charts give the probability of detecting an out-of-control
situation within a given run length. A higher RLC indicates the superiority
of a chart in terms of the quick detection of changes in the process parame-
ters. We observed that the RLCs of the Sg, Dg and M Dg charts are higher
than those of the other charts under normality. The Qg and M Dpg charts
perform better for the ¢ distribution, whereas for Gamma distribution, the
MDpg and Dg charts are clearly superior than the rest of the charts, as the
RLCs of these charts are higher than those of the other charts, particularly
at shorter run lengths. The RLCs for the M ADpg chart are the lowest for
the normal environment while, for other cases, the Rg chart seems to be the

worst choice.

In short, we observed that the M Dpg chart is performing better for non-
normal cases and its performance for normal case is not bad either. Dpg
chart can be another good choice. We noticed that these superiority orders
depend on the relative efficiency (Eq. 2.11) of a dispersion estimate, under

a particular distributional environment.

Next, we explore some other characteristics of these EWMA dispersion
charts, such as the comparison with their respective Shewhart structures and
the effect of sample size. To save space, the results will be provided for only
the M Dpg chart. Similar results have been observed for the other EWMA

dispersion charts.
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4.5.1 Comparison with Shewhart dispersion charts

In this section, we compared the ARL performance of the M Dg chart with
its respective Shewhart M D chart structure studied in Chapter 2. Note that

the M D chart of Riaz and Saghizl (IM) becomes a special case of the M Dg

chart at A = 1. The run length characteristics of the M D chart are also

computed using similar simulation routines and the results are provided in
Table 4.7 for normal, t and Gamma distributions considering n = 5 & 10.
Comparing the results for the M Dg chart (in Tables 4.1 - 4.3) with the
MD chart (in Table 4.7), we observed that, for all values of A < 1 used in
this study, the ARL; for the M Dg chart is much better than that for the
M D chart, particularly for small and moderate changes in 0. As expected
for large changes in o, the performance of the Shewhart type M D chart is
slightly better than that of the M Dpg chart. Figure 4.8 presents the ARL
comparison of the M D chart with M Dg chart when A = 0.05 and 0.25 using
n = 10. The ARL curves for the M Dg chart are clearly lower than for the
M D chart when ¢ is low for all the cases. Overall, the performance of the
M Dpg chart with A = 0.25 seems to be best for all the values of §. Similar

behaviours can also be observed for other charts investigated in this study.

4.5.2 Effect of sample size

In this section we discuss the effect of sample size on the performance of the
M Dp chart. The performance is evaluated considering observations from the
normal and the two non-normal parent distributions for n = 3,5,7,10, 12 and
15. The results have been reported in Table 4.8 for the case when A\ = 0.25
and ARLy = 200.

We can observe from the results in Table 4.8 that, for a specified in-control
ARL (ARLy = 200), the detection ability of the M Dg chart improves with
an increase in the sample size. In all the cases, we can see that the out-of-
control RL characteristics of the M Dy chart decreases with an increase in the
value of n at a particular value of §. For example, under normally distributed

quality characteristics, the ARL; decreases from 26.62 for n = 3 to 7.37 for
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n = 15 when 0 = 1.2. This means that for the detection of a 1.2¢ shift in
process variability, the M Dg chart requires, on average, 19 less observations
when the sample size increases from n = 3 to n = 15. For a particular value
of A\, the choice of sample size depends upon the magnitude of shift (4) to
be detected quickly. For efficient detection of small shifts, large samples are
required but for the detection of large shifts, even small samples can serve the
purpose. We also observed that when the assumption of normality is violated,
larger samples are required to detect a particular magnitude of shift. For all
the other EWMA dispersion charts, we can expect similar improvements in

run length performance with increase in the sample size.

4.6 Conclusions

In this chapter we investigated a set of EWMA charts for monitoring process
dispersions. These EWMA charts are based on a wide range of dispersion
estimates as discussed in Section 4.2. We observed that, under the ideal
assumption of normality, the best performance is shown by the Sg chart,
followed by Dg and M Dpg charts. For non-normal Student’s ¢ and Gamma
distributions, the best performance has been generally shown by the M Dg
chart. The comparison with respective Shewhart dispersion charts revealed
the superiority of EWMA charts, particularly for low values of shift (§) in
the process standard deviation. Although run length characteristics are only
provided for normal, £ and Gamma parent distributions, one can generalize
the relative performance of these charts for other distributional environments,
based on the findings in Chapter 2.

The EWMA dispersion charts, investigated in this study, are all based
on the asymptotic control limits (given in Equation (4.6)). The sensitivity
of these charts can be increased by using the exact time varying limits and
the Fast Initial Response (FIR) feature, as examined in MM@I

, chap. 35 ).
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Table 4.7: RL characteristics of the M D chart for normal, Student’s ¢
and Gamma distributed quality characteristic when ARLy = 200

n
5 10

1) Normal t Gamma  Normal t Gamma,
1.00 ARL 199.02 201.210 200.70  201.50 201.930 199.86
MDRL  134.00 139.00 138.00  139.00  140.00 138.00
SDRL 198.80 199.72  203.56  198.99  200.63  200.56

1.10  ARL 66.84 108.18 92.57 53.02 86.17 72.72
MDRL 46.00  75.00 64.00 37.00 60.00 51.00
SDRL 66.71  107.81 92.02 53.18 86.06 71.70

1.20  ARL 30.69  63.79 49.90 20.46 40.18 32.88
MDRL 21.00  44.00 35.00 15.00 28.00 23.00
SDRL 30.13  63.47 49.54 19.60 39.14 32.53

1.30  ARL 16.66  38.67 29.56 9.74 21.45 17.33
MDRL 12.00  27.00 20.00 7.00 15.00 12.00
SDRL 16.31  38.19 29.24 9.20 20.75 16.68

1.40 ARL 10.12  25.38 19.35 2.75 12.86 10.30
MDRL 7.00  18.00 14.00 4.00 9.00 7.00

SDRL 9.55  24.70 18.68 5.25 12.45 9.70
1.50  ARL 6.98  17.46 13.55 3.74 8.23 6.92
MDRL 5.00  12.00 9.00 3.00 6.00 5.00
SDRL 6.41  16.97 13.05 3.17 7.61 6.36
1.60  ARL 5.16  12.66 10.06 2.79 5.73 5.03
MDRL 4.00 9.00 7.00 2.00 4.00 4.00
SDRL 456  12.02 9.60 2.27 5.20 4.54
1.80  ARL 3.29 7.54 6.14 1.83 3.34 3.04
MDRL 2.00 5.00 4.00 1.00 2.00 2.00
SDRL 2.68 6.99 5.61 1.24 2.79 247
2.00 ARL 2.46 5.06 4.40 1.46 2.30 2.19
MDRL 2.00 4.00 3.00 1.00 2.00 2.00
SDRL 1.91 4.51 3.85 0.80 1.75 1.62
250 ARL 1.58 2.66 2.48 1.11 1.37 1.39
MDRL 1.00 2.00 2.00 1.00 1.00 1.00
SDRL 0.95 2.09 1.86 0.35 0.71 0.74
3.00 ARL 1.29 1.86 1.79 1.04 1.14 1.15
MDRL 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.61 1.25 1.22 0.20 0.41 0.42
3.50 ARL 1.17 1.49 1.47 1.01 1.06 1.07
MDRL 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.44 0.85 0.81 0.12 0.26 0.26
4.00 ARL 1.10 1.31 1.31 1.00 1.03 1.03
MDRL 1.00 1.00 1.00 1.00 1.00 1.00

SDRL 0.34 0.64 0.63 0.07 0.16 0.18
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Figure 4.8: ARL comparison of the M D chart with M Dg chart when
A = 0.05 and 0.25 for n = 10 and ARLy = 200
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Table 4.8: Run length characteristics of M Dp chart for Normal |
Student’s t and Gamma distributed quality characteristic when A = 0.25
and ARLg = 200

n
) 3 ) 7 10 12 15

Normal

1.00 ARL 199.23 200.35 200.49 199.59 199.92 199.61
MDRL 138.00 140.00 140.00 137.00 138.00 136.00
SDRL 199.07 200.73 197.57 193.33 198.83 199.46

1.20 ARL 26.62 17.63 13.37 10.20 8.77 7.37
MDRL 19.00 13.00  10.00 8.00 7.00 6.00
SDRL 2437 15.01  10.89 7.85 6.40 5.13

1.40 ARL 6.24 6.73 3.22 3.99 2.32 3.03
MDRL  5.00 5.00 3.00 3.00 2.00 3.00
SDRL  4.52 4.77 1.78 2.35 1.10 1.52

1.60 ARL  3.52 4.16 1.94 2.57 1.46 2.01
MDRL  3.00 4.00 2.00 2.00 1.00 2.00
SDRL  2.28 2.59 0.94 1.29 0.60 0.88

Student’s t
1.00 ARL 201.84 201.02 200.39 200.11 199.58 199.01
MDRL 143.00 141.00 140.00 143.00 140.00 136.00
SDRL 199.32 203.37 199.98 199.43 198.74 198.59

1.20 ARL 46.50 30.58 2211 16.08 13.60 11.22
MDRL 33.00 22.00 16.00 12.00  10.00 9.00
SDRL 44.18 2784 19.69 13.22 11.02 8.65

1.40 ARL 18.67 11.04 8.00 5.86 4.95 4.20
MDRL  14.00 9.00 6.00 5.00 4.00 4.00
SDRL  16.19 8.79 0.74 3.84 3.03 2.35

1.60 ARL 10.40 6.24 4.61 3.52 3.06 2.67
MDRL  8.00 5.00 4.00 3.00 3.00 2.00
SDRL  8.33 4.33 2.82 1.95 1.57 1.27

Gamma,
1.00 ARL 200.50 199.49 202.62 200.66 200.88 199.82
MDRL 142.00 138.00 144.00 141.00 142.00 140.00
SDRL 199.52 198.47 198.07 199.04 198.60 196.83

1.20 ARL 41.07 2740 20.32 1527 13.11 10.93
MDRL 29.50 20.00 15.00 12.00  10.00 9.00
SDRL 38.71 2488 17.72 1241 10.45 8.50

1.40 ARL 16.87  10.17 7.60 .68 4.96 4.23
MDRL  12.00 8.00 6.00 5.00 4.00 4.00
SDRL  14.68 7.93 5.51 3.72 3.05 2.46

1.60 ARL  9.76 5.96 4.58 3.51 3.05 2.67
MDRL  8.00 5.00 4.00 3.00 3.00 2.00
SDRL  7.80 4.18 2.92 1.96 1.62 1.32




Chapter 5

On the Performance of EWMA
Location Chart in Presence of
Two Component Measurement

Error

Control charts are increasingly adopted by laboratories for affective monito-
ring of analytical processes particularly in the internal quality control phase.
Analytical responses from a laboratory measurement system are plotted on a
chart versus time or sample number to ensure the stability of a control mate-
rial. In practice, the measurements from these processes are mostly subject
to two types of errors: i) additive error and ii) multiplicative or proportional
error. These errors can have a serious impact on the detection ability of
control charts. The additive and multiplicative errors have been combined
in a single model, namely the two component measurement error model, pro-

posed by [Rocke and LQrgnzaLd (|L9_9_5;l) In this chapter, we investigate the

performance of the EWMA control chart in the presence of two component

measurement error due to its importance in analytical chemistry and envi-
ronmental settings. The comparison with the EWMA chart performance in

the presence of one component (additive) error model is also provided. This
chapter is based on @5:&1‘ ).
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5.1 Introduction

Analytical Quality Assurance (AQA) programs are increasingly adopted by

laboratories to ensure the quality of analytical measurements. According to

Taverniers et alJ M), AQA is a set of procedures that a laboratory must
undertake to ensure that its measurement procedures are of a high standard.
It should include method validation, estimation of measurement uncertainty,
effective internal quality control procedures, participation in proficiency tes-
ting schemes and accreditation to an international standard (e.g. ISO/IEC
17025). The objective of these AQA programs is to ensure that laboratories
work efficiently and effectively. ‘Method validation is an important require-
ment in the practice of chemical analysis’ and forms the first level of the AQA
system. Any newly developed method should be validated ‘to verify that its
performance parameters are adequate for use for a particular analytical pro-
blem’ (IEl.LBAQH.EMﬂlLD]j (Ile)g)) After method validation, level II of

the AQA system consists of a series of procedures that need to be taken to

ensure the verified analytical process is available for routine analysis. Internal
quality control (IQC) procedures are usually applied to continuously monitor
analytical results obtained daily in laboratories. As defined in “Harmonized

Guidelines for Internal Quality Control in Analytical Chemistry Laborato-

ries” prepared by [Thompson and Wood (|L9_Qé), “IQC is a set of procedures
undertaken by laboratory staff for the continuous monitoring of operation
and the results of the measurements in order to decide whether results are
reliable enough to be released”. The guide further states that the interpre-
tation of IQC analyses results depend largely on statistical process control
concepts and that the control chart acts as the most important tool for ef-

fective monitoring of IQC results. The use of control charts in analytical

laboratories has also been recommended by [Bartram and Ballang& (L9_9A
CITAC/EURACHEM-GUIDH (2002) and Bonet-Domingo et all (2006). De-

tails regarding different levels of AQA programs, together with the use of

specific control charts can be found in [Funk et alJ (ILQQA) and |Garfield (IL%J)

Detailed description of the design, use and interpretation of control charts,

with examples from analytical chemistry, can be found in numerous text-
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books regarding quality assurance in analytical chemistry laboratories: for
example see |Funk et al| 995, chap. 2), |Crosbv et alJ 1995, chap. 5 ), Mul-
lins \m, chap. 2) and Hibbert (2007, chap. 4). Control charts have also

\

been included as part of several ISO standards (hm&i (IlQQ.]J), |].SQ7§5_7d
(1993); 1SO7873 (1993); 1307966 (1993)).

Control charts are useful for the rapid recognition of unusual variations in

analytical results. Shewhart type control charts are the most widely used (as
can be seen in most of the above references). Due to the memoryless nature of
these control charts, they do not perform well for the detection of small and
moderate process shifts, which are usually of a major concern in analytical
processes. So, analysts need to be aware of more efficient control procedures
such as cumulative sum (CUSUM) or exponentially weighted moving average
(EWMA) control charts. Recently, khmnmd_ﬁad (IZDDé) emphasized the

use of EWMA charts for the monitoring of an analytical process by analyzing

real data sets concerning the quality control of total organic carbon in water.
The EWMA charts make use of information in historical observations as
well as in the current observations by adopting a varying weight scheme,
assigning highest weight to the most recent observations and having the
weights decrease exponentially for less recent observations. This helps in
earlier detection of small shifts in process (location and scale) parameters

(for details, see MQnLnger;gl (IQJQQ))

The presence of measurement error can seriously affect the performance

of any analytical process and also affects the detection ability of control

charts. Many researchers have investigated the effect of measurement error

on the performance of control charts: see|Mittag and Stemannl (199 d): Linna
and Woodall (2001); Linna. et_al. (2001)); Maravelakis et al! (2004); Cocchi
and Scagliarini (2007) and [Maravelakis (2007). It has been observed that

for analytical methods, measurement error can often be composed of two

components: additive error, which is dominant at low concentrations, and
multiplicative error, which is dominant at high concentrations. Due to this,
estimation of the overall precision of the analytical method becomes difficult,
especially in the area where transition occurs between near-zero and higher

concentration levels. The additive model works well for only low concentra-
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tion levels, whereas the multiplicative model for only higher concentrations.

The two component model proposed by ) resolves
these problems by combining both additive and proportional errors in a single
model. Thus, a single model can be used to adequately describe the measu-
rement error over the entire range of observations for an analytical process.

The two component model is:

Y, = a+ X" + ¢ (5.1)

Where X represents true concentration of an analyte at time ¢ and Y is
the measured response which is related to X by the calibration curve with

intercept a and slope 3. Let X ~ N (i, 0?) and random disturbances 1 and

2
n

) and € ~ N (0,0?)). Here 7 represents

€ are distributed normally and independently with mean 0 and variances o,
and o? respectively (i.e. n ~ N (0,02
multiplicative error and € represents additive error. For this model, obser-
vations at higher concentration are approximately lognormally distributed
and observations at low concentration are approximately normally distribu-

ted. This agrees with the findings of |Gibbons and Bhanmikl 200]]) and Aryal
et al. (2009).

Studies have demonstrated the importance and applicability of the above
model in analytical chemistry and environmental settings (see

(1999): Rocke et al! (2003)). Rodke and Durbin (2001) have shown that

measurement error in gene expression microarray data can be appropriately

expressed by the two component model. In addition, the generalization of the

two component model for multiple laboratories has been presented by Gib-

bons and Bhaumik (2001). A significant literature is also available concerning

the estimation of the two component model parameters (o. 3, 0., 0,). Rocke
and Lorenzato (IL%%I) used the method of maximum likelihood to estimate

these parameters. |Gi (|l99_ﬂ) suggested estimating model parame-

ters using the weighted least squares (WLS) method, but it has been pointed
out by EM (M) that WLS method is often VerE unstable and can

lead to non convergence or impossible estimates.

) considered a

Bayesian framework and adopted Markov chain Monte Carlo techniques for
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estimating the parameters. For the purpose of this study, the parameters of
the two component model are assumed to be known.

The purpose of this chapter is to investigate the performance of the
EWMA chart in the presence of two component measurement error. The
performance is evaluated for both the individual and the multiple measure-
ment cases. The rest of this chapter is organized as follows: The next section
describes the general structure of the EWMA control charts for monitoring
process location parameter and also establishes the EWMA control chart
structure in the presence of two component measurement error. The dif-
ferent characteristics of the run length distribution, such as the average run
length (ARL), the median run length (MDRL) and the standard deviation
of the run length (SDRL) are then presented for the proposed scheme. To
reduce the effect of measurement error, the design structure for the case of
multiple measurements at each sample point has been developed and the run
length results are provided in Section 5.4. Comparison of the two component
error model is then made with one component error model, as was discussed

by IMaravelaki 1 M) The effect of two component error model is

investigated in Section 6.6 and finally we give concluding remarks.

5.2 EWMA Chart in Presence of Two

Component Measurement Error

Since the introduction of EWMA charts by |BML’EA (IL%_d), many researchers
have examined these charts from different perspectives — see for example
mm_ﬁ@cc ccl (1990). Monteomerv et all (1995). Steine 1C9d), Chan
and Zhang (2000), Maravelakis et al/ (2004), (Carson and Yeh (2008), Shu and
Jiang (IME) and references therein. The basic structure of EWMA charts

can be seen in Chapter 1. In brief, suppose in the measurement error free case

we have a variable Z which is related to X as Z; = a + fX;. If we assume
that X ~ N (u,0?), it follows that Z ~ N (a+ SBu, 3%°c?). Suppose we
have observed values of Z that consist of subgroups of size n taken at period
t=1,2,3,.... The EWMA statistic S, is defined as: S; = AZ,+(1 — \) S,_1,
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where A (lying between 0 and 1) is the weight assigned to each observation
and Z, is the average of the sample observations at time ¢. The control limits

are thus defined as:

UCL =

jﬁ\/ (525) - -7

where UCL and LC'L respectively represents upper and lower control limits
for EWMA statistic S;, and o, = fo. For the case of the two component
error model, the EWMA statistic based on Equation (5.1]) is defined as:

Qg =AY+ (1=X) Qrep1,  Queo = py =+ BV e (5.3)

To establish the control limits based on the above EWMA statistic, we need
to find its mean and variance. By continuous substitution of Q;.; ;,i =
1,2,....t; the EWMA statistic ., can be written as (see [Roberts L9_5d
and Montgomery! (2009)):

~—

t—1
Qe = AZ(l =AY 4 (1= X)'Quep (5.4)
i=0

For independent random observations from a stable process, E(Y;) = E(Y;_;) =

py and var(Y,) = var(Y,_;) = 02 /n. Hence, by taking expectation on both
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sides of Equation (5.4), we obtain

t—

E(Qer) = A ' (1=N'E(Y )+ (1= N'E(Qseo) (5.5)
= (o + BuVe) <>\ 2_]1 A (1 A)t)

— (a4 Buveh) (A 70__ %‘_iﬂ +(1- A)t)
=a+ B,u\/eT%.

—_

I
o

-
Il

—_| =

Similarly, taking the variance on both sides of Equation (5.4), we obtain

Var(Qes) = N 2(1 N2 Var(Y,—) + (1 = N*Var(Qyeo) (5.6)

Hence, the proposed control limits are defined as:

vt ma /e 5 () 0o

LOLy, = o+ BuV e — L% (%) 1-(1-N" (7

where ¢, is given as (see |Rocke and Lorenzato| 199&) and Cocchi and Sca-
gliarini (2007)):

7y = 3027 + (et — 1) + o2 — 1)+ o2 (58)

The above control limits are known as exact or time varying control limits



On the Performance of EWMA Location Chart in Presence of
120 Two Component Measurement Error

but, as ¢ gets larger, the factor (1 — (1 — X)) quickly converges to unity so

we can use the asymptotic control limits, which are given as:

oy | A
UCL,. = Veon + [—Y -
CLi. =a+ BuVe + \/ﬁ (2 )\)

- A\
LCLy = a+ BuVe™ — LJ—% (ﬂ) (5.9)

For the rest of this study, asymptotic control limits given in Equation (5.9)
are used instead of time varying limits given in Equation (5.7)). For numerical
computations on the proposed charts, we assume that the parameters are
fixed and their values have been taken from the toluene example reported

by [Rm@nd.Lm&umIA (|l£)&5]), ie. a=11.51,5 = 1.524,0, = 0.1032 and

0. = 5.698. The two component error model has approximately constant

coefficient of variation (C'V') for high concentrations and constant standard
deviation for low concentrations. To cover the entire range of possibilities,

concentration mean level p from 5 picogram to 15 nanograms and C'V values

from 0.01 to 0.5 are used in this study, following [Rocke and LQrenzaLd (|L9_9j|)
and [Cocchi and Scagliarini (Iﬂ)ﬂﬂ) Relative standard deviation or coefficient

of variation (C'V') is a dimensionless measure and is defined as the ratio of

process standard deviation (o) to the mean (u). It is expressed as

CcV = (5.10)

o
1
The CV value is an important measure of the precision of an analytical

system and helps in assessing the importance of the likely analitical error in

200d)).

Suppose in the error free case, the shift ¢ in the process location para-

relation to the magnitude of the quantity being measured

meter is defined as 0 = (1 — po)/o, where py and pg respectively denote
in-control and out of control mean levels for the random variable X. In the
two component error case, the corresponding shift in the random variable Y,

given as J,., is defined as (see EmnamdMﬂ (IZDQ]J); I.Lmna_emlj (|2£)Ql|)

and (Cocchi and Scagliarini (2007)):
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5. Biln =) ~ BVl = po
C O'y

a+ B Ve — a+ BugVe

- JBoe (e (e~ 1) 4 02 (e 1)+ o2

- 5
2 oz oz U?
\/1 FE(E 1)+ (e - )+
- 5
\/C'V_2(e"727 — 1) 4% + L.
B252e771

(5.11)

The term in the denominator is always greater than one and hence makes

the magnitude of shift ;. smaller than ¢. To illustrate this effect, Figure 5.1

presents curves for d,./d versus C'V at different levels of mean concentration

(1)-

It is clearly seen from Figure 5.1 that the magnitude of shift § is greatly

affected by two component measurement error for small values of p and C'V'.

As p and C'V increase, d;./0 approaches 1.
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Figure 5.1: Decrease in the magnitude of shift due to two component
measurement error.
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5.3 Control Chart Performance

In this section, we evaluate the performance of EWMA chart in the presence
of the two component measurement error using the average run length (ARL),
the standard deviation of the run length distribution (SDRL) and the median
of the run length distribution (MDRL). Tables 5.1-5.3 give a summary of the
run length distribution of the EWMA chart in the presence of two component
error using the control limits given in Equation (59). For efficient detection
of small to moderate process shifts, we use A = 0.25 and L = 2.898, following

the recommendations of [Maravelakis et al. (IM) These choices of L and

A give an in-control ARL (ARLy) of 370 for no-measurement error case. For

representing the out of control situations, shifts (6 = 0.5,1.0 and 1.5) have

been introduced in the mean in standard deviation units.

The results in the Tables 5.1-5.3 indicate that, in the presence of two
component measurement error, the EWMA control chart is slower in detec-
ting the shift, especially for smaller values of p and C'V, see for example
ARL; = 368.99 when C'V = 0.01 and g = 5 for § = 0.5, which is very
close to ARLy = 370. The reason for this is that the magnitude of shift
reduces from 0.5 to 0.0067 (from Equation 5.11), which is almost similar to
zero sigma shift in the mean. So, the performance of EWMA chart is greatly
affected for the case of small C'V and low concentration level of the analyte.
The performance of the control chart improves as p and C'V increases. In
the extreme case, when we have C'V = 0.5 and pu = 15000, ARL; = 8.74,
which is reasonably low and indicates that for high C'V and large concen-
tration levels, two component error does not greatly affect the control chart
performance. This is because, in this case, ;. = 0.4871 for 6 = 0.50 (from
Equation 5.11). Hence the magnitude of shift is not much affected and nor
is the chart’s performance. Similarly, we can see that, the MDRL and SDRL
performances of the EWMA chart are also significantly affected for smaller
values of p and C'V.

Table 5.4 gives run length characteristics of the EWMA chart in the
presence of two component measurement error for the detection of negative

shifts in p. The results are presented for the case when § = —1.0 at different
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Table 5.1: ARL, MDRL and SDRL of the EWMA Chart in presence
of two component measurement error for 6 = 0.5 when ARLy = 370

cv
I 0.01 0.05 0.1 0.2 0.3 0.4 0.5
ARL 5 368.18 324.76 230.73 108.71 57.58 36.70 26.23
MDRL 264.00 225.00 161.00 78.00 42.00 27.00 20.00
SDRL 365.02 318.46 227.47 102.39 5290 32.59 21.60

ARL 10 361.11 233.18 112.78 37.76 21.59 15.56 12.92
MDRL 252.00 163.00 80.00 27.00 16.00 12.00 10.00
SDRL 361.29 228.40 109.36 33.79 1729 11.85 9.24

ARL 50 28717 56.19 2042 1145 977 915 9.00
MDRL 200.00 41.00 16.00 9.00 8.00 800 8.00
SDRL 279.89 5193 1631 794 639 592 5.65

ARL 100  262.46 43.53 17.31 1066 941 9.02 8.86
MDRL 183.00 31.00 13.00 9.00  8.00 800 7.00
SDRL 258.42 40.01 1344 720 6.08 571 5.51

ARL 1000 249.43 39.75 16.57 1031 938 897 8.76
MDRL 173.00 29.00 13.00 8.00 800 7.00 7.00
SDRL 24710 3511 1275  6.81 593 5.63 5.46

ARL 10000 251.21 40.50 16.38 10.29 9.42 894 881
MDRL 175.00 30.00 13.00 8.00 800 800 7.00
SDRL 246.50 36.16 1269 692 597 552 5.55

ARL 15000 247.46 39.56 16.47 10.34 9.28 895 8.67
MDRL 174.00 29.00 13.00 9.00 800 7.00 7.00
SDRL 24415 3533 1278  6.80 594 559 543
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Table 5.2: ARL, MDRL and SDRL of the EWMA Chart in presence
of two component measurement error for 6 = 1.0 when ARLy = 370
cVv

o 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 360.99 235.27 106.86 30.95 14.48 9.38 7.00
MDRL 253.00 164.00 75.00 23.00 11.00 &.00 6.00
SDRL 359.69 232.66 102.65 26.23 10.67 5.92 3.97
ARL 10 335.07 108.86 31.87 9.67 6.00 4.68 4.11
MDRL 237.00 77.00 23.00 800 5.00 4.00 4.00
SDRL 330.49 104.15 27.70 6.38 3.18 219 1.75
ARL 50 182.91 14.49 5.91 3.78 3.35 3.22 3.15
MDRL 126.00 11.00 5.00 3.00 3.00 3.00 3.00
SDRL 179.26  10.79 3.17 1.58 1.30 1.21 1.14
ARL 100 150.82 11.70 5.20 3.61 3.30 3.17 3.13
MDRL 106.00 9.00 5.00 3.00 3.00 3.00 3.00
SDRL 148.03 8.10 2.62 1.45 1.25 1.19 1.16
ARL 1000 141.36  10.60 4.95 3.53 3.26 3.17 3.13
MDRL 98.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 139.12 7.21 2.44 1.42 1.26 1.17 1.16
ARL 10000 140.18 10.61 4.94 3.54 3.27  3.17 3.13
MDRL 101.00  9.00 4.00 3.00 3.00 3.00 3.00
SDRL 136.16 7.24 2.44 1.41 1.25 1.19 1.17
ARL 15000 141.49 10.52 4.94 3.52 3.27  3.17 3.12
MDRL 99.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 136.27 7.18 2.39 1.41 1.25 1.18 1.16
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Table 5.3: ARL, MDRL and SDRL of the EWMA Chart in presence
of two component measurement error for 6 = 1.5 when ARLy = 370

cv
I 0.01 0.05 0.1 02 03 04 05
ARL 3 353.74 157.79 52.06 13.49 6.96 4.80 3.83
MDRL 245.00 111.00 38.00 11.00 6.00 4.00 4.00
SDRL 349.48 154.35 47.17 9.69 3.87 2.25 1.61

ARL 10 310.16 53.64 14.14 498 3.36 2.78 2.50
MDRL 219.00 39.00 11.00 4.00 3.00 3.00 2.00
SDRL 307.32 4891 10.21 239 129 095 0.79

ARL 50 11487 7.09 332 233 215 2.06 2.03
MDRL 81.00  6.00  3.00 2.00 2.00 2.00 2.00
SDRL 109.31  4.12 1.30  0.72 0.63 0.59 0.58

ARL 100 89.25 583 3.01 225 210 2.05 2.02
MDRL 63.00 5.00 3.00 2.00 2.00 2.00 2.00
SDRL 85.30  3.19 1.13  0.68 0.61 0.58 0.57

ARL 1000 80.99 545 290 222 209 203 2.02
MDRL 57.00  5.00  3.00 2.00 2.00 2.00 2.00
SDRL 7755 287  1.06 0.68 0.60 0.58 0.57

ARL 10000 81.28 539 2.89 222 209 203 2.02
MDRL 58.00  5.00  3.00 2.00 2.00 2.00 2.00
SDRL 7780 280 1.06 0.67 0.62 0.59 0.57

ARL 15000 82.00 540 292 221 208 2.04 201
MDRL 58.00  5.00  3.00 2.00 2.00 2.00 2.00
SDRL 76.80 277 1.05 066 0.61 0.58 0.57
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Table 5.4: ARL, MDRL and SDRL of the EWMA Chart in presence
of two component measurement error for 6 = —1.0 when ARLy = 370
cVv

o 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 368.18 233.36 108.97 31.38 14.90 9.33 7.04
MDRL 257.00 162.00 76.50 23.00 12.00 &.00 6.00
SDRL 361.94 228.16 105.68 27.23 11.16 5.95 3.96
ARL 10 348.26 113.26 32.88 9.76 593 4.71 4.11
MDRL 241.00 80.00 24.00 8.00 5.00 4.00 4.00
SDRL 347.57 109.96 28.46 6.23 3.07 218 1.75
ARL 50 226.39 15.66 5.95 3.75 3.33 3.20 3.14
MDRL 157.00 12.00 5.00 3.00 3.00 3.00 3.00
SDRL 223.13  11.49 3.02 1.48 1.22 1.15 1.13
ARL 100 203.69 12.06 5.17 3.54 3.26  3.17 3.13
MDRL 141.00 10.00 5.00 3.00 3.00 3.00 3.00
SDRL 199.62 8.25 2.43 1.34 1.21 1.15 1.12
ARL 1000 194.43 11.06 4.94 3.48 3.26 3.15 3.10
MDRL 135.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 188.66 7.31 2.26 1.31 1.18 1.11 1.09
ARL 10000 190.48 10.99 4.92 3.49 3.25 3.13 3.12
MDRL 134.00  9.00 4.00 3.00 3.00 3.00 3.00
SDRL 184.75 7.27 2.21 1.32 1.16 1.12 1.10
ARL 15000 193.48 11.10 4.95 3.53 3.24 3.15 3.12
MDRL 136.00  9.00 4.00 3.00 3.00 3.00 3.00
SDRL 187.30 7.45 2.27 1.35 1.18 1.13 1.10
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levels of p and C'V. Comparing results in Tables 5.2 and 5.4 for positive and
negative shifts indicate the asymmetric detection behaviour of the EWMA
chart in the presence of two component measurement error, particularly at
lower values of C'V. When CV is small, the EWMA chart performs better
for the detection of positive shifts compared to the negative shifts of the
same magnitude. As CV increases, the difference between the run length
characteristics for the detection of positive and negative shifts are almost

negligible.

5.4 Effect of Multiple Measurements

To reduce the effect of measurement error on the performance of the pro-

posed chart, the method suggested by Mw (|2D£ll|), and also
implemented by [Maravelakis et alJ (IM), is used by taking multiple measu-

rements at each sample point for all n observations. Suppose at each sample

point we take k measurements for n observations. The EWMA statistic is
thus defined as:
Quekt = AY e + (1= X) Qrer i (5.12)

where ?t is the average of n observations collected at time ¢ (each observation
comprising of k& measurements). Similar to the computation of Equations
(6.5) and (6.6), the mean and variance of the EWMA statistic (in Equation

(512)) are given as
E(Qierr) = o+ BV et (5.13)

and

Var(Que) = Ujjb’“ ((%) 1—(1- A)Qt]) (5.14)

respectively.
Hence, for the case of £ measurements, asymptotic control limits are defined

as:

o A
UC Ly :oz—l—ﬂ,u\/e"%%—[/\j%) <2_)\)
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and

v Ty A
LC Ly, = o+ Buven — L \j(ﬁ) (2 — )\)- (5.15)

where Oy iS_given as (see |Rocke and Lorenzato| (|1995|) and Cocchi and

Scagliarini (2007)):

g =\ B g 1) (A 1) Lo
(5.16)

The effect of measurement error is inversely proportional to the number mea-
surements taken at each sample point ¢ (i.e. the performance of the control
chart improves as we increase k). The choice of k£ depends on the cost as-
sociated with taking extra measurements and the level of precision required.
Similarly to the expression of &;. given in Equation (5.11), the shift (d;) in

the process mean level using k£ measurements is defined as:

o

5tck = 2
2 g
\/1+k“7(e”3—1)+%(e“3—1)+ 1

2
k20267

(5.17)

For this study, we used k& = 5 to represent the case of multiple measure-
ments. Figure 5.2 presents curves for d;. /6 versus C'V at different levels of p.
Comparing Figures 5.1 and 5.2, the benefit of using multiple measurements
(k = 5) at each sample point is shown and this benefit keeps on increasing
as we increase k. It is observed that, compared to ds./d, 0/ converges
quickly to 1. To examine the effect of k measurements on the run length
distribution of the EWMA chart, Table 5.5 gives ARL, MDRL and SDRL of
the EWMA chart in the presence of two component error using k = 5 mea-
surements at each sample point ¢ for the EWMA statistic in Equation (512))
using control limits in Equation (B.I5). The aim of using & measurements
is to reduce the out of control ARL while maintaining the same in-control
ARL (i.e. ARLy = 370). The run length characteristics are only provided
for 6 = 1.0, but we observed similar behaviour for other values of §.

By using multiple measurements, the ability of the control chart to detect

shifts has improved significantly. It is clear from the results in Tables 5.2 and
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Figure 5.2: Decrease in the magnitude of shift due to two component
measurement error using k = 5 measurements.
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Table 5.5: ARL, MDRL and SDRL of EWMA Chart in presence of two
component measurement error using kK = 5 measurements for 6 = 1.0
when ARL, = 370

cv
1 0.01 0.05 01 02 03 04 05
ARL b} 353.18 102.88 27.44 850 5.36 4.36 3.89
MDRL 250.00 72.00 21.00 7.00 5.00 4.00 4.00
SDRL 347.64 99.61 23.16 530 2.61 1.92 1.61

ARL 10 32438 31.82 9.15 449 3.71 342 3.27
MDRL 224.00 24.00 8.00 4.00 3.00 3.00 3.00
SDRL 319.81 2733 572 199 148 130 1.21

ARL 50 152.60 6.10 3.85 3.25 3.16 3.11 3.08
MDRL 106.00  5.00  4.00 3.00 3.00 3.00 3.00
SDRL 150.08  3.23 1.59 1.21 1.15 1.12 1.10

ARL 100 12554 549  3.68 3.24 3.12 3.09 3.10
MDRL 91.00  5.00  3.00 3.00 3.00 3.00 3.00
SDRL 120.69 277 149 121 1.15 1.10 1.12

ARL 1000 116.25 5.22  3.61 3.22 3.12 3.09 3.07
MDRL 83.00  5.00  3.00 3.00 3.00 3.00 3.00
SDRL 110.87  2.59 143 1.20 1.12 1.11 1.09

ARL 10000 114.20 5.21 3.64 3.23 3.14 3.10 3.07
MDRL 80.00  5.00  3.00 3.00 3.00 3.00 3.00
SDRL 110.85  2.55 148 1.19 1.12 1.11 1.12

ARL 15000 114.70 5.23  3.64 3.21 3.14 3.12 3.09
MDRL 82.00  5.00  3.00 3.00 3.00 3.00 3.00
SDRL 110.18  2.54 147 119 1.14 1.12 1.10
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Figure 5.3: ARL performance of EWMA chart in presence of two
component measurement error using single and & = 5 measurements for
0 =0.5.

5.5 that, in comparison to individual measurement chart, the performance
of the k measurements chart is far better. The out of control ARL, MDRL
and SDRL have been reduced significantly for all combinations of y and C'V.
Figures 5.3-5.5 clearly show the reduction in ARL of the & measurement
charts compared to the individual charts for 6 = 0.5,1.0 & 1.5 for several
values of p and C'V.

In Figures 5.3-5.5, s and k respectively represent ARL performance for
single and k measurement cases. The comparisons revealed that, regardless of
the values of p and C'V, the ARL curves for the k£ measurement EWMA chart
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Figure 5.4: ARL performance of EWMA chart in presence of two
component measurement error using single and k£ = 5 measurements for

0 =1.0.
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are always lower compared to the individual measurement EWMA chart,
indicating better out of control run length performance. The difference is

greater for low C'V and reduces as C'V increases. Similar patterns are also
observed for ARL, MDRL and SDRL using other ¢ values.

As was described earlier, improvement in EWMA chart performance is
expected with an increase in the number of multiple measurements. To to
get a better insight, Table 5.6 gives run length characteristics of the EWMA
chart using different values of k ranging from 1 to 50 considering 6 = 1.0
and C'V = 0.05 at different concentration levels. Significant reduction in
out of control ARL, MDRL and SDRL can be observed from Table 5.6 with
an increase in the number of multiple measurements. Note that we have
considered an extremely affected case (CV = 0.05 and 6 = 1.0), we can

conclude even better performance for the other cases.

We have seen that increasing k helps in improving the detection ability
of the EWMA chart in the presence of two component measurement error.
Similarly increasing n, will help in the early detection of out-of-control signals.
The detection ability of the chart can be maximized by minimizing o,/ vn

for appropriate values of n and k using constraint optimization technique.

For this purpose, we define a cost function following [Linna an 1

(2o0t).
Cr=con+cen(k —1) (5.18)

where Cr represents the cost per subgroup, ¢, is the cost of a unit of sample
size n and ¢ is the cost of taking extra measurements on the same unit.
Table 5.7 presents the choice of n and k for varying levels of p and C'V
by minimizing oy, //n with respect to the above cost function. We used
Cr = 10, ¢, = 1 and varied the values of relative cost ¢;/c, from 0.40 to
0.01.

From Table 5.7, we can observe that for the case when p =5 and CV =
0.05, the process variance o2 is far less than the two component measurement
error variances ag and o2. Hence, we require large number of measurements
to reduce the effect of these measurement errors. As we move to the case

2

of 4 = 1000 and CV = 0.4, the process variance ¢~ is a lot bigger than
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the two component measurement error variances o, and 7. Hence for quick
detection of shifts, increasing sample size n is more beneficial than taking
extra measurements at each unit. Similar pairs of n and k can be obtained for
other combinations of p, C'V and two component model parameters (a, 3, o,

and o).
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Table 5.6: ARL, MDRL and SDRL of EWMA Chart in presence of
two component error for multiple measurements using different values of
k for § = 1.0,CV = 0.05 when ARLg = 370
k
W 1 ) 10 15 20 30 50
ARL 5 235.27 102.88 5873 40.81 31.89 21.92 14.17
MDRL 164.00 72.00 42.00 30.00 24.00 17.00 11.00
SDRL 232.66 99.61 5391 36.44 27.51 17.74 10.25
ARL 10 108.86 31.82 17.51 12.44 10.14 790 6.18
MDRL 77.00 24.00 13.00 10.00 8.00 7.00 5.00
SDRL 104.15 2733 13.59 865 6.73 470 3.27
ARL 50 14.49 6.10 4.87 441 4.20 3.97 3.78
MDRL 11.00 5.00 4.00 4.00 4.00 4.00 3.00
SDRL 10.79 3.23 228 195 184 164 1.53
ARL 100 11.70 5.49 451 420 4.00 3.85 3.69
MDRL 9.00 5.00 4.00 4.00 4.00 4.00 3.00
SDRL 8.10 2.77 208 182 1.66 1.58 147
ARL 1000 10.60 5.22 4.39 407 395 380 3.65
MDRL 9.00 5.00 4.00 4.00 4.00 4.00 3.00
SDRL 7.21 2.59 1.98 1.74 1.64 1.57 1.45
ARL 10000 10.61 5.21 436 406 397 3.78 3.68
MDRL 9.00 5.00 4.00 4.00 4.00 3.00 3.00
SDRL 7.24 2.55 1.93 1.75 1.69 1.55 1.46
ARL 15000 10.52 5.23 440 408 396 3.77 3.68
MDRL 9.00 5.00 4.00 4.00 4.00 3.00 3.00
SDRL 7.18 2.54 1.95 1.75 1.66 1.53 1.47




Table 5.7: Optimum values for n and k for different combinations of
and C'V at varying values of ¢ /¢,

Two Component Measurement Error

p=>5 CV=005|pu=5 CV=04|p=100, CV =0.10 |p=1000, CV =0.05|p=1000, CV =04
Ck/Cn n k n k n k n k n k
0.4 2 11 7 2 10 1 7 2 10 1
0.35 1 26 7 2 10 1 7 2 10 1
0.3 1 31 6 3 10 1 6 3 10 1
0.25 1 37 5 5 8 2 5 5 10 1
0.2 2 21 7 3 7 3 5 6 10 1
0.15 2 27 6 5 7 3 6 5 10 1
0.1 2 41 7 5 8 3 7 5 10 1
0.075 2 54 7 6 8 4 7 6 10 1
0.05 2 81 8 6 8 6 7 9 10 1
0.04 3 59 8 7 8 7 7 11 10 1
0.03 3 78 8 9 8 9 7 15 10 1
0.02 3 117 8 13 9 6 8 13 10 1
0.01 4 151 8 26 9 12 8 26 10 1
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5.5 Comparison with One Component Error
Case

In this section, we compare the effect of two component error on EWMA

chart performance with the one component (additive) error case investigated
by [Maravelakis et alJ M) The one component model with covariates

investigated by ) is given as:

For the one component error case, the EWMA statistic can be defined as:

Qoct =AZi+ (1= X) Qoe1,  Qoco = a+ fpu (5.20)
and the control limits are thus provided as (see Maravelakis et aJJ (IZDDAI))

A 3202 + o2

L= L < 21

UCL=a+fu+ \/<2_A) - (5.21)
252 4 52
LOL = a+ Bu— Ly | (2 ) 2 Fo

2—-A n

We can see that, by setting o,, = 0, Equations (5.1, 5.3 and 5.9) correspond
to one component error model, EWMA statistics and control limits for the
single measurement chart, investigated bylMams&lakis&.‘mlJ (lZDDAI) For com-
parison purposes, run length characteristics of the IMaravelakis et al. (IZ)M)

charts has also been computed using similar simulation routines by fixing

the parameter values as were used earlier for the two component error case.
The results have been reported in Tables 5.8 and 5.9 for single and multiple

measurement charts considering 6 = 1.0.

We can observe from Tables 5.2, 5.5, 5.8 and 5.9 that a two component er-
ror model has a more adverse effect on EWMA chart performance compared

to a one component error case. The difference in the out of control run length
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characteristics for both the approaches (one and two component error cases)
seems to be smaller for low concentration levels (u = 5 and 10). However, we
can observe significant differences for higher concentration levels (u > 10),
particularly for low values of C'V. This is also consistent with the findings of

(|19_9_5|), as additive error only has a significant effect at

low concentrations and this effect reduces with an increase in concentration

level. The comparison has been presented for 6 = 1.0, but similar patterns
have been observed for other ¢ values as well. Note also that for the results
of two component error case we set o, = 0.1032, we can expect a greater dif-
ference in the out of control run length characteristics of the two approaches

with an increase in the value of o).
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Table 5.8: ARL, MDRL and SDRL of EWMA Chart in presence of one
component measurement error for 6 = 1.0 when ARLy = 370

%

o 0.01 0.05 0.1 0.2 0.3 04 0.5

ARL D 360.98 231.35 106.18 30.73 14.40 9.36 7.01

MDRL 252.00 160.00 76.00 23.00 11.00 &8.00 6.00
SDRL 359.86 227.80 101.56 26.16 10.56 6.09 3.97
ARL 10 335.51 107.20 30.59 923 5.76 456 4.01

MDRL 237.00 76.00 23.00 800 5.00 4.00 4.00
SDRL 329.11 101.42 25.62 5.76 295 206 1.64
ARL 50 103.58  6.97 4.05 3.25 3.13 3.09 3.06

MDRL 73.00 6.00 4.00 3.00 3.00 3.00 3.00
SDRL 99.91 3.84 1.70 1.19 1.11 112 1.11
ARL 100 30.98 4.01 3.27 3.07 3.04 3.04 3.01

MDRL 23.00 4.00 3.00 3.00 3.00 3.00 3.00
SDRL 26.38 1.68 1.22 1.09 1.09 1.06 1.08
ARL 1000 3.27 3.04 3.01 3.0  3.02 3.01 299

MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.20 1.10 1.07 1.06 1.06 1.06 1.06
ARL 10000  3.01 3.01 3.01 3.02  3.02 3.02 3.01

MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.08 1.06 1.09 1.07 1.07 1.07 1.07
ARL 15000  3.00 3.02 3.03 299 3.00 3.01 3.01

MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.06 1.07 1.07 1.06 1.05 1.06 1.04
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Table 5.9: ARL, MDRL and SDRL of EWMA Chart in presence of one
component measurement error using k = 5 measurements for 6 = 1.0
when ARLy = 370

cv
I 0.01 005 01 02 03 04 05
ARL b} 330.60 88.45 24.65 7.99 522 426 381
MDRL 230.00 63.00 19.00 7.00 5.00 4.00 3.00
SDRL 331.88 83.36 20.33 4.77 2.57 1.82 1.56

ARL 10 249.78 24.64 8.00 4.23 3.59 3.33 3.22
MDRL 174.00 19.00 7.00 4.00 3.00 3.00 3.00
SDRL 24473 20.64 481 184 143 1.26 1.18

ARL 50 2450 381 320 3.06 3.06 3.04 3.01
MDRL 18.00  4.00 3.00 3.00 3.00 3.00 3.00
SDRL 20.12 155 1.16 1.11 1.08 1.06 1.06

ARL 100 8.00 324 3.05 3.03 3.02 3.00 3.01
MDRL 7.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 480 1.20 1.09 1.08 1.07 1.06 1.06

ARL 1000 3.07 3.01 3.04 3.01 3.01 3.03 3.00
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.09 1.07 1.08 1.04 1.05 1.08 1.06

ARL 10000 3.01 3.04 3.01 3.02 3.02 3.04 3.02
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.06 1.08 1.05 1.07 1.06 1.08 1.07

ARL 15000 3.01 299 3.03 3.00 3.02 3.02 3.01
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.07 1.04 1.08 1.06 1.07 1.07 1.07
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5.6 Effect of Two Component Model

Parameters

In the previous sections, run length properties of the EWMA chart in the
presence of two component measurement error are evaluated for fixed values
of two component model parameters, i.e. we used av = 11.51, 8 = 1.524, 0,, =
0.1032 and o, = 5.698. In this section, we will see how the change in these
parameters affects the run length performance of the EWMA chart.

Effect of a:

We noticed that changing « does not effect the run length performance of
the EWMA chart.

Effect of f:

Table 5.10 presents run length characteristics for the case when all the pa-
rameters remain fixed, except 8. We used v = 11.51,0,, = 0.1032 and
o. = 5.698 and varied the values of § from 1 to 7. The run length characte-
ristics are evaluated at different levels of 1 considering 6 = 0.5 and C'V = 0.1.
We can observe from the results in Table 5.10 that the detection ability of
the chart improves with an increase in the value of 3, particularly at small

concentration levels (x < 100).

Effect of o,:

Table 5.11 presents run length characteristics for the case when all the para-
meters remain fixed, except o,. We used o = 11.51,8 = 1 and o, = 2 and
varied the values of o, from 0.01 to 0.15. The run length characteristics are
evaluated at different levels of p considering 6 = 0.5 and C'V = 0.1. We can
observe from the results in Table 5.11 that the detection ability of the chart
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diminishes with an increase in the value of o,, particularly at high concen-
tration levels. This is expected, as the multiplicative error (n) is known
to dominate at higher concentration levels m (IML Iﬂuh&uﬁ (Iﬂ_ﬂj),

Rocke et all (2003)).

Effect of o.:

Table 5.12 presents run length characteristics for the case when all the para-
meters remain fixed, except o.. We used o = 11.51, 8 = 1 and o, = 0.1032
and varied the values of o, from 0.5 to 6. The run length characteristics are
evaluated at different levels of p considering 6 = 0.5 and C'V = 0.1. We can
observe from the results in Table 5.12 that the detection ability of the chart
diminishes with an increase in the value of ., particularly at low concentra-

tion levels (u < 100). This is expected, as the additive error (e) is known to

dominate at lower (near zero) concentration levels (IC_U.]:]:]A M), |H1]lm.11x|
(|19_7d); Rocke et all (IZDDjﬂ)).
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Table 5.10: ARL, MDRL and SDRL of EWMA Chart in presence of

two component measurement error for § = 0.5 at different levels of 5 and

p when o = 11.51, 0y = 0.1032, 0. = 5.698,CV = 0.1 and ARLy = 370

s
" 1 2 3 ) 5 G 7

ARL ) 299.58 184.01 114.84 7790 56.52 45.23 36.97
MDRL 207.00 129.00 82.00 55.00 41.00 33.00 27.00
SDRL 297.85 180.58 108.53 73.71 52.06 41.07 32.74
ARL 10 184.82 77.21 4459 32.27 26.39 23.37 21.44
MDRL 131.00  55.00 32.00 24.00 20.00 17.00 16.00
SDRL 181.66 72.06 40.54 28.15 22.35 19.65 17.47
ARL 50 26.49 18.67 17.52 16.81 16.65 16.38 16.35
MDRL 20.00  14.00  14.00 13.00 13.00 13.00 13.00
SDRL 22.70 14.86 13.63 1294 12.93 12.62 12.73
ARL 100 18.91 17.06 16.66 16.50 16.34 16.36 16.39
MDRL 14.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 15.12 13.34 12.73 12.64 12.68 12.68 12.65
ARL 1000 16.61 16.10 16.66 16.39 16.24 16.08 16.41
MDRL 13.00 13.00 13.00 13.00 13.00 12.00 13.00
SDRL 13.00 12.26 12.86 12.54 12.52 12.32 12.57
ARL 10000 16.43 16.31 16.48 16.33 16.40 16.50 16.46
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.90 12.64 12.83 12.63 12.53 12.93 12.97
ARL 15000 16.48 16.60 16.38 16.37 16.51 16.39 16.17
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.55 12.88 12.68 12.61 12.93 12.65 12.33
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Table 5.11: ARL, MDRL and SDRL of EWMA Chart in presence of
two component measurement error for 6 = 0.5 at different levels of o,
and g when o = 11.51, 5 =1.0,0. = 2,C'V = 0.1 and ARLy = 370

On
] 0.01 0.015 0.025 0.05 0.075 0.1 0.15
ARL 5 121.21 121.30 122.03 119.63 121.36 122.06 125.94
MDRL 86.00 84.00 86.00 86.00 86.00  86.00 &89.00
SDRL 115.63 117.34 118.13 113.21 11524 116.04 121.09
ARL 10 41.09 41.63 41.69 4278 4440 47.44 53.82
MDRL 30.00 31.00 31.00 31.00 32.00 34.00 39.00
SDRL 36.98 36.59 3723 37.90 39.33 43.13 49.91
ARL 50 9.62 9.74 10.06 11.51 13.88 17.15 25.64
MDRL 8.00 8.00 8.00 9.00 11.00  13.00 19.00
SDRL 6.25 6.23 6.58 8.00 10.00 13.42 21.68
ARL 100 8.80 8.84 9.05 10.52 12.78 1597  24.92
MDRL 7.00 7.00 8.00 9.00 10.00 13.00 18.00
SDRL 5.48 5.51 5.66 7.09 9.11 12.22 21.20
ARL 1000 8.43 8.64 8.82 10.30  12.59 15.76  24.67
MDRL 7.00 7.00 7.00 8.00 10.00 12.00 18.00
SDRL 517 5.36 5.47 6.91 8.86 12.16 20.92
ARL 10000 8.46 8.47 8.90 10.27 12.64 15.75  25.08
MDRL 7.00 7.00 7.00 9.00 10.00  12.00 19.00
SDRL 5.21 5.22 5.63 6.83 9.13 11.99 21.10
ARL 15000 8.39 8.49 8.87 10.09 12.61 15.70  24.93
MDRL 7.00 7.00 7.00 8.00 10.00  12.00 19.00
SDRL 5.04 5.19 5.53 6.70 8.98 12.22 21.05
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Table 5.12: ARL, MDRL and SDRL of EWMA Chart in presence of

two component measurement error for § = 0.5 at different levels of o,

and p when o = 11.51, 8 = 1.0, 0, = 0.1032,CV = 0.1 and ARLy = 370

Oc
" 0.5 1 2 3 4 5} 6

ARL ) 2417 48.09 12297 195.78 241.81 279.86 301.49
MDRL 18.00 35.00 86.00 137.00 168.00 194.00 214.00
SDRL 20.19 44.11 120.41 190.30 234.97 277.20 296.19
ARL 10 18.11 23.99 4743 84.03 122.14 158.78 196.15
MDRL 14.00 18.00  34.00  59.00 86.00 112.00 138.00
SDRL 14.38 20.24 43.12 79.21 118.13 153.34 193.27
ARL 50 16.44 16.63 17.50 19.15 21.22 2414 27.34
MDRL 13.00 13.00 14.00 15.00 16.00 18.00  21.00
SDRL 12.71 12.71 13.72 1554 17.10 19.92  23.16
ARL 100 16.53 16.42 16.81 17.02 17.69 18.11 19.22
MDRL 13.00 13.00 13.00 13.00 14.00  14.00 15.00
SDRL 12.68 12.43 13.09 12.86 14.05 14.17  15.34
ARL 1000 16.44 16.27 16.42 16.36 16.46  16.48  16.42
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.64 1247  12.49 12.61 12.67  12.53 12.56
ARL 10000 16.14 16.58 16.28 16.26 16.39  16.43 16.43
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.42 12.66 12.63 12.69 12.63  12.74  12.77
ARL 15000 16.43 16.56 16.64  16.29 16.39 16.37 16.54
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.57 1288 13.08 12.70 12.53  12.65 12.85




On the Performance of EWMA Location Chart in Presence of
148 Two Component Measurement Error

5.7 Conclusions

This chapter examined the performance of the EWMA location chart in the
presence of two component error. In the presence of measurement error, the
exact performance of EWMA chart may be significantly different from that
of expected performance. The run length characteristics show that EWMA
chart performance is extremely affected for small C'V and low concentration
levels of an analyte. For high C'V and large concentration levels, the EWMA
chart has performed reasonably well. It has been shown that two component
measurement error effect can be reduced by using multiple measurements
at each sample point. The two component error model has shown a more
adverse effect on EWMA chart performance compared to the one component
error case, particularly for higher concentration levels (1 > 10) and low values
of C'V'. The results presented in this study are based on the assumption that
two component model parameters («, 3, 0¢,0,) are known. The estimation

of these parameters will also have an effect on control chart performance.



Chapter 6

Enhancing the Performance of
CUSUM Dispersion Chart

Researchers have implemented different run rules to increase the sensitivity
of Shewhart, CUSUM and EWMA control charts for the detection of small
shifts in process location. However, for the monitoring of process dispersion,
the use of such rules has been limited to Shewhart charts. This study pro-
poses the implementation of sensitizing rules in CUSUM dispersion charts
to enhance their ability to detect smaller changes in process dispersion. The
performance of the proposed schemes is evaluated and compared with the
simple dispersion CUSUM scheme, the EWMS chart, the M-EWMS chart
and the COMB chart, in terms of run length characteristics such as ave-
rage run length (ARL) and standard deviation of the run length distribution
(SDRL). Control chart coefficients to set the ARL at the desired level are also
provided. T'wo numerical examples are given to illustrate the application of
the proposed schemes on practical data sets. This chapter is based on Abbasi
et al. (2012a).

6.1 Introduction

For a control chart, a process is declared to be out-of-control whenever a

point lies outside the control limits, which are usually set at a distance of
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three sigma from the centre line. To increase the sensitivity of the chart
for the detection of small shifts, some additional rules have been proposed
by researchers that use an additional set of limits called the warning limits.
These warning limits are usually set at a distance of one or two sigma from

the centre line - e.g. see Klein (IZDDd), Khod (IZDDAI), Koutras et all (IZDDj) and

Antzoulakos an kitzid (2008). Some suggested additional rules are: (a)

two out of three consecutive points outside the two sigma warning limits but
still inside the control limits; (b) four out of five consecutive points beyond
the one sigma warning limits; (c¢) a run of eight consecutive points on one side
of the center line; (d) six points in a row steadily increasing or decreasing; (e)
fourteen points in a row alternating up and down. The application of sensiti-
zing rules causes an increase in false alarm rates, which can be compensated
for by making appropriate adjustments to the control limits. Although these
rules add complexity in the control chart design but can be very useful for

the quick detection of small shifts in process parameters.

The application of the sensitizing rules was confined mainly to Shewhart
type control charts for a long time and the literature on the use of these
rules with CUSUM and EWMA control structures is very limited. Westgard
et al. (|19_7_Z) studied some control rules using combined Shewhart-CUSUM
structures and demonstrated the superiority of their approach to the Shew-
hart chart but ignored any comparison with the CUSUM chart. Also, their

control rules considered only one point at a time for testing an out-of-control

situation. The false alarm rates of their control rules were not fixed at
a pre-specified level, which makes the comparison among different control
rules/schemes difficult. Recently, |Rlaz_e_LaL (IZQ]_]J) and |Ahkms_e_tﬁl.| (IZQ]_]J)
have extended this approach to CUSUM and EWMA type charts for moni-

toring the location parameter. Some researchers also investigated the effects

of run rules on the performance of Shewhart type dispersion control charts.

[Acosta-Mejia and Pienatielld (2008) and [Acosta-Mejia and Pignatielld (2009)

analyzed the performance of Shewhart type dispersion R and S charts sup-

plemented with some m out of m rules (m out of m rules indicate a process
to be out-of-control if all the recent m values lie outside the warning limits).

They investigated the performance of both the charts using the m out of m



6.2 Proposal for the CUSUM dispersion control chart 151

rule alone and charts that combine 1 out of 1 and m out of m rules. They
recommended the use of classical charts that combined the 1 out of 1 and the

m out of m rules using m = 9 or 10. |Antzoulakos and Bakii;zig (2!!1!]) inves-

tigated the performance of Shewhart S chart supplemented with r out of m

rules. They showed that the S chart using the r out of m rule outperformed
the simple S chart and recommended the use of a one-sided S chart with a 2
out of 5 rule for efficient detection of shifts in process dispersion. This study
introduces the use of these sensitizing rules for the CUSUM dispersion chart
to enhance its ability to detect small changes in process dispersion. Particu-
larly, we will implement some of the r out of m run rule schemes with the
CUSUM chart for dispersion parameter following the work of

mm andmﬂﬁmgm [Bmzﬁjﬂdzmﬂ@d

A 1/ (2011) and will compare their performance with the simple dis-

persion CUSUM scheme in terms of different run length characteristics. This
chapter will propose the sensitizing rules based design structure of CUSUM

chart for the monitoring of dispersion parameter.

6.2 Proposal for the CUSUM dispersion

control chart

Since the introduction of CUSUM charts by @ (@), many researchers
have examined these charts from different perspectives - see for example
|Broo and Evans (1972), Nor 198j), Revnolds and Arnold (1990). Haw-
kins (1981), Hawkind (1993), [Jones et all (2004) and j i
(@) CUSUM charts are widely used for the efficient monitoring of inter-

nal quality control parameters and their use in analytical laboratorles has
been emphasized by many researchers, including [Funk et al. (L%j Mullin

(IZDD_EJ) and |H1_bherﬂ ). mgnammﬂ_&mg dlM) mentioned “The

CUSUM technique is a somewhat simplified variant of sequential analysis.

Therefore the CUSUM chart seems more suitable to the needs of control in
laboratory”. CUSUM charts are effective even with rational subgroups of size

one, which makes them an attractive option for many applications in chemi-
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cal and process industries (see |M0ntqomer\J QOOQJ)). The book by Hawkins
and Olwell ) includes a comprehensive description of the construction
of CUSUM charts. For a CUSUM chart, the deviations from the target value

of the parameter are accumulated in the upward and downward directions

separately, using two different statistics: one for the upward shift and the
other for the downward shift. The values of these two statistics are calculated
for each sample and are plotted against time on a chart which has control

limits superimposed. The CUSUM control chart indicates an out-of-control
signal when any point falls beyond the control limits (for details see

(2000), Ryan (2000) and Montgomeryl (2009)).

Hawkins (1981) adapted the CUSUM chart to monitor process dispersion

and later (IH&ELklIlA )) suggested joint monitoring of location and dis-

persion parameters using CUSUM charts. For a normally distributed process
characteristic of interest X having mean or process target value pg and known
standard deviation oy , |Ha.3&k111§] L9fil|, |19_9j) used the standardized quantity
Vi = (\/[Yi] — 0.822)/0.349 to monitor dispersion of individual observations,

where Y; = (X; — po)/oo . The idea was to create a statistic which would

have an approximately standard normal distribution when the process was
in-control (assuming a normal parent distribution) and would be sensitive
to changes in process variation. The V; statistic accomplishes this and has
the desirable property of having an approximate normal distribution when
X; comes from a heavy tailed distribution such as Student’s ¢ or Laplace
distribution — for details see Hawkiné (IL%j) and |Montgomerv| (Iﬂ)ﬂd) The
CUSUM dispersion procedure proposed by Hawkiné (IL%j) works by accumu-
lating the upward and downward deviations of Y in the form of two statistics
St and S™:

St =maz[0,V; — k — S;" ] (6.1)
S, =max[0,—-V; — k + S;_4]

where k is known as the reference/allowance/slack value and is often chosen

to be about half of the shift (in standard units) we want to detect quickly.
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The statistics ST and S~ (known as the upper and the lower CUSUM) are
initially set to zero (i.e. Sj = S; = 0). The values of ST and S~ are
calculated for each sample and plotted against time. The process is said to
be out-of-control for any S* or S~ exceeds the control (action) limit (h).

For more details, see |Ha.3&km&] (Il%lL |199j) and |Msmhgmn&u| (IZDQd) We

will refer to the CUSUM control chart structure given in (6.1) as the simple

dispersion CUSUM control scheme.

The control structure given in (6.1) can also be used to monitor process

location but Hawkmg m L9_9j and &M M ) suggested using V;

for the monitoring of process dispersion due to the sensitive behavior of this

statistic for the detection of disturbances in process dispersion parameter.
Hawking (ILM) suggested plotting both the location CUSUM and the scale
CUSUM on the same graph. Out-of-control signals from both the CUSUMs

indicate a shift in process location, but a signal from only the scale CUSUM

indicates a shift in the standard deviation. The purpose of this study is to
investigate the affect of run rules on the run length behavior of the CUSUM
dispersion chart. Hence, we are only considering shifts in process dispersion
of the observed quality characteristics of interest X. The process is assumed
to be in-control for X ~ N(ug, 09) and out-of-control when X ~ N (1, Aoy),
where \ # 1 represents a shift in the in-control process standard deviation
(00). Without loss of generality we considered g = 0 and og = 1 to represent
the state of an in-control process.

In the simple dispersion CUSUM scheme, a process is declared to be out-
of-control when any point falls outside the control limits. This simple rule
does not indicate an out-of-control signal if there is a non-random pattern
in the data such as consecutive points that fall close to the control limits or
that fall in particular zones, which results in a loss of efficiency, particularly
for smaller shifts (cf. (@)) The sensitivity of the simple dispersion
CUSUM scheme (6.1) can be increased by implementing sensitizing rules
which can indicate that a process is out-of-control, even when all values
of ST and S~ lie within the control limits. These rules can be found in

Alwan (2000), [Kleig (2000), Khod (2004), |Antzoulakos and Rakitzis (2008)

and ). We propose two new schemes for the CUSUM
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dispersion control chart which utilize sensitizing rules. Both these schemes

use a warning limit (w) and an action limit (h), defined as:

e Action Limit (h): A threshold level for the value of the CUSUM char-

ting statistic beyond which we declare the process as out-of-control.

e Warning Limit (w): A level for the value of the CUSUM charting
statistic beyond which (but not crossing h) some pattern of consecutive

points indicate an out-of-control situation.

Using these definitions, we propose the following two schemes for the CUSUM
dispersion chart:
Scheme I: A process is said to be out-of-control if one of the following

conditions is satisfied:

e Any point of either ST or S~ falls outside h.

e Any two consecutive points of either S or S~ fall between w and h.

Scheme II: A process is said to be out of control if one of the following

conditions is satisfied:

e Any point of either ST or S~ falls outside h.

e Two out of three consecutive points of either ST or S~ fall between w
and h,

for ST and S~ as defined in (6.1), and h and w are chosen to give the desired
ARLy.

6.3 Performance Evaluation

To evaluate the performance of control charts, the average run length (ARL),
the mean of the run length distribution, is the most important and widely

used measure. The performance can be evaluated by two ARL values:

e ARLy: the average number of samples until an out-of-control signal
is detected by a control chart when the process standard deviation is

in-control.
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e ARL;: the average number of samples until an out-of-control signal
is detected by a control chart when the process standard deviation is

shifted to an out-of-control value.

Large values of ARLy and small values of ARL; are preferable for any control
chart setting. Different methods of computing the ARL of CUSUM charts
have been proposed in the literature: ) used a Markov-

chain approach, [Lucas and QIrQsieLI (IM) adopted an integral equation ap-

proach, and [Siegmund (IL%ﬂ) proposed a method based on solving ARL equa-
tions. Monte Carlo simulation methods have also been adopted by different
researchers, including Hawking (IM), Li and Wané (IM) and
). In this study, the Markov chain approach is used to approximate the
run length of the proposed CUSUM schemes.

The Markov chain approach for the CUSUM chart has been firstly pro-
posed by [Ewan and KemIJ (IL%d) for the basic 1 out of 1 decision rule. This

approach is further used by many researchers including

[B_rmkj_md_EmmJ
M), [Bthjnd_Ha&kj (|19_9ﬂ) andbhan.gﬁmlm (|2Q]_1|). The use of Mar-

kov chains for the CUSUM control charts, supplemented with different run

rules, is a bit complicated since the history of the CUSUM statistics must be
kept. [Fu_et, aJ.I (IZDDﬁ) worked on this problem and proposed a Markov chain

approach for computing the run length distribution of different control char-

ting mechanisms (including the CUSUM charts) with simple or compound
rules. In this study, we use )’s approach with necessary adjust-
ments to approximate the run length distribution of the proposed CUSUM
schemes. The details regarding the Markov chain representation, used to
obtain the run length characteristics of the proposed CUSUM schemes, can

be seen in Appendix C (or |Ahtms1_e:uzl.| (|2Q123|))

The design of the CUSUM charts supplemented with run rules Schemes

I and IT depends on the parameters k,w and h. Once k is selected, we can
choose w and h for a desired in-control ARLy. For a given ARLy, the choice
of k minimizes the ARL; of the CUSUM charts for detecting a shift of size

A (MQnLnger;gl (Il)ﬂd)) The most widely used values of k£ are 0.25 and 0.5,

which have also been used in this study. These choices of k help in efficient

detection of smaller shifts in process dispersion. To get a better insight of
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the performance of the proposed schemes, the standard deviation of the run
length distribution is also provided as well as the ARL. These run length
measures will help in studying the behavior of the run length distribution.

A summary of the run length characteristics of the proposed CUSUM
schemes (i.e. Scheme I, Scheme IT) and the simple dispersion CUSUM scheme
is provided in Tables 6.1-6.3. In these tables, ARL denotes the average run
length and SDRL denotes the standard deviation of the run length distri-
bution. In each table, A = 1 indicates that process dispersion parameter
is in-control, while A > 1 refers to the out-of-control situation. For a fixed
ARLy, the control scheme which minimizes the ARL; for a particular magni-
tude of shift will be regarded as better than others.

For the two proposed schemes the values of h and w depend on the selec-
ted values of k and ARLy. However, fixing k£ and ARLy does not uniquely
determine the values of A and w. In fact, for fixed £ and ARLq there are
many possible combinations of h and w which correspond to different rela-
tive weights put on the two ways of detecting out-of-control situations - see
Tables 6.1-6.2. At one extreme, setting h = w corresponds to the simple
dispersion CUSUM chart with no additional sensitizing rule, whereas at the
other extreme, setting h = oo results in a chart where the out-of-control si-
tuation is only identified by the sensitizing rules. For our proposed run rules
schemes, we have observed that for a fixed value of k£ and ARLg, the ARL;
reduces as the value of h increases and w decreases, particularly for small
and moderate values of A. The choice of infinity for A is the most attractive

choice in terms of ease and optimizing the ARL;.
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Table 6.1: RL characteristics of the proposed dispersion CUSUM
scheme 1
RL A

h w Properties 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00

k =0.25,ARLy = 120
6.642 4.89 ARL 121.18 34.12 17.22 12.05 947 7.06 5.85 4.69
SDRL 110.78 27.03 11.46 7.43 553 3.91 3.17 2.57
8.864 4.337 ARL 120.76 29.61 15.81 11.17 894 6.87 5.88 4.85
SDRL 110.89 24.03 10.92 6.87 5.23 3.73 3.06 2.51
oo 4.198 ARL 120.81 28.30 15.34 10.85 883 6.74 578 4.81
SDRL 115.19 22.70 10.65 6.66 5.22 3.69 3.05 2.48

k =0.25, ARLy = 200
7.511 5.818 ARL 201.46 43.66 20.54 13.87 10.88 7.90 6.53 5.15
SDRL 182.59 33.78 13.70 8.24 6.04 4.18 3.43 2.73
8.8905 5.387 ARL 201.82 39.92 1924 13.30 1042 7.78 6.56 5.29
SDRL 184.60 31.90 12.66 790 5.80 4.02 3.33 2.64
oo 5.098 ARL 202.42 36.92 18.46 12.67 995 7.58 6.43 5.28
SDRL 188.46 29.19 12.31 7.72 554 3.98 328 2.64

k =0.50, ARLy = 120
4.108 2.748 ARL 119.57 30.52 13.71 8.28 6.00 3.75 2.85 1.84
SDRL 115.55 26.72 10.57 5.66 3.67 1.81 1.22 0.51
4.848 2.585 ARL 119.70 28.79 13.01 807 597 389 293 2.01
SDRL 116.67 24.99 9.92 5.32 3.5 1.83 1.10 0.49
oo 2.449 ARL 119.96 26.08 12.26 7.91 5.78 3.85 3.05 2.25
SDRL 116.92 22.52 9.40 5.21 3.35 1.73 1.04 0.43

k = 0.50, ARLy = 200
4.927 3.151 ARL 201.28 40.26 17.48 10.76 8.06 549 434 3.24
SDRL 193.33 3527 13.83 744 528 3.18 2.38 1.65
5.527 3.018 ARL 200.3 37.63 16.56 10.57 791 556 441 3.33
SDRL 189.26 33.21 12.96 7.51 5.07 3.16 2.35 1.59
oo 2.937 ARL 200.11 36.55 16.29 10.43 7.85 5.52 453 3.55
SDRL 192.71 3246 12.87 7.39 498 3.09 232 1.59
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Table 6.2: RL characteristics of the proposed dispersion CUSUM
scheme II
RL A

h w  Properties 1.00 125 1.50 1.75 2.00 250 3.00 4.00

k= 0.25,ARLy = 120
6.312 5.109 ARL 120.23 35.57 16.69 11.10 8&8.53 6.05 4.86 3.64
SDRL 118.19 28.28 11.04 6.47 4.59 294 2.24 1.58
6.646 4.926 ARL 119.58 33.88 16.34 10.97 8.48 6.06 4.89 3.71
SDRL 116.05 26.82 10.74 6.36 4.51 2.89 2.19 1.57
oo 4.242 ARL 120.08 27.58 14.06 9.78 7.72 5.68 4.77 3.82
SDRL 11778 21.76  9.29 570 4.08 2.62 2.03 1.46

k =0.25 ARLy = 200
7.194 6.112 ARL 199.92 44.57 20.28 1292 9.87 6.86 5.49 4.09
SDRL 193.56 35.22 13.16 727 511 3.21 243 1.72
7.443 5.926 ARL 199.59 43.43 19.78 1294 9.83 6.90 5.50 4.13
SDRL 189.54 34.37 12.79 7.31 5.06 3.19 2.39 1.70
oo 5.138 ARL 200.34 35.76 1727 11.40 887 6.53 5.36 4.23
SDRL 192.32 28.27 11.31 6.46 4.55 2.95 2.22 1.56

k =0.50,ARLy = 120
3.786 3.013 ARL 120.25 32.62 14.65 9.10 6.62 4.43 3.38 2.46
SDRL 114.06 28.90 11.84 6.57 4.40 2.65 1.85 1.23
4.385 2.726 ARL 120.33 30.12 13.81 8.92 6.68 4.54 3.60 2.61
SDRL 116.78 26.46 10.76 6.28 4.28 2.51 1.83 1.21
oo 2.503 ARL 119.81 26.89 13.11 851 6.40 4.54 3.74 2.96
SDRL 116.80 23.56 10.18 586 3.92 233 1.78 1.08

k = 0.50, ARLy = 200
4.996 3.159 ARL 200.27 39.24 16.79 10.37 7.76 5.28 4.17 3.10
SDRL 189.09 35.28 13.11 7.30 5.01 2.95 2.16 1.50
5.396 3.104 ARL 201.30 38.10 16.55 10.44 7.68 532 4.22 3.18
SDRL 193.07 33.75 12.64 7.16 4.88 2.89 216 1.47
oo 2.999 ARL 200.29 36.51 1597 10.12 7.54 5.32 4.36 3.43
SDRL 192.37 32.59 12.55 6.93 4.75 2.86 2.12 1.46
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Table 6.3: RL characteristics of the simple dispersion CUSUM chart

h

RL
Properties

1.00

1.25

A
1.50 1.75 2.00 2.50

3.00

4.00

6.000

6.859

3.604

4.096

ARL
SDRL

ARL
SDRL

ARL
SDRL

ARL
SDRL

120.29
112.24

199.83
183.5

119.44
116.59

200.28
192.05

36.22
28.5

45.54
36.32

34.03
30.21

45.39
40.78

k= 0.25, ARL, = 120

17.14 1096 8.37 5.71
11.21  6.31 445 2.74

k = 0.25, ARLg = 200

19.96 12.79 9.56 6.52
129 724 49 296

k = 0.50, ARLo = 120

1453 877 6.23 391
11.63 6.33 4.1 2.15

k = 0.50, ARLy = 200

1794 10.29 7.26 4.6
1457 7.19 4.71 2.57

4.46
1.96

5.06
2.14

297
1.48

3.3
1.62

3.27
1.31

3.67
1.41

0.84

2.25
0.93




160 Enhancing the Performance of CUSUM Dispersion Chart

6.4 Comparisons

In this section, we provide comparisons of the proposed schemes with: i) the
simple dispersion CUSUM scheme and ii) the EWMA dispersion charts for
individual observations, investigated in [Yeh et al. (lZQld)

6.4.1 Proposed Schemes vs. the Simple dispersion
CUSUM Scheme

From the results in Tables 6.1-6.3, we can see the benefit of using the two run
rules schemes, particularly for the detection of small magnitude shifts. For
example, with £ = 0.50 and ARLy = 200, the ARL; of simple CUSUM scheme
is 45.39 when A = 1.25, while the corresponding ARL; for Schemes I and II
are 36.55 and 36.51 with A at infinity. This indicates that CUSUM dispersion
Schemes I and II require, on average, 9 fewer observations than the simple
CUSUM scheme to detect a multiplicative shift of magnitude A = 1.25 in the
process standard deviation. Similarly, we observe a significant improvement
in the out-of-control run length characteristics of the run rules schemes over
the simple CUSUM dispersion scheme, particularly for smaller values of .
Figures 6.1 and 6.2 represent the ARL comparison of the proposed CUSUM
Schemes I and II (using h = oo) with the simple CUSUM scheme when
ARLy = 120 and 200 for k£ = 0.25 and 0.5. In each plot, Log (ARL) is
plotted against A for better visual comparison. The results in Tables 6.1-6.2
and the ARL curves in Figures 6.1-6.2 indicate that:

e for the detection of small process shifts, the performance of the runs
rules schemes are very similar to each other and significantly better

than the performance of the simple dispersion CUSUM scheme

e for large shifts, the performance of the simple dispersion CUSUM scheme
is slightly better than that for the runs rules schemes. Similar results

can be easily obtained for other values of ARLj.

Figure 6.3 displays the cumulative probability vs. run length curves of the
three CUSUM dispersion schemes when ARLy = 120 and 200 for k£ = 0.5
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and A\ = 1.25. For detecting this shift in the process standard deviation,
the cumulative probability of detection for both of the proposed schemes is
consistently above that of the simple dispersion CUSUM scheme, particularly
at shorter run lengths, which indicates that there is a higher probability of
detecting small shifts quickly.

The results have been provided for ARLy = 120 and 200 but similar results
can be obtained for other values of ARLg. Control chart coefficients for fixing
the control limits of these three schemes to obtain a desired ARLy ranging
from 100 to 500 have been presented. For the simple dispersion CUSUM
scheme, plots of ARLy vs h have been provided in Figure 6.4, whereas for
the two proposed run rule Schemes I and II, plots of ARLg vs w are provided
when h is taken to be infinity (to achieve the smallest ARL;) in Figures 6.5
and 6.6 respectively. These plots can be used to approximate the control
limits for the desired ARL( values. For example, the first plot in Figure 6.6
shows that w = 6.25 approximately gives ARLy = 370 for Scheme II using &
= 0.25.
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Figure 6.1: ARL comparison of the simple dispersion CUSUM scheme
with CUSUM Schemes I and II (using & = co) when ARLy = 120
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Figure 6.2: ARL comparison of the simple dispersion CUSUM scheme
with CUSUM Schemes I and II (using & = co) when ARLy = 200
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Figure 6.3: Run length curves of the simple dispersion CUSUM scheme
and CUSUM Schemes I & II (using h = oo) for k = 0.5 and A = 1.25
when ARLy = 120 and 200
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Figure 6.4: The choice of h for different ARL( values for the simple
dispersion CUSUM scheme
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Figure 6.5: The choice of w for different ARL( values for the run rule
dispersion CUSUM scheme I when h = oo
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Figure 6.6: The choice of w for different ARLg values for the run rule
dispersion CUSUM scheme IT when h = oo

6.4.2 Proposed Schemes vs. dispersion EWMA
Charts

In this section, we compare the ARL performance of the two proposed

schemes with the EWMS chart (proposed by MMMMA (|19_9_§4)),
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the M-EWMS chart (a modified EWMS chart proposed by [ﬂmngﬁ_tﬁﬂ
M)) and the COMB chart (proposed by [Yeh et al. (lZQld)), for the case

of individual observations. The design structures of these charts are briefly

described below:
The EWMS chart is based on plotting the EWMA statistic W; = (1 —
MWi_1 + n(X; — po)? against the following control limits:

UCL = USXl_a/Q (62)
LCL = USXQ/Q

where 7 represents the smoothing parameter.
The M-EWMS chart is based on plotting the EWMA statistic W/ = In[(W, /o2 —
(1 —n"))/n] against the following set of control limits:
UCL = E(T?) + L« \/ Var(T?) (6.3)
LCL = E(T?) + L+ \/Var(T?)

where L is the control chart multiplier and W, represents the EWMA statistic
of the EWMS chart. E(T2) and Var(T2) are defined as:

~ 1 1 2
E(T? =1 - 4= 6.4
2 4 16

- 2
Var(T})) = =+ S5+ == — —=
R R

where p, = Y, (1=n)*79/ 300, (1=n)" " and ¢, =[5, (1-n)"""1*/ i, (1—
77)2(t_i)'

Yeh et al. (M) proposed a EWMSI chart that is based on plotting the
statistic W/ = (1 — )W/ | + A (1/X; — 1/p) against the simulated control
limits.

The COMB chart is based on monitoring process dispersion by implemen-
ting the upper EWMS and the lower EWMSI charts in a single structure. The

control limits are then adjusted to achieve a specified ARLj.

Yeh et al. (M) reported ARL results for these charts using the smoo-
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thing parameter 7 = 0.05, 0.1 and 0.15 for ARLy = 370. For a fair comparison,
the ARL of the two proposed schemes have also been computed after fixing
the ARLy = 370. Figure 6.7 presents the ARL comparison of the two propo-
sed schemes using £ = 0.25 and the EWMS, M-EWMS and COMB charts
using 7 = 0.1. The ARL curves indicate that both the proposed schemes out-
perform the EWMS, M-EWMS and COMB charts for the detection of small
process shifts. For moderate shifts in process dispersion, the performance of
the COMB chart is slightly better than the rest of the control schemes.

2.6

NN —— Scheme |
\ % -X- Scheme
2.4 O EWMS
'f;_.‘:g\ -o- M-EWMS
Z 20
% 2
(@]
S
1.8 —
1.6 —
1.4 —

1.0 11 1.2 1.3 1.4

Figure 6.7: ARL comparison of the proposed schemes I and II with
EWMS, M-EWMS and COMB charts when ARLy = 370

Based on our evaluation of the run length distributions, the main findings

of the study are:

e the two proposals significantly improve the detection ability of the CU-
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SUM chart to detect small and moderate shifts in dispersion at the cost

of a very small increase in the run length for larger shifts. (cf. Tables
6.1-6.2);

e the ARL and SDRL decreases for both schemes as the value of A in-
creases (cf. Tables 6.1-6.2);

e the two proposed schemes have almost the same run length properties
as may be seen from Tables 6.1-6.2 and Figures 6.1-6.3 and so either

may be used effectively;

e for the detection of small and moderate shifts in process dispersion,
h = oo performs better than all the pairs in terms of optimum ARL;
(as may be seen from Tables 6.1-6.2). Hence, we recommend the use
of h = oo (Figures 6.5 and 6.6 can be used to get the required control

limits for the proposed Schemes I and II respectively);

e the proposed run rules based dispersion CUSUM schemes perform bet-
ter in terms of run length efficiency compared to the simple dispersion
CUSUM scheme, the EWMS chart, the M-EWMS chart and the COMB

chart, particularly for the detection of small shifts in process dispersion.

6.5 Illustrative Examples

In this section, we provide illustrative examples to demonstrate the applica-
tions of the proposed procedures. For this purpose, we have generated two
datasets which will be referred as Dataset 1 and Dataset 2, containing some
in-control points and some out-of-control points following the work of
), Antzoulakos and BakiinA (IM), Riaz et al. (M) and |Abbas et alJ
2011)).

Dataset 1 contains 50 observations, of which the first 20 are generated

from N(0,1) referring to an in-control situation and the remaining 30 obser-
vations are generated from N (0, 1.25) referring to a small shift in the process

dispersion parameter (i.e. out-of-control situation). Dataset 2 contains 30
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observations, of which the first 20 are generated from N (0, 1) referring to an
in-control situation and the remaining 10 observations are generated from
N(0,2) referring to a moderate shift in the process dispersion parameter.
The CUSUM dispersion statistics for these observations in the two datasets
are calculated and the three schemes (i.e. the two proposed CUSUM disper-
sion Schemes I and IT and the simple dispersion CUSUM scheme) are applied
by fixing ARLy = 120 when k£ = 0.25. For the simple CUSUM dispersion
scheme, h = 6 (see Table 6.3) is used as a control limit to have the desired
ARLy = 120. For the proposed Scheme I, w = 4.337 and h = 8.864 (from
Table 6.1) are used, whereas, for proposed Scheme II, w = 4.926 and h =
6.646 (from Table 6.2) are used for both the data sets. The graphical display
of the control charts with all the three schemes applied to the Datasets 1 and
2 are given in Figures 6.8 and 6.9 respectively.

In Figures 6.8 and 6.9 the labels used for the three types of control limits are

explained as:
e h: the threshold value of h for simple dispersion CUSUM scheme
e hg; and wg; represents the values of h and w for run rule Scheme I
e hg, and wg, represents the values of h and w for run rule Scheme II

In Figure 6.8, we see that out-of-control signals are received at sample points
47-49 by the simple dispersion CUSUM scheme, at sample points 34-37 and
47-50 by the proposed Scheme I, and at sample points 36, 37 and 47-50 by the
proposed Scheme II. Similarly, from Figure 6.9 we can see that the simple
dispersion CUSUM scheme is unable to provide any out-of-control signal,
whereas out-of-control signals are received at sample points 29 and 30 by
Scheme I and at sample point 30 by Scheme II. This clearly indicates that
the proposed schemes are not only signaling earlier than the classical scheme
but are also giving more out-of-control signals.

The outcomes of these two illustrative examples are in accordance with
the findings of Section 6.4. Therefore, we recommend the application of our

proposals in every type of process in general and particularly for sensitive
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processes (cf. [Bonetti et al. (|2DDd)) where a small change may have very

serious effects.

Cumulative Sum

0 10 20 30 40 50

Number of Observations

Figure 6.8: CUSUM chart for the simple dispersion CUSUM scheme
and the proposed schemes I and II for dataset 1 when k£ = 0.25 and
ARLy =120
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Figure 6.9: CUSUM chart for the simple dispersion CUSUM scheme
and the proposed schemes I and II for dataset 2 when k£ = 0.25 and
ARLy =120

6.6 Conclusions

Every process is subject to variation. From the perspective of quality control,
it is important to differentiate between the inherent variation and the unusual
variation. For an efficient and smart monitoring of the process parameters,
we have a variety of detection rules available but their use has been mainly li-
mited to Shewhart type control charts for location and dispersion parameters.
Recently, the use of these rules has been extended to EWMA and CUSUM
structures for location parameter. In this study, we have studied their ap-
plication to CUSUM charts for monitoring the dispersion parameter as well.
These proposals result in better performance of a dispersion CUSUM control
chart, especially for the detection of small shifts. The comparisons revea-
led that the proposed schemes outperformed the simple dispersion CUSUM

chart in terms of ARL. Also, the implementation of the proposal is made easy
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by deriving the coefficients for commonly used ARL, values and showing its
application on simulated datasets. Therefore, we recommend the use of our

proposal for the efficient monitoring of process dispersion parameter.
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Chapter 7

Nonparametric Progressive
Mean Control Chart for

Monitoring Process Location

Nonparametric control charts are widely used when the parametric distribu-
tion of the quality characteristic of interest is questionable. In this study,
we proposed a nonparametric progressive mean control chart, namely the
NPPM chart, for efficient detection of disturbances in process location or
target. The proposed chart is compared with the recently proposed nonpara-
metric EWMA and nonparametric CUSUM charts using different run length
characteristics, such as the average run length, the standard deviation of
the run length and the percentile points of the run length distribution. The
comparisons revealed that the proposed chart outperformed the recent non-
parametric EWMA and nonparametric CUSUM charts in terms of detecting
the shifts in process mean. A real life example concerning the fill heights of
soft drink beverage bottles is also provided to illustrate the application of
the proposed nonparametric control chart. This chapter is based on Abbasi
et al. (2012H).
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7.1 Introduction

Most of the Statistical Process Control (SPC) charts are based on the as-
sumption that the parametric distribution of the quality characteristic of
interest is known. In many real life situations, this assumption is not valid
and hence the use of parametric control charts for the monitoring of process
parameters can give unfavorable results in the form of low detection ability
and high false alarm rates. In these scenarios, it may be better to use a

non-parametric control chart. Research has been done in the field of non-

parametric _control charts by many researchers, including |Da QOOd) Qiu
et al. (2010). [Human et al! (2010). [Khilare and Shirke (2010) and Pawar and
Shirke (2010). Different nonparametric EWMA (NPEWMA) and nonpara-
metric CUSUM (NPCUSUM) control charts have also been proposed recently
for quick detection of small shifts in process parameters. |Li )
proposed NPEWMA and NPCUSUM charts based on the Man-Whitney sta-

tistics, @M_Ts_uné (2011) proposed a multivariate EWMA control chart
using the weighted version of sign test, |Graham et all (2011) proposed a

NPEWMA sign chart for monitoring process location using individual obser-

vations, @gﬁ&l] (IM) proposed two NPEWMA control charts, namely
the nonparametric EWMA sign (NPSg) chart and the nonparametric Arc-
sine EWMA sign (NPASEg) chart, while _Yaﬂ.gﬁﬂdﬁhﬂlg (IZQ]_]J) proposed a
nonparametric CUSUM (N PS¢) chart for quick detection of shifts from the

process target using the sign statistics.

In this chapter, we use the progressive mean (PM) as the process moni-
toring statistic instead of using a monitoring statistic based on the EWMA
or the CUSUM weighting schemes. PM is defined as the cumulative ave-
rage of the sample values observed over time. Suppose we are interested
in monitoring a quality characteristic X, following a distribution f(x). Let
X1, Xs, ..., X, be asample of size n from this distribution. The progressive

mean statistic is defined as:

X1+X2+"'+Xt - Z;‘:lXj

PMt:
t t

(7.1)
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The benefit of using the progressive mean statistic is its quick convergence
to the process target compared to the Shewhart, EWMA or CUSUM monito-
ring statistics. Figure 7.1 presents plots of the progressive mean, Shewhart,
EWMA and CUSUM monitoring statistics for a standard normal process
where the target is 0. We can clearly see the quick convergence ability of
P M towards the process target, as compared to other statistics. Due to this,
we expect that a control chart based on the progressive mean statistic will
perform better than the Shewhart, the CUSUM and the EWMA charts.

Progressive Mean Shewhart
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Figure 7.1: Progressive mean, Shewhart, EWMA and CUSUM moni-
toring statistics for a standard normal process

The rest of the study is organized as follows: Section 7.2 describes the
design structure of the proposed N PPM control chart; Section 7.3 evaluates
the performance of the proposed chart using different run length characteris-
tics; Section 7.4 provides the comparison of the NPPM chart with recently
proposed NPSg, NPASE and NPSq charts; and Section 7.5 presents an
example to illustrate the application of the proposed chart and finally the

chapter ends with conclusions.
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7.2 The Proposed Nonparametric
Progressive Mean (NPPM) Chart

In this section, we describe the structure of the nonparametric progressive
mean (NPPM) control chart, proposed for the purpose of quick detection

of shifts from the process target.

Suppose X ...X, represents a sample of size n from a process with a
target (or location) at p. Define p to be the probability of X greater than p.
i.e. p=pr(X; > u). For an in-control process, p = py = 0.5 (the in-control
process proportion), the process is said to be out-of-control for p # py. The
purpose of the proposed control chart is the efficient detection of departures of

p from its in-control value py. Imgiﬁll (IM) showed that M, =>7" | I;

follows a binomial distribution with parameters n and py, where I; takes

value 1 for X; > p and 0 otherwise. The binomial distribution of M; can

be transformed into a normal random variable by the arcsine transformation
(Yang et all (2011))):

Zy = sin”'\/M;/n ~ N(uz,o%) (7.2)
where pz and oz are defined as:
pz = sin” " (v/po) and oz =1/4n (7.3)

Instead of using the EWMA or CUSUM weighting schemes, we will use

Z to produce a progressive mean statistic (PM;) for time point ¢:

i+ Zo+ Zst -+ 2 _ X Zi

PM, = 7.4
! t t (7.4)
The expected value and the variance of the PM statistic are given as:
. oz 1/4n
E(PM,;) = puz = sin™ (y/po) and Var(PM,;) = e (7.5)

Using the mean and the variance of PM, given in (5), the widely used 3-sigma
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limits are:

UCL; = sin” " (y/po) + 3 %\ —— (7.6)
CL = sin ' (\/po)

LCL; = sin™ ' (\/po) — 3 *

Similarly to the EWMA and the CUSUM schemes, the NPPM chart uses
both current and past information from the observed samples, which makes
it effective for the detection of small shifts. A couple of problems have been
identified for the above control limits: i) the use of 3 as the control chart
multiplier does not guarantee a desired in-control average run length; and
ii) these control limits remain too wide relative to the plotting statistics for
higher values of t, leading to a small number of out-of-control signals for
larger values of ¢. This motivates us to redefine the control limits that take

care of these issues, following |A.btms&.tﬁl.| (lZQ]_]J) The revised limits (that

have been used for the rest of this study) are defined as:

4 , 1 1/4n
UCL; = sin™ " (y/po) + L *m\/T (7.7)
CL = sin™'(\/po)

o , 1 [1/4n
LCLy = sin™ " (y/po) — L *m -

where L' represents a control chart multiplier used to set the in-control ave-
rage run length to a particular level and f(¢) is an arbitrary function of t.
The NPPM chart triggers an out-of-control signal for any PM; lying outside

the control limits at point .
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7.3 Performance Evaluation

The average run length (ARL) is the most important and widely used mea-
sure to evaluate the performance of control charts. The performance can be

evaluated by two ARL values:

e ARLy: the average number of samples until an out-of-control signal is

detected by a control chart when the process is in-control

e ARL;: the average number of samples until an out-of-control signal is
detected by a control chart when the process is shifted to an out-of-

control value.

Large values of ARLy and small values of ARL; are desirable for any control
chart setting. In this study, a Monte Carlo simulation with 50,000 iterations
is used to approximate the run length distribution of the proposed NPPM

chart following ) and

- (@ Note that Im (Iﬂld and Sghaffgr and Kim (Iﬂlﬂ indicates

that 5000 replications are enough to obtain reasonable estimates of ARLs in

many control chart settings. To get a better insight of the performance of
the proposed charts, the standard deviation and the percentile points of the
run length distribution are also provided.

The summary of the run length characteristics of the NPPM chart is
reported in Table 7.1, where ARL denotes the average run length and SDRL
denotes the standard deviation of the run length distribution. The column
corresponding to p = 0.5 provides the run length characteristics when the
process is assumed to be in statistical control. The process is said to be out-of-
control for p # 0.5. We considered different choices for f(t) in our simulation
study for the computation of control limits. But here the results are only
provided for f(t) = t%29 which gives the best run length performance for the
proposed NPPM chart. Control chart multipliers L' are chosen to give the
in-control average run length of 370 (i.e. ARLy = 370). The relative standard
errors of the results reported in Tables 1 are found to be less than 1.0%, as
checked by repeating the simulations. This is quite acceptable in control
chart studies (for details, see (@) and ISSLM@ (IMﬂ))
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The simulations have been done in R and the computer programs can be
obtained from the author on request. Moreover, the percentile points of
the run length distribution of the proposed NPPM chart are reported in
Table 7.2. In Table 7.2, @, represents the p'" percentile of the run length
distribution of the NPPM chart. Similarly, the run length characteristics of
the proposed chart can be easily computed for other ARLq values. Table 7.3
presents values of control chart multipliers L’ to achieve a specified ARLq for

some representative values of n considering py = 0.5.

The results reported in Tables 7.1 and 7.2 are for the case when the pro-
cess is assumed to be out-of-control from the start (this can also be referred
as the zero-state ARL). This is not always the case, hence we also investigate
the steady-state behavior of the NPPM chart. A monitoring statistic is
said to be in steady-state if a process remains in-control for a long period
(without any false signals) before the occurrence of any change in the parame-
ters. The distribution of the detection of out-of-control sample points, after
the change has occurred is known as the steady-state run length distribution
and its mean as the steady-state ARL (Lucas and Saccucci (Imﬁ)) Table
7.4 presents steady-state ARL results for the proposed NPPM chart, when

the process is assumed to be in-control for the first ¢ samples. The results

for t = 0 are also included in Table 7.4 for comparison. We can observe that,
as t increases, (i.e. as the in-control period before the occurrence of shift
increases), the NPPM chart gets slower in the detection of shifts. This is
expected due to the fact that the PM statistic uses the average of all the
previous PM values, hence giving a bit of extra weight to the in-control
samples.

Based on our evaluation of the run length characteristics, the main fin-
dings of the study are: i) the proposed chart efficiently detects small as well
as large departures from the in-control process proportion pyg; ii) the run
length distribution of the proposed chart is positively skewed; iii) the ARL,
the SDRL and the percentile points of the run length distribution decrease
with an increase in the values of § and n; iv) the proposed chart is equally effi-
cient for the detection of positive and negative shifts in py; v) the steady-state

performance of the NPPM chart is less efficient compared to the zero-state
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performance; vi) the N PPM chart uses the cumulative average of the sample
values, observed over time as the monitoring statistic which can be very use-
ful for processes that have the tendency to go out-of-control at the start of a
monitoring cycle or that produce frequent out-of-control signals; and vii) the
application of the proposed chart can be easily executable in this modern era

of computer technology.



Table 7.1: Run length characteristics of the proposed NPPM control

chart when ARLgy = 370
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1.61

3.25
1.29

2.76
1.11

7.96
4.20

7.33
3.84

6.97
3.53

6.57
3.20

6.20
3.02

5.88
2.86

5.63
2.64

4.68
2.09

4.02
1.79

13.62
8.27

12.65
7.61

11.99
6.99

11.27
6.50

10.65
6.07

10.11
5.72

9.64
5.39

8.00
4.24

6.88
3.52

34.24
26.42

31.97
24.22

30.06
22.23

28.28
20.71

26.73
19.34

25.50
18.30

24.26
17.21

20.05
13.49

17.20
11.17

370.28
720.28

370.33
716.94

371.54
738.09

370.67
736.12

370.04
723.38

369.83
725.64

369.37
704.36

369.38
730.62

367.46
725.82

34.23
26.45

31.84
24.19

30.03
22.30

28.26
20.71

26.71
19.40

25.47
18.30

24.30
17.28

20.04
13.58

17.23
11.26

13.75
8.35

12.70
7.66

11.98
6.99

11.26
6.49

10.63
6.04

10.11
5.72

9.64
5.37

7.96
4.21

6.86
3.51

7.97
4.18

7.33
3.84

6.99
3.54

6.55
3.19

6.19
3.01

5.89
2.86

5.62
2.65

4.69
2.11

4.04
1.79

5.38
2.61

4.92
2.34

4.72
2.18

4.50
1.94

4.24
1.83

4.02
1.76

3.89
1.60

3.25
1.29

2.76
1.10

3.94
1.82

3.61
1.60

3.47
1.47

3.38
1.30

3.17
1.21

2.97
1.25

2.92
1.12

2.45
0.86

2.08
0.77

2.35
1.02

2.21
0.86

2.18
0.77

2.17
0.71

2.09
0.60

1.82
0.73

1.84
0.68

1.63
0.54

1.32
0.48

1.42
0.58

1.42
0.52

1.44
0.52

1.47
0.51

1.49
0.50

1.15
0.36

1.17
0.38

1.08
0.27

1.01
0.08
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Table 7.2: Percentile points of the run length distribution for the pro-
posed NPPM control chart

p
n 05 055 0.6 0.65 07 075 0.8 0.85 0.9 0.95
10 Qo.05 10 6 3 2 2 1 1 1 1 1
Qoas 45 4 7 5 3 3 2 2 1 1
Qoso 128 26 11 7 5 3 3 2 2 1
Qo 365.75 43 17 9 6 5 3 3 2 2
Qoos 14549 79 28 15 9 6 5 4 3 2
12 Qo5 11 6 4 3 2 2 1 1 1 1
Qoa2s 48 4 7 4 3 2 2 2 1 1
Qoso 137 24 10 6 4 3 3 2 2 1
Qo7 387 332 15 8 6 4 3 3 2 2
Qoos 1538 70 24 13 8 6 4 3 3 2
15 Qo.os 10 5 3 2 2 1 1 1 1 1
Qoo AT 11 6 4 3 2 2 1 1 1
Qoso 136 20 8 5 4 3 2 2 1 1
Qo5 388 31 12 7 5 3 3 2 2 1
Qoos 14798 56 20 11 7 5 4 3 2 2
20 Qoos 11 5 3 2 2 1 1 1 1 1
Qo2 45 10 5 3 2 2 2 1 1 1
Qoso 133 17 7 4 3 2 2 2 1 1
Qors 376 26 10 6 4 3 2 2 2 1
Qoos 14179 47 16 8 6 4 3 2 2 2

Table 7.3: Control chart multiplier L’ to achieve fixed ARLg

ARLg
n 200 250 300 350 370 400 500

10 3.303 3.489 3.639 3.765 3.803 3.882 4.071
15 3.228 3.387 3.528 3.654 3.692 3.762 3.939
20 3.195 3.351 3.501 3.624 3.650 3.738 3.927
25 3.168 3.333 3477 3.606 3.626 3.714 3.888
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Table 7.4: Steady-state ARL of the proposed NPPM chart

0.5

0.55

0.6

p
0.65

0.7

0.75

0.85

0.95

10

12

15

20

25
50
100

25
50
100

25
50
100

25
50
100

370.33
378.81
387.82
420.91

370.67
379.55
393.62
418.16

369.37
368.66
378.90
404.16

369.38
367.87
370.54
408.24

31.84
37.16
41.14
43.22

28.26
34.61
36.87
39.61

24.30
30.19
31.73
35.03

20.04
25.34
27.60
29.97

12.70
17.58
19.37
21.39

11.26
15.79
17.61
19.92

9.64
13.96
15.53
17.05

7.96
12.10
13.50
14.93

7.33
11.26
12.46
14.27

6.55
10.27
11.59
12.94

5.62
9.12
10.31
11.54

4.69
7.89
8.93
10.14

4.92
8.22
9.36
10.46

4.50
7.56
8.66
9.74

3.89
6.73
7.67
8.73

3.25
5.87
6.77
7.63

3.61
6.40
7.33
8.18

3.38
5.95
6.86
7.76

2.92
5.34
6.08
6.95

2.45
4.68
5.40
6.19

2.21
4.37
5.02
5.70

217
4.08
4.72
2.38

1.84
3.70
4.24
4.83

1.63
3.27
3.78
4.39

1.42
3.05
3.57
4.10

1.47
2.85
3.31
3.81

1.17
2.62
3.03
3.47

1.08
2.35
2.72
3.13
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7.4 Comparisons

In this section we compare the zero-state ARL performance of the propo-
sed NPPM chart with the recent proposals of |Yana et alJ (|201]J) and Yang

and Cheng (IZQ]_]J |_Y_ang_e:cjl.| (IZQ]_]J ) proposed two nonparametric EWMA

charts, namely the nonparametric EWMA sign (N PSg) chart and the nonpa-

rametric arcsine EWMA sign (NPASE) chart, while [Yang and QIhQHQ (2011)

proposed the nonparametric CUSUM (N P¢) chart for quick detection of de-

partures from the in-control process proportion pg.
The NPSg chart is based on plotting the EWMA statistic W;, given as:

W, = AM; + (1 — W, (7.8)

where M, is defined in Section 7.2. (@) provided the corrected
limits for the N PSE chart, given as:

UCL =n/2+K L(n/4) (7.9)

92—
CL=n/2

LCL=n/2-K 5 i A(n/él)

where ) is the weight assigned to the most recent observation. The NPSg
chart gives an out-of-control signal for any W, lying outside the above control

limits.

Yang et al. ) also proposed the NPASE chart by making use of
the arcsine transformation defined in (7.2). The NPASE chart is based on
plotting the statistic W}, given as:

W/ = \Z,+ (1 — NW,_, (7.10)
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where Z; is defined in Section 7.2. The chart gives an out-of-control signal

when W) goes out of the given limits:

A

UCL = sin~ ' (V0.5) + K 5y (1/4n) (7.11)
CL = sin~'(+/0.5)
LCL = sin~'(v/0.5) — K %(1/471)

Moreover, a nonparametric CUSUM chart (NPS¢) has been proposed by

Mﬁhﬂlﬁ (IZQ]_]J), which is based on plotting the CUSUM statistics,

given as:

Cr =max(0,C, + M; — (npo + k)) (7.12)
C; = min(0,C;"; + M; — (npo — k))

where k is known as the reference value, defined as k = n@ and Cf =
Cy = 0. The NPS¢ chart gives an out-of-control signal for any Cy > H or
Cy < —H, where H is chosen to obtain a specified in-control average run
length.

The ARL results of the NPSg, NPASE and NPSg charts for some
representative values of n are computed using similar simulation routines

and are reported in Table 7.5. The ARL results for these charts are in close

agreement with the results reported in |Yang et alJ 201]J) and Yang and
Cheng (IZQ]_]J) which confirms the validity of our simulation routines. The
design structures of the charts compared in this study are summarized in
Table 7.6.

The results in Tables 7.1 and 7.5 indicate that the out-of-control ARL
(ARL;) of the NPPM chart is significantly lower than the ARL; of the
NPSg, NPASE and NPS¢ charts: for example, when n = 12 the ARL; =
28.26, 11.26, 6.55 for the proposed NPPM chart for p = 0.55,0.6 and 0.65,
while the corresponding values of ARL; for the NPSg chart are 44.74, 17.07,
10.29, for the NP ASE chart are 44.93, 16.91, 10.10, and for the N PS¢ chart
are 59.07,18.58, and 10.96. It indicates that the proposed NPPM chart
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requires, on average, nearly 16, 6 and 4 fewer subgroups than the NPSg and
NPASE charts and 31,7 and 4 fewer subgroups than the NPS¢g chart to
detect these shifts in py.

Figure 7.2 compares the ARL of the proposed N PPM chart with NPSg,
NPASE and NPS¢ charts using different values of p and n when ARLg =
370. In each plot, p is plotted on the horizontal axis, while the ARL is plotted
on the vertical axis using a logarithmic scale to facilitate better visual com-
parison. Clearly, the ARL curves of the NPPM chart are consistently lower
than the ARL curves of the NPSg, NPASE and N PS¢ charts indicating a
better detection ability of the proposed chart.

To get more insight into the run length distribution of the NPPM,
NPSE, NPASE and NPS¢ charts, Figure 7.3 presents run length curves
(RLCs) of these charts for certain values of n when p = 0.6. We can observe
that the RLCs of the proposed NPPM chart are higher than the RLCs of
the other charts, indicating that the NP PM chart has greater probability of
detection for shorter run lengths. Note that this high probability at shorter
run lengths indicates that the shifts in the process location will be detected
quickly with high probability. The superiority of the proposed N PPM chart
over the other charts can be seen for all sample sizes.

We also observed that, even at sufficiently large values of ¢ (say ¢ = 100),
the steady-state behaviour of the proposed NPPM chart shows superiority
over the other competing charts, particularly for the detection of small shifts

in process location.
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Figure 7.2:

ARL comparison of the proposed NPPM chart with
NPSg, NPASE and NPS¢ charts when ARLy = 370
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Table 7.5: ARL of NPSg, NPASE and NPS¢s charts when ARLg =

370
p

Chart n 005 015 025 0.3 035 0.4 0.45 0.5 0.55 0.6 0.65 0.7 075 085 0.95
NPSgp 10 344 444 6.29 8.08 11.37 19.10 51.47 369.53 51.37 19.04 1140 811 6.33 4.44 3.44
12 3.10 4.05 5.73 7.33 1020 16.92 4529 371.25 44.74 1707 1029 7.36 5.74 4.04 3.10
15 3.01 3.59 5.07 648 899 14.64 3812 37155 3819 14.68 899 6.46 5.07 3.58 3.01
20 2.60 3.18 440 5.58 7.65 1227 31.16 371.91 30.60 12.25 7.65 5.56 4.41 3.18 2.60
NPASg 10 271 394 6.01 790 11.26 19.12 5254 37233 5256 19.23 11.23 788 6.02 3.93 2.71
12 236 3.60 548 7.15 10.13 16.93 4550 370.00 44.93 1691 10.10 7.14 547 3.59 2.36
15 231 3.27 492 6.32 888 14.62 38.84 369.02 3837 14.65 885 6.31 4.89 327 231
20 2.09 289 421 540 747 1213 3048 370.00 30.71 12.21 748 542 4.19 288 2.08
NPSc 10 419 5.17 7.02 887 1235 21.39 64.55 369.20 64.30 21.33 12.36 887 7.05 5.16 4.19
12 401 456 6.26 7.92 10.88 18.65 5813 372.00 59.07 1858 10.96 791 6.28 4.57 4.01
15 3.18 4.08 545 6.76 9.31 1578 50.99 371.50 50.81 1594 9.34 6.77 546 4.09 3.19
20 3.00 3.41 447 549 751 12,69 40.71 369.23 40.77 12.65 749 551 449 340 3.00




Table 7.6: Design structures of different control charts

Control Chart

Monitoring Statistic

Control limits

NPPM

NPSg

NPASE

NPSc

PM,; = LJ‘? 7

Wt - )\Mt + (1 - A)Wt—l

W)=z, +(1-NW/,

C;" = max(0,C;, + M; — (npo + k))

Ct_ = min(O, Cttl + Mt — (npo — k?))

P 1/4n
LCL = sin 1(\/p_0)—L’>kﬁ* /T

UC’Lzsin_l(\/p_o)—i-L’*ﬁ*\/l/#

LCL =n/2— K\/5%5(n/4)

UCL =n/2+ K/ 325 (n/4)
\/ 325 (1/4n)

(V0.5) - K
UCL = sin~'(v/0.5) + K /525 (1/4n)

H

LCL = sin™!

suosrredwo)) #°2
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Figure 7.3: Run length curves of the NPPM, NPSg, NPASE and
NPS¢ charts when ARLy = 370 and p = 0.6
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7.5 Example

To illustrate the application of the proposed NPPM chart, we use the same

example as used by |Yang et all (2011) and Yang and Cheng Yang and QZhQHQ
(2011) from [Montgomery (IM)

“The fill volume of soft-drink beverage bottles is an important

quality characteristic. The volume is measured (approximately)
by placing a gauge over the crown and comparing the height of
the liquid in the neck of the bottle against a coded scale. On
this scale, a reading of zero corresponds to the correct fill height.
Fifteen samples of size n = 10 have been analyzed, and the fill

heights are shown below:”

The data set with the PM, the EWMA (W; and W}) and the CUSUM
(C)" and C;) statistics is given in Table 7.7. The control chart multipliers
have been chosen to give the desired in-control average run length of 370 for
all the charts. We use L' = 3.803 for the proposed NPPM chart, L = 2.49
for NPSEr and NPASE charts and H = 9.98 for the NPSc chart. The
resulting four control charts have been plotted in Figure 7.4.

The proposed NPPM chart shows better detection ability as it detects
the out-of-control signal at the 10th sample compared to the 13th sample
for NPSg, the 12th sample for the NPASE chart, while the N PS¢ chart is
unable to detect any out-of-control signal. This simple example clearly shows

the benefit of using the NPPM chart as compared to its counterparts.
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Figure 7.4: Control chart plots of NPPM, NPSg, NPASE and
N PS¢ charts for the given dataset



Table 7.7: Data set with Progressive mean, EWMA and CUSUM mo-
nitoring statistics

Sample X1 X2 X3 X4 X5 X6 X7 Xg Xg X10 M Z PMZ Wt Wt, Cj_ Ct_
1 25 05 20 -10 10 -10 05 15 05 -15 7 0991 0991 5100 0796 2.8 0.0
2 00 00 05 10 15 10 -10 10 15 -10 6 0.88 0939 5145 0800 4.6 0.0
3 15 10 10 -10 00 -15 -10 -1.0 1.0 -1.0 4 068 0854 508 0.794 44 0.0
4 00 05 -20 00 -10 15 -15 00 -20 -15 2 0464 0.756 4933 0778 2.2 -1.2
5 00 00 00 -05 05 10 -05 -05 00 00 2 0464 0.698 4787 0.762 0.0 -2.4
6 1.0 -05 00 00 00 05 -10 10 -20 10 4 068 0696 4747 0758 00 -1.6
7 0 -10 -10 -10 00 15 00 1.0 0.0 00 3 0580 0679 4660 0749 00 -1.8
8 00 -15 -05 15 00 00 00 -1.0 05 -05 2 0464 0.652 4527 0.735 0.0 -3.0
9 -20 -15 15 15 00 00 05 10 00 1.0 5 078 0.667 4551 0.738 0.8 -1.2
10 -05 35 00 -10 -15 -15 -10 -1.0 1.0 05 3 0580 0.658 4473 0730 0.0 -14
11 00 15 00 00 20 -15 05 -05 20 -1.0 4 0.68 0.661 4449 0.727 0.0 -0.6
12 00 -20 -05 00 -05 20 15 00 05 -1.0 3 058 0.654 4377 0.720 0.0 -0.8
13 -10 -05 -05 -10 00 05 05 -15 -10 -1.0 2 0464 0639 4.258 0.707 0.0 -2.0
14 05 10 -10 -05 -20 -10 -15 00 15 15 4 0.68 0.643 4245 0706 0.0 -1.2
15 10 00 15 15 10 -10 0.0 1.0 -20 -15 &5 0.78 0652 4283 0.710 0.8 0.0

ojdurexryy G-,

€61
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7.6 Conclusions

In this study we proposed a nonparametric progressive mean control chart,
namely the NPPM chart, using the progressive mean statistic. The propo-
sed chart can be used for the efficient detection of departures from the process
location or target, when the distribution of the quality characteristic of in-
terest is uncertain. The performance of the proposed chart is compared with
the recently proposed NPEWMA and NPCUSUM charts using different run
length characteristics. The comparisons revealed that the proposed N PP M
chart has better detection ability compared to its counterparts. This study
will help quality practitioners to choose an efficient nonparametric control

chart for the monitoring of process location or target.



Chapter 8

Summary and Future

Recommendations

8.1 Summary

Statistical process control provides tools for the monitoring of processes that
help in the detection of abnormal variations in process (location and spread)
parameters. This doctoral thesis deals with the variable control charts, for
the monitoring of quantitative characteristics. The main findings from the

conducted research are as follow:

e Chapter 2 investigated a number of Shewhart type dispersion control
charts for normal and non-normal processes in the monitoring phase
(Phase II). These dispersion charts are based on the sample range (R),
the sample standard deviation (S), the inter-quartile range (IQR),
Downton’s estimator (D), the average absolute deviation (M D), the
median absolute deviation (M AD), Sn and @n estimates. Standardi-
zed variances and relative efficiencies were provided for all the estima-
tors, considering normal and non-normal parent distributions. Logistic
and Student’s ¢ distributions are used to represent the heavy-tailed
symmetric distributions whereas Weibull, Gamma, Chi-square, Expo-
nential and Lognormal distributions represented the case of skewed

distributions.
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The comparisons revealed that, for the case when the assumption
of normality is valid, the .S chart was the most efficient dispersion chart
and the D and the M D charts can be considered as close competitors.
For small values of sample size (n), the R and the IQR charts also
performed well but lost efficiency (compared to the other charts) with
increase in n. For non-normal parent distributions, the D and the M D
charts showed better performance compared to the rest of the charts.
The performance of the widely used R and S charts was greatly affected
for most of the non-normal parent distributions. The M AD, S, and
@, charts were generally less efficient except for (the extremely skewed)
lognormal distribution where these charts showed better detection abi-
lity, compared to the other charts. We discovered that, for a particular
parent distribution, the performance of a Phase II dispersion chart is
strongly related to the relative efficiency of the dispersion estimator

used in its construction.

Chapter 3 investigated a wide range of Shewhart type charts for the
monitoring of process dispersion in the retrospective phase (Phase I).
In addition to the dispersion estimates considered for Phase II moni-

toring, the pooled sample standard deviation and the distribution-free

scale rank statistic (Jones-Farmer and Cham (IM)) were also exa-
mined. In SPC literature, the investigation of Phase I charts is mostly
limited to normal or contaminated normal distributions. Little work
has been to done to investigate a wide range of Phase I dispersion
charts for processes following non-normal distributions. In this chap-
ter, the Phase I performances of different dispersion charts for normal,
heavy tailed symmetric (Logistic and Student’s ¢) and skewed (Gamma
and Exponential) distributions were evaluated. The probability of the
charts to signal out-of-control samples (m1) in the Phase I dataset was
used as a performance measure. Control chart constants, required to
set the control limits for the under study charts, were provided for the

different parent distributions.

The comparison among the ability of different structures for the
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detection of out-of-control samples revealed that, under the ideal as-
sumption of normality, the S, D and M D charts exhibited the best
performance for smaller choices of m; which deteriorated with an in-
crease in the value of my. For larger values of my, the newly suggested
V5 charting structure had the highest signaling probability to detect
out-of-control subgroups. The performance of most of the dispersion
charts (except the distribution-free T, and V5 charts) was extremely
affected by an increase in the number of out-of-control samples. The
detection ability of the charts was even more affected with an increase
in the excess kurtosis and skewness for non-normal parent distributions.
The newly suggested V5 charting structure showed the best overall per-

formance for both normal and non-normal parent environments.

e Chapter 4 investigated the EWMA dispersion charts for the monito-
ring phase (Phase II). The design structures of these charts were based
on different dispersion estimates that were studied for Phase II moni-
toring using Shewhart charts (in Chapter 2). The performance of all
the EWMA dispersion charts was evaluated using different run length
characteristics such as average run length (ARL), median run length
(MDRL) and standard deviation of the run length distribution (SDRL).
To measure the overall effectiveness of the EWMA dispersion charts,
the extra quadratic loss (EQL) and the relative ARL (RARL) crite-
rion were examined. The results were reported for EWMA smoothing
parameter A = 0.05,0.25,0.50 and 0.75 considering n = 5 and 10.

The comparisons revealed the superior performance of the Sg chart
for normally distributed process with the Dg and the M Dg charts as
close competitors. The Rr and Qg charts also showed better perfor-
mance for n = 5, but not as good when n was increased. For non-
normal t and Gamma parent distributions, the Dg and the M Dy charts
showed the best detection ability, compared to the rest of the charts.
The Qg chart again showed better performance but only for the small
sample size. From the EQL results, it was observed that, for normal

processes, most of the charts had better overall performance at either
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A = 0.25 or A = 0.50; while, for the non-normal processes, at A = 0.05
or A = 0.25. The comparisons of the EWMA charts with the correspon-
ding Shewhart charts indicated the superior performance of the EWMA

structures, particularly for the detection of small shifts in o.

For a particular parent distribution, the performance of the EWMA
dispersion charts in Phase II also showed a strong relationship with the

relative efficiency of the dispersion estimator used in its construction.

Chapter 5 showed the impact of two component measurement error
on the performance of EWMA control charts for the monitoring of
analytical measurements. The two component error model proposed

by W_LMEHZ@IA (|19_9j), combined both additive error (that

dominates at lower concentrations) and the multiplicative error (that

dominates at higher concentrations) in a single model to adequately
describe measurement error over the entire range of observations for
an analytical process. This chapter evaluated the performance of the
EWMA location chart in presence of the two component measurement

error.

The run length results indicated the worst effect of two component
error on the EWMA chart performance occurred for low values of C'V
and the concentration level () of the analyte. It was shown that
the adverse effect of two component error model can be reduced by
taking extra measurements (k) at each sample point. The use of a cost
function approach was made to obtain the optimum choices of n and
k. These optimum values indicated that a large number of multiple
measurements (k) is usually required when the process variance (o?) is
small compared to measurement error variances (ag and ¢?). As the
measurement error variances (o, and 0?) became smaller compared to
o2, it was beneficial to take more sample units instead of taking extra
measurements. It is also observed that, compared to the case of only
additive error, the run length performance of the EWMA chart was
more seriously affected by the presence of two component measurement

error, particularly at higher concentration levels.
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e Chapter 6 proposed the use of run rule schemes with a CUSUM disper-
sion chart for individual observations. In SPC literature, the investiga-
tion of run rules is mostly confined to Shewhart charts and their use
with the memory charts (such as the EWMA or the CUSUM charts) is
very limited. In this chapter, two run rule schemes for CUSUM disper-
sion charts were proposed with an aim of quickly detecting small shifts
in the process standard deviation (o). The proposed run rule schemes
made use of a warning limit and declared a process to be out-of-control
if either a point lies beyond the control limit (k) or if 2-of-2 or 2-of-3
points lie outside the warning limit (w). The run length properties of
the proposed schemes were evaluated using Markov chain Monte Carlo
methods following the work of [Fu et al (M) We observed that

both of the schemes were efficient and performed best for the detection

of small shifts, when the control limit h was set equal to infinity (i.e.
h = 00). The run length results were provided for ARLy = 120 and 200
but similar behaviours are also expected for other ARL, values. Plots
of ARLg vs w were provided for both the run rules schemes (at h = 00)
that can be used to approximate the control limits for the desired ARLy
values (between 100 to 500).

The performance of the proposed schemes was compared with the
simple dispersion CUSUM and the relevant EWMA dispersion charts
(the EWMS chart, the M-EWMS chart and the COMB chart), for in-
dividual observations. The comparisons revealed superior run length
performance of the proposed schemes as compared to these counter-

parts, particularly for the detection of small shifts in o.

e Chapter 7 proposed the use of the progressive mean statistic in nonpa-
rametric structures for the efficient detection of shifts in process target
or location. As compared to Shewhart, EWMA and CUSUM charting
statistics, the quick convergence ability of the PM statistic helped in
the early detection of shifts in process parameters. The proposed non-
parametric progressive mean (N PPM) chart was based on using the

transformed sign statistic in the progressive setup. The NPPM chart
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used the cumulative average of the sample values, observed over time
as the monitoring statistic. This can be very useful for processes that
have the tendency to go out-of-control at the start of a monitoring cycle

or that produce frequent out-of-control signals.

The performance of the NPPM chart was evaluated using dif-
ferent run length characteristics such as the average run length, stan-
dard deviation of the run length and the percentile points of the run
length distribution. The NPPM chart was equally efficient for the
detection of both positive and negative shifts in the in-control process
proportion (pg). The steady state performance of the NPPM chart
was shown to be less efficient as compared to than the zero-state per-
formance due to the fact of giving weight to the in-control sample
observations. The run length results were provided for ARLy = 370
but similar behaviours have been observed for other choices of ARLy.
The values of the control chart multipliers were provided to achieve a
specified ARLg (between 200 to 500) for some representative choices of

sample size n.

The comparisons among the competing charts revealed that the
proposed N PP M chart outperformed the recent nonparametric EWMA
and nonparametric CUSUM charts, in terms of detecting shifts in pro-

cess target or location.

8.2 Future Work

We discovered that the investigation of the following issues in SPC also needs

attention.
e Distribution fitting of the common cause variation in Phase .

e Investigating the Phase II performance of Shewhart and EWMA disper-
sion charts for non-normal and contaminated normal processes when
only a limited number of samples are available for the estimation of

unknown parameters in Phase I.
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— We already did some work in this direction that includes robust
methods of estimating ¢ in Phase I and further to see how it effects
the EWMA chart’s performance in Phase II.

e Enhancing the performance of control charts with the use of auxiliary

information.

— A paper in this direction has already been submitted in Journal of
Advanced Manufacturing Technology that involves constructing
design structure of a Phase II variability chart based on using

information of a single auxiliary variable.

— In another study, we are investigating location estimators that uti-
lize information on one or/and two auxiliary variables for efficient

Phase II monitoring.

e Economic-statistical design of memory and memory less dispersion

charts.

e Development of distribution free EWMA structures for monitoring pro-

cess dispersion.

e Investigating the robustness to non-normality of progressive mean charts

for monitoring process location and dispersion.
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Table A.1: Control chart coefficient to for different dispersion charts
under normal and non-normal distributions

Distribution R S IQR D MD MAD Sn Qn

1.6903 0.8850 1.2530 0.9986 0.5634 0.6713 0.9995 0.9999
2.3260 0.9417 1.2310 1.0016 0.6642 0.8235 1.0034 1.0031
27000 0.9574 1.1194 0.9981 0.7022 0.8783 0.9990 0.9998
3.0764 0.9724 1.1009 0.9997 0.7390 0.9128 0.9933 1.0073
3.2576  0.9778 1.0815 1.0005 0.7489 0.9310 0.9957 1.0054

1.6508 0.8647 1.2237 0.9753 0.5503 0.6525 0.9715 0.9720
22989 0.9235 1.1922 0.9776 0.6433 0.7741 0.9543 0.9584
27025 0.9453 1.0484 0.9772 0.6798 0.8172 0.9434 0.9528
3.1221  0.9621 1.3794 0.9778 0.7126 0.8433 0.9284 0.9593
3.3289  0.9676 0.9952 0.9767 0.7198 0.8506 0.9230 0.9500

1.6082 0.8435 1.1922 0.9502 0.5361 0.6253 0.9310 0.9314
2.2457 0.9011 1.1522 0.9490 0.6217 0.7302 0.9036 0.9094
2.6607 0.9268 0.9918 0.9504 0.6573 0.7698 0.8922 0.9038
3.1012  0.9454 0.9617 0.9503 0.6869 0.7883 0.8725 0.9080
3.3308 0.9536 0.9335 0.9505 0.6946 0.7963 0.8680 0.9011

1.6310 0.8583 1.2091 0.9636 0.5437 0.6067 0.9033 0.9038
2.2496 0.9214 1.1914 0.9685 0.6429 0.7538 0.9085 0.9069
2.6032 0.9419 1.0897 0.9654 0.6803 0.8087 0.9033 0.8928
29607 0.9595 1.0698 0.9662 0.7151 0.8470 0.9073 0.9056
3.1321  0.9670 1.0534 0.9670 0.7253 0.8660 0.9090 0.8995

1.6091 0.8473 1.1928 0.9507 0.5364 0.5946 0.8853 0.8857
22199 0.9078 1.1656 0.9508 0.6289 0.7252 0.8765 0.8768
25913 0.9325 1.0526 0.9512 0.6668 0.7808 0.8754 0.8702
29607 0.9508 1.0298 0.9507 0.6995 0.8107 0.8705 0.8767
3.1438 0.9579 1.0071 0.9502 0.7075 0.8226 0.8678 0.8680

1.5891 0.8383 1.1780 0.9389 0.5297 0.5738 0.8543 0.8547
21925 0.8991 1.1496 0.9384 0.6203 0.7016 0.8466 0.8479
25659 0.9269 1.0358 0.9399 0.6581 0.7522 0.8413 0.8359
29374 0.9460 1.0093 0.9387 0.6894 0.7816 0.8388 0.8433
3.1229 0.9546 0.9894 0.9394 0.6981 0.7959 0.8372 0.8361

1.5004 0.7970 1.1122 0.8864 0.5001 0.4937 0.7351 0.7355
2.0848 0.8668 1.0831 0.8874 0.5844 0.5946 0.7083 0.7155
2.4438 0.8958 0.9498 0.8842 0.6154 0.6298 0.6921 0.6925
2.8252 0.9224 0.9238 0.8849 0.6446 0.6560 0.7005 0.7064
3.0209 0.9347 0.9022 0.8861 0.6530 0.6662 0.6949 0.6931

1.1911 0.6399 0.8830 0.7037 0.3970 0.3336 0.4967 0.4969
1.6995 0.7118 0.8385 0.7022 0.4524 0.3807 0.4546 0.4635
2.0654 0.7547 0.6534 0.7033 0.4743 0.3928 0.4332 0.4419
24858 0.7953 0.6228 0.7042 0.4928 0.4006 0.4286 0.4466
2.7253 0.8166 0.5931 0.7058 0.4981 0.4019 0.4201 0.4339

Normal

N Ot W| 3

— =
N O

Logistic

~ Ut W

— =
N O
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~ Ut W

— =
N O
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— =
[\DO\]CHCO

Gamma

— =
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— =
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— =
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Table A.2: Control chart coefficient t3 for different dispersion charts
under normal and non-normal distributions

Distribution n R S IQR D MD MAD Sn Qn

Normal 3 0.8848 0.4615 0.6559 0.5228 0.2949 0.5525 0.8227 0.8231
5 0.8644 0.3412 0.4606 0.3658 0.2485 0.4807 0.5519 0.5387

7 0.8293 0.2806 0.4380 0.2952 0.2150 0.4181 0.4259 0.4119

10 0.7986 0.2327 0.3457 0.2415 0.1869 0.3378 0.3342 0.3027

12 0.7773 0.2108 0.3223 0.2180 0.1711 0.3143 0.3000 0.2705

Logistic 3 0.9560 0.4997 0.7087 0.5648 0.3187 0.5684 0.8464 0.8468
5 0.9829 0.3830 0.4924 0.4028 0.2657 0.4720 0.5541 0.5454

7 09929 0.3258 0.4402 0.3318 0.2315 0.4078 0.4297 0.4207

10 0.9964 0.2750 0.4604 0.2724 0.1998 0.3277 0.3309 0.3161

12 0.9976 0.2508 0.3142 0.2459 0.1821 0.2999 0.2955 0.2791

Student’s t 3  1.0265 0.5413 0.7609 0.6064 0.3422 0.5607 0.8348 0.8352
5 1.1003 0.4316 0.5230 0.4388 0.2822 0.4548 0.5392 0.5330

7 1.1442 0.3756 0.4299 0.3621 0.2443 0.3897 0.4171 0.4108

10 1.1922 0.3226 0.3280 0.2975 0.2089 0.3082 0.3163 0.3083

12 1.2199 0.2997 0.3019 0.2708 0.1918 0.2844 0.2842 0.2746

Weibull 3 0.9580 0.5082 0.7102 0.5660 0.3193 0.5216 0.7766 0.7770
5 0.9587 0.3925 0.5010 0.4021 0.2704 0.4602 0.5263 0.5136

7 09384 0.3330 0.4666 0.3280 0.2354 0.4042 0.4132 0.3864

10 0.9191 0.2816 0.3658 0.2691 0.2041 0.3282 0.3320 0.2887

12 0.9056 0.2581 0.3414 0.2436 0.1872 0.3067 0.3001 0.2559

Chi-square 3 0.9945 0.5289 0.7372 0.5876 0.3315 0.5224 0.7778 0.7782
5 1.0177 0.4164 0.5175 0.4206 0.2792 0.4500 0.5177 0.5057

7 10179 0.3591 0.4716 0.3468 0.2444 0.3964 0.4082 0.3860

10 1.0138 0.3064 0.3672 0.2847 0.2110 0.3223 0.3254 0.2894

12 1.0093 0.2819 0.3399 0.2578 0.1934 0.2966 0.2922 0.2541

Gamma 3 1.0196 0.5447 0.7559 0.6024 0.3399 0.5143 0.7657 0.7661
5 1.0504 0.4328 0.5315 0.4333 0.2868 0.4457 0.5130 0.5031

7 1.0586 0.3752 0.4776 0.3577 0.2508 0.3926 0.4062 0.3818

10 1.0583 0.3208 0.3691 0.2927 0.2154 0.3164 0.3241 0.2860

12 1.0565 0.2962 0.3425 0.2662 0.1981 0.2941 0.2925 0.2528

Exponential 3 1.1234 0.6073 0.8328 0.6638 0.3745 0.4924 0.7332 0.7336
5 1.1942 0.5009 0.5891 0.4867 0.3179 0.4294 0.4950 0.4916

7 1.2190 0.4397 0.5034 0.4020 0.2764 0.3738 0.3919 0.3720

10 1.2389 0.3824 0.3912 0.3322 0.2387 0.3057 0.3237 0.2907

12 1.2451 0.3546 0.3599 0.3010 0.2183 0.2826 0.2912 0.2553

Lognormal 3 1.3956 0.7747 1.0346 0.8246 0.4652 0.3984 0.5931 0.5934
5 1.5988 0.6864 0.6968 0.6121 0.3760 0.3139 0.3647 0.3687

7 1.7858 0.6529 0.4583 0.5213 0.3287 0.2629 0.2783 0.2738

10 1.9611 0.6043 0.3377 0.4337 0.2793 0.2087 0.2244 0.2160

12 2.1005 0.5927 0.3001 0.4019 0.2595 0.1898 0.1980 0.1856
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Table A.3: Lower («/2) quantile points of the distribution of Z for
different dispersion charts under normal and non-normal distributions
when o = 0.002

Distribution R S IQR D MD MAD Sn Qn

0.0616 0.0326 0.0456 0.0364 0.0205 0.0008 0.0012 0.0012
0.3637 0.1527 0.1958 0.1613 0.1057 0.0219 0.0295 0.0342
0.6946 0.2523 0.1639 0.2617 0.1785 0.0682 0.0855 0.1055
1.0720 0.3537 0.2913 0.3646 0.2650 0.1747 0.2099 0.2546
1.3015 0.4149 0.2967 0.4210 0.3080 0.2066 0.2563 0.3041

0.0554 0.0296 0.0411 0.0327 0.0185 0.0008 0.0012 0.0012
0.3319 0.1348 0.1751 0.1436 0.0945 0.0204 0.0261 0.0303
0.6292 0.2289 0.1405 0.2378 0.1607 0.0617 0.0811 0.0990
0.9980 0.3350 0.3471 0.3406 0.2485 0.1465 0.1917 0.2427
1.1717 0.3747 0.2667 0.3790 0.2802 0.1844 0.2328 0.2824

0.0553 0.0290 0.0410 0.0327 0.0184 0.0007 0.0011 0.0011
0.2909 0.1237 0.1549 0.1317 0.0836 0.0200 0.0259 0.0294
0.5894 0.2136 0.1321 0.2185 0.1493 0.0600 0.0731 0.0933
0.9072  0.2996 0.2356 0.3054 0.2210 0.1371 0.1733 0.2132
1.0957 0.3436 0.2439 0.3496 0.2530 0.1740 0.2177 0.2594

0.0455 0.0241 0.0337 0.0269 0.0152 0.0008 0.0011 0.0011
0.3248 0.1333 0.1684 0.1406 0.0908 0.0218 0.0286 0.0333
0.6191 0.2273 0.1432 0.2345 0.1619 0.0639 0.0814 0.0985
0.9311 0.3136 0.2608 0.3206 0.2285 0.1517 0.1877 0.2198
1.1183 0.3607 0.2646 0.3685 0.2692 0.1796 0.2171 0.2646

0.0505 0.0268 0.0374 0.0298 0.0168 0.0008 0.0012 0.0012
0.3133 0.1282 0.1666 0.1375 0.0899 0.0206 0.0269 0.0311
0.5764 0.2111 0.1326 0.2203 0.1491 0.0560 0.0671 0.0867
0.8935 0.3000 0.2445 0.3071 0.2179 0.1372 0.1736 0.2083
1.1015 0.3514 0.2443 0.3579 0.2562 0.1741 0.2149 0.2573

0.0494 0.0264 0.0367 0.0292 0.0165 0.0007 0.0010 0.0010
0.2733 0.1146 0.1440 0.1197 0.0777 0.0193 0.0260 0.0292
0.5352 0.1947 0.1277 0.2036 0.1406 0.0558 0.0680 0.0862
0.8662 0.2837 0.2322 0.2899 0.2111 0.1338 0.1626 0.1973
1.0556 0.3312 0.2349 0.3337 0.2434 0.1629 0.1998 0.2399

0.0320 0.0167 0.0237 0.0189 0.0107 0.0005 0.0007 0.0007
0.1890 0.0781 0.0982 0.0809 0.0530 0.0140 0.0174 0.0201
0.3791 0.1402 0.0963 0.1452 0.1003 0.0383 0.0456 0.0572
0.6368 0.2126 0.1793 0.2158 0.1565 0.0895 0.1081 0.1318
0.7745 0.2526 0.1903 0.2552 0.1893 0.1226 0.1382 0.1686

0.0202 0.0104 0.0150 0.0119 0.0067 0.0004 0.0006 0.0006
0.1187 0.0484 0.0627 0.0518 0.0338 0.0078 0.0103 0.0116
0.2221 0.0819 0.0581 0.0845 0.0587 0.0235 0.0274 0.0344
0.3637 0.1200 0.1006 0.1234 0.0901 0.0536 0.0657 0.0810
0.4394 0.1411 0.1059 0.1434 0.1047 0.0701 0.0798 0.0943
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— =
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— =
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Table A.4: Upper (1 —«/2) quantile points of the distribution of Z for
different dispersion charts under normal and non-normal distributions

when a = 0.002
Distribution  n R S IQR D MD MAD Sn Qn

Normal 3 50781 2.6336 3.7644 3.0002 1.6927 3.1554 4.6982 4.7004
5 54800 2.1454 29096 2.3127 1.5700 2.7535 3.1284 3.1981

7 57617 19431 2.7514 2.0399 1.4815 2.5412 2.5681 2.6066

10 6.0339 1.7497 2.3519 1.8130 1.3976 2.1749 2.2462 2.0895

12 6.0533 1.6881 2.2293 1.7343 1.3439 2.0810 2.0961 1.9704

Logistic 3  6.0201 3.1611 4.4627 3.5568 2.0067 3.5261 5.2501 5.2527
5 6.6291 25929 3.2389 2.6622 1.7477 2.9255 3.3891 3.4908

7 7.0971 23109 2.8317 2.3066 1.5966 2.5622 2.6496 2.7212

10 7.5385 2.0834 3.2737 2.0891 1.4848 2.1359 2.2719 2.2251

12 7.6412 1.9622 2.1889 1.8953 1.4016 2.0237 2.0791 2.0150

Student’s t 3 7.6479 4.0606 5.6694 4.5185 2.5493 3.7318 5.5564 5.5591
5 8.8445 3.4935 3.8829 3.3992 2.0952 2.8208 3.3720 3.4142

7 93920 3.1611 29135 2.7993 1.8149 2.5113 2.7258 2.7552

10 10.4630 2.8866 2.3173 2.4543 1.6569 2.0522 2.1860 2.2001

12 10.7478 2.7541 2.1320 2.2869 1.5607 1.9289 1.9885 1.9876

Weibull 3 5.8434 3.1282 4.3317 3.4524 1.9478 3.1899 4.7495 4.7518
5 6.3226  2.5816  3.1947 2.5954 1.7238 2.7920 3.1315 3.2011

7 6.5423 2.2848 3.0017 2.1934 1.5774 2.5449 2.6048 2.4794

10 6.8481 2.0662 2.5119 1.9628 1.4827 2.1189 2.3037 2.0122

12 6.9263 1.9663 2.3748 1.8602 1.4271 2.0443 2.1437 1.8468

Chi-square 3  6.4038 3.4531 4.7471 3.7835 2.1346 3.2357 4.8178 4.8201
5 6.8253 2.8212 3.3871 2.7541 1.8277 2.8058 3.1928 3.2529

7T 74282 26012 3.1337 24058 1.6632 2.4630 2.5825 2.4927

10  7.6663 2.2987 2.5376 2.0878 1.5183 2.1404 2.2647 2.0471

12 7.9404 2.2160 2.3846  1.9777 1.4669 2.0358 2.0848 1.8856

Gamma 3  6.6313 3.6300 4.9158 3.9179 2.2104 3.3087 4.9264 4.9288
5 7.3437 3.0226 3.5561 2.9458 1.9189 2.8233 3.2150 3.2961

7 7.5007 2.6402 3.1485 24416 1.7032 2.5185 2.6211 2.5309

10 7.9755 2.4133 2.6271 2.1421 1.5720 2.1215 2.3074 2.0431

12 8.2333 2.2945 2.3679 2.0237 1.4930 1.9594 2.0808 1.8268

Exponential 3 7.7378 4.3051 5.7361 4.5716 2.5793 3.4219 5.0950 5.0975
5 82139 3.4926 3.8982 3.2668 2.1034 2.8498 3.2589 3.3590

7 8.6614 3.1324 3.3532 2.7278 1.8455 2.4841 2.5807 2.4814

10 9.1918 2.8072 2.7316 2.3169 1.6515 2.0598 2.2603 2.0332

12 9.1887 2.6160 2.4846 2.1323 1.5439 1.9177 2.0122 1.8210

Lognormal 3 13.6859 7.7218 10.1453 8.0858 4.5620 3.6355 5.4130 5.4156
5 14.9092 6.4870 6.0127 5.5493 3.2444 2.4684 2.8511 2.9129

7 16.6869 6.1643 3.7764 4.7507 29136 1.9804 2.0747 2.0631

10 18.6468 5.7475 2.5807 3.7692 2.3552 1.4836 1.6497 1.6315

12 20.3507 5.7654 2.3165 3.6118 2.2258 1.3713 1.4645 1.3670
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Table A.5: Relative Efficiency of different dispersion statistics under
normal and non-normal distributions

Distribution  n R S IQR D MD  MAD  Sn Qn

Normal 3 99.24 100.00 99.24 99.21  99.25 40.14 40.14 40.13
5 95.06 100.00 93.77 9842  93.79 38.53 43.39 45.52

7 91.05 100.00 56.11 98.20 91.63 3791 47.26 50.61

10 84.98 100.00 58.08 98.13 89.53 41.82 50.59 63.42

12 81.63 100.00 52.33 97.90 89.04 40.78 51.20 64.21

Logistic 3 99.58 100.00 99.57  99.58  99.57 44.01 44.00 44.00
5 9287  98.70  99.52 100.00 99.52 45.66 50.36 52.42

7 8.41 97.06 65.39 100.00 99.41 46.30 55.57 59.13

10 76.20 9499 69.67 100.00 98.72 51.40 61.09 71.48

12 7058 94.35 63.59 100.00 99.04 50.99 61.84 73.44

Student’st 3 9997 98.90 99.98 100.00 99.96 50.65 50.66 50.65
5 85.83 89.81 100.00 96.37 100.00 53.11 57.86 59.98

7 7470 8411 7352 95.16 100.00 53.90 63.21 66.87

10 6258 7943 79.51 94.37 100.00 60.51 70.38 80.23

12 56.84 77.19 7290 93.94 100.00 59.78 T1.12 82.11

Weibull 39997 9838 9996 99.96 100.00 46.66 46.66 46.66
5 9491 9499 97.48 100.00 97.44 46.25 51.36 53.74

7 8883 9235 6296 100.00 96.41 46.21 55.17 61.63

10 80.49 90.06 66.35 100.00 95.22 51.66 57.93 76.33

12 7591  89.08 60.42 100.00 95.26 50.60 58.22 78.41

Chi-square 3 99.99  98.02 99.99 99.98 100.00 49.48 49.48 49.47
5 9311 93.01 99.27 100.00 99.29 50.82 56.09 58.83

7 86.15 89.64 66.22 100.00 98.95 51.57 61.13 67.56

10 76.48 86.36 70.53 100.00 98.56 56.74 64.18 82.30

12 7142 8499 64.62 100.00 98.51 56.62 64.93 85.89

Gamma 39999 9750  99.98 100.00 99.97 51.24 51.24 51.24
5 9289 9201 99.74 100.00 99.73 52.83 58.07 60.56

7 85.09 8839 68.12 100.00 99.72 53.17 62.13 69.42

10 7490 84.55 7270 100.00 99.60 59.33 65.13 84.53

12 70.16  83.40 67.01 100.00 99.72 58.81 65.78 87.84

Exponential 3 100.00 96.55 99.99  99.96 99.97 56.36 56.35 56.35
5 90.16 88.59 100.00 98.35 99.97 56.72 60.57 62.67

7 81.07 8373 71.81 9759 100.00 5726 62.91 69.91

10 7131 7979 76.47 97.30 100.00 63.15 64.22 80.97

12 65.79 77.65 70.23 96.85 100.00 62.11 63.64 82.37

Lognormal 3 100.00 93.67 100.00 99.98  99.98 96.26 96.28 96.26
5 7150 68.05 91.63 83.28 91.60 93.07 98.32 100.00

7 5135 5129 7803 6988 79.93 85.70 93.02 100.00

10 3758 40.52 79.56 61.67 72.82 86.19 85.34 100.00

12 30.80 34.73 7147 56.43 67.41 82.04 82.37 100.00




Appendix B
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Table B.1: RL characteristics of the Rg chart for normally distributed
quality characteristic when ARLg = 200

ot

0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00 ARL  200.13 199.55 199.32 199.64 | 198.04 200.89 198.63 198.89
MDRL 139.00 140.00 140.00 135.00 | 137.00 138.00 139.00 138.00
SDRL 195.72 197.30 196.56 204.32 | 193.78 199.61 198.43 198.26
1.10  ARL 33.58 42,67 52.66 60.60 | 22.50 29.57  38.97  47.76
MDRL 26.00 31.00 37.00 42.00 | 18.00 21.00 27.00 33.00
SDRL  27.02 40.24 5239 60.36 | 16.02 27.04 3837 47.04
1.20 ARL 1579 1734 2096 2547 | 1033 10.86 13.30 17.13
MDRL 13.00 13.00 15.00 18.00 9.00 8.00 10.00  12.00
SDRL  10.24 14.54 19.61  24.39 5.69 8.41 11.90  16.20
1.30  ARL 10.08 9.75 11.62  13.68 6.66 6.10 6.89 8.46
MDRL  9.00 8.00 9.00 10.00 6.00 5.00 5.00 6.00
SDRL 5.64 7.40 10.31  12.72 3.13 4.05 5.59 7.67
1.40  ARL 7.37 6.61 7.25 8.64 5.04 4.29 4.40 5.09
MDRL  7.00 5.00 5.00 6.00 5.00 4.00 4.00 4.00
SDRL  3.86 4.62 6.05 7.95 2.18 2.57 3.26 4.28
1.50  ARL 5.86 5.02 5.22 5.87 4.04 3.26 3.22 3.52
MDRL  5.00 4.00 4.00 4.00 4.00 3.00 3.00 3.00
SDRL 2.86 3.32 4.10 5.07 1.62 1.76 2.14 2.68
1.60 ARL 4.88 4.08 4.08 4.47 3.38 2.67 2.54 2.70
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.31 2.53 3.08 3.75 1.29 1.35 1.57 1.94
1.80  ARL 3.75 2.92 2.84 2.93 2.64 2.02 1.87 1.85
MDRL  3.00 3.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 1.63 1.68 1.90 2.21 0.97 0.94 1.03 1.12
2.00 ARL 3.06 2.38 2.21 2.24 2.18 1.67 1.52 1.48
MDRL  3.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.32 1.28 1.38 1.53 0.77 0.74 0.73 0.77
250 ARL 2.21 1.69 1.57 1.54 1.60 1.24 1.16 1.14
MDRL  2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL  0.92 0.82 0.81 0.85 0.59 0.45 0.39 0.38
3.00 ARL 1.77 1.41 1.29 1.28 1.29 1.09 1.06 1.04
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.74 0.62 0.56 0.58 0.47 0.30 0.23 0.20
3.50 ARL 1.52 1.25 1.18 1.16 1.14 1.04 1.02 1.01
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.62 0.49 0.42 0.41 0.35 0.19 0.14 0.12
4.00 ARL 1.35 1.16 1.11 1.10 1.06 1.01 1.01 1.01
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.53 0.39 0.33 0.32 0.25 0.11 0.09 0.08
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Table B.2: RL characteristics of the Rg chart for ¢-distributed quality

characteristic when ARLy = 200

) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL  200.06 202.15 193.33 201.64 | 198.73 199.55 200.58 199.11
MDRL 139.00 140.00 135.00 141.00 | 138.00 139.00 141.00 136.00
SDRL 199.60 201.60 191.70 203.24 | 196.62 200.09 197.80 200.42
1.10 ARL 48.68  76.79  96.71 111.20 | 39.44  66.70  90.97 104.02
MDRL 37.00 55.00 66.00 77.00 | 30.00 47.00 63.00 73.00
SDRL 4148 7381 9735 110.86 | 32.62 64.78 89.62 102.97
1.20  ARL 22.63 3581 5259 6598 | 17.78  29.11  46.57  59.62
MDRL 18.00 26.00 37.00 46.00 | 15.00 22.00 32.00 42.00
SDRL 16.89 32.84 5215 6529 | 11.72  26.38 45.52  58.95
1.30 ARL 14.35  20.69 3094 41.02 | 11.05 1555 25.62  35.78
MDRL 12.00 15.00 22.00 29.00 | 10.00 12.00 18.00  25.00
SDRL  9.29 17.98  30.02  40.55 6.21 12,78 23.70  35.20
1.40 ARL 10.48 1331  20.23  27.56 8.11 10.00  16.28  22.87
MDRL  9.00 10.00  15.00  19.00 7.00 8.00 12.00  16.00
SDRL  6.21 10.68  18.95  26.65 4.08 7.37 14.86  22.36
1.50 ARL 8.23 9.57 13.85  19.26 6.38 7.22 10.90  15.67
MDRL  7.00 8.00 10.00  14.00 6.00 6.00 8.00 11.00
SDRL  4.46 7.34 12.64  18.55 3.01 4.93 9.48 14.74
1.60 ARL 6.77 7.55 10.19  14.28 5.29 5.55 7.71 11.13
MDRL  6.00 6.00 8.00 10.00 5.00 5.00 6.00 8.00
SDRL  3.52 5.44 8.96 13.78 2.34 3.49 6.34 10.18
1.80 ARL 5.08 5.03 6.41 8.53 4.04 3.84 4.73 6.42
MDRL  5.00 4.00 5.00 6.00 4.00 3.00 4.00 5.00
SDRL 2.45 3.23 5.17 7.85 1.69 2.14 3.47 5.61
2.00 ARL 4.11 3.87 4.60 5.77 3.28 2.98 3.40 4.23
MDRL  4.00 3.00 4.00 4.00 3.00 3.00 3.00 3.00
SDRL 1.88 2.32 3.53 4.94 1.32 1.50 2.24 3.38
250 ARL 2.87 2.53 2.67 3.02 2.33 1.99 2.02 2.20
MDRL  3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 1.27 1.35 1.70 2.29 0.86 0.88 1.06 1.45
3.00 ARL 2.28 1.96 1.97 2.09 1.85 1.58 1.51 1.56
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL  0.96 0.97 1.13 1.37 0.68 0.65 0.69 0.84
3.50 ARL 1.92 1.63 1.60 1.64 1.58 1.33 1.28 1.29
MDRL  2.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL  0.81 0.76 0.83 0.94 0.58 0.52 0.51 0.56
4.00 ARL 1.70 1.46 1.41 1.43 1.40 1.19 1.16 1.15
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.70 0.64 0.66 0.71 0.52 0.41 0.38 0.40
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Table B.3: RL characteristics of the Rg chart for Gamma distributed
quality characteristic when ARLg = 200

n

ot

10

A A
0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.05 199.09 201.73 201.65 | 199.77 199.92 201.94 200.48
MDRL 137.00 136.00 141.00 139.00 | 140.00 140.00 143.00 138.00
SDRL  196.57 195.36 197.85 202.67 | 197.44 197.35 202.44 202.69
1.10  ARL 46.43  66.42  82.46 91.39 | 34.82 5224 7134  82.33
MDRL 35.00 48.00 57.00 62.00 | 27.00 37.00 51.00 57.00
SDRL  39.70 63.39 82.08 92,58 | 2825 4993 69.23 81.97
1.20 ARL 21.75  29.76 4196 49.82 | 15.77  21.75  31.60  41.02
MDRL 17.00 21.00 30.00 35.00 | 13.00 16.00  22.00  29.00
SDRL  16.03 27.30 40.68 49.69 | 10.25 19.09 30.12  40.52
1.30 ARL 13.89  17.13 2420 2948 9.94 12.07  17.06  22.63
MDRL 12.00 13.00 17.00  21.00 9.00 9.00 12.00  16.00
SDRL  8.87 1471 2294  28.38 5.56 9.57 1571 21.83
1.40  ARL 10.06  11.54  15.61  19.58 7.43 7.87 10.67  14.12
MDRL  9.00 9.00 11.00  14.00 7.00 6.00 8.00 10.00
SDRL 2.97 9.29 14.49  18.78 3.79 2.65 9.53 13.09
1.50  ARL 7.93 8.40 10.89  13.64 5.85 5.79 7.30 9.50
MDRL  7.00 7.00 8.00 10.00 5.00 5.00 6.00 7.00
SDRL  4.39 6.38 9.70 13.18 2.71 3.74 5.96 8.63
1.60  ARL 6.55 6.66 8.15 10.15 4.89 4.54 5.50 6.89
MDRL  6.00 5.00 6.00 7.00 5.00 4.00 4.00 5.00
SDRL  3.42 4.77 6.96 9.38 2.20 277 4.17 6.04
1.80  ARL 4.92 4.58 5.32 6.25 3.75 3.24 3.54 4.18
MDRL  4.00 4.00 4.00 5.00 4.00 3.00 3.00 3.00
SDRL 2.42 3.04 4.16 0.44 1.58 1.75 2.44 3.36
2.00 ARL 4.03 3.59 3.87 4.51 3.05 2.58 2.63 2.96
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 1.93 2.21 2.87 3.78 1.20 1.32 1.63 2.19
250 ARL 2.80 2.40 2.44 2.58 2.17 1.76 1.70 1.75
MDRL  3.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00
SDRL 1.26 1.30 1.58 1.89 0.82 0.79 0.87 1.02
3.00 ARL 2.25 1.88 1.83 1.88 1.74 1.43 1.35 1.34
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL  0.99 0.95 1.03 1.21 0.65 0.58 0.57 0.62
3.50 ARL 1.89 1.60 1.54 1.55 1.50 1.25 1.19 1.17
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.82 0.75 0.78 0.87 0.57 0.46 0.43 0.42
4.00 ARL 1.67 1.42 1.36 1.36 1.32 1.13 1.09 1.09
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.70 0.62 0.63 0.66 0.49 0.35 0.30 0.30
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Table B.4: RL characteristics of the Sg chart for normally distributed
quality characteristic when ARLgy = 200

n
5 10

A A
) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00  ARL  200.08 200.49 201.25 199.65 | 199.32 202.96 199.87 199.80
MDRL 142.00 139.00 140.00 136.00 | 138.00 142.00 138.00 136.00
SDRL 197.20 195.53 199.05 201.96 | 194.62 198.65 198.92 204.47

1.10 ARL 33.18  40.28  50.41 5795 | 20.18 2489  31.82  39.67
MDRL  26.00 29.00 35.00 40.00 | 16.00 18.00  23.00  27.00
SDRL  26.42 37.67 4883 5780 | 13.73 21.66 30.68 39.35

1.20  ARL 15.14  16.17  19.89  23.73 9.32 9.13 10.83  13.35
MDRL 13.00 12.00 14.00 17.00 8.00 7.00 8.00 10.00
SDRL  9.76 13.60 18.39  23.17 4.93 6.69 9.26 12.47

1.30  ARL 9.79 9.33 10.54  12.35 6.04 5.27 5.49 6.56
MDRL  9.00 7.00 8.00 9.00 5.00 4.00 4.00 5.00
SDRL 5.48 7.17 9.21 11.65 2.74 3.27 4.17 5.72

1.40 ARL 7.15 6.33 6.78 7.87 4.55 3.69 3.62 3.95
MDRL  6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL  3.65 4.38 5.99 7.10 1.87 2.08 2.49 3.19

1.50 ARL 5.69 4.82 4.83 5.47 3.68 2.87 2.73 2.84
MDRL  5.00 4.00 4.00 4.00 3.00 3.00 2.00 2.00
SDRL 2.75 3.15 3.71 4.68 1.41 1.46 1.72 2.07

1.60 ARL 4.77 3.88 3.85 4.09 3.11 2.36 2.17 2.20
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.20 2.39 2.88 3.34 1.13 1.14 1.27 1.47

1.80 ARL 3.65 2.85 2.69 2.82 2.43 1.82 1.64 1.60
MDRL  3.00 3.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.59 1.59 1.77 2.13 0.86 0.82 0.84 0.88

2.00 ARL 3.00 2.31 2.13 2.11 2.02 1.52 1.37 1.33
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.28 1.25 1.30 1.42 0.71 0.66 0.60 0.63

250 ARL 2.14 1.65 1.51 1.48 1.47 1.16 1.10 1.09
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.89 0.81 0.76 0.80 0.55 0.38 0.31 0.30

3.00 ARL 1.72 1.36 1.28 1.25 1.21 1.05 1.03 1.02
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.70 0.59 0.54 0.54 0.42 0.22 0.18 0.16

3.50 ARL 1.46 1.23 1.16 1.14 1.08 1.02 1.01 1.01
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.59 0.47 0.42 0.40 0.28 0.14 0.10 0.09

4.00 ARL 1.33 1.14 1.10 1.09 1.04 1.01 1.00 1.00
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.52 0.37 0.32 0.31 0.19 0.08 0.06 0.05
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Table B.5: RL characteristics of the Sg chart for ¢-distributed quality

characteristic when ARLy = 200

ot

0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL 199.08 198.83 200.58 203.67 | 201.78 200.43 202.33 198.77
MDRL 137.00 137.00 140.00 142.00 | 142.00 141.00 140.00 136.00
SDRL  200.03 197.99 199.99 202.19 | 204.81 201.09 204.06 199.70
1.10  ARL 46.76 7721 102.60 112.71 | 33.63 61.53 87.04 103.32
MDRL 35.00 54.00 72.00 78.00 | 26.00 45.00 60.00  72.00
SDRL  39.52 75.68 100.88 113.17 | 26.37 5793 86.49 102.13
1.20 ARL 22.07  36.59 5420 68.21 | 15.09 2490 41.62  55.59
MDRL 18.00 26.00 38.00 48.00 | 13.00 19.00  29.00  39.00
SDRL 1589 34.05 53.19 67.00 9.58 21.73  39.92  55.49
1.30 ARL 14.06  20.49  32.28  41.82 9.48 12.85 22.01  31.98
MDRL 12.00 15.00 23.00  30.00 9.00 10.00  16.00  23.00
SDRL  8.88 17.68  31.05  40.69 5.03 10.23  21.06  30.88
1.40  ARL 10.19 1290 20.73  28.19 6.96 8.11 12.93  19.30
MDRL  9.00 10.00  15.00  20.00 6.00 7.00 9.00 14.00
SDRL 5.89 10.16  19.29  27.37 3.38 2.67 11.74  18.53
1.50  ARL 7.98 9.38 13.89  19.52 5.55 5.84 8.51 12.40
MDRL  7.00 7.00 10.00  14.00 5.00 5.00 6.00 9.00
SDRL  4.36 7.08 12.64  19.11 2.46 3.71 7.09 11.54
1.60 ARL 6.56 7.10 10.11  14.02 4.63 4.55 6.07 8.77
MDRL  6.00 6.00 8.00 10.00 4.00 4.00 5.00 6.00
SDRL  3.37 4.95 8.81 13.14 1.94 2.60 4.71 7.86
1.80  ARL 4.95 4.86 6.23 8.31 3.53 3.22 3.78 4.83
MDRL  5.00 4.00 5.00 6.00 3.00 3.00 3.00 4.00
SDRL 2.38 3.03 4.93 7.55 1.38 1.65 2.55 3.93
2.00 ARL 4.00 3.76 4.36 5.56 2.87 2.53 2.68 3.20
MDRL  4.00 3.00 3.00 4.00 3.00 2.00 2.00 3.00
SDRL 1.82 2.21 3.24 4.72 1.10 1.19 1.60 2.38
250 ARL 2.81 2.45 2.55 2.88 2.06 1.74 1.69 1.79
MDRL  3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 1.21 1.26 1.62 2.13 0.73 0.73 0.82 1.01
3.00 ARL 2.22 1.92 1.91 2.00 1.65 1.38 1.33 1.32
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL  0.93 0.93 1.05 1.29 0.60 0.54 0.55 0.59
3.50 ARL 1.89 1.61 1.57 1.61 1.42 1.20 1.16 1.15
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.78 0.74 0.79 0.91 0.53 0.42 0.39 0.39
4.00 ARL 1.66 1.42 1.37 1.39 1.24 1.10 1.08 1.07
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.69 0.61 0.63 0.68 0.43 0.31 0.27 0.27
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Table B.6: RL characteristics of the Sg chart for Gamma distributed
quality characteristic when ARLg = 200

n
5 10

A A
) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00  ARL 201.32 198.34 198.74 202.32 | 199.05 200.52 201.43 200.02
MDRL 139.00 140.00 137.00 138.00 | 138.00 140.00 144.00 140.00
SDRL  199.07 195.98 200.69 205.81 | 197.17 197.76 199.99 201.55

1.10 ARL 45.87 6751  85.01 9286 | 32.25 4831 64.76  77.32
MDRL  34.00 47.00 59.00 65.00 | 25.00 34.00 45.00  54.00
SDRL  39.51 65.65 8396 92.00 | 24.82 4585 64.10 76.23

1.20  ARL 21.47  30.87  42.67 51.05 | 14.45 19.07 27.13  36.00
MDRL 17.00 22.00 30.00 36.00 | 12.00 14.00  20.00  25.00
SDRL  15.66 28.25 41.69 49.81 8.93 16.41  25.39  35.08

1.30  ARL 13.85 17.76  24.10  30.73 9.27 10.50  14.51  19.44
MDRL 12.00 13.00 17.00  21.00 8.00 8.00 11.00  14.00
SDRL  8.89 1530  22.63  30.29 4.99 8.04 13.05  18.68

1.40 ARL 10.21  11.74  15.65 19.64 6.92 6.93 8.90 11.79
MDRL  9.00 9.00 11.00  14.00 6.00 6.00 7.00 8.00
SDRL  6.05 9.38 14.41  18.74 3.41 4.76 7.56 11.13

1.50 ARL 7.98 8.65 11.19 14.01 5.42 5.14 6.19 7.88
MDRL  7.00 7.00 8.00 10.00 5.00 4.00 5.00 6.00
SDRL  4.47 6.48 9.82 13.13 247 3.18 4.97 7.17

1.60 ARL 6.65 6.72 8.36 10.49 4.56 4.08 4.68 5.71
MDRL  6.00 6.00 6.00 7.00 4.00 4.00 4.00 4.00
SDRL  3.54 4.78 7.11 9.57 1.98 2.38 3.49 4.89

1.80 ARL 5.01 4.68 5.37 6.54 3.50 2.96 3.06 3.51
MDRL  5.00 4.00 4.00 5.00 3.00 3.00 3.00 3.00
SDRL 2.48 3.06 4.30 5.65 1.42 1.57 2.02 2.71

2.00 ARL 4.04 3.61 3.95 4.55 2.85 2.35 2.35 2.53
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 1.96 2.21 2.83 3.81 1.10 1.15 1.39 1.75

250 ARL 2.84 2.43 241 2.59 2.05 1.67 1.56 1.57
MDRL  3.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.29 1.33 1.52 1.90 0.77 0.73 0.74 0.86

3.00 ARL 2.26 1.90 1.86 1.90 1.66 1.34 1.27 1.26
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL  0.99 0.97 1.06 1.20 0.63 0.52 0.51 0.53

3.50 ARL 1.90 1.61 1.56 1.54 1.41 1.18 1.13 1.12
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.81 0.76 0.79 0.86 0.53 0.40 0.36 0.35

4.00 ARL 1.68 1.44 1.38 1.38 1.26 1.09 1.07 1.06
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.71 0.62 0.64 0.68 0.45 0.30 0.26 0.25
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Table B.7: RL characteristics of the Qg chart for normally distributed
quality characteristic when ARLg = 200

ot

0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00 ARL  201.31 200.74 200.65 199.90 | 201.55 200.88 200.16 199.82
MDRL 142.00 142.00 141.00 139.00 | 141.00 140.00 139.00 139.00
SDRL 202.89 203.24 199.05 199.22 | 197.78 198.20 197.72 197.87
1.10  ARL 33.92 4425 5430 63.95 | 2820 36.43 46.17  55.76
MDRL 26.00 32.00 38.00 45.00 | 22.00 26.00 32.00 39.00
SDRL  26.83 40.57 53.71 63.94 | 21.36 33.68 45.04  55.28
1.20 ARL 1552 1791 2183  26.77 | 1279 14.05 1742 21.94
MDRL 13.00 14.00 15.00 19.00 | 11.00 11.00 13.00  16.00
SDRL  10.10 15.16 20.60 25.85 7.67 11.50  16.00  21.03
1.30 ARL 10.12 10.04 1147  14.08 8.21 8.02 9.21 11.25
MDRL  9.00 8.00 8.00 10.00 7.00 6.00 7.00 8.00
SDRL 5.92 7.83 10.38  13.37 4.32 5.85 7.93 10.40
1.40 ARL 7.36 6.75 7.43 8.72 6.06 5.41 5.80 6.82
MDRL  7.00 5.00 6.00 6.00 6.00 5.00 4.00 5.00
SDRL  3.83 4.71 6.26 7.97 2.88 3.50 4.57 5.93
1.50  ARL 5.96 5.17 5.27 6.05 4.94 4.14 4.15 4.68
MDRL  5.00 4.00 4.00 4.00 4.00 4.00 3.00 4.00
SDRL 2.92 3.39 4.16 5.31 2.23 2.48 3.01 3.89
1.60 ARL 4.89 4.11 4.20 4.63 4.14 3.39 3.27 3.54
MDRL  4.00 3.00 3.00 3.00 4.00 3.00 3.00 3.00
SDRL 2.31 2.61 3.22 3.92 1.76 1.93 2.23 2.83
1.80  ARL 3.75 3.01 2.85 3.03 3.18 2.48 2.34 2.40
MDRL  3.00 3.00 2.00 2.00 3.00 2.00 2.00 2.00
SDRL 1.63 1.74 1.92 2.28 1.29 1.30 1.44 1.71
2.00 ARL 3.05 241 2.24 2.30 2.59 2.01 1.87 1.84
MDRL  3.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00
SDRL 1.32 1.31 1.40 1.60 1.01 0.97 1.05 1.13
250 ARL 2.20 1.72 1.55 1.57 1.88 1.46 1.35 1.31
MDRL  2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL  0.92 0.83 0.79 0.88 0.73 0.63 0.60 0.60
3.00 ARL 1.76 1.41 1.31 1.30 1.51 1.23 1.16 1.14
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.73 0.63 0.57 0.59 0.59 0.45 0.40 0.38
3.50 ARL 1.52 1.25 1.18 1.18 1.31 1.12 1.08 1.07
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.63 0.49 0.43 0.44 0.49 0.34 0.29 0.26
4.00 ARL 1.36 1.17 1.12 1.11 1.19 1.07 1.04 1.03
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.53 0.40 0.35 0.34 0.41 0.26 0.20 0.18
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Table B.8: RL characteristics of the Qg chart for ¢-distributed quality
characteristic when ARLy = 200

) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL 199.04 200.30 201.64 199.76 | 199.73 199.70 201.29 199.41
MDRL 137.00 141.00 141.00 137.00 | 137.00 128.00 144.00 141.00
SDRL  194.77 205.92 206.52 199.85 | 193.55 184.02 203.22 194.96
1.10 ARL 44.12  66.02  89.60 9845 | 31.41  43.29 5947  69.86
MDRL 33.00 46.00 62.00 69.00 | 25.00 31.00 42.00  48.00
SDRL 37.34 66.00 8770 9725 | 24.59 40.27 58.72 69.41
1.20  ARL 20.34  29.57  43.12  52.08 | 1441 1726  23.88  30.35
MDRL 17.00 21.00 30.00 36.00 | 12.00 13.00 17.00  21.00
SDRL  14.34 27.02 4229 51.18 9.14 14.75 2227  29.88
1.30  ARL 12.88  16.37 2452  32.11 9.27 9.63 12.60  16.32
MDRL 11.00 12.00 17.00  22.00 8.00 8.00 9.00 12.00
SDRL  8.19 14.00  23.11  31.97 5.09 7.34 11.39  15.35
1.40 ARL 9.37 10.82  15.60  19.90 6.72 6.50 7.84 9.84
MDRL  8.00 8.00 11.00  14.00 6.00 5.00 6.00 7.00
SDRL 0.29 8.40 14.24  18.97 3.37 4.51 6.49 8.93
1.50 ARL 7.38 7.87 10.55  13.73 5.39 4.87 5.50 6.76
MDRL  7.00 6.00 8.00 10.00 5.00 4.00 4.00 5.00
SDRL  4.00 5.83 9.38 12.77 2.53 3.11 4.33 6.02
1.60 ARL 6.17 6.09 7.73 9.97 4.53 3.87 4.20 4.75
MDRL  6.00 5.00 6.00 7.00 4.00 3.00 3.00 4.00
SDRL  3.11 4.19 6.43 9.10 2.03 2.26 3.09 4.04
1.80  ARL 4.67 4.32 5.04 6.08 3.45 2.86 2.86 3.10
MDRL  4.00 4.00 4.00 5.00 3.00 3.00 2.00 2.00
SDRL 2.23 2.70 3.89 5.28 1.44 1.57 1.85 2.35
2.00 ARL 3.80 3.33 3.64 4.14 2.82 2.28 2.18 2.28
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 1.73 1.91 2.60 3.44 1.13 1.14 1.28 1.56
250 ARL 2.67 2.24 2.25 2.39 2.03 1.61 1.52 1.50
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.14 1.16 1.36 1.66 0.79 0.73 0.75 0.80
3.00 ARL 2.11 1.77 1.70 1.74 1.63 1.34 1.25 1.23
MDRL  2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL  0.89 0.85 0.91 1.05 0.63 0.55 0.50 0.50
3.50 ARL 1.79 1.51 1.46 1.46 1.40 1.19 1.14 1.12
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.76 0.69 0.70 0.76 0.54 0.42 0.37 0.36
4.00 ARL 1.60 1.35 1.31 1.29 1.26 1.11 1.08 1.07
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.66 0.56 0.56 0.58 0.46 0.32 0.27 0.26
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Table B.9: RL characteristics of the Qg chart for Gamma distributed
quality characteristic when ARLg = 200

5 10
A A
0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00 ARL 199.52 201.84 200.05 201.24 | 200.34 201.19 201.61 200.40
MDRL 137.00 139.00 143.00 142.00 | 136.00 140.00 143.50 139.00
SDRL 19246 202.40 200.43 201.50 | 200.36 199.28 204.79 199.73
1.10  ARL 43.69  62.11  75.01 85.28 | 34.74 4841 63.15 T74.44
MDRL 33.00 44.00 53.00 59.00 | 27.00 35.00 45.00 51.00
SDRL  37.61 59.44 74.13 84.71 | 27.92 44.61 61.25 73.49
1.20 ARL 20.27 2701 3585 43.70 | 1593 1985 27.04 33.51
MDRL 16.00 20.00 25.00 31.00 | 14.00 15.00  20.00  24.00
SDRL  14.75 2424 34.60 4293 | 10.19 16.97 25.39  32.56
1.30 ARL 12.99 1541  20.14 2472 | 10.24 11.03 14.26  18.38
MDRL 11.00 12.00 14.00 17.00 9.00 9.00 10.00  13.00
SDRL  8.19 1287  19.07  23.98 5.79 8.59 12.89  17.64
1.40  ARL 9.62 10.32  13.14  16.13 7.46 7.38 8.80 11.46
MDRL  8.00 8.00 10.00  12.00 7.00 6.00 7.00 8.00
SDRL 5.70 8.30 1174 15.32 3.83 5.23 7.52 10.77
1.50  ARL 7.55 7.60 9.03 11.31 5.92 5.43 6.40 7.78
MDRL  7.00 6.00 7.00 8.00 5.00 5.00 5.00 6.00
SDRL  4.13 .66 .07 10.48 2.84 3.59 5.22 6.94
1.60 ARL 6.26 6.02 6.91 8.37 4.93 4.37 4.81 2.67
MDRL  6.00 5.00 5.00 6.00 5.00 4.00 4.00 4.00
SDRL  3.27 4.19 5.73 7.56 2.26 2.70 3.69 4.87
1.80  ARL 4.73 4.27 4.57 5.34 3.79 3.15 3.20 3.58
MDRL  4.00 4.00 4.00 4.00 4.00 3.00 3.00 3.00
SDRL 2.35 2.72 3.58 4.59 1.61 1.78 2.17 2.86
2.00 ARL 3.83 3.30 3.43 3.80 3.09 2.49 2.45 2.60
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 1.78 1.97 2.45 3.06 1.27 1.29 1.52 1.88
250 ARL 2.67 2.26 2.19 2.29 2.21 1.75 1.64 1.65
MDRL  2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.20 1.24 1.33 1.60 0.89 0.82 0.85 0.93
3.00 ARL 2.16 1.77 1.70 1.71 1.77 1.43 1.34 1.31
MDRL  2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL  0.95 0.89 0.93 1.04 0.70 0.62 0.59 0.60
3.50 ARL 1.83 1.52 1.45 1.46 1.52 1.23 1.19 1.17
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.79 0.71 0.71 0.78 0.60 0.46 0.44 0.42
4.00 ARL 1.61 1.38 1.31 1.31 1.35 1.15 1.11 1.09
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.69 0.60 0.57 0.60 0.51 0.38 0.34 0.31
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Table B.10: RL characteristics of the D g chart for normally distributed
quality characteristic when ARLgy = 200

5 10
A A
) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL 201.99 200.86 201.21 202.76 | 195.83 201.49 202.65 201.24
MDRL 140.00 140.00 138.00 140.50 | 137.00 144.00 140.00 138.00
SDRL 19845 200.95 204.38 205.45 | 193.83 202.79 203.98 198.55
1.10 ARL 3248  42.06  50.43 5791 | 20.21 2537 3219 40.71
MDRL 25.00 30.00 35.00 41.00 | 16.00 18.00  23.00  29.00
SDRL  25.70  39.77 50.73 5737 | 14.04 2281 31.29 3991
1.20  ARL 15.04 17.18 1994 24381 9.34 9.33 11.21 1391
MDRL 13.00 13.00 14.00  18.00 8.00 7.00 8.00 10.00
SDRL  9.72 14.46  18.73  24.04 4.97 7.06 9.72 13.01
1.30  ARL 9.64 9.56 10.87  12.80 6.09 5.38 5.67 6.66
MDRL  8.00 8.00 8.00 9.00 6.00 4.00 4.00 5.00
SDRL 5.48 7.28 9.61 12.22 2.78 3.46 4.42 5.71
1.40 ARL 7.16 6.44 6.89 7.99 4.55 3.75 3.69 4.06
MDRL  6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL  3.79 4.51 5.61 7.21 1.88 2.10 2.57 3.30
1.50 ARL 5.62 4.91 4.99 5.61 3.70 2.92 2.75 2.92
MDRL  5.00 4.00 4.00 4.00 3.00 3.00 2.00 2.00
SDRL 2.73 3.15 3.88 4.83 1.44 1.53 1.74 2.15
1.60 ARL 4.72 3.96 3.89 4.24 3.12 2.42 2.23 2.26
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.20 2.46 2.88 3.43 1.14 1.19 1.31 1.53
1.80  ARL 3.65 2.93 2.71 2.83 2.42 1.85 1.65 1.63
MDRL  3.00 3.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.60 1.66 1.78 2.12 0.85 0.85 0.84 0.93
2.00 ARL 2.97 2.33 2.16 2.16 2.02 1.52 1.37 1.35
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.28 1.26 1.34 1.47 0.70 0.66 0.61 0.64
250 ARL 2.11 1.66 1.53 1.50 1.46 1.18 1.11 1.09
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.88 0.81 0.79 0.82 0.55 0.40 0.33 0.31
3.00 ARL 1.71 1.38 1.28 1.25 1.21 1.06 1.03 1.03
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.72 0.60 0.54 0.54 0.41 0.23 0.18 0.16
3.50 ARL 1.48 1.23 1.17 1.15 1.09 1.02 1.01 1.01
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.61 0.47 0.43 0.41 0.29 0.15 0.11 0.10
4.00 ARL 1.32 1.15 1.11 1.09 1.03 1.01 1.00 1.00
MDRL  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.52 0.38 0.33 0.31 0.18 0.09 0.07 0.06
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Table B.11: RL characteristics of the Dg chart for ¢-distributed quality
characteristic when ARLy = 200

n

(@)
—
o

0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 201.46 199.79 200.08 200.18 | 199.57 198.21 201.18 202.78
MDRL 141.00 138.00 141.00 135.00 | 135.50 136.00 137.00 139.00
SDRL 199.82 199.76 196.26 202.64 | 200.95 196.57 201.99 202.65
1.10  ARL 44.47 7116  91.83 104.41 | 29.51 46.86 68.75  83.82
MDRL 33.00 50.00 63.00 72.00 | 23.00 34.00 49.00  59.00
SDRL  38.19 69.20 9299 104.81 | 22.78 4430 67.24  82.40
1.20 ARL 21.06  32.14 4779  58.45 | 13.32 17.83 28.28  40.14
MDRL 17.00 23.00 34.00 40.00 | 11.00 13.00  20.00  28.00
SDRL 15.25 29.35 45.61  57.50 8.19 1521 2719  38.96
1.30  ARL 13.42 1795  27.00 35.33 8.43 9.64 14.21  20.42
MDRL 11.00 13.00 19.00  25.00 8.00 8.00 10.00  14.00
SDRL  8.43 15.06  26.07  34.39 4.34 7.09 1272 19.63
1.40  ARL 9.69 11.64 16.92  23.15 6.30 6.32 8.54 12.00
MDRL  9.00 9.00 12.00  16.00 6.00 5.00 6.00 9.00
SDRL 5.99 9.28 15.51  22.33 2.98 4.15 7.17 10.94
1.50  ARL 7.63 8.52 11.78  16.06 4.98 4.69 5.74 7.91
MDRL  7.00 7.00 9.00 11.00 5.00 4.00 4.00 6.00
SDRL  4.10 6.30 10.50  15.43 2.19 2.82 4.44 6.93
1.60  ARL 6.30 6.61 8.75 11.58 4.16 3.74 4.30 5.56
MDRL  6.00 5.00 7.00 8.00 4.00 3.00 3.00 4.00
SDRL  3.20 4.70 7.38 10.83 1.73 2.10 3.05 4.75
1.80  ARL 4.80 4.54 5.38 6.76 3.19 2.72 2.84 3.30
MDRL  4.00 4.00 4.00 5.00 3.00 2.00 2.00 3.00
SDRL 2.30 2.84 4.21 0.89 1.24 1.33 1.77 2.50
2.00 ARL 3.85 3.50 3.91 4.71 2.62 2.19 2.17 2.34
MDRL  4.00 3.00 3.00 4.00 2.00 2.00 2.00 2.00
SDRL 1.76 2.05 2.80 3.95 0.98 1.01 1.21 1.59
250 ARL 2.73 2.32 2.38 2.55 1.90 1.53 1.46 1.46
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.17 1.21 1.45 1.85 0.68 0.64 0.67 0.74
3.00 ARL 2.15 1.84 1.76 1.83 1.52 1.25 1.20 1.19
MDRL  2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.90 0.90 0.97 1.14 0.56 0.46 0.43 0.44
3.50 ARL 1.83 1.55 1.48 1.51 1.32 1.12 1.09 1.08
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.76 0.71 0.72 0.80 0.49 0.34 0.29 0.28
4.00 ARL 1.62 1.38 1.33 1.33 1.17 1.06 1.04 1.04
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.67 0.59 0.60 0.61 0.38 0.25 0.21 0.19
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Table B.12: RL characteristics of the Dg chart for Gamma, distributed
quality characteristic when ARLg = 200

n
5 10

A A
) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00  ARL 198.72 199.21 203.65 199.72 | 198.84 200.33 198.57 200.90
MDRL 138.00 138.00 139.50 137.50 | 138.00 138.00 138.00 137.00
SDRL 195.13 198.32 208.75 201.34 | 196.96 200.10 193.20 200.06

1.10 ARL 43.42  60.60 76.31 86.29 | 28.16 40.60 52.75  65.32
MDRL  33.00 44.00 53.00 60.50 | 22.00 29.00 37.00 46.00
SDRL  36.75 57.87 7489 8452 | 2142 3780 5294 64.45

1.20  ARL 20.66 2724  36.92 44.14 | 13.01 15.66 21.30 27.61
MDRL 17.00 20.00 26.00 31.00 | 11.00 12.00 16.00  19.00
SDRL  14.82 2490 3533 43.19 7.79 13.09 19.76  26.50

1.30  ARL 13.11  15.62  20.93  25.99 8.37 8.56 1095  14.25
MDRL 11.00 12.00 15.00  18.00 7.00 7.00 8.00 10.00
SDRL  8.18 13.12  19.56  25.19 4.35 6.21 9.58 13.39

1.40 ARL 9.65 10.40  13.34  16.57 6.17 0.77 6.89 8.59
MDRL  8.00 8.00 10.00  12.00 6.00 5.00 5.00 6.00
SDRL 5.93 8.11 12.07  15.87 2.93 3.73 5.95 7.72

1.50 ARL 7.60 7.72 9.36 11.53 4.97 4.40 4.74 5.78
MDRL  7.00 6.00 7.00 8.00 5.00 4.00 4.00 4.00
SDRL  4.09 5.64 8.05 10.83 2.17 2.64 3.58 4.94

1.60 ARL 6.33 6.06 7.16 8.74 4.12 3.56 3.69 4.28
MDRL  6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL  3.26 4.23 6.03 7.98 1.72 2.03 2.55 3.45

1.80 ARL 4.75 4.30 4.69 5.52 3.20 2.57 2.51 2.73
MDRL  4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.29 2.74 3.57 4.88 1.24 1.30 1.55 2.05

2.00 ARL 3.89 3.32 3.50 3.86 2.62 2.09 1.97 2.04
MDRL  4.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00
SDRL 1.83 1.98 2.52 3.13 1.01 1.00 1.09 1.30

250 ARL 2.73 2.24 2.22 2.31 1.89 1.50 1.38 1.37
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.21 1.19 1.34 1.65 0.70 0.64 0.62 0.66

3.00 ARL 2.17 1.80 1.71 1.72 1.53 1.24 1.16 1.15
MDRL  2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.93 0.90 0.93 1.03 0.59 0.46 0.40 0.40

3.50 ARL 1.85 1.51 1.46 1.45 1.31 1.11 1.08 1.07
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.80 0.70 0.72 0.76 0.48 0.33 0.28 0.26

4.00 ARL 1.64 1.37 1.32 1.28 1.19 1.06 1.04 1.03
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.70 0.59 0.58 0.58 0.39 0.24 0.19 0.18
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Table B.13: RL characteristics of the M ADp chart for normally dis-
tributed quality characteristic when ARLy = 200

5
0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00 ARL 198.77 199.92 201.01 200.85 | 202.57 199.45 199.91 201.75
MDRL 139.00 138.00 140.00 139.00 | 139.00 139.00 140.00 141.00
SDRL 194.50 201.34 198.04 201.87 | 200.88 200.13 197.03 198.01
1.10  ARL 53.25  65.61  75.09 83.52 | 33.61 42.69 5431 62.82
MDRL 39.00 46.00 52.00 59.00 | 26.00 30.00 38.00 44.00
SDRL 46.82 63.14 73.87 8281 | 2646 40.63 53.25  62.17
1.20 ARL 26.11 3152 37.71 4245 | 1545 17.64 21.68  26.99
MDRL 20.00 23.00 27.00 30.00 | 13.00 13.00 15.00 19.00
SDRL  20.22 28.66 36.35 42.04 | 10.12 14.76  20.22  26.27
1.30 ARL 16.80  18.92  21.77  25.37 | 10.01 10.00 11.59  14.32
MDRL 14.00 14.00 15.00  18.00 9.00 8.00 9.00 10.00
SDRL 11.68 17.15 21.02  24.63 5.70 7.81 10.22  13.68
1.40  ARL 12.27 1244 1459  16.53 7.32 6.72 7.48 8.86
MDRL  10.00 9.00 11.00  12.00 7.00 5.00 6.00 6.00
SDRL 7.95 1041 1347 15.51 3.86 4.79 6.25 8.14
1.50  ARL 9.62 9.37 10.56  11.88 5.82 5.09 5.44 6.12
MDRL  8.00 7.00 8.00 8.00 5.00 4.00 4.00 4.00
SDRL 5.83 7.53 9.37 11.27 2.84 3.33 4.37 5.38
1.60  ARL 8.01 7.53 8.08 9.25 4.86 4.07 4.12 4.60
MDRL  7.00 6.00 6.00 7.00 4.00 3.00 3.00 3.00
SDRL  4.73 5.90 7.12 8.54 2.28 2.52 3.05 3.79
1.80  ARL 2.97 5.28 5.56 6.16 3.70 2.98 2.88 3.05
MDRL  5.00 4.00 4.00 4.00 3.00 3.00 2.00 2.00
SDRL  3.38 3.78 4.63 5.54 1.64 1.71 1.93 2.34
2.00 ARL 4.86 4.19 4.17 4.50 3.04 2.38 2.25 2.32
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.68 2.86 3.24 3.86 1.29 1.27 1.40 1.63
250 ARL 3.37 2.78 2.7 2.74 2.17 1.71 1.58 1.58
MDRL  3.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.76 1.75 1.89 2.10 0.90 0.84 0.82 0.91
3.00 ARL 2.68 2.19 2.08 2.10 1.75 1.40 1.31 1.28
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.36 1.29 1.35 1.46 0.73 0.61 0.58 0.58
3.50 ARL 2.27 1.88 1.78 1.76 1.49 1.24 1.18 1.17
MDRL  2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.15 1.06 1.06 1.11 0.61 0.48 0.43 0.43
4.00 ARL 2.00 1.68 1.59 1.60 1.33 1.15 1.11 1.10
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.01 0.90 0.88 0.93 0.52 0.38 0.33 0.32
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Table B.14: RL characteristics of the M ADg chart for t-distributed
quality characteristic when ARLg = 200

5
A
) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL 199.71 202.90 201.17 198.91 | 202.61 201.67 198.68 197.59
MDRL 141.00 141.00 140.00 139.00 | 138.00 139.00 138.00 137.00
SDRL  194.97 200.80 200.81 199.09 | 204.07 199.64 198.71 198.86
1.10 ARL 08.47  76.98 9149 9996 | 36.75  51.61  62.43  72.85
MDRL 42.00 54.00 64.00 71.00 | 28.00 37.00 44.00  51.00
SDRL 5321 7520 91.00 9731 | 29.97 48.64 6199 71.49
1.20  ARL 2896 3778  49.01 55.84 | 16.87 21.13  26.73  33.60
MDRL 23.00 27.00 34.00 39.00 | 14.00 15.00 19.00  24.00
SDRL  22.89 36.28 47.67 54.74 | 11.13 18.64 25.10 32.93
1.30 ARL 18.43  22.64 29.27 34.39 | 10.83 11.68 14.62  18.42
MDRL 15.00 17.00  21.00  24.00 9.00 9.00 11.00  13.00
SDRL  13.32  20.20 28.03  34.05 6.40 9.45 13.27  17.57
1.40 ARL 13.30 1540 19.63  23.18 7.91 7.87 9.17 11.21
MDRL 11.00 11.00 14.00  17.00 7.00 6.00 7.00 8.00
SDRL  8.86 13.18  18.67  22.36 4.24 0.77 7.99 10.45
1.50 ARL 10.63 11.34 1393 16.71 6.30 5.75 6.47 7.90
MDRL  9.00 9.00 10.00  12.00 6.00 5.00 5.00 6.00
SDRL  6.74 9.27 1292 15.99 3.13 3.90 5.34 7.14
1.60 ARL 8.92 9.06 10.82  12.86 5.25 4.63 4.94 5.78
MDRL  8.00 7.00 8.00 9.00 5.00 4.00 4.00 4.00
SDRL 5.45 7.00 9.67 12.33 2.51 2.98 3.85 5.00
1.80 ARL 6.57 6.20 7.18 8.11 3.96 3.34 3.40 3.67
MDRL  6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL  3.72 4.58 6.04 7.36 1.79 1.92 2.43 291
2.00 ARL 5.32 4.92 5.26 5.92 3.28 2.67 2.57 2.75
MDRL  5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.95 3.51 4.24 5.35 1.43 1.48 1.66 2.01
250 ARL 3.70 3.16 3.21 3.44 2.32 1.86 1.73 1.74
MDRL  3.00 3.00 3.00 3.00 2.00 2.00 1.00 1.00
SDRL 1.93 2.08 2.34 2.76 0.96 0.92 0.94 1.05
3.00 ARL 2.89 2.46 2.40 2.49 1.86 1.50 1.40 1.39
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.50 1.47 1.62 1.85 0.77 0.68 0.66 0.69
3.50 ARL 2.45 2.08 2.02 2.02 1.59 1.31 1.23 1.22
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.25 1.20 1.28 1.34 0.65 0.53 0.49 0.49
4.00 ARL 2.16 1.81 1.76 1.78 1.41 1.20 1.15 1.13
MDRL  2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.09 1.01 1.03 1.13 0.56 0.44 0.39 0.38




224

Table B.15: RL characteristics of the M ADg chart for Gamma distri-
buted quality characteristic when ARLg = 200

ot

0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL 198.94 198.42 19890 198.41 | 200.25 199.58 198.98 201.79
MDRL 139.50 138.00 140.00 140.00 | 139.00 139.50 138.50 137.00
SDRL 19548 196.08 196.63 197.47 | 200.37 195.83 198.88 203.21
1.10  ARL 99.71  76.70  90.77  99.50 | 37.84 51.31 64.28  T4.45
MDRL 44.00 55.00 65.00 69.00 | 29.00 36.00 46.00  52.00
SDRL 5342 7422 87.83 99.48 | 30.56 48.19 61.43 74.28
1.20 ARL 28.92  38.69 48.21 54.83 | 1744  21.61 2847  35.13
MDRL 22.00 27.00 34.00 38.00 | 14.00 16.00  20.00  25.00
SDRL 2324 36.07 46.89 54.60 | 11.82 19.02 27.23  34.46
1.30 ARL 18,53 2296 2887 3491 | 11.17 1238 1545 19.35
MDRL 15.00 17.00 20.00 25.00 | 10.00  10.00  11.00  14.00
SDRL 1347 2090 28.12  33.28 6.68 9.93 14.13  18.60
1.40  ARL 13.69 15.67 1994 23.14 8.12 8.10 9.69 12.09
MDRL 11.00 12.00 14.00  16.00 7.00 6.00 7.00 9.00
SDRL  9.32 1343 1897 2271 4.35 6.03 8.52 11.35
1.50 ARL 10.64 11.77  14.34  16.85 6.48 6.08 6.86 8.26
MDRL  9.00 9.00 10.00  12.00 6.00 5.00 5.00 6.00
SDRL  6.83 9.87 13.28  16.18 3.31 4.26 5.79 7.37
1.60 ARL 8.81 9.28 10.99  12.95 5.41 4.85 5.33 6.23
MDRL  8.00 7.00 8.00 9.00 5.00 4.00 4.00 5.00
SDRL 5.39 7.42 9.95 12.11 2.68 3.17 4.17 5.47
1.80  ARL 6.65 6.39 7.31 8.36 4.07 3.47 3.56 3.96
MDRL  6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL  3.90 4.76 6.35 7.68 1.86 2.07 2.55 3.19
2.00 ARL 5.38 4.98 5.31 5.95 3.35 2.78 2.72 2.90
MDRL  5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL  3.03 3.62 4.36 5.22 1.48 1.53 1.77 2.17
250 ARL 3.70 3.26 3.30 3.50 2.40 1.90 1.81 1.82
MDRL  3.00 3.00 3.00 3.00 2.00 2.00 2.00 1.00
SDRL 1.97 2.12 2.46 2.79 1.01 0.95 1.03 1.13
3.00 ARL 2.94 2.51 2.48 2.56 1.91 1.55 1.46 1.45
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.54 1.53 1.72 1.91 0.81 0.73 0.72 0.76
3.50 ARL 2.44 2.10 2.04 2.08 1.63 1.35 1.27 1.26
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.25 1.23 1.30 1.41 0.68 0.57 0.53 0.54
4.00 ARL 2.17 1.85 1.79 1.82 1.45 1.23 1.17 1.16
MDRL  2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.10 1.03 1.07 1.17 0.59 0.46 0.42 0.43
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Table B.16: RL characteristics of the SNg chart for normally distribu-

ted quality characteristic when ARLy = 200

) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL 199.34 202.81 201.56 201.04 | 198.67 201.18 198.08 202.60
MDRL 137.00 141.00 140.00 139.00 | 137.00 142.00 139.00 141.00
SDRL 198.25 200.79 201.44 200.26 | 194.83 197.35 193.44 199.34
1.10 ARL 50.30  61.94 71.82 79.93 | 30.11  39.57 5247  60.85
MDRL 37.00 44.00 51.00 56.00 | 23.00 29.00 37.00 43.00
SDRL 44.16 58.50 69.90 7841 | 2345 36.54 51.06 59.36
1.20  ARL 23.90 2870 33.16 3839 | 13.74 1537 19.80  24.87
MDRL 19.00 21.00 24.00 27.00 | 12.00 12.00 14.00 18.00
SDRL 18.06 26.11 31.58 37.41 8.60 13.02  18.24  24.08
1.30  ARL 15.38  16.52 1880  22.23 8.69 8.75 10.39  12.55
MDRL 13.00 13.00 13.00  16.00 8.00 7.00 8.00 9.00
SDRL  10.37 14.01 1746 21.24 4.74 6.56 8.89 11.65
1.40 ARL 11.37  11.33  12.57  14.25 6.49 5.94 6.50 7.81
MDRL  10.00 9.00 9.00 10.00 6.00 5.00 5.00 6.00
SDRL 7.17 9.18 11.36  13.52 3.21 4.07 5.32 7.03
1.50 ARL 9.11 8.39 9.05 10.08 5.16 4.43 4.71 5.29
MDRL  8.00 7.00 7.00 7.00 5.00 4.00 4.00 4.00
SDRL 5.47 6.56 7.88 9.42 2.42 2.80 3.62 4.59
1.60 ARL 7.48 6.67 6.99 7.73 4.34 3.61 3.66 3.98
MDRL  7.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL  4.28 5.02 5.98 7.16 1.93 2.11 2.60 3.15
1.80 ARL 5.63 4.74 4.73 5.06 3.34 2.67 2.56 2.64
MDRL  5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL  3.05 3.31 3.76 4.38 1.40 1.42 1.65 1.91
2.00 ARL 4.58 3.75 3.60 3.80 2.74 2.14 1.99 1.99
MDRL  4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.42 2.47 2.75 3.15 1.11 1.09 1.16 1.31
250 ARL 3.17 2.58 2.43 2.42 1.98 1.55 1.42 1.40
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.63 1.56 1.62 1.78 0.79 0.71 0.67 0.69
3.00 ARL 2.53 2.03 1.90 1.89 1.59 1.28 1.22 1.20
MDRL  2.00 2.00 2.00 1.00 2.00 1.00 1.00 1.00
SDRL 1.27 1.19 1.18 1.25 0.63 0.51 0.47 0.46
3.50 ARL 2.14 1.75 1.63 1.60 1.37 1.16 1.12 1.10
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.07 0.97 0.93 0.95 0.53 0.39 0.34 0.32
4.00 ARL 1.89 1.55 1.47 1.45 1.24 1.09 1.07 1.06
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.93 0.81 0.78 0.80 0.45 0.30 0.27 0.24
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Table B.17: RL characteristics of the SN chart for ¢t-distributed qua-
lity characteristic when ARLy = 200

n
5 10

A A
0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL  202.11 200.34 200.56 199.90 | 200.38 200.12 201.57 200.03
MDRL 139.00 139.00 138.00 138.00 | 138.00 139.00 143.00 136.00
SDRL 203.21 199.25 202.78 199.98 | 198.13 197.52 199.62 203.57

1.10  ARL 54.92 7245 90.27 9644 | 33.83 46.34 60.31  71.72
MDRL 40.00 51.00 63.00 67.00 | 26.00 33.00 42.00 50.00
SDRL 49.33 70.55 90.10 95.28 | 26.76 43.73 59.24 71.21

1.20 ARL 2744 3510 46.20 5248 | 1551 1898 2511  31.52
MDRL 22.00 25.00 33.00 36.00 | 13.00 14.00 18.00  22.00
SDRL  21.35 3295 4479 51.78 9.84 16.32 2352  31.12

1.30 ARL 17.64  21.20 27.26  32.26 9.86 10.40  13.33 17.01
MDRL 14.00 15.00 19.00  23.00 9.00 8.00 10.00  12.00
SDRL 12.51 1878 25.83 31.20 5.42 8.02 12.01  16.29

1.40  ARL 1259 1436 1786  21.74 7.23 6.96 8.31 10.29
MDRL 11.00 11.00 13.00  15.00 7.00 6.00 6.00 7.00
SDRL  8.26 1256  16.70  21.26 3.66 4.92 7.08 9.45

1.50 ARL 9.93 10.59 1294  15.44 5.75 5.21 5.93 7.13
MDRL  8.00 8.00 9.00 11.00 5.00 4.00 5.00 5.00
SDRL  6.21 8.66 11.75  14.47 2.74 3.35 4.77 6.27

1.60  ARL 8.30 8.35 9.94 11.61 4.84 4.16 4.48 5.14
MDRL  7.00 7.00 7.00 8.00 4.00 4.00 4.00 4.00
SDRL  4.95 6.58 8.86 10.95 2.20 2.53 3.36 4.38

1.80  ARL 6.19 5.79 6.47 7.35 3.69 3.04 3.04 3.26
MDRL  5.00 5.00 5.00 5.00 3.00 3.00 2.00 3.00
SDRL  3.49 4.19 0.49 6.55 1.57 1.70 2.09 2.46

2.00 ARL 5.02 4.51 4.82 5.20 3.05 2.44 2.34 2.43
MDRL  4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.75 3.11 3.83 4.50 1.26 1.28 1.44 1.69

250 ARL 3.48 2.95 3.00 3.14 2.15 1.70 1.60 1.58
MDRL  3.00 3.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.84 1.85 2.19 243 0.85 0.80 0.83 0.88

3.00 ARL 2.75 2.33 2.23 2.27 1.74 1.39 1.30 1.29
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.40 1.38 1.46 1.62 0.69 0.59 0.55 0.58

3.50 ARL 2.30 1.96 1.89 1.89 1.50 1.23 1.18 1.17

MDRL  2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.16 1.12 1.16 1.24 0.60 0.46 0.42 0.42
4.00 ARL 2.04 1.73 1.66 1.65 1.32 1.14 1.10 1.09
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.02 0.91 0.95 1.00 0.50 0.36 0.32 0.31
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Table B.18: RL characteristics of the SNg chart for Gamma distribu-

ted quality characteristic when ARLy = 200

) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL 199.44 201.15 198.60 199.03 | 201.82 199.72 200.52 198.83
MDRL 137.00 140.00 139.00 138.00 | 141.00 142.00 140.00 138.00
SDRL 19831 197.49 197.66 197.46 | 196.36 199.05 197.93 198.43
1.10 ARL 96.36  73.71  86.87  96.68 | 36.13 5195 67.13 79.54
MDRL 41.00 53.00 60.00 67.00 | 27.00 37.00 48.00  55.00
SDRL  49.77 7040 86.15 96.24 | 29.20 49.65 65.64 78.13
1.20 ARL 27.85 3594 4554  52.87 | 1691 21.65 29.45 37.44
MDRL 22.00 25.00 32.00 37.00 | 14.00 16.00 21.00  26.00
SDRL  21.61  33.77 44.60 5249 | 11.27 1892 28.02  36.55
1.30  ARL 18.07  21.56  27.03 3251 | 10.63 11.84 1593  20.78
MDRL 15.00 16.00 19.00  22.00 9.00 9.00 12.00  15.00
SDRL  13.06 19.35 25.23  31.83 6.12 9.60 14.70  19.83
1.40 ARL 1297 1424 18.05  21.53 7.83 8.00 9.88 12.70
MDRL 11.00 11.00  13.00  15.00 7.00 6.00 7.00 9.00
SDRL  8.64 12.15 16.74  20.75 4.12 5.84 8.62 12.00
1.50 ARL 10.30  10.74  12.89  15.63 6.22 5.89 6.89 8.61
MDRL  9.00 8.00 10.00  11.00 6.00 5.00 5.00 6.00
SDRL  6.39 8.78 11.50  14.90 3.05 3.96 5.68 7.71
1.60 ARL 8.47 8.47 9.89 11.58 5.18 4.72 5.22 6.28
MDRL  7.00 7.00 7.00 8.00 5.00 4.00 4.00 5.00
SDRL 5.08 6.62 8.88 10.88 243 2.98 4.09 5.43
1.80 ARL 6.36 5.98 6.53 7.54 3.90 3.40 3.47 3.94
MDRL  6.00 5.00 5.00 5.00 4.00 3.00 3.00 3.00
SDRL  3.55 4.39 5.45 6.89 1.69 1.98 2.42 3.18
2.00 ARL 5.10 4.58 4.86 5.37 3.21 2.66 2.64 291
MDRL  5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 277 3.16 3.94 4.70 1.37 1.44 1.69 2.21
250 ARL 3.59 3.04 3.05 3.19 2.29 1.83 1.75 1.77
MDRL  3.00 3.00 2.00 2.00 2.00 2.00 2.00 1.00
SDRL 1.88 1.93 2.21 2.56 0.93 0.89 0.96 1.06
3.00 ARL 2.81 2.35 2.34 2.37 1.84 1.50 1.41 1.38
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.44 1.41 1.55 1.70 0.75 0.66 0.66 0.68
3.50 ARL 2.39 1.98 1.92 1.93 1.57 1.30 1.24 1.23
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.21 1.12 1.17 1.26 0.62 0.52 0.49 0.49
400 ARL 2.07 1.75 1.69 1.69 1.39 1.19 1.14 1.14
MDRL  2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.03 0.94 0.98 1.03 0.54 0.42 0.37 0.38




228

Table B.19: RL characteristics of the QNg chart for normally distri-
buted quality characteristic when ARLg = 200

n

(@)
—
o

0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 198.93 203.55 196.97 198.36 | 200.62 201.97 199.67 200.09
MDRL 137.00 143.00 136.00 138.00 | 136.00 141.00 137.00 137.00
SDRL  195.57 201.22 198.33 198.92 | 202.24 200.79 199.60 200.76
1.10  ARL 49.02 6344 7451 8392 | 26.60 34.82 43.86 51.52
MDRL 36.00 45.00 52.00 59.00 | 21.00 25.00 31.00  35.00
SDRL 4248 61.83 7227 81.53 | 20.13 31.66 42.26 51.64
1.20 ARL 2399 2896 3593 4158 | 12.07 13.13 1598  20.04
MDRL 19.00 21.00 25.00 29.00 | 10.00 10.00 12.00  14.00
SDRL  18.20 27.04 34.70 40.94 7.16 10.66  14.43  19.12
1.30 ARL 15.02 16.97 20.84  24.76 7.7 7.33 8.24 10.00
MDRL 12.00 13.00 15.00 17.00 7.00 6.00 6.00 7.00
SDRL 10.16  14.65 19.77  24.12 3.93 5.21 6.85 9.22
1.40  ARL 11.19 1143  13.25  15.83 2.75 5.06 9.35 6.25
MDRL  10.00 9.00 9.00 11.00 5.00 4.00 4.00 5.00
SDRL 7.09 9.39 12.14  15.12 2.7 3.23 4.18 5.40
1.50  ARL 8.83 8.51 9.68 10.95 4.61 3.89 3.82 4.21
MDRL  8.00 7.00 7.00 8.00 4.00 3.00 3.00 3.00
SDRL 5.30 6.61 8.61 10.19 1.99 2.26 2.72 3.42
1.60  ARL 7.25 6.73 7.27 8.37 3.87 3.12 3.03 3.15
MDRL  6.00 5.00 5.00 6.00 4.00 3.00 3.00 2.00
SDRL  4.13 5.00 6.19 7.63 1.62 1.73 2.00 2.40
1.80  ARL 0.43 4.70 4.97 0.43 2.98 2.34 2.13 2.17
MDRL  5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.88 3.20 4.00 4.70 1.17 1.20 1.28 1.47
2.00 ARL 4.45 3.75 3.73 3.96 2.48 1.92 1.74 1.70
MDRL  4.00 3.00 3.00 3.00 2.00 2.00 1.00 1.00
SDRL 2.32 2.45 2.78 3.27 0.96 0.92 0.95 1.01
250 ARL 3.09 2.52 243 2.47 1.78 1.40 1.28 1.25
MDRL  3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.55 1.51 1.65 1.83 0.69 0.59 0.55 0.53
3.00 ARL 2.46 2.00 1.91 1.88 1.45 1.19 1.13 1.10
MDRL  2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.22 1.11 1.17 1.22 0.56 0.42 0.35 0.33
3.50 ARL 2.08 1.72 1.62 1.62 1.26 1.09 1.06 1.05
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.00 0.92 0.91 0.96 0.46 0.29 0.25 0.23
4.00 ARL 1.85 1.52 1.46 1.44 1.15 1.05 1.03 1.03
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.90 0.76 0.76 0.75 0.37 0.22 0.18 0.16
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Table B.20: RL characteristics of the Q Ng chart for t-distributed qua-

lity characteristic when ARLy = 200

) 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00  ARL  200.58 198.10 198.68 200.95 | 199.96 203.90 199.53 198.06
MDRL 138.00 138.00 137.00 139.00 | 137.00 143.00 138.00 138.00
SDRL 200.48 196.40 199.86 198.82 | 200.14 199.80 199.37 196.35
1.10 ARL 95.48 75775 9217 102.09 | 31.15 4437 58.74  68.64
MDRL 41.00 54.00 64.00 71.00 | 24.00 32.00 41.00  47.00
SDRL  49.16 7347 90.92 100.93 | 24.08 40.82 5737 68.38
1.20 ARL 27.06 3733 48.23  56.55 | 14.40 17.03 23.81  30.22
MDRL 21.00 26.00 34.00 40.00 | 12.00 13.00 17.00  21.00
SDRL  21.27 35.01 47.63  55.37 9.02 14.48 2256  29.53
1.30  ARL 17.31  22.09 2845  34.67 9.23 9.35 12,53  15.88
MDRL 14.00 16.00  20.00  25.00 8.00 7.00 9.00 11.00
SDRL  12.12 19.88  26.84  33.58 5.03 7.09 11.08  14.92
1.40 ARL 12,53  14.48 1847  23.02 6.76 6.45 7.80 9.68
MDRL 11.00 11.00 13.00  16.00 6.00 5.00 6.00 7.00
SDRL 7.98 1246  17.59  22.46 3.35 4.37 6.42 8.79
1.50 ARL 9.86 10.70 1343  16.40 5.44 4.79 5.37 6.58
MDRL  8.00 8.00 10.00  12.00 5.00 4.00 4.00 5.00
SDRL  6.06 8.72 12.10  15.47 2.46 3.03 4.17 5.79
1.60 ARL 8.27 8.45 9.97 12.64 4.54 3.88 4.15 4.75
MDRL  7.00 7.00 7.00 9.00 4.00 3.00 3.00 4.00
SDRL  4.90 6.52 8.79 11.96 2.01 2.33 3.04 3.99
1.80 ARL 6.13 .88 6.68 7.73 3.44 2.84 2.80 3.00
MDRL  5.00 5.00 5.00 6.00 3.00 3.00 2.00 2.00
SDRL  3.38 4.27 5.48 7.05 1.43 1.52 1.84 2.26
2.00 ARL 4.98 4.56 4.90 5.63 2.85 2.26 2.18 2.24
MDRL  4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.63 3.05 3.88 4.94 1.14 1.13 1.29 1.53
250 ARL 3.49 2.95 2.92 3.25 2.03 1.60 1.49 1.47
MDRL  3.00 3.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.78 1.80 2.05 2.59 0.78 0.73 0.72 0.77
3.00 ARL 2.72 2.29 2.26 2.36 1.63 1.32 1.24 1.22
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.36 1.31 1.48 1.67 0.64 0.53 0.49 0.48
3.50 ARL 2.31 1.95 1.87 1.89 1.41 1.18 1.12 1.11
MDRL  2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.13 1.08 1.12 1.22 0.54 0.41 0.35 0.33
4.00 ARL 2.01 1.71 1.64 1.65 1.26 1.10 1.07 1.06
MDRL  2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.97 0.91 0.92 1.00 0.46 0.31 0.27 0.25
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Table B.21: RL characteristics of the QN chart for Gamma distribu-

ted quality characteristic when ARLy = 200

ot

0 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75
1.00 ARL 199.71 201.41 200.79 198.00 | 200.89 201.45 202.50 201.80
MDRL 137.00 139.00 138.00 138.00 | 138.00 139.00 142.00 142.00
SDRL 197.64 200.83 199.13 196.50 | 204.05 201.54 200.56 201.30
1.10  ARL 95.62  75.13 9229 97.63 | 31.41 4394 5771  69.64
MDRL 41.00 53.00 63.00 68.00 | 24.00 31.00 41.00 48.00
SDRL  49.72 7273 9260 9744 | 24.78 4147 5539 70.20
1.20 ARL 26.92  36.80 4897  56.21 | 14.40 17.03 23.30  30.23
MDRL 21.00 27.00 34.00 40.00 | 12.00 13.00 17.00  21.00
SDRL  21.19 34.03 47.72  55.28 9.09 14.12  21.92  29.22
1.30 ARL 17.32 2223 2885  34.15 9.07 9.46 12.24  15.87
MDRL 14.00 17.00  20.00  24.00 8.00 7.00 9.00 11.00
SDRL  12.36 19.68 27.85  33.22 4.90 7.18 1097  14.92
1.40  ARL 12.68 14.93 19.12  23.22 6.73 6.42 7.61 9.57
MDRL 11.00 11.00 14.00  16.00 6.00 5.00 6.00 7.00
SDRL  8.10 12.69  17.58  22.68 3.30 4.32 6.32 8.74
1.50  ARL 9.95 10.97 1347  16.92 5.38 4.82 0.27 6.56
MDRL  9.00 8.00 10.00  12.00 5.00 4.00 4.00 5.00
SDRL  6.07 9.04 12.27  16.47 2.52 3.00 4.08 5.70
1.60 ARL 8.23 8.52 10.35  12.65 4.50 3.86 4.05 4.79
MDRL  7.00 7.00 8.00 9.00 4.00 3.00 3.00 4.00
SDRL  4.84 6.53 9.19 11.86 2.00 2.27 3.01 4.00
1.80  ARL 6.15 5.94 6.82 7.88 3.44 2.84 2.80 3.02
MDRL  5.00 5.00 5.00 6.00 3.00 3.00 2.00 2.00
SDRL  3.46 4.35 0.76 7.14 1.41 1.52 1.80 2.28
2.00 ARL 4.94 4.51 4.95 5.67 2.81 2.26 2.16 2.22
MDRL  4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.64 3.12 4.01 5.00 1.12 1.14 1.27 1.49
250 ARL 3.46 2.99 3.03 3.30 2.03 1.60 1.51 1.48
MDRL  3.00 3.00 2.00 3.00 2.00 1.00 1.00 1.00
SDRL 1.77 1.84 2.18 2.63 0.79 0.71 0.74 0.78
3.00 ARL 2.73 2.34 2.27 2.37 1.64 1.33 1.24 1.23
MDRL  2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.37 1.37 1.48 1.67 0.64 0.54 0.49 0.49
3.50 ARL 2.31 1.97 1.90 1.93 1.40 1.17 1.13 1.11
MDRL  2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00
SDRL 1.15 1.10 1.17 1.26 0.54 0.40 0.36 0.34
4.00 ARL 2.02 1.74 1.66 1.67 1.26 1.10 1.07 1.07
MDRL  2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL  0.99 0.93 0.92 0.99 0.46 0.30 0.27 0.26




Appendix C

Markov Chain Approach

In Chapter 6, we used [Fu et alJ (IM)’S approach, with necessary adjust-
ments, to approximate the run length distribution of the proposed CUSUM
schemes.

The different rules that have been investigated in this study are denoted

as @;.
e ¢ : Any point of either ST or S~ falls outside h

e ¢y: Any two consecutive points of either ST or S~ fall between w and

h.

e ¢3: Two out of three consecutive points of either S™ or S~ fall between

w and h.

Here we will only describe the procedure for using the Markov chain for the
upper CUSUM (S™) with Scheme II as the procedure for the lower CUSUM
(S7) is very similar. Note that the proposed run rule Scheme II requires
combining rules ¢; and ¢3 for making any decision regarding the state of the
process.

The continuous space of the CUSUM statistic ST can be discretized by
partitioning the interval [0,h) in to m sub-intervals of width A and the
interval [h, 00) as the (m+1)™ region, where A is defined as A = h/(m +1).
These sub-intervals are used to define the states of the Markov chain. For

the proposed Scheme II, the second rule (¢3) further divides the space of S
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in to three regions; (71,7, and r3):

r 0< S <w,
R(SH) =41 w<SH<h, (C.1)

T3 S;_Zh

R(S;") indicates whether at time ¢, the value of ST lies below the warning
limit, between warning and action limit or above the action limit. Any
point in the region r3 or two out of three consecutive points in the region
ro indicates the process is out-of-control. Let m* be the number of states in
the interval [0, w) thus m* = w/A (rounded to the nearest integer). Also let
Si(q) = [Si—g+1, - - -, St] be the monitoring statistic, where ¢ is the number of
consecutive points to be kept in history. The 2"¢ rule of Scheme II i.e. ¢3
requires to keep history of the three observations i.e. for ¢3 we have ¢ = 3.
The state of the Markov chain at time ¢, Y;, for Scheme II (using rules ¢; and
¢3) is defined by the region occupied by S™ at time (¢ — 1) and the value of
St at time ¢: Y; = [R(S," ), S;"] — for details see [Fu et al. (|2DD;4) The state
space (2 is then defined as the possible realizations of [R(S;" ), S} ]:

Q={(V,¥),(V,0),...,(¥,m),(r,0),...,(r,m), (rs,0),..., (r, m*—1), a}

(C.2)
Here W represents the dummy initial state (no observations) and « represents
the absorbing state (out-of-control) for the Markov chain Y; respectively. Let
ngq represents the number of elements in the state space €). To compute the
run length distribution, we require the initial distribution () of the Markov

chain and the transition probability matrix (M), which has the form.

N|C
01

M = (C.3)

where N and C are matrices of transition probabilities (described below) of
order (ng — 1) X (ng — 1) and (ng — 1) x 1 respectively and 0 is 1 x (ng — 1)

matrix of zeros. NN represents transition probabilities from one in-control
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state to another in-control state whereas C represents probabilities from an
in-control state to an out-of-control state. A sample transition matrix is

presented below for the highly simplified case when m =2, h = 3,w =1 and

m* = 1.

(\Ilﬂ\ll) (\1170) (\117 1) (\1172) (T170) (Th 1) (T172) (T270) «
(W, ) £(0) p1 P2 1—-F
(¥,0) F(0) p1 P2 1-F
(v,1) F(-1) | 1-F
(7,2) F(-2)|1-F
(7‘1, 0) F(O) P1 P2 1-F
(r,1) F(-1) |1-F
(r1,2) F(-2)|1-F
(r9,0) F(0) 1-F

« 1

The probabilities in each row should add up to 1, hence the probability
for the absorbing state is given as 1 minus the sum of transition probabilities
between the in-control states.

The entries in the above matrix can be read as:

e the row for (U, ¥) represents the dummy initial state when no observa-

tions have been observed.

e the row for (r1,0) indicates that R(S;",) = r, and S;/ = 0, i.e. both
the points lie in region 71, hence we will get in-control probabilities for
S;1=0,1,2. For S}, = 3, the monitoring statistic gets out-of-control
with probability 1 — F'(2).

e the row for (ry,2) indicates that R(S;" ;) =r; and S;" =2, ie. S/, is
in region r; whereas S;” lies in region 75, hence we will get in-control
probability for only S;7, = 0. For Sj; = 1,2 the monitoring statistic

gets out-of-control with probability 1 — F'(—2).

Similarly the other entries can be defined, for details — see [Fu et aJJ (lZDD_EJ)
For the transition matrix M, many of the entries must be 0 since the corres-

ponding transition is impossible. These entries are omitted for simplicity.
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For an in-control process (i.e. X; ~ N(0,1)), the random variable V;
(defined previously) approximately follows a standard normal distribution
tHawkiné M)), ie. V; = N(0,1) = V/ =V, —k ~ N(—k,1). For
an out-of-control process (i.e. X; ~ N(0,))) = V; = N(uy,0,), where

py and oy depend upon the magnitude of shift in the in-control process
standard deviation o, defined as (see [Yeh et al. (Il)&’gl))

py = 2.355(A\Y% — 1) and oy = \V/? (C.4)

The required probabilities that constitute the transition matrix M are defined

as (Fu et all (200))

(i40.5)A 1 1 UI—HUI 2 (o) 1 1 UI—P«v/ 2
pi = / e 2 |: oy i| d’U pm+1 — / e 2 |: oy :| d'U
(i—0.5)A V270, (m4+1)—0.5)A V2T0y

(—(m+1)+05)A 4 _afven]? :
P—(mt1) =/ e 2{ 7 } dv  Fi)= ) p
- )

j=—(m+1

where p,, = p, — k. Using these probabilities, the transition matrix M is
computed and the mean and standard deviation of the run length distribution
are obtained by matrix multiplications using the following results

(2009)).
ARL = E(RL) = (I - N)~'1/ (C.5)

and

SDRL = \/ E(RL?) — [E(RL)?  where  B(RL?) = m(I + N)(I - N)™21/
(C.6)
where m9 = (1,0,...,0) and 1 = (1,1,...,1).
The accuracy of the Markov chain estimate of the run length characteris-
tics increases with an increase in the number of states (m), used to discritize

the continuous state of the CUSUM statistics. Following the recommenda-

tions of [Fu_et. al. (IZDDi |20£)j), we have used m = 500 in this study.
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