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Abstract

Control charts are widely used to monitor stability and performance of pro-

cesses with an aim of detecting abnormal variations in process parameters.

Control charts typically work in two phases: the retrospective phase (Phase

I) and the monitoring phase (Phase II). Phase I involves estimating the in-

control state of a process by using a historical dataset, whereas, in Phase II

the focus mainly lies in the quick detection of process parameters from their

in-control values.

Chapter 2 of this thesis investigates a wide range of Shewhart type disper-

sion control charts in Phase II for normal and a variety of non-normal parent

distributions. These charts are based on the sample range, the sample stan-

dard deviation, the inter-quartile range, Downton’s estimator, the average

absolute deviation from median, the median absolute deviation, Sn and Qn

estimates. The Phase I analysis of these charts together with the charts ba-

sed on the pooled sample standard deviation and the distribution-free scale

rank statistic is investigated in Chapter 3. The performance of a variety of

Phase II EWMA dispersion charts is evaluated and compared in Chapter 4,

using different run length characteristics (the average run length, the median

run length and the standard deviation of the run length distribution). The
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overall effectiveness of these EWMA charts is examined using the extra qua-

dratic loss and the relative ARL measures.

Chapter 5 investigates the effect of two component measurement error (mo-

del) on the performance of the EWMA location chart, for the monitoring of

analytical measurements. The two component model proposed by Rocke and

Lorenzato (1995) combines both additive and multiplicative errors in analy-

tical measurements in a single model. It is shown that the two component

measurement error can seriously effect the detection ability of the EWMA

location chart and this effect can be reduced by the use of multiple measure-

ments at each sample point. A cost function approach is used to determine

appropriate choices of the sample size and the number of multiple measure-

ments per sample to maximize the detection ability of the EWMA chart in

presence of two component measurement error. Chapter 6 proposes two run

rule schemes for the CUSUM dispersion chart. The run length characteris-

tics of the proposed schemes are evaluated using the Markov chain approach

and compared with the simple dispersion CUSUM and the relevant EWMA

dispersion charts for individual observations. Finally, Chapter 7 proposes

a nonparametric progressive mean control chart for the quick detection of

out-of-control signals in the process target or location.

This thesis, in general, will help quality practitioners to choose efficient

control charts for the monitoring of process dispersion and location.
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Chapter 1

Introduction

Statistical process control (SPC) is a collection of tools that helps in impro-

ving the quality of products by reducing dispersion in the process. The seven

basic tools of SPC tool kit, often referred to as the “magnificent seven”, in-

clude histogram, Pareto chart, scatter plot, control chart, check sheet, cause-

and-effect diagram and defect concentration diagram (Montgomery (2009)).

Moreover Hare (1993) introduced seven new tools that include affinity dia-

gram, interrelationship diagram, tree diagram, prioritization matrix, matrix

diagram, process decision program chart and activity network diagram. A

major objective of implementing these tools is to differentiate between the

two main types of variations: common cause variation and assignable cause

variation.

Common cause variation is an inherent part of any process and is due

to some random or chance causes. This can also be referred as the “natu-

ral variation” or the “background noise”. In the presence of common cause

variation, the process remains stable as expected and results in the random

distribution of output around the average value. Assignable cause variation,

on the other hand, is a result of certain factors that can not be treated as

a part of chance causes, such as improperly adjusted or controlled machines,

operator errors or raw material (Montgomery (2009)). Assignable cause va-

riations can have a significant impact on the performance of a process and

it is extremely necessary to detect the sources of these assignable causes as
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soon as possible for the implementation of corrective actions at an early stage.

The control chart is a well known tool used for this purpose.

A process is said to be in a state of statistical control if only common

causes are at work. If there are some assignable causes present, the process

is declared to be out-of-control.

1.1 Control Charts

Control charts, introduced by Walter A Shewhart in 1920’s, act as the most

important and widely used process monitoring tool in Statistical Process

Control (SPC). The basic purpose of implementing control chart procedures

is to detect abnormal variations in the process (location & scale) parame-

ters. Although first proposed for the manufacturing industry, control charts

have now been applied in a wide variety of disciplines, such as in nuclear

engineering (Hwang et al. (2008)), health care (Woodall (2006)), education

(Wang and Liang (2008)) and analytical laboratories (Abbasi (2010), Masson

(2007)). Montgomery (2009) reported the following main reasons for control

charts popularity in such a wide range of disciplines:

• Control charts are a proven technique for improving productivity

• Control charts are effective in defect prevention

• Control charts prevent unnecessary process adjustments

• Control charts provide diagnostic information

• Control charts provide information about process capability

The monitoring of quality characteristics help in improving the quality

of products. Quality characteristics can be measured on a quantitative scale

(such as pressure, weight, diameter etc) or a qualitative scale (such as confor-

ming/ non-conforming units etc). The charts used for the monitoring of

these characteristics are well known as the variable and attribute control

charts, respectively. This thesis will focus on the variable control charts. For
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quantitative characteristics, it is useful to monitor both the location and the

dispersion of the concerned variable.

For the application of control charts, samples are usually collected from

a process in the form of rational subgroups. The concept of rational sub-

groups was introduced by Shewhart, which means that, in the presence of

assignable causes, “the chance for differences between subgroups will be maxi-

mized while the chance for differences within subgroups will be minimized”

(Montgomery (2009)). The design of a typical control chart is based on plot-

ting some summary statistic (such as the subgroup mean X), computed from

these rational subgroups, against time or sample number. The chart further

contains three horizontal lines, namely the upper control limit (UCL), the

center line (CL) and the lower control limit (LCL). CL is mostly set at the

target or average of all the plotted data points, while the control limits are

generally plotted at a distance of 3σ from the CL. These control limits help

to determine the state of the process; the process is said to be in control if all

the sample points should appear as random scatter around the target value

within the control limits. Otherwise, if one or more points lie outside the

control limits or if the plotted points show some pattern (such as a trend,

shift etc), the process is said to be out-of-control.

1.1.1 Control Chart Phases

There are typically two phases in implementing a control chart: retrospective

phase (Phase I) and monitoring phase (Phase II). Phase I is more of an explo-

ratory analysis on a set of observations assumed to come from an in-control

process (often referred as the historical data set). From an in-control process,

we mean a process that is stable and predictable. The goal of Phase I is to

screen out any inconsistent observations/samples from the historical data set

and then compute control limits for real time Phase II process monitoring.

In Phase II, the focus is more on the quick detection of departures of the

process parameters from their in-control values (Woodall (2000)). The per-

formance of the control chart in Phase II largely depends on the parameter
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estimates and the control limits computed as a result of Phase I analysis. It

is not necessary to use the same control chart for both phases. One needs to

search for a control chart that performs efficiently for a particular phase.

The cleaning of the historical dataset is very important because, in most

real life processes, contaminations do occur and the presumed data set is not

purely represented as coming from an in-control process. Different ways for

screening of out-of-control samples from the historical data set have been

proposed in the literature. The most common procedure is to set the trial

limits based on an initial set of observations. If one or more points of the

plotted sample statistic (such as X) lie outside the trial limits, there is a need

to remove these samples after searching for an assignable cause. Sometimes

it is difficult to find assignable causes for the out-of-control points, but it is

usually recommended to remove these points from the initial data set and

to recompute the unknown parameters and limits based on the remaining

samples. This procedure continues until all the observations lie inside the

trial limits.

Vining (2009) recommended setting the initial trial limits based on a set

of observations (e.g. 20 subgroups of size 5). Preliminary limits are then

computed after the removal of out-of-control samples lying outside the trial

limits. His procedure then uses these preliminary limits for the monitoring of

the next 20 samples, investigates any out-of-control samples, and updates the

estimates and limits using these 20 new samples. He recommended to conti-

nue this process for 80-100 presumed in-control subgroups. The resulting

estimates and control limits are then used for Phase II monitoring.

Shiau and Sun (2010) proposed to remove only one extreme out-of-control

point at a time, lying outside the trial limits. The limits are computed again

after the removal of this extreme point and the procedure continues until all

points lie inside the limits. They showed that this strategy maintains the

same out-of-control detection ability of charts but with an added advantage

of a reduced false alarm rate.

In Phase I, the probability to signal is mostly used as a measure to eva-

luate the performance of a control chart. As all the sample points are plotted

against the same set of control limits, so the signaling events are not inde-
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pendent. Hence the control limits should be computed for a fixed overall

false alarm rate instead of fixing the false alarm rate for individual points.

In Phase II, the probability to signal for a single point or some characteris-

tic of the run length distribution is mostly used as a performance measure,

where run length is defined as the number of samples until an out-of-control

signal is detected by a control chart.

The paper by Woodall (2000) (with discussions) gives an excellent des-

cription regarding Phase I and Phase II control charts. For details one may

also see the studies by Jensen et al. (2006), Vining (2009) and Chakraborti

et al. (2009).

1.1.2 Control Chart Types

Control charts are divided in to three main types: the Shewhart chart, the

CUSUM chart and the EWMA chart. Shewhart charts can be put in the list

of memoryless control charts, whereas CUSUM and EWMA charts as the

memory control charts.

Let X represents a quality characteristic of interest distributed with mean

µ and variance σ2. Further, let X1, X2, . . . , Xn represent a sample of size n

from this distribution.

1.1.2.1 Shewhart Control Charts

The control charts based on the original structure of Walter A. Shewhart

are well known as the Shewhart control charts. The introduction of control

charts began a new era of improving the quality of products by the use

of simple statistical methods. Although there exist other types of control

charts, Shewhart charts are the most widely used due to the combination of

simplicity and effectiveness. Process location is mostly monitored by the X̄

chart whereas process scale or dispersion by the R or S charts.

The control limits for a Shewhart type (location) control chart, for the

parameter known case, are given as:

UCL = µ+ Lσ/
√
n, CL = µ, LCL = µ− Lσ

√
n (1.1)
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where L is the control chart multiplier, usually set at 3. In most real life

situations, parameters are unknown and need to be estimated from an histo-

rical data set. µ is mostly estimated by the average of subgroup means (i.e.

X) whereas σ by the average of sample ranges or sample standard deviations

(i.e. S or R). The estimated control limits (when σ is estimated by R) are

hence given as:

UCL = X + L
R

d2
√
n
, CL = X, LCL = X − L

R

d2
√
n

(1.2)

Similarly the design of the dispersion R chart is based on the following set

of limits:

UCL = R + L
d3R

d2
, CL = R, LCL = R− L

d3R

d2
(1.3)

where d2 and d3 are the control chart constants dependent on sample size n.

These are defined as the mean and the standard deviation of the distribution

of relative range (W = R/σ), i.e. d2 = E(W ) and d3 = σW (provided in most

SPC books for normally distributed quality characteristic, see – Montgomery

(2009) or Ryan (2000)).

The Shewhart charts trigger an out-of-control signal for any point of the

plotted statistic (e.g. X or R) lying outside the control limits.

Shewhart charts are only based on the current sample information. Due

to this, they are effective for the detection of large process shifts but are well

known to be inefficient for the detection of small shifts in process parame-

ters. The detection ability of the Shewhart charts can be increased by the

application of some other signaling rules that use an additional set of limits

called the warning limits – for details see Section 1.2.

1.1.2.2 Cumulative Sum (CUSUM) Control Charts

To increase the ability of control charts for the detection of small persistent

process shifts, Page (1954) proposed Cumulative sum (CUSUM) control

charts. The CUSUM control chart uses information of both the current
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as well as the past sample/samples. This makes the CUSUM charts effec-

tive for detecting small shifts in process parameters. CUSUM charts can be

represented in two ways: i) V-mask CUSUM and ii) tabular CUSUM.

The V-mask CUSUM procedure was proposed by Barnard (1959) and

is based on superimposing a V-mask on the plot of cumulative sums. The

origin of the V-mask is always positioned at the recent cumulative sum point

and the previous cumulative sums are examined to determine the state of the

process. If all the previous points lie inside the two arms of the V-mask, the

process is declared to be in-control. If any of the points lie outside the arms,

the process is declared to be out-of-control. The V-mask procedure has been

mentioned as laborious and confusing by many researchers and its use has

been mostly criticized (for details – see Ryan (2000); Montgomery (2009)).

The tabular CUSUM procedure, however, is more popular and easy to

follow. For ease we will refer to the tabular CUSUM as simply the CUSUM

chart for the rest of the study.

For a tabular CUSUM chart, the deviations from the target value of the

parameter are accumulated in the upward and downward directions separa-

tely, using two different statistics: one for the upward shift (e.g. C+) and

the other for the downward shift (e.g. C−). For monitoring process location,

C+ and C− can be defined as:

C+
t = max[0, (Xt − k) + C+

t−1] (1.4)

C−
t = max[0, (−Xt − k) + C−

t−1]

where k is known as the reference/allowance/slack value and it is often chosen

to be about half of the shift (in standard units) we want to detect quickly.

The statistics C+ and C− (known as the upper and lower CUSUMs) are

initially set to zero (i.e. C+
0 = C−

0 = 0). The values of these two statistics

are calculated for each sample and are plotted against time on a chart which

has control limits superimposed. The CUSUM control chart indicates an

out-of-control signal when any of the two statistics plot beyond a prefixed

control limit (h) (for details see Alwan (2000), Ryan (2000) and Montgomery
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(2009)). The choice of h and k depends on achieving a desired in-control

performance of the CUSUM chart. The V-mask CUSUM becomes equivalent

to the tabular CUSUM at some specific choices of the design parameters

(Montgomery (2009)).

Since the introduction of CUSUM charts by Page (1954), many resear-

chers have examined these charts from different perspectives - see for example

Brook and Evans (1972), North (1982), Reynolds and Arnold (1990), Haw-

kins (1981), Hawkins (1993), H and M. (1985), Jones et al. (2004) and Chat-

terjee and Qiu (2009). CUSUM charts are widely used for the efficient mo-

nitoring of internal quality control parameters and their use in analytical

laboratories has been emphasized by many researchers, including Funk et al.

(1995), Mullins (2003) and Hibbert (2007). As compared to Shewhart or

EWMA chart (described below), “the CUSUM chart seems more suitable

to the needs of control in laboratory” (Kateman and Buydens (1993)). CU-

SUM charts are effective even with rational subgroups of size one, which

makes them an attractive option for many applications in chemical and pro-

cess industries (see Montgomery (2009)). The book by Hawkins and Olwell

(1998) includes a comprehensive description of the construction of CUSUM

charts.

1.1.2.3 Exponentially Weighted Moving Average (EWMA)

Control Charts

Exponentially weighted moving average (EWMA) is the third main type of

control chart, proposed by Roberts (1959). The EWMA chart is based on

using the entire sequence of sample information. The chart uses a varying

weight scheme, assigning highest weight to the most recent observation and

the weights decrease exponentially for less recent observations. For a random

observation X at time t, the EWMA statistic Wt is defined as:

Wt = λXt + (1− λ)Wt−1 (1.5)

where λ (0 ≤ λ ≤ 1) is the weight assigned to the current sample observation

and W0 is usually set at a target value (µ or X). The design of the EWMA
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location chart (under parameter known case) is based on the following set of

limits.

UCL =µ+ L
σ√
n

√
λ

2− λ
[1− (1− λ)2t] (1.6)

CL =µ

LCL =µ− L
σ√
n

√
λ

2− λ
[1− (1− λ)2t]

The above control limits for the EWMA chart are known as the exact or

the time varying limits (as they depend on time t). As t → ∞ (i.e. for a

process to be running for a long time), the time varying limits reduce to the

asymptotic limits, as given below:

UCL =µ+ L
σ√
n

√
λ

2− λ
(1.7)

CL =µ

LCL =µ− L
σ√
n

√
λ

2− λ

For the purpose of ease in computation, asymptotic limits are mostly used

for the EWMA charts but the use of these limits makes the EWMA chart

insensitive to start up quality problems.

Selection of λ allows the practitioners to adjust the EWMA chart to

a specific purpose. If small shifts in the process parameters are of major

concern, it is better to use small values of λ. For the detection of large

shifts, large values of λ are mostly recommended. It is to be noted that

the Shewhart chart becomes a special case of the EWMA chart at λ = 1.

An advantage of using the EWMA charts with small value of λ is to make

it robust to the normality assumption, as investigated by several authors

including Borror et al. (1999) and Maravelakis et al. (2005). This robustness

is mostly limited to location charts and EWMA dispersion charts have been

shown in literature to be affected by non-normality (see Abbasi and Miller

(2011c)).
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The sensitivity of EWMA charts can be increased by the use of fast initial

response feature as studied by Lucas and Saccucci (1990), Rhoads et al. (1996)

and Steiner (1999) for EWMA location charts. Recently Abbasi and Miller

(2011b) also investigated the effect of time varying and fast initial response

features on the performance of EWMA dispersion charts.

1.2 Literature Review

Control charts were introduced by Walter, A. Shewhart in 1924 during his

work in Bell Labs. At the start, Shewhart proposed X,R and S charts

(known as the variable control charts) for the monitoring of quantitative

quality characteristics and p, np, c and u charts (known as the attribute

control charts) for the monitoring of qualitative characteristics. Although

these charts are widely used, they are only based on current sample infor-

mation, which makes them insensitive to small shifts in process parameters.

Memory control charts, in the form of the CUSUM chart and the EWMA

chart, proposed by Page (1954) and Roberts (1959) respectively, help in

quick detection of small shifts in process parameters. The theory, design,

implementation and application of these charts have been extended in many

different directions. A brief literature review concerning the control chart

issues investigated in this thesis is described below.

Effect of Parameter Estimation and Norn-Normality: Most SPC

charts are based on the assumption of known parameters, but for the mo-

nitoring of real life processes these parameters are usually estimated from

sample data in Phase I. For quantitative characteristics, the location and

dispersion parameters are of major concern. Process location (µ) is mostly

estimated by the overall sample mean (X), whereas process dispersion (σ)

by the average sample range (R) or the average sample standard deviation

(S). Control charts based on these standard estimates can perform efficiently

under the (ideal) assumption of normality for the quality characteristic of in-

terest but are well known to be inefficient when this assumption is violated.
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The estimation of σ is well known to be affected more than the estima-

tion of µ under the violation of the normality assumption (cf. Burr (1967);

Braun and Park (2008)). Keeping this in mind, researchers have investigated

different estimates of σ for the purpose of achieving efficient and resistant

charting – see Rocke (1989), Cryer and Ryan (1990), Rocke (1992), Cru-

this and Rigdon (1992), Derman and Ross (1995), Pappanastos and Adams

(1996), Tatum (1997), Chen (1998), Abu-Shawiesh (2008), Riaz (2008); Riaz

and Saghir (2009), Mukherjee and Chakraborti (2012) and references therein.

Recently, Wu et al. (2002) examined the effects of different estimators of σ

on the performance of the Shewhart X chart when measurements are taken

from contaminated normal distributions. Braun and Park (2008) investiga-

ted the effects of different σ estimators on the performance of the EWMA

location chart for individual measurements from contaminated normal and t

distributions. Schoonhoven et al. (2008) and Schoonhoven and Does (2010)

use different estimates of σ to examine their effects on the performance of X

chart under the existence and the violation of normality assumption. Schoon-

hoven et al. (2011) and Schoonhoven and Does (2012) investigated the effect

of estimating σ in Phase I on control chart’s performance in Phase II for

monitoring process dispersion. Jones-Farmer and Champ (2010) proposed a

distribution-free structure for monitoring dispersion and compared the per-

formance of this proposal with R and S charts.

Most of the research is focused on investigating the dispersion charts for

normal or contaminated normal distributions. Little work has been done

to investigate the performance of a wide range of Phase I and Phase II

dispersions charts for processes following non-normal distributions. Many

quality characteristics such as capacitance, insulation resistance, surface fi-

nish, roundness, mold dimension, customer waiting time and the impurity

levels in semi conductor process chemicals follow non-normal distributions

(cf. Bissell (1994), Alwan and Roberts (1995), James (1989) and Levinson

and Polny (1999)). The underlying distributional environment can have a

significant impact on the detection ability of control charts. This has been

investigated in detail in Chapters 2-4.
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The Effect of Measurement Error: For a unit in the population, the

value of the concerned characteristic is sometimes contaminated with measu-

rement errors. The presence of this contamination can seriously affect the per-

formance of control charts. Researchers have investigated the performance of

control charts considering different measurement error models. Many resear-

chers including Bennett (1954), Abraham (1977), Kanazuka (1986), Mittag

(1995) and Mittag and Stemann (1998a) examined the effects of the additive

error model on the performance of control charts. The additive error model

is given as:

Y = X + ε (1.8)

where Y represents the observed value, X the true value (distributed normally

with mean µ and variance σ2) and ε is the error term (distributed normally

with mean 0 and variance σ2
ε ). Bennett (1954) examined the effect of the

above error model on the performance of X chart. He concluded that if

the variance due to the measurement errors is smaller than the variance due

to the process, it can be overlooked. Abraham (1977) considered the same

model and studied process variation in the presence of measurement errors.

Kanazuka (1986) examined the effects of measurement errors on the process

variance of the joint X − R chart. He remarked that the power of the chart

to detect shifts diminished in the presence of measurement errors and one

had to use a larger sample size to increase power. Mittag (1995) and Mittag

and Stemann (1998a) examined the measurement error effects on the joint

X − S chart assuming the error model given in Equation (1.8).

Linna and Woodall (2001) and Linna et al. (2001) monitored the effects

of measurement errors on univariate and multivariate Shewhart type control

charts respectively, using, the additive model with covariates, given as:

Y = A+BX + ε (1.9)

where A and B are constants. They concluded that the power of the Shew-

hart control chart to detect shifts in process location diminishes with an

increase in the magnitude of measurement error. Maravelakis et al. (2004)

and Maravelakis (2007) investigated the performance of the EWMA and CU-
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SUM charts under the covariate model given in (1.9). They showed that the

detection of out-of-control signals becomes difficult in the presence of measu-

rement error. Compared to the no measurement error case, the control chart

requires more samples to detect the same magnitude of shift in presence of

measurement error.

Control charts are also widely used for the monitoring of analytical mea-

surements, particularly for internal quality control undertaken by analytical

laboratories. Measurement error in analytical measurements is not accurately

described by the additive model (given in Equation (1.8) or (1.9)) because

these measurements are mostly subject to two types of error: i) additive er-

ror that dominates for zero and near zero concentrations, ii) proportional or

multiplicative error that dominates at higher concentrations (Currie (1968);

Hubaux (1970); Rocke et al. (2003)). Rocke and Lorenzato (1995) proposed

a two component model for analytical measurements, given as:

Yt = α+ βXte
ηt + εt (1.10)

Where Y is response at concentration X observed at time t, α and β are

the intercept and the slope of the linear calibration curve, random distur-

bances η and ε are distributed normally and independently with mean 0 and

variances σ2
η and σ2

ε respectively (i.e. η ∼ N
(
0, σ2

η

)
and ε ∼ N (0, σ2

ε )). Here

η represents multiplicative error and ε represents additive error.

The literature on exploring the performance of control charts for measure-

ment errors described by the TCME model is very limited. I am only aware

of Cocchi and Scagliarini (2007) and Abbasi (2010), which investigate the

performance of Shewhart and EWMA charts respectively (for details – see

Chapter 5).

The use of Sensitizing/Runs Rules: For a control chart, a process is

declared to be out-of-control whenever a point lies outside the control limits,

which are usually set at a distance of 3σ from the centre line. To increase the

sensitivity of the chart for the detection of small shifts, some supplementary

rules have been proposed by researchers that use an additional set of limits
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called the warning limits. The Western Western-Electric (1956) contained a

set of rules to declare a process to be out-of-control, if:

• Any one point falls outside the 3σ control limit or

• 2 out of the last 3 points fall outside the 2σ warning limits or

• 4 out of the last 5 points fall outside the 1σ warning limits or

• Eight consecutive points fall on one side of the centre line.

A number of studies appeared in SPC literature that not only investigated

different control chart structures based on these rules but also to propose

new rules to increase the detection ability of control charts.

Champ andWoodall (1987) used the Markov chain approach for providing

exact results for the run length properties of Shewhart X chart supplemented

with run rules. They provided a comparison of these results with ARL results

of X chart and the CUSUM chart. Palm (1990) also employed the Markov

chain method to provide tables for the run length percentiles of the run rules

schemes for the Shewhart X chart. Walker et al. (1991) investigated the false

alarm rates of the X chart based on eight different runs test. They showed

that the false alarm rate is directly related with the number of runs tests

applied with the X chart. Champ and Woodall (1997) investigated signal

probabilities of the run rules schemes for the X chart. Klein (2000) proposed

two new run rules schemes for the X chart suggesting a process to be out-of-

control for any 2 out of 2 or 2 out of 3 successive points plotting outside the

adjusted control limits. The comparison of his proposed schemes with the

usual X chart showed superiority for the detection of small shifts. Shmueli

and Cohen (2003) provided exact expressions for the run rules schemes used

for the X chart. Khoo (2003) presented plots to determine the control limits

of different run rules schemes for the Shewhart chart to fix the average run

length at a particular level. Zhang and Wu (2005) presented some interesting

features concerning different run rules schemes. Khoo (2006) proposed im-

provements over the run rules schemes introduced by Klein (2000). Lim and

Cho (2009) investigated the economic statistical properties of the X chart
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supplemented with both 1 out of 1 and m out of m rules (m out of m rules

indicate a process to be out-of-control if all the recent m values lie outside

the warning limits). They also used cost function to study the sensitivity of

the design parameters of different run rules schemes.

Some researchers also investigated the effect of run rules on the perfor-

mance of Shewhart type variability control charts. Acosta-Mejia and Pi-

gnatiello (2008), Acosta-Mejia and Pignatiello (2009) and Antzoulakos and

Rakitzis (2010) analyzed the performance of Shewhart type variability R and

S charts supplemented with some r out of m and m out of m rules. They

showed that the R and S charts supplemented with run rules outperformed

the simple R and S charts for the detection of shifts in the process dispersion.

The literature on the use of these rules with CUSUM and EWMA control

structures is very limited. Westgard et al. (1977) studied some control rules

for combined Shewhart-CUSUM structures and demonstrated the superiority

of their approach to the Shewhart chart. Recently Riaz et al. (2011) and Ab-

bas et al. (2011) have extended the run rules approach to the CUSUM and

EWMA type charts for the monitoring of the process location parameter.

Nonparametric Structures: Most of the Statistical Process Control (SPC)

charts are based on the assumption that the parametric distribution of the

quality characteristic of interest is normal. The statistical properties of these

charts may not remain valid for processes following non-normal (heavy tailed

symmetric or skewed) distributions. When the distributional assumption is

invalid, the use of parametric control charts for the monitoring of process

parameters can give unfavorable results in the form of low detection ability

and high false alarm rates. Many researchers including Noble (1951), Bakir

and Reynolds (1979), Gunter (1989) and Chakraborti et al. (2001) recom-

mend that distribution-free/nonparametric charts should be developed for

the purpose of process monitoring. A brief literature review regarding the

development of nonparametric charts is as follows:

Bakir and Reynolds (1979) proposed CUSUM location charts using the Wil-

coxon sign-rank statistic. Park and Reynolds (1987) proposed distribution
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free Shewhart and CUSUM type control charts for the monitoring of pro-

cess location using the linear placement statistic. Alloway and Raghava-

chari (1991) and Pappanastos and Adams (1996) investigated Shewhart type

control charts for process median based on the Hodges-Lehman estimator,

while the proposal of McDonald (1990) is based on sequential ranks. Amin

and Searcy (1991) proposed a non parametric EWMA control chart based

on the Wilcoxon signed-rank statistic. They investigated the proposed chart

for normal, non-normal and autocorrelated processes and further provided a

comparison with the performance of the usual EWMA control chart. Amin

and Widmaier (1999) proposed Shewhart type nonparametric control charts

with variable sampling intervals using the sign test statistic for the monito-

ring of process location and variability. A review of nonparametric control

charts until 2001 can be seen in Chakraborti et al. (2001).

Bakir (2006) proposed three distribution-free location charts based on the

sign rank statistic. His procedure estimates the process location from an

in-control reference sample. The comparison with parametric structures sho-

wed the superiority of these charts for (heavy tailed symmetric) double ex-

ponential and Cauchy distributions. Das and Bhattacharya (2008) proposed

a nonparametric control chart for monitoring process dispersion based on

the two sample rank-sum test. The comparison with the Shewhart S chart

revealed that his variability structure is robust for the in-control case but

out-of-control performance is relatively poor. Balakrishnana et al. (2009)

proposed a nonparametric chart using the Wilcoxon type rank sum statistic

and showed the superiority of this proposal in terms of in-control robust-

ness. Chakraborti and Eryilmaz (2007) proposed nonparametric Shewhart

structures using the Wilcoxon-signed rank statistic and further provided a

comparison of their proposals with the X chart. Chakraborti et al. (2009)

made use of the precedence statistic for the design of nonparametric charts

and also investigated the signaling ability of charts based on runs rules. Khi-

lare and Shirke (2010) proposed a synthetic Shewhart type location control

chart by combing the sign chart and the conforming run length chart. The

synthetic chart showed better performance for various symmetric distribu-
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tions than the X chart and the location chart simply based on sign statistic.

Li et al. (2010) proposed nonparametric CUSUM and EWMA charts based

on Wilcoxon rank sum test. Their proposed charts showed superiority over

other location charts when the assumption of normality is violated. They

also investigated the effect of reference sample size and the number of sub-

groups on the detection ability of control charts. Li and Wang (2010) pro-

posed nonparametric EWMA and nonparametric CUSUM charts based on

the Man-Whitney statistics; Zou and Tsung (2011) proposed a multivariate

EWMA control chart using the weighted version of sign test; while Graham

et al. (2011) proposed nonparametric EWMA sign chart for monitoring pro-

cess location using individual observations, Yang et al. (2011) proposed two

nonparametric EWMA control charts, namely the nonparametric EWMA

sign chart and the nonparametric Arcsine EWMA sign chart; and Yang and

Cheng (2011) proposed a nonparametric CUSUM chart for quick detection

of shifts from the process target using the sign statistic.

1.3 Thesis Contribution

This thesis investigates new control charts for the efficient monitoring of

process parameters in Phase I and II. The thesis contains material that is

included in the following studies (see next page).
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1.4 Outline of the Thesis

The thesis is divided in to eight chapters. The contents of Chapters 2-7 are

based on different research studies, as described in Section 1.3. We recom-

mend these chapters should be read out in individual capacity.

Chapter 2 investigates a wide range of Shewhart type dispersion charts in the

monitoring phase (Phase II) under the assumption that a sufficiently large

and clean historical dataset is available for the estimation of control limits in

Phase I. Chapter 3 presents a comparison of a variety of dispersion charts for

Phase I of SPC when only a limited number of samples are available for the

estimation of parameters and control limits. Chapter 4 investigates different

dispersion charts using the EWMA structure for the efficient detection of

small shifts in process dispersion. These chapters provide a comparison of

a range of dispersion charts considering normal and a variety of non-normal

parent distributions. The performance of the EWMA location chart in the

presence of two component measurement error is investigated in Chapter 5.

Chapter 6 implements run rules schemes for the CUSUM dispersion chart.

Chapter 7 proposes an efficient nonparametric progressive mean control chart

and finally Chapter 8 presents summary of results and a discussion on future

research issues. A brief description of the chapters is given below:

Chapter 2 investigates the effects of different estimators of σ on the perfor-

mance of dispersion charts for Phase II quality control. The performances of

some existing and some newly proposed charts have been investigated consi-

dering normal and non-normal processes. In particular, a comparison of

the eight dispersion chart structures based on the sample range, the sample

standard deviation, the inter-quartile range, Downton’s estimator, the mean

deviation, the median absolute deviation, Sn and Qn is provided. The perfor-

mance of these dispersion charts is examined under normal and a wide range

of non-normal distributions. This will aid quality practitioners in choosing

the best dispersion control charts when the assumption of normality is ques-

tionable. This chapter is based on Abbasi and Miller (2012).
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Chapter 3 investigates the effects of different estimators of σ on the per-

formance of dispersion control charts for Phase I quality control. The per-

formance of eleven control charting structures is evaluated and compared

for normal and non-normal processes, using probability to signal as a per-

formance measure. The control structures are based on the sample range,

the sample standard deviation, the pooled sample standard deviation, the

inter-quartile range, Downton’s estimator, the mean deviation, the median

absolute deviation, Sn, Qn and the distribution free scale-rank statistic. This

study will help quality practitioners to choose an efficient dispersion control

chart for Phase I SPC. This chapter is based on Abbasi et al. (2012b).

Chapter 4 investigates the Phase II performance of EWMA dispersion

charts based on different estimates of σ – as was done in Chapter 2 for

Shewhart charts. The performance of all the charts is evaluated and com-

pared using run length characteristics (the average run length, the median

run length and the standard deviation of the run length distribution). The

overall effectiveness of the EWMA charts have been examined using extra

quadratic loss (EQL) and relative ARL (RARL) measures. This chapter is

based on Abbasi and Miller (2011c), Abbasi et al. (2012a) and Abbasi and

Miller (2011b).

Chapter 5 examines the effects of two component measurement error on

the performance of the EWMA control chart for the monitoring of analytical

measurements. The two component error model for analytical measurements,

proposed by Rocke and Lorenzato (1995), combines both the additive and

multiplicative errors into a single model. This model has gained immense

importance in analytical chemistry and environmental settings. A cost func-

tion approach is used to determine appropriate choices of sample size and

the number of multiple measurements per sample to maximize the detection

ability of the EWMA chart in presence of two component measurement error.

The comparison with the EWMA chart performance in the presence of one

component (additive) error model is also provided. This chapter is based on

Abbasi (2010).
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Chapter 6 proposes the implementation of sensitizing rules in CUSUM dis-

persion charts to enhance their ability for the detection of smaller changes

in process dispersion. The performance of the proposed schemes is evalua-

ted using Markov Chains and compared with the simple dispersion CUSUM

chart, the EWMS chart, the M-EWMS chart and the COMB chart, in terms

of run length characteristics. This chapter is based on Abbasi et al. (2012a).

Chapter 7 proposes a nonparametric progressive mean control chart, na-

mely the NPPM chart, for efficient detection of disturbances in process

location or target. Progressive mean (PM) is defined as the cumulative

average of the sample values observed over time. The benefit of using the

PM statistic is its quick convergence to the process target compared to the

Shewhart, EWMA or CUSUM monitoring statistics. The proposed chart is

compared with the recently proposed nonparametric EWMA and nonpara-

metric CUSUM charts, using different run length characteristics (the average

run length, the standard deviation of the run length and the percentile points

of the run length distribution). This chapter is based on Abbasi et al. (2012b).

Chapter 8 presents a summary of the main findings and a discussion on

future research issues.
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Chapter 2

Shewhart Control Charts for

Monitoring Process Dispersion

in Phase II

Control charts are an important statistical process control tool, used to moni-

tor changes in process location and dispersion. This chapter addresses issues

regarding the structure of a Shewhart control chart for the efficient Phase II

monitoring of process dispersion. The performance of eight control charts,

based on different estimates of process standard deviation, is investigated for

normal and non-normal parent distributions. Control chart constants requi-

red for setting control limits are provided for all these dispersion charts. This

chapter aims at providing guidance to quality practitioners for choosing the

appropriate Shewhart type Phase II dispersion control chart for normal and

non-normal processes. The contents of this chapter are based on Abbasi and

Miller (2012).

2.1 Introduction

Control charts are widely used to monitor stability and performance of manu-

facturing processes with an aim of detecting unfavorable variations in process

(location and spread) parameters. Although first proposed for the manufac-
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turing industry, control charts have now been applied in a wide variety of

disciplines, such as in nuclear engineering (Hwang et al. (2008)), health care

(Woodall (2006)), education (Wang and Liang (2008)), analytical laborato-

ries (Abbasi (2010), Masson (2007)) etc. The application of control charts

consists of two phases: a retrospective phase and a monitoring phase. In the

retrospective phase, historical data are analyzed to estimate the in-control

state of the process, while the monitoring phase focuses on the current state

of the process by analyzing the current data. The goal for the monitoring

phase is the quick detection of departures of the process parameters from

their in-control values (Woodall (2000)).

Parameter estimation significantly affects the performance of control charts

in both phases and has attracted the attention of many researchers in recent

years. Some important studies in this area are Quesenberry (1993), Roes

et al. (1993), Rigdon et al. (1994), Jones et al. (2001), Jensen et al. (2006)

and the references therein. The choice of parameter estimator(s) is an im-

portant issue related to parameter estimation. Proper choice of estimator(s)

plays a critical role in developing an efficient and robust control chart design.

Samples from a process are usually taken in the form of rational subgroups of

size n. When the process is absolutely stable (the process parameters do not

change at all over time), then the most efficient way to estimate the process

dispersion is to use an estimate based on the set of observations formed by

combining the subgroups into a single group. However, if some instability

exists in the process, then this procedure will tend to over-estimate the short

term dispersion and a more reliable approach is to estimate the dispersion

for each subgroup separately and then pool these estimates. The mean µ

is generally estimated from the overall sample mean X while process stan-

dard deviation σ can be estimated in many different ways, the most popular

choices are based on sample range (R) or sample standard deviations (S ).

Control charts based on these standard estimates perform reasonably well

under the usual assumptions that observations come from a normal distri-

bution but are known to be inefficient when the assumption of normality is

violated. Many authors have reported that the estimate of σ is more affected

by non-normality than the estimate of µ (see Burr (1967), Braun and Park
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(2008)) .

Researchers have investigated different estimates of σ with the aim of

improving the efficiency and robustness of control charts performance (see

Cryer and Ryan (1990), Cruthis and Rigdon (1992), Derman and Ross (1995)

and Chen (1998)). There has been considerably more quality literature pu-

blished on investigating the effect of σ estimators on the performance of loca-

tion charts than on the performance of dispersion charts. Recently, Wu et al.

(2002) examined the effect of different estimators of σ on the performance of

the Shewhart X chart when measurements are taken from contaminated nor-

mal distributions. Braun and Park (2008) investigated the effect of different

σ estimators on the performance of the EWMA location chart for individual

measurements from contaminated normal and t distributions. Schoonhoven

et al. (2008) and Schoonhoven and Does (2010) use different estimates of σ to

examine their effect on the performance of the X chart under the existence

and violation of normality assumption.

The problems in the estimation of σ due to non-normality should be ex-

pected to have a greater impact on the performance of dispersion charts than

on the performance of location charts. According to Montgomery (2009) “the

R chart (a dispersion chart) is more sensitive to departures from normality

than the X chart (a location chart)”. Jensen et al. (2006) states “the es-

timation effect appears to be more severe for charts monitoring changes in

dispersion than for those monitoring changes in the mean” – see also Ryan

(2000) and Chen (1998) for further discussion on this issue. For monitoring

process dispersion, there exist some proposals which are based on robust σ

estimates and have shown their superiority over the classical R or S charts un-

der non-normality or contamination in the data (Rocke (1992); Riaz (2008),

Abu-Shawiesh and Abdullah (2000)). However, the choice of the best estima-

tor to be used for dispersion charts has not been made clear in the literature.

Also, there exist some other estimators of σ which have not been properly

investigated. Moreover, the performance of most of the existing dispersion

charts has not been thoroughly studied for non-normal processes.

The purpose of this chapter is to evaluate and compare the performance

of various dispersion charts in the monitoring phase. The performance is
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evaluated for processes following normal and non-normal distributions (both

heavy tailed symmetric and skewed distributions are used). The rest of this

chapter is organized as follows. In section 2.2, we describe different dispersion

statistics that can be used to estimate σ. A general control chart structure is

presented in section 2.3, which is then used to create dispersion charts based

on these statistics. Methods of evaluating control chart performance and the

details of the simulation study are explained in section 2.4. In section 2.5,

the performance of the dispersion charts is investigated under the ideal as-

sumption of normal observations. Section 2.6 presents a comparison of the

dispersion charts when measurements come from non-normal distributions.

Conclusions are made in section 2.7.

2.2 Dispersion Statistics

In this section, the dispersion statistics that are the basis for a dispersion

control chart are described. Two important attributes of these dispersion

statistics are their efficiency and their robustness, which are briefly discussed.

Let X be the quality variable of interest and let X1, X2, · · · , Xn be a

random sample of size n. Further, let X(i) be the ith order statistic (smallest

to largest), X be the sample mean, X̃ be the sample median and |X| be the

absolute value of X .

Sample Range

The sample range (R) is the most widely used dispersion statistic for control

charts and is defined as

R = X(n) −X(1) (2.1)

As R only depends on the smallest and largest observations, it is an

efficient estimate of dispersion for small sample sizes but loses efficiency as

the sample size increases. Montgomery (2009) recommends using the sample

standard deviation instead of R for moderate to large sample sizes. It is also

very sensitive to outliers and departures from normality.



2.2 Dispersion Statistics 27

Sample Standard deviation

Another commonly used dispersion statistic is the sample standard deviations

(S):

S =

√√√√ 1

n− 1

n∑

i=1

(Xi − X̄)2. (2.2)

For normally distributed quality characteristics, S is the most efficient esti-

mator of dispersion. However, studies have shown that it can be sensitive to

departures from normality and outliers. Dispersion control charts based on

R and S (the R chart and S chart) can be found in almost all statistical pro-

cess control (SPC) books – for example, see Alwan (1999) and Montgomery

(2009).

Interquartile Range

The interquartile range (IQR) has been proposed as a dispersion statistic

which results in control charts that are more robust to departures from nor-

mality and outliers than either the R chart or the S chart. IQR is de-

fined as the difference between the third and first quartiles. For sample

data, these quartiles can be estimated using the 75th and the 25th sample

quantiles respectively. Several different ways of estimating these sample

quantiles exist in literature. Rocke (1992) proposed the RQ chart using

IQR = X(n−bn/4c) − X(bn/4c+1), where bxc represents the “floor” function

and is defined as the largest integer less than or equal to x. Rocke (1992)

showed that this RQ chart is superior to the R chart for detecting changes in

dispersion in the presence of outliers. Riaz (2008) pointed out the irregulari-

ties in the structure of RQ chart due to the use of (n−bn/4c) and (bn/4c+1)

order statistics, which are integers – see Table 1 of Rocke (1992). He further

proposed the Q chart using an alternative estimator of IQR, given as:

IQR = (Q3 −Q1)/1.34898 (2.3)
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where Q1 and Q3, respectively, represent the lower and upper sample quar-

tiles. He further investigated the performance of R, S and Q charts for

exponential and Student’s t distribution.

The definition of IQR used by Riaz (2008) is more attractive and is also

used in this study. The quartiles Q1 and Q3 have been computed using

sample quantiles. Hyndman and Fan (1996) described six desirable proper-

ties of sample quantiles and presented nine different ways of defining them.

Although they have shown that Type 5 (of the nine definitions presented) sa-

tisfies all the six of the desirable properties, in this study we have computed

sample quantiles by quantile function in R statistical language (Ihaka and

Gentleman (1996)) using Type 6 which satisfies five of the six desirable pro-

perties (for definitions of Type 5 & 6 – see Hyndman and Fan (1996)). The

reason behind choosing Type 6, for the computation of quantiles is because

this definition is also used by other commonly used statistical packages such

as Minitab and SPSS. If the sample quartiles do not correspond to a particu-

lar order statistic in the sample, these are computed by linear interpolation

between the two nearest order statistics.

In later sections, we will see that the dispersion chart based on IQR is

superior to R and S charts for some non-normal distributions, but there are

alternatives available that perform even better than the IQR chart.

Downton’s Estimator

Downton (1966) proposed the following estimator of σ:

D =
√
π

n∑

i=1

(2i− n− 1)X(i)

n(n− 1)
(2.4)

=
2
√
π

n(n− 1)

n∑

i=1

[
i− 1

2
(n+ 1)

]
X(i) (2.5)

which is unbiased for normally distributed quality characteristics. It should

be noted that the sampling distribution of D is not symmetric for small and

moderate sample sizes. Abu-Shawiesh and Abdullah (2000) proposed the
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S∗ chart for monitoring process dispersion using Downton’s estimator at the

stage of the computation of control limits while using the sample standard

deviation S as the monitoring statistic. They showed that, in the presence

of outliers and non-normality, the S∗ chart performs better than the R chart

and is as efficient as the S chart.

The dispersion chart, (entirely) based on D proposed in this study, shows

clear superiority over both R and S charts and over many other dispersion

charts as well, especially for non-normal processes (see Section 6). Further

discussion on the use of Downton’s estimator in statistical quality control

can be seen in Khoo (2004) and Abbasi and Miller (2011a).

Average Absolute Deviation from the Median

The next dispersion estimator we consider is average absolute deviation from

the median:

MD =
1

n

n∑

i=1

∣∣∣Xi − X̃
∣∣∣ (2.6)

where X̃ represents sample median. Although MD incorporates a robust

estimate of location, it is still sensitive to outliers but not as sensitive as

either R or S. Riaz and Saghir (2008) proposed a MD chart which showed

less sensitivity to non-normality than either the R or S charts.

A closely related estimator, MDM , is based on taking absolute deviations

from the sample mean X. Some authors have advocated MDM estimator

in place of S (Gorard (2005)) but this has not been considered in this study.

Median Absolute Deviation

The median absolute deviation (MAD)

MAD = 1.4826 med
∣∣∣Xi − X̃

∣∣∣ (2.7)

has the highest possible breakdown point (50%) and is therefore a very robust

estimator of σ, where the breakdown point is the proportion of data that can

be given unusually high or low values without having a significant effect on
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the estimator. Wu et al. (2002) show that for contaminated normal data,

MAD outperformed some other robust estimators. However, MAD does

have two main drawbacks that were pointed out by Rousseeuw and Croux

(1993): low Gaussian efficiency (36.74%) and its reliance on the distribution

being symmetric. Dispersion charts based on MAD have not received much

attention in the SPC literature.

Sn and Qn

To overcome the drawbacks of MAD, Rousseeuw and Croux (1993) proposed

two alternatives, Sn andQn, which both have breakdown points of 50% (same

as MAD), but significantly higher Gaussian efficiencies. Sn, defined as

Sn = 1.1926 medi {medj |Xi −Xj | ; i 6= j} , (2.8)

is based on the use of repeated medians: the inner median (medj) is the

b(n/2)+1cth order statistic, while the outer median (medi) is the b(n+1)/2cth
order statistic. Rousseeuw and Croux (1993) described these as “high” and

“low” medians. Similarly, Qn is defined as

Qn = 2.2219 {|Xi −Xj | ; i < j}(k) where k =

(
bn/2c+ 1

2

)
. (2.9)

In simple terms, Qn is the kth order statistic of the n-choose-2 interpoint

distances. Note that, unlike MD and MAD, Sn and Qn do not incorporate an

estimate of location. Both Sn and Qn have much higher Gaussian efficiencies

than MAD : 58% for Sn and 82% for Qn. Dispersion charts based on Sn or

Qn have not been investigated in the SPC literature.

Rousseeuw and Croux (1993) suggested that MAD, Sn and Qn are par-

ticularly useful as estimators of σ for heavy-tailed (symmetric) distributions

and skewed distributions. They showed through simulations that Qn is more

efficient then either Sn or MAD.
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In short, we investigated the following estimators of σ:





S based on squared deviations from mean

R, IQR,D based on order statistics

MD,MAD based on absolute deviations from median

Sn, Qn based on interpoint distances

2.3 Control Chart Structure

In this section, we present a general structure that will allow us to construct

dispersion charts based on different statistics described in section 2.2. Sup-

pose T represents a dispersion statistic computed from a subgroup of size n

obtained from a process which has been scaled to estimate σ (T can be any

of the above mentioned dispersion statistics). Let Z be the standardized ver-

sion of the dispersion statistic T : Z = T/σ (similar to W = R/σ, for R chart;

Montgomery (2009) and D = Q/σ, for Q chart; Riaz (2008)). To develop

control limits for the dispersion chart based on T , estimates of σ and σT are

required, where σT represents the standard deviation of the distribution of

the dispersion statistic T .

By applying expectation on Z, we get:

E(Z) = E(T/σ) = E(T )/σ

Let E(Z) = t2, for a given parent distribution and particular choice of T ; t2

depends on sample size n (Mahoney (1998), Kao and Ho (2007)). E(T ) can

be replaced with the average of sample Ts, computed from an appropriate

number of random samples obtained from a process during normal operating

conditions. An unbiased estimator of σ is thus defined as σ̂ = T/t2. Similarly,

for an estimate of σT , we have σZ = σT /σ. Let σZ = t3 and by substituting

σ̂ for σ, the estimate for σT is defined as σ̂T = t3T/t2.
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Hence, the L-sigma control limits (based on statistic T ), are given as:

LCL = max(0, T − Lt3T/t2)

CL = T

UCL = T + Lt3T/t2

where L is the control chart multiple, usually set at 3 but it can be adjusted

to get a specified false alarm rate for an in-control situation.

In most books on SPC, the control chart constants (t2 and t3) for R

and S charts are provided under the assumption of normality of quality

characteristics. When the assumption of normality is disturbed, the use

of these constants no longer remains valid, as shown by Mahoney (1998)

and Kao and Ho (2007). They considered several non-normal distributions

and examined their effect on the values of t2 and t3 for Shewhart X and

R charts. They concluded that the inappropriate use of t2 and t3 values

increase/decrease the false alarm rate of both X and R charts. Hence, there

is a need to compute these values for different choices of T by giving proper

consideration to the parent distribution.

Probability limits can also be used to develop the design structure of a

control chart. For a dispersion chart (based on the statistic T ), these limits

can be computed by using the quantile points of distribution of Z. Let α be

the specified probability of making a Type-I error and Zα the α-quantile of

the distribution of Z. The probability limits for the dispersion chart, based

on statistic T , are thus given as:

LCL = Z(α/2)T/t2 with Pr(Z ≤ Z(α/2))=α/2

UCL = Z(1−α/2)T/t2 with Pr(Z ≥ Z(1−α/2)) = α/2

For a particular parent distribution, the (α/2)th and (1−α/2)th quantile

points of the distribution of Z depend on the choice of T and the subgroup

size n (Sim and Wong (2003)). Similarly, the use of quantile points that

have been computed under the assumption of normality is inappropriate for
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setting up probability limits for processes following non-normal distributions.

Hence, these quantile points must also be computed by giving proper conside-

ration to the parent distribution. In this study, we use the probability limit

approach for the performance evaluation of different dispersion charts under

the assumption that a large number of in-control samples are available for

the estimation of σ in Phase I.

For the computation of the control chart constants (t2 and t3) and quantile

points, we need to know the distributional results of Z for every combina-

tion of T and parent distribution, which are not well known for most of the

dispersion statistics considered in section 2.2, particularly for non-normal

parent distributions. However, one can estimate the characteristics of any

distribution such as mean, standard deviation and cumulative probabilities

through repeated generation of random samples. Hence, we use a compre-

hensive Monte Carlo simulation study to compute the required results. The

simulation steps will be explained in the next section. For the rest of this

chapter we will refer to the control charts based on R, S, IQR, D, MD,

MAD, Sn and Qn as the R chart, the S chart, the IQR chart (Q chart), the

D chart, the MD chart, the MAD chart, the Sn chart and the Qn chart,

respectively.

2.4 Simulation Study

To evaluate the performance of various control chart schemes considered in

section 2.3, a comprehensive Monte Carlo simulation study has been perfor-

med. A total of eight dispersion charts have been studied, based on different

choices of T as described in section 2.2. A wide range of continuous distri-

butions have been considered to investigate the performance of these charts.

The density function of these continuous distributions together with para-

meter values used in this study and the corresponding skewness and excess

kurtosis are given in Table 2.1.

Figure 2.1 shows density plots of these distributions; panel (a) presents plots

for symmetric normal, logistic and Student’s t distributions, while panel (b)
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Table 2.1: Density functions and parameter values used for different
continuous distributions

Distribution Density Function Parameter values Skewness Excess Kurtosis

Normal(µ, σ2)
µ ∈ R, σ > 0

1√
2πσ2

e−(x−µ)2/2σ2
µ = 0, σ = 1 0 0

Logistic(µ, k)
µ ∈ R, k > 0

e−(x−µ)/k

k(1+e−(x−µ)/k)
2 µ = 0, k = 1 0 1.2

Student’s t (tk)
k > 0

Γ[(k+1)/2]√
kπΓ(k/2)

(
1 + x2

k

)− (k+1)
2

k = 5 0 6

Weibull(η, β)
η > 0, β > 0

η
β

(
x
β

)η−1
e−(x/β)η η = 1.5, β = 1 1.072 1.390

Chi-square(χ2)
k > 0

x(k/2)−1e−x/2

2k/2Γ(k/2)
k = 5 1.265 2.4

Gamma(η, β)
η > 0, β > 0

βη

Γ(η)x
η−1e−βx η = 2, β = 1 1.414 3

Exponential(λ)
λ > 0

λe−λx λ = 1 2 6

Lognormal(µ, σ2)
µ ∈ R, σ > 0

1

x
√
2πσ2

e−
(ln(x)−µ)2

2σ2 µ = 0, σ = 1 6.185 110.936

presents density plots for skewed Weibull, chi-square, Gamma, exponential

and lognormal distributions.

As described in section 2.3, it is inappropriate to use the normal based

coefficients and quantile points in the construction of control chart limits

when the assumption of normality is violated. Hence, these are computed

independently under every parent distribution: 100,000 random samples of

size n = 3, 5, 7, 10 and 12 are simulated from every distribution and the dis-

tribution of Z is obtained for every combination of T and parent population.

Control chart constants (t2 and t3) have been computed as the mean and

the standard deviation of the empirical distribution of Z for every choice

of T and are provided in Appendix Tables A.1 and A.2. Similarly, for a
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Figure 2.1: Density Curve of Distributions

specified Type-I error probability α = 0.002, the (α/2)th and (1 − α/2)th

quantile points have been computed from the distribution of Z and are given

in Appendix Tables A.3 and A.4. These quantile points help in establishing

probability limits for different dispersion charts. The simulated results, as

shown in Appendix Tables A.1-A.4, for the case of R and S are similar to

those of exact results reported in most SPC books assuming normality of the

quality characteristic (e.g. see Tables of Ryan (2000)). For the case of non-

normal distributions, the results are also similar to the results reported for

R chart by Mahoney (1998), Kao and Ho (2007) and Sim and Wong (2003),

which confirms the validity of our simulation routines.

The power of control charts to detect shifts in process dispersion is used

as a performance measure following Duncan (1951), Nelson (1985) and Riaz

(2008). In our case, the process is said to be out-of-control whenever the

process standard deviation σ shifts from an in control value, say σ0 to another

value say σ1, where σ1 is defined as σ1 = σ0 + δσ0. We expect the false

alarm rate to be close to a prespecified nominal value (α) for an in-control

process(σ = σ0). When the process is out-of-control, the power of control

charts should be high to detect any inconsistencies in the data.
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Efficiency Comparison

To measure the precision of the dispersion statistics defined in section 2.2,

standardized variances have been computed for each of these estimators follo-

wing the recommendations of Rousseeuw and Croux (1993). For each parent

distribution, 100,000 samples of size n are simulated and are used for the

computation of standardized variances for each of the dispersion statistics

and the results are provided in Table 2.2. Standardized variance (SV ) of a

dispersion statistic T is defined as

SVT =
n var(T )

(ave(T ))2
. (2.10)

SV gives a direct measure of the accuracy of a dispersion estimator (Bickel

and Lehmann (1976)). From Table 2.2, we can observe that:

For parent normal distribution:

• For all values of n, S estimator has the smallest SV , with D and MD

as close competitors.

• For small values of n, R and IQR estimators also have similar SV as

S, but the difference between them increases for large values of n.

• The SV for MAD,Sn and Qn are significantly higher than the rest

of the estimators. Hence, we can expect the worst performance of

dispersion charts based on these estimators for all values of n.

For parent non-normal distributions:

• For a particular choice of n, the SV for all the estimators increases

with an increase in the excess kurtosis for heavy tailed symmetric dis-

tributions.

• For a particular choice of n, the SV for all the estimators increases

with an increase in the skewness for skewed distributions.

• We can observe a significant change in the SV of the usual R and S

estimators as parent distribution moves away from normal.
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• Relatively, the D and MD estimators seem to be least affected for most

of the parent non-normal distributions (except lognormal).

• For the extreme case of lognormal distribution, the Qn estimator gets

an edge over others.

In general, we can observe that:

• For n = 3, the MAD,Sn and Qn estimators are having higher SV

compared to other estimators for every parent environment.

• For a particular choice of parent distribution and dispersion estimator,

the SV decreases with an increase in the sample size n.

Further more, Appendix Table A.5 presents results of the relative efficiency

(RE) of these estimators. RE is defined as

RE =
min(SVT )

SVT
× 100. (2.11)

where min(SVT ) represents the minimum standardized variance, taken over

all choices of T . The RE will help us to identify the dispersion estimators that

will perform well for specific parent distributions. Figures 2.2 and 2.3 present

a graphical comparison of the relative efficiency (RE) of these estimators

for heavy tailed symmetric and skewed distributions. The normal case is

included in both the figures for comparison purposes. From Figures 2.2 and

2.3, we can observe that:

• For a normally distributed quality characteristic, the most efficient way

to estimate σ is by using S, but it quickly loses efficiency for non-normal

parent distributions.

• D and MD estimators have maintained good efficient behavior for nor-

mal parent case.

• For most of the non-normal cases, D and MD estimators have the

highest relative efficiencies.
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• R and S based dispersion estimators are mostly affected by departures

from normality.

• MAD represents the least efficient estimator of σ for most of the distri-

butional environments.
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Table 2.2: Standardized Variance of different dispersion estimators un-
der normal and non-normal distributions

Distribution n R S IQR D MD MAD Sn Qn

Normal 3 0.822 0.816 0.822 0.822 0.822 2.032 2.033 2.033
5 0.691 0.656 0.700 0.667 0.700 1.704 1.513 1.442
7 0.660 0.601 1.072 0.612 0.656 1.586 1.272 1.188
10 0.674 0.573 0.986 0.584 0.640 1.370 1.132 0.903
12 0.683 0.558 1.066 0.570 0.626 1.368 1.089 0.869

Logistic 3 1.006 1.002 1.006 1.006 1.006 2.277 2.277 2.277
5 0.914 0.860 0.853 0.849 0.853 1.859 1.686 1.619
7 0.945 0.831 1.234 0.807 0.812 1.743 1.452 1.365
10 1.019 0.817 1.114 0.776 0.786 1.510 1.270 1.086
12 1.078 0.806 1.196 0.761 0.768 1.492 1.230 1.036

Student’s t 3 1.222 1.235 1.222 1.222 1.222 2.412 2.412 2.412
5 1.200 1.147 1.030 1.069 1.030 1.940 1.780 1.718
7 1.295 1.150 1.315 1.016 0.967 1.794 1.530 1.446
10 1.478 1.164 1.163 0.980 0.925 1.529 1.314 1.153
12 1.610 1.185 1.255 0.974 0.915 1.531 1.286 1.114

Weibull 3 1.035 1.052 1.035 1.035 1.035 2.217 2.217 2.217
5 0.908 0.907 0.884 0.862 0.884 1.864 1.678 1.604
7 0.910 0.875 1.283 0.808 0.838 1.749 1.465 1.311
10 0.964 0.861 1.169 0.776 0.815 1.501 1.339 1.016
12 1.003 0.855 1.260 0.762 0.799 1.505 1.308 0.971

Chi-square 3 1.146 1.169 1.146 1.146 1.146 2.316 2.316 2.316
5 1.051 1.052 0.986 0.978 0.985 1.925 1.744 1.663
7 1.080 1.038 1.405 0.930 0.940 1.804 1.522 1.377
10 1.173 1.038 1.271 0.897 0.910 1.581 1.397 1.090
12 1.237 1.039 1.367 0.883 0.897 1.560 1.361 1.028

Gamma 3 1.235 1.267 1.235 1.235 1.235 2.410 2.410 2.410
5 1.148 1.159 1.069 1.066 1.069 2.018 1.836 1.760
7 1.191 1.147 1.488 1.014 1.017 1.907 1.632 1.460
10 1.298 1.150 1.337 0.972 0.976 1.639 1.493 1.150
12 1.373 1.155 1.438 0.964 0.966 1.639 1.465 1.097

Exponential 3 1.682 1.742 1.682 1.682 1.682 2.984 2.985 2.985
5 1.641 1.670 1.479 1.504 1.480 2.608 2.442 2.360
7 1.742 1.687 1.966 1.447 1.412 2.466 2.244 2.020
10 1.923 1.719 1.793 1.409 1.371 2.172 2.135 1.694
12 2.039 1.727 1.910 1.385 1.341 2.159 2.107 1.628

Lognormal 3 4.119 4.397 4.119 4.119 4.119 4.279 4.277 4.278
5 4.425 4.650 3.453 3.799 3.454 3.399 3.218 3.164
7 5.233 5.239 3.444 3.846 3.362 3.136 2.889 2.687
10 6.224 5.774 2.940 3.793 3.212 2.714 2.741 2.339
12 7.128 6.322 3.072 3.891 3.257 2.676 2.666 2.196
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(d) n = 12

Figure 2.2: Relative efficiency of different dispersion estimators for
symmetric distributions
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(c) n = 7
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(d) n = 12

Figure 2.3: Relative efficiency of different dispersion estimators for
skewed distributions
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2.5 The Case of the Normal Distribution

First, we consider the case when the quality characteristic can safely be as-

sumed to come from a normal distribution. Using control chart constants

and quantile points from Appendix Tables A.1-A.4, for the case of normal

distribution, probability limits have been determined for every control chart

considered in section 2.3. The power of all the control charts is computed

considering shifts of different magnitudes in process dispersion. To save space

and aid in visual clarity, power curves have been constructed instead of pre-

senting the results in tabular form. In each plot, the shift in σ, measured as

a multiple δ of the in-control standard deviation, is plotted on the horizon-

tal axis while the power of the different dispersion charts is plotted on the

vertical axis.

The power curves of the different dispersion charts for normally distri-

buted quality characteristics for n = 3, 5, 7 and 12 are shown in Figure 2.4.

One sample of results has been presented in Table 2.3, which shows the power

of different charts to detect shifts in process standard deviation at different

magnitudes for the case of normal distribution when n = 10. Power curves

and sample results reported in Table 2.3 provide useful information about

the detection ability of various control charts. For example, we can see that

the S chart has a 90% chance to detect a 1.579σ shift in process standard

deviation (highest power among all charts) while MAD chart has only 55.8%

chance to detect a shift of this magnitude (lowest power among all charts)

when n = 10.

As expected, for a zero sigma shift in process standard deviation, the false

alarm rate is very close to 0.002 for all choices of T and for every sample size,

representing the case for an in control process. The power of all the charts

has increased with an increase in n and the magnitude of shift. For sample

size n = 3 and 5, it seems hard to differentiate between the power curves of

the S chart and other charts, except for the MAD, Sn and Qn charts. The

performance of these charts is extremely poor for n = 3 and 5. In relative

terms, we can see that the power of R and IQR charts decreases as sample

size increases, while the power of Sn and Qn charts increases with an increase
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in n. The D chart appears to behave similarly to the S chart, which has the

highest power for all the cases. The MD chart also performed reasonably

well, although it is slightly less efficient than the S and D charts but better

than all the others. Hence, from power curves in Figure 2.4, we can conclude

that under the ideal assumption of normality:

• the S chart has the best performance,

• the D chart can be treated as a strong competitor to the S chart,

• the MD chart is slightly less efficient than the S and D charts but

better than other charts,

• the relative power of the R and IQR charts decreases with an increase

in n, and

• the MAD chart shows the worst performance due to low Gaussian effi-

ciency of MAD.
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(d) n = 12

Figure 2.4: Power curves of different dispersion charts for n = 3, 5, 7
and 12 under normal distribution (with µ = 0, σ = 1) when α = 0.002
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Table 2.3: Power of different dispersion charts for normally distributed
quality characteristic when n = 10 and α = 0.002

δ R S IQR D MD MAD Sn Qn

0.000 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
0.316 0.0478 0.0573 0.0328 0.0568 0.0464 0.0274 0.0279 0.0397
0.632 0.2340 0.2916 0.1544 0.2890 0.2435 0.1193 0.1368 0.1861
0.947 0.4982 0.5923 0.3394 0.5870 0.5144 0.2682 0.3116 0.4035
1.263 0.7080 0.7880 0.5325 0.7810 0.7292 0.4177 0.4864 0.5977
1.579 0.8404 0.8998 0.6837 0.8918 0.8581 0.5579 0.6317 0.7374
1.895 0.9171 0.9558 0.7842 0.9473 0.9246 0.6649 0.7384 0.8295
2.211 0.9571 0.9839 0.8572 0.9751 0.9629 0.7513 0.8138 0.8920
2.526 0.9769 0.9892 0.9038 0.9886 0.9818 0.8092 0.8661 0.9306
2.842 0.9888 0.9955 0.9335 0.9949 0.9905 0.8560 0.9067 0.9568
3.158 0.9938 0.9982 0.9561 0.9976 0.9958 0.8893 0.9333 0.9695
3.474 0.9972 0.9996 0.9710 0.9990 0.9981 0.9132 0.9517 0.9800
3.789 0.9984 1.0000 0.9807 0.9999 0.9994 0.9336 0.9650 0.9869
4.105 0.9996 1.0000 0.9877 1.0000 1.0000 0.9504 0.9750 0.9901
4.421 1.0000 1.0000 0.9909 1.0000 1.0000 0.9627 0.9816 0.9933
4.737 1.0000 1.0000 0.9938 1.0000 1.0000 0.9714 0.9851 0.9952
5.053 1.0000 1.0000 0.9957 1.0000 1.0000 0.9763 0.9889 0.9966
5.368 1.0000 1.0000 0.9965 1.0000 1.0000 0.9807 0.9911 0.9973
5.684 1.0000 1.0000 0.9978 1.0000 1.0000 0.9848 0.9935 0.9980
6.000 1.0000 1.0000 0.9986 1.0000 1.0000 0.9875 0.9945 0.9988
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2.6 The Case of Non-Normal Distributions

In the previous section, the performance of control charts was evaluated

under the ideal assumption of normality. This assumption is widely used

in statistics and almost all SPC charts are based on it. However, in prac-

tice, data from many real world processes follow non-normal distributions:

Bissell (1994) points out that quality characteristics such as capacitance, in-

sulation resistance and surface finish do not follow a normal distribution;

James (1989) reported that characteristics such as roundness, mold dimen-

sions and customer waiting times follow non-normal distributions; Levinson

and Polny (1999) indicate that impurity levels in semiconductor process che-

micals follow a gamma distribution; and in nuclear reactions, the interval

between beta particle emissions follows an exponential distribution (Miller

and Miller (1995)). In these situations (and many others), it is inappro-

priate to use the control charts based on the assumption of normality and

hence there is a need to study the performance of various dispersion charts

for non-normal distributions. Hence, in this section, the performance of the

dispersion charts is investigated for a wide variety of non-normal distribu-

tions. For the case of heavy-tailed symmetric distributions, we have conside-

red logistic and Student’s t distributions. To cover skewed distributions, we

have used the Weibull, gamma, chi-square, exponential and lognormal dis-

tributions. The performance of each dispersion chart is evaluated for every

distribution to give us a clear picture of overall performance. The control

chart constants and quantile points required for setting up the probability

limits for non-normal processes have been computed in a similar manner to

the normal distribution and are reported in Appendix Tables A.1-A.4.

2.6.1 The performance of control charts for heavy

tailed symmetric distributions

The power curves for all of the dispersion charts for the symmetric logistic

and Student’s t distributions (the constants and quantile points for these

charts are given in Appendix Tables A.1 - A.4) are shown in Figures 2.5 and
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2.6 for n = 3, 5, 7 and 12. For the logistic distribution, the D and MD charts

have shown better overall performance than the other charts. The S chart,

although less efficient than the D and MD charts, has higher power than the

rest of the charts. The R and IQR charts show good performance for small

sample sizes (n = 3 and 5) but, as the sample size increases, the detection

ability of both of these charts reduces significantly relative to other charts.

The Qn chart performs better for large sample sizes, while the MAD chart

has the worst overall performance.

For the Student’s t distribution, we see that most of the charts have

shown better performance than the classical R and S charts. The MD chart

shows the best overall performance. The power of the IQR chart again starts

to decrease relative to other charts with an increase in n. There seems to

be a significant gain in the powers of Sn and Qn charts as the sample size

increases. The D chart has shown better performance than the Sn and Qn

charts for large shifts in σ, while for the detection of small shifts, Sn and Qn

charts are performing better than the D chart. In short, we can say that for

logistic processes:

• the performance of the D and MD charts is almost the same and is

better than for all of the other charts,

• the S chart also seems to perform reasonably well,

• most control charts perform better than the R chart for n > 5, and

• the performance of the MAD chart is the worst among all the charts.

Similarly, for t-distributed quality characteristics:

• the MD chart is the most efficient,

• the Qn and D charts are close competitors to the MD chart, and

• all of the other charts have higher discriminatory powers than the R

and S charts, particularly for moderate to large sample sizes.
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Figure 2.5: Power curves of different dispersion charts for n = 3, 5, 7
and 12 under logistic distribution (with µ = 0, k = 1) when α = 0.002
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Figure 2.6: Power curves of different dispersion charts for n = 3, 5, 7
and 12 under t distribution (with k = 5) when α = 0.002
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2.6.2 The performance of control charts for skewed

distributions

In this section, we evaluate the performance of various dispersion schemes

when the monitoring data is generated from skewed distributions. Figure 2.7

presents the power curves of the dispersion charts when the quality charac-

teristic is assumed to follow a Weibull distribution. We can observe that the

D chart has shown the best overall performance with slightly higher power

than the MD chart. The Sn, Qn and MAD charts still perform very poorly

for n = 3 and 5, but a significant gain in the power of the Qn chart is seen as

n increases. The power of the S chart is affected but not as much as that of

the R and IQR charts, which are extremely affected for n > 5. Figures 2.8

and 2.9 present power curves of dispersion schemes when the distribution of

the quality characteristic is assumed to be chi-square or gamma. The power

curves of the D and MD charts are always higher than those for all of the

other charts, indicating these charts have better detection ability. The IQR

chart has again performed well for small sample sizes, while, for large n, the

Qn chart appears to be a better choice after the D and MD charts. The Sn

chart shows its superiority over the S chart under the gamma distribution,

while, for the chi-square distribution, the S chart appears to perform better

than the Sn chart. The R chart is extremely affected by skewed distributions

and has the lowest discriminatory power than most of the charts.

Figure 2.10 presents the power curves when the monitoring data are gene-

rated from the exponential distribution. The best detection ability is shown

by the MD chart followed by the D chart. The power of the R and S charts is

extremely affected and a significant gain in the power of the Qn chart can be

observed for large sample sizes. The power curves presented in Figure 2.11

for the lognormal distribution present a different picture. The Qn, MAD

and Sn charts have outperformed the other control charts in this case. This

is due to the fact that the lognormal distribution with µ = 0 and σ = 1 is

extremely skewed and its excess kurtosis is also very high. Hence, the charts

based on dispersion estimators with high breakdown point are performing

better than the rest. The Qn chart has the highest power among all control
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charts. The R and S charts have been again extremely affected, presenting

the worst performance for every sample size. The IQR chart also appears to

be better than the D and MD charts in this case. In short, we can say that

when data follow a skewed distribution (other than the lognormal):

• the D and MD charts are superior than the other charts,

• the Qn chart is a close competitor to the D and MD charts for large

sample sizes,

• the IQR chart has reasonable performance for small sample sizes, and

• the performance of R and S charts is greatly affected.

For the case of lognormal distribution:

• the Qn chart has the best performance,

• the Sn and MAD charts are close competitors to the Qn chart,

• the D and MD charts are less efficient then the IQR chart, and

• the R and S charts have the lowest discriminatory power compared to

rest of the charts.

Comparing the power curves in Figure 2.4 for the case of a normally distribu-

ted quality characteristic to the power curves in Figures 2.5-2.11, when the

distribution of a quality characteristic is assumed to be heavy tailed symme-

tric or skewed, we can clearly observe that the power of most of the control

charts decreases with an increase in the value of skewness and excess kurto-

sis. This reduction in the power is more significant for control charts based

on R, S and IQR estimators compared to the control charts based on other

estimators. The D and MD charts are least affected for most of the non-

normal cases. These results are also in close agreement with the findings of

Figures 2.2 and 2.3, which present relative efficiencies of different dispersion

estimators.
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Figure 2.7: Power curves of different dispersion charts for n = 3, 5, 7
and 12 under Weibull distribution (with η = 1.5, β = 1) when α = 0.002
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Figure 2.8: Power curves of different dispersion charts for n = 3, 5, 7
and 12 under chi-square distribution (with k = 5) when α = 0.002



54
Shewhart Control Charts for Monitoring Process Dispersion in

Phase II

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigma Shift

P
ow

er

R
S
IQR
D
MD
MAD
Sn
Qn

(a) n = 3

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigma Shift

P
ow

er

R
S
IQR
D
MD
MAD
Sn
Qn

(b) n = 5

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigma Shift

P
ow

er

R
S
IQR
D
MD
MAD
Sn
Qn

(c) n = 7

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigma Shift

P
ow

er

R
S
IQR
D
MD
MAD
Sn
Qn

(d) n = 12

Figure 2.9: Power curves of different dispersion charts for n = 3, 5, 7
and 12 under gamma distribution (with η = 2.0, β = 1) when α = 0.002
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Figure 2.10: Power curves of different dispersion charts for n = 3, 5, 7
and 12 under exponential distribution (with λ = 1) when α = 0.002
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Figure 2.11: Power curves of different dispersion charts for n = 3, 5, 7
and 12 under lognormal distribution (with µ = 0, σ = 1)when α = 0.002



2.7 Conclusions 57

2.7 Conclusions

In this study, we investigated the performance of various dispersion charts

for normal and different non-normal processes. There is always one chart

which performs best for a particular case. For normally distributed quality

characteristics, the S chart is superior to the rest of control charts. We have

shown that the performance of the D chart is similar to that of the S chart.

The R and IQR charts have shown reasonable performance for small sample

sizes, but a significant decrease in the relative power of these charts has been

observed for larger sample sizes. For the case of heavy-tailed symmetric

distributions, D and MD charts performed better than the other charts.

The Qn chart is also performing reasonably well. The relative power of the

R and S charts decreased significantly with an increase in the value of excess

kurtosis. For the case of skewed distributions, the D and MD charts again

showed better overall performance compared to the rest of the dispersion

charts, except for the lognormal distribution where the Qn chart has shown

its superiority. The IQR chart has shown reasonable performance for small

sample sizes. The performance of R and S charts is extremely affected for the

distributions with high skewness. We also observed that, compared to the

normal case, relatively larger sample size is required to detect a particular

amount of shift under the non-normal parent environments.

We have shown that the power of a dispersion chart is strongly related

to the efficiency of the dispersion estimator used in its construction, under a

particular distributional environment. If one needs to select a chart for the

monitoring of dispersion in Phase II, it is recommended to check its relative

efficiency as compared to the other available estimators.
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Chapter 3

Shewhart Control Charts for

Monitoring Process Dispersion

in Phase I

Control charts are usually implemented in two phases: the retrospective

phase (Phase I) and the monitoring phase (Phase II). The performance of

any control chart structure depends on the preciseness of the control limits

obtained from Phase I analysis. In SPC, the performance of Phase I disper-

sion charts has mostly been investigated for normal or contaminated normal

distributions of the quality characteristic of interest. Little work has been

done to investigate the performance of a wide range of Phase I dispersion

charts for processes following non-normal distributions. The current study

deals with the proper choice of a control chart for the evaluation of process

dispersion in Phase I. We have analyzed the performance of a wide range of

dispersion control charts, including two distribution-free structures. The per-

formance of the control charts is evaluated in terms of probability to signal,

under normal and non-normal process setups. These results will be useful for

quality control practitioners in their decision making. This chapter is based

on Abbasi et al. (2012b).
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3.1 Introduction

We perform retrospective analysis during Phase I in order to get a controlled

structure for the prospective analysis. In the retrospective phase, historical

data are analyzed to estimate the in-control state of the process, whereas

the prospective phase involves assessing the current state of the process by

analyzing the current data. In Phase I, we expect that if there are some

inconsistencies in the initial set of samples, there should be high chances

for their detection during retrospective analysis. The goal for the monitoring

phase (Phase II) is the quick detection of departures of the process parameters

from their in-control values. The focus of this study is Phase I analysis,

particularly with reference to the monitoring of the dispersion parameter.

For a good discussion on Phase I and Phase II control charts, one may see

the studies by Jensen et al. (2006), Vining (2009) and Chakraborti et al.

(2009).

The performance of any Phase II control chart depends on the preciseness

of the control limits obtained from the Phase I analysis. In SPC applications,

process (location and dispersion) parameters are usually unknown and need

to be estimated from the historical dataset. If the historical dataset is known

to consist entirely of observations from the in-control process then the Phase

I procedure would simply involve using the most efficient estimator (for a

particular parent distribution) for the estimation of unknown parameters

and control limits (for Phase II monitoring). However, mostly the historical

dataset is contaminated with some unusual samples/observations, that affect

the estimation process and also the detection ability of control charts. The

focus of this study is on monitoring process dispersion so we are mostly

concerned with the estimation of σ. The usual estimates of σ are based

on sample range R or sample standard deviation S. Both these estimators

perform well under the ideal assumption of normality but are well known to

be inefficient when the assumption of normality is violated.

Following Shewhart’s pioneering proposals of R and S charts, many re-

searchers have developed different control charts having resistant design struc-

tures, e.g. see – Rocke (1989, 1992), Pappanastos and Adams (1996), Tatum
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(1997), Abu-Shawiesh (2008), Riaz (2008); Riaz and Saghir (2009), Mukher-

jee and Chakraborti (2012) and the references therein. In recent years, the

estimation effects of σ have been investigated by different researchers. Wu

et al. (2002) examined the effects of different estimators of σ on the perfor-

mance of the Shewhart X chart when measurements are taken from conta-

minated normal distributions. Braun and Park (2008) investigated the effect

of different σ estimators on the performance of the EWMA location chart

for individual measurements from contaminated normal and t distributions.

Schoonhoven et al. (2008) and Schoonhoven and Does (2010) used different

estimates of σ to examine their effect on the performance of X chart under

the existence and the violation of the normality assumption. Schoonhoven

et al. (2011) and Schoonhoven and Does (2012) investigated the effect of esti-

mating σ in Phase I on control chart’s performance in Phase II for monitoring

process dispersion. Jones-Farmer and Champ (2010) proposed a distribution-

free structure for monitoring dispersion and compared the performance of his

proposal with R and S charts.

No study, as yet, has investigated a wide range of dispersion charts in

Phase I for processes following non-normal parent distributions. Many qua-

lity characteristics such as capacitance, insulation resistance, surface finish,

roundness, mold dimension, customer waiting time and the impurity levels

in semi conductor process chemicals follow non-normal distributions (cf. Bis-

sell (1994), James (1989) and Levinson and Polny (1999)). The underlying

distributional environment can have a significant impact on the detection

ability of control charts. As reported by Woodall (2000), “As one works

in Phase I to remove assignable causes and to achieve process stability, the

form of the hypothesized underlying distribution becomes more important in

determining control limits and in assessing process capability. To interpret a

chart in Phase I, practitioners need to be aware that the probability to signals

can vary considerably depending on the shape of the underlying distribution

for a stable process”. This is the focus of the current study. We will study

how the probability to signal of dispersion charts varies for different parent

distributions of the quality characteristic of interest in Phase I.

The purpose of this study is to evaluate and compare the performance
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of various dispersion charts during Phase I for normal and non-normal pa-

rent environments, using probability to signal as a performance measure. For

representing non-normal cases, we have considered both heavy-tailed symme-

tric (logistic & Student’s t) and skewed (Gamma & exponential) distributions.

The dispersion control charts investigated in this study are based on the

sample range, the sample standard deviation, the pooled sample standard

deviation (Vardeman (1999)), the interquartile range, Downton estimator,

the average absolute deviation from median, the median absolute deviation,

Sn statistic, Qn statistic and the distribution-free scale rank statistic (Jones-

Farmer and Champ (2010)).

The organization of the rest of this chapter is: Section 3.2 presents dif-

ferent dispersion estimators and their corresponding control chart structures;

Section 3.3 describes steps taken for the performance evaluations of these

dispersion charts in Phase I; Section 3.4 offers the discussion of the results

and gives comparisons of different charting structures; Section 3.5 includes

illustrative examples with real data application; and Section 3.6 summarizes

and concludes the findings of the study along with the recommendations for

some future research in this direction.

3.2 Monitoring of Process Dispersion

Parameter

The monitoring of a process dispersion parameter is carried out using disper-

sion control charts. A dispersion control chart that can perform better under

the existence and violation of ideal assumptions is of more practical value.

In this section, we describe different ways of estimating the process standard

deviation σ in Phase I and further provide control chart structures based on

these σ estimators.

Dispersion Estimators

Suppose the historical dataset comprises of m subgroups of size n. Let
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Xij, i = 1, 2, · · · , m and j = 1, 2, · · · , n denote the observations of this histo-

rical dataset from a process distributed with mean µ and standard deviation

σ. Further let X̄i be the sample mean, X̃i be the sample median and |Xi| be
the absolute value of X for the ith sample. Below we define different ways of

estimating σ in Phase I. Most of these estimators have been investigated in

Chapter 2 for Phase II monitoring of process dispersion.

Sample Range: Ri = Xi(n) − Xi(1), where Xi(1) and Xi(n) represents the

extreme observations in the ith sample. An unbiased estimator of σ based on

R is given as: σ̂R = R/d2R(n), where R = 1
m

∑m
i=1Ri

Sample Standard deviation: Si =
√

1
n−1

∑n
j=1(Xij − X̄i)2. An unbia-

sed estimator of σ based on S is given as: σ̂S = S/d2S(n).

In most SC books, d2R(n) and d2S(n) are given as d2 and c4, but we are

using these notations in this chapter for consistency.

Pooled standard deviation: Vardeman (1999) considered different forms

of combining sample ranges and sample standard deviations to estimate σ.

He recommended that the most efficient estimate of σ is a biased estimate

based on the pooled sample standard deviation given as: σ̂Sp = d2S(v+1)Sp,

where Sp =
√

1
m

∑m
i=1 S

2
i and v = m(n− 1)

Interquartile Range: IQRi = (Qi(3)−Qi(1))/1.34898, where Qi(1) and Qi(3)

respectively represents the lower and the upper quartiles of the ith sample.

These quartiles have been computed using Type 6 of the quantile function

in R statistical language (Ihaka and Gentleman (1996)). The reason behind

choosing Type 6 for the computation of quantiles is because this definition is

also used by other commonly used statistical packages such as Minitab and

SPSS.

An unbiased estimator of σ based on Q is given as: σ̂Q = IQR/d2Q(n).

Downton’s Estimator: Di = 2
√
π

n(n−1)

∑n
j=1

[
j − 1

2
(n+ 1)

]
Xi(j). An un-
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biased estimator of σ based on D is given as: σ̂D = D/d2D(n). For nor-

mally distributed quality characteristic, D is an unbiased estimate of σ (i.e.

d2D(n) = 1). Two other estimators, namely the probability weighted mo-

ments (Spw) and the Gini’s estimator (G), are equivalent to the Downton’s es-

timator (D), where Spw andG are defined as: Spw,i =
√
π

n2

∑n
j=1(2j−n−1)Xi(j)

and Gi =
√
π
2

(
4 1
n−1

∑n
j=1

2j−n−1
2n

Xi(j)

)
. The exact relationship among these

three estimators is given by: D = G = n
n−1

Spw (cf. Schoonhoven et al.

(2011)).

In this study we are only using D estimator for comparison purposes. For

the other two estimators (i.e. Spw and G), we can expect a similar behavior.

Average Absolute Deviation from Median: MDi =
1
n

∑n
j=1

∣∣∣Xj − X̃i

∣∣∣,
An unbiased estimator of σ based on MD is given as: σ̂MD = MD/d2MD

(n).

Studies have pointed out the efficient behaviour of MD estimator for non-

normal processes (cf. Abbasi and Miller (2012), Abbasi and Miller (2011c)).

Median absolute deviation: MADi = 1.4826 med
∣∣∣Xj − X̃i

∣∣∣ An unbia-

sed estimator of σ based on MAD is given as: σ̂MAD = MAD/d2MAD
(n).

With a breakdown point of 50%, the MAD estimator can be considered as

a very robust estimator to contaminations in the data. However, MAD does

have two main drawbacks that were pointed out by Rousseeuw and Croux

(1993): low Gaussian efficiency (36.74%) and its reliance on the distribution

being symmetric.

Sn estimate: Sn,i = 1.1926 medj {medl |Xij −Xil| ; j 6= l}. The inner me-

dian (medl) is the b(n/2)+1cth order statistic while the outer median (medj)

is the b(n + 1)/2cth order statistic. Rousseeuw and Croux (1993) described

these as “high” and “low” medians. An unbiased estimator of σ based on Sn

is given as: σ̂Sn = Sn/d2Sn
(n).

Qn estimate: Qn,i = 2.2219 {|Xij −Xil| ; j < l}(k) where k =

(
bn/2c+ 1

2

)
.

In simple terms, Qn is the kth order statistic of the n-choose-2 interpoint
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distances. An unbiased estimator of σ based on Qn is given as: σ̂Qn =

Qn/d2Qn
(n).

Unlike MD and MAD, Sn and Qn do not incorporate an estimate of loca-

tion. Moreover, both Sn and Qn have much higher Gaussian efficiencies than

MAD : 58% for Sn and 82% for Qn.

Scale-rank statistic: Jones-Farmer and Champ (2010) proposed a distri-

bution free structure for estimating process dispersion based on ranks. Let

Pij represent the absolute deviations of Xij taken from the overall median

(M), i.e. Pij = |Xij −M |. Let Cij be the rank of Pij in the pooled sample

of size n ∗m. Jones-Farmer and Champ (2010) considered 4 different trans-

formations of the ranks Cij and showed that their proposed T2 chart based

on the squared ranks (C2
ij) had the best overall performance. Hence, in this

study we are only using T2 chart for comparison purposes. For T2 chart, the

scale-rank statistic is defined as T 2,i = (1/n)
∑n

j=1C
2
ij (cf. Jones-Farmer and

Champ (2010)).

We will refer to the dispersion charts based on R, S, Sp, IQR, D, MD,

MAD, Sn, Qn and T 2 as the R chart, the S chart, the Sp chart, the Q chart,

the D chart, the MD chart, the MAD chart, the Sn chart, the Qn chart and

the T2 chart for the rest of this study. These charts are based on plotting

their respective monitoring statistics against the following set of control li-

mits:

R Chart: max
[
0, R

(
1± L

d3R (n)

d2R (n)

)]

S Chart: max
[
0, S

(
1± L

d3S (n)

d2S (n)

)]

Sp Chart: max [0, d2S(v + 1)Sp (d2S(n)± Ld3S(n))]

Q Chart: max
[
0, IQR

(
1± L

d3Q (n)

d2Q (n)

)]

D Chart: max
[
0, D

(
1± L

d3D (n)

d2D (n)

)]
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MD Chart: max
[
0,MD

(
1± L

d3MD
(n)

d2MD
(n)

)]

MAD Chart: max
[
0,MAD

(
1± L

d3MAD
(n)

d2MAD
(n)

)]

Sn Chart: max
[
0, Sn

(
1± L

d3Sn
(n)

d2Sn
(n)

)]

Qn Chart: max
[
0, Qn

(
1± L

d3Qn
(n)

d2Qn
(n)

)]

T2 Chart: T2 ± L (Spr/c4,v) /
√
n

where T2 and Spr represent the overall mean and the pooled standard devia-

tion based on the squared ranks C2
ij. For a particular parent distribution, the

control chart constants d2R(n), d3R(n), d2Q(n), d3Q(n) etc., depend on sample

size (n) and are available in Appendix Tables A.1 and A.2 for a variety of

continuous distributions.

Modified Scale-Rank (V2) Chart: In T2 charting structure of Jones-

Farmer and Champ (2010)), the control limits are computed by estimating

the location and the dispersion of the squared ranks (C2
ij) by T2 and Spr

respectively. These estimates can be seriously affected in the presence of

contaminations in the Phase I dataset. To overcome this deficiency of the T2

chart, we proposed a modified charting structure, namely the V2 chart. The

V2 chart is based on plotting the squared scale-rank statistic (T 2,i) against

the following set of control limits.

UCL = T̃2 + LDT2/
√
n, CL = T̃2 and LCL = T̃2 − LDT2/

√
n

where T̃2 represents the median of sample T 2,i and DT2 represents the Down-

ton’s estimator based estimate of the variation in the T 2,i. The use of T̃2

and DT2 in the V2 charting structure helps significantly in better detection

of inconsistent samples in the Phase I dataset – see Section 3.5.
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3.3 Performance Evaluation of Charts in

Phase I

The performances of all the charts discussed in Section 3.2 are evaluated using

the signal probability as the performance measure for normal and non-normal

parent environments. The density functions of the continuous distributions

together with parameter values used in this study, the skewness and the

excess kurtosis are provided in Table 3.1.

Table 3.1: Density functions and parameter values used for different
continuous distributions

Distribution Density Function Parameter values Skewness Excess Kurtosis

Normal(µ, σ2)
µ ∈ R, σ > 0

1√
2πσ2

e−(x−µ)2/2σ2
µ = 0, σ = 1 0 0

Logistic(µ, k)
µ ∈ R, k > 0

e−(x−µ)/k

k
(

1+e−(x−µ)/k
)2 µ = 0, k = 1 0 1.2

Student’s t (tk)
k > 0

Γ[(k+1)/2]
√

kπΓ(k/2)

(

1 + x2

k

)

−
(k+1)

2
k = 5 0 6

Gamma(α, β)
α > 0, β > 0

βα

Γ(α)
xα−1e−βx α = 2, β = 1 1.414 3

Exponential(λ)
λ > 0

λe−λx λ = 1 2 6

For the application of control charts, samples are usually collected from

a process in the form of rational subgroups. The concept of rational sub-

groups was introduced by Shewhart and it means that, in the presence of

assignable causes, “the chance for differences between subgroups will be maxi-

mized while the chance for differences within subgroups will be minimized”

(Montgomery (2009)). We have considered m = 30 subgroups, each of size

n = 5 & 9 from different probability models; m0 of these subgroups are as-

sumed to be stable and the remaining m1 have inconsistencies in the form

of shifted samples. The goal of Phase I analysis is the quick detection of

these inconsistent samples. The stable (in-control) samples are supposed to

be distributed with the parameter settings specified in Table 1 for different

normal and non-normal distributions. Without loss of generality, the obser-

vations from different probability models are rescaled to have the in-control
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mean and standard deviation as µ0 = 0 and σ0 = 1, while the contaminated

samples correspond to rescaled observations with shifted standard deviation

as σ1 = λσ0 (here the value of λ will indicate the intensity of inconsistency).

The control limits multipliers L are appropriately chosen for all the charts

so that false alarm probability (FAP) may be achieved for the prefixed α, as-

suming the Phase I data set consists of m in-control samples with no conta-

mination. It is to be mentioned that we have chosen α∗ as the probability

of signal on a single sample and worked out the overall FAP (α) for the m

samples using the relationship α = 1 − (1 − α∗)m (cf. Jones-Farmer and

Champ (2010), Shiau and Sun (2010)). After setting the limits of a specific

control chart, we use its respective sample statistic (like Ri, Si, T 2,i etc.) as

monitoring statistic to detect any out-of-control signals. This procedure is

repeated 10,000 times and the values of L using m = 30 and n = 5 & 9 are

chosen to fix the FAP, α = 0.01 for all the charts, as provided in Table 3.2.

We have investigated the signaling probabilities for m1 = 3, 6, 9 & 12,

i.e. when 3, 6, 9 or 12 samples out of 30 are considered to be contaminated

with shift λ. To save space, the resulting signaling probabilities for varying

values of λ are presented graphically for only m1 = 6 & 12 in the form of

power curves. These curves are provided in Figure 3.1 for normal distribution,

Figure 3.2 for logistic distribution, Figure 3.3 for t distribution, Figure 3.4 for

Gamma distribution and Figure 3.5 for exponential distribution for all the

eleven charts investigated in this study. For other combinations of n,m,m1

and α, one may obtain similar outcomes at varying values of λ for different

choices of parent distributions.
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Table 3.2: Control chart multiplier L to fix FAP, α = 0.01 for all the
charts

Distribution n R S Sp IQR D MD MAD Sn Qn T2 V2

Normal 5 3.983 3.875 3.744 4.018 3.917 4.025 4.514 4.309 4.545 3.645 3.893
9 3.967 3.739 3.662 3.983 3.787 3.841 4.125 3.908 4.069 3.585 3.788

Logistic 5 4.793 4.712 4.489 4.501 4.584 4.503 4.856 4.818 4.885 3.661 3.904
9 4.793 4.578 4.417 4.283 4.296 4.179 4.538 4.283 4.427 3.606 3.782

Student’s t 5 6.893 6.957 6.111 5.795 6.341 5.792 5.218 5.091 5.329 3.633 3.904
9 7.218 7.339 6.569 4.568 5.991 5.349 4.672 4.569 4.737 3.606 3.782

Gamma 5 5.309 5.349 4.895 4.901 4.975 4.921 5.258 4.979 5.392 3.685 3.992
9 5.141 5.029 4.772 4.664 4.532 4.461 4.681 4.635 4.519 3.608 3.792

Exponential 5 5.579 5.632 5.072 5.091 5.272 5.119 5.656 5.587 5.771 3.654 3.904
9 5.559 5.397 4.994 4.897 4.793 4.714 5.167 5.088 5.026 3.534 3.734
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3.4 Discussion and Comparative Analysis

In this section, we provide a comparison of all the dispersion charts described

in Section 3.2. For a fixed FAP (α), the chart that has the highest probability

to signal out-of-control samples will be considered as better than others. We

can expect signaling probabilities of the charts to change for different parent

environments (Woodall (2000)). The goal is to identify charts that perform

well for particular parent environments and further to find out a chart that

performs better for most of the situations (if not all).

The specific findings for each of the parent environments considered in

this study are given below.

Normal Distribution: In the normally distributed process environment,

we have observed that MAD, Sn and Qn charts have the worst performance.

The structures of the S, D and MD charts have exhibited the best perfor-

mance for smaller choices of m1 which deteriorates with an increase in the

value of m1. For the larger values of m1 the proposed scale-rank V2 char-

ting structure has the highest signaling probability to detect out-of-control

subgroups. The relative performance of the Sp chart has shown an inverse

relation with m1 and λ. The detection ability of the T2 chart is lower than

the S,D,MD and R charts. R and IQR charts perform well for n = 5 but

loses relative efficiency for n = 9. In general, the detection ability of all the

charting structures increases with an increase in the values of n and λ (cf.

Figure 3.1).

Logistic Distribution: In the logistic distribution we have noticed that

detection abilities of all the charting structures, except T2 and V2, are se-

riously affected (relative to the normal case) due to an increase in the value

of excess kurtosis (cf. Figures 3.1 & 3.2). The V2 chart is performing signifi-

cantly better than the T2 chart as m1 increases. The MAD,Sp, Sn and Qn

charts have shown poor performance (like in the normal case) and the widely

used R and S charts are also seriously affected. The best performance has

been shown by the V2 chart, followed by the D & MD charts for m1 = 6 and
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T2 chart for m1 = 12.

Student’s t Distribution: For the case of t distributed process scena-

rio, the V2 chart has shown the best performance for all the cases, followed

by the T2 chart. Apart from these two, the design structures of all the charts

are significantly affected (relative to the normal case), particularly for smal-

ler choices of n and larger values of m1. Although less efficient than V2 and

T2 charts, the MAD, Sn and Qn charts have shown better detection ability

compared to R, S,D and Sp charts. The worst performance has been shown

by the Sp chart, with R/S charts as close competitors. The effect on the

probability to signal for the case of t distribution is even more severe than

for the case of logistic distribution (cf. Figures 3.2 & 3.3) due to the increase

in the excess kurtosis.

Gamma Distribution: For the gamma distributed process setup, the V2

chart again showed the best performance followed by the T2 chart, irres-

pective of the choices of n and m1. The worst performance is shown by

the Sp chart as in the other distributional environments. In general the

R, S,MAD, Sn and Qn charts have shown poor detection abilities because of

increase in the excess kurtosis along with the skewed behavior of parent dis-

tribution. The larger choices of n and the smaller values of m1 have provided

a reasonable safeguard against serious deterioration of signaling probabilities

for these charting structures (cf. Figure 3.4).

Exponential Distribution: In an exponentially distributed process situa-

tion, the relative superiority orders of different charting structures under

investigation stay in close agreement, in general, with the orders observed

under Gamma distribution, i.e. V2 and T2 charts are performing significantly

better than the rest of charts. The higher intensity of skewness and excess

kurtosis (cf. Table 3.1) for exponential model presses the curves even lower

than those of the gamma distributed process characteristic. (cf. Figure 3.4

& 3.5).

In a nutshell, we observed that the V2 chart outperforms all the compe-
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ting charts in normal and non-normal setups (in general), for the detection

of out-of-control samples in the historical dataset. S, D and MD charts offer

superior performances for the normal parent distribution when m1 is small.

The T2 charting structure appears as a second best choice for non-normal

distributions. On the inferior side, the Sp chart gives the worst performance

under non-normal processes while the MAD chart under normally distribu-

ted situation. The signalling ability of all the charts (except V2 and T2) is

significantly affected with increase in the skewness and excess kurtosis for

non-normal parent environments compared to the normal case.
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Figure 3.1: Probability to signal of all the charts under Normal dis-
tribution for α = 0.01 when m = 30,m1 = 6 & 12 and n = 5 and

9
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Figure 3.2: Probability to signal of all the charts under Logistic dis-
tribution for α = 0.01 when m = 30,m1 = 6 & 12 and n = 5 and

9
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Figure 3.3: Probability to signal of all the charts under t distribution
for α = 0.01 when m = 30,m1 = 6 & 12 and n = 5 and 9
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Figure 3.4: Probability to signal of all the charts under Gamma dis-
tribution for α = 0.01 when m = 30,m1 = 6 & 12 and n = 5 and

9
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Figure 3.5: Probability to signal of all the charts under Exponential
distribution for α = 0.01 when m = 30,m1 = 6 & 12 and n = 5 and 9
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3.5 Illustrative Examples

To illustrate the application of the charts under discussion in this study (par-

ticularly V2 versus T2 charting structures) for Phase I analysis, we provide

here a numerical example using a real dataset given by Jones-Farmer and

Champ (2010). The data consist of patients waiting time (in minutes) for a

colonoscopy procedure. We have provided plots for the V2 and T2 charts in

the said numerical example. The other charting structures may be worked

out on similar lines.

In order to highlight the ability of the two charting structures for efficient

detection of changes in process dispersion parameter in Phase I, we have in-

troduced contaminations in the original data in two forms: using i) m1 = 6

with λ = 3 and ii) m1 = 12 with λ = 4, i.e. the last 6 or 12 samples of the

original data have been multiplied with λ to represent contaminated samples.

The resulting data sets are used to carry out computations for the V2 and

T2 charting structures for a fixed FAP, α = 0.01. The graphical displays of

both the control charts for cases (i) and (ii) are provided in Figures 3.6 and

3.7 respectively. The sample numbers are shown on the horizontal axis while

the sample statistic T 2,i is plotted on the vertical axis in these figures. LCL,

CL and UCL of the V2 and T2 charts are represented by the dashed (- - -)

and dotted (...) horizontal lines respectively

It is evident from Figures 3.6 and 3.7 that the T2 charting structure of

Jones-Farmer and Champ (2010) detects out-of-control signals at five sample

points, while the V2 chart detects all the six problem points for the case when

m1=6 and λ = 3 (cf. Figures 3.6). For case (ii), when m1=12 and λ = 4,

the V2 chart has signaled ten out-of-control points while the T2 chart has

indicated eight such points (cf. Figures 3.7). Moreover, we can see from

Figure 3.7 that the T2 chart is giving 6 extra false signals compared to the V2

chart. It shows that the proposed V2 charting structure not only detects more

out-of-control samples but has an added advantage of producing significantly
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less false signals. The superiority of the design structure of the V2 chart

keeps improving, relative to the T2 chart, with increasing values of m1 and λ.

Note that the V2 chart also plots T 2,i as the monitoring statistic but with a

modified set of control limits. The similar superior detection ability may also

be expected for the V2 chart relative to the other charting structures covered

in this study, based on the findings of Section 3.4.

3.6 Conclusions

This study has investigated the choice of an appropriate control charting

structure for efficient monitoring of process dispersion parameter during

Phase I. We have analyzed the performance of eleven dispersion charts, in-

cluding two distribution-free structures, based on ranks. The performance of

control charts is evaluated in terms of probability to signal, under different

distributional setups covering normal, logistic, t, gamma and exponential

models. The comparative analysis under different process setups has advo-

cated that the worst performance is exhibited by Sp chart under non-normal

processes and MAD chart under the normal environment. The inferior per-

formance of the Sp chart is due to the fact of having contaminations in

the Phase I samples as for this situation a better way of estimating σ is to

estimate the variability for each subgroup separately and then pool these

estimates (cf. Abbasi and Miller (2012)).

The newly suggested V2 charting structure offers the best ability in most

of the practical situations. The T2 structure has attractive detection abilities

in non-normal environments, while in normal setup it becomes relatively less

efficient. The structures of S, D and MD charts appear as efficient choices

in normally distributed case when m1 is smaller, while for larger values of

m1 the V2 chart gets an edge. The design structures of D, IQR,MD and

Qn charts have also shown reasonable performance for skewed distributions,

especially when m1 is large.

To sum up, the V2 charting structure has shown the best ability for the

detection of out-of-control subgroups in Phase I under different normal and

non-normal processes considered in this study. It may be used as a powerful
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tool by quality control practitioners and researchers for efficient monitoring

and decision making in their practice.
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Figure 3.6: T2 and V2 charts for m1 = 6 and λ = 3
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Figure 3.7: T2 and V2 charts for m1 = 12 and λ = 4
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Chapter 4

EWMA Dispersion Control

Charts

EWMA dispersion charts are used for the quick detection of small and mode-

rate shifts in process dispersion or variability. Most of the EWMA dispersion

charts that have been proposed are based on the assumption that the parent

distribution of the quality characteristic is normal, which is not always the

case. In this chapter we develop new EWMA charts based on a wide range

of dispersion estimates for processes following normal and non-normal parent

distributions. The performance of all the charts is evaluated and compared

using run length characteristics (the average run length (ARL), the median

run length (MDRL) and the standard deviation of the run length distri-

bution (SDRL)). Extra Quadratic Loss (EQL) and Relative Average Run

Length (RARL) measures are also used to examine the overall effectiveness

of the EWMA dispersion charts. This chapter is based on Abbasi and Miller

(2011c), Abbasi et al. (2012a) and Abbasi and Miller (2011b).

4.1 Introduction

Shewhart type dispersion charts, as discussed in Chapters 2 and 3, are most

effective when large shifts in the process parameters are of concern. For

the efficient detection of small or moderate shifts in the process parameters,
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the use of an EWMA chart is usually recommended. Monitoring process

dispersion using an EWMA chart has attracted the attention of different

researchers – some important contributions are Wortham and Ringer (1971);

Ng and Case (1989); Domangue and Patch (1991); Crowder and Hamilton

(1992); MacGregor and Harris (1993); Stoumbos and Reynolds (2000); Chen

et al. (2001) and Shu and Jiang (2008).

Most of the proposed EWMA dispersion charts are based on the assump-

tion of normality of the quality characteristic, which is not always the case. In

fact, many real life processes do follow non-normal distributions (cf. Bissell

(1994), James (1989) and Levinson and Polny (1999)). It has been obser-

ved in Chapter 2 that a Shewhart type dispersion chart that is superior for

the normal environment may not remain the same for non-normal parent

distributions. This can also be expected for the EWMA dispersion charts.

Maravelakis et al. (2005) showed that the run length behaviour of the EWMA

dispersion charts can be seriously affected when the assumption of normality

is violated. Hence, there is a need to investigate a wide range of EWMA

dispersion charts for normal and non-normal parent distributions, to identify

a chart (or a set of charts), that performs well for both the cases or at least

under a particular distributional environment.

The purpose of this chapter is to develop new EWMA dispersion charts

that can be used for the efficient detection of shifts in process dispersion,

considering normal and non-normal parent distributions. We considered the

Student’s t and Gamma distributions for representing the non-normal cases:

the Student’s t is a heavy tailed distribution and the Gamma is a skewed

distribution. EWMA dispersion charts investigated in this chapter are based

on sample range (R), sample standard deviation (S), inter quartile range

(IQR), average absolute deviation from median (MD), median absolute de-

viation (MAD), Sn and Qn estimates. These dispersion statistics have been

studied in Chapter 2 for the Shewhart charts.

The rest of this chapter is organized as follows: Section 4.2 briefly des-

cribes different dispersion estimates that form the basis of the EWMA disper-

sion charts; the design structure of these charts is developed in Section 4.3; a

discussion of the performance measures used to evaluate control charts and
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a description of the simulation study is given in Section 4.4; the results of

the study are then used to compare all the dispersion charts under normal

and non-normal parent environments in Section 4.5; and finally, the chapter

ends with conclusions in Section 4.6.

4.2 Dispersion Estimates

Let X be the quality variable of interest and let X1, X2, · · · , Xn be a random

sample of size n from a distribution with mean µ and standard deviation

σ. Further let X(i) be the ith order statistic (smallest to largest), X̄ be the

sample mean, X̃ be the sample median and |X| be the absolute value of X .

The definitions of different dispersion estimates are given as:

Sample Range: R = X(n) −X(1)

Sample Standard deviation: S =
√

1
n−1

∑n
i=1(Xi − X̄)2

Interquartile range: IQR = (Q3 −Q1)/1.34898

Downton’s Estimate: D = 2
√
π

n(n−1)

∑n
i=1

[
i− 1

2
(n+ 1)

]
X(i)

Average Absolute Deviation from Median: MD = 1
n

∑n
i=1

∣∣∣Xi − X̃
∣∣∣

Median Absolute Deviation: MAD = 1.4826 med
∣∣∣Xi − X̃

∣∣∣

Sn estimate: Sn = 1.1926 medi {medj |Xi −Xj| ; i 6= j}

Qn estimate: Qn = 2.2219 {|Xi −Xj| ; i < j}(k) where k =

(
bn/2c+ 1

2

)

The details regarding these dispersion estimates can be seen in Chapter 2

(Section 2.2). All these estimates will be used to develop EWMA dispersion

charts.
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4.3 Design of the EWMA dispersion charts

In this section, a general design structure is developed for the EWMA disper-

sion charts. Let T define a dispersion statistic and Tt (t = 1, 2, · · · ) be the

sequence of the observed values for T computed from the subgroup of n obser-

vations, taken at time t. Note that T can be any of the dispersion estimates

described in Section 4.2. As we are only interested in monitoring changes in

process standard deviation, we assume that the process mean is stable at a

fixed level. Let the EWMA statistic Wt, for the dispersion estimate E, be

defined as

Wt = λTt + (1− λ)Wt−1 (4.1)

where λ is the smoothing parameter lying between 0 and 1. By continuous

substitution of Wt−i, the EWMA statistic Wt can be written as (see Roberts

(1959) and Montgomery (2009))

Wt = λ

t−1∑

i=0

(1− λ)iTt−i + (1− λ)tW0; W0 = T (4.2)

As t gets larger, we have

σ̂Wt ≈ σ̂Tt

√
λ

2− λ
(4.3)

It can be easily shown that (cf. Montgomery (2009), Riaz (2008))

σ̂T = t3T/t2 (4.4)

where t2 and t3 are the control chart coefficients based on sample statistic T .

These are defined as the mean and the standard deviation of the distribution

of relative dispersion (Z = T/σ), i.e. t2 = E(Z) and t3 = σZ . For a particular

parent distribution, these coefficients depend on the sample size (n) (see

Mahoney (1998), Kao and Ho (2007), Montgomery (2009)). The constant t2

is required to obtain an unbiased estimate of σ using the dispersion statistic

T .
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From Equations (4.3) and (4.4) we have

σ̂Wt ≈
t3T

t2

√
λ

2− λ
(4.5)

The upper control limit (UCL) of the EWMA chart based on the dispersion

statistic E is thus defined as

UCL = T + L
t3T

t2

√
λ

2− λ
(4.6)

where L is the control chart multiplier. L is usually set at 3 but can be

adjusted to set the false alarm rate to a specified value. The major concern

of this study is to detect the upward shifts in process dispersion, hence we

are only considering a one-sided UCL. For a two-sided chart, the control

chart multiplier L needs to be adjusted accordingly.

After setting the UCL for the EWMA dispersion chart, the EWMA statis-

tic given in Equation (4.1) is plotted against time. For an in-control process

all of the Wt values should lie below the UCL, whereas an out-of-control

process is signaled by one or more of the Wt values exceeding the UCL.

It is desirable that an out-of-control situation is detected as early as pos-

sible so that corrective actions can be implemented. For the choice of T as

R, S, IQR,D,MD,MAD, Sn and Qn, we will refer to the EWMA charts as

the RE chart (Ng and Case (1989)), the SE chart, the QE chart, the DE

chart, the MDE chart (Abbasi and Miller (2011c)), the MADE chart, the

SNE chart and the QNE charts for the rest of this chapter.

4.4 Performance Evaluation

To evaluate the performance of control charts, the average run length (ARL),

the mean of the run length distribution, is the most important and widely

used measure. The performance can be evaluated by two ARL values:

• ARL0: the average number of samples until an out-of-control signal

is detected by a control chart when the process standard deviation is
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in-control.

• ARL1: the average number of samples until an out-of-control signal

is detected by a control chart when the process standard deviation is

shifted to an out-of-control value.

Large values of ARL0 and small values of ARL1 are preferable for any control

chart setting. In this study, a Monte Carlo simulation approach with 10,000

iterations is used to approximate the run length distribution of the EWMA

dispersion charts, following the methods of Maravelakis et al. (2005), Neu-

bauer (1997), Zhang and Chen (2004), Abbasi (2010) and Abbasi and Miller

(2011c). Note that Kim (2005) and Schaffer and Kim (2007) indicate that

5000 replications are sufficient to estimate the ARL to an acceptable level

of precision in many control chart settings. Due to the skewed nature of

the run length distribution, the sole use of ARL measure in interpreting a

chart’s performance is criticized by some authors including, Barnard (1959),

Gan (1993, 1994) and Woodall (1983). It is usually recommended to report

median run length (MDRL) and the standard deviation of the RL distribu-

tion (SDRL) (cf. Gan (1993), Maravelakis et al. (2005)). Similarly to the

ARL, low values for MDRL and SDRL are also desirable.

The goal of this study is to propose efficient EWMA dispersion charts

for Phase II of SPC. Hence, we assume that a sufficiently large and clean

historical data set is available which represents the state of an in-control

process. From this historical data set, control limits are computed for all the

dispersion charts using their respective control chart constants (t2 and t3).

The control chart multipliers L are chosen to fix the in-control ARL (ARL0)

at the desired level for all the charts. In each simulation run, samples of a

particular size (n) are generated and the dispersion statistic T are computed

to be used as the monitoring statistic. The run length (RL) is defined as the

number of samples until the plotting statistic exceeds the upper control limit.

The run length was simulated 10,000 times and the average, the median and

the standard deviation of the RL distribution (ARL, MDRL and SDRL) were

computed.



4.4 Performance Evaluation 89

The performance of all the charts is evaluated and compared under the

usual normality assumption and for cases where this is violated. For the non-

normal cases, we used the Student’s t distribution to investigate a heavy-

tailed symmetric distribution and a Gamma distribution to investigate a

skewed distribution. The density functions of these distributions are given

below.

Normal(µ, σ2), µ ∈ R, σ > 0

f(x|µ, σ2) =
1√
2πσ2

e−(x−µ)2/2σ2

, −∞ < x < ∞

Student’s t (tk), k > 0

f(x|k) = Γ[(k + 1)/2]√
kπΓ(k/2)

(
1 +

x2

k

)−(k+1)/2

, −∞ < x < ∞

Gamma(α, β), α > 0, β > 0

f(x|α, β) = βα

Γ(α)
xα−1e−βx, x > 0

In our simulation study, we used Normal distribution with µ = 0 and σ2 = 1,

Student’s t distribution with k = 5 and Gamma distribution with α = 2 and

β = 1.

The run length results are reported for subgroups of sizes n = 5 & 10

and λ = 0.05, 0.25, 0.50 & 0.75. The ARL, SDRL and MDRL for one of

the charts (i.e. the MDE chart) are provided in Tables 4.1-4.3 for normal,

Student’s t and Gamma distributed quality characteristic respectively. The

results for the remaining seven charts are reported in Appendix Tables B.1

- B.21. The relative standard errors of the results reported in these tables

are found to be around 1.5%, as checked by repeating the simulations. This

is quite acceptable in control chart studies - for details see Kim (2005) and

Schaffer and Kim (2007).

In these tables, δ represents the multiplicative change in the process stan-

dard deviation relative to the in-control scenario: that is δ = 1 represents
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the in-control situation where the standard deviation is σ and δ = 1.5 re-

presents an out-of-control scenario where the process standard deviation is

1.5× σ. For each scenario, the control chart multiplier L was chosen to give

an in-control average run length of 200 (i.e. ARL0 = 200) for all the charts –

these values are reported in Table 4.4. Control chart coefficients (t2 and t3),

used for setting control limits for all the dispersion charts, are provided in

Appendix Tables A.1 and A.2, for some representative values of n considering

normal and a range of non-normal distributions.

Run length characteristics evaluate the detection ability of a chart for a

specific shift value. To evaluate the overall effectiveness of a control chart

over an entire shift range, the measures such as Extra Quadratic Loss (EQL)

and Relative ARL (RARL) can be used. EQL and RARL are described

below:

Extra Quadratic Loss (EQL)

EQL is defined as the weighted average ARL over the entire shift domain

(δmin < δ < δmax) using the square of shift (δ
2) as the weight. Mathematically

EQL is given as:

EQL =
1

δmax − δmin

∫ δmax

δmin

δ2ARL(δ) dδ (4.7)

where ARL(δ) is the ARL of a particular chart at shift δ. The above ex-

pression of EQL is based on the assumption that the process shift δ has a

uniform distribution over the interval [δmin, δmax]. Thus, the density function

is 1
δmax−δmin

over this interval. The uniform distribution for δ is assumed by

many researchers including Domangue and Patch (1991), Reynolds Jr. and

Stoumbos (2004b) and Wu et al. (2009).

Ou et al. (2012) also investigated the effect of non-uniform distributions

for δ on the EQL values. They showed that the distribution of δ has a limited

influence on the relative performance of control charts based on EQL. They

mentioned that if a chart is performing better in terms of EQL compared

to the other chart under a uniform distribution for δ, it also has better
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performance under different non-uniform distributions for δ.

Many researchers used EQL as a criterion to measure the overall perfor-

mance of a control chart (Reynolds Jr. and Stoumbos (2004a); Zhang and

Tian (2005); Ou et al. (2012)). The smaller value of EQL indicates a better

overall performance of a chart compared to other competitive charts.

Relative ARL (RARL)

RARL is another measure that can be used to evaluate the overall effecti-

veness of a control structure. RARL calculates the average of the ratios

between the ARL of a particular chart (ARL(δ)) with the ARL of the bench-

mark chart (ARLbenchmark(δ)). Mathematically, RARL is defined as:

RARL =
1

δmax − δmin

∫ δmax

δmin

ARL(δ)

ARLbenchmark(δ)
dδ (4.8)

The benchmark can be selected as a chart with lowest EQL. This will produce

RARL = 1 for the benchmark chart and RARL > 1 for the other charts.

The distance between the RARL of different charts and the benchmark chart

(RARL - 1) shows the extent of inferior performance of a chart as compared

to the benchmark chart.

The expressions of EQL and RARL are evaluated using numerical integra-

tion method and the results are reported in Tables 4.5 and 4.6 respectively,

for all the EWMA dispersion charts considering normal, t and Gamma parent

distributions using δmin = 1.1 and δmax = 4.0.
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Table 4.1: RL characteristics of the MDE chart for normally distribu-
ted quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 201.02 200.35 200.41 201.06 199.75 199.59 200.70 201.74
MDRL 140.00 140.00 140.00 140.00 138.00 137.00 138.00 141.00
SDRL 197.69 200.73 200.87 198.67 194.08 193.33 196.40 203.47

1.10 ARL 34.31 43.36 53.04 61.00 21.41 27.45 36.13 44.69
MDRL 27.00 31.00 37.00 44.00 17.00 20.00 25.00 31.00
SDRL 26.96 40.69 51.80 58.59 15.13 25.18 34.65 43.32

1.20 ARL 15.89 17.63 21.94 25.80 9.89 10.20 12.45 15.83
MDRL 13.00 13.00 16.00 18.00 9.00 8.00 9.00 11.00
SDRL 10.40 15.01 20.39 25.38 5.39 7.85 11.14 15.29

1.30 ARL 10.13 10.10 11.66 13.61 6.40 5.77 6.37 7.73
MDRL 9.00 8.00 9.00 10.00 6.00 5.00 5.00 6.00
SDRL 5.73 7.73 10.34 12.86 3.02 3.75 5.07 6.81

1.40 ARL 7.44 6.73 7.38 8.60 4.79 3.99 4.17 4.67
MDRL 7.00 5.00 6.00 6.00 4.00 3.00 3.00 3.00
SDRL 3.86 4.77 6.15 7.71 2.00 2.35 2.99 3.93

1.50 ARL 5.95 5.12 5.32 5.99 3.85 3.11 3.02 3.23
MDRL 5.00 4.00 4.00 4.00 4.00 3.00 3.00 2.00
SDRL 2.95 3.38 4.14 5.21 1.53 1.68 1.99 2.49

1.60 ARL 5.00 4.16 4.11 4.50 3.29 2.57 2.45 2.49
MDRL 5.00 4.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.38 2.59 3.07 3.79 1.25 1.29 1.50 1.74

1.80 ARL 3.76 3.00 2.86 3.00 2.55 1.94 1.78 1.77
MDRL 3.00 3.00 2.00 2.00 2.00 2.00 2.00 1.00
SDRL 1.68 1.74 1.93 2.31 0.91 0.90 0.95 1.06

2.00 ARL 3.09 2.43 2.25 2.25 2.12 1.61 1.46 1.43
MDRL 3.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.33 1.32 1.41 1.56 0.75 0.70 0.69 0.72

2.50 ARL 2.21 1.71 1.59 1.55 1.54 1.22 1.14 1.12
MDRL 2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL 0.93 0.84 0.84 0.87 0.57 0.44 0.37 0.34

3.00 ARL 1.77 1.41 1.32 1.29 1.26 1.07 1.04 1.04
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.74 0.63 0.59 0.58 0.45 0.27 0.21 0.20

3.50 ARL 1.52 1.24 1.19 1.17 1.12 1.03 1.02 1.01
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.63 0.48 0.44 0.43 0.33 0.17 0.13 0.12

4.00 ARL 1.36 1.17 1.12 1.10 1.06 1.01 1.00 1.01
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.53 0.41 0.35 0.32 0.23 0.10 0.06 0.07
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Table 4.2: RL characteristics of theMDE chart for t-distributed quality
characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.11 201.02 200.91 200.97 201.02 200.11 199.49 200.20
MDRL 137.00 141.00 140.00 140.00 142.00 143.00 142.00 142.00
SDRL 196.07 203.37 201.00 202.69 199.06 199.43 201.79 200.98

1.10 ARL 43.51 67.08 86.02 100.17 28.33 42.79 58.56 72.34
MDRL 33.00 48.00 60.00 69.00 22.00 31.00 40.00 51.00
SDRL 36.35 64.39 84.88 100.43 21.58 40.09 57.23 71.04

1.20 ARL 20.52 30.58 41.99 53.70 12.92 16.08 23.14 31.68
MDRL 17.00 22.00 30.00 37.00 11.00 12.00 16.00 22.00
SDRL 14.75 27.84 40.99 53.17 7.71 13.22 22.00 31.15

1.30 ARL 12.86 16.68 24.12 32.11 8.20 8.81 11.77 15.81
MDRL 11.00 13.00 17.00 22.00 7.00 7.00 9.00 11.00
SDRL 7.95 14.35 22.79 31.55 4.15 6.42 10.26 14.90

1.40 ARL 9.46 11.04 15.04 20.69 6.09 5.86 7.26 9.57
MDRL 8.00 9.00 11.00 15.00 6.00 5.00 6.00 7.00
SDRL 5.40 8.79 13.72 19.92 2.83 3.84 5.84 8.62

1.50 ARL 7.45 7.92 10.45 13.82 4.87 4.36 4.90 6.27
MDRL 7.00 6.00 8.00 10.00 5.00 4.00 4.00 5.00
SDRL 4.03 5.76 9.14 13.00 2.07 2.56 3.74 5.46

1.60 ARL 6.17 6.24 7.85 10.27 4.07 3.52 3.79 4.50
MDRL 6.00 5.00 6.00 7.00 4.00 3.00 3.00 3.00
SDRL 3.08 4.33 6.50 9.54 1.67 1.95 2.58 3.66

1.80 ARL 4.65 4.35 4.87 6.17 3.14 2.58 2.54 2.83
MDRL 4.00 4.00 4.00 5.00 3.00 2.00 2.00 2.00
SDRL 2.20 2.72 3.78 5.47 1.19 1.28 1.55 2.06

2.00 ARL 3.75 3.35 3.55 4.25 2.57 2.08 1.98 2.08
MDRL 3.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00
SDRL 1.72 1.95 2.55 3.49 0.95 0.96 1.07 1.33

2.50 ARL 2.66 2.26 2.23 2.37 1.86 1.48 1.38 1.37
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.14 1.17 1.37 1.67 0.68 0.61 0.61 0.66

3.00 ARL 2.12 1.77 1.70 1.76 1.50 1.23 1.16 1.14
MDRL 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.90 0.86 0.92 1.07 0.56 0.44 0.39 0.38

3.50 ARL 1.80 1.53 1.46 1.46 1.29 1.11 1.07 1.06
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.76 0.69 0.71 0.76 0.47 0.32 0.27 0.25

4.00 ARL 1.59 1.37 1.30 1.30 1.16 1.05 1.03 1.03
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.67 0.58 0.56 0.59 0.36 0.22 0.17 0.16
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Table 4.3: RL characteristics of the MDE chart for Gamma distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 200.01 199.49 200.07 199.18 199.07 200.66 209.84 200.90
MDRL 138.00 138.00 139.00 138.00 138.00 141.00 142.00 142.00
SDRL 206.32 198.47 198.72 200.72 196.97 199.04 199.28 196.90

1.10 ARL 44.74 60.11 75.64 83.75 28.58 39.87 52.13 62.90
MDRL 34.00 43.00 53.00 59.00 23.00 29.00 36.00 44.00
SDRL 38.41 57.29 73.91 81.90 21.33 37.43 51.21 62.02

1.20 ARL 20.67 27.40 36.08 43.11 13.04 15.27 20.56 26.42
MDRL 17.00 20.00 25.00 30.00 11.00 12.00 15.00 19.00
SDRL 14.77 24.88 34.86 42.16 7.79 12.41 19.19 25.33

1.30 ARL 13.16 15.62 20.25 24.85 8.42 8.50 10.46 13.59
MDRL 11.00 12.00 14.00 18.00 8.00 7.00 8.00 10.00
SDRL 8.41 13.15 19.10 24.15 4.37 6.18 9.10 12.83

1.40 ARL 9.55 10.17 13.01 15.97 6.19 5.68 6.68 8.19
MDRL 8.00 8.00 10.00 11.00 6.00 5.00 5.00 6.00
SDRL 5.55 7.93 11.78 15.25 2.93 3.72 5.46 7.42

1.50 ARL 7.58 7.55 9.05 11.31 4.93 4.31 4.76 5.64
MDRL 7.00 6.00 7.00 8.00 5.00 4.00 4.00 4.00
SDRL 4.17 5.62 7.84 10.40 2.18 2.56 3.58 4.85

1.60 ARL 6.26 5.96 6.90 8.34 4.15 3.51 3.63 4.17
MDRL 6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL 3.25 4.18 5.70 7.55 1.73 1.96 2.51 3.36

1.80 ARL 4.77 4.21 4.59 5.20 3.20 2.56 2.50 2.63
MDRL 4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.36 2.66 3.53 4.49 1.27 1.30 1.53 1.87

2.00 ARL 3.84 3.35 3.43 3.81 2.63 2.09 1.97 2.02
MDRL 4.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00
SDRL 1.82 2.04 2.44 3.05 1.00 1.00 1.10 1.31

2.50 ARL 2.73 2.23 2.19 2.27 1.88 1.49 1.38 1.36
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.21 1.20 1.35 1.60 0.71 0.64 0.61 0.64

3.00 ARL 2.17 1.78 1.71 1.73 1.53 1.23 1.17 1.16
MDRL 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.93 0.90 0.93 1.04 0.58 0.46 0.41 0.40

3.50 ARL 1.84 1.53 1.46 1.45 1.32 1.12 1.08 1.07
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.79 0.71 0.72 0.75 0.49 0.33 0.28 0.26

4.00 ARL 1.62 1.37 1.31 1.29 1.19 1.06 1.04 1.03
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.69 0.59 0.57 0.58 0.40 0.25 0.20 0.18
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Table 4.4: Control chart coefficients L to fix the ARL0 = 200 for the
EWMA dispersion charts

Distribution n λ RE SE QE DE MDE MADE SNE QNE

Normal 5 0.05 1.869 1.867 1.852 1.819 1.883 1.887 1.888 1.874
0.25 2.588 2.566 2.606 2.585 2.609 2.735 2.688 2.711
0.50 2.823 2.782 2.830 2.795 2.829 3.063 2.942 3.025
0.75 2.925 2.865 2.949 2.895 2.931 3.215 3.057 3.173

10 0.05 1.835 1.823 1.843 1.801 1.805 1.851 1.826 1.797
0.25 2.562 2.508 2.581 2.502 2.513 2.607 2.582 2.519
0.50 2.792 2.686 2.813 2.689 2.740 2.861 2.845 2.731
0.75 2.893 2.765 2.923 2.771 2.836 2.979 2.953 2.826

Student’s t 5 0.05 1.892 1.891 1.879 1.885 1.883 1.937 1.891 1.916
0.25 2.981 2.984 2.866 2.921 2.892 2.902 2.834 2.894
0.50 3.527 3.545 3.361 3.425 3.329 3.336 3.255 3.317
0.75 3.849 3.851 3.567 3.682 3.581 3.546 3.443 3.554

10 0.05 1.921 1.884 1.851 1.862 1.889 1.884 1.882 1.882
0.25 3.041 2.989 2.686 2.811 2.758 2.719 2.696 2.693
0.50 3.627 3.538 3.025 3.252 3.117 3.019 3.015 3.023
0.75 3.946 3.829 3.171 3.492 3.302 3.190 3.164 3.165

Gamma 5 0.05 1.883 1.896 1.864 1.915 1.879 1.881 1.923 1.891
0.25 2.867 2.895 2.801 2.827 2.784 2.863 2.853 2.878
0.50 3.327 3.351 3.181 3.232 3.172 3.299 3.261 3.320
0.75 3.545 3.578 3.375 3.421 3.355 3.531 3.461 3.539

10 0.05 1.898 1.890 1.912 1.875 1.879 1.871 1.882 1.861
0.25 2.851 2.802 2.762 2.703 2.695 2.708 2.759 2.682
0.50 3.293 3.198 3.097 3.012 2.991 3.041 3.106 2.997
0.75 3.518 3.401 3.261 3.179 3.140 3.209 3.299 3.162
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Table 4.5: Extra Quadratic Loss (EQL) for different EWMA dispersion
charts for Normal, Student’s t and Gamma distributed quality characte-

ristic (δmin = 1.1, δmax = 4.0)

n
5 10

λ λ
Distribution Chart 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

Normal RE 16.19 13.75 13.67 14.31 11.71 10.28 10.35 10.81
SE 15.73 13.31 13.21 13.70 10.94 9.63 9.59 9.92
QE 16.17 13.93 13.81 14.68 13.78 11.91 11.91 12.49
DE 15.65 13.52 13.33 13.89 10.94 9.72 9.65 10.03

MDE 16.27 13.88 13.88 14.41 11.40 10.02 10.06 10.50
MADE 25.05 22.49 22.94 24.28 15.97 13.77 13.85 14.65
SNE 23.54 20.61 20.55 21.52 14.50 12.56 12.77 13.41
QNE 22.94 20.48 21.09 22.40 13.14 11.42 11.36 11.82

Student’s t RE 21.37 21.44 25.13 29.86 17.23 17.06 20.19 24.03
SE 20.86 21.04 24.94 29.52 15.18 14.88 17.47 20.71
QE 19.72 18.73 21.17 23.74 14.93 13.25 13.84 14.89
DE 20.15 19.69 22.42 25.88 13.92 12.79 14.11 16.10

MDE 19.71 18.97 20.87 24.05 13.64 12.28 12.92 14.27
MADE 27.30 25.79 27.91 30.39 17.11 15.19 15.48 16.71
SNE 25.75 24.18 26.04 28.03 15.93 13.96 14.46 15.56
QNE 25.62 24.37 26.31 29.34 14.96 13.15 13.68 14.69

Gamma RE 20.87 19.77 21.85 24.24 16.03 14.74 16.07 17.98
SE 20.99 20.07 22.12 24.62 15.08 13.64 14.58 16.18
QE 19.96 18.46 19.57 21.50 16.27 14.33 15.01 16.26
DE 20.19 18.48 19.91 21.76 13.87 12.26 12.63 13.70

MDE 20.14 18.43 19.63 21.37 13.90 12.19 12.55 13.47
MADE 27.46 26.29 28.26 30.81 17.59 15.64 16.17 17.47
SNE 26.42 24.56 26.29 28.54 16.89 15.20 16.00 17.59
QNE 25.61 24.60 26.75 29.49 14.92 13.13 13.62 14.74
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Table 4.6: Relative ARL (RARL) for different EWMA dispersion charts
for Normal, Student’s t and Gamma distributed quality characteristic

(δmin = 1.1, δmax = 4.0)

n
5 10

λ λ

Distribution Chart 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

Normal RE 1.03 1.03 1.03 1.04 1.07 1.07 1.08 1.09
SE 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
QE 1.03 1.04 1.04 1.07 1.27 1.26 1.27 1.28
DE 1.00 1.01 1.01 1.01 1.00 1.01 1.01 1.01

MDE 1.04 1.04 1.05 1.05 1.04 1.04 1.05 1.06
MADE 1.61 1.71 1.78 1.83 1.47 1.47 1.49 1.53
SNE 1.51 1.56 1.58 1.61 1.33 1.33 1.36 1.38
QNE 1.47 1.55 1.62 1.66 1.21 1.20 1.20 1.21

Student’s t RE 1.08 1.14 1.20 1.26 1.26 1.38 1.55 1.69
SE 1.06 1.11 1.17 1.23 1.11 1.19 1.31 1.40
QE 1.00 1.00 1.01 1.00 1.09 1.09 1.08 1.07
DE 1.02 1.05 1.07 1.08 1.02 1.04 1.08 1.10

MDE 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00
MADE 1.39 1.40 1.39 1.36 1.26 1.24 1.23 1.22
SNE 1.31 1.31 1.29 1.24 1.17 1.14 1.14 1.12
QNE 1.30 1.32 1.30 1.29 1.10 1.08 1.07 1.05

Gamma RE 1.05 1.07 1.11 1.13 1.16 1.21 1.27 1.32
SE 1.05 1.09 1.12 1.15 1.09 1.12 1.15 1.18
QE 1.00 1.00 1.00 1.00 1.17 1.18 1.20 1.21
DE 1.01 1.00 1.02 1.01 1.00 1.00 1.00 1.01

MDE 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MADE 1.38 1.44 1.47 1.48 1.27 1.29 1.30 1.32
SNE 1.33 1.34 1.37 1.36 1.22 1.25 1.28 1.31
QNE 1.29 1.34 1.38 1.40 1.08 1.08 1.08 1.09
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4.5 Comparison of Control Charts

Performance

In this section, the performance of the all the EWMA dispersion charts is

compared for processes following normal or non-normal parent distributions

using ARL, EQL and RARL measures. The MDRL and SDRL measures are

closely related to the ARL, as can be seen from the results in Table 4.1-4.3

and Appendix Tables B.1-B.21. The recommendations based on ARL are

also valid when using MDRL and SDRL as performance measures.

To make comparisons easy, ARL curves for all the charts have been plot-

ted for various combinations of n, λ and δ in Figures 4.1-4.6. In each plot,

the multiplicative shift δ is plotted on the horizontal axis while the corres-

ponding value of Log (ARL1) for the different charts is plotted on the vertical

axis. The log scale is used for better visual comparison. These charts have

all been designed to have ARL0 = 200 so that the values of ARL1 can be

compared directly - the lower the better. These plots are presented in Figures

4.1-4.2 for normal distribution, Figures 4.3-4.4 for t distribution and Figures

4.5-4.6 for Gamma distribution using n = 5 & 10 respectively. The purpose

is to identify a control structure that performs better for both normal and

non-normal parent distributions.

Normal Distribution: Comparing the run length performance of different

dispersion charts for normally distributed quality characteristic, we observed

that the best performance is shown by the SE chart because the ARL curves

for the SE chart are lower than other competing charts for every combination

of n, λ and δ. The SE chart also has the lowest EQL value (see Table 4.5)

and has been used as a benchmark chart, hence attaining RARL = 1 for

almost all the cases (see Table 4.6). When n is small (i.e. n = 5), there is

a very little difference between the SE chart and the RE , DE,MDE and QE

charts in terms of ARL1 and EQL. For n = 10, the DE and MDE charts

have RARL values that are approximately 1 while the RE and QE charts

start to lose efficiency (e.g. for QE chart, the RARL increases from 1.04 (for

n = 5) to 1.26 (for n = 10) when λ = 0.25). The ARL curves and the EQL
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values for MADE , SNE and QNE charts are always higher than the other

charts, indicating the worst performance and low detection ability of these

charts. The detection ability (in terms of ARL) of all the charts increases

with an increase in the sample size (i.e. as we move from n = 5 to n = 10,

the ARL1 and EQL decreases for all the charts considering every choice of λ).

The relative performance of the QNE chart gets better with an increase in

the sample size, whereas for RE and QE charts, this phenomenon is opposite.

From EQL tables, we can also observe that all the charts have better overall

performance for either λ = 0.25 or λ = 0.50.

Student’s t Distribution: For t-distributed quality characteristic, we ob-

served that (in general) the MDE chart is performing better than the rest of

the charts because the ARL curves and the EQL values of the MDE chart

are lower than that for the other charts for almost all combinations of n, λ

and δ. The QE chart is almost as efficient as the MDE chart for n = 5.

When n = 10, the DE chart has the closest RARL to that of the MDE chart

for λ ≤ 0.50 while for λ = 0.75, the QNE chart is slightly efficient than the

DE chart. RE and SE charts are extremely affected for all combinations of

n and λ but these charts are performing better than the MADE , SNE and

QNE charts for n = 5 while for n = 10 this phenomenon is opposite. For a

fixed value of n and λ, the ARL1 and EQL of all the charts increases when

the parent distribution is t, compared to the ARL1 and EQL for the normal

case. From the EQL table, we can also observe that all the dispersion charts

are having better overall performance for either λ = 0.05 or λ = 0.25 when

n = 5 while for n = 10, the overall performance of these dispersion charts is

better for λ = 0.25.

Gamma Distribution: We observed that, for the skewed Gamma case,

the performance of the DE,MDE and QE charts is almost similar and better

than the other charts when n is small. As n increases, the ARL1 and EQL

of the QE chart increases, whereas the performance of the QNE chart starts

getting better. The difference between the DE and MDE charts, compared

to the other charts, increases with an increase in λ. The performance of
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the SE chart is better than the MADE and SNE charts for n = 5 and 10

while the QNE chart is performing better than the SE chart for n = 10.

The MADE chart has shown the worst performance like in the normal case.

Compared to the normal case, the ARL1 and the EQL for all the charts

increases for the parent Gamma distribution. From the EQL table, we can

observe that all the charts are having better overall performance for λ = 0.25

Run length distribution curves

To get more insight into the run length distributions of all the EWMA dis-

persion charts, Figure 4.7 presents the run length distribution curves (RLCs)

of these charts, considering n = 10, λ = 0.25 and δ = 1.2 for normal and non-

normal cases. These charts give the probability of detecting an out-of-control

situation within a given run length. A higher RLC indicates the superiority

of a chart in terms of the quick detection of changes in the process parame-

ters. We observed that the RLCs of the SE , DE and MDE charts are higher

than those of the other charts under normality. The QE and MDE charts

perform better for the t distribution, whereas for Gamma distribution, the

MDE and DE charts are clearly superior than the rest of the charts, as the

RLCs of these charts are higher than those of the other charts, particularly

at shorter run lengths. The RLCs for the MADE chart are the lowest for

the normal environment while, for other cases, the RE chart seems to be the

worst choice.

In short, we observed that the MDE chart is performing better for non-

normal cases and its performance for normal case is not bad either. DE

chart can be another good choice. We noticed that these superiority orders

depend on the relative efficiency (Eq. 2.11) of a dispersion estimate, under

a particular distributional environment.

Next, we explore some other characteristics of these EWMA dispersion

charts, such as the comparison with their respective Shewhart structures and

the effect of sample size. To save space, the results will be provided for only

the MDE chart. Similar results have been observed for the other EWMA

dispersion charts.
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Figure 4.1: ARL comparison of dispersion EWMA control charts for
Normally distributed quality characteristic when n = 5 and ARL0 = 200
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Figure 4.2: ARL comparison of dispersion EWMA control charts for
Normally distributed quality characteristic when n = 10 and ARL0 =

200
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Figure 4.3: ARL comparison of dispersion EWMA control charts for t
distributed quality characteristic when n = 5 and ARL0 = 200
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Figure 4.4: ARL comparison of dispersion EWMA control charts for t
distributed quality characteristic when n = 10 and ARL0 = 200
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Figure 4.5: ARL comparison of dispersion EWMA control charts for
Gamma distributed quality characteristic when n = 5 and ARL0 = 200
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Figure 4.6: ARL comparison of dispersion EWMA control charts for
Gamma distributed quality characteristic when n = 10 and ARL0 = 200
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(a) Normal distribution

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Run Length
C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y

R
S
IQR
D
MD
MAD
Sn
Qn

(b) t distribution
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(c) Gamma distribution

Figure 4.7: Run length curves (RLCs) for dispersion EWMA control
charts for Normal, t and Gamma distributed quality characteristic when

n = 10, λ = 0.25, δ = 1.2 and ARL0 = 200
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4.5.1 Comparison with Shewhart dispersion charts

In this section, we compared the ARL performance of the MDE chart with

its respective Shewhart MD chart structure studied in Chapter 2. Note that

the MD chart of Riaz and Saghir (2009) becomes a special case of the MDE

chart at λ = 1. The run length characteristics of the MD chart are also

computed using similar simulation routines and the results are provided in

Table 4.7 for normal, t and Gamma distributions considering n = 5 & 10.

Comparing the results for the MDE chart (in Tables 4.1 - 4.3) with the

MD chart (in Table 4.7), we observed that, for all values of λ < 1 used in

this study, the ARL1 for the MDE chart is much better than that for the

MD chart, particularly for small and moderate changes in σ. As expected

for large changes in σ, the performance of the Shewhart type MD chart is

slightly better than that of the MDE chart. Figure 4.8 presents the ARL

comparison of the MD chart with MDE chart when λ = 0.05 and 0.25 using

n = 10. The ARL curves for the MDE chart are clearly lower than for the

MD chart when δ is low for all the cases. Overall, the performance of the

MDE chart with λ = 0.25 seems to be best for all the values of δ. Similar

behaviours can also be observed for other charts investigated in this study.

4.5.2 Effect of sample size

In this section we discuss the effect of sample size on the performance of the

MDE chart. The performance is evaluated considering observations from the

normal and the two non-normal parent distributions for n = 3, 5, 7, 10, 12 and

15. The results have been reported in Table 4.8 for the case when λ = 0.25

and ARL0 = 200.

We can observe from the results in Table 4.8 that, for a specified in-control

ARL (ARL0 = 200), the detection ability of the MDE chart improves with

an increase in the sample size. In all the cases, we can see that the out-of-

control RL characteristics of theMDE chart decreases with an increase in the

value of n at a particular value of δ. For example, under normally distributed

quality characteristics, the ARL1 decreases from 26.62 for n = 3 to 7.37 for
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n = 15 when δ = 1.2. This means that for the detection of a 1.2σ shift in

process variability, the MDE chart requires, on average, 19 less observations

when the sample size increases from n = 3 to n = 15. For a particular value

of λ, the choice of sample size depends upon the magnitude of shift (δ) to

be detected quickly. For efficient detection of small shifts, large samples are

required but for the detection of large shifts, even small samples can serve the

purpose. We also observed that when the assumption of normality is violated,

larger samples are required to detect a particular magnitude of shift. For all

the other EWMA dispersion charts, we can expect similar improvements in

run length performance with increase in the sample size.

4.6 Conclusions

In this chapter we investigated a set of EWMA charts for monitoring process

dispersions. These EWMA charts are based on a wide range of dispersion

estimates as discussed in Section 4.2. We observed that, under the ideal

assumption of normality, the best performance is shown by the SE chart,

followed by DE and MDE charts. For non-normal Student’s t and Gamma

distributions, the best performance has been generally shown by the MDE

chart. The comparison with respective Shewhart dispersion charts revealed

the superiority of EWMA charts, particularly for low values of shift (δ) in

the process standard deviation. Although run length characteristics are only

provided for normal, t and Gamma parent distributions, one can generalize

the relative performance of these charts for other distributional environments,

based on the findings in Chapter 2.

The EWMA dispersion charts, investigated in this study, are all based

on the asymptotic control limits (given in Equation (4.6)). The sensitivity

of these charts can be increased by using the exact time varying limits and

the Fast Initial Response (FIR) feature, as examined in Abbasi and Miller

(2011b, chap. 35 ).
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Table 4.7: RL characteristics of the MD chart for normal, Student’s t
and Gamma distributed quality characteristic when ARL0 = 200

n
5 10

δ Normal t Gamma Normal t Gamma

1.00 ARL 199.02 201.210 200.70 201.50 201.930 199.86
MDRL 134.00 139.00 138.00 139.00 140.00 138.00
SDRL 198.80 199.72 203.56 198.99 200.63 200.56

1.10 ARL 66.84 108.18 92.57 53.02 86.17 72.72
MDRL 46.00 75.00 64.00 37.00 60.00 51.00
SDRL 66.71 107.81 92.02 53.18 86.06 71.70

1.20 ARL 30.69 63.79 49.90 20.46 40.18 32.88
MDRL 21.00 44.00 35.00 15.00 28.00 23.00
SDRL 30.13 63.47 49.54 19.60 39.14 32.53

1.30 ARL 16.66 38.67 29.56 9.74 21.45 17.33
MDRL 12.00 27.00 20.00 7.00 15.00 12.00
SDRL 16.31 38.19 29.24 9.20 20.75 16.68

1.40 ARL 10.12 25.38 19.35 5.75 12.86 10.30
MDRL 7.00 18.00 14.00 4.00 9.00 7.00
SDRL 9.55 24.70 18.68 5.25 12.45 9.70

1.50 ARL 6.98 17.46 13.55 3.74 8.23 6.92
MDRL 5.00 12.00 9.00 3.00 6.00 5.00
SDRL 6.41 16.97 13.05 3.17 7.61 6.36

1.60 ARL 5.16 12.66 10.06 2.79 5.73 5.03
MDRL 4.00 9.00 7.00 2.00 4.00 4.00
SDRL 4.56 12.02 9.60 2.27 5.20 4.54

1.80 ARL 3.29 7.54 6.14 1.83 3.34 3.04
MDRL 2.00 5.00 4.00 1.00 2.00 2.00
SDRL 2.68 6.99 5.61 1.24 2.79 2.47

2.00 ARL 2.46 5.06 4.40 1.46 2.30 2.19
MDRL 2.00 4.00 3.00 1.00 2.00 2.00
SDRL 1.91 4.51 3.85 0.80 1.75 1.62

2.50 ARL 1.58 2.66 2.48 1.11 1.37 1.39
MDRL 1.00 2.00 2.00 1.00 1.00 1.00
SDRL 0.95 2.09 1.86 0.35 0.71 0.74

3.00 ARL 1.29 1.86 1.79 1.04 1.14 1.15
MDRL 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.61 1.25 1.22 0.20 0.41 0.42

3.50 ARL 1.17 1.49 1.47 1.01 1.06 1.07
MDRL 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.44 0.85 0.81 0.12 0.26 0.26

4.00 ARL 1.10 1.31 1.31 1.00 1.03 1.03
MDRL 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.34 0.64 0.63 0.07 0.16 0.18
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Figure 4.8: ARL comparison of the MD chart with MDE chart when
λ = 0.05 and 0.25 for n = 10 and ARL0 = 200
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Table 4.8: Run length characteristics of MDE chart for Normal ,
Student’s t and Gamma distributed quality characteristic when λ = 0.25

and ARL0 = 200

n

δ 3 5 7 10 12 15

Normal

1.00 ARL 199.23 200.35 200.49 199.59 199.92 199.61
MDRL 138.00 140.00 140.00 137.00 138.00 136.00
SDRL 199.07 200.73 197.57 193.33 198.83 199.46

1.20 ARL 26.62 17.63 13.37 10.20 8.77 7.37
MDRL 19.00 13.00 10.00 8.00 7.00 6.00
SDRL 24.37 15.01 10.89 7.85 6.40 5.13

1.40 ARL 6.24 6.73 3.22 3.99 2.32 3.03
MDRL 5.00 5.00 3.00 3.00 2.00 3.00
SDRL 4.52 4.77 1.78 2.35 1.10 1.52

1.60 ARL 3.52 4.16 1.94 2.57 1.46 2.01
MDRL 3.00 4.00 2.00 2.00 1.00 2.00
SDRL 2.28 2.59 0.94 1.29 0.60 0.88

Student’s t
1.00 ARL 201.84 201.02 200.39 200.11 199.58 199.01

MDRL 143.00 141.00 140.00 143.00 140.00 136.00
SDRL 199.32 203.37 199.98 199.43 198.74 198.59

1.20 ARL 46.50 30.58 22.11 16.08 13.60 11.22
MDRL 33.00 22.00 16.00 12.00 10.00 9.00
SDRL 44.18 27.84 19.69 13.22 11.02 8.65

1.40 ARL 18.67 11.04 8.00 5.86 4.95 4.20
MDRL 14.00 9.00 6.00 5.00 4.00 4.00
SDRL 16.19 8.79 5.74 3.84 3.03 2.35

1.60 ARL 10.40 6.24 4.61 3.52 3.06 2.67
MDRL 8.00 5.00 4.00 3.00 3.00 2.00
SDRL 8.33 4.33 2.82 1.95 1.57 1.27

Gamma
1.00 ARL 200.50 199.49 202.62 200.66 200.88 199.82

MDRL 142.00 138.00 144.00 141.00 142.00 140.00
SDRL 199.52 198.47 198.07 199.04 198.60 196.83

1.20 ARL 41.07 27.40 20.32 15.27 13.11 10.93
MDRL 29.50 20.00 15.00 12.00 10.00 9.00
SDRL 38.71 24.88 17.72 12.41 10.45 8.50

1.40 ARL 16.87 10.17 7.60 5.68 4.96 4.23
MDRL 12.00 8.00 6.00 5.00 4.00 4.00
SDRL 14.68 7.93 5.51 3.72 3.05 2.46

1.60 ARL 9.76 5.96 4.58 3.51 3.05 2.67
MDRL 8.00 5.00 4.00 3.00 3.00 2.00
SDRL 7.80 4.18 2.92 1.96 1.62 1.32



Chapter 5

On the Performance of EWMA

Location Chart in Presence of

Two Component Measurement

Error

Control charts are increasingly adopted by laboratories for affective monito-

ring of analytical processes particularly in the internal quality control phase.

Analytical responses from a laboratory measurement system are plotted on a

chart versus time or sample number to ensure the stability of a control mate-

rial. In practice, the measurements from these processes are mostly subject

to two types of errors: i) additive error and ii) multiplicative or proportional

error. These errors can have a serious impact on the detection ability of

control charts. The additive and multiplicative errors have been combined

in a single model, namely the two component measurement error model, pro-

posed by Rocke and Lorenzato (1995). In this chapter, we investigate the

performance of the EWMA control chart in the presence of two component

measurement error due to its importance in analytical chemistry and envi-

ronmental settings. The comparison with the EWMA chart performance in

the presence of one component (additive) error model is also provided. This

chapter is based on Abbasi (2010).
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5.1 Introduction

Analytical Quality Assurance (AQA) programs are increasingly adopted by

laboratories to ensure the quality of analytical measurements. According to

Taverniers et al. (2004), AQA is a set of procedures that a laboratory must

undertake to ensure that its measurement procedures are of a high standard.

It should include method validation, estimation of measurement uncertainty,

effective internal quality control procedures, participation in proficiency tes-

ting schemes and accreditation to an international standard (e.g. ISO/IEC

17025). The objective of these AQA programs is to ensure that laboratories

work efficiently and effectively. ‘Method validation is an important require-

ment in the practice of chemical analysis’ and forms the first level of the AQA

system. Any newly developed method should be validated ‘to verify that its

performance parameters are adequate for use for a particular analytical pro-

blem’ (EURACHEM-GUIDE (1998)). After method validation, level II of

the AQA system consists of a series of procedures that need to be taken to

ensure the verified analytical process is available for routine analysis. Internal

quality control (IQC) procedures are usually applied to continuously monitor

analytical results obtained daily in laboratories. As defined in “Harmonized

Guidelines for Internal Quality Control in Analytical Chemistry Laborato-

ries” prepared by Thompson and Wood (1995), “IQC is a set of procedures

undertaken by laboratory staff for the continuous monitoring of operation

and the results of the measurements in order to decide whether results are

reliable enough to be released”. The guide further states that the interpre-

tation of IQC analyses results depend largely on statistical process control

concepts and that the control chart acts as the most important tool for ef-

fective monitoring of IQC results. The use of control charts in analytical

laboratories has also been recommended by Bartram and Ballance (1996),

CITAC/EURACHEM-GUIDE (2002) and Bonet-Domingo et al. (2006). De-

tails regarding different levels of AQA programs, together with the use of

specific control charts can be found in Funk et al. (1995) and Garfield (1984).

Detailed description of the design, use and interpretation of control charts,

with examples from analytical chemistry, can be found in numerous text-
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books regarding quality assurance in analytical chemistry laboratories: for

example see Funk et al. (1995, chap. 2), Crosby et al. (1995, chap. 5 ), Mul-

lins (2003, chap. 2) and Hibbert (2007, chap. 4). Control charts have also

been included as part of several ISO standards (ISO8258 (1991); ISO7870

(1993); ISO7873 (1993); ISO7966 (1993)).

Control charts are useful for the rapid recognition of unusual variations in

analytical results. Shewhart type control charts are the most widely used (as

can be seen in most of the above references). Due to the memoryless nature of

these control charts, they do not perform well for the detection of small and

moderate process shifts, which are usually of a major concern in analytical

processes. So, analysts need to be aware of more efficient control procedures

such as cumulative sum (CUSUM) or exponentially weighted moving average

(EWMA) control charts. Recently, Carson and Yeh (2008) emphasized the

use of EWMA charts for the monitoring of an analytical process by analyzing

real data sets concerning the quality control of total organic carbon in water.

The EWMA charts make use of information in historical observations as

well as in the current observations by adopting a varying weight scheme,

assigning highest weight to the most recent observations and having the

weights decrease exponentially for less recent observations. This helps in

earlier detection of small shifts in process (location and scale) parameters

(for details, see Montgomery (2009)).

The presence of measurement error can seriously affect the performance

of any analytical process and also affects the detection ability of control

charts. Many researchers have investigated the effect of measurement error

on the performance of control charts: see Mittag and Stemann (1998b); Linna

and Woodall (2001); Linna et al. (2001); Maravelakis et al. (2004); Cocchi

and Scagliarini (2007) and Maravelakis (2007). It has been observed that

for analytical methods, measurement error can often be composed of two

components: additive error, which is dominant at low concentrations, and

multiplicative error, which is dominant at high concentrations. Due to this,

estimation of the overall precision of the analytical method becomes difficult,

especially in the area where transition occurs between near-zero and higher

concentration levels. The additive model works well for only low concentra-
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tion levels, whereas the multiplicative model for only higher concentrations.

The two component model proposed by Rocke and Lorenzato (1995) resolves

these problems by combining both additive and proportional errors in a single

model. Thus, a single model can be used to adequately describe the measu-

rement error over the entire range of observations for an analytical process.

The two component model is:

Yt = α + βXte
ηt + εt (5.1)

Where X represents true concentration of an analyte at time t and Y is

the measured response which is related to X by the calibration curve with

intercept α and slope β. Let X ∼ N (µ, σ2) and random disturbances η and

ε are distributed normally and independently with mean 0 and variances σ2
η

and σ2
ε respectively (i.e. η ∼ N

(
0, σ2

η

)
and ε ∼ N (0, σ2

ε )). Here η represents

multiplicative error and ε represents additive error. For this model, obser-

vations at higher concentration are approximately lognormally distributed

and observations at low concentration are approximately normally distribu-

ted. This agrees with the findings of Gibbons and Bhaumik (2001) and Aryal

et al. (2009).

Studies have demonstrated the importance and applicability of the above

model in analytical chemistry and environmental settings (see Zorn et al.

(1999); Rocke et al. (2003)). Rocke and Durbin (2001) have shown that

measurement error in gene expression microarray data can be appropriately

expressed by the two component model. In addition, the generalization of the

two component model for multiple laboratories has been presented by Gib-

bons and Bhaumik (2001). A significant literature is also available concerning

the estimation of the two component model parameters (α, β, σε, ση). Rocke

and Lorenzato (1995) used the method of maximum likelihood to estimate

these parameters. Gibbons et al. (1997) suggested estimating model parame-

ters using the weighted least squares (WLS) method, but it has been pointed

out by Rocke et al. (2003) that WLS method is often very unstable and can

lead to non convergence or impossible estimates. Jones (2004) considered a

Bayesian framework and adopted Markov chain Monte Carlo techniques for



5.2 EWMA Chart in Presence of Two Component Measurement
Error 117

estimating the parameters. For the purpose of this study, the parameters of

the two component model are assumed to be known.

The purpose of this chapter is to investigate the performance of the

EWMA chart in the presence of two component measurement error. The

performance is evaluated for both the individual and the multiple measure-

ment cases. The rest of this chapter is organized as follows: The next section

describes the general structure of the EWMA control charts for monitoring

process location parameter and also establishes the EWMA control chart

structure in the presence of two component measurement error. The dif-

ferent characteristics of the run length distribution, such as the average run

length (ARL), the median run length (MDRL) and the standard deviation

of the run length (SDRL) are then presented for the proposed scheme. To

reduce the effect of measurement error, the design structure for the case of

multiple measurements at each sample point has been developed and the run

length results are provided in Section 5.4. Comparison of the two component

error model is then made with one component error model, as was discussed

by Maravelakis et al. (2004). The effect of two component error model is

investigated in Section 6.6 and finally we give concluding remarks.

5.2 EWMA Chart in Presence of Two

Component Measurement Error

Since the introduction of EWMA charts by Roberts (1959), many researchers

have examined these charts from different perspectives – see for example

Lucas and Saccucci (1990), Montgomery et al. (1995), Steiner (1999), Chan

and Zhang (2000), Maravelakis et al. (2004), Carson and Yeh (2008), Shu and

Jiang (2008) and references therein. The basic structure of EWMA charts

can be seen in Chapter 1. In brief, suppose in the measurement error free case

we have a variable Z which is related to X as Zt = α + βXt. If we assume

that X ∼ N (µ, σ2) , it follows that Z ∼ N (α + βµ, β2σ2). Suppose we

have observed values of Z that consist of subgroups of size n taken at period

t = 1, 2, 3, . . . . The EWMA statistic St is defined as: St = λZt+(1− λ)St−1,
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where λ (lying between 0 and 1) is the weight assigned to each observation

and Zt is the average of the sample observations at time t. The control limits

are thus defined as:

UCL = α + βµ+ L
σz√
n

√(
λ

2− λ

)[
1− (1− λ)2t

]

LCL = α + βµ− L
σz√
n

√(
λ

2− λ

)[
1− (1− λ)2t

]
(5.2)

where UCL and LCL respectively represents upper and lower control limits

for EWMA statistic St, and σz = βσ. For the case of the two component

error model, the EWMA statistic based on Equation (5.1) is defined as:

Qtc,t = λY t + (1− λ)Qtc,t−1, Qtc,0 = µY = α + βµ
√
eσ

2
η (5.3)

To establish the control limits based on the above EWMA statistic, we need

to find its mean and variance. By continuous substitution of Qtc,t−i, i =

1, 2, . . . , t; the EWMA statistic Qtc,t can be written as (see Roberts (1959)

and Montgomery (2009)):

Qtc,t = λ
t−1∑

i=0

(1− λ)iY t−i + (1− λ)tQtc,0 (5.4)

For independent random observations from a stable process, E(Y t) = E(Y t−i) =

µY and var(Y t) = var(Y t−i) = σ2
Y /n. Hence, by taking expectation on both
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sides of Equation (5.4), we obtain

E(Qtc,t) = λ
t−1∑

i=0

(1− λ)iE(Y t−i) + (1− λ)tE(Qtc,0) (5.5)

= (α+ βµ
√
eσ

2
η)

(
λ

t−1∑

i=0

(1− λ)i + (1− λ)t

)

= (α+ βµ
√
eσ

2
η)

(
λ

[
1− (1− λ)t

1− (1− λ)

]
+ (1− λ)t

)

= α + βµ
√
eσ

2
η .

Similarly, taking the variance on both sides of Equation (5.4), we obtain

V ar(Qtc,t) = λ2
t−1∑

i=0

(1− λ)2iV ar(Y t−i) + (1− λ)2tV ar(Qtc,0) (5.6)

=
σ2
y

n

(
λ2

[
1− (1− λ)2t

1− (1− λ)2

])

=
σ2
y

n

((
λ

2− λ

)[
1− (1− λ)2t

])

Hence, the proposed control limits are defined as:

UCLtc = α + βµ
√
eσ

2
η + L

σy√
n

√(
λ

2− λ

)[
1− (1− λ)2t

]

LCLtc = α + βµ
√
eσ

2
η − L

σy√
n

√(
λ

2− λ

)[
1− (1− λ)2t

]
(5.7)

where σy is given as (see Rocke and Lorenzato (1995) and Cocchi and Sca-

gliarini (2007)):

σy =

√
β2(σ2eσ

2
η + µ2(eσ

2
η(eσ

2
η − 1)) + σ2(eσ

2
η(eσ

2
η − 1))) + σ2

ε . (5.8)

The above control limits are known as exact or time varying control limits
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but, as t gets larger, the factor (1 − (1− λ)2t) quickly converges to unity so

we can use the asymptotic control limits, which are given as:

UCLtc = α+ βµ
√
eσ

2
η + L

σy√
n

√(
λ

2− λ

)

LCLtc = α + βµ
√
eσ

2
η − L

σy√
n

√(
λ

2− λ

)
. (5.9)

For the rest of this study, asymptotic control limits given in Equation (5.9)

are used instead of time varying limits given in Equation (5.7). For numerical

computations on the proposed charts, we assume that the parameters are

fixed and their values have been taken from the toluene example reported

by Rocke and Lorenzato (1995), i.e. α = 11.51, β = 1.524, ση = 0.1032 and

σε = 5.698. The two component error model has approximately constant

coefficient of variation (CV ) for high concentrations and constant standard

deviation for low concentrations. To cover the entire range of possibilities,

concentration mean level µ from 5 picogram to 15 nanograms and CV values

from 0.01 to 0.5 are used in this study, following Rocke and Lorenzato (1995)

and Cocchi and Scagliarini (2007). Relative standard deviation or coefficient

of variation (CV ) is a dimensionless measure and is defined as the ratio of

process standard deviation (σ) to the mean (µ). It is expressed as

CV =
σ

µ
(5.10)

The CV value is an important measure of the precision of an analytical

system and helps in assessing the importance of the likely analytical error in

relation to the magnitude of the quantity being measured (Mullins (2003)).

Suppose in the error free case, the shift δ in the process location para-

meter is defined as δ = (µ1 − µ0)/σ, where µ0 and µ1 respectively denote

in-control and out of control mean levels for the random variable X . In the

two component error case, the corresponding shift in the random variable Y ,

given as δtc, is defined as (see Linna and Woodall (2001); Linna et al. (2001)

and Cocchi and Scagliarini (2007)):
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δtc =
E(Yt|µ = µ1)−E(Yt|µ = µ0)

σy

(5.11)

=
α + βµ1

√
eσ

2
η − α + βµ0

√
eσ

2
η

√
β2(σ2eσ

2
η + µ2(eσ

2
η(eσ

2
η − 1)) + σ2(eσ

2
η(eσ

2
η − 1))) + σ2

ε

=
δ√

1 + µ2

σ2 (e
σ2
η − 1) + (eσ

2
η − 1) + σ2

ε

β2σ2eσ
2
η

=
δ√

CV −2(eσ
2
η − 1) + eσ

2
η + σ2

ε

β2σ2eσ
2
η

The term in the denominator is always greater than one and hence makes

the magnitude of shift δtc smaller than δ. To illustrate this effect, Figure 5.1

presents curves for δtc/δ versus CV at different levels of mean concentration

(µ).

It is clearly seen from Figure 5.1 that the magnitude of shift δ is greatly

affected by two component measurement error for small values of µ and CV .

As µ and CV increase, δtc/δ approaches 1.
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Figure 5.1: Decrease in the magnitude of shift due to two component
measurement error.
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5.3 Control Chart Performance

In this section, we evaluate the performance of EWMA chart in the presence

of the two component measurement error using the average run length (ARL),

the standard deviation of the run length distribution (SDRL) and the median

of the run length distribution (MDRL). Tables 5.1-5.3 give a summary of the

run length distribution of the EWMA chart in the presence of two component

error using the control limits given in Equation (5.9). For efficient detection

of small to moderate process shifts, we use λ = 0.25 and L = 2.898, following

the recommendations of Maravelakis et al. (2004). These choices of L and

λ give an in-control ARL (ARL0) of 370 for no-measurement error case. For

representing the out of control situations, shifts (δ = 0.5, 1.0 and 1.5) have

been introduced in the mean in standard deviation units.

The results in the Tables 5.1-5.3 indicate that, in the presence of two

component measurement error, the EWMA control chart is slower in detec-

ting the shift, especially for smaller values of µ and CV , see for example

ARL1 = 368.99 when CV = 0.01 and µ = 5 for δ = 0.5, which is very

close to ARL0 = 370. The reason for this is that the magnitude of shift

reduces from 0.5 to 0.0067 (from Equation 5.11), which is almost similar to

zero sigma shift in the mean. So, the performance of EWMA chart is greatly

affected for the case of small CV and low concentration level of the analyte.

The performance of the control chart improves as µ and CV increases. In

the extreme case, when we have CV = 0.5 and µ = 15000, ARL1 = 8.74,

which is reasonably low and indicates that for high CV and large concen-

tration levels, two component error does not greatly affect the control chart

performance. This is because, in this case, δtc = 0.4871 for δ = 0.50 (from

Equation 5.11). Hence the magnitude of shift is not much affected and nor

is the chart’s performance. Similarly, we can see that, the MDRL and SDRL

performances of the EWMA chart are also significantly affected for smaller

values of µ and CV .

Table 5.4 gives run length characteristics of the EWMA chart in the

presence of two component measurement error for the detection of negative

shifts in µ. The results are presented for the case when δ = −1.0 at different
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Table 5.1: ARL, MDRL and SDRL of the EWMA Chart in presence
of two component measurement error for δ = 0.5 when ARL0 = 370

CV
µ 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 368.18 324.76 230.73 108.71 57.58 36.70 26.23
MDRL 264.00 225.00 161.00 78.00 42.00 27.00 20.00
SDRL 365.02 318.46 227.47 102.39 52.90 32.59 21.60

ARL 10 361.11 233.18 112.78 37.76 21.59 15.56 12.92
MDRL 252.00 163.00 80.00 27.00 16.00 12.00 10.00
SDRL 361.29 228.40 109.36 33.79 17.29 11.85 9.24

ARL 50 287.17 56.19 20.42 11.45 9.77 9.15 9.00
MDRL 200.00 41.00 16.00 9.00 8.00 8.00 8.00
SDRL 279.89 51.93 16.31 7.94 6.39 5.92 5.65

ARL 100 262.46 43.53 17.31 10.66 9.41 9.02 8.86
MDRL 183.00 31.00 13.00 9.00 8.00 8.00 7.00
SDRL 258.42 40.01 13.44 7.20 6.08 5.71 5.51

ARL 1000 249.43 39.75 16.57 10.31 9.38 8.97 8.76
MDRL 173.00 29.00 13.00 8.00 8.00 7.00 7.00
SDRL 247.10 35.11 12.75 6.81 5.93 5.63 5.46

ARL 10000 251.21 40.50 16.38 10.29 9.42 8.94 8.81
MDRL 175.00 30.00 13.00 8.00 8.00 8.00 7.00
SDRL 246.50 36.16 12.69 6.92 5.97 5.52 5.55

ARL 15000 247.46 39.56 16.47 10.34 9.28 8.95 8.67
MDRL 174.00 29.00 13.00 9.00 8.00 7.00 7.00
SDRL 244.15 35.33 12.78 6.80 5.94 5.59 5.43
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Table 5.2: ARL, MDRL and SDRL of the EWMA Chart in presence
of two component measurement error for δ = 1.0 when ARL0 = 370

CV
µ 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 360.99 235.27 106.86 30.95 14.48 9.38 7.00
MDRL 253.00 164.00 75.00 23.00 11.00 8.00 6.00
SDRL 359.69 232.66 102.65 26.23 10.67 5.92 3.97

ARL 10 335.07 108.86 31.87 9.67 6.00 4.68 4.11
MDRL 237.00 77.00 23.00 8.00 5.00 4.00 4.00
SDRL 330.49 104.15 27.70 6.38 3.18 2.19 1.75

ARL 50 182.91 14.49 5.91 3.78 3.35 3.22 3.15
MDRL 126.00 11.00 5.00 3.00 3.00 3.00 3.00
SDRL 179.26 10.79 3.17 1.58 1.30 1.21 1.14

ARL 100 150.82 11.70 5.20 3.61 3.30 3.17 3.13
MDRL 106.00 9.00 5.00 3.00 3.00 3.00 3.00
SDRL 148.03 8.10 2.62 1.45 1.25 1.19 1.16

ARL 1000 141.36 10.60 4.95 3.53 3.26 3.17 3.13
MDRL 98.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 139.12 7.21 2.44 1.42 1.26 1.17 1.16

ARL 10000 140.18 10.61 4.94 3.54 3.27 3.17 3.13
MDRL 101.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 136.16 7.24 2.44 1.41 1.25 1.19 1.17

ARL 15000 141.49 10.52 4.94 3.52 3.27 3.17 3.12
MDRL 99.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 136.27 7.18 2.39 1.41 1.25 1.18 1.16
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Table 5.3: ARL, MDRL and SDRL of the EWMA Chart in presence
of two component measurement error for δ = 1.5 when ARL0 = 370

CV
µ 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 353.74 157.79 52.06 13.49 6.96 4.80 3.83
MDRL 245.00 111.00 38.00 11.00 6.00 4.00 4.00
SDRL 349.48 154.35 47.17 9.69 3.87 2.25 1.61

ARL 10 310.16 53.64 14.14 4.98 3.36 2.78 2.50
MDRL 219.00 39.00 11.00 4.00 3.00 3.00 2.00
SDRL 307.32 48.91 10.21 2.39 1.29 0.95 0.79

ARL 50 114.87 7.09 3.32 2.33 2.15 2.06 2.03
MDRL 81.00 6.00 3.00 2.00 2.00 2.00 2.00
SDRL 109.31 4.12 1.30 0.72 0.63 0.59 0.58

ARL 100 89.25 5.83 3.01 2.25 2.10 2.05 2.02
MDRL 63.00 5.00 3.00 2.00 2.00 2.00 2.00
SDRL 85.30 3.19 1.13 0.68 0.61 0.58 0.57

ARL 1000 80.99 5.45 2.90 2.22 2.09 2.03 2.02
MDRL 57.00 5.00 3.00 2.00 2.00 2.00 2.00
SDRL 77.55 2.87 1.06 0.68 0.60 0.58 0.57

ARL 10000 81.28 5.39 2.89 2.22 2.09 2.03 2.02
MDRL 58.00 5.00 3.00 2.00 2.00 2.00 2.00
SDRL 77.80 2.80 1.06 0.67 0.62 0.59 0.57

ARL 15000 82.00 5.40 2.92 2.21 2.08 2.04 2.01
MDRL 58.00 5.00 3.00 2.00 2.00 2.00 2.00
SDRL 76.80 2.77 1.05 0.66 0.61 0.58 0.57



5.3 Control Chart Performance 127

Table 5.4: ARL, MDRL and SDRL of the EWMA Chart in presence
of two component measurement error for δ = −1.0 when ARL0 = 370

CV
µ 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 368.18 233.36 108.97 31.38 14.90 9.33 7.04
MDRL 257.00 162.00 76.50 23.00 12.00 8.00 6.00
SDRL 361.94 228.16 105.68 27.23 11.16 5.95 3.96

ARL 10 348.26 113.26 32.88 9.76 5.93 4.71 4.11
MDRL 241.00 80.00 24.00 8.00 5.00 4.00 4.00
SDRL 347.57 109.96 28.46 6.23 3.07 2.18 1.75

ARL 50 226.39 15.66 5.95 3.75 3.33 3.20 3.14
MDRL 157.00 12.00 5.00 3.00 3.00 3.00 3.00
SDRL 223.13 11.49 3.02 1.48 1.22 1.15 1.13

ARL 100 203.69 12.06 5.17 3.54 3.26 3.17 3.13
MDRL 141.00 10.00 5.00 3.00 3.00 3.00 3.00
SDRL 199.62 8.25 2.43 1.34 1.21 1.15 1.12

ARL 1000 194.43 11.06 4.94 3.48 3.26 3.15 3.10
MDRL 135.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 188.66 7.31 2.26 1.31 1.18 1.11 1.09

ARL 10000 190.48 10.99 4.92 3.49 3.25 3.13 3.12
MDRL 134.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 184.75 7.27 2.21 1.32 1.16 1.12 1.10

ARL 15000 193.48 11.10 4.95 3.53 3.24 3.15 3.12
MDRL 136.00 9.00 4.00 3.00 3.00 3.00 3.00
SDRL 187.30 7.45 2.27 1.35 1.18 1.13 1.10
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levels of µ and CV . Comparing results in Tables 5.2 and 5.4 for positive and

negative shifts indicate the asymmetric detection behaviour of the EWMA

chart in the presence of two component measurement error, particularly at

lower values of CV . When CV is small, the EWMA chart performs better

for the detection of positive shifts compared to the negative shifts of the

same magnitude. As CV increases, the difference between the run length

characteristics for the detection of positive and negative shifts are almost

negligible.

5.4 Effect of Multiple Measurements

To reduce the effect of measurement error on the performance of the pro-

posed chart, the method suggested by Linna and Woodall (2001), and also

implemented by Maravelakis et al. (2004), is used by taking multiple measu-

rements at each sample point for all n observations. Suppose at each sample

point we take k measurements for n observations. The EWMA statistic is

thus defined as:

Qtck,t = λY t + (1− λ)Qtck,t−1 (5.12)

where Y t is the average of n observations collected at time t (each observation

comprising of k measurements). Similar to the computation of Equations

(6.5) and (6.6), the mean and variance of the EWMA statistic (in Equation

(5.12)) are given as

E(Qtck,k) = α + βµ
√
eσ

2
η (5.13)

and

V ar(Qttck) =
σy(k)

n

((
λ

2− λ

)[
1− (1− λ)2t

])
(5.14)

respectively.

Hence, for the case of k measurements, asymptotic control limits are defined

as:

UCLtck = α + βµ
√
eσ

2
η + L

σy(k)√
n

√(
λ

2− λ

)
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and

LCLtck = α + βµ
√
eσ

2
η − L

σy(k)√
n

√(
λ

2− λ

)
. (5.15)

where σy(k) is given as (see Rocke and Lorenzato (1995) and Cocchi and

Scagliarini (2007)):

σy(k) =

√
β2σ2eσ

2
η +

1

k
(β2µ2(eσ

2
η(eσ

2
η − 1))) +

1

k
(β2σ2(eσ

2
η(eσ

2
η − 1))) +

1

k
σ2
ε .

(5.16)

The effect of measurement error is inversely proportional to the number mea-

surements taken at each sample point t (i.e. the performance of the control

chart improves as we increase k). The choice of k depends on the cost as-

sociated with taking extra measurements and the level of precision required.

Similarly to the expression of δtc given in Equation (5.11), the shift (δtck) in

the process mean level using k measurements is defined as:

δtck =
δ√

1 + µ2

kσ2 (e
σ2
η − 1) + 1

k
(eσ

2
η − 1) +

σ2
η

kβ2σ2eσ
2
η

. (5.17)

For this study, we used k = 5 to represent the case of multiple measure-

ments. Figure 5.2 presents curves for δtck/δ versus CV at different levels of µ.

Comparing Figures 5.1 and 5.2, the benefit of using multiple measurements

(k = 5) at each sample point is shown and this benefit keeps on increasing

as we increase k. It is observed that, compared to δtc/δ, δtck/δ converges

quickly to 1. To examine the effect of k measurements on the run length

distribution of the EWMA chart, Table 5.5 gives ARL, MDRL and SDRL of

the EWMA chart in the presence of two component error using k = 5 mea-

surements at each sample point t for the EWMA statistic in Equation (5.12)

using control limits in Equation (5.15). The aim of using k measurements

is to reduce the out of control ARL while maintaining the same in-control

ARL (i.e. ARL0 = 370). The run length characteristics are only provided

for δ = 1.0, but we observed similar behaviour for other values of δ.

By using multiple measurements, the ability of the control chart to detect

shifts has improved significantly. It is clear from the results in Tables 5.2 and
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Figure 5.2: Decrease in the magnitude of shift due to two component
measurement error using k = 5 measurements.
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Table 5.5: ARL, MDRL and SDRL of EWMA Chart in presence of two
component measurement error using k = 5 measurements for δ = 1.0

when ARLo = 370

CV
µ 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 353.18 102.88 27.44 8.50 5.36 4.36 3.89
MDRL 250.00 72.00 21.00 7.00 5.00 4.00 4.00
SDRL 347.64 99.61 23.16 5.30 2.61 1.92 1.61

ARL 10 324.38 31.82 9.15 4.49 3.71 3.42 3.27
MDRL 224.00 24.00 8.00 4.00 3.00 3.00 3.00
SDRL 319.81 27.33 5.72 1.99 1.48 1.30 1.21

ARL 50 152.60 6.10 3.85 3.25 3.16 3.11 3.08
MDRL 106.00 5.00 4.00 3.00 3.00 3.00 3.00
SDRL 150.08 3.23 1.59 1.21 1.15 1.12 1.10

ARL 100 125.54 5.49 3.68 3.24 3.12 3.09 3.10
MDRL 91.00 5.00 3.00 3.00 3.00 3.00 3.00
SDRL 120.69 2.77 1.49 1.21 1.15 1.10 1.12

ARL 1000 116.25 5.22 3.61 3.22 3.12 3.09 3.07
MDRL 83.00 5.00 3.00 3.00 3.00 3.00 3.00
SDRL 110.87 2.59 1.43 1.20 1.12 1.11 1.09

ARL 10000 114.20 5.21 3.64 3.23 3.14 3.10 3.07
MDRL 80.00 5.00 3.00 3.00 3.00 3.00 3.00
SDRL 110.85 2.55 1.48 1.19 1.12 1.11 1.12

ARL 15000 114.70 5.23 3.64 3.21 3.14 3.12 3.09
MDRL 82.00 5.00 3.00 3.00 3.00 3.00 3.00
SDRL 110.18 2.54 1.47 1.19 1.14 1.12 1.10
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Figure 5.3: ARL performance of EWMA chart in presence of two
component measurement error using single and k = 5 measurements for

δ = 0.5.

5.5 that, in comparison to individual measurement chart, the performance

of the k measurements chart is far better. The out of control ARL, MDRL

and SDRL have been reduced significantly for all combinations of µ and CV .

Figures 5.3-5.5 clearly show the reduction in ARL of the k measurement

charts compared to the individual charts for δ = 0.5, 1.0 & 1.5 for several

values of µ and CV .

In Figures 5.3-5.5, s and k respectively represent ARL performance for

single and k measurement cases. The comparisons revealed that, regardless of

the values of µ and CV , the ARL curves for the k measurement EWMA chart



5.4 Effect of Multiple Measurements 133

0.0 0.1 0.2 0.3 0.4 0.5

1.0

1.5

2.0

2.5

 µ = 5

CV

Lo
g(

A
R

L)

s
k

0.0 0.1 0.2 0.3 0.4 0.5

0.5

1.0

1.5

2.0

2.5

 µ = 10

CV

Lo
g(

A
R

L)

s
k

0.0 0.1 0.2 0.3 0.4 0.5

0.5

1.0

1.5

2.0

 µ = 50

CV

Lo
g(

A
R

L)

s
k

0.0 0.1 0.2 0.3 0.4 0.5

0.5

1.0

1.5

2.0

 µ = 100

CV

Lo
g(

A
R

L)

s
k

Figure 5.4: ARL performance of EWMA chart in presence of two
component measurement error using single and k = 5 measurements for

δ = 1.0.
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Figure 5.5: ARL performance of EWMA chart in presence of two
component measurement error using single and k = 5 measurements for

δ = 1.5
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are always lower compared to the individual measurement EWMA chart,

indicating better out of control run length performance. The difference is

greater for low CV and reduces as CV increases. Similar patterns are also

observed for ARL, MDRL and SDRL using other δ values.

As was described earlier, improvement in EWMA chart performance is

expected with an increase in the number of multiple measurements. To to

get a better insight, Table 5.6 gives run length characteristics of the EWMA

chart using different values of k ranging from 1 to 50 considering δ = 1.0

and CV = 0.05 at different concentration levels. Significant reduction in

out of control ARL, MDRL and SDRL can be observed from Table 5.6 with

an increase in the number of multiple measurements. Note that we have

considered an extremely affected case (CV = 0.05 and δ = 1.0), we can

conclude even better performance for the other cases.

We have seen that increasing k helps in improving the detection ability

of the EWMA chart in the presence of two component measurement error.

Similarly increasing n, will help in the early detection of out-of-control signals.

The detection ability of the chart can be maximized by minimizing σy(k)/
√
n

for appropriate values of n and k using constraint optimization technique.

For this purpose, we define a cost function following Linna and Woodall

(2001):

CT = cnn + ckn(k − 1) (5.18)

where CT represents the cost per subgroup, cn is the cost of a unit of sample

size n and ck is the cost of taking extra measurements on the same unit.

Table 5.7 presents the choice of n and k for varying levels of µ and CV

by minimizing σy(k)/
√
n with respect to the above cost function. We used

CT = 10, cn = 1 and varied the values of relative cost ck/cn from 0.40 to

0.01.

From Table 5.7, we can observe that for the case when µ = 5 and CV =

0.05, the process variance σ2 is far less than the two component measurement

error variances σ2
η and σ2

ε . Hence, we require large number of measurements

to reduce the effect of these measurement errors. As we move to the case

of µ = 1000 and CV = 0.4, the process variance σ2 is a lot bigger than
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the two component measurement error variances σ2
η and σ2

ε . Hence for quick

detection of shifts, increasing sample size n is more beneficial than taking

extra measurements at each unit. Similar pairs of n and k can be obtained for

other combinations of µ, CV and two component model parameters (α, β, ση

and σε).
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Table 5.6: ARL, MDRL and SDRL of EWMA Chart in presence of
two component error for multiple measurements using different values of

k for δ = 1.0, CV = 0.05 when ARL0 = 370

k
µ 1 5 10 15 20 30 50

ARL 5 235.27 102.88 58.73 40.81 31.89 21.92 14.17
MDRL 164.00 72.00 42.00 30.00 24.00 17.00 11.00
SDRL 232.66 99.61 53.91 36.44 27.51 17.74 10.25

ARL 10 108.86 31.82 17.51 12.44 10.14 7.90 6.18
MDRL 77.00 24.00 13.00 10.00 8.00 7.00 5.00
SDRL 104.15 27.33 13.59 8.65 6.73 4.70 3.27

ARL 50 14.49 6.10 4.87 4.41 4.20 3.97 3.78
MDRL 11.00 5.00 4.00 4.00 4.00 4.00 3.00
SDRL 10.79 3.23 2.28 1.95 1.84 1.64 1.53

ARL 100 11.70 5.49 4.51 4.20 4.00 3.85 3.69
MDRL 9.00 5.00 4.00 4.00 4.00 4.00 3.00
SDRL 8.10 2.77 2.08 1.82 1.66 1.58 1.47

ARL 1000 10.60 5.22 4.39 4.07 3.95 3.80 3.65
MDRL 9.00 5.00 4.00 4.00 4.00 4.00 3.00
SDRL 7.21 2.59 1.98 1.74 1.64 1.57 1.45

ARL 10000 10.61 5.21 4.36 4.06 3.97 3.78 3.68
MDRL 9.00 5.00 4.00 4.00 4.00 3.00 3.00
SDRL 7.24 2.55 1.93 1.75 1.69 1.55 1.46

ARL 15000 10.52 5.23 4.40 4.08 3.96 3.77 3.68
MDRL 9.00 5.00 4.00 4.00 4.00 3.00 3.00
SDRL 7.18 2.54 1.95 1.75 1.66 1.53 1.47
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Table 5.7: Optimum values for n and k for different combinations of µ
and CV at varying values of ck/cn

µ = 5, CV = 0.05 µ = 5, CV = 0.4 µ = 100, CV = 0.10 µ = 1000, CV = 0.05 µ = 1000, CV = 0.4
ck/cn n k n k n k n k n k
0.4 2 11 7 2 10 1 7 2 10 1
0.35 1 26 7 2 10 1 7 2 10 1
0.3 1 31 6 3 10 1 6 3 10 1
0.25 1 37 5 5 8 2 5 5 10 1
0.2 2 21 7 3 7 3 5 6 10 1
0.15 2 27 6 5 7 3 6 5 10 1
0.1 2 41 7 5 8 3 7 5 10 1
0.075 2 54 7 6 8 4 7 6 10 1
0.05 2 81 8 6 8 6 7 9 10 1
0.04 3 59 8 7 8 7 7 11 10 1
0.03 3 78 8 9 8 9 7 15 10 1
0.02 3 117 8 13 9 6 8 13 10 1
0.01 4 151 8 26 9 12 8 26 10 1
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5.5 Comparison with One Component Error

Case

In this section, we compare the effect of two component error on EWMA

chart performance with the one component (additive) error case investigated

by Maravelakis et al. (2004). The one component model with covariates

investigated by Maravelakis et al. (2004) is given as:

Zt = α + βXt + ε (5.19)

For the one component error case, the EWMA statistic can be defined as:

Qoc,t = λZt + (1− λ)Qoc,t−1, Qoc,0 = α+ βµ (5.20)

and the control limits are thus provided as (see Maravelakis et al. (2004)):

UCL = α+ βµ+ L

√(
λ

2− λ

)
β2σ2 + σ2

ε

n
(5.21)

LCL = α+ βµ− L

√(
λ

2− λ

)
β2σ2 + σ2

ε

n

We can see that, by setting ση = 0, Equations (5.1, 5.3 and 5.9) correspond

to one component error model, EWMA statistics and control limits for the

single measurement chart, investigated by Maravelakis et al. (2004). For com-

parison purposes, run length characteristics of the Maravelakis et al. (2004)

charts has also been computed using similar simulation routines by fixing

the parameter values as were used earlier for the two component error case.

The results have been reported in Tables 5.8 and 5.9 for single and multiple

measurement charts considering δ = 1.0.

We can observe from Tables 5.2, 5.5, 5.8 and 5.9 that a two component er-

ror model has a more adverse effect on EWMA chart performance compared

to a one component error case. The difference in the out of control run length
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characteristics for both the approaches (one and two component error cases)

seems to be smaller for low concentration levels (µ = 5 and 10). However, we

can observe significant differences for higher concentration levels (µ > 10),

particularly for low values of CV . This is also consistent with the findings of

Rocke and Lorenzato (1995), as additive error only has a significant effect at

low concentrations and this effect reduces with an increase in concentration

level. The comparison has been presented for δ = 1.0, but similar patterns

have been observed for other δ values as well. Note also that for the results

of two component error case we set ση = 0.1032, we can expect a greater dif-

ference in the out of control run length characteristics of the two approaches

with an increase in the value of ση.
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Table 5.8: ARL, MDRL and SDRL of EWMA Chart in presence of one
component measurement error for δ = 1.0 when ARL0 = 370

CV
µ 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 360.98 231.35 106.18 30.73 14.40 9.36 7.01
MDRL 252.00 160.00 76.00 23.00 11.00 8.00 6.00
SDRL 359.86 227.80 101.56 26.16 10.56 6.09 3.97

ARL 10 335.51 107.20 30.59 9.23 5.76 4.56 4.01
MDRL 237.00 76.00 23.00 8.00 5.00 4.00 4.00
SDRL 329.11 101.42 25.62 5.76 2.95 2.06 1.64

ARL 50 103.58 6.97 4.05 3.25 3.13 3.09 3.06
MDRL 73.00 6.00 4.00 3.00 3.00 3.00 3.00
SDRL 99.91 3.84 1.70 1.19 1.11 1.12 1.11

ARL 100 30.98 4.01 3.27 3.07 3.04 3.04 3.01
MDRL 23.00 4.00 3.00 3.00 3.00 3.00 3.00
SDRL 26.38 1.68 1.22 1.09 1.09 1.06 1.08

ARL 1000 3.27 3.04 3.01 3.01 3.02 3.01 2.99
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.20 1.10 1.07 1.06 1.06 1.06 1.06

ARL 10000 3.01 3.01 3.01 3.02 3.02 3.02 3.01
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.08 1.06 1.09 1.07 1.07 1.07 1.07

ARL 15000 3.00 3.02 3.03 2.99 3.00 3.01 3.01
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.06 1.07 1.07 1.06 1.05 1.06 1.04
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Table 5.9: ARL, MDRL and SDRL of EWMA Chart in presence of one
component measurement error using k = 5 measurements for δ = 1.0

when ARL0 = 370

CV
µ 0.01 0.05 0.1 0.2 0.3 0.4 0.5

ARL 5 330.60 88.45 24.65 7.99 5.22 4.26 3.81
MDRL 230.00 63.00 19.00 7.00 5.00 4.00 3.00
SDRL 331.88 83.36 20.33 4.77 2.57 1.82 1.56

ARL 10 249.78 24.64 8.00 4.23 3.59 3.33 3.22
MDRL 174.00 19.00 7.00 4.00 3.00 3.00 3.00
SDRL 244.73 20.64 4.81 1.84 1.43 1.26 1.18

ARL 50 24.50 3.81 3.20 3.06 3.06 3.04 3.01
MDRL 18.00 4.00 3.00 3.00 3.00 3.00 3.00
SDRL 20.12 1.55 1.16 1.11 1.08 1.06 1.06

ARL 100 8.00 3.24 3.05 3.03 3.02 3.00 3.01
MDRL 7.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 4.80 1.20 1.09 1.08 1.07 1.06 1.06

ARL 1000 3.07 3.01 3.04 3.01 3.01 3.03 3.00
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.09 1.07 1.08 1.04 1.05 1.08 1.06

ARL 10000 3.01 3.04 3.01 3.02 3.02 3.04 3.02
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.06 1.08 1.05 1.07 1.06 1.08 1.07

ARL 15000 3.01 2.99 3.03 3.00 3.02 3.02 3.01
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 1.07 1.04 1.08 1.06 1.07 1.07 1.07
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5.6 Effect of Two Component Model

Parameters

In the previous sections, run length properties of the EWMA chart in the

presence of two component measurement error are evaluated for fixed values

of two component model parameters, i.e. we used α = 11.51, β = 1.524, ση =

0.1032 and σε = 5.698. In this section, we will see how the change in these

parameters affects the run length performance of the EWMA chart.

Effect of α:

We noticed that changing α does not effect the run length performance of

the EWMA chart.

Effect of β:

Table 5.10 presents run length characteristics for the case when all the pa-

rameters remain fixed, except β. We used α = 11.51, ση = 0.1032 and

σε = 5.698 and varied the values of β from 1 to 7. The run length characte-

ristics are evaluated at different levels of µ considering δ = 0.5 and CV = 0.1.

We can observe from the results in Table 5.10 that the detection ability of

the chart improves with an increase in the value of β, particularly at small

concentration levels (µ ≤ 100).

Effect of ση:

Table 5.11 presents run length characteristics for the case when all the para-

meters remain fixed, except ση. We used α = 11.51, β = 1 and σε = 2 and

varied the values of ση from 0.01 to 0.15. The run length characteristics are

evaluated at different levels of µ considering δ = 0.5 and CV = 0.1. We can

observe from the results in Table 5.11 that the detection ability of the chart



144
On the Performance of EWMA Location Chart in Presence of

Two Component Measurement Error

diminishes with an increase in the value of ση, particularly at high concen-

tration levels. This is expected, as the multiplicative error (η) is known

to dominate at higher concentration levels (Currie (1968); Hubaux (1970);

Rocke et al. (2003)).

Effect of σε:

Table 5.12 presents run length characteristics for the case when all the para-

meters remain fixed, except σε. We used α = 11.51, β = 1 and ση = 0.1032

and varied the values of σε from 0.5 to 6. The run length characteristics are

evaluated at different levels of µ considering δ = 0.5 and CV = 0.1. We can

observe from the results in Table 5.12 that the detection ability of the chart

diminishes with an increase in the value of σε, particularly at low concentra-

tion levels (µ ≤ 100). This is expected, as the additive error (ε) is known to

dominate at lower (near zero) concentration levels (Currie (1968); Hubaux

(1970); Rocke et al. (2003)).
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Table 5.10: ARL, MDRL and SDRL of EWMA Chart in presence of
two component measurement error for δ = 0.5 at different levels of β and
µ when α = 11.51, ση = 0.1032, σε = 5.698, CV = 0.1 and ARL0 = 370

β
µ 1 2 3 4 5 6 7

ARL 5 299.58 184.01 114.84 77.90 56.52 45.23 36.97
MDRL 207.00 129.00 82.00 55.00 41.00 33.00 27.00
SDRL 297.85 180.58 108.53 73.71 52.06 41.07 32.74

ARL 10 184.82 77.21 44.59 32.27 26.39 23.37 21.44
MDRL 131.00 55.00 32.00 24.00 20.00 17.00 16.00
SDRL 181.66 72.06 40.54 28.15 22.35 19.65 17.47

ARL 50 26.49 18.67 17.52 16.81 16.65 16.38 16.35
MDRL 20.00 14.00 14.00 13.00 13.00 13.00 13.00
SDRL 22.70 14.86 13.63 12.94 12.93 12.62 12.73

ARL 100 18.91 17.06 16.66 16.50 16.34 16.36 16.39
MDRL 14.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 15.12 13.34 12.73 12.64 12.68 12.68 12.65

ARL 1000 16.61 16.10 16.65 16.39 16.24 16.08 16.41
MDRL 13.00 13.00 13.00 13.00 13.00 12.00 13.00
SDRL 13.00 12.26 12.86 12.54 12.52 12.32 12.57

ARL 10000 16.43 16.31 16.48 16.33 16.40 16.50 16.46
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.90 12.64 12.83 12.63 12.53 12.93 12.97

ARL 15000 16.48 16.60 16.38 16.37 16.51 16.39 16.17
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.55 12.88 12.68 12.61 12.93 12.65 12.33
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Table 5.11: ARL, MDRL and SDRL of EWMA Chart in presence of
two component measurement error for δ = 0.5 at different levels of ση

and µ when α = 11.51, β = 1.0, σε = 2, CV = 0.1 and ARL0 = 370

ση

µ 0.01 0.015 0.025 0.05 0.075 0.1 0.15
ARL 5 121.21 121.30 122.03 119.63 121.36 122.06 125.94
MDRL 86.00 84.00 86.00 86.00 86.00 86.00 89.00
SDRL 115.63 117.34 118.13 113.21 115.24 116.04 121.09

ARL 10 41.09 41.63 41.69 42.78 44.40 47.44 53.82
MDRL 30.00 31.00 31.00 31.00 32.00 34.00 39.00
SDRL 36.98 36.59 37.23 37.90 39.33 43.13 49.91

ARL 50 9.62 9.74 10.06 11.51 13.88 17.15 25.64
MDRL 8.00 8.00 8.00 9.00 11.00 13.00 19.00
SDRL 6.25 6.23 6.58 8.00 10.00 13.42 21.68

ARL 100 8.80 8.84 9.05 10.52 12.78 15.97 24.92
MDRL 7.00 7.00 8.00 9.00 10.00 13.00 18.00
SDRL 5.48 5.51 5.66 7.09 9.11 12.22 21.20

ARL 1000 8.43 8.64 8.82 10.30 12.59 15.76 24.67
MDRL 7.00 7.00 7.00 8.00 10.00 12.00 18.00
SDRL 5.17 5.36 5.47 6.91 8.86 12.16 20.92

ARL 10000 8.46 8.47 8.90 10.27 12.64 15.75 25.08
MDRL 7.00 7.00 7.00 9.00 10.00 12.00 19.00
SDRL 5.21 5.22 5.63 6.83 9.13 11.99 21.10

ARL 15000 8.39 8.49 8.87 10.09 12.61 15.70 24.93
MDRL 7.00 7.00 7.00 8.00 10.00 12.00 19.00
SDRL 5.04 5.19 5.53 6.70 8.98 12.22 21.05
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Table 5.12: ARL, MDRL and SDRL of EWMA Chart in presence of
two component measurement error for δ = 0.5 at different levels of σε

and µ when α = 11.51, β = 1.0, ση = 0.1032, CV = 0.1 and ARL0 = 370

σε

µ 0.5 1 2 3 4 5 6
ARL 5 24.17 48.09 122.97 195.78 241.81 279.86 301.49
MDRL 18.00 35.00 86.00 137.00 168.00 194.00 214.00
SDRL 20.19 44.11 120.41 190.30 234.97 277.20 296.19

ARL 10 18.11 23.99 47.43 84.03 122.14 158.78 196.15
MDRL 14.00 18.00 34.00 59.00 86.00 112.00 138.00
SDRL 14.38 20.24 43.12 79.21 118.13 153.34 193.27

ARL 50 16.44 16.63 17.50 19.15 21.22 24.14 27.34
MDRL 13.00 13.00 14.00 15.00 16.00 18.00 21.00
SDRL 12.71 12.71 13.72 15.54 17.10 19.92 23.16
ARL 100 16.53 16.42 16.81 17.02 17.69 18.11 19.22

MDRL 13.00 13.00 13.00 13.00 14.00 14.00 15.00
SDRL 12.68 12.43 13.09 12.86 14.05 14.17 15.34

ARL 1000 16.44 16.27 16.42 16.36 16.46 16.48 16.42
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.64 12.47 12.49 12.61 12.67 12.53 12.56

ARL 10000 16.14 16.58 16.28 16.26 16.39 16.43 16.43
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.42 12.66 12.63 12.69 12.63 12.74 12.77

ARL 15000 16.43 16.56 16.64 16.29 16.39 16.37 16.54
MDRL 13.00 13.00 13.00 13.00 13.00 13.00 13.00
SDRL 12.57 12.88 13.08 12.70 12.53 12.65 12.85
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5.7 Conclusions

This chapter examined the performance of the EWMA location chart in the

presence of two component error. In the presence of measurement error, the

exact performance of EWMA chart may be significantly different from that

of expected performance. The run length characteristics show that EWMA

chart performance is extremely affected for small CV and low concentration

levels of an analyte. For high CV and large concentration levels, the EWMA

chart has performed reasonably well. It has been shown that two component

measurement error effect can be reduced by using multiple measurements

at each sample point. The two component error model has shown a more

adverse effect on EWMA chart performance compared to the one component

error case, particularly for higher concentration levels (µ > 10) and low values

of CV . The results presented in this study are based on the assumption that

two component model parameters (α, β, σε, ση) are known. The estimation

of these parameters will also have an effect on control chart performance.



Chapter 6

Enhancing the Performance of

CUSUM Dispersion Chart

Researchers have implemented different run rules to increase the sensitivity

of Shewhart, CUSUM and EWMA control charts for the detection of small

shifts in process location. However, for the monitoring of process dispersion,

the use of such rules has been limited to Shewhart charts. This study pro-

poses the implementation of sensitizing rules in CUSUM dispersion charts

to enhance their ability to detect smaller changes in process dispersion. The

performance of the proposed schemes is evaluated and compared with the

simple dispersion CUSUM scheme, the EWMS chart, the M-EWMS chart

and the COMB chart, in terms of run length characteristics such as ave-

rage run length (ARL) and standard deviation of the run length distribution

(SDRL). Control chart coefficients to set the ARL at the desired level are also

provided. Two numerical examples are given to illustrate the application of

the proposed schemes on practical data sets. This chapter is based on Abbasi

et al. (2012a).

6.1 Introduction

For a control chart, a process is declared to be out-of-control whenever a

point lies outside the control limits, which are usually set at a distance of



150 Enhancing the Performance of CUSUM Dispersion Chart

three sigma from the centre line. To increase the sensitivity of the chart

for the detection of small shifts, some additional rules have been proposed

by researchers that use an additional set of limits called the warning limits.

These warning limits are usually set at a distance of one or two sigma from

the centre line - e.g. see Klein (2000), Khoo (2004), Koutras et al. (2007) and

Antzoulakos and Rakitzis (2008). Some suggested additional rules are: (a)

two out of three consecutive points outside the two sigma warning limits but

still inside the control limits; (b) four out of five consecutive points beyond

the one sigma warning limits; (c) a run of eight consecutive points on one side

of the center line; (d) six points in a row steadily increasing or decreasing; (e)

fourteen points in a row alternating up and down. The application of sensiti-

zing rules causes an increase in false alarm rates, which can be compensated

for by making appropriate adjustments to the control limits. Although these

rules add complexity in the control chart design but can be very useful for

the quick detection of small shifts in process parameters.

The application of the sensitizing rules was confined mainly to Shewhart

type control charts for a long time and the literature on the use of these

rules with CUSUM and EWMA control structures is very limited. Westgard

et al. (1977) studied some control rules using combined Shewhart-CUSUM

structures and demonstrated the superiority of their approach to the Shew-

hart chart but ignored any comparison with the CUSUM chart. Also, their

control rules considered only one point at a time for testing an out-of-control

situation. The false alarm rates of their control rules were not fixed at

a pre-specified level, which makes the comparison among different control

rules/schemes difficult. Recently, Riaz et al. (2011) and Abbas et al. (2011)

have extended this approach to CUSUM and EWMA type charts for moni-

toring the location parameter. Some researchers also investigated the effects

of run rules on the performance of Shewhart type dispersion control charts.

Acosta-Mejia and Pignatiello (2008) and Acosta-Mejia and Pignatiello (2009)

analyzed the performance of Shewhart type dispersion R and S charts sup-

plemented with some m out of m rules (m out of m rules indicate a process

to be out-of-control if all the recent m values lie outside the warning limits).

They investigated the performance of both the charts using the m out of m
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rule alone and charts that combine 1 out of 1 and m out of m rules. They

recommended the use of classical charts that combined the 1 out of 1 and the

m out of m rules using m = 9 or 10. Antzoulakos and Rakitzis (2010) inves-

tigated the performance of Shewhart S chart supplemented with r out of m

rules. They showed that the S chart using the r out of m rule outperformed

the simple S chart and recommended the use of a one-sided S chart with a 2

out of 5 rule for efficient detection of shifts in process dispersion. This study

introduces the use of these sensitizing rules for the CUSUM dispersion chart

to enhance its ability to detect small changes in process dispersion. Particu-

larly, we will implement some of the r out of m run rule schemes with the

CUSUM chart for dispersion parameter following the work of Klein (2000),

Khoo (2004) and Antzoulakos and Rakitzis (2008), Riaz et al. (2011) and

Abbas et al. (2011) and will compare their performance with the simple dis-

persion CUSUM scheme in terms of different run length characteristics. This

chapter will propose the sensitizing rules based design structure of CUSUM

chart for the monitoring of dispersion parameter.

6.2 Proposal for the CUSUM dispersion

control chart

Since the introduction of CUSUM charts by Page (1954), many researchers

have examined these charts from different perspectives - see for example

Brook and Evans (1972), North (1982), Reynolds and Arnold (1990), Haw-

kins (1981), Hawkins (1993), Jones et al. (2004) and Chatterjee and Qiu

(2009). CUSUM charts are widely used for the efficient monitoring of inter-

nal quality control parameters and their use in analytical laboratories has

been emphasized by many researchers, including Funk et al. (1995), Mullins

(2003) and Hibbert (2007). Kateman and Buydens (1993) mentioned “The

CUSUM technique is a somewhat simplified variant of sequential analysis.

Therefore the CUSUM chart seems more suitable to the needs of control in

laboratory”. CUSUM charts are effective even with rational subgroups of size

one, which makes them an attractive option for many applications in chemi-
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cal and process industries (see Montgomery (2009)). The book by Hawkins

and Olwell (1998) includes a comprehensive description of the construction

of CUSUM charts. For a CUSUM chart, the deviations from the target value

of the parameter are accumulated in the upward and downward directions

separately, using two different statistics: one for the upward shift and the

other for the downward shift. The values of these two statistics are calculated

for each sample and are plotted against time on a chart which has control

limits superimposed. The CUSUM control chart indicates an out-of-control

signal when any point falls beyond the control limits (for details see Alwan

(2000), Ryan (2000) and Montgomery (2009)).

Hawkins (1981) adapted the CUSUM chart to monitor process dispersion

and later (Hawkins (1993)) suggested joint monitoring of location and dis-

persion parameters using CUSUM charts. For a normally distributed process

characteristic of interest X having mean or process target value µ0 and known

standard deviation σ0 , Hawkins (1981, 1993) used the standardized quantity

Vt = (
√
|Yt| − 0.822)/0.349 to monitor dispersion of individual observations,

where Yt = (Xt − µ0)/σ0 . The idea was to create a statistic which would

have an approximately standard normal distribution when the process was

in-control (assuming a normal parent distribution) and would be sensitive

to changes in process variation. The Vt statistic accomplishes this and has

the desirable property of having an approximate normal distribution when

Xt comes from a heavy tailed distribution such as Student’s t or Laplace

distribution – for details see Hawkins (1981) and Montgomery (2009). The

CUSUM dispersion procedure proposed by Hawkins (1981) works by accumu-

lating the upward and downward deviations of Y in the form of two statistics

S+ and S−:

S+
t = max[0, Vt − k − S+

t−1] (6.1)

S−
t = max[0,−Vt − k + S−

t−1]

where k is known as the reference/allowance/slack value and is often chosen

to be about half of the shift (in standard units) we want to detect quickly.
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The statistics S+ and S− (known as the upper and the lower CUSUM) are

initially set to zero (i.e. S+
0 = S−

0 = 0). The values of S+ and S− are

calculated for each sample and plotted against time. The process is said to

be out-of-control for any S+ or S− exceeds the control (action) limit (h).

For more details, see Hawkins (1981, 1993) and Montgomery (2009). We

will refer to the CUSUM control chart structure given in (6.1) as the simple

dispersion CUSUM control scheme.

The control structure given in (6.1) can also be used to monitor process

location but Hawkins (1981, 1993) and Yeh et al. (2005) suggested using Vt

for the monitoring of process dispersion due to the sensitive behavior of this

statistic for the detection of disturbances in process dispersion parameter.

Hawkins (1993) suggested plotting both the location CUSUM and the scale

CUSUM on the same graph. Out-of-control signals from both the CUSUMs

indicate a shift in process location, but a signal from only the scale CUSUM

indicates a shift in the standard deviation. The purpose of this study is to

investigate the affect of run rules on the run length behavior of the CUSUM

dispersion chart. Hence, we are only considering shifts in process dispersion

of the observed quality characteristics of interest X . The process is assumed

to be in-control for X ∼ N(µ0, σ0) and out-of-control when X ∼ N(µ0, λσ0),

where λ 6= 1 represents a shift in the in-control process standard deviation

(σ0). Without loss of generality we considered µ0 = 0 and σ0 = 1 to represent

the state of an in-control process.

In the simple dispersion CUSUM scheme, a process is declared to be out-

of-control when any point falls outside the control limits. This simple rule

does not indicate an out-of-control signal if there is a non-random pattern

in the data such as consecutive points that fall close to the control limits or

that fall in particular zones, which results in a loss of efficiency, particularly

for smaller shifts (cf. Klein (2000)). The sensitivity of the simple dispersion

CUSUM scheme (6.1) can be increased by implementing sensitizing rules

which can indicate that a process is out-of-control, even when all values

of S+ and S− lie within the control limits. These rules can be found in

Alwan (2000), Klein (2000), Khoo (2004), Antzoulakos and Rakitzis (2008)

and Montgomery (2009). We propose two new schemes for the CUSUM
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dispersion control chart which utilize sensitizing rules. Both these schemes

use a warning limit (w) and an action limit (h), defined as:

• Action Limit (h): A threshold level for the value of the CUSUM char-

ting statistic beyond which we declare the process as out-of-control.

• Warning Limit (w): A level for the value of the CUSUM charting

statistic beyond which (but not crossing h) some pattern of consecutive

points indicate an out-of-control situation.

Using these definitions, we propose the following two schemes for the CUSUM

dispersion chart:

Scheme I: A process is said to be out-of-control if one of the following

conditions is satisfied:

• Any point of either S+ or S− falls outside h.

• Any two consecutive points of either S+ or S− fall between w and h.

Scheme II: A process is said to be out of control if one of the following

conditions is satisfied:

• Any point of either S+ or S− falls outside h.

• Two out of three consecutive points of either S+ or S− fall between w

and h,

for S+ and S− as defined in (6.1), and h and w are chosen to give the desired

ARL0.

6.3 Performance Evaluation

To evaluate the performance of control charts, the average run length (ARL),

the mean of the run length distribution, is the most important and widely

used measure. The performance can be evaluated by two ARL values:

• ARL0: the average number of samples until an out-of-control signal

is detected by a control chart when the process standard deviation is

in-control.
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• ARL1: the average number of samples until an out-of-control signal

is detected by a control chart when the process standard deviation is

shifted to an out-of-control value.

Large values of ARL0 and small values of ARL1 are preferable for any control

chart setting. Different methods of computing the ARL of CUSUM charts

have been proposed in the literature: Brook and Evans (1972) used a Markov-

chain approach, Lucas and Crosier (1982) adopted an integral equation ap-

proach, and Siegmund (1985) proposed a method based on solving ARL equa-

tions. Monte Carlo simulation methods have also been adopted by different

researchers, including Hawkins (1981), Li and Wang (2010) and Riaz et al.

(2011). In this study, the Markov chain approach is used to approximate the

run length of the proposed CUSUM schemes.

The Markov chain approach for the CUSUM chart has been firstly pro-

posed by Ewan and Kemp (1960) for the basic 1 out of 1 decision rule. This

approach is further used by many researchers including Brook and Evans

(1972), Bohm and Hackl (1996) and Chang and Wu (2011). The use of Mar-

kov chains for the CUSUM control charts, supplemented with different run

rules, is a bit complicated since the history of the CUSUM statistics must be

kept. Fu et al. (2003) worked on this problem and proposed a Markov chain

approach for computing the run length distribution of different control char-

ting mechanisms (including the CUSUM charts) with simple or compound

rules. In this study, we use Fu et al. (2003)’s approach with necessary adjust-

ments to approximate the run length distribution of the proposed CUSUM

schemes. The details regarding the Markov chain representation, used to

obtain the run length characteristics of the proposed CUSUM schemes, can

be seen in Appendix C (or Abbasi et al. (2012a)).

The design of the CUSUM charts supplemented with run rules Schemes

I and II depends on the parameters k, w and h. Once k is selected, we can

choose w and h for a desired in-control ARL0. For a given ARL0, the choice

of k minimizes the ARL1 of the CUSUM charts for detecting a shift of size

λ (Montgomery (2009)). The most widely used values of k are 0.25 and 0.5,

which have also been used in this study. These choices of k help in efficient

detection of smaller shifts in process dispersion. To get a better insight of
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the performance of the proposed schemes, the standard deviation of the run

length distribution is also provided as well as the ARL. These run length

measures will help in studying the behavior of the run length distribution.

A summary of the run length characteristics of the proposed CUSUM

schemes (i.e. Scheme I, Scheme II) and the simple dispersion CUSUM scheme

is provided in Tables 6.1-6.3. In these tables, ARL denotes the average run

length and SDRL denotes the standard deviation of the run length distri-

bution. In each table, λ = 1 indicates that process dispersion parameter

is in-control, while λ > 1 refers to the out-of-control situation. For a fixed

ARL0, the control scheme which minimizes the ARL1 for a particular magni-

tude of shift will be regarded as better than others.

For the two proposed schemes the values of h and w depend on the selec-

ted values of k and ARL0. However, fixing k and ARL0 does not uniquely

determine the values of h and w. In fact, for fixed k and ARL0 there are

many possible combinations of h and w which correspond to different rela-

tive weights put on the two ways of detecting out-of-control situations - see

Tables 6.1-6.2. At one extreme, setting h = w corresponds to the simple

dispersion CUSUM chart with no additional sensitizing rule, whereas at the

other extreme, setting h = ∞ results in a chart where the out-of-control si-

tuation is only identified by the sensitizing rules. For our proposed run rules

schemes, we have observed that for a fixed value of k and ARL0, the ARL1

reduces as the value of h increases and w decreases, particularly for small

and moderate values of λ. The choice of infinity for h is the most attractive

choice in terms of ease and optimizing the ARL1.
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Table 6.1: RL characteristics of the proposed dispersion CUSUM
scheme I

RL λ
h w Properties 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00

k = 0.25,ARL0 = 120

6.642 4.89 ARL 121.18 34.12 17.22 12.05 9.47 7.06 5.85 4.69
SDRL 110.78 27.03 11.46 7.43 5.53 3.91 3.17 2.57

8.864 4.337 ARL 120.76 29.61 15.81 11.17 8.94 6.87 5.88 4.85
SDRL 110.89 24.03 10.92 6.87 5.23 3.73 3.06 2.51

∞ 4.198 ARL 120.81 28.30 15.34 10.85 8.83 6.74 5.78 4.81
SDRL 115.19 22.70 10.65 6.66 5.22 3.69 3.05 2.48

k = 0.25,ARL0 = 200

7.511 5.818 ARL 201.46 43.66 20.54 13.87 10.88 7.90 6.53 5.15
SDRL 182.59 33.78 13.70 8.24 6.04 4.18 3.43 2.73

8.895 5.387 ARL 201.82 39.92 19.24 13.30 10.42 7.78 6.56 5.29
SDRL 184.60 31.90 12.66 7.90 5.80 4.02 3.33 2.64

∞ 5.098 ARL 202.42 36.92 18.46 12.67 9.95 7.58 6.43 5.28
SDRL 188.46 29.19 12.31 7.72 5.54 3.98 3.28 2.64

k = 0.50,ARL0 = 120

4.108 2.748 ARL 119.57 30.52 13.71 8.28 6.00 3.75 2.85 1.84
SDRL 115.55 26.72 10.57 5.66 3.67 1.81 1.22 0.51

4.848 2.585 ARL 119.70 28.79 13.01 8.07 5.97 3.89 2.93 2.01
SDRL 116.67 24.99 9.92 5.32 3.55 1.83 1.10 0.49

∞ 2.449 ARL 119.96 26.08 12.26 7.91 5.78 3.85 3.05 2.25
SDRL 116.92 22.52 9.40 5.21 3.35 1.73 1.04 0.43

k = 0.50,ARL0 = 200

4.927 3.151 ARL 201.28 40.26 17.48 10.76 8.06 5.49 4.34 3.24
SDRL 193.33 35.27 13.83 7.44 5.28 3.18 2.38 1.65

5.527 3.018 ARL 200.3 37.63 16.56 10.57 7.91 5.56 4.41 3.33
SDRL 189.26 33.21 12.96 7.51 5.07 3.16 2.35 1.59

∞ 2.937 ARL 200.11 36.55 16.29 10.43 7.85 5.52 4.53 3.55
SDRL 192.71 32.46 12.87 7.39 4.98 3.09 2.32 1.59
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Table 6.2: RL characteristics of the proposed dispersion CUSUM
scheme II

RL λ
h w Properties 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00

k = 0.25,ARL0 = 120

6.312 5.109 ARL 120.23 35.57 16.69 11.10 8.53 6.05 4.86 3.64
SDRL 118.19 28.28 11.04 6.47 4.59 2.94 2.24 1.58

6.646 4.926 ARL 119.58 33.88 16.34 10.97 8.48 6.06 4.89 3.71
SDRL 116.05 26.82 10.74 6.36 4.51 2.89 2.19 1.57

∞ 4.242 ARL 120.08 27.58 14.06 9.78 7.72 5.68 4.77 3.82
SDRL 117.78 21.76 9.29 5.70 4.08 2.62 2.03 1.46

k = 0.25,ARL0 = 200

7.194 6.112 ARL 199.92 44.57 20.28 12.92 9.87 6.86 5.49 4.09
SDRL 193.56 35.22 13.16 7.27 5.11 3.21 2.43 1.72

7.443 5.926 ARL 199.59 43.43 19.78 12.94 9.83 6.90 5.50 4.13
SDRL 189.54 34.37 12.79 7.31 5.06 3.19 2.39 1.70

∞ 5.138 ARL 200.34 35.76 17.27 11.40 8.87 6.53 5.36 4.23
SDRL 192.32 28.27 11.31 6.46 4.55 2.95 2.22 1.56

k = 0.50,ARL0 = 120

3.786 3.013 ARL 120.25 32.62 14.65 9.10 6.62 4.43 3.38 2.46
SDRL 114.06 28.90 11.84 6.57 4.40 2.65 1.85 1.23

4.385 2.726 ARL 120.33 30.12 13.81 8.92 6.68 4.54 3.60 2.61
SDRL 116.78 26.46 10.76 6.28 4.28 2.51 1.83 1.21

∞ 2.503 ARL 119.81 26.89 13.11 8.51 6.40 4.54 3.74 2.96
SDRL 116.80 23.56 10.18 5.86 3.92 2.33 1.78 1.08

k = 0.50,ARL0 = 200

4.996 3.159 ARL 200.27 39.24 16.79 10.37 7.76 5.28 4.17 3.10
SDRL 189.09 35.28 13.11 7.30 5.01 2.95 2.16 1.50

5.396 3.104 ARL 201.30 38.10 16.55 10.44 7.68 5.32 4.22 3.18
SDRL 193.07 33.75 12.64 7.16 4.88 2.89 2.16 1.47

∞ 2.999 ARL 200.29 36.51 15.97 10.12 7.54 5.32 4.36 3.43
SDRL 192.37 32.59 12.55 6.93 4.75 2.86 2.12 1.46
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Table 6.3: RL characteristics of the simple dispersion CUSUM chart

RL λ
h Properties 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00

k = 0.25,ARL0 = 120

6.000 ARL 120.29 36.22 17.14 10.96 8.37 5.71 4.46 3.27
SDRL 112.24 28.5 11.21 6.31 4.45 2.74 1.96 1.31

k = 0.25,ARL0 = 200

6.859 ARL 199.83 45.54 19.96 12.79 9.56 6.52 5.06 3.67
SDRL 183.5 36.32 12.9 7.24 4.9 2.96 2.14 1.41

k = 0.50,ARL0 = 120

3.604 ARL 119.44 34.03 14.53 8.77 6.23 3.91 2.97 2
SDRL 116.59 30.21 11.63 6.33 4.1 2.15 1.48 0.84

k = 0.50,ARL0 = 200

4.096 ARL 200.28 45.39 17.94 10.29 7.26 4.6 3.35 2.25
SDRL 192.05 40.78 14.57 7.19 4.71 2.57 1.62 0.93
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6.4 Comparisons

In this section, we provide comparisons of the proposed schemes with: i) the

simple dispersion CUSUM scheme and ii) the EWMA dispersion charts for

individual observations, investigated in Yeh et al. (2010).

6.4.1 Proposed Schemes vs. the Simple dispersion

CUSUM Scheme

From the results in Tables 6.1-6.3, we can see the benefit of using the two run

rules schemes, particularly for the detection of small magnitude shifts. For

example, with k = 0.50 and ARL0 = 200, the ARL1 of simple CUSUM scheme

is 45.39 when λ = 1.25, while the corresponding ARL1 for Schemes I and II

are 36.55 and 36.51 with h at infinity. This indicates that CUSUM dispersion

Schemes I and II require, on average, 9 fewer observations than the simple

CUSUM scheme to detect a multiplicative shift of magnitude λ = 1.25 in the

process standard deviation. Similarly, we observe a significant improvement

in the out-of-control run length characteristics of the run rules schemes over

the simple CUSUM dispersion scheme, particularly for smaller values of λ.

Figures 6.1 and 6.2 represent the ARL comparison of the proposed CUSUM

Schemes I and II (using h = ∞) with the simple CUSUM scheme when

ARL0 = 120 and 200 for k = 0.25 and 0.5. In each plot, Log (ARL) is

plotted against λ for better visual comparison. The results in Tables 6.1-6.2

and the ARL curves in Figures 6.1-6.2 indicate that:

• for the detection of small process shifts, the performance of the runs

rules schemes are very similar to each other and significantly better

than the performance of the simple dispersion CUSUM scheme

• for large shifts, the performance of the simple dispersion CUSUM scheme

is slightly better than that for the runs rules schemes. Similar results

can be easily obtained for other values of ARL0.

Figure 6.3 displays the cumulative probability vs. run length curves of the

three CUSUM dispersion schemes when ARL0 = 120 and 200 for k = 0.5
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and λ = 1.25. For detecting this shift in the process standard deviation,

the cumulative probability of detection for both of the proposed schemes is

consistently above that of the simple dispersion CUSUM scheme, particularly

at shorter run lengths, which indicates that there is a higher probability of

detecting small shifts quickly.

The results have been provided for ARL0 = 120 and 200 but similar results

can be obtained for other values of ARL0. Control chart coefficients for fixing

the control limits of these three schemes to obtain a desired ARL0 ranging

from 100 to 500 have been presented. For the simple dispersion CUSUM

scheme, plots of ARL0 vs h have been provided in Figure 6.4, whereas for

the two proposed run rule Schemes I and II, plots of ARL0 vs w are provided

when h is taken to be infinity (to achieve the smallest ARL1) in Figures 6.5

and 6.6 respectively. These plots can be used to approximate the control

limits for the desired ARL0 values. For example, the first plot in Figure 6.6

shows that w = 6.25 approximately gives ARL0 = 370 for Scheme II using k

= 0.25.
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Figure 6.1: ARL comparison of the simple dispersion CUSUM scheme
with CUSUM Schemes I and II (using h = ∞) when ARL0 = 120

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

k = 0.25

λ

Lo
g(

A
R

L)

CUSUM
Scheme I
Scheme II

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

k = 0.50

λ

Lo
g(

A
R

L)

CUSUM
Scheme I
Scheme II

Figure 6.2: ARL comparison of the simple dispersion CUSUM scheme
with CUSUM Schemes I and II (using h = ∞) when ARL0 = 200
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Figure 6.3: Run length curves of the simple dispersion CUSUM scheme
and CUSUM Schemes I & II (using h = ∞) for k = 0.5 and λ = 1.25

when ARL0 = 120 and 200
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Figure 6.4: The choice of h for different ARL0 values for the simple
dispersion CUSUM scheme
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Figure 6.5: The choice of w for different ARL0 values for the run rule

dispersion CUSUM scheme I when h = ∞
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Figure 6.6: The choice of w for different ARL0 values for the run rule
dispersion CUSUM scheme II when h = ∞

6.4.2 Proposed Schemes vs. dispersion EWMA

Charts

In this section, we compare the ARL performance of the two proposed

schemes with the EWMS chart (proposed by MacGregor and Harris (1993)),
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the M-EWMS chart (a modified EWMS chart proposed by Huwang et al.

(2009)) and the COMB chart (proposed by Yeh et al. (2010)), for the case

of individual observations. The design structures of these charts are briefly

described below:

The EWMS chart is based on plotting the EWMA statistic Wt = (1 −
η)Wt−1 + η(Xt − µ0)

2 against the following control limits:

UCL = σ2
0χ1−α/2 (6.2)

LCL = σ2
0χα/2

where η represents the smoothing parameter.

The M-EWMS chart is based on plotting the EWMA statisticW ′
t = ln[(Wt/σ

2
0−

(1− ηt))/η] against the following set of control limits:

UCL = Ê(T 2
t ) + L ∗

√
V̂ ar(T 2

t ) (6.3)

LCL = Ê(T 2
t ) + L ∗

√
V̂ ar(T 2

t )

where L is the control chart multiplier andWt represents the EWMA statistic

of the EWMS chart. Ê(T 2
t ) and V̂ ar(T 2

t ) are defined as:

Ê(T 2
t ) = ln(pkqt)−

1

qt
− 1

3q2t
+

2

15q4t
(6.4)

V̂ ar(T 2
t ) =

2

qt
+

2

q2t
+

4

3q3t
− 16

15q5t

where pt =
∑t

i=1(1−η)2(t−i)/
∑t

i=1(1−η)t−i and qt = [
∑t

i=1(1−η)t−i]2/
∑t

i=1(1−
η)2(t−i).

Yeh et al. (2010) proposed a EWMSI chart that is based on plotting the

statistic W ′′
t = (1 − η)W ′′

t−1 + λ (1/Xt − 1/µ0) against the simulated control

limits.

The COMB chart is based on monitoring process dispersion by implemen-

ting the upper EWMS and the lower EWMSI charts in a single structure. The

control limits are then adjusted to achieve a specified ARL0.

Yeh et al. (2010) reported ARL results for these charts using the smoo-
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thing parameter η = 0.05, 0.1 and 0.15 for ARL0 = 370. For a fair comparison,

the ARL of the two proposed schemes have also been computed after fixing

the ARL0 = 370. Figure 6.7 presents the ARL comparison of the two propo-

sed schemes using k = 0.25 and the EWMS, M-EWMS and COMB charts

using η = 0.1. The ARL curves indicate that both the proposed schemes out-

perform the EWMS, M-EWMS and COMB charts for the detection of small

process shifts. For moderate shifts in process dispersion, the performance of

the COMB chart is slightly better than the rest of the control schemes.
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Figure 6.7: ARL comparison of the proposed schemes I and II with
EWMS, M-EWMS and COMB charts when ARL0 = 370

Based on our evaluation of the run length distributions, the main findings

of the study are:

• the two proposals significantly improve the detection ability of the CU-



6.5 Illustrative Examples 167

SUM chart to detect small and moderate shifts in dispersion at the cost

of a very small increase in the run length for larger shifts. (cf. Tables

6.1-6.2);

• the ARL and SDRL decreases for both schemes as the value of λ in-

creases (cf. Tables 6.1-6.2);

• the two proposed schemes have almost the same run length properties

as may be seen from Tables 6.1-6.2 and Figures 6.1-6.3 and so either

may be used effectively;

• for the detection of small and moderate shifts in process dispersion,

h = ∞ performs better than all the pairs in terms of optimum ARL1

(as may be seen from Tables 6.1-6.2). Hence, we recommend the use

of h = ∞ (Figures 6.5 and 6.6 can be used to get the required control

limits for the proposed Schemes I and II respectively);

• the proposed run rules based dispersion CUSUM schemes perform bet-

ter in terms of run length efficiency compared to the simple dispersion

CUSUM scheme, the EWMS chart, the M-EWMS chart and the COMB

chart, particularly for the detection of small shifts in process dispersion.

6.5 Illustrative Examples

In this section, we provide illustrative examples to demonstrate the applica-

tions of the proposed procedures. For this purpose, we have generated two

datasets which will be referred as Dataset 1 and Dataset 2, containing some

in-control points and some out-of-control points following the work of Khoo

(2004), Antzoulakos and Rakitzis (2008), Riaz et al. (2011) and Abbas et al.

(2011).

Dataset 1 contains 50 observations, of which the first 20 are generated

from N(0, 1) referring to an in-control situation and the remaining 30 obser-

vations are generated from N(0, 1.25) referring to a small shift in the process

dispersion parameter (i.e. out-of-control situation). Dataset 2 contains 30
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observations, of which the first 20 are generated from N(0, 1) referring to an

in-control situation and the remaining 10 observations are generated from

N(0, 2) referring to a moderate shift in the process dispersion parameter.

The CUSUM dispersion statistics for these observations in the two datasets

are calculated and the three schemes (i.e. the two proposed CUSUM disper-

sion Schemes I and II and the simple dispersion CUSUM scheme) are applied

by fixing ARL0 = 120 when k = 0.25. For the simple CUSUM dispersion

scheme, h = 6 (see Table 6.3) is used as a control limit to have the desired

ARL0 = 120. For the proposed Scheme I, w = 4.337 and h = 8.864 (from

Table 6.1) are used, whereas, for proposed Scheme II, w = 4.926 and h =

6.646 (from Table 6.2) are used for both the data sets. The graphical display

of the control charts with all the three schemes applied to the Datasets 1 and

2 are given in Figures 6.8 and 6.9 respectively.

In Figures 6.8 and 6.9 the labels used for the three types of control limits are

explained as:

• h: the threshold value of h for simple dispersion CUSUM scheme

• hS1 and wS1 represents the values of h and w for run rule Scheme I

• hS2 and wS2 represents the values of h and w for run rule Scheme II

In Figure 6.8, we see that out-of-control signals are received at sample points

47-49 by the simple dispersion CUSUM scheme, at sample points 34-37 and

47-50 by the proposed Scheme I, and at sample points 36, 37 and 47-50 by the

proposed Scheme II. Similarly, from Figure 6.9 we can see that the simple

dispersion CUSUM scheme is unable to provide any out-of-control signal,

whereas out-of-control signals are received at sample points 29 and 30 by

Scheme I and at sample point 30 by Scheme II. This clearly indicates that

the proposed schemes are not only signaling earlier than the classical scheme

but are also giving more out-of-control signals.

The outcomes of these two illustrative examples are in accordance with

the findings of Section 6.4. Therefore, we recommend the application of our

proposals in every type of process in general and particularly for sensitive
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processes (cf. Bonetti et al. (2000)) where a small change may have very

serious effects.
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Figure 6.8: CUSUM chart for the simple dispersion CUSUM scheme
and the proposed schemes I and II for dataset 1 when k = 0.25 and

ARL0 = 120
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Figure 6.9: CUSUM chart for the simple dispersion CUSUM scheme
and the proposed schemes I and II for dataset 2 when k = 0.25 and

ARL0 = 120

6.6 Conclusions

Every process is subject to variation. From the perspective of quality control,

it is important to differentiate between the inherent variation and the unusual

variation. For an efficient and smart monitoring of the process parameters,

we have a variety of detection rules available but their use has been mainly li-

mited to Shewhart type control charts for location and dispersion parameters.

Recently, the use of these rules has been extended to EWMA and CUSUM

structures for location parameter. In this study, we have studied their ap-

plication to CUSUM charts for monitoring the dispersion parameter as well.

These proposals result in better performance of a dispersion CUSUM control

chart, especially for the detection of small shifts. The comparisons revea-

led that the proposed schemes outperformed the simple dispersion CUSUM

chart in terms of ARL. Also, the implementation of the proposal is made easy
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by deriving the coefficients for commonly used ARL0 values and showing its

application on simulated datasets. Therefore, we recommend the use of our

proposal for the efficient monitoring of process dispersion parameter.
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Chapter 7

Nonparametric Progressive

Mean Control Chart for

Monitoring Process Location

Nonparametric control charts are widely used when the parametric distribu-

tion of the quality characteristic of interest is questionable. In this study,

we proposed a nonparametric progressive mean control chart, namely the

NPPM chart, for efficient detection of disturbances in process location or

target. The proposed chart is compared with the recently proposed nonpara-

metric EWMA and nonparametric CUSUM charts using different run length

characteristics, such as the average run length, the standard deviation of

the run length and the percentile points of the run length distribution. The

comparisons revealed that the proposed chart outperformed the recent non-

parametric EWMA and nonparametric CUSUM charts in terms of detecting

the shifts in process mean. A real life example concerning the fill heights of

soft drink beverage bottles is also provided to illustrate the application of

the proposed nonparametric control chart. This chapter is based on Abbasi

et al. (2012b).
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7.1 Introduction

Most of the Statistical Process Control (SPC) charts are based on the as-

sumption that the parametric distribution of the quality characteristic of

interest is known. In many real life situations, this assumption is not valid

and hence the use of parametric control charts for the monitoring of process

parameters can give unfavorable results in the form of low detection ability

and high false alarm rates. In these scenarios, it may be better to use a

non-parametric control chart. Research has been done in the field of non-

parametric control charts by many researchers, including Das (2009), Qiu

et al. (2010), Human et al. (2010), Khilare and Shirke (2010) and Pawar and

Shirke (2010). Different nonparametric EWMA (NPEWMA) and nonpara-

metric CUSUM (NPCUSUM) control charts have also been proposed recently

for quick detection of small shifts in process parameters. Li and Wang (2010)

proposed NPEWMA and NPCUSUM charts based on the Man-Whitney sta-

tistics, Zou and Tsung (2011) proposed a multivariate EWMA control chart

using the weighted version of sign test, Graham et al. (2011) proposed a

NPEWMA sign chart for monitoring process location using individual obser-

vations, Yang et al. (2011) proposed two NPEWMA control charts, namely

the nonparametric EWMA sign (NPSE) chart and the nonparametric Arc-

sine EWMA sign (NPASE) chart, while Yang and Cheng (2011) proposed a

nonparametric CUSUM (NPSC) chart for quick detection of shifts from the

process target using the sign statistics.

In this chapter, we use the progressive mean (PM) as the process moni-

toring statistic instead of using a monitoring statistic based on the EWMA

or the CUSUM weighting schemes. PM is defined as the cumulative ave-

rage of the sample values observed over time. Suppose we are interested

in monitoring a quality characteristic X , following a distribution f(x). Let

X1, X2, . . . , Xn be a sample of size n from this distribution. The progressive

mean statistic is defined as:

PMt =
X1 +X2 + · · ·+Xt

t
=

∑t
j=1Xj

t
(7.1)
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The benefit of using the progressive mean statistic is its quick convergence

to the process target compared to the Shewhart, EWMA or CUSUM monito-

ring statistics. Figure 7.1 presents plots of the progressive mean, Shewhart,

EWMA and CUSUM monitoring statistics for a standard normal process

where the target is 0. We can clearly see the quick convergence ability of

PM towards the process target, as compared to other statistics. Due to this,

we expect that a control chart based on the progressive mean statistic will

perform better than the Shewhart, the CUSUM and the EWMA charts.

Progressive Mean

t

PM

0 100 200 300 400 500

0.
00

0.
75

1.
50

Shewhart

t

X

0 100 200 300 400 500

−3
0

3

EWMA

t

EW
M

A

0 100 200 300 400 500

−0
.5

0.
0

0.
5

CUSUM

t

CU
SU

M

0 100 200 300 400 500

0
3

6

Figure 7.1: Progressive mean, Shewhart, EWMA and CUSUM moni-
toring statistics for a standard normal process

The rest of the study is organized as follows: Section 7.2 describes the

design structure of the proposed NPPM control chart; Section 7.3 evaluates

the performance of the proposed chart using different run length characteris-

tics; Section 7.4 provides the comparison of the NPPM chart with recently

proposed NPSE, NPASE and NPSC charts; and Section 7.5 presents an

example to illustrate the application of the proposed chart and finally the

chapter ends with conclusions.
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7.2 The Proposed Nonparametric

Progressive Mean (NPPM) Chart

In this section, we describe the structure of the nonparametric progressive

mean (NPPM) control chart, proposed for the purpose of quick detection

of shifts from the process target.

Suppose X1 . . .Xn represents a sample of size n from a process with a

target (or location) at µ. Define p to be the probability of X greater than µ.

i.e. p = pr(Xi > µ). For an in-control process, p = p0 = 0.5 (the in-control

process proportion), the process is said to be out-of-control for p 6= p0. The

purpose of the proposed control chart is the efficient detection of departures of

p from its in-control value p0. Yang et al. (2011) showed that Mt =
∑n

i=1 Ii

follows a binomial distribution with parameters n and p0, where Ii takes

value 1 for Xi > µ and 0 otherwise. The binomial distribution of Mt can

be transformed into a normal random variable by the arcsine transformation

(Yang et al. (2011)):

Zt = sin−1
√

Mt/n ∼ N(µZ , σ
2
Z) (7.2)

where µZ and σZ are defined as:

µZ = sin−1(
√
p0) and σZ = 1/4n (7.3)

Instead of using the EWMA or CUSUM weighting schemes, we will use

Z to produce a progressive mean statistic (PMt) for time point t:

PMt =
Z1 + Z2 + Z3 + · · ·+ Zt

t
=

∑t
j=1Zj

t
(7.4)

The expected value and the variance of the PM statistic are given as:

E(PMt) = µZ = sin−1(
√
p0) and V ar(PMt) =

σZ

t
=

1/4n

t
(7.5)

Using the mean and the variance of PMt given in (5), the widely used 3-sigma
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limits are:

UCLt = sin−1(
√
p0) + 3 ∗

√
1/4n

t
(7.6)

CL = sin−1(
√
p0)

LCLt = sin−1(
√
p0)− 3 ∗

√
1/4n

t

Similarly to the EWMA and the CUSUM schemes, the NPPM chart uses

both current and past information from the observed samples, which makes

it effective for the detection of small shifts. A couple of problems have been

identified for the above control limits: i) the use of 3 as the control chart

multiplier does not guarantee a desired in-control average run length; and

ii) these control limits remain too wide relative to the plotting statistics for

higher values of t, leading to a small number of out-of-control signals for

larger values of t. This motivates us to redefine the control limits that take

care of these issues, following Abbas et al. (2011). The revised limits (that

have been used for the rest of this study) are defined as:

UCLt = sin−1(
√
p0) + L′ ∗ 1

f(t)

√
1/4n

t
(7.7)

CL = sin−1(
√
p0)

LCLt = sin−1(
√
p0)− L′ ∗ 1

f(t)

√
1/4n

t

where L′ represents a control chart multiplier used to set the in-control ave-

rage run length to a particular level and f(t) is an arbitrary function of t.

The NPPM chart triggers an out-of-control signal for any PMt lying outside

the control limits at point t.
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7.3 Performance Evaluation

The average run length (ARL) is the most important and widely used mea-

sure to evaluate the performance of control charts. The performance can be

evaluated by two ARL values:

• ARL0: the average number of samples until an out-of-control signal is

detected by a control chart when the process is in-control

• ARL1: the average number of samples until an out-of-control signal is

detected by a control chart when the process is shifted to an out-of-

control value.

Large values of ARL0 and small values of ARL1 are desirable for any control

chart setting. In this study, a Monte Carlo simulation with 50,000 iterations

is used to approximate the run length distribution of the proposed NPPM

chart following Lucas and Saccucci (1990), Maravelakis et al. (2005) and

Abbasi (2010). Note that Kim (2005) and Schaffer and Kim (2007) indicates

that 5000 replications are enough to obtain reasonable estimates of ARLs in

many control chart settings. To get a better insight of the performance of

the proposed charts, the standard deviation and the percentile points of the

run length distribution are also provided.

The summary of the run length characteristics of the NPPM chart is

reported in Table 7.1, where ARL denotes the average run length and SDRL

denotes the standard deviation of the run length distribution. The column

corresponding to p = 0.5 provides the run length characteristics when the

process is assumed to be in statistical control. The process is said to be out-of-

control for p 6= 0.5. We considered different choices for f(t) in our simulation

study for the computation of control limits. But here the results are only

provided for f(t) = t0.20, which gives the best run length performance for the

proposed NPPM chart. Control chart multipliers L′ are chosen to give the

in-control average run length of 370 (i.e. ARL0 = 370). The relative standard

errors of the results reported in Tables 1 are found to be less than 1.0%, as

checked by repeating the simulations. This is quite acceptable in control

chart studies (for details, see Kim (2005) and Schaffer and Kim (2007)).
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The simulations have been done in R and the computer programs can be

obtained from the author on request. Moreover, the percentile points of

the run length distribution of the proposed NPPM chart are reported in

Table 7.2. In Table 7.2, Qp represents the pth percentile of the run length

distribution of the NPPM chart. Similarly, the run length characteristics of

the proposed chart can be easily computed for other ARL0 values. Table 7.3

presents values of control chart multipliers L′ to achieve a specified ARL0 for

some representative values of n considering p0 = 0.5.

The results reported in Tables 7.1 and 7.2 are for the case when the pro-

cess is assumed to be out-of-control from the start (this can also be referred

as the zero-state ARL). This is not always the case, hence we also investigate

the steady-state behavior of the NPPM chart. A monitoring statistic is

said to be in steady-state if a process remains in-control for a long period

(without any false signals) before the occurrence of any change in the parame-

ters. The distribution of the detection of out-of-control sample points, after

the change has occurred is known as the steady-state run length distribution

and its mean as the steady-state ARL (Lucas and Saccucci (1990)). Table

7.4 presents steady-state ARL results for the proposed NPPM chart, when

the process is assumed to be in-control for the first t samples. The results

for t = 0 are also included in Table 7.4 for comparison. We can observe that,

as t increases, (i.e. as the in-control period before the occurrence of shift

increases), the NPPM chart gets slower in the detection of shifts. This is

expected due to the fact that the PM statistic uses the average of all the

previous PM values, hence giving a bit of extra weight to the in-control

samples.

Based on our evaluation of the run length characteristics, the main fin-

dings of the study are: i) the proposed chart efficiently detects small as well

as large departures from the in-control process proportion p0; ii) the run

length distribution of the proposed chart is positively skewed; iii) the ARL,

the SDRL and the percentile points of the run length distribution decrease

with an increase in the values of δ and n; iv) the proposed chart is equally effi-

cient for the detection of positive and negative shifts in p0; v) the steady-state

performance of the NPPM chart is less efficient compared to the zero-state
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performance; vi) the NPPM chart uses the cumulative average of the sample

values, observed over time as the monitoring statistic which can be very use-

ful for processes that have the tendency to go out-of-control at the start of a

monitoring cycle or that produce frequent out-of-control signals; and vii) the

application of the proposed chart can be easily executable in this modern era

of computer technology.
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Table 7.1: Run length characteristics of the proposed NPPM control
chart when ARL0 = 370

p
n 0.05 0.15 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.85 0.95

9 ARL 1.42 2.37 3.93 5.40 7.96 13.62 34.24 370.28 34.23 13.75 7.97 5.38 3.94 2.35 1.42
SDRL 0.58 1.03 1.81 2.60 4.20 8.27 26.42 720.28 26.45 8.35 4.18 2.61 1.82 1.02 0.58

10 ARL 1.42 2.22 3.61 4.94 7.33 12.65 31.97 370.33 31.84 12.70 7.33 4.92 3.61 2.21 1.42
SDRL 0.52 0.86 1.60 2.35 3.84 7.61 24.22 716.94 24.19 7.66 3.84 2.34 1.60 0.86 0.52

11 ARL 1.44 2.19 3.48 4.74 6.97 11.99 30.06 371.54 30.03 11.98 6.99 4.72 3.47 2.18 1.44
SDRL 0.52 0.78 1.46 2.18 3.53 6.99 22.23 738.09 22.30 6.99 3.54 2.18 1.47 0.77 0.52

12 ARL 1.46 2.18 3.37 4.51 6.57 11.27 28.28 370.67 28.26 11.26 6.55 4.50 3.38 2.17 1.47
SDRL 0.51 0.71 1.30 1.94 3.20 6.50 20.71 736.12 20.71 6.49 3.19 1.94 1.30 0.71 0.51

13 ARL 1.49 2.09 3.17 4.25 6.20 10.65 26.73 370.04 26.71 10.63 6.19 4.24 3.17 2.09 1.49
SDRL 0.50 0.61 1.20 1.83 3.02 6.07 19.34 723.38 19.40 6.04 3.01 1.83 1.21 0.60 0.50

14 ARL 1.15 1.82 2.98 4.02 5.88 10.11 25.50 369.83 25.47 10.11 5.89 4.02 2.97 1.82 1.15
SDRL 0.36 0.73 1.23 1.77 2.86 5.72 18.30 725.64 18.30 5.72 2.86 1.76 1.25 0.73 0.36

15 ARL 1.17 1.84 2.92 3.89 5.63 9.64 24.26 369.37 24.30 9.64 5.62 3.89 2.92 1.84 1.17
SDRL 0.38 0.68 1.11 1.61 2.64 5.39 17.21 704.36 17.28 5.37 2.65 1.60 1.12 0.68 0.38

20 ARL 1.07 1.62 2.45 3.25 4.68 8.00 20.05 369.38 20.04 7.96 4.69 3.25 2.45 1.63 1.08
SDRL 0.26 0.54 0.87 1.29 2.09 4.24 13.49 730.62 13.58 4.21 2.11 1.29 0.86 0.54 0.27

25 ARL 1.01 1.32 2.07 2.76 4.02 6.88 17.20 367.46 17.23 6.86 4.04 2.76 2.08 1.32 1.01
SDRL 0.09 0.48 0.77 1.11 1.79 3.52 11.17 725.82 11.26 3.51 1.79 1.10 0.77 0.48 0.08
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Table 7.2: Percentile points of the run length distribution for the pro-
posed NPPM control chart

p
n 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

10 Q0.05 10 6 3 2 2 1 1 1 1 1
Q0.25 45 14 7 5 3 3 2 2 1 1
Q0.50 128 26 11 7 5 3 3 2 2 1
Q0.75 365.75 43 17 9 6 5 3 3 2 2
Q0.95 1454.9 79 28 15 9 6 5 4 3 2

12 Q0.05 11 6 4 3 2 2 1 1 1 1
Q0.25 48 14 7 4 3 2 2 2 1 1
Q0.50 137 24 10 6 4 3 3 2 2 1
Q0.75 387 38 15 8 6 4 3 3 2 2
Q0.95 1538 70 24 13 8 6 4 3 3 2

15 Q0.05 10 5 3 2 2 1 1 1 1 1
Q0.25 47 11 6 4 3 2 2 1 1 1
Q0.50 136 20 8 5 4 3 2 2 1 1
Q0.75 388 31 12 7 5 3 3 2 2 1
Q0.95 1479.8 56 20 11 7 5 4 3 2 2

20 Q0.05 11 5 3 2 2 1 1 1 1 1
Q0.25 45 10 5 3 2 2 2 1 1 1
Q0.50 133 17 7 4 3 2 2 2 1 1
Q0.75 376 26 10 6 4 3 2 2 2 1
Q0.95 1417.9 47 16 8 6 4 3 2 2 2

Table 7.3: Control chart multiplier L′ to achieve fixed ARL0

ARL0

n 200 250 300 350 370 400 500

10 3.303 3.489 3.639 3.765 3.803 3.882 4.071
15 3.228 3.387 3.528 3.654 3.692 3.762 3.939
20 3.195 3.351 3.501 3.624 3.650 3.738 3.927
25 3.168 3.333 3.477 3.606 3.626 3.714 3.888



7.3 Performance Evaluation 183

Table 7.4: Steady-state ARL of the proposed NPPM chart

p
n t 0.5 0.55 0.6 0.65 0.7 0.75 0.85 0.95

10 0 370.33 31.84 12.70 7.33 4.92 3.61 2.21 1.42
25 378.81 37.16 17.58 11.26 8.22 6.40 4.37 3.05
50 387.82 41.14 19.37 12.46 9.36 7.33 5.02 3.57
100 420.91 43.22 21.39 14.27 10.46 8.18 5.70 4.10

12 0 370.67 28.26 11.26 6.55 4.50 3.38 2.17 1.47
25 379.55 34.61 15.79 10.27 7.56 5.95 4.08 2.85
50 393.62 36.87 17.61 11.59 8.66 6.86 4.72 3.31
100 418.16 39.61 19.92 12.94 9.74 7.76 5.38 3.81

15 0 369.37 24.30 9.64 5.62 3.89 2.92 1.84 1.17
25 368.66 30.19 13.96 9.12 6.73 5.34 3.70 2.62
50 378.90 31.73 15.53 10.31 7.67 6.08 4.24 3.03
100 404.16 35.03 17.05 11.54 8.73 6.95 4.83 3.47

20 0 369.38 20.04 7.96 4.69 3.25 2.45 1.63 1.08
25 367.87 25.34 12.10 7.89 5.87 4.68 3.27 2.35
50 370.54 27.60 13.50 8.93 6.77 5.40 3.78 2.72
100 408.24 29.97 14.93 10.14 7.63 6.19 4.39 3.13
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7.4 Comparisons

In this section we compare the zero-state ARL performance of the propo-

sed NPPM chart with the recent proposals of Yang et al. (2011) and Yang

and Cheng (2011). Yang et al. (2011) proposed two nonparametric EWMA

charts, namely the nonparametric EWMA sign (NPSE) chart and the nonpa-

rametric arcsine EWMA sign (NPASE) chart, while Yang and Cheng (2011)

proposed the nonparametric CUSUM (NPC) chart for quick detection of de-

partures from the in-control process proportion p0.

The NPSE chart is based on plotting the EWMA statistic Wt, given as:

Wt = λMt + (1− λ)Wt−1 (7.8)

where Mt is defined in Section 7.2. Abbasi (2012) provided the corrected

limits for the NPSE chart, given as:

UCL = n/2 +K

√
λ

2− λ
(n/4) (7.9)

CL = n/2

LCL = n/2−K

√
λ

2− λ
(n/4)

where λ is the weight assigned to the most recent observation. The NPSE

chart gives an out-of-control signal for any Wt lying outside the above control

limits.

Yang et al. (2011) also proposed the NPASE chart by making use of

the arcsine transformation defined in (7.2). The NPASE chart is based on

plotting the statistic W ′
t , given as:

W ′
t = λZt + (1− λ)W ′

t−1 (7.10)
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where Zt is defined in Section 7.2. The chart gives an out-of-control signal

when W ′
t goes out of the given limits:

UCL = sin−1(
√
0.5) +K

√
λ

2− λ
(1/4n) (7.11)

CL = sin−1(
√
0.5)

LCL = sin−1(
√
0.5)−K

√
λ

2− λ
(1/4n)

Moreover, a nonparametric CUSUM chart (NPSC) has been proposed by

Yang and Cheng (2011), which is based on plotting the CUSUM statistics,

given as:

C+
t = max(0, C−

t−1 +Mt − (np0 + k)) (7.12)

C−
t = min(0, C+

t−1 +Mt − (np0 − k))

where k is known as the reference value, defined as k = n |p0−p1|
2

and C+
0 =

C−
0 = 0. The NPSC chart gives an out-of-control signal for any C+

0 ≥ H or

C−
0 ≤ −H , where H is chosen to obtain a specified in-control average run

length.

The ARL results of the NPSE , NPASE and NPSC charts for some

representative values of n are computed using similar simulation routines

and are reported in Table 7.5. The ARL results for these charts are in close

agreement with the results reported in Yang et al. (2011) and Yang and

Cheng (2011) which confirms the validity of our simulation routines. The

design structures of the charts compared in this study are summarized in

Table 7.6.

The results in Tables 7.1 and 7.5 indicate that the out-of-control ARL

(ARL1) of the NPPM chart is significantly lower than the ARL1 of the

NPSE, NPASE and NPSC charts: for example, when n = 12 the ARL1 =

28.26, 11.26, 6.55 for the proposed NPPM chart for p = 0.55, 0.6 and 0.65,

while the corresponding values of ARL1 for the NPSE chart are 44.74, 17.07,

10.29, for the NPASE chart are 44.93, 16.91, 10.10, and for the NPSC chart

are 59.07, 18.58, and 10.96. It indicates that the proposed NPPM chart
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requires, on average, nearly 16, 6 and 4 fewer subgroups than the NPSE and

NPASE charts and 31, 7 and 4 fewer subgroups than the NPSC chart to

detect these shifts in p0.

Figure 7.2 compares the ARL of the proposed NPPM chart with NPSE ,

NPASE and NPSC charts using different values of p and n when ARL0 =

370. In each plot, p is plotted on the horizontal axis, while the ARL is plotted

on the vertical axis using a logarithmic scale to facilitate better visual com-

parison. Clearly, the ARL curves of the NPPM chart are consistently lower

than the ARL curves of the NPSE , NPASE and NPSC charts indicating a

better detection ability of the proposed chart.

To get more insight into the run length distribution of the NPPM ,

NPSE , NPASE and NPSC charts, Figure 7.3 presents run length curves

(RLCs) of these charts for certain values of n when p = 0.6. We can observe

that the RLCs of the proposed NPPM chart are higher than the RLCs of

the other charts, indicating that the NPPM chart has greater probability of

detection for shorter run lengths. Note that this high probability at shorter

run lengths indicates that the shifts in the process location will be detected

quickly with high probability. The superiority of the proposed NPPM chart

over the other charts can be seen for all sample sizes.

We also observed that, even at sufficiently large values of t (say t = 100),

the steady-state behaviour of the proposed NPPM chart shows superiority

over the other competing charts, particularly for the detection of small shifts

in process location.
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Figure 7.2: ARL comparison of the proposed NPPM chart with
NPSE , NPASE and NPSC charts when ARL0 = 370
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Table 7.5: ARL of NPSE , NPASE and NPSC charts when ARL0 =
370

p
Chart n 0.05 0.15 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.85 0.95

NPSE 10 3.44 4.44 6.29 8.08 11.37 19.10 51.47 369.53 51.37 19.04 11.40 8.11 6.33 4.44 3.44
12 3.10 4.05 5.73 7.33 10.20 16.92 45.29 371.25 44.74 17.07 10.29 7.36 5.74 4.04 3.10
15 3.01 3.59 5.07 6.48 8.99 14.64 38.12 371.55 38.19 14.68 8.99 6.46 5.07 3.58 3.01
20 2.60 3.18 4.40 5.58 7.65 12.27 31.16 371.91 30.60 12.25 7.65 5.56 4.41 3.18 2.60

NPASE 10 2.71 3.94 6.01 7.90 11.26 19.12 52.54 372.33 52.56 19.23 11.23 7.88 6.02 3.93 2.71
12 2.36 3.60 5.48 7.15 10.13 16.93 45.50 370.00 44.93 16.91 10.10 7.14 5.47 3.59 2.36
15 2.31 3.27 4.92 6.32 8.88 14.62 38.84 369.02 38.37 14.65 8.85 6.31 4.89 3.27 2.31
20 2.09 2.89 4.21 5.40 7.47 12.13 30.48 370.00 30.71 12.21 7.48 5.42 4.19 2.88 2.08

NPSC 10 4.19 5.17 7.02 8.87 12.35 21.39 64.55 369.20 64.30 21.33 12.36 8.87 7.05 5.16 4.19
12 4.01 4.56 6.26 7.92 10.88 18.65 58.13 372.00 59.07 18.58 10.96 7.91 6.28 4.57 4.01
15 3.18 4.08 5.45 6.76 9.31 15.78 50.99 371.50 50.81 15.94 9.34 6.77 5.46 4.09 3.19
20 3.00 3.41 4.47 5.49 7.51 12.69 40.71 369.23 40.77 12.65 7.49 5.51 4.49 3.40 3.00
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Table 7.6: Design structures of different control charts

Control Chart Monitoring Statistic Control limits

NPPM PMi =
∑t

j=1 Zj

t
LCL = sin−1(

√
p0)− L′ ∗ 1

f(t)
∗
√

1/4n
t

UCL = sin−1(
√
p0) + L′ ∗ 1

f(t)
∗
√

1/4n
t

NPSE Wt = λMt + (1− λ)Wt−1 LCL = n/2−K
√

λ
2−λ

(n/4)

UCL = n/2 +K
√

λ
2−λ

(n/4)

NPASE W ′
t = λZt + (1− λ)W ′

t−1 LCL = sin−1(
√
0.5)−K

√
λ

2−λ
(1/4n)

UCL = sin−1(
√
0.5) +K

√
λ

2−λ
(1/4n)

NPSC C+
t = max(0, C−

t−1 +Mt − (np0 + k)) H

C−
t = min(0, C+

t−1 +Mt − (np0 − k))
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Figure 7.3: Run length curves of the NPPM , NPSE , NPASE and
NPSC charts when ARL0 = 370 and p = 0.6
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7.5 Example

To illustrate the application of the proposed NPPM chart, we use the same

example as used by Yang et al. (2011) and Yang and Cheng Yang and Cheng

(2011) from Montgomery (2009)

“The fill volume of soft-drink beverage bottles is an important

quality characteristic. The volume is measured (approximately)

by placing a gauge over the crown and comparing the height of

the liquid in the neck of the bottle against a coded scale. On

this scale, a reading of zero corresponds to the correct fill height.

Fifteen samples of size n = 10 have been analyzed, and the fill

heights are shown below:”

The data set with the PM , the EWMA (Wt and W ′
t ) and the CUSUM

(C+
t and C−

t ) statistics is given in Table 7.7. The control chart multipliers

have been chosen to give the desired in-control average run length of 370 for

all the charts. We use L′ = 3.803 for the proposed NPPM chart, L = 2.49

for NPSE and NPASE charts and H = 9.98 for the NPSC chart. The

resulting four control charts have been plotted in Figure 7.4.

The proposed NPPM chart shows better detection ability as it detects

the out-of-control signal at the 10th sample compared to the 13th sample

for NPSE, the 12th sample for the NPASE chart, while the NPSC chart is

unable to detect any out-of-control signal. This simple example clearly shows

the benefit of using the NPPM chart as compared to its counterparts.
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Figure 7.4: Control chart plots of NPPM , NPSE , NPASE and
NPSC charts for the given dataset
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Table 7.7: Data set with Progressive mean, EWMA and CUSUM mo-
nitoring statistics

Sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 M Z PMi Wt W ′
t C+

t C−
t

1 2.5 0.5 2.0 -1.0 1.0 -1.0 0.5 1.5 0.5 -1.5 7 0.991 0.991 5.100 0.796 2.8 0.0
2 0.0 0.0 0.5 1.0 1.5 1.0 -1.0 1.0 1.5 -1.0 6 0.886 0.939 5.145 0.800 4.6 0.0
3 1.5 1.0 1.0 -1.0 0.0 -1.5 -1.0 -1.0 1.0 -1.0 4 0.685 0.854 5.088 0.794 4.4 0.0
4 0.0 0.5 -2.0 0.0 -1.0 1.5 -1.5 0.0 -2.0 -1.5 2 0.464 0.756 4.933 0.778 2.2 -1.2
5 0.0 0.0 0.0 -0.5 0.5 1.0 -0.5 -0.5 0.0 0.0 2 0.464 0.698 4.787 0.762 0.0 -2.4
6 1.0 -0.5 0.0 0.0 0.0 0.5 -1.0 1.0 -2.0 1.0 4 0.685 0.696 4.747 0.758 0.0 -1.6
7 1.0 -1.0 -1.0 -1.0 0.0 1.5 0.0 1.0 0.0 0.0 3 0.580 0.679 4.660 0.749 0.0 -1.8
8 0.0 -1.5 -0.5 1.5 0.0 0.0 0.0 -1.0 0.5 -0.5 2 0.464 0.652 4.527 0.735 0.0 -3.0
9 -2.0 -1.5 1.5 1.5 0.0 0.0 0.5 1.0 0.0 1.0 5 0.785 0.667 4.551 0.738 0.8 -1.2
10 -0.5 3.5 0.0 -1.0 -1.5 -1.5 -1.0 -1.0 1.0 0.5 3 0.580 0.658 4.473 0.730 0.0 -1.4
11 0.0 1.5 0.0 0.0 2.0 -1.5 0.5 -0.5 2.0 -1.0 4 0.685 0.661 4.449 0.727 0.0 -0.6
12 0.0 -2.0 -0.5 0.0 -0.5 2.0 1.5 0.0 0.5 -1.0 3 0.580 0.654 4.377 0.720 0.0 -0.8
13 -1.0 -0.5 -0.5 -1.0 0.0 0.5 0.5 -1.5 -1.0 -1.0 2 0.464 0.639 4.258 0.707 0.0 -2.0
14 0.5 1.0 -1.0 -0.5 -2.0 -1.0 -1.5 0.0 1.5 1.5 4 0.685 0.643 4.245 0.706 0.0 -1.2
15 1.0 0.0 1.5 1.5 1.0 -1.0 0.0 1.0 -2.0 -1.5 5 0.785 0.652 4.283 0.710 0.8 0.0
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Nonparametric Progressive Mean Control Chart for Monitoring

Process Location

7.6 Conclusions

In this study we proposed a nonparametric progressive mean control chart,

namely the NPPM chart, using the progressive mean statistic. The propo-

sed chart can be used for the efficient detection of departures from the process

location or target, when the distribution of the quality characteristic of in-

terest is uncertain. The performance of the proposed chart is compared with

the recently proposed NPEWMA and NPCUSUM charts using different run

length characteristics. The comparisons revealed that the proposed NPPM

chart has better detection ability compared to its counterparts. This study

will help quality practitioners to choose an efficient nonparametric control

chart for the monitoring of process location or target.



Chapter 8

Summary and Future

Recommendations

8.1 Summary

Statistical process control provides tools for the monitoring of processes that

help in the detection of abnormal variations in process (location and spread)

parameters. This doctoral thesis deals with the variable control charts, for

the monitoring of quantitative characteristics. The main findings from the

conducted research are as follow:

• Chapter 2 investigated a number of Shewhart type dispersion control

charts for normal and non-normal processes in the monitoring phase

(Phase II). These dispersion charts are based on the sample range (R),

the sample standard deviation (S), the inter-quartile range (IQR),

Downton’s estimator (D), the average absolute deviation (MD), the

median absolute deviation (MAD), Sn and Qn estimates. Standardi-

zed variances and relative efficiencies were provided for all the estima-

tors, considering normal and non-normal parent distributions. Logistic

and Student’s t distributions are used to represent the heavy-tailed

symmetric distributions whereas Weibull, Gamma, Chi-square, Expo-

nential and Lognormal distributions represented the case of skewed

distributions.
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The comparisons revealed that, for the case when the assumption

of normality is valid, the S chart was the most efficient dispersion chart

and the D and the MD charts can be considered as close competitors.

For small values of sample size (n), the R and the IQR charts also

performed well but lost efficiency (compared to the other charts) with

increase in n. For non-normal parent distributions, the D and the MD

charts showed better performance compared to the rest of the charts.

The performance of the widely used R and S charts was greatly affected

for most of the non-normal parent distributions. The MAD, Sn and

Qn charts were generally less efficient except for (the extremely skewed)

lognormal distribution where these charts showed better detection abi-

lity, compared to the other charts. We discovered that, for a particular

parent distribution, the performance of a Phase II dispersion chart is

strongly related to the relative efficiency of the dispersion estimator

used in its construction.

• Chapter 3 investigated a wide range of Shewhart type charts for the

monitoring of process dispersion in the retrospective phase (Phase I).

In addition to the dispersion estimates considered for Phase II moni-

toring, the pooled sample standard deviation and the distribution-free

scale rank statistic (Jones-Farmer and Champ (2010)) were also exa-

mined. In SPC literature, the investigation of Phase I charts is mostly

limited to normal or contaminated normal distributions. Little work

has been to done to investigate a wide range of Phase I dispersion

charts for processes following non-normal distributions. In this chap-

ter, the Phase I performances of different dispersion charts for normal,

heavy tailed symmetric (Logistic and Student’s t) and skewed (Gamma

and Exponential) distributions were evaluated. The probability of the

charts to signal out-of-control samples (m1) in the Phase I dataset was

used as a performance measure. Control chart constants, required to

set the control limits for the under study charts, were provided for the

different parent distributions.

The comparison among the ability of different structures for the
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detection of out-of-control samples revealed that, under the ideal as-

sumption of normality, the S, D and MD charts exhibited the best

performance for smaller choices of m1 which deteriorated with an in-

crease in the value of m1. For larger values of m1, the newly suggested

V2 charting structure had the highest signaling probability to detect

out-of-control subgroups. The performance of most of the dispersion

charts (except the distribution-free T2 and V2 charts) was extremely

affected by an increase in the number of out-of-control samples. The

detection ability of the charts was even more affected with an increase

in the excess kurtosis and skewness for non-normal parent distributions.

The newly suggested V2 charting structure showed the best overall per-

formance for both normal and non-normal parent environments.

• Chapter 4 investigated the EWMA dispersion charts for the monito-

ring phase (Phase II). The design structures of these charts were based

on different dispersion estimates that were studied for Phase II moni-

toring using Shewhart charts (in Chapter 2). The performance of all

the EWMA dispersion charts was evaluated using different run length

characteristics such as average run length (ARL), median run length

(MDRL) and standard deviation of the run length distribution (SDRL).

To measure the overall effectiveness of the EWMA dispersion charts,

the extra quadratic loss (EQL) and the relative ARL (RARL) crite-

rion were examined. The results were reported for EWMA smoothing

parameter λ = 0.05, 0.25, 0.50 and 0.75 considering n = 5 and 10.

The comparisons revealed the superior performance of the SE chart

for normally distributed process with the DE and the MDE charts as

close competitors. The RE and QE charts also showed better perfor-

mance for n = 5, but not as good when n was increased. For non-

normal t and Gamma parent distributions, theDE and theMDE charts

showed the best detection ability, compared to the rest of the charts.

The QE chart again showed better performance but only for the small

sample size. From the EQL results, it was observed that, for normal

processes, most of the charts had better overall performance at either
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λ = 0.25 or λ = 0.50; while, for the non-normal processes, at λ = 0.05

or λ = 0.25. The comparisons of the EWMA charts with the correspon-

ding Shewhart charts indicated the superior performance of the EWMA

structures, particularly for the detection of small shifts in σ.

For a particular parent distribution, the performance of the EWMA

dispersion charts in Phase II also showed a strong relationship with the

relative efficiency of the dispersion estimator used in its construction.

• Chapter 5 showed the impact of two component measurement error

on the performance of EWMA control charts for the monitoring of

analytical measurements. The two component error model proposed

by Rocke and Lorenzato (1995), combined both additive error (that

dominates at lower concentrations) and the multiplicative error (that

dominates at higher concentrations) in a single model to adequately

describe measurement error over the entire range of observations for

an analytical process. This chapter evaluated the performance of the

EWMA location chart in presence of the two component measurement

error.

The run length results indicated the worst effect of two component

error on the EWMA chart performance occurred for low values of CV

and the concentration level (µ) of the analyte. It was shown that

the adverse effect of two component error model can be reduced by

taking extra measurements (k) at each sample point. The use of a cost

function approach was made to obtain the optimum choices of n and

k. These optimum values indicated that a large number of multiple

measurements (k) is usually required when the process variance (σ2) is

small compared to measurement error variances (σ2
η and σ2

ε ). As the

measurement error variances (σ2
η and σ2

ε ) became smaller compared to

σ2, it was beneficial to take more sample units instead of taking extra

measurements. It is also observed that, compared to the case of only

additive error, the run length performance of the EWMA chart was

more seriously affected by the presence of two component measurement

error, particularly at higher concentration levels.
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• Chapter 6 proposed the use of run rule schemes with a CUSUM disper-

sion chart for individual observations. In SPC literature, the investiga-

tion of run rules is mostly confined to Shewhart charts and their use

with the memory charts (such as the EWMA or the CUSUM charts) is

very limited. In this chapter, two run rule schemes for CUSUM disper-

sion charts were proposed with an aim of quickly detecting small shifts

in the process standard deviation (σ). The proposed run rule schemes

made use of a warning limit and declared a process to be out-of-control

if either a point lies beyond the control limit (h) or if 2-of-2 or 2-of-3

points lie outside the warning limit (w). The run length properties of

the proposed schemes were evaluated using Markov chain Monte Carlo

methods following the work of Fu et al. (2002). We observed that

both of the schemes were efficient and performed best for the detection

of small shifts, when the control limit h was set equal to infinity (i.e.

h = ∞). The run length results were provided for ARL0 = 120 and 200

but similar behaviours are also expected for other ARL0 values. Plots

of ARL0 vs w were provided for both the run rules schemes (at h = ∞)

that can be used to approximate the control limits for the desired ARL0

values (between 100 to 500).

The performance of the proposed schemes was compared with the

simple dispersion CUSUM and the relevant EWMA dispersion charts

(the EWMS chart, the M-EWMS chart and the COMB chart), for in-

dividual observations. The comparisons revealed superior run length

performance of the proposed schemes as compared to these counter-

parts, particularly for the detection of small shifts in σ.

• Chapter 7 proposed the use of the progressive mean statistic in nonpa-

rametric structures for the efficient detection of shifts in process target

or location. As compared to Shewhart, EWMA and CUSUM charting

statistics, the quick convergence ability of the PM statistic helped in

the early detection of shifts in process parameters. The proposed non-

parametric progressive mean (NPPM) chart was based on using the

transformed sign statistic in the progressive setup. The NPPM chart
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used the cumulative average of the sample values, observed over time

as the monitoring statistic. This can be very useful for processes that

have the tendency to go out-of-control at the start of a monitoring cycle

or that produce frequent out-of-control signals.

The performance of the NPPM chart was evaluated using dif-

ferent run length characteristics such as the average run length, stan-

dard deviation of the run length and the percentile points of the run

length distribution. The NPPM chart was equally efficient for the

detection of both positive and negative shifts in the in-control process

proportion (p0). The steady state performance of the NPPM chart

was shown to be less efficient as compared to than the zero-state per-

formance due to the fact of giving weight to the in-control sample

observations. The run length results were provided for ARL0 = 370

but similar behaviours have been observed for other choices of ARL0.

The values of the control chart multipliers were provided to achieve a

specified ARL0 (between 200 to 500) for some representative choices of

sample size n.

The comparisons among the competing charts revealed that the

proposedNPPM chart outperformed the recent nonparametric EWMA

and nonparametric CUSUM charts, in terms of detecting shifts in pro-

cess target or location.

8.2 Future Work

We discovered that the investigation of the following issues in SPC also needs

attention.

• Distribution fitting of the common cause variation in Phase I.

• Investigating the Phase II performance of Shewhart and EWMA disper-

sion charts for non-normal and contaminated normal processes when

only a limited number of samples are available for the estimation of

unknown parameters in Phase I.
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– We already did some work in this direction that includes robust

methods of estimating σ in Phase I and further to see how it effects

the EWMA chart’s performance in Phase II.

• Enhancing the performance of control charts with the use of auxiliary

information.

– A paper in this direction has already been submitted in Journal of

Advanced Manufacturing Technology that involves constructing

design structure of a Phase II variability chart based on using

information of a single auxiliary variable.

– In another study, we are investigating location estimators that uti-

lize information on one or/and two auxiliary variables for efficient

Phase II monitoring.

• Economic-statistical design of memory and memory less dispersion

charts.

• Development of distribution free EWMA structures for monitoring pro-

cess dispersion.

• Investigating the robustness to non-normality of progressive mean charts

for monitoring process location and dispersion.





Appendix A



204

Table A.1: Control chart coefficient t2 for different dispersion charts
under normal and non-normal distributions

Distribution n R S IQR D MD MAD Sn Qn

Normal 3 1.6903 0.8850 1.2530 0.9986 0.5634 0.6713 0.9995 0.9999
5 2.3260 0.9417 1.2310 1.0016 0.6642 0.8235 1.0034 1.0031
7 2.7000 0.9574 1.1194 0.9981 0.7022 0.8783 0.9990 0.9998
10 3.0764 0.9724 1.1009 0.9997 0.7390 0.9128 0.9933 1.0073
12 3.2576 0.9778 1.0815 1.0005 0.7489 0.9310 0.9957 1.0054

Logistic 3 1.6508 0.8647 1.2237 0.9753 0.5503 0.6525 0.9715 0.9720
5 2.2989 0.9235 1.1922 0.9776 0.6433 0.7741 0.9543 0.9584
7 2.7025 0.9453 1.0484 0.9772 0.6798 0.8172 0.9434 0.9528
10 3.1221 0.9621 1.3794 0.9778 0.7126 0.8433 0.9284 0.9593
12 3.3289 0.9676 0.9952 0.9767 0.7198 0.8506 0.9230 0.9500

Student’s t 3 1.6082 0.8435 1.1922 0.9502 0.5361 0.6253 0.9310 0.9314
5 2.2457 0.9011 1.1522 0.9490 0.6217 0.7302 0.9036 0.9094
7 2.6607 0.9268 0.9918 0.9504 0.6573 0.7698 0.8922 0.9038
10 3.1012 0.9454 0.9617 0.9503 0.6869 0.7883 0.8725 0.9080
12 3.3308 0.9536 0.9335 0.9505 0.6946 0.7963 0.8680 0.9011

Weibull 3 1.6310 0.8583 1.2091 0.9636 0.5437 0.6067 0.9033 0.9038
5 2.2496 0.9214 1.1914 0.9685 0.6429 0.7538 0.9085 0.9069
7 2.6032 0.9419 1.0897 0.9654 0.6803 0.8087 0.9033 0.8928
10 2.9607 0.9595 1.0698 0.9662 0.7151 0.8470 0.9073 0.9056
12 3.1321 0.9670 1.0534 0.9670 0.7253 0.8660 0.9090 0.8995

Chi-square 3 1.6091 0.8473 1.1928 0.9507 0.5364 0.5946 0.8853 0.8857
5 2.2199 0.9078 1.1656 0.9508 0.6289 0.7252 0.8765 0.8768
7 2.5913 0.9325 1.0526 0.9512 0.6668 0.7808 0.8754 0.8702
10 2.9607 0.9508 1.0298 0.9507 0.6995 0.8107 0.8705 0.8767
12 3.1438 0.9579 1.0071 0.9502 0.7075 0.8226 0.8678 0.8680

Gamma 3 1.5891 0.8383 1.1780 0.9389 0.5297 0.5738 0.8543 0.8547
5 2.1925 0.8991 1.1496 0.9384 0.6203 0.7016 0.8466 0.8479
7 2.5659 0.9269 1.0358 0.9399 0.6581 0.7522 0.8413 0.8359
10 2.9374 0.9460 1.0093 0.9387 0.6894 0.7816 0.8388 0.8433
12 3.1229 0.9546 0.9894 0.9394 0.6981 0.7959 0.8372 0.8361

Exponential 3 1.5004 0.7970 1.1122 0.8864 0.5001 0.4937 0.7351 0.7355
5 2.0848 0.8668 1.0831 0.8874 0.5844 0.5946 0.7083 0.7155
7 2.4438 0.8958 0.9498 0.8842 0.6154 0.6298 0.6921 0.6925
10 2.8252 0.9224 0.9238 0.8849 0.6446 0.6560 0.7005 0.7064
12 3.0209 0.9347 0.9022 0.8861 0.6530 0.6662 0.6949 0.6931

Lognormal 3 1.1911 0.6399 0.8830 0.7037 0.3970 0.3336 0.4967 0.4969
5 1.6995 0.7118 0.8385 0.7022 0.4524 0.3807 0.4546 0.4635
7 2.0654 0.7547 0.6534 0.7033 0.4743 0.3928 0.4332 0.4419
10 2.4858 0.7953 0.6228 0.7042 0.4928 0.4006 0.4286 0.4466
12 2.7253 0.8166 0.5931 0.7058 0.4981 0.4019 0.4201 0.4339
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Table A.2: Control chart coefficient t3 for different dispersion charts
under normal and non-normal distributions

Distribution n R S IQR D MD MAD Sn Qn

Normal 3 0.8848 0.4615 0.6559 0.5228 0.2949 0.5525 0.8227 0.8231
5 0.8644 0.3412 0.4606 0.3658 0.2485 0.4807 0.5519 0.5387
7 0.8293 0.2806 0.4380 0.2952 0.2150 0.4181 0.4259 0.4119
10 0.7986 0.2327 0.3457 0.2415 0.1869 0.3378 0.3342 0.3027
12 0.7773 0.2108 0.3223 0.2180 0.1711 0.3143 0.3000 0.2705

Logistic 3 0.9560 0.4997 0.7087 0.5648 0.3187 0.5684 0.8464 0.8468
5 0.9829 0.3830 0.4924 0.4028 0.2657 0.4720 0.5541 0.5454
7 0.9929 0.3258 0.4402 0.3318 0.2315 0.4078 0.4297 0.4207
10 0.9964 0.2750 0.4604 0.2724 0.1998 0.3277 0.3309 0.3161
12 0.9976 0.2508 0.3142 0.2459 0.1821 0.2999 0.2955 0.2791

Student’s t 3 1.0265 0.5413 0.7609 0.6064 0.3422 0.5607 0.8348 0.8352
5 1.1003 0.4316 0.5230 0.4388 0.2822 0.4548 0.5392 0.5330
7 1.1442 0.3756 0.4299 0.3621 0.2443 0.3897 0.4171 0.4108
10 1.1922 0.3226 0.3280 0.2975 0.2089 0.3082 0.3163 0.3083
12 1.2199 0.2997 0.3019 0.2708 0.1918 0.2844 0.2842 0.2746

Weibull 3 0.9580 0.5082 0.7102 0.5660 0.3193 0.5216 0.7766 0.7770
5 0.9587 0.3925 0.5010 0.4021 0.2704 0.4602 0.5263 0.5136
7 0.9384 0.3330 0.4666 0.3280 0.2354 0.4042 0.4132 0.3864
10 0.9191 0.2816 0.3658 0.2691 0.2041 0.3282 0.3320 0.2887
12 0.9056 0.2581 0.3414 0.2436 0.1872 0.3067 0.3001 0.2559

Chi-square 3 0.9945 0.5289 0.7372 0.5876 0.3315 0.5224 0.7778 0.7782
5 1.0177 0.4164 0.5175 0.4206 0.2792 0.4500 0.5177 0.5057
7 1.0179 0.3591 0.4716 0.3468 0.2444 0.3964 0.4082 0.3860
10 1.0138 0.3064 0.3672 0.2847 0.2110 0.3223 0.3254 0.2894
12 1.0093 0.2819 0.3399 0.2578 0.1934 0.2966 0.2922 0.2541

Gamma 3 1.0196 0.5447 0.7559 0.6024 0.3399 0.5143 0.7657 0.7661
5 1.0504 0.4328 0.5315 0.4333 0.2868 0.4457 0.5130 0.5031
7 1.0586 0.3752 0.4776 0.3577 0.2508 0.3926 0.4062 0.3818
10 1.0583 0.3208 0.3691 0.2927 0.2154 0.3164 0.3241 0.2860
12 1.0565 0.2962 0.3425 0.2662 0.1981 0.2941 0.2925 0.2528

Exponential 3 1.1234 0.6073 0.8328 0.6638 0.3745 0.4924 0.7332 0.7336
5 1.1942 0.5009 0.5891 0.4867 0.3179 0.4294 0.4950 0.4916
7 1.2190 0.4397 0.5034 0.4020 0.2764 0.3738 0.3919 0.3720
10 1.2389 0.3824 0.3912 0.3322 0.2387 0.3057 0.3237 0.2907
12 1.2451 0.3546 0.3599 0.3010 0.2183 0.2826 0.2912 0.2553

Lognormal 3 1.3956 0.7747 1.0346 0.8246 0.4652 0.3984 0.5931 0.5934
5 1.5988 0.6864 0.6968 0.6121 0.3760 0.3139 0.3647 0.3687
7 1.7858 0.6529 0.4583 0.5213 0.3287 0.2629 0.2783 0.2738
10 1.9611 0.6043 0.3377 0.4337 0.2793 0.2087 0.2244 0.2160
12 2.1005 0.5927 0.3001 0.4019 0.2595 0.1898 0.1980 0.1856
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Table A.3: Lower (α/2) quantile points of the distribution of Z for
different dispersion charts under normal and non-normal distributions

when α = 0.002

Distribution n R S IQR D MD MAD Sn Qn

Normal 3 0.0616 0.0326 0.0456 0.0364 0.0205 0.0008 0.0012 0.0012
5 0.3637 0.1527 0.1958 0.1613 0.1057 0.0219 0.0295 0.0342
7 0.6946 0.2523 0.1639 0.2617 0.1785 0.0682 0.0855 0.1055
10 1.0720 0.3537 0.2913 0.3646 0.2650 0.1747 0.2099 0.2546
12 1.3015 0.4149 0.2967 0.4210 0.3080 0.2066 0.2563 0.3041

Logistic 3 0.0554 0.0296 0.0411 0.0327 0.0185 0.0008 0.0012 0.0012
5 0.3319 0.1348 0.1751 0.1436 0.0945 0.0204 0.0261 0.0303
7 0.6292 0.2289 0.1405 0.2378 0.1607 0.0617 0.0811 0.0990
10 0.9980 0.3350 0.3471 0.3406 0.2485 0.1465 0.1917 0.2427
12 1.1717 0.3747 0.2667 0.3790 0.2802 0.1844 0.2328 0.2824

Student’s t 3 0.0553 0.0290 0.0410 0.0327 0.0184 0.0007 0.0011 0.0011
5 0.2909 0.1237 0.1549 0.1317 0.0836 0.0200 0.0259 0.0294
7 0.5894 0.2136 0.1321 0.2185 0.1493 0.0600 0.0731 0.0933
10 0.9072 0.2996 0.2356 0.3054 0.2210 0.1371 0.1733 0.2132
12 1.0957 0.3436 0.2439 0.3496 0.2530 0.1740 0.2177 0.2594

Weibull 3 0.0455 0.0241 0.0337 0.0269 0.0152 0.0008 0.0011 0.0011
5 0.3248 0.1333 0.1684 0.1406 0.0908 0.0218 0.0286 0.0333
7 0.6191 0.2273 0.1432 0.2345 0.1619 0.0639 0.0814 0.0985
10 0.9311 0.3136 0.2608 0.3206 0.2285 0.1517 0.1877 0.2198
12 1.1183 0.3607 0.2646 0.3685 0.2692 0.1796 0.2171 0.2646

Chi-square 3 0.0505 0.0268 0.0374 0.0298 0.0168 0.0008 0.0012 0.0012
5 0.3133 0.1282 0.1666 0.1375 0.0899 0.0206 0.0269 0.0311
7 0.5764 0.2111 0.1326 0.2203 0.1491 0.0560 0.0671 0.0867
10 0.8935 0.3000 0.2445 0.3071 0.2179 0.1372 0.1736 0.2083
12 1.1015 0.3514 0.2443 0.3579 0.2562 0.1741 0.2149 0.2573

Gamma 3 0.0494 0.0264 0.0367 0.0292 0.0165 0.0007 0.0010 0.0010
5 0.2733 0.1146 0.1440 0.1197 0.0777 0.0193 0.0260 0.0292
7 0.5352 0.1947 0.1277 0.2036 0.1406 0.0558 0.0680 0.0862
10 0.8662 0.2837 0.2322 0.2899 0.2111 0.1338 0.1626 0.1973
12 1.0556 0.3312 0.2349 0.3337 0.2434 0.1629 0.1998 0.2399

Exponential 3 0.0320 0.0167 0.0237 0.0189 0.0107 0.0005 0.0007 0.0007
5 0.1890 0.0781 0.0982 0.0809 0.0530 0.0140 0.0174 0.0201
7 0.3791 0.1402 0.0963 0.1452 0.1003 0.0383 0.0456 0.0572
10 0.6368 0.2126 0.1793 0.2158 0.1565 0.0895 0.1081 0.1318
12 0.7745 0.2526 0.1903 0.2552 0.1893 0.1226 0.1382 0.1686

Lognormal 3 0.0202 0.0104 0.0150 0.0119 0.0067 0.0004 0.0006 0.0006
5 0.1187 0.0484 0.0627 0.0518 0.0338 0.0078 0.0103 0.0116
7 0.2221 0.0819 0.0581 0.0845 0.0587 0.0235 0.0274 0.0344
10 0.3637 0.1200 0.1006 0.1234 0.0901 0.0536 0.0657 0.0810
12 0.4394 0.1411 0.1059 0.1434 0.1047 0.0701 0.0798 0.0943
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Table A.4: Upper (1−α/2) quantile points of the distribution of Z for
different dispersion charts under normal and non-normal distributions

when α = 0.002

Distribution n R S IQR D MD MAD Sn Qn

Normal 3 5.0781 2.6336 3.7644 3.0002 1.6927 3.1554 4.6982 4.7004
5 5.4800 2.1454 2.9096 2.3127 1.5700 2.7535 3.1284 3.1981
7 5.7617 1.9431 2.7514 2.0399 1.4815 2.5412 2.5681 2.6066
10 6.0339 1.7497 2.3519 1.8130 1.3976 2.1749 2.2462 2.0895
12 6.0533 1.6881 2.2293 1.7343 1.3439 2.0810 2.0961 1.9704

Logistic 3 6.0201 3.1611 4.4627 3.5568 2.0067 3.5261 5.2501 5.2527
5 6.6291 2.5929 3.2389 2.6622 1.7477 2.9255 3.3891 3.4908
7 7.0971 2.3109 2.8317 2.3066 1.5966 2.5622 2.6496 2.7212
10 7.5385 2.0834 3.2737 2.0891 1.4848 2.1359 2.2719 2.2251
12 7.6412 1.9622 2.1889 1.8953 1.4016 2.0237 2.0791 2.0150

Student’s t 3 7.6479 4.0606 5.6694 4.5185 2.5493 3.7318 5.5564 5.5591
5 8.8445 3.4935 3.8829 3.3992 2.0952 2.8208 3.3720 3.4142
7 9.3920 3.1611 2.9135 2.7993 1.8149 2.5113 2.7258 2.7552
10 10.4630 2.8866 2.3173 2.4543 1.6569 2.0522 2.1860 2.2001
12 10.7478 2.7541 2.1320 2.2869 1.5607 1.9289 1.9885 1.9876

Weibull 3 5.8434 3.1282 4.3317 3.4524 1.9478 3.1899 4.7495 4.7518
5 6.3226 2.5816 3.1947 2.5954 1.7238 2.7920 3.1315 3.2011
7 6.5423 2.2848 3.0017 2.1934 1.5774 2.5449 2.6048 2.4794
10 6.8481 2.0662 2.5119 1.9628 1.4827 2.1189 2.3037 2.0122
12 6.9263 1.9663 2.3748 1.8602 1.4271 2.0443 2.1437 1.8468

Chi-square 3 6.4038 3.4531 4.7471 3.7835 2.1346 3.2357 4.8178 4.8201
5 6.8253 2.8212 3.3871 2.7541 1.8277 2.8058 3.1928 3.2529
7 7.4282 2.6012 3.1337 2.4058 1.6632 2.4630 2.5825 2.4927
10 7.6663 2.2987 2.5376 2.0878 1.5183 2.1404 2.2647 2.0471
12 7.9404 2.2160 2.3846 1.9777 1.4669 2.0358 2.0848 1.8856

Gamma 3 6.6313 3.6300 4.9158 3.9179 2.2104 3.3087 4.9264 4.9288
5 7.3437 3.0226 3.5561 2.9458 1.9189 2.8233 3.2150 3.2961
7 7.5007 2.6402 3.1485 2.4416 1.7032 2.5185 2.6211 2.5309
10 7.9755 2.4133 2.6271 2.1421 1.5720 2.1215 2.3074 2.0431
12 8.2333 2.2945 2.3679 2.0237 1.4930 1.9594 2.0808 1.8268

Exponential 3 7.7378 4.3051 5.7361 4.5716 2.5793 3.4219 5.0950 5.0975
5 8.2139 3.4926 3.8982 3.2668 2.1034 2.8498 3.2589 3.3590
7 8.6614 3.1324 3.3532 2.7278 1.8455 2.4841 2.5807 2.4814
10 9.1918 2.8072 2.7316 2.3169 1.6515 2.0598 2.2603 2.0332
12 9.1887 2.6160 2.4846 2.1323 1.5439 1.9177 2.0122 1.8210

Lognormal 3 13.6859 7.7218 10.1453 8.0858 4.5620 3.6355 5.4130 5.4156
5 14.9092 6.4870 6.0127 5.5493 3.2444 2.4684 2.8511 2.9129
7 16.6869 6.1643 3.7764 4.7507 2.9136 1.9804 2.0747 2.0631
10 18.6468 5.7475 2.5807 3.7692 2.3552 1.4836 1.6497 1.6315
12 20.3507 5.7654 2.3165 3.6118 2.2258 1.3713 1.4645 1.3670



208

Table A.5: Relative Efficiency of different dispersion statistics under
normal and non-normal distributions

Distribution n R S IQR D MD MAD Sn Qn

Normal 3 99.24 100.00 99.24 99.21 99.25 40.14 40.14 40.13
5 95.06 100.00 93.77 98.42 93.79 38.53 43.39 45.52
7 91.05 100.00 56.11 98.20 91.63 37.91 47.26 50.61
10 84.98 100.00 58.08 98.13 89.53 41.82 50.59 63.42
12 81.63 100.00 52.33 97.90 89.04 40.78 51.20 64.21

Logistic 3 99.58 100.00 99.57 99.58 99.57 44.01 44.00 44.00
5 92.87 98.70 99.52 100.00 99.52 45.66 50.36 52.42
7 85.41 97.06 65.39 100.00 99.41 46.30 55.57 59.13
10 76.20 94.99 69.67 100.00 98.72 51.40 61.09 71.48
12 70.58 94.35 63.59 100.00 99.04 50.99 61.84 73.44

Student’s t 3 99.97 98.90 99.98 100.00 99.96 50.65 50.66 50.65
5 85.83 89.81 100.00 96.37 100.00 53.11 57.86 59.98
7 74.70 84.11 73.52 95.16 100.00 53.90 63.21 66.87
10 62.58 79.43 79.51 94.37 100.00 60.51 70.38 80.23
12 56.84 77.19 72.90 93.94 100.00 59.78 71.12 82.11

Weibull 3 99.97 98.38 99.96 99.96 100.00 46.66 46.66 46.66
5 94.91 94.99 97.48 100.00 97.44 46.25 51.36 53.74
7 88.83 92.35 62.96 100.00 96.41 46.21 55.17 61.63
10 80.49 90.06 66.35 100.00 95.22 51.66 57.93 76.33
12 75.91 89.08 60.42 100.00 95.26 50.60 58.22 78.41

Chi-square 3 99.99 98.02 99.99 99.98 100.00 49.48 49.48 49.47
5 93.11 93.01 99.27 100.00 99.29 50.82 56.09 58.83
7 86.15 89.64 66.22 100.00 98.95 51.57 61.13 67.56
10 76.48 86.36 70.53 100.00 98.56 56.74 64.18 82.30
12 71.42 84.99 64.62 100.00 98.51 56.62 64.93 85.89

Gamma 3 99.99 97.50 99.98 100.00 99.97 51.24 51.24 51.24
5 92.89 92.01 99.74 100.00 99.73 52.83 58.07 60.56
7 85.09 88.39 68.12 100.00 99.72 53.17 62.13 69.42
10 74.90 84.55 72.70 100.00 99.60 59.33 65.13 84.53
12 70.16 83.40 67.01 100.00 99.72 58.81 65.78 87.84

Exponential 3 100.00 96.55 99.99 99.96 99.97 56.36 56.35 56.35
5 90.16 88.59 100.00 98.35 99.97 56.72 60.57 62.67
7 81.07 83.73 71.81 97.59 100.00 57.26 62.91 69.91
10 71.31 79.79 76.47 97.30 100.00 63.15 64.22 80.97
12 65.79 77.65 70.23 96.85 100.00 62.11 63.64 82.37

Lognormal 3 100.00 93.67 100.00 99.98 99.98 96.26 96.28 96.26
5 71.50 68.05 91.63 83.28 91.60 93.07 98.32 100.00
7 51.35 51.29 78.03 69.88 79.93 85.70 93.02 100.00
10 37.58 40.52 79.56 61.67 72.82 86.19 85.34 100.00
12 30.80 34.73 71.47 56.43 67.41 82.04 82.37 100.00
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Table B.1: RL characteristics of the RE chart for normally distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 200.13 199.55 199.32 199.64 198.04 200.89 198.63 198.89
MDRL 139.00 140.00 140.00 135.00 137.00 138.00 139.00 138.00
SDRL 195.72 197.30 196.56 204.32 193.78 199.61 198.43 198.26

1.10 ARL 33.58 42.67 52.66 60.60 22.50 29.57 38.97 47.76
MDRL 26.00 31.00 37.00 42.00 18.00 21.00 27.00 33.00
SDRL 27.02 40.24 52.39 60.36 16.02 27.04 38.37 47.04

1.20 ARL 15.79 17.34 20.96 25.47 10.33 10.86 13.30 17.13
MDRL 13.00 13.00 15.00 18.00 9.00 8.00 10.00 12.00
SDRL 10.24 14.54 19.61 24.39 5.69 8.41 11.90 16.20

1.30 ARL 10.08 9.75 11.62 13.68 6.66 6.10 6.89 8.46
MDRL 9.00 8.00 9.00 10.00 6.00 5.00 5.00 6.00
SDRL 5.64 7.40 10.31 12.72 3.13 4.05 5.59 7.67

1.40 ARL 7.37 6.61 7.25 8.64 5.04 4.29 4.40 5.09
MDRL 7.00 5.00 5.00 6.00 5.00 4.00 4.00 4.00
SDRL 3.86 4.62 6.05 7.95 2.18 2.57 3.26 4.28

1.50 ARL 5.86 5.02 5.22 5.87 4.04 3.26 3.22 3.52
MDRL 5.00 4.00 4.00 4.00 4.00 3.00 3.00 3.00
SDRL 2.86 3.32 4.10 5.07 1.62 1.76 2.14 2.68

1.60 ARL 4.88 4.08 4.08 4.47 3.38 2.67 2.54 2.70
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.31 2.53 3.08 3.75 1.29 1.35 1.57 1.94

1.80 ARL 3.75 2.92 2.84 2.93 2.64 2.02 1.87 1.85
MDRL 3.00 3.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 1.63 1.68 1.90 2.21 0.97 0.94 1.03 1.12

2.00 ARL 3.06 2.38 2.21 2.24 2.18 1.67 1.52 1.48
MDRL 3.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.32 1.28 1.38 1.53 0.77 0.74 0.73 0.77

2.50 ARL 2.21 1.69 1.57 1.54 1.60 1.24 1.16 1.14
MDRL 2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL 0.92 0.82 0.81 0.85 0.59 0.45 0.39 0.38

3.00 ARL 1.77 1.41 1.29 1.28 1.29 1.09 1.06 1.04
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.74 0.62 0.56 0.58 0.47 0.30 0.23 0.20

3.50 ARL 1.52 1.25 1.18 1.16 1.14 1.04 1.02 1.01
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.62 0.49 0.42 0.41 0.35 0.19 0.14 0.12

4.00 ARL 1.35 1.16 1.11 1.10 1.06 1.01 1.01 1.01
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.53 0.39 0.33 0.32 0.25 0.11 0.09 0.08
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Table B.2: RL characteristics of the RE chart for t-distributed quality
characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 200.06 202.15 193.33 201.64 198.73 199.55 200.58 199.11
MDRL 139.00 140.00 135.00 141.00 138.00 139.00 141.00 136.00
SDRL 199.60 201.60 191.70 203.24 196.62 200.09 197.80 200.42

1.10 ARL 48.68 76.79 96.71 111.20 39.44 66.70 90.97 104.02
MDRL 37.00 55.00 66.00 77.00 30.00 47.00 63.00 73.00
SDRL 41.48 73.81 97.35 110.86 32.62 64.78 89.62 102.97

1.20 ARL 22.63 35.81 52.59 65.98 17.78 29.11 46.57 59.62
MDRL 18.00 26.00 37.00 46.00 15.00 22.00 32.00 42.00
SDRL 16.89 32.84 52.15 65.29 11.72 26.38 45.52 58.95

1.30 ARL 14.35 20.69 30.94 41.02 11.05 15.55 25.62 35.78
MDRL 12.00 15.00 22.00 29.00 10.00 12.00 18.00 25.00
SDRL 9.29 17.98 30.02 40.55 6.21 12.78 23.70 35.20

1.40 ARL 10.48 13.31 20.23 27.56 8.11 10.00 16.28 22.87
MDRL 9.00 10.00 15.00 19.00 7.00 8.00 12.00 16.00
SDRL 6.21 10.68 18.95 26.65 4.08 7.37 14.86 22.36

1.50 ARL 8.23 9.57 13.85 19.26 6.38 7.22 10.90 15.67
MDRL 7.00 8.00 10.00 14.00 6.00 6.00 8.00 11.00
SDRL 4.46 7.34 12.64 18.55 3.01 4.93 9.48 14.74

1.60 ARL 6.77 7.55 10.19 14.28 5.29 5.55 7.71 11.13
MDRL 6.00 6.00 8.00 10.00 5.00 5.00 6.00 8.00
SDRL 3.52 5.44 8.96 13.78 2.34 3.49 6.34 10.18

1.80 ARL 5.08 5.03 6.41 8.53 4.04 3.84 4.73 6.42
MDRL 5.00 4.00 5.00 6.00 4.00 3.00 4.00 5.00
SDRL 2.45 3.23 5.17 7.85 1.69 2.14 3.47 5.61

2.00 ARL 4.11 3.87 4.60 5.77 3.28 2.98 3.40 4.23
MDRL 4.00 3.00 4.00 4.00 3.00 3.00 3.00 3.00
SDRL 1.88 2.32 3.53 4.94 1.32 1.50 2.24 3.38

2.50 ARL 2.87 2.53 2.67 3.02 2.33 1.99 2.02 2.20
MDRL 3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 1.27 1.35 1.70 2.29 0.86 0.88 1.06 1.45

3.00 ARL 2.28 1.96 1.97 2.09 1.85 1.58 1.51 1.56
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 0.96 0.97 1.13 1.37 0.68 0.65 0.69 0.84

3.50 ARL 1.92 1.63 1.60 1.64 1.58 1.33 1.28 1.29
MDRL 2.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL 0.81 0.76 0.83 0.94 0.58 0.52 0.51 0.56

4.00 ARL 1.70 1.46 1.41 1.43 1.40 1.19 1.16 1.15
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.70 0.64 0.66 0.71 0.52 0.41 0.38 0.40
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Table B.3: RL characteristics of the RE chart for Gamma distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.05 199.09 201.73 201.65 199.77 199.92 201.94 200.48
MDRL 137.00 136.00 141.00 139.00 140.00 140.00 143.00 138.00
SDRL 196.57 195.36 197.85 202.67 197.44 197.35 202.44 202.69

1.10 ARL 46.43 66.42 82.46 91.39 34.82 52.24 71.34 82.33
MDRL 35.00 48.00 57.00 62.00 27.00 37.00 51.00 57.00
SDRL 39.70 63.39 82.08 92.58 28.25 49.93 69.23 81.97

1.20 ARL 21.75 29.76 41.96 49.82 15.77 21.75 31.60 41.02
MDRL 17.00 21.00 30.00 35.00 13.00 16.00 22.00 29.00
SDRL 16.03 27.30 40.68 49.69 10.25 19.09 30.12 40.52

1.30 ARL 13.89 17.13 24.20 29.48 9.94 12.07 17.06 22.63
MDRL 12.00 13.00 17.00 21.00 9.00 9.00 12.00 16.00
SDRL 8.87 14.71 22.94 28.38 5.56 9.57 15.71 21.83

1.40 ARL 10.06 11.54 15.61 19.58 7.43 7.87 10.67 14.12
MDRL 9.00 9.00 11.00 14.00 7.00 6.00 8.00 10.00
SDRL 5.97 9.29 14.49 18.78 3.79 5.65 9.53 13.09

1.50 ARL 7.93 8.40 10.89 13.64 5.85 5.79 7.30 9.50
MDRL 7.00 7.00 8.00 10.00 5.00 5.00 6.00 7.00
SDRL 4.39 6.38 9.70 13.18 2.71 3.74 5.96 8.63

1.60 ARL 6.55 6.66 8.15 10.15 4.89 4.54 5.50 6.89
MDRL 6.00 5.00 6.00 7.00 5.00 4.00 4.00 5.00
SDRL 3.42 4.77 6.96 9.38 2.20 2.77 4.17 6.04

1.80 ARL 4.92 4.58 5.32 6.25 3.75 3.24 3.54 4.18
MDRL 4.00 4.00 4.00 5.00 4.00 3.00 3.00 3.00
SDRL 2.42 3.04 4.16 5.44 1.58 1.75 2.44 3.36

2.00 ARL 4.03 3.59 3.87 4.51 3.05 2.58 2.63 2.96
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 1.93 2.21 2.87 3.78 1.20 1.32 1.63 2.19

2.50 ARL 2.80 2.40 2.44 2.58 2.17 1.76 1.70 1.75
MDRL 3.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00
SDRL 1.26 1.30 1.58 1.89 0.82 0.79 0.87 1.02

3.00 ARL 2.25 1.88 1.83 1.88 1.74 1.43 1.35 1.34
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 0.99 0.95 1.03 1.21 0.65 0.58 0.57 0.62

3.50 ARL 1.89 1.60 1.54 1.55 1.50 1.25 1.19 1.17
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.82 0.75 0.78 0.87 0.57 0.46 0.43 0.42

4.00 ARL 1.67 1.42 1.36 1.36 1.32 1.13 1.09 1.09
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.70 0.62 0.63 0.66 0.49 0.35 0.30 0.30
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Table B.4: RL characteristics of the SE chart for normally distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 200.08 200.49 201.25 199.65 199.32 202.96 199.87 199.80
MDRL 142.00 139.00 140.00 136.00 138.00 142.00 138.00 136.00
SDRL 197.20 195.53 199.05 201.96 194.62 198.65 198.92 204.47

1.10 ARL 33.18 40.28 50.41 57.95 20.18 24.89 31.82 39.67
MDRL 26.00 29.00 35.00 40.00 16.00 18.00 23.00 27.00
SDRL 26.42 37.67 48.83 57.80 13.73 21.66 30.68 39.35

1.20 ARL 15.14 16.17 19.89 23.73 9.32 9.13 10.83 13.35
MDRL 13.00 12.00 14.00 17.00 8.00 7.00 8.00 10.00
SDRL 9.76 13.60 18.39 23.17 4.93 6.69 9.26 12.47

1.30 ARL 9.79 9.33 10.54 12.35 6.04 5.27 5.49 6.56
MDRL 9.00 7.00 8.00 9.00 5.00 4.00 4.00 5.00
SDRL 5.48 7.17 9.21 11.65 2.74 3.27 4.17 5.72

1.40 ARL 7.15 6.33 6.78 7.87 4.55 3.69 3.62 3.95
MDRL 6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL 3.65 4.38 5.59 7.10 1.87 2.08 2.49 3.19

1.50 ARL 5.69 4.82 4.83 5.47 3.68 2.87 2.73 2.84
MDRL 5.00 4.00 4.00 4.00 3.00 3.00 2.00 2.00
SDRL 2.75 3.15 3.71 4.68 1.41 1.46 1.72 2.07

1.60 ARL 4.77 3.88 3.85 4.09 3.11 2.36 2.17 2.20
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.20 2.39 2.88 3.34 1.13 1.14 1.27 1.47

1.80 ARL 3.65 2.85 2.69 2.82 2.43 1.82 1.64 1.60
MDRL 3.00 3.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.59 1.59 1.77 2.13 0.86 0.82 0.84 0.88

2.00 ARL 3.00 2.31 2.13 2.11 2.02 1.52 1.37 1.33
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.28 1.25 1.30 1.42 0.71 0.66 0.60 0.63

2.50 ARL 2.14 1.65 1.51 1.48 1.47 1.16 1.10 1.09
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.89 0.81 0.76 0.80 0.55 0.38 0.31 0.30

3.00 ARL 1.72 1.36 1.28 1.25 1.21 1.05 1.03 1.02
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.70 0.59 0.54 0.54 0.42 0.22 0.18 0.16

3.50 ARL 1.46 1.23 1.16 1.14 1.08 1.02 1.01 1.01
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.59 0.47 0.42 0.40 0.28 0.14 0.10 0.09

4.00 ARL 1.33 1.14 1.10 1.09 1.04 1.01 1.00 1.00
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.52 0.37 0.32 0.31 0.19 0.08 0.06 0.05
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Table B.5: RL characteristics of the SE chart for t-distributed quality
characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.08 198.83 200.58 203.67 201.78 200.43 202.33 198.77
MDRL 137.00 137.00 140.00 142.00 142.00 141.00 140.00 136.00
SDRL 200.03 197.99 199.99 202.19 204.81 201.09 204.06 199.70

1.10 ARL 46.76 77.21 102.60 112.71 33.63 61.53 87.04 103.32
MDRL 35.00 54.00 72.00 78.00 26.00 45.00 60.00 72.00
SDRL 39.52 75.68 100.88 113.17 26.37 57.93 86.49 102.13

1.20 ARL 22.07 36.59 54.20 68.21 15.09 24.90 41.62 55.59
MDRL 18.00 26.00 38.00 48.00 13.00 19.00 29.00 39.00
SDRL 15.89 34.05 53.19 67.00 9.58 21.73 39.92 55.49

1.30 ARL 14.06 20.49 32.28 41.82 9.48 12.85 22.01 31.98
MDRL 12.00 15.00 23.00 30.00 9.00 10.00 16.00 23.00
SDRL 8.88 17.68 31.05 40.69 5.03 10.23 21.06 30.88

1.40 ARL 10.19 12.90 20.73 28.19 6.96 8.11 12.93 19.30
MDRL 9.00 10.00 15.00 20.00 6.00 7.00 9.00 14.00
SDRL 5.89 10.16 19.29 27.37 3.38 5.67 11.74 18.53

1.50 ARL 7.98 9.38 13.89 19.52 5.55 5.84 8.51 12.40
MDRL 7.00 7.00 10.00 14.00 5.00 5.00 6.00 9.00
SDRL 4.36 7.08 12.64 19.11 2.46 3.71 7.09 11.54

1.60 ARL 6.56 7.10 10.11 14.02 4.63 4.55 6.07 8.77
MDRL 6.00 6.00 8.00 10.00 4.00 4.00 5.00 6.00
SDRL 3.37 4.95 8.81 13.14 1.94 2.60 4.71 7.86

1.80 ARL 4.95 4.86 6.23 8.31 3.53 3.22 3.78 4.83
MDRL 5.00 4.00 5.00 6.00 3.00 3.00 3.00 4.00
SDRL 2.38 3.03 4.93 7.55 1.38 1.65 2.55 3.93

2.00 ARL 4.00 3.76 4.36 5.56 2.87 2.53 2.68 3.20
MDRL 4.00 3.00 3.00 4.00 3.00 2.00 2.00 3.00
SDRL 1.82 2.21 3.24 4.72 1.10 1.19 1.60 2.38

2.50 ARL 2.81 2.45 2.55 2.88 2.06 1.74 1.69 1.79
MDRL 3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 1.21 1.26 1.62 2.13 0.73 0.73 0.82 1.01

3.00 ARL 2.22 1.92 1.91 2.00 1.65 1.38 1.33 1.32
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 0.93 0.93 1.05 1.29 0.60 0.54 0.55 0.59

3.50 ARL 1.89 1.61 1.57 1.61 1.42 1.20 1.16 1.15
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.78 0.74 0.79 0.91 0.53 0.42 0.39 0.39

4.00 ARL 1.66 1.42 1.37 1.39 1.24 1.10 1.08 1.07
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.69 0.61 0.63 0.68 0.43 0.31 0.27 0.27
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Table B.6: RL characteristics of the SE chart for Gamma distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 201.32 198.34 198.74 202.32 199.05 200.52 201.43 200.02
MDRL 139.00 140.00 137.00 138.00 138.00 140.00 144.00 140.00
SDRL 199.07 195.98 200.69 205.81 197.17 197.76 199.99 201.55

1.10 ARL 45.87 67.51 85.01 92.86 32.25 48.31 64.76 77.32
MDRL 34.00 47.00 59.00 65.00 25.00 34.00 45.00 54.00
SDRL 39.51 65.65 83.96 92.00 24.82 45.85 64.10 76.23

1.20 ARL 21.47 30.87 42.67 51.05 14.45 19.07 27.13 36.00
MDRL 17.00 22.00 30.00 36.00 12.00 14.00 20.00 25.00
SDRL 15.66 28.25 41.69 49.81 8.93 16.41 25.39 35.08

1.30 ARL 13.85 17.76 24.10 30.73 9.27 10.50 14.51 19.44
MDRL 12.00 13.00 17.00 21.00 8.00 8.00 11.00 14.00
SDRL 8.89 15.30 22.63 30.29 4.99 8.04 13.05 18.68

1.40 ARL 10.21 11.74 15.65 19.64 6.92 6.93 8.90 11.79
MDRL 9.00 9.00 11.00 14.00 6.00 6.00 7.00 8.00
SDRL 6.05 9.38 14.41 18.74 3.41 4.76 7.56 11.13

1.50 ARL 7.98 8.65 11.19 14.01 5.42 5.14 6.19 7.88
MDRL 7.00 7.00 8.00 10.00 5.00 4.00 5.00 6.00
SDRL 4.47 6.48 9.82 13.13 2.47 3.18 4.97 7.17

1.60 ARL 6.65 6.72 8.36 10.49 4.56 4.08 4.68 5.71
MDRL 6.00 6.00 6.00 7.00 4.00 4.00 4.00 4.00
SDRL 3.54 4.78 7.11 9.57 1.98 2.38 3.49 4.89

1.80 ARL 5.01 4.68 5.37 6.54 3.50 2.96 3.06 3.51
MDRL 5.00 4.00 4.00 5.00 3.00 3.00 3.00 3.00
SDRL 2.48 3.06 4.30 5.65 1.42 1.57 2.02 2.71

2.00 ARL 4.04 3.61 3.95 4.55 2.85 2.35 2.35 2.53
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 1.96 2.21 2.83 3.81 1.10 1.15 1.39 1.75

2.50 ARL 2.84 2.43 2.41 2.59 2.05 1.67 1.56 1.57
MDRL 3.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.29 1.33 1.52 1.90 0.77 0.73 0.74 0.86

3.00 ARL 2.26 1.90 1.86 1.90 1.66 1.34 1.27 1.26
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 0.99 0.97 1.06 1.20 0.63 0.52 0.51 0.53

3.50 ARL 1.90 1.61 1.56 1.54 1.41 1.18 1.13 1.12
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.81 0.76 0.79 0.86 0.53 0.40 0.36 0.35

4.00 ARL 1.68 1.44 1.38 1.38 1.26 1.09 1.07 1.06
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.71 0.62 0.64 0.68 0.45 0.30 0.26 0.25
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Table B.7: RL characteristics of the QE chart for normally distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 201.31 200.74 200.65 199.90 201.55 200.88 200.16 199.82
MDRL 142.00 142.00 141.00 139.00 141.00 140.00 139.00 139.00
SDRL 202.89 203.24 199.05 199.22 197.78 198.20 197.72 197.87

1.10 ARL 33.92 44.25 54.30 63.95 28.20 36.43 46.17 55.76
MDRL 26.00 32.00 38.00 45.00 22.00 26.00 32.00 39.00
SDRL 26.83 40.57 53.71 63.94 21.36 33.68 45.04 55.28

1.20 ARL 15.52 17.91 21.83 26.77 12.79 14.05 17.42 21.94
MDRL 13.00 14.00 15.00 19.00 11.00 11.00 13.00 16.00
SDRL 10.10 15.16 20.60 25.85 7.67 11.50 16.00 21.03

1.30 ARL 10.12 10.04 11.47 14.08 8.21 8.02 9.21 11.25
MDRL 9.00 8.00 8.00 10.00 7.00 6.00 7.00 8.00
SDRL 5.92 7.83 10.38 13.37 4.32 5.85 7.93 10.40

1.40 ARL 7.36 6.75 7.43 8.72 6.06 5.41 5.80 6.82
MDRL 7.00 5.00 6.00 6.00 6.00 5.00 4.00 5.00
SDRL 3.83 4.71 6.26 7.97 2.88 3.50 4.57 5.93

1.50 ARL 5.96 5.17 5.27 6.05 4.94 4.14 4.15 4.68
MDRL 5.00 4.00 4.00 4.00 4.00 4.00 3.00 4.00
SDRL 2.92 3.39 4.16 5.31 2.23 2.48 3.01 3.89

1.60 ARL 4.89 4.11 4.20 4.63 4.14 3.39 3.27 3.54
MDRL 4.00 3.00 3.00 3.00 4.00 3.00 3.00 3.00
SDRL 2.31 2.61 3.22 3.92 1.76 1.93 2.23 2.83

1.80 ARL 3.75 3.01 2.85 3.03 3.18 2.48 2.34 2.40
MDRL 3.00 3.00 2.00 2.00 3.00 2.00 2.00 2.00
SDRL 1.63 1.74 1.92 2.28 1.29 1.30 1.44 1.71

2.00 ARL 3.05 2.41 2.24 2.30 2.59 2.01 1.87 1.84
MDRL 3.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00
SDRL 1.32 1.31 1.40 1.60 1.01 0.97 1.05 1.13

2.50 ARL 2.20 1.72 1.55 1.57 1.88 1.46 1.35 1.31
MDRL 2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL 0.92 0.83 0.79 0.88 0.73 0.63 0.60 0.60

3.00 ARL 1.76 1.41 1.31 1.30 1.51 1.23 1.16 1.14
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.73 0.63 0.57 0.59 0.59 0.45 0.40 0.38

3.50 ARL 1.52 1.25 1.18 1.18 1.31 1.12 1.08 1.07
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.63 0.49 0.43 0.44 0.49 0.34 0.29 0.26

4.00 ARL 1.36 1.17 1.12 1.11 1.19 1.07 1.04 1.03
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.53 0.40 0.35 0.34 0.41 0.26 0.20 0.18
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Table B.8: RL characteristics of the QE chart for t-distributed quality
characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.04 200.30 201.64 199.76 199.73 199.70 201.29 199.41
MDRL 137.00 141.00 141.00 137.00 137.00 128.00 144.00 141.00
SDRL 194.77 205.92 206.52 199.85 193.55 184.02 203.22 194.96

1.10 ARL 44.12 66.02 89.60 98.45 31.41 43.29 59.47 69.86
MDRL 33.00 46.00 62.00 69.00 25.00 31.00 42.00 48.00
SDRL 37.34 66.00 87.70 97.25 24.59 40.27 58.72 69.41

1.20 ARL 20.34 29.57 43.12 52.08 14.41 17.26 23.88 30.35
MDRL 17.00 21.00 30.00 36.00 12.00 13.00 17.00 21.00
SDRL 14.34 27.02 42.29 51.18 9.14 14.75 22.27 29.88

1.30 ARL 12.88 16.37 24.52 32.11 9.27 9.63 12.60 16.32
MDRL 11.00 12.00 17.00 22.00 8.00 8.00 9.00 12.00
SDRL 8.19 14.00 23.11 31.97 5.09 7.34 11.39 15.35

1.40 ARL 9.37 10.82 15.60 19.90 6.72 6.50 7.84 9.84
MDRL 8.00 8.00 11.00 14.00 6.00 5.00 6.00 7.00
SDRL 5.29 8.40 14.24 18.97 3.37 4.51 6.49 8.93

1.50 ARL 7.38 7.87 10.55 13.73 5.39 4.87 5.50 6.76
MDRL 7.00 6.00 8.00 10.00 5.00 4.00 4.00 5.00
SDRL 4.00 5.83 9.38 12.77 2.53 3.11 4.33 6.02

1.60 ARL 6.17 6.09 7.73 9.97 4.53 3.87 4.20 4.75
MDRL 6.00 5.00 6.00 7.00 4.00 3.00 3.00 4.00
SDRL 3.11 4.19 6.43 9.10 2.03 2.26 3.09 4.04

1.80 ARL 4.67 4.32 5.04 6.08 3.45 2.86 2.86 3.10
MDRL 4.00 4.00 4.00 5.00 3.00 3.00 2.00 2.00
SDRL 2.23 2.70 3.89 5.28 1.44 1.57 1.85 2.35

2.00 ARL 3.80 3.33 3.64 4.14 2.82 2.28 2.18 2.28
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 1.73 1.91 2.60 3.44 1.13 1.14 1.28 1.56

2.50 ARL 2.67 2.24 2.25 2.39 2.03 1.61 1.52 1.50
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.14 1.16 1.36 1.66 0.79 0.73 0.75 0.80

3.00 ARL 2.11 1.77 1.70 1.74 1.63 1.34 1.25 1.23
MDRL 2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL 0.89 0.85 0.91 1.05 0.63 0.55 0.50 0.50

3.50 ARL 1.79 1.51 1.46 1.46 1.40 1.19 1.14 1.12
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.76 0.69 0.70 0.76 0.54 0.42 0.37 0.36

4.00 ARL 1.60 1.35 1.31 1.29 1.26 1.11 1.08 1.07
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.66 0.56 0.56 0.58 0.46 0.32 0.27 0.26
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Table B.9: RL characteristics of the QE chart for Gamma distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.52 201.84 200.05 201.24 200.34 201.19 201.61 200.40
MDRL 137.00 139.00 143.00 142.00 136.00 140.00 143.50 139.00
SDRL 192.46 202.40 200.43 201.50 200.36 199.28 204.79 199.73

1.10 ARL 43.69 62.11 75.01 85.28 34.74 48.41 63.15 74.44
MDRL 33.00 44.00 53.00 59.00 27.00 35.00 45.00 51.00
SDRL 37.61 59.44 74.13 84.71 27.92 44.61 61.25 73.49

1.20 ARL 20.27 27.01 35.85 43.70 15.93 19.85 27.04 33.51
MDRL 16.00 20.00 25.00 31.00 14.00 15.00 20.00 24.00
SDRL 14.75 24.24 34.60 42.93 10.19 16.97 25.39 32.56

1.30 ARL 12.99 15.41 20.14 24.72 10.24 11.03 14.26 18.38
MDRL 11.00 12.00 14.00 17.00 9.00 9.00 10.00 13.00
SDRL 8.19 12.87 19.07 23.98 5.79 8.59 12.89 17.64

1.40 ARL 9.62 10.32 13.14 16.13 7.46 7.38 8.80 11.46
MDRL 8.00 8.00 10.00 12.00 7.00 6.00 7.00 8.00
SDRL 5.70 8.30 11.74 15.32 3.83 5.23 7.52 10.77

1.50 ARL 7.55 7.60 9.03 11.31 5.92 5.43 6.40 7.78
MDRL 7.00 6.00 7.00 8.00 5.00 5.00 5.00 6.00
SDRL 4.13 5.66 7.77 10.48 2.84 3.59 5.22 6.94

1.60 ARL 6.26 6.02 6.91 8.37 4.93 4.37 4.81 5.67
MDRL 6.00 5.00 5.00 6.00 5.00 4.00 4.00 4.00
SDRL 3.27 4.19 5.73 7.56 2.26 2.70 3.69 4.87

1.80 ARL 4.73 4.27 4.57 5.34 3.79 3.15 3.20 3.58
MDRL 4.00 4.00 4.00 4.00 4.00 3.00 3.00 3.00
SDRL 2.35 2.72 3.58 4.59 1.61 1.78 2.17 2.86

2.00 ARL 3.83 3.30 3.43 3.80 3.09 2.49 2.45 2.60
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 1.78 1.97 2.45 3.06 1.27 1.29 1.52 1.88

2.50 ARL 2.67 2.26 2.19 2.29 2.21 1.75 1.64 1.65
MDRL 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.20 1.24 1.33 1.60 0.89 0.82 0.85 0.93

3.00 ARL 2.16 1.77 1.70 1.71 1.77 1.43 1.34 1.31
MDRL 2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00
SDRL 0.95 0.89 0.93 1.04 0.70 0.62 0.59 0.60

3.50 ARL 1.83 1.52 1.45 1.46 1.52 1.23 1.19 1.17
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.79 0.71 0.71 0.78 0.60 0.46 0.44 0.42

4.00 ARL 1.61 1.38 1.31 1.31 1.35 1.15 1.11 1.09
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.69 0.60 0.57 0.60 0.51 0.38 0.34 0.31
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Table B.10: RL characteristics of theDE chart for normally distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 201.99 200.86 201.21 202.76 195.83 201.49 202.65 201.24
MDRL 140.00 140.00 138.00 140.50 137.00 144.00 140.00 138.00
SDRL 198.45 200.95 204.38 205.45 193.83 202.79 203.98 198.55

1.10 ARL 32.48 42.06 50.43 57.91 20.21 25.37 32.19 40.71
MDRL 25.00 30.00 35.00 41.00 16.00 18.00 23.00 29.00
SDRL 25.70 39.77 50.73 57.37 14.04 22.81 31.29 39.91

1.20 ARL 15.04 17.18 19.94 24.81 9.34 9.33 11.21 13.91
MDRL 13.00 13.00 14.00 18.00 8.00 7.00 8.00 10.00
SDRL 9.72 14.46 18.73 24.04 4.97 7.06 9.72 13.01

1.30 ARL 9.64 9.56 10.87 12.80 6.09 5.38 5.67 6.66
MDRL 8.00 8.00 8.00 9.00 6.00 4.00 4.00 5.00
SDRL 5.48 7.28 9.61 12.22 2.78 3.46 4.42 5.71

1.40 ARL 7.16 6.44 6.89 7.99 4.55 3.75 3.69 4.06
MDRL 6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL 3.79 4.51 5.61 7.21 1.88 2.10 2.57 3.30

1.50 ARL 5.62 4.91 4.99 5.61 3.70 2.92 2.75 2.92
MDRL 5.00 4.00 4.00 4.00 3.00 3.00 2.00 2.00
SDRL 2.73 3.15 3.88 4.83 1.44 1.53 1.74 2.15

1.60 ARL 4.72 3.96 3.89 4.24 3.12 2.42 2.23 2.26
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.20 2.46 2.88 3.43 1.14 1.19 1.31 1.53

1.80 ARL 3.65 2.93 2.71 2.83 2.42 1.85 1.65 1.63
MDRL 3.00 3.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.60 1.66 1.78 2.12 0.85 0.85 0.84 0.93

2.00 ARL 2.97 2.33 2.16 2.16 2.02 1.52 1.37 1.35
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.28 1.26 1.34 1.47 0.70 0.66 0.61 0.64

2.50 ARL 2.11 1.66 1.53 1.50 1.46 1.18 1.11 1.09
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.88 0.81 0.79 0.82 0.55 0.40 0.33 0.31

3.00 ARL 1.71 1.38 1.28 1.25 1.21 1.06 1.03 1.03
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.72 0.60 0.54 0.54 0.41 0.23 0.18 0.16

3.50 ARL 1.48 1.23 1.17 1.15 1.09 1.02 1.01 1.01
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.61 0.47 0.43 0.41 0.29 0.15 0.11 0.10

4.00 ARL 1.32 1.15 1.11 1.09 1.03 1.01 1.00 1.00
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.52 0.38 0.33 0.31 0.18 0.09 0.07 0.06
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Table B.11: RL characteristics of the DE chart for t-distributed quality
characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 201.46 199.79 200.08 200.18 199.57 198.21 201.18 202.78
MDRL 141.00 138.00 141.00 135.00 135.50 136.00 137.00 139.00
SDRL 199.82 199.76 196.26 202.64 200.95 196.57 201.99 202.65

1.10 ARL 44.47 71.16 91.83 104.41 29.51 46.86 68.75 83.82
MDRL 33.00 50.00 63.00 72.00 23.00 34.00 49.00 59.00
SDRL 38.19 69.20 92.99 104.81 22.78 44.30 67.24 82.40

1.20 ARL 21.06 32.14 47.79 58.45 13.32 17.83 28.28 40.14
MDRL 17.00 23.00 34.00 40.00 11.00 13.00 20.00 28.00
SDRL 15.25 29.35 45.61 57.50 8.19 15.21 27.19 38.96

1.30 ARL 13.42 17.95 27.00 35.33 8.43 9.64 14.21 20.42
MDRL 11.00 13.00 19.00 25.00 8.00 8.00 10.00 14.00
SDRL 8.43 15.06 26.07 34.39 4.34 7.09 12.72 19.63

1.40 ARL 9.69 11.64 16.92 23.15 6.30 6.32 8.54 12.00
MDRL 9.00 9.00 12.00 16.00 6.00 5.00 6.00 9.00
SDRL 5.59 9.28 15.51 22.33 2.98 4.15 7.17 10.94

1.50 ARL 7.63 8.52 11.78 16.06 4.98 4.69 5.74 7.91
MDRL 7.00 7.00 9.00 11.00 5.00 4.00 4.00 6.00
SDRL 4.10 6.30 10.50 15.43 2.19 2.82 4.44 6.93

1.60 ARL 6.30 6.61 8.75 11.58 4.16 3.74 4.30 5.56
MDRL 6.00 5.00 7.00 8.00 4.00 3.00 3.00 4.00
SDRL 3.20 4.70 7.38 10.83 1.73 2.10 3.05 4.75

1.80 ARL 4.80 4.54 5.38 6.76 3.19 2.72 2.84 3.30
MDRL 4.00 4.00 4.00 5.00 3.00 2.00 2.00 3.00
SDRL 2.30 2.84 4.21 5.89 1.24 1.33 1.77 2.50

2.00 ARL 3.85 3.50 3.91 4.71 2.62 2.19 2.17 2.34
MDRL 4.00 3.00 3.00 4.00 2.00 2.00 2.00 2.00
SDRL 1.76 2.05 2.80 3.95 0.98 1.01 1.21 1.59

2.50 ARL 2.73 2.32 2.38 2.55 1.90 1.53 1.46 1.46
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.17 1.21 1.45 1.85 0.68 0.64 0.67 0.74

3.00 ARL 2.15 1.84 1.76 1.83 1.52 1.25 1.20 1.19
MDRL 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.90 0.90 0.97 1.14 0.56 0.46 0.43 0.44

3.50 ARL 1.83 1.55 1.48 1.51 1.32 1.12 1.09 1.08
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.76 0.71 0.72 0.80 0.49 0.34 0.29 0.28

4.00 ARL 1.62 1.38 1.33 1.33 1.17 1.06 1.04 1.04
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.67 0.59 0.60 0.61 0.38 0.25 0.21 0.19
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Table B.12: RL characteristics of the DE chart for Gamma distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 198.72 199.21 203.65 199.72 198.84 200.33 198.57 200.90
MDRL 138.00 138.00 139.50 137.50 138.00 138.00 138.00 137.00
SDRL 195.13 198.32 208.75 201.34 196.96 200.10 193.20 200.06

1.10 ARL 43.42 60.60 76.31 86.29 28.16 40.60 52.75 65.32
MDRL 33.00 44.00 53.00 60.50 22.00 29.00 37.00 46.00
SDRL 36.75 57.87 74.89 84.52 21.42 37.80 52.94 64.45

1.20 ARL 20.66 27.24 36.92 44.14 13.01 15.66 21.30 27.61
MDRL 17.00 20.00 26.00 31.00 11.00 12.00 16.00 19.00
SDRL 14.82 24.90 35.33 43.19 7.79 13.09 19.76 26.50

1.30 ARL 13.11 15.62 20.93 25.99 8.37 8.56 10.95 14.25
MDRL 11.00 12.00 15.00 18.00 7.00 7.00 8.00 10.00
SDRL 8.18 13.12 19.56 25.19 4.35 6.21 9.58 13.39

1.40 ARL 9.65 10.40 13.34 16.57 6.17 5.77 6.89 8.59
MDRL 8.00 8.00 10.00 12.00 6.00 5.00 5.00 6.00
SDRL 5.53 8.11 12.07 15.87 2.93 3.73 5.55 7.72

1.50 ARL 7.60 7.72 9.36 11.53 4.97 4.40 4.74 5.78
MDRL 7.00 6.00 7.00 8.00 5.00 4.00 4.00 4.00
SDRL 4.09 5.64 8.05 10.83 2.17 2.64 3.58 4.94

1.60 ARL 6.33 6.06 7.16 8.74 4.12 3.56 3.69 4.28
MDRL 6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL 3.26 4.23 6.03 7.98 1.72 2.03 2.55 3.45

1.80 ARL 4.75 4.30 4.69 5.52 3.20 2.57 2.51 2.73
MDRL 4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.29 2.74 3.57 4.88 1.24 1.30 1.55 2.05

2.00 ARL 3.89 3.32 3.50 3.86 2.62 2.09 1.97 2.04
MDRL 4.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00
SDRL 1.83 1.98 2.52 3.13 1.01 1.00 1.09 1.30

2.50 ARL 2.73 2.24 2.22 2.31 1.89 1.50 1.38 1.37
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.21 1.19 1.34 1.65 0.70 0.64 0.62 0.66

3.00 ARL 2.17 1.80 1.71 1.72 1.53 1.24 1.16 1.15
MDRL 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.93 0.90 0.93 1.03 0.59 0.46 0.40 0.40

3.50 ARL 1.85 1.51 1.46 1.45 1.31 1.11 1.08 1.07
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.80 0.70 0.72 0.76 0.48 0.33 0.28 0.26

4.00 ARL 1.64 1.37 1.32 1.28 1.19 1.06 1.04 1.03
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.70 0.59 0.58 0.58 0.39 0.24 0.19 0.18
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Table B.13: RL characteristics of the MADE chart for normally dis-
tributed quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 198.77 199.92 201.01 200.85 202.57 199.45 199.91 201.75
MDRL 139.00 138.00 140.00 139.00 139.00 139.00 140.00 141.00
SDRL 194.50 201.34 198.04 201.87 200.88 200.13 197.03 198.01

1.10 ARL 53.25 65.61 75.09 83.52 33.61 42.69 54.31 62.82
MDRL 39.00 46.00 52.00 59.00 26.00 30.00 38.00 44.00
SDRL 46.82 63.14 73.87 82.81 26.46 40.63 53.25 62.17

1.20 ARL 26.11 31.52 37.71 42.45 15.45 17.64 21.68 26.99
MDRL 20.00 23.00 27.00 30.00 13.00 13.00 15.00 19.00
SDRL 20.22 28.66 36.35 42.04 10.12 14.76 20.22 26.27

1.30 ARL 16.80 18.92 21.77 25.37 10.01 10.00 11.59 14.32
MDRL 14.00 14.00 15.00 18.00 9.00 8.00 9.00 10.00
SDRL 11.68 17.15 21.02 24.63 5.70 7.81 10.22 13.68

1.40 ARL 12.27 12.44 14.59 16.53 7.32 6.72 7.48 8.86
MDRL 10.00 9.00 11.00 12.00 7.00 5.00 6.00 6.00
SDRL 7.95 10.41 13.47 15.51 3.86 4.79 6.25 8.14

1.50 ARL 9.62 9.37 10.56 11.88 5.82 5.09 5.44 6.12
MDRL 8.00 7.00 8.00 8.00 5.00 4.00 4.00 4.00
SDRL 5.83 7.53 9.37 11.27 2.84 3.33 4.37 5.38

1.60 ARL 8.01 7.53 8.08 9.25 4.86 4.07 4.12 4.60
MDRL 7.00 6.00 6.00 7.00 4.00 3.00 3.00 3.00
SDRL 4.73 5.90 7.12 8.54 2.28 2.52 3.05 3.79

1.80 ARL 5.97 5.28 5.56 6.16 3.70 2.98 2.88 3.05
MDRL 5.00 4.00 4.00 4.00 3.00 3.00 2.00 2.00
SDRL 3.38 3.78 4.63 5.54 1.64 1.71 1.93 2.34

2.00 ARL 4.86 4.19 4.17 4.50 3.04 2.38 2.25 2.32
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.68 2.86 3.24 3.86 1.29 1.27 1.40 1.63

2.50 ARL 3.37 2.78 2.71 2.74 2.17 1.71 1.58 1.58
MDRL 3.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.76 1.75 1.89 2.10 0.90 0.84 0.82 0.91

3.00 ARL 2.68 2.19 2.08 2.10 1.75 1.40 1.31 1.28
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.36 1.29 1.35 1.46 0.73 0.61 0.58 0.58

3.50 ARL 2.27 1.88 1.78 1.76 1.49 1.24 1.18 1.17
MDRL 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.15 1.06 1.06 1.11 0.61 0.48 0.43 0.43

4.00 ARL 2.00 1.68 1.59 1.60 1.33 1.15 1.11 1.10
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.01 0.90 0.88 0.93 0.52 0.38 0.33 0.32
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Table B.14: RL characteristics of the MADE chart for t-distributed
quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.71 202.90 201.17 198.91 202.61 201.67 198.68 197.59
MDRL 141.00 141.00 140.00 139.00 138.00 139.00 138.00 137.00
SDRL 194.97 200.80 200.81 199.09 204.07 199.64 198.71 198.86

1.10 ARL 58.47 76.98 91.49 99.96 36.75 51.61 62.43 72.85
MDRL 42.00 54.00 64.00 71.00 28.00 37.00 44.00 51.00
SDRL 53.21 75.20 91.00 97.31 29.97 48.64 61.99 71.49

1.20 ARL 28.96 37.78 49.01 55.84 16.87 21.13 26.73 33.60
MDRL 23.00 27.00 34.00 39.00 14.00 15.00 19.00 24.00
SDRL 22.89 36.28 47.67 54.74 11.13 18.64 25.10 32.93

1.30 ARL 18.43 22.64 29.27 34.39 10.83 11.68 14.62 18.42
MDRL 15.00 17.00 21.00 24.00 9.00 9.00 11.00 13.00
SDRL 13.32 20.20 28.03 34.05 6.40 9.45 13.27 17.57

1.40 ARL 13.30 15.40 19.63 23.18 7.91 7.87 9.17 11.21
MDRL 11.00 11.00 14.00 17.00 7.00 6.00 7.00 8.00
SDRL 8.86 13.18 18.67 22.36 4.24 5.77 7.99 10.45

1.50 ARL 10.63 11.34 13.93 16.71 6.30 5.75 6.47 7.90
MDRL 9.00 9.00 10.00 12.00 6.00 5.00 5.00 6.00
SDRL 6.74 9.27 12.92 15.99 3.13 3.90 5.34 7.14

1.60 ARL 8.92 9.06 10.82 12.86 5.25 4.63 4.94 5.78
MDRL 8.00 7.00 8.00 9.00 5.00 4.00 4.00 4.00
SDRL 5.45 7.00 9.67 12.33 2.51 2.98 3.85 5.00

1.80 ARL 6.57 6.20 7.18 8.11 3.96 3.34 3.40 3.67
MDRL 6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL 3.72 4.58 6.04 7.36 1.79 1.92 2.43 2.91

2.00 ARL 5.32 4.92 5.26 5.92 3.28 2.67 2.57 2.75
MDRL 5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.95 3.51 4.24 5.35 1.43 1.48 1.66 2.01

2.50 ARL 3.70 3.16 3.21 3.44 2.32 1.86 1.73 1.74
MDRL 3.00 3.00 3.00 3.00 2.00 2.00 1.00 1.00
SDRL 1.93 2.08 2.34 2.76 0.96 0.92 0.94 1.05

3.00 ARL 2.89 2.46 2.40 2.49 1.86 1.50 1.40 1.39
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.50 1.47 1.62 1.85 0.77 0.68 0.66 0.69

3.50 ARL 2.45 2.08 2.02 2.02 1.59 1.31 1.23 1.22
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.25 1.20 1.28 1.34 0.65 0.53 0.49 0.49

4.00 ARL 2.16 1.81 1.76 1.78 1.41 1.20 1.15 1.13
MDRL 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.09 1.01 1.03 1.13 0.56 0.44 0.39 0.38
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Table B.15: RL characteristics of the MADE chart for Gamma distri-
buted quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 198.94 198.42 198.90 198.41 200.25 199.58 198.98 201.79
MDRL 139.50 138.00 140.00 140.00 139.00 139.50 138.50 137.00
SDRL 195.48 196.08 196.63 197.47 200.37 195.83 198.88 203.21

1.10 ARL 59.71 76.70 90.77 99.50 37.84 51.31 64.28 74.45
MDRL 44.00 55.00 65.00 69.00 29.00 36.00 46.00 52.00
SDRL 53.42 74.22 87.83 99.48 30.56 48.19 61.43 74.28

1.20 ARL 28.92 38.69 48.21 54.83 17.44 21.61 28.47 35.13
MDRL 22.00 27.00 34.00 38.00 14.00 16.00 20.00 25.00
SDRL 23.24 36.07 46.89 54.60 11.82 19.02 27.23 34.46

1.30 ARL 18.53 22.96 28.87 34.91 11.17 12.38 15.45 19.35
MDRL 15.00 17.00 20.00 25.00 10.00 10.00 11.00 14.00
SDRL 13.47 20.90 28.12 33.28 6.68 9.93 14.13 18.60

1.40 ARL 13.69 15.67 19.94 23.14 8.12 8.10 9.69 12.09
MDRL 11.00 12.00 14.00 16.00 7.00 6.00 7.00 9.00
SDRL 9.32 13.43 18.97 22.71 4.35 6.03 8.52 11.35

1.50 ARL 10.64 11.77 14.34 16.85 6.48 6.08 6.86 8.26
MDRL 9.00 9.00 10.00 12.00 6.00 5.00 5.00 6.00
SDRL 6.83 9.87 13.28 16.18 3.31 4.26 5.79 7.37

1.60 ARL 8.81 9.28 10.99 12.95 5.41 4.85 5.33 6.23
MDRL 8.00 7.00 8.00 9.00 5.00 4.00 4.00 5.00
SDRL 5.39 7.42 9.95 12.11 2.68 3.17 4.17 5.47

1.80 ARL 6.65 6.39 7.31 8.36 4.07 3.47 3.56 3.96
MDRL 6.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL 3.90 4.76 6.35 7.68 1.86 2.07 2.55 3.19

2.00 ARL 5.38 4.98 5.31 5.95 3.35 2.78 2.72 2.90
MDRL 5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 3.03 3.62 4.36 5.22 1.48 1.53 1.77 2.17

2.50 ARL 3.70 3.26 3.30 3.50 2.40 1.90 1.81 1.82
MDRL 3.00 3.00 3.00 3.00 2.00 2.00 2.00 1.00
SDRL 1.97 2.12 2.46 2.79 1.01 0.95 1.03 1.13

3.00 ARL 2.94 2.51 2.48 2.56 1.91 1.55 1.46 1.45
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.54 1.53 1.72 1.91 0.81 0.73 0.72 0.76

3.50 ARL 2.44 2.10 2.04 2.08 1.63 1.35 1.27 1.26
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.25 1.23 1.30 1.41 0.68 0.57 0.53 0.54

4.00 ARL 2.17 1.85 1.79 1.82 1.45 1.23 1.17 1.16
MDRL 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.10 1.03 1.07 1.17 0.59 0.46 0.42 0.43
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Table B.16: RL characteristics of the SNE chart for normally distribu-
ted quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.34 202.81 201.56 201.04 198.67 201.18 198.08 202.60
MDRL 137.00 141.00 140.00 139.00 137.00 142.00 139.00 141.00
SDRL 198.25 200.79 201.44 200.26 194.83 197.35 193.44 199.34

1.10 ARL 50.30 61.94 71.82 79.93 30.11 39.57 52.47 60.85
MDRL 37.00 44.00 51.00 56.00 23.00 29.00 37.00 43.00
SDRL 44.16 58.50 69.90 78.41 23.45 36.54 51.06 59.36

1.20 ARL 23.90 28.70 33.16 38.39 13.74 15.37 19.80 24.87
MDRL 19.00 21.00 24.00 27.00 12.00 12.00 14.00 18.00
SDRL 18.06 26.11 31.58 37.41 8.60 13.02 18.24 24.08

1.30 ARL 15.38 16.52 18.80 22.23 8.69 8.75 10.39 12.55
MDRL 13.00 13.00 13.00 16.00 8.00 7.00 8.00 9.00
SDRL 10.37 14.01 17.46 21.24 4.74 6.56 8.89 11.65

1.40 ARL 11.37 11.33 12.57 14.25 6.49 5.94 6.50 7.81
MDRL 10.00 9.00 9.00 10.00 6.00 5.00 5.00 6.00
SDRL 7.17 9.18 11.36 13.52 3.21 4.07 5.32 7.03

1.50 ARL 9.11 8.39 9.05 10.08 5.16 4.43 4.71 5.29
MDRL 8.00 7.00 7.00 7.00 5.00 4.00 4.00 4.00
SDRL 5.47 6.56 7.88 9.42 2.42 2.80 3.62 4.59

1.60 ARL 7.48 6.67 6.99 7.73 4.34 3.61 3.66 3.98
MDRL 7.00 5.00 5.00 6.00 4.00 3.00 3.00 3.00
SDRL 4.28 5.02 5.98 7.16 1.93 2.11 2.60 3.15

1.80 ARL 5.63 4.74 4.73 5.06 3.34 2.67 2.56 2.64
MDRL 5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 3.05 3.31 3.76 4.38 1.40 1.42 1.65 1.91

2.00 ARL 4.58 3.75 3.60 3.80 2.74 2.14 1.99 1.99
MDRL 4.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00
SDRL 2.42 2.47 2.75 3.15 1.11 1.09 1.16 1.31

2.50 ARL 3.17 2.58 2.43 2.42 1.98 1.55 1.42 1.40
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.63 1.56 1.62 1.78 0.79 0.71 0.67 0.69

3.00 ARL 2.53 2.03 1.90 1.89 1.59 1.28 1.22 1.20
MDRL 2.00 2.00 2.00 1.00 2.00 1.00 1.00 1.00
SDRL 1.27 1.19 1.18 1.25 0.63 0.51 0.47 0.46

3.50 ARL 2.14 1.75 1.63 1.60 1.37 1.16 1.12 1.10
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.07 0.97 0.93 0.95 0.53 0.39 0.34 0.32

4.00 ARL 1.89 1.55 1.47 1.45 1.24 1.09 1.07 1.06
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.93 0.81 0.78 0.80 0.45 0.30 0.27 0.24
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Table B.17: RL characteristics of the SNE chart for t-distributed qua-
lity characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 202.11 200.34 200.56 199.90 200.38 200.12 201.57 200.03
MDRL 139.00 139.00 138.00 138.00 138.00 139.00 143.00 136.00
SDRL 203.21 199.25 202.78 199.98 198.13 197.52 199.62 203.57

1.10 ARL 54.92 72.45 90.27 96.44 33.83 46.34 60.31 71.72
MDRL 40.00 51.00 63.00 67.00 26.00 33.00 42.00 50.00
SDRL 49.33 70.55 90.10 95.28 26.76 43.73 59.24 71.21

1.20 ARL 27.44 35.10 46.20 52.48 15.51 18.98 25.11 31.52
MDRL 22.00 25.00 33.00 36.00 13.00 14.00 18.00 22.00
SDRL 21.35 32.95 44.79 51.78 9.84 16.32 23.52 31.12

1.30 ARL 17.64 21.20 27.26 32.26 9.86 10.40 13.33 17.01
MDRL 14.00 15.00 19.00 23.00 9.00 8.00 10.00 12.00
SDRL 12.51 18.78 25.83 31.20 5.42 8.02 12.01 16.29

1.40 ARL 12.59 14.36 17.86 21.74 7.23 6.96 8.31 10.29
MDRL 11.00 11.00 13.00 15.00 7.00 6.00 6.00 7.00
SDRL 8.26 12.56 16.70 21.26 3.66 4.92 7.08 9.45

1.50 ARL 9.93 10.59 12.94 15.44 5.75 5.21 5.93 7.13
MDRL 8.00 8.00 9.00 11.00 5.00 4.00 5.00 5.00
SDRL 6.21 8.66 11.75 14.47 2.74 3.35 4.77 6.27

1.60 ARL 8.30 8.35 9.94 11.61 4.84 4.16 4.48 5.14
MDRL 7.00 7.00 7.00 8.00 4.00 4.00 4.00 4.00
SDRL 4.95 6.58 8.86 10.95 2.20 2.53 3.36 4.38

1.80 ARL 6.19 5.79 6.47 7.35 3.69 3.04 3.04 3.26
MDRL 5.00 5.00 5.00 5.00 3.00 3.00 2.00 3.00
SDRL 3.49 4.19 5.49 6.55 1.57 1.70 2.09 2.46

2.00 ARL 5.02 4.51 4.82 5.20 3.05 2.44 2.34 2.43
MDRL 4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.75 3.11 3.83 4.50 1.26 1.28 1.44 1.69

2.50 ARL 3.48 2.95 3.00 3.14 2.15 1.70 1.60 1.58
MDRL 3.00 3.00 2.00 2.00 2.00 2.00 1.00 1.00
SDRL 1.84 1.85 2.19 2.43 0.85 0.80 0.83 0.88

3.00 ARL 2.75 2.33 2.23 2.27 1.74 1.39 1.30 1.29
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.40 1.38 1.46 1.62 0.69 0.59 0.55 0.58

3.50 ARL 2.30 1.96 1.89 1.89 1.50 1.23 1.18 1.17
MDRL 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.16 1.12 1.16 1.24 0.60 0.46 0.42 0.42

4.00 ARL 2.04 1.73 1.66 1.65 1.32 1.14 1.10 1.09
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.02 0.91 0.95 1.00 0.50 0.36 0.32 0.31
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Table B.18: RL characteristics of the SNE chart for Gamma distribu-
ted quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.44 201.15 198.60 199.03 201.82 199.72 200.52 198.83
MDRL 137.00 140.00 139.00 138.00 141.00 142.00 140.00 138.00
SDRL 198.31 197.49 197.66 197.46 196.36 199.05 197.93 198.43

1.10 ARL 56.36 73.71 86.87 96.68 36.13 51.95 67.13 79.54
MDRL 41.00 53.00 60.00 67.00 27.00 37.00 48.00 55.00
SDRL 49.77 70.40 86.15 96.24 29.20 49.65 65.64 78.13

1.20 ARL 27.85 35.94 45.54 52.87 16.91 21.65 29.45 37.44
MDRL 22.00 25.00 32.00 37.00 14.00 16.00 21.00 26.00
SDRL 21.61 33.77 44.60 52.49 11.27 18.92 28.02 36.55

1.30 ARL 18.07 21.56 27.03 32.51 10.63 11.84 15.93 20.78
MDRL 15.00 16.00 19.00 22.00 9.00 9.00 12.00 15.00
SDRL 13.06 19.35 25.23 31.83 6.12 9.60 14.70 19.83

1.40 ARL 12.97 14.24 18.05 21.53 7.83 8.00 9.88 12.70
MDRL 11.00 11.00 13.00 15.00 7.00 6.00 7.00 9.00
SDRL 8.64 12.15 16.74 20.75 4.12 5.84 8.62 12.00

1.50 ARL 10.30 10.74 12.89 15.63 6.22 5.89 6.89 8.61
MDRL 9.00 8.00 10.00 11.00 6.00 5.00 5.00 6.00
SDRL 6.39 8.78 11.50 14.90 3.05 3.96 5.68 7.71

1.60 ARL 8.47 8.47 9.89 11.58 5.18 4.72 5.22 6.28
MDRL 7.00 7.00 7.00 8.00 5.00 4.00 4.00 5.00
SDRL 5.08 6.62 8.88 10.88 2.43 2.98 4.09 5.43

1.80 ARL 6.36 5.98 6.53 7.54 3.90 3.40 3.47 3.94
MDRL 6.00 5.00 5.00 5.00 4.00 3.00 3.00 3.00
SDRL 3.55 4.39 5.45 6.89 1.69 1.98 2.42 3.18

2.00 ARL 5.10 4.58 4.86 5.37 3.21 2.66 2.64 2.91
MDRL 5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.77 3.16 3.94 4.70 1.37 1.44 1.69 2.21

2.50 ARL 3.59 3.04 3.05 3.19 2.29 1.83 1.75 1.77
MDRL 3.00 3.00 2.00 2.00 2.00 2.00 2.00 1.00
SDRL 1.88 1.93 2.21 2.56 0.93 0.89 0.96 1.06

3.00 ARL 2.81 2.35 2.34 2.37 1.84 1.50 1.41 1.38
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.44 1.41 1.55 1.70 0.75 0.66 0.66 0.68

3.50 ARL 2.39 1.98 1.92 1.93 1.57 1.30 1.24 1.23
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.21 1.12 1.17 1.26 0.62 0.52 0.49 0.49

4.00 ARL 2.07 1.75 1.69 1.69 1.39 1.19 1.14 1.14
MDRL 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.03 0.94 0.98 1.03 0.54 0.42 0.37 0.38
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Table B.19: RL characteristics of the QNE chart for normally distri-
buted quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 198.93 203.55 196.97 198.36 200.62 201.97 199.67 200.09
MDRL 137.00 143.00 136.00 138.00 136.00 141.00 137.00 137.00
SDRL 195.57 201.22 198.33 198.92 202.24 200.79 199.60 200.76

1.10 ARL 49.02 63.44 74.51 83.92 26.60 34.82 43.86 51.52
MDRL 36.00 45.00 52.00 59.00 21.00 25.00 31.00 35.00
SDRL 42.48 61.83 72.27 81.53 20.13 31.66 42.26 51.64

1.20 ARL 23.99 28.96 35.93 41.58 12.07 13.13 15.98 20.04
MDRL 19.00 21.00 25.00 29.00 10.00 10.00 12.00 14.00
SDRL 18.20 27.04 34.70 40.94 7.16 10.66 14.43 19.12

1.30 ARL 15.02 16.97 20.84 24.76 7.77 7.33 8.24 10.00
MDRL 12.00 13.00 15.00 17.00 7.00 6.00 6.00 7.00
SDRL 10.16 14.65 19.77 24.12 3.93 5.21 6.85 9.22

1.40 ARL 11.19 11.43 13.25 15.83 5.75 5.06 5.35 6.25
MDRL 10.00 9.00 9.00 11.00 5.00 4.00 4.00 5.00
SDRL 7.09 9.39 12.14 15.12 2.71 3.23 4.18 5.40

1.50 ARL 8.83 8.51 9.68 10.95 4.61 3.89 3.82 4.21
MDRL 8.00 7.00 7.00 8.00 4.00 3.00 3.00 3.00
SDRL 5.30 6.61 8.61 10.19 1.99 2.26 2.72 3.42

1.60 ARL 7.25 6.73 7.27 8.37 3.87 3.12 3.03 3.15
MDRL 6.00 5.00 5.00 6.00 4.00 3.00 3.00 2.00
SDRL 4.13 5.00 6.19 7.63 1.62 1.73 2.00 2.40

1.80 ARL 5.43 4.70 4.97 5.43 2.98 2.34 2.13 2.17
MDRL 5.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.88 3.20 4.00 4.70 1.17 1.20 1.28 1.47

2.00 ARL 4.45 3.75 3.73 3.96 2.48 1.92 1.74 1.70
MDRL 4.00 3.00 3.00 3.00 2.00 2.00 1.00 1.00
SDRL 2.32 2.45 2.78 3.27 0.96 0.92 0.95 1.01

2.50 ARL 3.09 2.52 2.43 2.47 1.78 1.40 1.28 1.25
MDRL 3.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.55 1.51 1.65 1.83 0.69 0.59 0.55 0.53

3.00 ARL 2.46 2.00 1.91 1.88 1.45 1.19 1.13 1.10
MDRL 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.22 1.11 1.17 1.22 0.56 0.42 0.35 0.33

3.50 ARL 2.08 1.72 1.62 1.62 1.26 1.09 1.06 1.05
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.00 0.92 0.91 0.96 0.46 0.29 0.25 0.23

4.00 ARL 1.85 1.52 1.46 1.44 1.15 1.05 1.03 1.03
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.90 0.76 0.76 0.75 0.37 0.22 0.18 0.16
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Table B.20: RL characteristics of the QNE chart for t-distributed qua-
lity characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 200.58 198.10 198.68 200.95 199.96 203.90 199.53 198.06
MDRL 138.00 138.00 137.00 139.00 137.00 143.00 138.00 138.00
SDRL 200.48 196.40 199.86 198.82 200.14 199.80 199.37 196.35

1.10 ARL 55.48 75.75 92.17 102.09 31.15 44.37 58.74 68.64
MDRL 41.00 54.00 64.00 71.00 24.00 32.00 41.00 47.00
SDRL 49.16 73.47 90.92 100.93 24.08 40.82 57.37 68.38

1.20 ARL 27.06 37.33 48.23 56.55 14.40 17.03 23.81 30.22
MDRL 21.00 26.00 34.00 40.00 12.00 13.00 17.00 21.00
SDRL 21.27 35.01 47.63 55.37 9.02 14.48 22.56 29.53

1.30 ARL 17.31 22.09 28.45 34.67 9.23 9.35 12.53 15.88
MDRL 14.00 16.00 20.00 25.00 8.00 7.00 9.00 11.00
SDRL 12.12 19.88 26.84 33.58 5.03 7.09 11.08 14.92

1.40 ARL 12.53 14.48 18.47 23.02 6.76 6.45 7.80 9.68
MDRL 11.00 11.00 13.00 16.00 6.00 5.00 6.00 7.00
SDRL 7.98 12.46 17.59 22.46 3.35 4.37 6.42 8.79

1.50 ARL 9.86 10.70 13.43 16.40 5.44 4.79 5.37 6.58
MDRL 8.00 8.00 10.00 12.00 5.00 4.00 4.00 5.00
SDRL 6.06 8.72 12.10 15.47 2.46 3.03 4.17 5.79

1.60 ARL 8.27 8.45 9.97 12.64 4.54 3.88 4.15 4.75
MDRL 7.00 7.00 7.00 9.00 4.00 3.00 3.00 4.00
SDRL 4.90 6.52 8.79 11.96 2.01 2.33 3.04 3.99

1.80 ARL 6.13 5.88 6.68 7.73 3.44 2.84 2.80 3.00
MDRL 5.00 5.00 5.00 6.00 3.00 3.00 2.00 2.00
SDRL 3.38 4.27 5.48 7.05 1.43 1.52 1.84 2.26

2.00 ARL 4.98 4.56 4.90 5.63 2.85 2.26 2.18 2.24
MDRL 4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.63 3.05 3.88 4.94 1.14 1.13 1.29 1.53

2.50 ARL 3.49 2.95 2.92 3.25 2.03 1.60 1.49 1.47
MDRL 3.00 3.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.78 1.80 2.05 2.59 0.78 0.73 0.72 0.77

3.00 ARL 2.72 2.29 2.26 2.36 1.63 1.32 1.24 1.22
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.36 1.31 1.48 1.67 0.64 0.53 0.49 0.48

3.50 ARL 2.31 1.95 1.87 1.89 1.41 1.18 1.12 1.11
MDRL 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 1.13 1.08 1.12 1.22 0.54 0.41 0.35 0.33

4.00 ARL 2.01 1.71 1.64 1.65 1.26 1.10 1.07 1.06
MDRL 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.97 0.91 0.92 1.00 0.46 0.31 0.27 0.25
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Table B.21: RL characteristics of the QNE chart for Gamma distribu-
ted quality characteristic when ARL0 = 200

n
5 10

λ λ
δ 0.05 0.25 0.50 0.75 0.05 0.25 0.50 0.75

1.00 ARL 199.71 201.41 200.79 198.00 200.89 201.45 202.50 201.80
MDRL 137.00 139.00 138.00 138.00 138.00 139.00 142.00 142.00
SDRL 197.64 200.83 199.13 196.50 204.05 201.54 200.56 201.30

1.10 ARL 55.62 75.13 92.29 97.63 31.41 43.94 57.71 69.64
MDRL 41.00 53.00 63.00 68.00 24.00 31.00 41.00 48.00
SDRL 49.72 72.73 92.60 97.44 24.78 41.47 55.39 70.20

1.20 ARL 26.92 36.80 48.97 56.21 14.40 17.03 23.30 30.23
MDRL 21.00 27.00 34.00 40.00 12.00 13.00 17.00 21.00
SDRL 21.19 34.03 47.72 55.28 9.09 14.12 21.92 29.22

1.30 ARL 17.32 22.23 28.85 34.15 9.07 9.46 12.24 15.87
MDRL 14.00 17.00 20.00 24.00 8.00 7.00 9.00 11.00
SDRL 12.36 19.68 27.85 33.22 4.90 7.18 10.97 14.92

1.40 ARL 12.68 14.93 19.12 23.22 6.73 6.42 7.61 9.57
MDRL 11.00 11.00 14.00 16.00 6.00 5.00 6.00 7.00
SDRL 8.10 12.69 17.58 22.68 3.30 4.32 6.32 8.74

1.50 ARL 9.95 10.97 13.47 16.92 5.38 4.82 5.27 6.56
MDRL 9.00 8.00 10.00 12.00 5.00 4.00 4.00 5.00
SDRL 6.07 9.04 12.27 16.47 2.52 3.00 4.08 5.70

1.60 ARL 8.23 8.52 10.35 12.65 4.50 3.86 4.05 4.79
MDRL 7.00 7.00 8.00 9.00 4.00 3.00 3.00 4.00
SDRL 4.84 6.53 9.19 11.86 2.00 2.27 3.01 4.00

1.80 ARL 6.15 5.94 6.82 7.88 3.44 2.84 2.80 3.02
MDRL 5.00 5.00 5.00 6.00 3.00 3.00 2.00 2.00
SDRL 3.46 4.35 5.76 7.14 1.41 1.52 1.80 2.28

2.00 ARL 4.94 4.51 4.95 5.67 2.81 2.26 2.16 2.22
MDRL 4.00 4.00 4.00 4.00 3.00 2.00 2.00 2.00
SDRL 2.64 3.12 4.01 5.00 1.12 1.14 1.27 1.49

2.50 ARL 3.46 2.99 3.03 3.30 2.03 1.60 1.51 1.48
MDRL 3.00 3.00 2.00 3.00 2.00 1.00 1.00 1.00
SDRL 1.77 1.84 2.18 2.63 0.79 0.71 0.74 0.78

3.00 ARL 2.73 2.34 2.27 2.37 1.64 1.33 1.24 1.23
MDRL 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00
SDRL 1.37 1.37 1.48 1.67 0.64 0.54 0.49 0.49

3.50 ARL 2.31 1.97 1.90 1.93 1.40 1.17 1.13 1.11
MDRL 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00
SDRL 1.15 1.10 1.17 1.26 0.54 0.40 0.36 0.34

4.00 ARL 2.02 1.74 1.66 1.67 1.26 1.10 1.07 1.07
MDRL 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.99 0.93 0.92 0.99 0.46 0.30 0.27 0.26



Appendix C

Markov Chain Approach

In Chapter 6, we used Fu et al. (2003)’s approach, with necessary adjust-

ments, to approximate the run length distribution of the proposed CUSUM

schemes.

The different rules that have been investigated in this study are denoted

as φi.

• φ1 : Any point of either S+ or S− falls outside h

• φ2: Any two consecutive points of either S+ or S− fall between w and

h.

• φ3: Two out of three consecutive points of either S+ or S− fall between

w and h.

Here we will only describe the procedure for using the Markov chain for the

upper CUSUM (S+) with Scheme II as the procedure for the lower CUSUM

(S−) is very similar. Note that the proposed run rule Scheme II requires

combining rules φ1 and φ3 for making any decision regarding the state of the

process.

The continuous space of the CUSUM statistic S+ can be discretized by

partitioning the interval [0, h) in to m sub-intervals of width ∆ and the

interval [h,∞) as the (m+1)th region, where ∆ is defined as ∆ = h/(m+1).

These sub-intervals are used to define the states of the Markov chain. For

the proposed Scheme II, the second rule (φ3) further divides the space of S+
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in to three regions; (r1, r2 and r3):

R(S+
t ) =





r1 0 ≤ S+
t < w,

r2 w ≤ S+
t < h,

r3 S+
t ≥ h

(C.1)

R(S+
t ) indicates whether at time t, the value of S+ lies below the warning

limit, between warning and action limit or above the action limit. Any

point in the region r3 or two out of three consecutive points in the region

r2 indicates the process is out-of-control. Let m∗ be the number of states in

the interval [0, w) thus m∗ = w/∆ (rounded to the nearest integer). Also let

St(q) = [St−q+1, . . . , St] be the monitoring statistic, where q is the number of

consecutive points to be kept in history. The 2nd rule of Scheme II i.e. φ3

requires to keep history of the three observations i.e. for φ3 we have q = 3.

The state of the Markov chain at time t, Yt, for Scheme II (using rules φ1 and

φ3) is defined by the region occupied by S+ at time (t− 1) and the value of

S+ at time t: Yt = [R(S+
t−1), S

+
t ] – for details see Fu et al. (2003). The state

space Ω is then defined as the possible realizations of [R(S+
t−1), S

+
t ]:

Ω = {(Ψ,Ψ), (Ψ, 0), . . . , (Ψ, m), (r1, 0), . . . , (r1, m), (r2, 0), . . . , (r2, m
∗−1), α}

(C.2)

Here Ψ represents the dummy initial state (no observations) and α represents

the absorbing state (out-of-control) for the Markov chain Yt respectively. Let

nΩ represents the number of elements in the state space Ω. To compute the

run length distribution, we require the initial distribution (π0) of the Markov

chain and the transition probability matrix (M), which has the form.

M =

[
N C

0 1

]
. (C.3)

where N and C are matrices of transition probabilities (described below) of

order (nΩ − 1)× (nΩ − 1) and (nΩ − 1)× 1 respectively and 0 is 1× (nΩ − 1)

matrix of zeros. N represents transition probabilities from one in-control
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state to another in-control state whereas C represents probabilities from an

in-control state to an out-of-control state. A sample transition matrix is

presented below for the highly simplified case when m = 2, h = 3, w = 1 and

m∗ = 1.

(Ψ,Ψ) (Ψ, 0) (Ψ, 1) (Ψ, 2) (r1, 0) (r1, 1) (r1, 2) (r2, 0) α

(Ψ,Ψ) F (0) p1 p2 1− F (2)
(Ψ, 0) F (0) p1 p2 1− F (2)
(Ψ, 1) F (−1) 1− F (−1)
(Ψ, 2) F (−2) 1− F (−2)
(r1, 0) F (0) p1 p2 1− F (2)
(r1, 1) F (−1) 1− F (−1)
(r1, 2) F (−2) 1− F (−2)
(r2, 0) F (0) 1− F (0)

α 1

The probabilities in each row should add up to 1, hence the probability

for the absorbing state is given as 1 minus the sum of transition probabilities

between the in-control states.

The entries in the above matrix can be read as:

• the row for (Ψ,Ψ) represents the dummy initial state when no observa-

tions have been observed.

• the row for (r1, 0) indicates that R(S+
t−1) = r1 and S+

t = 0, i.e. both

the points lie in region r1, hence we will get in-control probabilities for

S+
t+1 = 0, 1, 2. For S+

t+1 = 3, the monitoring statistic gets out-of-control

with probability 1− F (2).

• the row for (r1, 2) indicates that R(S+
t−1) = r1 and S+

t = 2, i.e. S+
t−1 is

in region r1 whereas S+
t lies in region r2, hence we will get in-control

probability for only S+
t+1 = 0. For S+

t+1 = 1, 2 the monitoring statistic

gets out-of-control with probability 1− F (−2).

Similarly the other entries can be defined, for details – see Fu et al. (2003).

For the transition matrix M, many of the entries must be 0 since the corres-

ponding transition is impossible. These entries are omitted for simplicity.
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For an in-control process (i.e. Xt ∼ N(0, 1)), the random variable Vt

(defined previously) approximately follows a standard normal distribution

(Hawkins (1981)), i.e. Vt ≈ N(0, 1) =⇒ V ′
t = Vt − k ≈ N(−k, 1). For

an out-of-control process (i.e. Xt ∼ N(0, λ)) =⇒ Vt ≈ N(µv, σv), where

µV and σV depend upon the magnitude of shift in the in-control process

standard deviation σ0, defined as (see Yeh et al. (2005)):

µV = 2.355(λ1/2 − 1) and σV = λ1/2 (C.4)

The required probabilities that constitute the transition matrixM are defined

as (Fu et al. (2003))

pi =

∫ (i+0.5)∆

(i−0.5)∆

1√
2πσv

e
− 1

2

[

v′−µ
v′

σv

]2

dv pm+1 =

∫ ∞

((m+1)−0.5)∆

1√
2πσv

e
− 1

2

[

v′−µ
v′

σv

]2

dv

p−(m+1) =

∫ (−(m+1)+0.5)∆

−∞

1√
2πσv

e
− 1

2

[

v′−µ
v′

σv

]2

dv F (i) =
i∑

j=−(m+1)

pj

where µv′ = µv − k. Using these probabilities, the transition matrix M is

computed and the mean and standard deviation of the run length distribution

are obtained by matrix multiplications using the following results (Fu et al.

(2002)).

ARL = E(RL) = π0(I - N)−11′ (C.5)

and

SDRL =

√
E(RL2)− [E(RL)]2 where E(RL2) = π0(I + N)(I - N)−21′

(C.6)

where π0 = (1, 0, . . . , 0) and 1 = (1, 1, . . . , 1).

The accuracy of the Markov chain estimate of the run length characteris-

tics increases with an increase in the number of states (m), used to discritize

the continuous state of the CUSUM statistics. Following the recommenda-

tions of Fu et al. (2002, 2003), we have used m = 500 in this study.
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