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Abstract

In this paper, we present a new universality result in P systems, by providing
a method to construct a P system ΠM with two cells that simulates an arbitrary
register machine M . The novelty of our approach is to utilize a very simple register
machine that supports reading of binary data. In our simple construction of system
ΠM : (i) cell states of a “simulator” cell in ΠM model the instruction lines of M ,
(ii) symbols (and their multiplicities) of ΠM model registers (and their values) of
M , (iii) evolution rules of ΠM model the execution of instructions of M and (iv)
communication to/from a “data” cell of ΠM is used to model the reading of data
of M .

Keywords: P systems, register machines, universal computer.

1 Introduction

P systems (also called membrane systems) are distributed and parallel computing mod-
els, inspired by the structure and function of a living cell. A P system consists of a set
of autonomous units, called membranes, that perform their own designated functions
simultaneously. Several new P system models have been introduced, inspired from var-
ious features of living cells, that provide new ways to process information and solve the
computational problems of interest.

Broadly speaking, as described by Nicolescu [Nic11], research on membrane systems
falls into one of the following three areas: (i) theory: such as computational complete-
ness (universality) [BG05, FKOS05, IPY06, CPPPJ07, CVMVV07, PP07], complexity
classes (e.g. polynomial solutions to NP-hard problems [ZFM00, ILPW09]) or relation-
ships with other models (e.g. automata, grammar systems and formal languages), (ii)
tools: including designers, simulators and verifiers [GQGEPH+09, GID09, GILD10,
ILPH+11], (iii) applications: such as computational biology, economics, ecosystem,
linguistics and distributed computing [PP05, CCM+11, II04, CDK02]. For a comprehen-
sive list, we refer the readers to Păun et al.’s survey [PRS10].
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Our research focuses on the practical applications of P systems in distributed computing—
earlier we presented solutions, described at the P system level, to some distributed com-
puting problems [DKN12, DKN10a, DKN10b].

In this paper, we present a new theoretical result, i.e. universality, in P systems. We
provide the details of building a state-based P system Π that can simulate an arbitrary
register machine M [CD07]. Specifically, we provide a set of evolution rules of system Π
that simulates the instructions of register machine M . Note, the register machine that
we consider here has input data bits, which are accessed using READ instructions that
return the next unread bit. We contrast our approach with other universality results
in P systems; their register machines need to store their input data (such as a register
machine program to be simulated) in one of the registers [FKOS05, CVMVV07]. We
have chosen this register machine model [CD07] mainly due to the inclusion of READ

instructions. To our knowledge, the existing universality results, obtained by simulating
a universal register machine, have not used machines with READ instructions—we provide
P system evolution rules that can simulate these READ instructions.

The rest of this paper is organized as follows. Section 2 recalls the definitions of a
state-based P system model, called a simple P system, and the register machine model
of [CD07]. Section 3 presents the formal description of simple P systems that simulate
any register machine (with binary input data). Finally, Section 4 summarizes this paper
and provides some open problems.

2 Preliminaries

In this section, we recall the definitions of simple P systems and register machines used
in this paper.

2.1 Simple P systems

A simple P system is defined as follows, which extends earlier versions of tissue and
neural P systems [MVPPRP03, Pău02].

Definition 1. A simple P system of order n is a system Π = (O,K,∆), where:

1. O is a finite non-empty alphabet of symbols.

2. K = {σ1, σ2, . . . , σn} is a finite set of cells, where each cell σi ∈ K is of the form:

σi = (Qi, si0, wi0, Ri)

where

• Qi is a finite set of states,

• si0 ∈ Qi is the initial state (si ∈ Qi denotes the current state),

• wi0 ∈ O∗ is the initial content and (wi ∈ O∗ denotes the current content),
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• Ri is a finite linearly ordered set of evolution rules (i.e. transition multiset
rewriting rules with priority and rewrite operator). An evolution rule r ∈ Ri

has the form:
r : j s u→α s

′ v

where:

◦ α ∈ {min, max} is a rewriting operator of r,

◦ j ∈ N is the priority of r, where the lower value j indicates higher priority,

◦ s, s′ ∈ Qi, where s′ is the target state of r,

◦ u ∈ O+,

◦ v ∈ (O × τ)∗, where a set of target indicators τ ∈ {�, ↑, ↓, l}. Note,
(o,�) ∈ v, o ∈ O, is abbreviated to o.

The initial configuration of σi is denoted by (si0, wi0) and the current configuration
of σi is denoted by (si, wi).

3. ∆ is an irreflexive and asymmetric relation, representing a set of arcs between cells
with bidirectional communication capabilities.

The rules are applied in the weak priority order [Pău06], i.e. (1) higher priority ap-
plicable rules are applied before lower priority applicable rules, and (2) a lower priority
applicable rule is applied only if it indicates the same target state as the previously
applied rules.

A cell evolves by applying one or more rules, which can change its content and state
and can send objects to its neighbors. For a cell σi = (Qi, si, wi, Ri), a rule s x →α

s′ x′ (u)β | z ∈ Ri is applicable, if s = si, x ⊆ wi, z ⊆ wi, ∆(i) 6= ∅ for β =↓, ∆−1(i) 6= ∅
for β =↑ and ∆(i) ∪∆−1(i) 6= ∅ for β =l.

The application of a rule transforms the current state s to the target state s′, trans-
forms multiset u to multiset w =

⋃{o | (o,�) ∈ v} and sends symbol x, where (x, τ ′),
τ ′ ∈ {↑, ↓, l}, as specified by the transfer operator τ ′ (as further described below). Note
that, multisets u and w will not be visible to other applicable rules in this same step,
but they will be visible after all the applicable rules have been applied.

The rewriting operator α = max indicates that an applicable rewriting rule is applied
as many times as possible. The rewriting operator α = min indicates that an applicable
rewriting rule is applied once. For each application of a rule by cell σi, a copy of symbol
o of (o, τ) ∈ v is replicated and sent to each cell σj ∈ ∆−1(i) if τ =↑, σj ∈ ∆(i) if τ =↓
and σj ∈ ∆(i) ∪∆−1(i) if τ =l, or remains in σi if τ = �.

All applicable rules are applied in one step. An execution of a P system is a sequence
of steps, that starts from the initial configuration. An execution halts if no further
rules are applicable for all cells. The computational results of a halted system are the
multiplicities of symbols present in the cells of the system.

We provide a simple P system example below. The purpose of this example is to
demonstrate: (i) the structure of a system, (ii) the parallel processing power, between
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cells and within each cell, and (iii) the manner in which evolution rules are assigned and
applied.

Example 2. Consider a simple P system Π = ({a, b, c, d}, {σ1, σ2}, {(σ1, σ2)}), where
each cell σi ∈ K has the initial form ({s0, s1}, s0, wi0, R), where:

• wi0 =

{
a3bc if σi = σ1,
a6 if σi = σ2.

• R is the following evolution rules:

1 s0 c→min s0 b (b, ↓)
2 s0 b→max s1

3 s0 a→min s0 a a

4 s0 a a→max s1 d

σ1

σ2

The structure of system Π

The tables below illustrate the evolution of system Π. Columns “Initial state” and
“Initial contents” indicate the current state and current contents of cell σi, 1 ≤ i ≤ 2,
respectively, prior to applying rules in the current step. Column “rk”, 1 ≤ k ≤ 4,
indicates the number of times each rule k has been applied in the current step. Columns
“Final state” and “Final contents” indicate the resulting state and contents of cell σi,
1 ≤ i ≤ 2, respectively, after applying the rules as indicated in columns “rk”, 1 ≤ k ≤ 4.

Cell σ1 Cell σ2

Step Initial Initial r1 r2 r3 r4 Final Final Initial Initial r1 r2 r3 r4 Final Final

state contents state contents state contents state contents

1 s0 a3bc 1 0 1 0 s0 a4b2 s0 a6 0 0 1 0 s0 a7b

2 s0 a4b2 0 2 0 2 s1 d2 s0 a7b 0 1 0 3 s1 ad3

We elaborate the importance of the destination states in the applications of evolution
rules. As mentioned earlier, in each cell, all the rules assigned in a step must have the
same destination state, which is set by the destination state of an applicable rule with
the highest priority. For example, in cell σ1, at step 1:

• An applicable rule with the highest priority, rule 1, can be assigned once. This
assignment of rule 1 at step 1 sets the destination state as s0, such that all other
rules that will be assigned at step 1 must have the destination state s0.

• The next rule in the priority, rule 2, has the destination state s1, which is different
from the destination state, s0, set by rule 1. Hence, rule 2 cannot be assigned at
step 1, even though rule 2 can be assigned once using the remaining unassigned
symbols.

• The next rule in the priority, rule 3, has the destination state s0 and rule 3 can be
assigned once using the remaining unassigned symbols. Hence, rule 3 is assigned
once together with rule 1 at step 1.
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• The next rule in the priority, rule 4, has the destination state s1. Hence, rule 4
cannot be assigned at step 1.

2.2 Register machines

A register machine, as presented in [CD07], has n > 1 instructions and m > 0 regis-
ters, where each register may contain an arbitrarily large non-negative integer. Register
machines are Turing-complete and universal. A register machine program consists of a
finite list of instructions, EQ, SET, ADD, READ and HALT, with the restriction that the HALT

instruction appears only once, as the last instruction of the list, followed by an input
data. The first instruction of a program is indexed by the value 0. In general, a program
is presented in one of the following two forms: (i) symbolic instruction form and (ii)
machine instruction (i.e. raw binary) form. For this paper, it suffices to use the symbolic
form. We also note the motivating factor in designing the register machine model [CD07]
was to have a very small (but practical) set of instructions, which also suits our purpose
of minimizing the number of instruction cases to easily simulate by a P system. We note
that this particular register machine language has evolved into a slightly more convenient
syntax for establishing the “difficulty” complexity, based on smallest-known register ma-
chines, to decide/refute mathematical problems or conjectures [CCD06, CC10b, CC10a].

2.2.1 Instructions

A set of instructions of a register machine M , specified in [CD07] and denoted in Chaitin’s
style [Cha87], is listed below. In the instructions below, variables r1, r2 and r3 denote
registers and k denotes a non-negative binary integer constant.

1. Instruction: (EQ r1 r2 r3) or (EQ r1 k r3)
Assume that j denotes the content of r3. If the content of r1 equals (i) the content of
r2 or (ii) the constant k, then the execution of M continues at the j-th instruction.
If the content of r1 does not equal (i) the content of r2 or (ii) the constant k, then
the execution of M continues at the next instruction in the sequence.

2. Instruction: (SET r1 r2) or (SET r1 k)
The content of r1 is replaced by (i) the content of r2 or (ii) the constant k.

3. Instruction: (ADD r1 r2) or (ADD r1 k)
The content of r1 is replaced by (i) the sum of the contents of r1 and r2 or (ii) the
sum of the contents of r1 and constant k.

4. Instruction: (READ r1)
One bit is read into r1, so the numerical value of r1 becomes either 0 or 1. Any
attempt to read past the last data-bit results in a run-time error.

5. Instruction: (HALT)
This is the last instruction of a register machine program.
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2.2.2 Input data

In a register machine program, its input data, denoted as a sequence of bits (or charac-
ters), follows immediately after the halt instruction. Note, some programs may not have
input data and it is up to the program to know how to process the data in the chosen
encoding format.

Three examples of the possible ways to represent structured data are now given:

1. A simple but inefficient way to represent a non-negative integer n is by using a
unary sequence of 0-bits of length n, where we terminate with a 1-bit. Example:
0001, 1 and 001 would represent the sequence of integers 3, 0 and 2.

2. To encode a sequence of integers, as a single integer, we require a leading 1-bit to
be able to determine the number of 0-bits in the first element. Following [Din12] as
an example: the array [3, 0, 2] is represented by the integer 281(10) = 100011001(2).

3. A self-delimiting representation of a sequence of bits b1b2 · · · bk, bi ∈ {0, 1}, 1 ≤ i ≤
k, is encoded as 1b11b2 · · · 1bk0. Note, if used to represent a positive integer n then
we need only O(k) = O(lg n) bits, but twice the number of ‘real’ bits.

Later in this paper, we will use a variation of the last two described encodings to
represent register machine data within a P system.

2.2.3 Run-time errors

A register machine program, with n ≥ 1 instructions, can encounter the following run-
time errors:

1. Illegal branch error: This error occurs when an EQ instruction is executed where
the value indicated by its third register is greater or equal to n.

2. Under-read error: This error occurs if a register machine halts with unread input
data, i.e. when the HALT instruction is encountered and there exist unread input
data.

3. Over-read error: This error occurs if a register machine attempts to read past
the last data-bit, i.e. when a READ instruction is encountered and the entire input
data has already been read.

2.3 Register machine program example

The greatest common divisor (GCD) algorithm, based on subtraction, is as follows.

Algorithm 3. function GCD(x, y)

Input: x ≥ 0 and y ≥ 0.
Output: the final value of GCD(x, y).
while (x 6= 0)

if (x < y) then swap(x, y)
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x := x− y
end
return y

Example 4. We provide register machine instructions in symbolic form that correspond
to the steps of the GCD Algorithm 3. Assume that, the input data is of form 0x10y1,
which represents a sequence of two integers x and y. One register machine implemen-
tation, given next, has exactly 37 instructions where it reads any input values x and y
from its data.

• Initialize registers a, b, c, d, e, f, g, h, i with the instruction line numbers (to be used
as targets in branching EQ instructions).

Line number Symbolic instruction
0 SET a La
1 SET b Lb
2 SET c Lc
3 SET d Ld
4 SET e Le
5 SET f Lf
6 SET g Lg
7 SET h Lh
8 SET i Li

• Initialize registers x and y, using auxiliary register z, with the first and the second
values of the input data, respectively.

Line number Symbolic instruction
9 La : READ z
10 EQ z 1 b
11 ADD x 1
12 EQ a a a
13 Lb : READ z
14 EQ z 1 c
15 ADD y 1
16 EQ b b b

• Check the condition x = 0.

Line number Symbolic instruction
17 Lc : EQ x 0 i

• Check the condition x < y.
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Line number Symbolic instruction
18 SET z x
19 SET w y
20 Ld : EQ z y f
21 ADD z 1
22 ADD w 1
23 EQ x w f
24 EQ y z e
25 EQ d d d
26 Le : SET y x
27 SET x z

• Execute x := x− y.

Line number Symbolic instruction
28 Lf : SET z y
29 SET w 0
30 Lg : EQ x z h
31 ADD z 1
32 ADD w 1
33 EQ g g g
34 Lh : SET x w
35 EQ c c c

• Halt.

Line number Symbolic instruction
36 Li : HALT

3 Universality results

Our preliminary results, presented at [Din12], have shown that simple P systems can
simulate non-data-based register machines [CD07]. As mentioned earlier, one may try to
use a special register to hold data and thus, with some effort (such as encoding an array
of bits as an integer), develop a framework for showing P systems are universal. In this
section, we extend our previous Turing completeness results by directly supporting the
READ instruction to obtain a more straightforward universal result.

Given an arbitrary register machine M [CD07] with n ≥ 1 instructions, m ≥ 0
registers and input data bits β = b1b2 · · · bν , we build a simple P system ΠM = (O,K,∆),
where:

1. K = {σm, σp}, where σm is called the main cell and σp is called the provider cell.
The descriptions of these cells are given in Sections 3.1 and 3.2.
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2. ∆ = {(σm, σp)}.

3. O = {ri | 0 ≤ i < k} ∪ {δ, φ, π, µ, θ}, where symbols r0, r1, . . . , rk−1 represent the
registers of M . Symbols π, γ and θ are auxiliary symbols, used only by the main
cell, for executing the evolution rules that correspond to HALT and EQ instructions.
Symbols µ, φ and δ are used as communication messages, i.e. requests and re-
sponses, between the main and provider cells during the execution the evolution
rules that correspond to READ and HALT instructions—the manner in which these
symbols are exchanged is described in Section 3.3.

3.1 The main cell

The role of the main cell is to simulate every instruction ofM , except data-bit extraction—
this operation is handled by the provider cell. The main cell, σm, is of the form
σm = (Qm, sm0, wm0, Rm), where:

• Qm = {si, s′i | 0 ≤ i < n}∪{s}, where states si and s′i, 0 ≤ i < n, represent the i-th
instruction of M , state sn−1 represent the “halting” state and state s represents
the “springboard jump” state. From state s, cell σm transits to state sj−1, where
j ≤ n is the multiplicity of symbol t that σm currently contains; if j > n, then σm
remains at state s.

• sm0 = s0, indicates the first instruction, i.e. 0-th instruction.

• wm0 = {ri | 0 ≤ i < k} ∪ {π}, indicates the initial content of cell σm, where the
value of each register ri, 0 ≤ i < k, corresponds to the multiplicity of ri minus one,
i.e. |wm|ri − 1.

• Rm corresponds to the instructions of M , described in the following subsections.

3.1.1 Evolution rules for a SET instruction

An i-th instruction of the form, either (SET ri1 ri2) or (SET ri1 ki), is translated into the
following evolution rules. The rules below first consume, all but one, copies of symbol
ri1 and then produce j additional copies of symbol ri1 , where: (i) j is the multiplicity of
symbol ri2 , i.e. the value of the register ri2 , or (ii) j = ki, i.e. the value of constant ki.

Instruction Corresponding evolution rules

(SET ri1 ri2) 1 si ri1 →max si+1

2 si ri2 →max si+1 ri1 ri2

Using the rules above, the main cell consumes all copies of symbol ri1 , i.e. set the
value of register ri1 to 0. At the same time, the main cell rewrites every copy of symbol
ri2 into multiset ri1ri2 , i.e. set the value of register ri1 to the value of register ri2 .
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Instruction Corresponding evolution rules

(SET ri1 ki) 1 si ri1 →min si+1 r
ki+1
i1

2 si ri1 →max si+1

Using the rules above, the main cell: (i) rewrites one copy of symbol ri1 into ki + 1
copies of symbol ri1 and (ii) consumes all the remaining copies of symbol ri1 , i.e. set the
value of register ri1 to constant ki.

3.1.2 Evolution rules for an ADD instruction

An i-th instruction of the form, either (ADD ri1 ri2) or (ADD ri1 ki), is translated into
the following evolution rules. The rules below produce j additional copies of symbol ri1 ,
where: (i) j is the multiplicity of symbol ri2 , i.e. the value of register ri2 or (ii) j = ki,
i.e. the value of the constant ki.

Instruction Corresponding evolution rules

(ADD ri1 ri2) 1 si ri2 →min si+1 ri2
2 si ri2 →max si+1 ri1 ri2

Using the rules above, except one copy of symbol ri1 , the main cell rewrites every copy
of symbol ri2 into multiset ri1ri2 , i.e. set the value of register ri1 to the sum of values of
registers ri1 and ri2 .

Instruction Corresponding evolution rule

(ADD ri1 ki) 1 si ri1 →min si+1 r
ki+1
i1

Using the rules above, the main cell rewrites one copy of symbol ri1 into ki + 1 copies
of symbol ri1 , i.e. set the value of register ri1 to the sum of the value of register ri1 and
constant ki.

3.1.3 Evolution rules for an EQ instruction

An i-th instruction of the form, (EQ ri1 ri1 ri3), (EQ ri1 ri2 ri3) or (EQ ri1 ki ri3), is
translated into the following evolution rules. The multiplicity of symbol γ, produced
by the rules below, corresponds to the difference in the values of: (i) registers ri1 and
ri2 or (ii) register ri1 and constant ki. Let j denote the value of the register ri3 . If the
main cell does not contain any copies of symbol γ, then it produces j copies of symbol
θ and transits to the “springboard” state, where the main cell’s state transition will be
determined according to the multiplicity of symbol θ. Otherwise, the main cell consumes
all copies of symbol γ and transits to state si+1, i.e. the next instruction.

Instruction Corresponding evolution rule

(EQ ri1 ri1 ri3) 1 si ri3 →max s ri3 θ

10



Instruction Corresponding evolution rules

(EQ ri1 ri2 ri3) Rules for state si:

1 si ri1 ri2 →max s
′
i ri1 ri2

2 si ri1 →max s
′
i ri1 γ

3 si ri2 →max s
′
i ri2 γ

Rules for state s′i:

1 s′i γ →max si+1

2 s′i ri3 →max s ri3 θ

Instruction Corresponding evolution rules

(EQ ri1 ki ri3) 1 si r
ki+2
i1
→min si+1 r

ki+2
i1

2 si r
ki+1
i1
→min s r

ki+1
i1

3 si ri1 →min si+1 ri1
4 si ri3 →max s ri3 θ

The “springboard” state mimics the manner in which a register machine performs a
“GOTO” operation to move to l-th instruction, 0 ≤ l ≤ n − 1. The springboard state
contains one rule designated for each value 1, 2, . . . , n, such that 1 ≤ j ≤ n copies of
symbol θ will lead the main cell to transit to state sj−1. Additionally, the springboard
state contains one extra rule designated for all values greater than n, such that j > n
copies of symbol θ will lead the main cell to infinite loop state transitions.

Rules for the “springboard” state s:

1 s θn+1 →min s θ
n+1

2 s θn →min sn−1

3 s θn−1 →min sn−2
...

n+ 1 s θ →min s0

3.1.4 Evolution rules for a READ instruction

An i-th instruction of the form (READ ri1) is translated into the following evolution rules in
cell σm. The rules below set the multiplicity of symbol ri1 to either one or two (indicating
a data-bit of value 0 or 1).

Setting the multiplicity of symbol ri1 as described above requires interactions with
the provider cell. Symbol µ represents the “last unread data-bit” request from the main
cell to the provider cell. Symbols φ and δ represent the provider cell’s responses, where
(i) symbol φ indicates that the entire data has been read and (ii) symbol δ indicates
that the last unread data-bit is 1. The provider cell’s other response is not to send any
symbol—this response indicates that the last unread data-bit is 0.

According to the provider cell’s three possible responses, the main cell sets the multi-
plicity of symbol ri1 as follows. Note, the main cell initially contains one copy of symbol
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ri1 . If the main cell receives: (i) symbol δ, then the main cell rewrites the received symbol
δ into symbol ri1 , such that the final multiplicity of symbol ri1 is two, or (ii) symbol φ,
then the main cell enters infinite loop state transitions. Otherwise, the main cell remains
idle, such that the final multiplicity of symbol ri1 remains at one.

Instruction Corresponding evolution rules

(READ ri1) Rules for state si:

1 si ri1 →min s
′
i ri1 (µ, ↓)

2 si ri1 →max s
′
i

Rules for state s′i:

1 s′i ri1 →min s
′′
i ri1

Rules for state s′′i :

1 s′′i φ→min s
′′
i φ

2 s′′i δ →min si+1 ri1
3 s′′i ri1 →min si+1 ri1

3.1.5 Evolution rules for a HALT instruction

The last instruction must be HALT, which is translated into the following evolution rules.
According to the rules below, the main cell reaches either: (i) a halting configuration or
(ii) an infinite loop configuration. The rules below involve the interaction between the
main and provider cells, where the responses from the provider cell are as described in
the READ instruction of Section 3.1.4. If the provider cell’s response is symbol φ, then
the main cell reaches a halting configuration. Otherwise, the main cell enters an infinite
loop configuration.

Instruction Corresponding evolution rules

(HALT) Rules for state sn−1:

1 sn−1 π →min s
′
n−1 π (µ, ↓) (µ, ↓)

Rules for state s′n−1:

1 s′n−1 π →min s
′′
n−1 π

Rules for state s′′n−1:

1 s′′n−1 φ π →min sn−1

2 s′′n−1 π →min s
′′
n−1 π

3.2 The provider cell

The role of the provider cell is to obtain and send the last unread bit to the main cell.
For an input data of ν bits, β = b1b2 · · · bν , where bi ∈ {0, 1} and 1 ≤ i ≤ ν, the provider
cell initially contains the multiset δk, where k is the value of the binary-encoded integer
β′ = 1bνbν−1 · · · b1. The bit of value 1 at the first position of β′, which is not part of β,
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ensures that if the last k ≥ 1 bits of β, i.e. bν−kbν−k+1 · · · bν , are of value 0, then we do
not lose them.

Let x > 1 denote the current multiplicity of symbol δ in cell σp. At the i-th READ

instruction, cell σp performs “mod 2” operation on value x to obtain the i-th bit. Then σp
performs a “div 2” operation on the value of x to prepare for the next READ instruction,
if any. For example, if σp has x = 11(10) = 1011(2) copies of symbol δ, then the next three
successive bits returned to the main cell σm are 1, 1 and 0.

The provider cell, σp, is of the form (Qp, sp0, wp0, Rp), where:

• Qp = {s, s′}.
• sp0 = s.

• wp0 = {δβ′}, where β′ = 1bnbn−1 · · · b1(2).
• Rp is the following rules, which correspond to the READ and HALT instructions of
M .

Rules for state s:

1 s δ δ µ→min s
′ δ

2 s δ µ→min s
′ δ (φ, ↑)

3 s δ →min s δ

4 s δ δ →max s
′ δ

5 s δ →min s
′ (δ, ↑)

Rules for state s′:

1 s′ δ µ →min s

2 s′ δ →min s δ

The provider cell receives at most two copies of symbol µ from the main cell in a
single step. Using the first copy of symbol µ, if any, the provider cell performs the
“mod 2” and “div 2” operations on the current multiplicity of symbol δ as described
above. Using the second copy of symbol µ, if any, the provider cell reaches a halting
configuration.

Let j denote the current multiplicity of symbol δ. The provider cell notifies the
results of a “mod 2” operation on the value j to the main cell by: (i) not sending any
symbol to indicate that j mod 2 = 0 (ii) sending one copy of symbol δ to indicate
that j mod 2 = 1, or (iii) sending one copy of symbol φ to indicate that j = 1,
i.e. the all data-bits b1b2 · · · bν have been read.

3.3 Handling of run-time errors

In Section 2.2, we described the run-time errors of a register machine program. We now
describe the manner in which the cells of system ΠM detect and handle the run-time
errors. Figure 1 illustrates the provider cell’s three possible responses, upon receiving a
data-bit request (i.e. symbol µ) from the main cell. From these responses, the main cell
detects the over-read and under-read errors.
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Main Provider

sends one copy
of symbol µ

No response from
the provider cell

cell cell

Case 2: x ≥ 2 and x mod 2 = 0

Main Provider

sends one copy
of symbol µ

of symbol δ
one copy

sends

cell cell
Main Provider

sends one copy
of symbol µ

of symbol φ
one copy

sends

cell cell

Case 3: x = 1Case 1: x ≥ 2 and x mod 2 = 1

Figure 1: Symbol exchanges between the main and provider cells in the READ and HALT

instructions, where x indicates the current multiplicity of symbol δ in the provider cell.

3.3.1 Over-read error

This error can be detected in a READ instruction. When the main cell encounters a READ

instruction, it sends one copy of symbol µ to the provider cell. The purpose of this
symbol µ is to request the next unread bit. The main cell interprets the provider cell’s
responses as follows.

• One copy of symbol δ indicates that the next bit is 1.

• “No response”, i.e. case 2, indicates that the next bit is 0.

• One copy of symbol φ indicates that the entire input data has been read, i.e. an
over-read error. In this case, the main cell enters an infinite loop, hence system ΠM

does not halt.

3.3.2 Under-read error

This error can be detected in the HALT instruction. When the main cell encounters the
HALT instruction, it sends one copy of symbol µ to the provider cell. The purpose of
this symbol µ is to confirm that the entire input data have been read. The main cell
interprets provider’s responses as follows.

• One copy of symbol φ indicates that the entire input data has been read. In this
case, both the main and provider cell do not apply rules any more, hence system
ΠM halts.

• One copy of symbol δ or “no response” (i.e. case 2) indicates that there are unread
input data, i.e. an under-read error. In this case, the main cell enters an infinite
loop, hence system ΠM does not halt.

3.3.3 Illegal branching error

This error can be detected in an EQ instruction. If the values of the first registers (or
the first register and the constant) of an EQ instruction are the same, then the main cell
produces j + 1 copies of symbol θ, where j is the value of the third register of the EQ

14



instruction. Let n denote the number of instructions. If j + 1 ≥ n then the value of
the third register must be greater or equal to n. Thus, the main cell detects (in the
“springboard” state s) an illegal branching error and enters an infinite loop. Hence,
system ΠM does not halt.

3.4 Analysis of system ΠM and remarks

When system ΠM halts, the configuration of (i) the provider cell is (s, ∅) and (ii) the
main cell is (sn−1, wm), where wm = {ri | 0 ≤ i < n}∗. The computational results of a
halted system ΠM is the final content of the main cell, where the multiplicity of symbol
ri minus one, 0 ≤ i < n, indicates the value of the register ri of register machine M .

Theorem 5. Simple P systems are universal.

Proof. In Section 3, we presented the details of building a simple P system ΠM that
simulates any register machine M (with input data) [CD07]. Thus, simple P systems are
universal.

The number of evolution rules in system ΠM , which simulates a given machine M
with n instructions, is proportional to n. The lower and upper bounds on the number of
evolution rules of system ΠM are indicated in Proposition 6.

Proposition 6. For register machine M with n instructions, there are nSET SET instruc-
tions, nADD ADD instructions, nEQ EQ instructions, nREAD READ instructions and one HALT

instruction, such that n = nEQ + nSET + nADD + nREAD + 1. The corresponding system ΠM

contains ntotal evolution rules, where nEQ+2·nSET+nADD+6·nREAD+(nEQ/nEQ)·(n+1)+12 ≤
ntotal ≤ 5 · nEQ + 2 · nSET + 2 · nADD + 6 · nREAD + (nEQ/nEQ) · (n+ 1) + 12.

Proof. Recall the set of evolution rules given in Sections 3.1 and 3.2.
There are two evolution rules for each of instructions (SET ri1 ri2) and (SET ri1 ki).

Thus, for nSET number of SET instructions, there are 2 · nSET evolution rules.
There are two and one evolution rules for each of instructions (ADD ri1 ri2) and

(ADD ri1 ki), respectively. If all nADD instructions are of type (ADD ri1 ri2), then there
are nADD number of evolution rules. If all nADD instructions are of type (ADD ri1 ki), then
there are 2 · nADD number of evolution rules.

There are one, five and four evolution rules for instructions (EQ ri1 ri1 ri3), (EQ ri1 ri2 ri3)
and (EQ ri1 ki ri3), respectively, and n+1 additional evolution rules for the “springboard”
state. If all nEQ instructions are of type (EQ ri1 ri1 ri3), then there are nEQ + n + 1 num-
ber of evolution rules. If all nEQ instructions are of type (EQ ri1 ri2 ri3), then there are
5 · nEQ + n+ 1 number of evolution rules.

The main cell contains (i) six evolution rules for each READ instruction and (ii) four
evolution rules for the HALT instruction. The provider cell contains seven evolution rules,
which are associated with READ and HALT instructions.

4 Conclusions

In this paper, we presented a new universality result in P systems. Specifically, we
presented a state-based simple P system that can simulate any register machine of the
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syntax given in [CD07]. In Section 3, we proved that simple P systems are universal
by presenting the details of building a simple P system ΠM that simulates any register
machine M (with input data) [CD07]. Each constructed system ΠM has the following
properties: (i) there are two cells, (ii) the number of states and evolution rules are
proportional to the number of instructions of a given register machine and (iii) the number
of P system steps required for each register machine instruction during the simulation is
constant.

The translation presented in this paper builds a simple P system with two cells. The
purpose of having two cells is to designate specific functions to different cells, i.e. the
provider cell handles IO operations on the input data. Additionally, the inclusion of the
provider cell highlights the progress from our previous Turing completeness results on
simple P systems—we proved the Turing completeness by providing the details of building
a simple P system that simulates a register machine [CD07] without input data and READ

instructions. As a possible future work, we could consider presenting a translation that
builds a simple P system with one cell, i.e. merge the evolution rules of the main and
provider cells into a single cell. An advantage of having one cell is that we can eliminate
the communications between the main and provider cells, where each communication
causes one step delay before receiving a response, such that we can reduce the number
of steps needed to execute the evolution rules that correspond to the READ and HALT

instructions.
Recent universality results, obtained by simulating register machines, used spiking

neural P systems. To our knowledge, the universality results for spiking neural P systems
have not considered register machine models with READ instructions. Hence, we could
consider implementing evolution rules of spiking neural P systems that simulate the READ
instructions.
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Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors, Int. Conf. on Mem-
brane Computing, volume 6501 of Lecture Notes in Computer Science, pages 226–239.
Springer, 2010.
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[PPJRN+10], pages 335–353.
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A Appendix

This section contains the evolution rules of a simple P system, which corresponds to the
register machine of Example 4 that computes the GCD of two integer numbers. The
evolution rules of the provider cell are described in Section 3.2, hence, we do not list the
provider cell’s rules here. The evolution rules of the main cell are as follow. Note, we
verified the correctness of the following evolution rules by our P system simulator.
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Rules for initializing registers a, b, c, d, e, f, g, h, i with the instruction line num-
bers (to be used as targets in branching EQ instructions)

• Rules for state s0:

1 s0 a→min s1 a
10

2 s0 a→max s1

• Rules for state s1:

1 s1 b→min s2 b
14

2 s1 b→max s2

• Rules for state s2:

1 s2 c→min s3 c
18

2 s2 c→max s3

• Rules for state s3:

1 s3 d→min s4 d
21

2 s3 d→max s4

• Rules for state s4:

1 s4 e→min s5 e
27

2 s4 e→max s5

• Rules for state s5:

1 s5 f →min s6 f
29

2 s5 f →max s6

• Rules for state s6:

1 s6 g →min s7 g
31

2 s6 g →max s7

• Rules for state s7:

1 s7 h→min s8 h
35

2 s7 h→max s8

• Rules for state s8:

1 s8 i→min s9 i
37

2 s8 i→max s9

Rules for initializing registers x and y, using auxiliary register z, with the
first and the second values of the input data, respectively

• Rules for state s9:

1 s9 z →min s
′
9 z (µ, ↓)

2 s9 z →max s
′
9

• Rules for state s′9:

1 s′9 z →min s
′′
9 z

• Rules for state s′′9:

1 s′′9 φ→min s
′′
9 φ

2 s′′9 δ →min s10 z

3 s′′9 z →min s10 z

• Rules for state s10:

1 s10 z
3 →min s11 z

3

2 s10 z
2 →min s z

2

3 s10 z →min s11 z

4 s10 b→max s b θ

• Rules for state s11:

1 s11 x→min s12 x
2

• Rules for state s12:

1 s12 a→max s a θ

• Rules for state s13:

1 s13 z →min s
′
13 z (µ, ↓)

2 s13 z →max s
′
13

• Rules for state s′13:

1 s′13 z →min s
′′
13 z

• Rules for state s′′13:

1 s′′13 φ→min s
′′
13 φ

2 s′′13 δ →min s14 z

3 s′′13 z →min s14 z

• Rules for state s14:

1 s14 z
3 →min s15 z

3

2 s14 z
2 →min s z

2

3 s14 z →min s15 z

4 s14 c→max s c θ

• Rules for state s15:

1 s15 y →min s16 y
2

• Rules for state s16:

1 s16 b→max s b θ
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Rules for checking the condition x = 0

• Rules for state s17:

1 s17 x
2 →min s18 x

2

2 s17 x
1 →min s x

1

3 s17 x→min s18 x

4 s17 i→max s i θ

Rules for checking the condition x = 0

• Rules for state s18:

1 s18 z →max s19

2 s18 x→max s19 z x

• Rules for state s19:

1 s19 w →max s20

2 s19 y →max s20 w y

• Rules for state s20:

1 s20 z y →max s
′
20 z y

2 s20 z →max s
′
20 z γ

3 s20 y →max s
′
20 z γ

• Rules for state s′20:

1 s′20 γ →max s21

2 s′20 f →max s f θ

• Rules for state s21:

1 s21 z →min s22 z
2

• Rules for state s22:

1 s22 w →min s23 w
2

• Rules for state s23:

1 s23 y z →max s
′
23 y z

2 s23 y →max s
′
23 y γ

3 s23 z →max s
′
23 y γ

• Rules for state s′23:

1 s′23 γ →max s24

2 s′23 e→max s e θ

• Rules for state s24:

1 s24 x w →max s
′
24 x w

2 s24 x→max s
′
24 x γ

3 s24 w →max s
′
24 x γ

• Rules for state s′24:

1 s′24 γ →max s25

2 s′24 f →max s f θ

• Rules for state s25:

1 s25 d→max s d θ

• Rules for state s26:

1 s26 y →max s27

2 s26 x→max s27 y x

• Rules for state s27:

1 s27 x→max s28

2 s27 z →max s28 x z
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Rules for executing x := x− y

• Rules for state s28:

1 s28 z →max s29

2 s28 y →max s29 z y

• Rules for state s29:

1 s29 w →min s30 w
1

2 s29 w →max s30

• Rules for state s30:

1 s30 x z →max s
′
30 x z

2 s30 x→max s
′
30 x γ

3 s30 z →max s
′
30 x γ

• Rules for state s′30:

1 s′30 γ →max s31

2 s′30 h→max s h θ

• Rules for state s31:

1 s31 z →min s32 z
2

• Rules for state s32:

1 s32 w →min s33 w
2

• Rules for state s33:

1 s33 g →max s g θ

• Rules for state s34:

1 s34 x→max s35

2 s34 w →max s35 x w

• Rules for state s35:

1 s35 c→max s c θ

Rules for executing Halt

• Rules for state s36:

1 s36 π →min s
′
36 π (µ, ↓) (µ, ↓)

• Rules for state s′36:

1 s′36 π →min s
′′
36 π

• Rules for state s′′36:

1 s′′36 φ π →min s36

2 s′′36 π →min s
′′
36 π

Rules for the “springboard” state s

• Rules for state s:

1 s θ37 →min s θ
37

2 s θ36 →min s35

3 s θ35 →min s34

...

37 s θ →min s0

21


	Introduction
	Preliminaries
	Simple P systems
	Register machines
	Instructions
	Input data
	Run-time errors

	Register machine program example

	Universality results
	The main cell
	Evolution rules for a SET instruction
	Evolution rules for an ADD instruction
	Evolution rules for an EQ instruction
	Evolution rules for a READ instruction
	Evolution rules for a HALT instruction

	The provider cell
	Handling of run-time errors
	Over-read error
	Under-read error
	Illegal branching error

	Analysis of system M and remarks

	Conclusions
	Appendix

