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Abstract

Knowledge about complex events is usually incomplete in practice. Zeros can
be utilized to capture such events within probability models. In this article, Geiger
and Pearl’s conditional probabilistic independence statements are investigated in
the presence of zeros. Random variables can be specified to be zero-free, i.e., to
disallow zeros in their domains. Zero-free random variables provide an effective
mechanism to control the degree of uncertainty caused by permitting zeros. A
finite axiomatization for the implication problem of saturated conditional indepen-
dence statements is established under controlled uncertainty, relative to discrete
probability measures. The completeness proof utilizes special probability models
where two events have probability one half. The special probability models en-
able us to establish an equivalence between the implication problem and that of a
propositional fragment in Cadoli and Schaerf’s S-3 logic. Here, the propositional
variables in S correspond to the random variables specified to be zero-free. The
duality leads to an almost linear time algorithm to decide implication. It is shown
that this duality cannot be extended to cover general conditional independence
statements. All results subsume classical reasoning about saturated conditional
independence statements as the idealized special case where every random variable
is zero-free. In the presence of controlled uncertainty, zero-free random variables
allow us to soundly approximate classical reasoning about saturated conditional
independence statements.

Keywords: Algorithm, Approximation, Axiomatization, Complexity, Conditional Inde-
pendence, Discrete probability measure, Implication, S-3 logic, Propositional logic, Zero
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1 Introduction

The concept of conditional independence is important for capturing structural aspects of
probability distributions, for dealing with knowledge and uncertainty in Artificial Intelli-
gence, and for learning and reasoning in intelligent systems [1]. Application areas include
natural language processing, speech processing, computer vision, robotics, computational
biology, and error-control coding [2, 1, 3]. A conditional independence (CI) statement
I(Y, Z | X) represents the independence of two sets of random variables relative to a
third: given three mutually disjoint subsets X, Y , and Z of a set S of random variables,
if we have knowledge about the state of X, then knowledge about the state of Y does
not provide additional evidence for the state of Z and vice versa. An important problem
is the implication problem, which is to decide for an arbitrary set S of random variables,
and an arbitrary set Σ ∪ {φ} of CI statements over S, whether every probability model
that satisfies every CI statement in Σ also satisfies φ. The significance of this problem is
due to its relevance for building Bayesian networks [1]. The implication problem for CI
statements is not axiomatizable by a finite set of Horn rules [4]. However, it is possible to
express CI statements using polynomial likelihood formulae, and reasoning about poly-
nomial inequalities is axiomatizable [2, 5]. Recently, the implication problem of stable CI
statements [6, 7] has been shown to be axiomatizable by a finite set of Horn rules, and to
be coNP -complete to decide [8, 9]. Here, stability means that the validity of I(Y, Z | X)
over S implies the validity of every I(Y, Z | X ′) where X ⊆ X ′ ⊆ S−Y Z. An important
efficient subclass of stable CI statements are saturated conditional independence (SCI)
statements. These are CI statements I(Y, Z | X) over S that satisfy XY Z = S, i.e.,
where the union of X, Y and Z is S. Geiger and Pearl have established an axiomatization
for the implication problem of SCI statements by a finite set of Horn rules [10].

Example 1 Let {c(onference), p(aper), s(peaker), a(ctivity), l(ocation), o(rganizer)}
denote a set of random variables that model information about conferences, their orga-
nizers, papers presented by speakers at the conference, and social activities taking place
at some locations during the conference. Let Σ consist of I(psal, o | c) and I(ps, al | co),
and let φ be I(ps, alo | c). Then Σ implies φ. Indeed, φ can be inferred from Σ using
Geiger and Pearl’s axiomatization: a single application of the so-called weak contraction
rule to the two SCI statements in Σ results in φ.

It is known that the implication of SCI statements is equivalent to Boolean implication
for a fragment F of Boolean propositional logic [11, 12, 13]. We illustrate this equivalence
by translating Example 1 into the fragment F.

Example 2 Let {c′, p′, s′, a′, l′, o′} denote a set of propositional variables. Let Σ′ consist
of the formulae ¬c′ ∨ (p′ ∧ s′ ∧ a′ ∧ l′) ∨ o′ and ¬c′ ∨ ¬o′ ∨ (p′ ∧ s′) ∨ (a′ ∧ l′), and let φ′

be the formula ¬c′ ∨ (p′ ∧ s′) ∨ (a′ ∧ l′ ∧ o′). It is not difficult to see that φ′ is logically
implied by Σ′ in Boolean propositional logic.

The study of conditional independence statements has largely been a study of prob-
ability models that are free from zeros. In practice, zeros occur frequently, and in form
of many different types. For examples, structural zeros appear when some events do
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not exist, and sampling zeros occur when events exist but are currently unknown. The
primary goal of this article is to analyze the implication problem of saturated condi-
tional independence statements in the presence of zeros, relative to discrete probability
measures. For this purpose, the simplest interpretation of zeros is utilized. That is,
any occurrence of a zero as a marked “value” of some random variable, denoted by ζ, is
interpreted as no information. While there is a potential loss in representing knowledge
with this interpretation, it is possible to model zeros whose type itself is unknown. For
example, it is difficult to decide whether a zero occurrence under the random variable
maiden name is a structural or sampling zero, and even more so when the gender of the
person is unknown.

It is a fundamental question to ask when a CI statement I(Y, Z | X) is satisfied by
a probability model that can feature occurrences of zeros. In consistency with the no
information interpretation of zeros, the independence of Y -events and Z-events should
be conditional on total X-events only, i.e., X-events in which no zeros feature. Indeed, if
some X-event does feature a zero on some random variable, then one should not ask of
Y - and Z-events to be independent. Under this definition the implication problem of SCI
statements requires a careful re-examination, as illustrated by the following example.

Example 3 In Example 1, Σ does not imply φ when zeros are permitted to occur. A
probability model that has the following two events

conference paper speaker organizer activity location
ICM 23 problems Hilbert ζ petanque tuileries
ICM 4 problems Landau ζ rowing river cam

and assigns both of them a probability of one half satisfies both SCI statements in Σ,
but violates φ. In fact, the occurrence of the zero marker ζ in the o-events means that
I(ps, al | co) is satisfied.

In practice it would be convenient to control the degree of uncertainty introduced by
permitting occurrences of zeros. For this purpose, we introduce zero-free random vari-
ables which do not contain the zero marker ζ in their domains. There are different reasons
to declare random variables zero-free: for some applications some random variables are
such that zeros are not expected to occur at all, and for some applications it is convenient
to exclude events that do feature zeros on some random variables. The goal of this article
is to study the implication problem of SCI statements under controlled uncertainty, i.e.,
when the set of zero-free random variables can be specified. The absence of zero mark-
ers from probability models is the idealized special case where all random variables are
declared zero-free. It will be shown that zero-free random variables provide an effective
mechanism to approximate classical reasoning about SCI statements, i.e., reasoning in
the absence of zeros. More precisely, the implication of SCI statements under the set
Sζ of zero-free random variables is equivalent to Cadoli and Schaerf’s S-3 implication of
propositional formulae in F. Here, S consists of those propositional variables that corre-
spond to the zero-free random variables, i.e., those in Sζ . S-3 truth assignments assign
opposite truth values to propositional variables in S, and there are three possibilities to
assign truth values to propositional variables outside of S and their negations: either
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opposite truth values are assigned, or both can be assigned true [14]. The following
example illustrates this equivalence, and complements the previous examples.

Example 4 For Example 2 and S = {c′, p′, s′, a′, l′}, Σ′ does not S-3 imply φ′. In fact,
the S-3 truth assignment where true is assigned to a literal if and only if the literal is
in {c′,¬p′,¬s′, o′,¬o′,¬a′,¬l′} is a model for Σ′, but not for φ′. This S-3 truth assign-
ment corresponds to the two-event probability model from Example 1: assign true to a
propositional variable and false to its negation whenever the events match on the random
variable and are different from zero, assign false to a propositional variable and true to
its negation whenever the events do not match on the random variable, and assign true
to a propositional variable and true to its negation whenever the events on the random
variable are both zero.

Organization. We outline the main contributions of this article in Section 2. In
Section 3 we introduce, in the presence of zeros, notions such as probability models and
(saturated) conditional independence statements, as well as zero-free random variables.
Geiger and Pearl’s finite axiomatization for the implication of saturated conditional in-
dependence statements in the absence of zeros is repeated, and it is shown that one
of the inference rules, the weak contraction rule, is not sound in the presence of zeros.
Replacing the weak contraction rule by a new sound rule allows us in Section 4 to es-
tablish an axiomatization, by a finite set of Horn rules, for the implication of saturated
conditional independence statements under controlled uncertainty, relative to discrete
probability measures. The completeness proof utilizes special probability models, con-
sisting of only two events each of probability one half. It follows that special probability
models suffice to decide the implication problem. In Section 5 the special probability
models are utilized to establish an equivalence between the implication of saturated con-
ditional independence statements under controlled uncertainty and S-3 implication of
formulae in the propositional fragment F. It is also shown that this equivalence cannot
be extended to cover general conditional independence statements. It is established in
Section 6 that the implication problem of saturated conditional independence statements
under controlled uncertainty is also equivalent to the Boolean implication of formulae in
F, but this equivalence requires the elimination of some formulae from the input instance.
The latter equivalence is then utilized to establish an algorithm to decide the implication
problem in time almost linear in the size of the input. We conclude in Section 7 where
we also discuss options for future work.

2 Contribution

This section is dedicated to an outline of the contributions made in this article.
As a first contribution, the article introduces conditional independence statements in

the presence of zeros. For this purpose we interpret occurrences of zeros uniformly as
having no information available about some property of some event. The disadvantage of
this interpretation is a loss in the representation of knowledge whenever more information
is available about the property of the event, for example, that a zero is a structural zero.
There are, however, several advantages associated with this interpretation. It is a very
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simple interpretation that is easy to understand. It does not require different treatments
of different types of zeros. In particular, if it is unknown which type of zero occurs, we
can still represent this knowledge using the no information interpretation. In practice,
it will be unlikely to know the correct type of all occurrences of zeros. For a conditional
independence statement I(Y, Z | X) to be satisfied by a probability model in the presence
of zeros, we still require that given some event x of X, learning the event y of Y is
independent from the event z of Z. However, we restrict this requirement to events x of
X that are total, that is, where no occurrences of zeros feature on any property in X.
This requirement is consistent with the no information interpretation of zeros and the
notion of conditional independence: if we have no information about some property of
x, then we must not require y to be independent of z.

As a second contribution, the article introduces zero-free random variables. Intu-
itively, zero-free random variables do not permit any occurrences of zeros. Therefore,
by declaring a random variable to be zero-free one discards events that are uncertain on
this random variable. In practice, there will be a natural tradeoff between the desire to
eliminate as much uncertainty as possible and the desire to capture as many events as
possible. There can be different reasons to declare random variables zero-free. It may
be unlikely that zeros will ever occur for some random variable, or it may be desirable
to exclude any events in which zeros do feature on some random variable. In any case,
zero-free random variables provide a simple means to control the degree of uncertainty in
probability models. The article shows in technical detail how zero-free random variables
can be used to soundly approximate classical reasoning about saturated conditional in-
dependence statements. Here, we mean by classical reasoning the idealized special case
where no zeros ever occur in a probabilistic model, i.e., where all random variables are
zero-free.

As a third contribution, the article investigates the feasibility of the implication prob-
lem associated with classes of conditional independence statements under controlled un-
certainty, relative to discrete probability measures. The implication problem for the
general class of conditional independence statements does not enjoy a finite axiomati-
zation by Horn clauses, already in the idealized special case where all random variables
are zero-free [4]. Moreover, the implication problem of stable conditional independence
statements [6, 7] is coNP -complete to decide [8]. For these reasons, the focus is directed
towards the large efficient subclass of saturated conditional independence (SCI) state-
ments. These are statements I(Y, Z | X) where the set union XY Z of X, Y and Z
covers the underlying set S of random variables. Instances of this implication problem
are denoted by Σ |=Sζ

φ where Σ ∪ {φ} denotes a finite set of SCI statements and Sζ is
the set of zero-free random variables from S. Usually, we omit the subscript S and write
Σ |= φ whenever Sζ = S. Our first main technical result establishes an axiomatization
Z, by a finite set of Horn rules, for the implication of SCI statements in the presence
of controlled uncertainty. The fact that φ can be inferred from Σ by Z is denoted by
Σ ⊢Z φ. Geiger and Pearl’s well-known axiomatization G of SCI statements represents
the idealized special case of our axiomatization Z where all random variables are zero-
free. In the presence of controlled uncertainty, three of the four inference rules in Geiger
and Pearl’s axiomatization are still sound. The weak contraction rule, however, is only
sound when some random variables are known to be zero-free. A simple restriction of the
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weak contraction rule to zero-free random variables does not suffice to gain completeness
of the inference rules under controlled uncertainty. We establish a more powerful form of
restriction on the weak contraction rule that does result in the axiomatization Z. Some
special cases of the inference rule are discussed. From this discussion new insight is de-
rived that enables us to establish a completeness argument that is very different from
the one used in Geiger and Pearl’s special case. In fact, for our completeness argument
we construct special probability models in which two events are assigned probability one
half. As a corollary, the implication problem for SCI statements under controlled uncer-
tainty is equivalent to that over special probability models. We use Σ |=2,Sζ

φ to denote
an instance of the implication problem over special probability models.

As a fourth contribution, the article establishes a characterization of the implication
problem in purely logical terms. SCI statements φ are known to correspond to formulae
φ′ in a propositional fragment F. Assuming that all random variables are zero-free, there
is an equivalence between the implication of SCI statements and the Boolean implication
of formulae in F [11, 12, 13]. In this article, we establish an equivalence between the
implication of SCI statements under controlled uncertainty and Cadoli and Schaerf’s S-3
implication of formulae in F. Here, S is the set of propositional variables that correspond
to random variables declared zero-free. Instances of the implication problem in S-3 logic
are denoted by Σ′ |=3

S φ
′, and in Boolean logic by Σ′ |=BL φ

′. In particular, in the special
case where all random variables are zero-free, S-3 implication coincides with Boolean
implication. The result shows formally that classical reasoning about SCI statements
can be soundly approximated by the use of zero-free random variables.

As a fifth contribution, the article establishes a characterization of the implication
problem in algorithmic terms. For an SCI statement φ = I(Y, Z | X) we write φc for X,
φi,1 for Y and φi,2 for Z. Our axiomatization Z is exploited to show that for any set S
of random variables, and any set Sζ of zero-free random variables from S, and any set
Σ ∪ {φ} of SCI statements over S, Σ |=Sζ

φ if and only if Σ[φcSζ ] |=S φ, where Σ[φcSζ ]
consists of all those SCI statements σ ∈ Σ where σc ⊆ φc∪Sζ . This allows us to establish
an

O(|Σ|+min{kΣ[φcSζ ], log p̄Σ[φcSζ ],Sζ
} × |Σ[φcSζ ]|)

time algorithm for deciding whether Σ |=Sζ
φ. Herein, |Σ| denotes the total number of

random variables occurring in Σ, kΣ denotes the cardinality of Σ, and p̄Σ,Sζ
denotes the

minimum of the two numbers of sets in IDepBΣ,Sζ
(φc) that have non-empty intersection

with φi,1, and with φi,2, respectively. The independence basis IDepBΣ,Sζ
(X) of a set X of

random variables from S, with respect to Σ and Sζ , is the set of all minimal, non-empty
sets W of random variables from S that are independent of S −XW , given X. Hence,
Σ |=Sζ

I(Y, Z | X) if and only if Y is the union of elements of the independence basis
of X with respect to Σ and Sζ . The upper bound illustrates the impact of the set Sζ of
zero-free random variables on the time-complexity of deciding the implication problem.
The equivalences established in this article for the implication problem of saturated
conditional independence statements under controlled uncertainty are summarized in
Table 1.

As a six contribution, the article establishes that the equivalence between SCI im-
plication under controlled uncertainty and the S-3 implication for F-formulae cannot be
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1. Σ ⊢Z φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . φ can be inferred from Σ by Z

2. Σ |=2,Sζ
φ . . . . . . . . . . . . . . . . . . . . . . . . . Σ Sζ-implies φ over special probability models

3. Σ′ |=3
S φ

′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Σ′ S-3 implies φ′

4. Σ[φcSζ ] |=S φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Σ[φcSζ ] implies φ

5. Σ[φcSζ ] ⊢G φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .φ can be inferred from Σ[φcSζ ] by G

6. Σ[φcSζ ] |=2,S φ . . . . . . . . . . . . . . . . . Σ[φcSζ ] implies φ over special probability models

7. (Σ[φcSζ ])
′ |=BL φ

′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Σ[φcSζ ])
′ classically implies φ′

Table 1: Characterizations of Σ |=Sζ
φ with set Sζ of zero-free random variables from set

S of random variables

extended to cover arbitrary conditional independence statements. This non-extendibility
result is established already for the idealized special case where every random variable
is zero-free. That is, the equivalence between SCI implication and Boolean implication
of F-formulae cannot be extended to cover general conditional independence statements.
This non-extendibility result fits well into previous results from the literature. In [4],
Studený showed that the implication of CI statements is different from the implication of
embedded multivalued dependencies [15], demonstrating the non-extendibility between the
implication of SCI statements and the implication of multivalued dependencies [11, 13].
In [16], Sagiv et al. showed that the equivalence between the implication of multivalued
dependencies and the Boolean implication of F-formulae cannot be extended to an equiv-
alence between the implication of embedded multivalued dependencies and the Boolean
implication of any propositional fragment [16]. These results left open the possibility that
the equivalence between the implication of SCI statements and the Boolean implication
of F-formulae can be extended to cover general CI statements. Our result shows that
this is impossible.

Therefore, the article establishes equivalences between the implication of SCI state-
ments and zero-free random variables and the S-3 implication of F-formulae, and, by
the results in [17], the implication of multivalued dependencies and NOT NULL attributes.
These equivalences are very special since any duality between two of these frameworks
fails when extended to more expressive frameworks such as general CI statements and
embedded multivalued dependencies. These achievements are illustrated in Figure 1.
We also note that the implication problem of embedded multivalued dependencies is
undecidable [18, 19] and not axiomatizable by a finite set of Horn rules [15].

3 Preliminaries

We use the framework of Geiger and Pearl [10]. We denote by S a finite set of distinct
symbols {a1, . . . , an}, called random variables. A domain mapping is a mapping that
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Figure 1: Summary of equivalences between implication problems and their failures for
more expressive frameworks

associates a set, dom(a), with each random variable a. The set dom(a) is called the
domain of a and each of its elements is called an event for a. For X ⊆ S we say that
x is an event of X, if x ∈

∏
a∈X dom(a). For an event x = (a1, . . . , ak) of X with

ai ∈ dom(ai), we write x(ai) for the event ai over ai. For some Y ⊆ X we write x(Y ) for
the projection of x onto Y , that is, x(Y ) =

∏
a∈Y {x(a)}.

3.1 Zeros and zero-free random variables

In theory one can assume that events always exist and are even known. In practice, these
assumptions fail frequently. Indeed, it can happen in most samples that some events do
not exist, or that some existing events are currently unknown. In the first case, one speaks
commonly of structural zeros, and in the latter case of sampling zeros. In practice, it is
often difficult to tell whether a given zero is a structural zero or a sampling zero. The
goal of this article is to investigate the properties of saturated conditional probabilistic
independence in the presence of zeros.

Unless we say otherwise we assume that each domain dom(a) contains the element ζ,
which we call the zero marker. Although we include ζ in the domain of random variables,
we prefer to think of ζ as a marker. More precisely, an occurrence x(a) = ζ of the zero
marker ζ in some event x denotes that no information is currently available about the
event of random variable a in x. We say that the event e over S is X-total, if e(a) ̸= ζ
for all a ∈ X. The interpretation of the zero marker ζ as no information means that an
event does either not exist (structural zero), or an event exists but is currently unknown
(sampling zero). The disadvantage of using this interpretation is a loss in knowledge when
representing known structural zeros or known sample zeros in form of the zero marker.
However, if we do not know whether a zero is a structural or a sampling zero, then we
can still denote it in form of the zero marker. In fact, the no information interpretation
is the most primitive interpretation of occurrences of zero. It is a goal of this article to
investigate the properties of saturated conditional probabilistic independence under the
no information interpretation of zeros.

It is an advantage to gain control over the occurrences of zeros. For this purpose
we introduce zero-free random variables. If a random variable a of S is declared to
be zero-free, then ζ /∈ dom(a). For a given S we define Sζ to be the set of random
variables of S that are zero-free. It is a goal of this article to investigate the properties
of saturated conditional probabilistic independence under controlled uncertainty, i.e., in
the presence of zero-free random variables. Indeed, it will turn out that zero-free random
variables provide an effective means to not just control the degree of uncertainty, but
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also to soundly approximate classical reasoning about saturated conditional probabilistic
independence.

3.2 Saturated conditional independence and controlled uncer-
tainty

A probability model over (S = {a1, . . . , an}, Sζ) is a pair (dom, P ) where dom is a domain
mapping that maps each ai to a finite domain dom(ai), and P : dom(a1)×· · ·×dom(an) →
[0, 1] is a probability distribution having the Cartesian product of these domains as its
sample space. Note that ζ /∈ dom(ai) whenever ai ∈ Sζ .

Definition 1 The expression I(Y, Z | X) where X, Y , and Z are disjoint subsets of S
is called a conditional independence (CI) statement over (S, Sζ). If XY Z = S, we call
I(Y, Z | X) a saturated CI (SCI) statement. Let (dom, P ) be a probability model over
(S, Sζ). A CI statement I(Y, Z | X) is said to hold for (dom, P ) if for every total event
x of X, for every event y of Y , and for every event z of Z,

P (y, z,x) · P (x) = P (y,x) · P (z,x). (1)

Equivalently, (dom, P ) is said to satisfy I(Y, Z | X).

Remark 1 The satisfaction of CI statements I(Y, Z | X) only requires equation (1) to
hold for total events x of X. The reason is that the independence for an event of Y and
an event of Z is conditional on the event x of X. However, in case there is no information
about some event of x, then there should not be any requirement on the independence for
an event of Y and an event of Z.

Remark 2 If every random variable is declared to be zero-free, i.e. when Sζ = S, then
Definition 1 reduces to the standard definition of CI statements [10, 1].

Remark 3 Studený [4] showed that, already in the special case where Sζ = S, the im-
plication problem of CI statements cannot be axiomatized by a finite set of Horn rules of
the form

I(Y1, Z1 | X1) ∧ · · · ∧ I(Yk, Zk | Xk) → I(Y, Z | X) .

However, it is possible to express CI statements using polynomial likelihood formulae, and
reasoning about polynomial inequalities is axiomatizable [2, 5]. Recently, the implication
problem of stable CI statements [6, 7] has been shown to be axiomatizable by a finite
set of Horn rules, and to be coNP-complete to decide [8, 9]. Here, stability means that
the validity of I(Y, Z | X) over (S, Sζ) implies the validity of every I(Y, Z | X ′) where
X ⊆ X ′ ⊆ S − Y Z. For the special case where Sζ = S it is known that saturated CI
statements form an expressive subclass of stable CI statements with good computational
properties [10]. The goal of this article is to investigate the computational properties of
SCI statements under controlled uncertainty.
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Example 5 Let {c(onference), p(aper), s(peaker), a(ctivity), l(ocation), o(rganizer)}
denote the set S of random variables from Example 1, let Sζ = {c, p, s, e, l}, let Σ con-
sist of I(psal, o | c) and I(ps, al | co), and φ be I(ps, alo | c). We may define the
following probability model (dom, P ) over (S, Sζ): dom(c) = {ICM,AAAI}, dom(p) =
{23 problems, 4 problems}, dom(s) = {Hilbert,Landau}, dom(o) = {ζ,Klein,Cantor},
dom(a) = {petanque, rowing}, dom(l) = {tuileries, river cam}, and define P by assigning
the probability one half to each of the following two events over S:

conference paper speaker organizer activity location
ICM 23 problems Hilbert ζ petanque tuileries
ICM 4 problems Landau ζ rowing river cam

.

It follows that (dom, P ) satisfies I(psal, o | c) and I(ps, al | co), but violates I(ps, alo | c).

For the remainder of the article we will be interested in saturated CI statements. Let
Σ ∪ {φ} be a set of SCI statements over (S, Sζ). We say that Σ Sζ-implies φ, denoted
by Σ |=Sζ

φ, if every probability model over (S, Sζ) that satisfies every SCI statement in
Σ also satisfies the SCI statement φ. The implication problem for SCI statements in the
presence of controlled uncertainty is defined as the following problem.

PROBLEM: Implication problem
INPUT: (S, Sζ), Set Σ ∪ {φ} of SCI statements over (S, Sζ)
OUTPUT: Yes, if Σ |=Sζ

φ; No, otherwise

Example 6 For S, Sζ, Σ ∪ {φ} from Example 5, the probability model (dom, P ) over
(S, Sζ) is a witness that Σ does not Sζ-imply φ.

For Σ we let Σ∗
Sζ

= {φ | Σ |=Sζ
φ} be the semantic closure of Σ, i.e., the set of all

SCI statements Sζ-implied by Σ. In order to determine the Sζ-implied SCI statements
we use a syntactic approach by applying inference rules. These inference rules have the
form

premise

conclusion
condition

and inference rules without any premises and any condition are called axioms. The
premise consists of a finite set of SCI statements, and the conclusion is a singleton
SCI statement. The condition of the rule is simple in the sense that it stipulates a
simple syntactic restriction on the application of the rule. Instead of using this graphical
representation, we could also state our rules in the form of Horn rules, as in Remark 3.
For example, the restricted weak contraction rule (R) from Table 3 can be stated as:

∀S∀Sζ ⊆ S∀U, V,W,X,Z ⊆ S∀Y ⊆ Sζ

((I(ZW,Y UV | X) ∧ I(UZ, V W | XY )) → I(Z,UVWY | X)).

An inference rule is called sound, if every probability model over (S, Sζ) that satisfies
every SCI statement in the premise of the rule also satisfies the SCI statement in the
conclusion of the rule, given that the condition is satisfied. We let Σ ⊢R φ denote the
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I(S −X, ∅ | X)

I(Y, Z | X)

I(Z, Y | X)
(saturated trivial independence, T ) (symmetry, S)

I(ZW,Y | X) I(Z,W | XY )

I(Z, Y W | X)

I(Y, ZW | X)

I(Y, Z | XW )
(weak contraction, C) (weak union, W)

Table 2: Axiomatization G = {T ,S, C,W} of SCI statements over S

inference of φ from Σ by the set R of inference rules. That is, there is some sequence
γ = [σ1, . . . , σn] of SCI statements such that σn = φ and every σi is an element of Σ or
results from an application of an inference rule in R to some elements in {σ1, . . . , σi−1}.
For Σ, let Σ+

R = {φ | Σ ⊢R φ} be its syntactic closure under inferences by R. A set R of
inference rules is said to be sound (complete) for the implication of SCI statements under
controlled uncertainty, if for every S, every Sζ ⊆ S and for every set Σ of SCI statements
over (S, Sζ) we have Σ+

R ⊆ Σ∗
Sζ

(Σ∗
Sζ

⊆ Σ+
R). The (finite) set R is said to be a (finite)

axiomatization for the implication of SCI statements under controlled uncertainty if R
is both sound and complete.

In the idealized special case where all random variables are zero-free, Geiger and Pearl
have established a finite axiomatization for the implication of SCI statements [10]. That
is, if for any given S, Sζ is assumed to be S, then the set G of inference rules from Table
2 forms an axiomatization for the implication of SCI statements in form of a finite set of
Horn rules.

The following lemma shows that G does not form a finite axiomatization for the
implication of SCI statements under controlled uncertainty.

Lemma 1 The weak contraction rule (C) is not sound for the implication of SCI state-
ments under controlled uncertainty.

Proof It suffices to find some probability model (dom, P ) over (S, Sζ) that satisfies
I(ZW, Y | X) and I(Z,W | XY ), but violates I(Z, Y W | X). Such a probability model
has been defined in Example 5 where S = {s, a, p, e, l, o}, Sζ = {s, a, p, e, l}, Z = {a, p},
W = {e, l}, Y = {o}, X = {s}.

4 A finite axiomatization of SCI statements in the

presence of controlled uncertainty

The goal of this section is to prove that the set Z = {T ,S,R,W} of inference rules from
Table 3 is a finite axiomatization for the implication of SCI statements under controlled
uncertainty. We will first show the soundness of the inference rules, in particular the
restricted weak contraction rule. We will then give several remarks that provide insight
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I(S −X, ∅ | X)

I(Y, Z | X)

I(Z, Y | X)
(saturated trivial independence, T ) (symmetry, S)

I(ZW, Y UV | X) I(UZ, V W | XY )

I(Z,UVWY | X)
Y ⊆ Sζ

I(Y, ZW | X)

I(Y, Z | XW )
(restricted weak contraction, R) (weak union, W)

Table 3: Axiomatization Z = {T ,S,R,W} with set Sζ of zero-free random variables over
S

into the expressivity of this rule. Subsequently, we will define the notion of an inde-
pendence basis for a given set of random variables under a given set of SCI statements
and zero-free random variables. This notion will allow us to establish the completeness
of Z. The completeness argument constructs a special probability model in which two
events of probability one half are defined. The argument shows, in particular, that spe-
cial probability models suffice to decide any instance of the implication problem for SCI
statements under controlled uncertainty. This result will be fundamental for establishing
the characterization of the implication problem in terms of S-3 logic in Section 5.

4.1 Soundness

Lemma 2 The inference rules (T ), (S), (R) and (W) are sound for the implication of
SCI statements under controlled uncertainty.

Proof The soundness of (T ), (S), and (W) can be shown just like the case where all
random variables are zero-free [10, 1]. It remains to establish the soundness of the
restricted contraction rule (R). Let (dom, P ) be a probability model over (S, Sζ) that
satisfies the SCI statements I(ZW, Y UV | X) and I(UZ, V W | XY ), and let Y ⊆ Sζ .
We need to show that (dom, P ) also satisfies the SCI statement I(Z,UVWY | X). Let x
be a total event ofX, and let y, z,u,v, andw be events of Y, Z, U, V, andW , respectively.
Since Y ⊆ Sζ holds, we conclude that y is a total event of Y . Since (dom, P ) satisfies
the SCI statement I(ZW, Y UV | X) the following holds

P (x) · P (x,y, z,u,v,w) = P (x, z,w) · P (x,y,u,v).

The marginalization on UXY Z yields:

P (x) · P (x,y, z,u) = P (x, z) · P (x,y,u). (2)

Since (dom, P ) satisfies the SCI statement I(UZ, V W | XY ) the following holds

P (x,y) · P (x,y, z,u,v,w) = P (x,y, z,u) · P (x,y,v,w)
= P (x,y) · P (z,u | x,y) · P (x,y,v,w).

12



These equations imply the following equality:

P (x,y, z,u,v,w) = P (z,u | x,y) · P (x,y,v,w). (3)

Moreover, the marginalization of

P (x,y) · P (x,y, z,u,v,w) = P (x,y, z,u) · P (x,y,v,w)

on UVWXY yields:

P (x,y) · P (x,y,u,v,w) = P (x,y,u) · P (x,y,v,w)
= P (x,y) · P (u | x,y) · P (x,y,v,w).

These equations imply the following equality:

P (x,y,u,v,w) = P (u | x,y) · P (x,y,v,w). (4)

Using the three equalities above, we can make the following derivation:

P (x) · P (x,y, z,u,v,w)
(3)
= P (x) · P (u, z | x,y) · P (x,y,v,w)
= P (x) · P (u, z | x,y) · P (x,y) · P (v,w | x,y)
= P (x) · P (x,y,u, z) · P (v,w | x,y)
(2)
= P (x, z) · P (x,y,u) · P (v,w | x,y)
= P (x, z) · P (u | x,y) · P (x,y) · P (v,w | x,y)
= P (x, z) · P (u | x,y) · P (x,y,v,w)
(4)
= P (x, z) · P (x,y,v,w,u).

We have shown that (dom, P ) also satisfies the SCI statement I(Z,UVWY | X).

Example 7 Consider again Example 5 where S = {c, p, s, a, l, o}, Σ consists of I(psal, o |
c) and I(ps, al | co), and φ is I(ps, alo | c). However, instead of Sζ = {c, p, s, a, l} let
Sζ = {o}. Then Σ |=Sζ

φ. This can be shown by a simple inference using the restricted
weak contraction rule (R):

I(psal, o | c) I(ps, al | co)
I(ps, alo | c)

{o} ⊆ Sζ .

Since Z is sound, Σ |=Sζ
φ.

The restricted weak contraction rule (R) is the only new inference rule necessary
to establish an axiomatization of saturated conditional independence under controlled
uncertainty. Indeed, under controlled uncertainty, the restricted weak contraction rule
(R) takes on the role that the weak contraction rule (C) played in the classical case where
all random variables are zero-free. There are several special cases which provide further
insight into the expressivity of the restricted weak contraction rule (R).
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Remark 4 The first special case we consider for (R) is when Y = ∅. Then the restricted
weak contraction rule (R) becomes

I(ZW,UV | X) I(UZ, V W | X)

I(Z,UVW | X)

and we call this rule the Boolean rule (B). Indeed, for X ⊆ S we can define IDepΣ,Sζ
(X) =

{M | I(M,N | X) ∈ Σ+
Z }. The Boolean rule shows that for M,N ∈ IDepΣ,Sζ

(X) we also
have M ∩N,M ∪N,M −N ∈ IDepΣ,Sζ

(X).

Remark 5 The second special case we consider for (R) is when UV = ∅. Then the
restricted weak contraction rule (R) becomes

I(ZW, Y | X) I(Z,W | XY )

I(Z,WY | X)
Y ⊆ Sζ

and we call this rule the weak zero contraction rule (Z). The rule (Z) results from Geiger
and Pearl’s weak contraction rule (C) by adding the condition Y ⊆ Sζ which is necessary
to guarantee soundness of the rule in the presence of zeros. Note that the inference in
Example 7 applies the weak zero contraction rule (Z).

Remark 6 One may hypothesize that the system {T ,S,Z,W} forms an axiomatiza-
tion for the implication of saturated conditional independence in the presence of zeros.
However, the system is incomplete. Indeed, (R) is sound, but cannot be derived from
{T ,S,Z,W} since UV in (R) is not required to form a subset of Sζ. The weak zero
contraction rule (Z), however, cannot capture such an inference in general.

Remark 7 Finally, consider the special case when Sζ = S. Then the restricted weak
contraction rule (R) becomes

I(ZW, Y UV | X) I(UZ, V W | XY )

I(Z,UVWY | X)
.

In this special case, it already follows that (R) can be derived from the weak union (W),
symmetry (S), and weak contraction rule (C). Indeed, just substitute in (C) the set Y UV
for the set Y . This is not a surprise, since G is complete for the implication of SCI
statements in the special case where Sζ = S.

4.2 The independence basis

For some S, some Sζ ⊆ S, and some set Σ of SCI statements over (S, Sζ), and some
X ⊆ S let IDepΣ,Sζ

(X) := {Y ⊆ S − X | Σ ⊢Z I(Y, Z | X)} denote the set of all
Y ⊆ S − X such that I(Y, Z | X) can be inferred from Σ by Z. The soundness of the
Boolean rule from Remark 4 implies that

(IDepΣ,Sζ
(X),⊆,∪,∩, (·)C, ∅, S −X)
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forms a finite Boolean algebra where (·)C maps a set W to its complement S − XW .
Recall that an element a ∈ P of a poset (P,⊑, 0) with least element 0 is called an atom
of (P,⊑, 0) precisely when a ̸= 0 and every element b ∈ P with b ⊑ a satisfies b = 0 or
b = a [20]. Further, (P,⊑, 0) is said to be atomic if for every element b ∈ P −{0} there is
an atom a ∈ P with a ⊑ b. In particular, every finite Boolean algebra is atomic [20]. Let
IDepBΣ,Sζ

(X) denote the set of all atoms of (IDepΣ,Sζ
(X),⊆, ∅). We call IDepBΣ,Sζ

(X)
the independence basis of X with respect to Σ and Sζ . The importance of this notion for
the implication problem of SCI statements under controlled uncertainty is manifested in
the following result.

Theorem 1 Let Σ be a set of SCI statements over (S, Sζ). Then Σ ⊢Z I(Y, Z | X) if
and only if Y =

∪
Y for some Y ⊆ IDepBΣ,Sζ

(X).

Proof Let Y ∈ IDepΣ,Sζ
(X). Since every element b of a Boolean algebra is the union

over those atoms a with a ⊆ b [20] it follows that Y =
∪
Y for Y = {W ∈ IDepBΣ,Sζ

(X) |
W ⊆ Y }.

Vice versa, let Y =
∪
Y for some Y ⊆ IDepBΣ,Sζ

(X). Since I(W,W ′ | X) ∈ Σ+
Z holds

for every W ∈ Y successive applications of the Boolean and symmetry rules result in
I(Y, Z | X) ∈ Σ+

Z .

Example 8 Recall Example 7 where S = {c, p, s, a, l, o}, Sζ = {o}, and Σ consists of
I(psal, o | c) and I(ps, al | co), and φ is I(ps, alo | c). It follows that IDepBΣ,Sζ

(c) =
{{p, s}, {a, l}, {o}}. According to Theorem 1, φ is Sζ-implied by Σ.

Example 9 Let now be S = {c, p, s, a, l, o}, Sζ = {c, p, s, a, l}, and Σ be as in the pre-
vious example, i.e., consist of I(psal, o | c) and I(ps, al | co), and φ is I(ps, alo | c).
It follows that IDepBΣ,Sζ

(c) = {{p, s, a, l}, {o}}. According to Theorem 1, φ is not Sζ-
implied by Σ.

4.3 Completeness

Theorem 2 The set Z is complete for the implication of SCI statements under controlled
uncertainty.

Proof Let Σ ∪ {I(Y, Z | X)} be a set of SCI statements over (S, Sζ), and suppose
that I(Y, Z | X) cannot be inferred from Σ by Z. We will show that I(Y, Z | X) is not
Sζ-implied by Σ. For this purpose, we will construct a probability model over (S, Sζ)
that satisfies all SCI statements of Σ, but violates I(Y, Z | X).

Let IDepBΣ,Sζ
(X) = {W1, . . . ,Wk}, in particular S = XW1 · · ·Wk. Since I(Y, Z |

X) /∈ Σ+
Z we conclude by Theorem 1 that Y is not the union of some elements of

IDepBΣ,Sζ
(X). Consequently, there is some i ∈ {1, . . . , k} such that Y ∩Wi ̸= ∅ and

Wi−Y ̸= ∅ hold. Let T :=
∪

j∈{1,...,i−1,i+1,...,k}Wj ∩Sζ , and T
′ :=

∪
j∈{1,...,i−1,i+1,...,k}Wj −

Sζ . In particular, S is the disjoint union of X,T, T ′, and Wi. For every a ∈ S − Sζ we
define dom(a) = {0,1, ζ}; and for every a ∈ Sζ we define dom(a) = {0,1}. We define the
following two events e1 and e2 of S. We define e1(a) = 0 for all a ∈ XWiT , e1(a) = ζ
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for all a ∈ T ′. We further define e2(a) = e1(a) for all a ∈ XTT ′, and e2(a) = 1 for
all a ∈ Wi. As probability measure we define P (e1) = P (e2) = 0.5. It follows from the
construction that (dom, P ) does not satisfy I(Y, Z | X).

It remains to show that (dom, P ) satisfies every SCI statement I(V,W | U) in Σ.
Suppose that for some total event u of U , P (u) = 0. Then equation (1) will always
be satisfied. If P (u,v) = 0 or P (u,w) = 0 for some total event u of U , and for some
event v of V or for some event w of W , then P (u,v,w) = 0. Then equation (1) is also
satisfied. Suppose that for some total event u of U , P (u) = 0.5. If for some event v of
V and for some event w of W , P (u,v) = P (u,w) = 0.5, then P (u,v,w) = 0.5, too.
It remains to consider the case where u is a total event of U such that P (u) = 1. In
this case, the construction of the probability model tells us that U ⊆ XT . Consequently,
we can apply the weak union (W) and symmetry rules (S) to I(V,W | U) ∈ Σ to infer
I(V − XT,W − XT | XT ) ∈ Σ+

Z . Theorem 1 also shows that I(Wi, TT
′ | X) ∈ Σ+

Z .
However, for Z ′ = V − XTT ′ and W ′ = W − XTT ′ we have Wi = Z ′W ′; and for
U ′ = (V − XT ) ∩ T ′ and V ′ = (W − XT ) ∩ T ′ we have T ′ = U ′V ′. Thus, applying
the restricted contraction rule (R) to I(W ′Z ′, TU ′V ′ | X) and I(U ′Z ′, V ′W ′ | XT ) we
infer I(Z ′, U ′V ′W ′T | X) ∈ Σ+

Z , since T ⊆ Sζ . Hence, I(V − XTT ′, TT ′(W − XTT ′) |
X) ∈ Σ+

Z . It follows from Theorem 1 that V − XTT ′ is the union of elements from
IDepBΣ,Sζ

(X). Suppose first that V − XTT ′ = Wi. Then, P (u,v) = 0.5, P (u,w) = 1
and P (u,v,w) = 0.5. Otherwise, V −XTT ′ = ∅. Then, P (u,v) = 1, P (u,w) = 0.5 and
P (u,v,w) = 0.5. This concludes the proof.

Remark 8 In the idealized special case where all random variables are zero-free, Geiger
and Pearl’s completeness proof of G for the implication of SCI statements constructs a
probability model with 2|X|+1 events, where I(Y, Z | X) /∈ Σ+

G [10]. For this special case, a
new completeness proof of G was given recently that constructs a probability model of two
events both of probability one half [11]. The construction for the completeness of Z for
the general case, as given in the proof of Theorem 2, reduces to the recent construction
from [11] for the idealized special case where all random variables are zero-free. Even in
this special case, the original construction in [10] resulted in a probability model with two
events only for marginal SCI statements of the form I(Y, Z | ∅) /∈ Σ+

G.

We illustrate the construction in the completeness argument on our running example

Example 10 Let S = {c, p, s, a, l, o}, Sζ = {c, p, s, a, l}, and Σ be as in Example 9,
i.e., consist of I(psal, o | c) and I(ps, al | co), and φ is I(ps, alo | c). Recall that
IDepBΣ,Sζ

(c) = {{p, s, a, l}, {o}}. Applying the construction from the completeness proof,
we define the following probability model: dom(c) = dom(p) = dom(s) = dom(a) =
dom(l) = {0,1}, and dom(o) = {ζ,0,1}; and P assigns probability one half to the
following two events:

c p s a l o
0 0 0 0 0 ζ
0 1 1 1 1 ζ

.

Suitable substitutions of these events result in the probability model shown in Example 3.
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4.4 Special probability models

We call a probability model (dom, P ) over (S, Sζ) special, if for every a ∈ Sζ , dom(a)
consists of two elements, for every a ∈ S − Sζ , dom(a) consists of two elements and the
zero marker ζ, and there are two events e1, e2 over S such that P (e1) = 0.5 = P (e2). We
say that Σ Sζ-implies φ in the world of special probability models, denoted by Σ |=2,Sζ

φ,
if every special probability model over (S, Sζ) that satisfies every SCI statement in Σ also
satisfies the SCI statement φ. The following variant of the implication problem for SCI
statements emerges.

PROBLEM: Implication problem in the world of special probability models
INPUT: Schema (S, Sζ), Set Σ ∪ {φ} of SCI statements over (S, Sζ)
OUTPUT: Yes, if Σ |=2,Sζ

φ; No, otherwise

The proof of Theorem 2 implies the following result.

Corollary 1 The implication problem for SCI statements under controlled uncertainty
coincides with the implication problem for SCI statements under controlled uncertainty
in the world of special probability models.

Proof Let Σ ∪ {φ} be a set of SCI statements over (S, Sζ). We need to show that
Σ |=Sζ

φ if and only if Σ |=2,Sζ
φ. If it does not hold that Σ |=2,Sζ

φ, then it also does
not hold that Σ |=Sζ

φ since every special probability model is a probability model. Vice
versa, if it does not hold that Σ |=Sζ

φ, then it does not hold that Σ ⊢Z φ since Z is
sound for the implication of SCI statements under controlled uncertainty. However, the
proof of Theorem 2 shows how to construct a special probability model over (S, Sζ) that
satisfies every SCI statement in Σ but does not satisfy φ. Hence, it does not hold that
Σ |=2,Sζ

φ.

Corollary 1 shows that it suffices to check special probability models in order to decide
the implication problem for SCI statements under controlled uncertainty.

5 Logical Characterization

In this section we establish the equivalence between the implication of SCI statements
under controlled uncertainty and the implication of formulae in a propositional fragment
F within Cadoli and Schaerf’s well-known approximation logic S-3 [14]. After repeating
the syntax and semantics of S-3 logic, we define a mapping of SCI statements to formu-
lae in F. The core proof argument establishes an equivalence between special probability
models, introduced in the previous section, and special S-3 truth assignments. It is shown
that this equivalence cannot be extended to also cover general conditional independence
statements. In the following section we will also establish an equivalence of the impli-
cation problem to Boolean implication of F-formulae, which requires the elimination of
some elements from the input instance.
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5.1 Syntax and semantics of S-3 logic

Schaerf and Cadoli [14] introduced S-3 logics as “a semantically well-founded logical
framework for sound approximate reasoning, which is justifiable from the intuitive point
of view, and to provide fast algorithms for dealing with it even when using expressive
languages”. For a finite set L of propositional variables, let L∗ denote the propositional
language over L, generated from the unary connective ¬ (negation), and the binary
connectives ∧ (conjunction) and ∨ (disjunction). Elements of L∗ are also called formulae
of L, and usually denoted by φ′, ψ′ or their subscripted versions. Sets of formulae are
denoted by Σ′. We omit parentheses if this does not cause ambiguity.

Let Lℓ denote the set of all literals over L, i.e., Lℓ = L ∪ {¬a′ | a′ ∈ L}. Let S ⊆ L.
An S-3 truth assignment of L is a total function ω : Lℓ → {F,T} that maps every
propositional variable a′ ∈ S and its negation ¬a′ into opposite truth values (ω(a′) = T
if and only if ω(¬a′) = F), and that does not map both a propositional variable a′ ∈ L−S
and its negation ¬a′ into false (we must not have ω(a′) = F = ω(¬a′) for any a′ ∈ L−S).
Accordingly, for each propositional variable a′ ∈ L and each S-3 truth assignment ω of
L there are the following possibilities:

• ω(a′) = T and ω(¬a′) = F,

• ω(a′) = F and ω(¬a′) = T,

• ω(a′) = T and ω(¬a′) = T (only if a′ ∈ L− S).

S-3 truth assignments generalize both, standard 2-valued truth assignments as well as
the 3 truth assignments of Levesque [21]. That is, a 2-valued truth assignment is an S-3
truth assignment where S = L, while a 3 truth assignment is an S-3 truth assignment
with S = ∅.

An S-3 truth assignment ω : Lℓ → {F,T} of L can be lifted to a total function
Ω : L∗ → {F,T}. This lifting has been defined as follows [14]. An arbitrary formula φ′

in L∗ is firstly converted (in linear time in the size of the formula) into its corresponding
formula φ′

N in Negation Normal Form (NNF) using the following rewriting rules: ¬(φ′ ∧
ψ′) 7→ (¬φ′ ∨ ¬ψ′), ¬(φ′ ∨ ψ′) 7→ (¬φ′ ∧ ¬ψ′), and ¬(¬φ′) 7→ φ′. Therefore, negation in
a formula in NNF occurs only at the literal level. The rules for assigning truth values to
NNF formulae are as follows:

• Ω(φ′) = ω(φ′), if φ′ ∈ Lℓ,

• Ω(φ′ ∨ ψ′) = T if and only if Ω(φ′) = T or Ω(ψ′) = T,

• Ω(φ′ ∧ ψ′) = T if and only if Ω(φ′) = T and Ω(ψ′) = T.

An S-3 truth assignment ω is a model of a set Σ′ of L-formulae if and only if Ω(σ′
N) = T

holds for every σ′ ∈ Σ′. We say that Σ′ S-3 implies an L-formula φ′, denoted by Σ′ |=3
S φ

′,
if and only if every S-3 truth assignment that is a model of Σ′ is also a model of φ′.
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5.2 The propositional fragment F

As a first step towards the anticipated duality we define the propositional fragment that
corresponds to SCI statements. Let ϕ : S → L denote a bijection between a set S of
random variables and the set L = {a′ | a ∈ S} of propositional variables. In particular,
for Sζ ⊆ S let S = ϕ(Sζ). Thus, zero-free random variables correspond to propositional
variables interpreted classically.

We extend ϕ to a mapping Φ from the set of SCI statements over (S, Sζ) to the set
F ⊆ L∗. For an SCI statement I(Y, Z | X) over (S, Sζ), let Φ(I(Y, Z | X)) denote the
formula ∨

a∈X

¬a′ ∨

(∧
b∈Y

b′

)
∨

(∧
c∈Z

c′

)
,

which we abbreviate by ∨
a∈X

¬a′ ∨
∧
b∈Y

b′ ∨
∧
c∈Z

c′ .

As usual, disjunctions over zero disjuncts are interpreted as F and conjunctions over zero
conjuncts are interpreted as T. We will simply denote Φ(φ) = φ′ and Φ(Σ) = {σ′ | σ ∈
Σ} = Σ′.

Example 11 Let S = {c, p, s, a, l, o}, Sζ = {c, p, s, a, l}, and Σ be as before, i.e., consist
of I(psal, o | c) and I(ps, al | co), and φ is I(ps, alo | c). As a corresponding instance in
terms of S-3 logics we obtain:

• L = {c′, p′, s′, a′, l′, o′} and S = {c′, p′, s′, a′, l′},

• Σ′ = {¬c′ ∨ (p′ ∧ s′ ∧ a′ ∧ l′) ∨ o′,¬c′ ∨ ¬o′ ∨ (p′ ∧ s′) ∨ (a′ ∧ l′)},

• φ′ = ¬c′ ∨ (p′ ∧ s′) ∨ (a′ ∧ l′ ∧ o′).
Note that these are just the formulae from Example 2.

5.3 Special truth assignments

We will now show that for any set Σ ∪ {φ} of SCI statements over (S, Sζ) there is a
probability model π = (dom, P ) over (S, Sζ) that satisfies Σ and violates φ if and only if
there is a truth assignment ωπ that is an S-3 model of Σ′ but not an S-3 model of φ′.
For arbitrary probability models π it is not obvious how to define the truth assignment
ωπ. However, the key to showing the correspondence between probability models and
truth assignments is Corollary 1. Corollary 1 tells us that for deciding the implication
problem Σ |=Sζ

φ it suffices to examine special probability models (instead of arbitrary
probability models). For a special probability model π = (dom, {e1, e2}), however, we
can define its corresponding special S-3 truth assignment ωπ of L by defining for each
a′ ∈ L,

ωπ(a
′) =

{
T , if e1(a) = e2(a)
F , otherwise

, and

ωπ(¬a′) =

{
T , if e1(a) = ζ = e2(a) or e1(a) ̸= e2(a)
F , otherwise

.
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Note that the truth assignment is Boolean for each variable in S, that is, for each variable
that corresponds to a zero-free random variable.

Example 12 Recall Example 5 where S = {c, p, s, a, l, o}, Sζ = {c, p, s, a, l}, and any
special probability model π defined by

conference paper speaker organizer activity location
ICM 23 problems Hilbert ζ petanque tuileries
ICM 4 problems Landau ζ rowing river cam

shows that Σ, consisting of I(psal, o | c) and I(ps, al | co), does not Sζ-imply φ, which is
I(ps, alo | c). The special S-3 truth assignment ωπ is given by

• ωπ(c
′) = T and ωπ(¬c′) = F,

• ωπ(p
′) = F and ωπ(¬p′) = T,

• ωπ(s
′) = F and ωπ(¬s′) = T,

• ωπ(o
′) = T and ωπ(¬o′) = T,

• ωπ(a
′) = F and ωπ(¬a′) = T, and

• ωπ(l
′) = F and ωπ(¬l′) = T.

5.4 Equivalence between satisfaction by probability models and
by truth assignments

Next we justify the definition of the special truth assignment and that of the Boolean
fragment F in terms of the special probability models.

Lemma 3 Let π = (dom, {e1, e2}) be a special probability model, and let φ denote an
SCI statement over (S, Sζ). Then π satisfies φ if and only if ωπ is an S-3 model of φ′.

Proof Let φ = I(Y, Z | X) and φ′ =
∨

a∈X ¬a′ ∨
∧

b∈Y b
′ ∨
∧

c∈Z c
′. Suppose first

that π satisfies φ. We need to show that ωπ is an S-3 model of φ′. Assume that
ωπ(¬a′) = F for all a ∈ X. According to the special truth assignment we must have
ζ ̸= e1(a) = e2(a) ̸= ζ for all a ∈ X. That means P (e1(X)) = 1. Suppose that for some
b ∈ Y we have ωπ(b

′) = F. Then e1(b) ̸= e2(b) according to the special truth assignment.
Then P (e1(XY )) = P (e1) = 0.5. However, since e1(X) is X-total and π satisfies φ, we
must have P (e1(XZ)) = 1. Hence, for every c ∈ Z, we have e1(c) = e2(c). This means
that for all c ∈ Z we have ωπ(c

′) = T. This shows that ωπ is an S-3 model of φ′.
Suppose ωπ is an S-3 model of φ′. We need to show that π satisfies φ. That is, for

every total event x of X, and every event y of Y , and every event z of Z, we must show
that P (x) · P (x,y, z) = P (x,y) · P (x, z) holds. We distinguish between three cases.

Case 1. Certainly, if P (x,y) = 0 or P (x, z) = 0, then P (x,y, z) = 0, too. For the
remaining cases we can therefore assume that P (x,y) > 0 and P (x, z) > 0. In particular,
P (x) > 0.
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Case 2. Suppose P (x) = 1. It follows that e1(X) = x = e2(X). Since x is a total
event of X, the special truth assignment entails that ωπ(¬a′) = F for all a ∈ X. Since
ωπ is an S-3 model of φ′ we conclude that ωπ(b

′) = T for all b ∈ Y , or ωπ(c
′) = T

for all c ∈ Z. The special truth assignment entails that e1(XY ) = (x,y) = e2(XY )
or e1(XZ) = (x, z) = e2(XZ) holds. This, however, would mean that P (x,y) = 1 or
P (x, z) = 1. Since φ is saturated, it follows that exactly one of P (x,y) and P (x, z) is
1, and the other 0.5. Consequently, (x,y, z) equals e1 or e2. Hence, P (x,y, z) = 0.5. It
follows that π satisfies φ.

Case 3. Suppose that P (x) = 0.5. Then P (x,y) = 0.5 = P (x, z). Then (x,y, z)
equals e1 or e2, as P (x) would have to be 1 otherwise. Hence, P (x,y, z) = 0.5.

Example 13 Recall from Example 12 that any special probability model defined by π
satisfies the SCI statements in Σ, but violates φ. It is easy to verify that the special S-3
truth assignment ωπ from Example 12 is an S-3 model of the formulae in Σ′, but not an
S-3 model of φ′.

5.5 The equivalence between entailment

Corollary 1 and Lemma 3 allow us to establish the anticipated equivalence between SCI
implication over discrete probability models and S-3 implication for formulae in the
propositional fragment F.

Theorem 3 Let Σ∪{φ} be a set of SCI statements over (S, Sζ), and let Σ′∪{φ′} denote
the corresponding set of formulae over L, where S denotes the propositional variables that
correspond to the random variables in Sζ. Then Σ |=Sζ

φ if and only if Σ′ |=3
S φ

′.

Proof Based on Corollary 1 it suffices to establish an equivalence between Σ |=2,Sζ
φ

and Σ′ |=3
S φ

′.
Suppose first that Σ |=2,Sζ

φ does not hold. Then there is some special probability
model π over (S, Sζ) that satisfies every SCI statement σ in Σ but violates φ. Let ωπ

denote the special truth assignment associated with π. By Lemma 3 it follows that ωπ

is an S-3 model of every formula σ′ in Σ′ but not an S-3 model of φ′. Consequently,
Σ′ |=3

S φ
′ does not hold.

Suppose now that Σ′ |=3
S φ

′ does not hold. Then there is some truth assignment ω
over L that is an S-3 model of every formula σ′ in Σ′, but not an S-3 model of the formula
φ′. Define the following special probability model π = (dom, {e1, e2}) over (S, Sζ). For
a ∈ Sζ , let dom(a) = {0,1}; and for a ∈ S−Sζ , let dom(a) = {0,1, ζ}. We now define e1
and e2 as follows. If ω(a

′) = T and ω(¬a′) = F, then ζ ̸= e1(a) = e2(a) ̸= ζ. If ω(a′) = T
and ω(¬a′) = T, then e1(a) = ζ = e2(a). Finally, if ω(a′) = F and ω(¬a′) = T, then
ζ ̸= e1(a) ̸= e2(a) ̸= ζ. Since ω is not an S-3 model of φ′, it follows that e1 ̸= e2. It
follows now that ωπ = ω. By Lemma 3 it follows that π satisfies every SCI statement σ
in Σ but violates φ. Hence, Σ |=2,Sζ

φ does not hold.

Example 14 Recall from Example 12 that Σ does not S-3 imply φ. It now simply
remains to observe that Σ′ does not S-3 imply φ′.
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5.6 Non-extendibility to cover general conditional independence

It is shown in this section that the equivalence between the implication of SCI statements
under controlled uncertainty and the S-3 implication of F-formulae cannot be extended
to cover CI statements, too. In fact, it is shown that such an extension does already not
exist in the idealized special case where all random variables are zero-free. It follows that
SCI statements, multivalued dependencies and the propositional fragment F are all very
special, as outlined in the contributions in Section 2.

The first lemma shows that the inference rule
I(X, Y | W ) I(X,Z | W )

I(X, Y Z | W )
is not sound

for CI statements.

Lemma 4 The CI statements I(X, Y | W ), I(X,Z | W ) do not S-imply the CI statement
I(X,Y Z | W ).

Proof Let S = {a, b, c, d} and Sζ = S. Let dom(a) = dom(b) = dom(c) = dom(d) =
{0,1}. Then we define the probability measure P over S by assigning probability one
fourth to each of the following four events:

a b c d P
0 0 0 0 1/4
0 0 1 1 1/4
0 1 1 0 1/4
0 1 0 1 1/4

.

Indeed, (dom, P ) satisfies I(d, c | a) and I(d, b | a), but not the CI statement I(d, bc | a).

Remark 9 The probability model (dom, P ) from the proof of Lemma 4 does not satisfy
the CI statement I(d, c | ab). Hence, the CI statement I(X, Y | W ) does not S-imply
the CI statement I(X, Y | WZ). Note that a set Σ of CI statements is stable when Σ is
closed under applications of this rule, i.e., if I(X, Y | W ) ∈ Σ, then I(X, Y | WZ) ∈ Σ,
too.

For some general CI statement σ = I(Y, Z | X) over the set S of random variables,
let σ′ =

∨
a∈X ¬a′ ∨

∧
b∈Y b

′ ∨
∧

c∈Z c
′ denote the corresponding F-formula over the corre-

sponding set L = {a′ | a ∈ S} of propositional variables. As for SCI statements before,
Σ′ = {σ′ | σ ∈ Σ} for any set Σ of CI statements. Note that XY Z does not necessarily
cover all random variables in S, unlike the special case of saturated CI statements. It is
shown now that in the general case, unlike the special case of saturated CI statements,
the mapping (·)′ from CI statements to F-formulae does not result in an equivalence
between the implication problems.

Lemma 5 There is a set S of random variables, and there is some set Σ ∪ {φ} of CI
statements over S such that Σ ̸|= φ, but Σ′ |=BL φ

′.

Proof Let Σ = {I(X,Y | W ), I(X,Z | W )} and φ = I(X, Y Z | W ) over a set S of
random variables. Lemma 4 has shown that Σ does not S-imply φ. However, it is easy
to see that Σ′ does imply φ′ in Boolean propositional logic.
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Lemma 5 leaves open the possibility that there might be some other mapping (̂·)
between CI statements and some propositional fragment where the corresponding im-
plication problems are equivalent. The next lemma shows that any such mapping must
necessarily be (·)′.

Lemma 6 For every mapping (̂·) from CI statements σ to propositional formulae σ̂, that
extends the mapping (·)′ from SCI statements to F-formulae, and is such that for all finite
sets S of random variables, and all sets Σ ∪ {φ} of CI statements over S, Σ |= φ if and

only if Σ̂ |=BL φ̂, it holds that (̂·) = (·)′. That is, for any mapping that results in an
equivalence between the corresponding implication problems it necessarily holds that for
all CI statements τ we have that τ̂ is equivalent to τ ′.

Proof We show that a truth assignment ω of L is a model of τ̂ if and only if ω is a model
of τ ′.

The soundness of the decomposition rule says that σ = I(X,Y Z | W ) implies τ =
I(X,Y | W ) [10]. For S = WXY Z, σ = I(X, Y Z | W ) is an SCI statement and, thus,
σ̂ = σ′ =

∨
a∈W ¬a′ ∨

∧
b∈X b

′ ∨
∧

c∈Y Z c
′ implies τ̂ . Hence, if the truth assignment ω of L

is not a model of
∧

a∈W a′, or ω is a model of
∧

b∈X b
′, then ω is a model of τ̂ . Similarly,

σ = I(XZ, Y | W ) implies τ = I(X,Y | W ). Consequently, if the truth assignment ω of
L is not a model of

∧
a∈W a′, or ω is a model of

∧
c∈Y c

′, then ω is a model of τ̂ . Therefore,
if ω is not a model of

∧
a∈W a′, or is a model of

∧
b∈X b

′ or is a model of
∧

c∈Y c
′, then ω

is a model of τ̂ . That is, if ω is a model of τ ′, then ω is a model of τ̂ .
It remains to show that if ω is not a model of τ ′, then ω is not a model of τ̂ . Let S =

WXY Z where W,X, Y, Z are each non-empty, τ1 = I(X,Z | WY ) and σ = I(X, Y Z |
W ). The soundness of the contraction rule means that the CI statement τ = I(X,Y | W )
and the SCI statement τ1 = I(X,Z | WY ) imply the SCI statement σ = I(X, Y Z | W )
[10]. It follows that τ̂ and τ ′1 imply σ′. Let ω be a truth assignment of L that is not a
model of τ ′. That is, ω is a model of

∧
a∈W a′, ω is not a model of

∧
b∈X b

′, and ω is not
a model of

∧
c∈Y c

′. Consequently, ω is a model of τ ′1, but not a model of σ′. Since τ̂ and
τ ′1 imply σ′, ω is not a model of τ̂ . This is what we wanted to show.

The following proposition can be shown similar to the case of SCI statements.

Proposition 1 Let Σ∪{φ} be a set of CI statements over the set S of random variables.
Then Σ |= φ implies Σ |=2 φ, and Σ |=2 φ implies Σ′ |=BL φ

′.

It is now shown that it is impossible to extend the equivalence between SCI implication
and the Boolean implication of F-formulae to a mapping between general CI statements
and some propositional fragment F̂ which results in an equivalence between CI implication
and Boolean implication of F̂-formulae.

Theorem 4 For every mapping (̂·) of CI statements to propositional formulae that ex-
tends the mapping (·)′ of SCI statements to F-formulae there is some finite set S of ran-
dom variables and there is some set Σ ∪ {φ} of CI statements over S such that Σ ̸|= φ,
but Σ̂ |=BL φ̂.
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Proof Assume, to the contrary of what is to be shown, that for every finite set S of
random variables and for every set Σ ∪ {φ} of CI statements over S, Σ |= φ if and
only if Σ̂ |=BL φ̂. Then it follows by Lemma 6 that Σ |= φ if and only if Σ′ |=BL φ′.
This, however, is a contradiction to Lemma 5. Indeed, for S =WXY Z with non-empty
W,X, Y, Z and for Σ = {I(X, Y | W ), I(X,Z | W )} and φ = I(X, Y Z | W ) over S
we have Σ ̸|= φ and Σ′ |=BL φ′. Consequently, the assumption was wrong and there
is some finite set S and there is some set Σ ∪ {φ} of CI statements over S such that
exactly one of Σ |= φ and Σ̂ |=BL φ̂ holds. Due to Lemma 1, it must be that Σ ̸|= φ, but
Σ̂ = Σ′ |=BL φ

′ = φ̂.

6 Algorithmic Characterization

In this section we will establish algorithms for i) deciding the implication problem
Σ |=Sζ

I(Y, Z | X) for sets Σ ∪ {I(Y, Z | X)} of SCI statements in the presence of
Sζ , and ii) computing the independence basis IDepBΣ,Sζ

(X) of a set X of random vari-
ables with respect to Σ and Sζ . We will derive a tight worst-case upper time bound
that highlights the impact of the set Sζ of zero-free random variables. The results fol-
low from a reduction of the implication problem to its counter-part over probabilistic
models without occurrences of zero markers. The reduction itself is a consequence of our
axiomatization.

6.1 Equivalence to Boolean implication

Let Σ[U ] contain only those SCI statements I(Y, Z | X) from Σ where X is a subset of
the set U of random variables.

Lemma 7 Let Σ ∪ {I(Y, Z | X)} be a set of SCI statements, and Sζ the set of zero-free
random variables over the set S of random variables. Then the following are equivalent:

1. Σ ⊢Z I(Y, Z | X),

2. Σ[XSζ ] ⊢Z I(Y, Z | X), and

3. Σ[XSζ ] ⊢G I(Y, Z | X).

Proof Since Σ[XSζ ] is a subset of Σ, it follows that (2) implies (1). A simple induc-
tion over the length of an inference of I(Y, Z | X) from Σ by Z shows that I(Y, Z | X)
can already be inferred from Σ[XSζ ] by Z. Hence, (1) also implies (2). The equiva-
lence between (2) and (3) can also be established using induction over the length of an
inference. We show the interesting cases here. The first case is when, in an inference
using Z the restricted weak contraction rule (R) is applied to infer I(Z, Y UVW | X)
from I(ZW, Y UV | X) and I(UZ, V W | XY ). From I(Z, Y UVW | X) ∈ Σ[XSζ ]

+
Z and

the inference step we conclude I(ZW, Y UV | X), I(UZ, V W | XY ) ∈ Σ[XSζ ]
+
Z . Then,

by hypothesis, I(ZW, Y UV | X), I(UZ, V W | XY ) ∈ Σ[XSζ ]
+
G. Applying the symme-

try rule (S) and the weak union rule (W) to I(UZ, V W | XY ) ∈ Σ[XSζ ]
+
G we obtain

I(Z,W | XY UV ) ∈ Σ[XSζ ]
+
G. Finally, we can apply the weak contraction rule (C) to
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I(ZW, Y UV | X), I(Z,W | XY UV ) ∈ Σ[XSζ ]
+
G to infer I(Z, Y UVW | X) ∈ Σ[XSζ ]

+
G.

The other interesting case is when, in an inference using G the weak contraction rule
(C) is applied to infer I(Z, Y W | X) from I(ZW, Y | X) and I(Z,W | XY ). From
I(Z, Y W | X) ∈ Σ[XSζ ]

+
G and the inference step we conclude I(ZW,Y | X), I(Z,W |

XY ) ∈ Σ[XSζ ]
+
G. Then, by hypothesis, I(ZW, Y | X), I(Z,W | XY ) ∈ Σ[XSζ ]

+
Z . It is

not difficult to see the following property: if Σ[XSζ ] ⊢Z I(Z,W | XY ), then Σ[XSζ ] ⊢Z

I(ZU, V W | XY ′) where Y = Y ′UV for some Y ′ ⊆ Sζ . Applying this property to
I(ZW, Y | X), I(Z,W | XY ) ∈ Σ[XSζ ]

+
Z means that I(ZW, Y ′UV | X), I(ZU, V W |

XY ′) ∈ Σ[XSζ ]
+
Z where Y ′ ⊆ Sζ . Hence, we can now apply the restricted weak contrac-

tion rule (R) to I(ZW, Y ′UV | X), I(ZU, V W | XY ′) ∈ Σ[XSζ ]
+
Z where Y ′ ⊆ Sζ to infer

I(Z, Y W | X) = I(Z, Y ′UVW | X) ∈ Σ[XSζ ]
+
Z .

Since Z is an axiomatization for the implication of SCI statements under controlled
uncertainty, and G is an axiomatization for the implication of SCI statements in the
absence of zeros, Lemma 7 also results in an equivalence between the corresponding
implication problems. Moreover, the implication of SCI statements in the absence of zeros
is known to be equivalent to the Boolean implication of formulae in the propositional
fragment F [11]. Thus, we obtain the following corollary.

Corollary 2 Let Σ∪{I(Y, Z | X)} be a set of SCI statements, and Sζ the set of zero-free
random variables over S. Then the following decision problems are equivalent:

1. Σ |=Sζ
I(Y, Z | X),

2. Σ[XSζ ] |= I(Y, Z | X),

3. (Σ[XSζ ])
′ |=BL

∨
a∈X ¬a′ ∨

∧
b∈Y b

′ ∨
∧

c∈Z c
′.

We illustrate Corollary 2 by applying its results to our running example.

Example 15 Recall our running example where S = {c, p, s, a, l, o}, Sζ = {c, p, s, a, l},
and Σ, consisting of I(psal, o | c) and I(ps, al | co), does not Sζ-imply φ, which is is
I(ps, alo | c). Consequently, φc = {c} and Σ[c, p, s, a, l] = {I(psal, o | c)}. Hence,
IDepBΣ[c,p,s,a,l],S(c) = {{p, s, a, l}, {o}}. From this we can create a special probability
model π defined by

conference paper speaker organizer activity location
ICM 23 problems Hilbert Klein petanque tuileries
ICM 4 problems Landau Klein rowing river cam

.

It shows that Σ[c, p, s, a, l] does not imply φ. Equivalently, we can define a special Boolean
truth assignment ωb

π by ωb
π(c

′) = ωb
π(o

′) = T and ωb
π(p

′) = ωb
π(s

′) = ωb
π(a

′) = ωb
π(l

′) = F.
This Boolean truth assignment is a witness that (Σ[c, p, s, a, l])′ = {¬c′∨(p′∧s′∧a′∧l′)∨o′}
does not imply φ′ = ¬c′ ∨ (p′ ∧ s′) ∨ (a′ ∧ l′ ∧ o′).
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6.2 Algorithm to compute the independence basis

Sagiv [22], and later Galil [23] developed almost linear time algorithms to i) compute the
independence basis IDepBΣ,S(X), and ii) decide the implication problem Σ |=S φ in the
idealized special case where Sζ = S. Our previous results can now be applied to utilize
these algorithms for the corresponding problems in the general case where Sζ ⊆ S. The
following corollary is a direct consequence of Lemma 7.

Corollary 3 Let Σ be a set of SCI statements, Sζ the set of zero-free random variables,
and X a set of random variables over S. Then we have

IDepBΣ,Sζ
(X) = IDepBΣ[XSζ ],Sζ

(X) = IDepBΣ[XSζ ],S
(X).

This corollary allows us to use Galil’s algorithm for computing the independence basis
in a much more general framework than it was designed for.

Corollary 4 Let Σ be a set of SCI statements, Sζ the set of zero-free random variables,
and X a set of random variables over S. Then Galil’s algorithm [23] computes the
independence basis IDepBΣ,Sζ

(X) of X with respect to Σ and Sζ in time

O(|Σ|+min{kΣ[XSζ ], log pΣ[XSζ ],Sζ
} × |Σ[XSζ ]|).

Herein, |Σ| denotes the total number of random variables occurring in Σ, kΣ denotes the
number of elements in Σ, and pΣ,Sζ

the number of elements in IDepBΣ,Sζ
(X).

6.3 Algorithm to decide the implication problem

Let Σ be a set of SCI statements, and Sζ the set of zero-free random variables over S.
If IDepBΣ,Sζ

(X) is known, the implication problem Σ |=Sζ
I(Y, Z | X) can be decided in

linear time.

Corollary 5 Using Galil’s algorithm [23], the implication problem Σ |=Sζ
I(Y, Z | X)

of sets Σ ∪ {I(Y, Z | X)} of SCI statements and the set Sζ of zero-free random variables
over S can be decided in time

O(|Σ|+min{kΣ[XSζ ], log p̄Σ[XSζ ],Sζ
} × |Σ[XSζ ]|).

Herein, |Σ| denotes the total number of random variables occurring in Σ, kΣ denotes
the cardinality of Σ, and p̄Σ,Sζ

denotes the minimum of the two numbers of sets in
IDepBΣ,Sζ

(X) that have non-empty intersection with Y , and with Z, respectively.

Proof The problem Σ |=Sζ
I(Y, Z | X) is equivalent to (Σ[XSζ ])

′ |=BL

∨
a∈X ¬a′ ∨∧

b∈Y b
′ ∨
∧

c∈Z c
′ by Corollary 2. The last problem can be decided by Galil’s algorithm

in O(|Σ|+min{kΣ[XSζ ], log p̄Σ[XSζ ],Sζ
} × |Σ[XSζ ]|) time [23].
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7 Conclusion and Future Work

Theoretical investigations into the logical properties of conditional independence have
focused on probability models that are free from zeros. In practice, it is necessary but
challenging to balance the desire of achieving as much certainty as possible and the desire
to acquire as much information as possible. This article introduces effective techniques
to reason efficiently about saturated conditional independence and guarantee control
over the degree of uncertainty in the form of zeros. The intuitive idea is that random
variables can be declared to be zero-free to approximate reasoning over zero-free prob-
abilistic models. The article has established substantial technical evidence to support
this intuitive idea, including axiomatic, algorithmic and logical characterizations of the
associated implication problem. In particular, it was shown that the implication problem
of saturated conditional independence under zero-free random variables is equivalent to
the implication problem of a propositional fragment in Cadoli and Schaerf’s S-3 logics.
Here, S corresponds to the set of random variables declared zero-free. Therefore, a theory
has been established in which reasoning about saturated conditional independence in the
absence of zeros occurs as an idealized special case. The level of approximation can be
controlled effectively by declaring random variables zero-free as required by the context
of the application domain. The article has also established a trinity between the impli-
cation problems of three different efficient reasoning frameworks: saturated conditional
independence statements and zero-free random variables, multivalued dependencies and
NOT NULL attributes, and the propositional fragment F under S-3 interpretations. The
dualities between any two of these frameworks fail when extended to more expressive
languages such as general conditional independence statements or embedded multival-
ued dependencies, already in the idealized special case where all random variables are
zero-free, all attributes are NOT NULL, and all propositional variables are interpreted clas-
sically. For these more expressive languages, the associated implication problems are no
longer efficient.

The results have been established with respect to the simplest interpretation of zero
markers as no information. The technical contributions in this article demonstrate the
advantages of this interpretation. Moreover, the interpretation can accommodate other
interpretations of zero marker occurrences where more information is available, e.g., that
some occurrence is a structural or sampling zero. The disadvantage of this interpretation
is a loss in the representation of knowledge whenever more information is available about
the type of some zero occurrence. This warrants further research into this subject.
Sampling zeros, for example, could be given semantics by possible worlds. One may then
distinguish between possible and certain conditional independence statements which are
satisfied by some and all possible worlds, respectively. Research on three-valued logics
is rich. Ciucci and Dubois have given a concise survey on the interpretation of the third
truth value [24].

Information about conditional independence is frequently represented in the form of
graphs, where nodes correspond to random variables and edges represent the indepen-
dencies among the random variables. It would be interesting to investigate how the
theoretical properties of (saturated) conditional independence under controlled uncer-
tainty can help facilitate the concise representation of probability distributions over sets
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of random variables [25, 26, 9, 1, 3]. It would also be interesting to extend our no-
tion of probabilistic independence to the case where the probabilities are indeterminate
or imprecisely specified, using, for example, the notion of epistemic independence [27].
Various notions of logical conditional independence together with their structural and
computational properties have been studied [28, 29]. Certainly, it would be interesting
to approximate reasoning about these notions, too.
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