

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

200

Lepidopterous Pests on Vegetable Brassicas in Pukekohe, New Zealand: Their Seasonality, Parasitism, and Management

Nancy Gunther Beck

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Zoology University of Auckland, 1991

Acknowledgements

This thesis was greatly aided by the advice, help, and discussions contributed by my supervisors, Dr. Peter Cameron from DSIR Plant Protection, and Prof. Euan Young from the University of Auckland. In particular I would like to thank Peter for his efforts in clarifying both the project and my thoughts, for his efforts in helping to secure funding, and for his perseverance during harvest days and in commenting on drafts of the thesis. I thank DSIR Plant Protection for providing bench space, use of vehicles, and use of the facilities both at MARC and at the Pukekohe Research Station. Dr. Brian McArdle lent me his statistical expertise, advice, and humour, for which I am indebted. I thank the New Zealand Federation of Potato and Vegetable Growers Association for helping to support this research.

Intellectual support was provided by many friends at DSIR Plant Protection; the numerous discussions of methods, techniques, gratuitous advice, and politics over coffee afforded me amusement, encouragment, and stimulating ideas. I thank Garry Hill, John Charles, John Clearwater, Graham Walker, Tim Herman, Philippa Stevens, Jo Berry, David Steven, Rosa Henderson, and Doug Allan for all of the above.

Dave Rodgers assisted in securing space and equipment in a controlledenvironment room, for which I thank him. The staff at the DSIR Pukekohe Research Station provided advice, excellent land services, helping hands, and produce; I thank them all. I particularly thank Dael for her cheer and Jan and Peter for help in setting up and maintaining field plots. Many friends assisted with the harvests. I thank Peter C., Graham, Jan, Tim, Peter, Margaret and Peter W., Julie, Sue, Phillipa, Susanne, Carol, and Rosa; their only rewards for a long, dirty day in the field were free brassicas.

I thank my family, Gunthers and Becks, for their support and encouragement. My husband, Dave Beck, I thank for always being there for me.

Dedication

I would like to dedicate this thesis to the memory of my father, Professor Francis Alan Gunther.

Abstract of the thesis

The vegetable brassicas of cabbage, broccoli, and cauliflower are grown in Pukekohe for the Auckland fresh-produce markets. These brassicas are attacked by three major lepidopterous pests: diamondback moth (DBM) (*Plutella xylostella* (L.)) (Yponomeutidae), white butterfly (WB) (*Pieris rapae* (L.)) (Pieridae), and soybean looper (SBL) (*Thysanoplusia orichalcea* (F.)) (Noctuidae). Current grower strategy to combat these pests is calendarscheduled insecticide applications. The goal of this thesis is to develop pest management alternatives.

The seasonality of these three pests is discussed. DBM and WB are each under biological control by a larval and a pupal parasitoid, but this natural control is not sufficient to allow economic harvests in cabbage and was not synchronized. No parasitoids of SBL were found. The importation of additional natural enemies is discussed.

A scouting system of the percent of cabbage plants infested coupled with an action threshold of 15% - 20% infested plants, resulted in good yields in field trials and allowed up to a 50% reduction in insecticide applications over the growth period when compared to a 14-day calendar schedule. Implementation of the 15% infested threshold in commercial cabbage fields resulted in up to an 83% reduction in insecticide applications with no yield decrease in quality or quantity.

Application of this 15% infested plant threshold to broccoli and cauliflower decreased insecticide applications by 40% and 17%, respectively. Study of larval biology indicated that all of the lepidopterans preferentially fed on leaves; timing of the first insecticide application in broccoli and cauliflower to coincide with floret initiation decreased insecticide applications by 80% and 67%, respectively. Laboratory and field trials comparing DBM oviposition preference, larval survivability, and parasitism rates between cabbage, broccoli, and cauliflower are discussed.

Knowledge of lepidopterous pest seasonality and biology, linked to careful

timing of insecticide applications to coincide with threshold levels of pests, can take full advantage of natural enemies and reduce insecticide input in the vegetable brassicas of cabbage, broccoli, and cauliflower with no decrease in crop quality.

Table of Contents

Acknowledgements	i
Abstract of the thesis i	ii
Table of contents	V
List of tables	X
List of figures x	ii
Voucher specimens xi	V

Chapter One. General Introduction.

1.1 Outline of thesis research	1
1.2 Lepidopterous pests and their parasitoids in vegetable	
brassicas	1
1.2.1 Diamondback moth	2
1.2.1.1 Diadegma semiclausum	5
1.2.1.2 Diadromus collaris	6
1.2.2 White butterfly	6
1.2.2.1 Apanteles glomeratus	9
1.2.2.2 Pteromalus puparum	10
1.3 Development of resistance by insect pests to insecticides	10
1.4 Integrated pest management of brassicas	11
1.5 Intent of the thesis	14
1.6 Organisation of the thesis	14
1.7 References	17

Chapter Two. Seasonality of major lepidopterous pests of cabbage and their parasitoids in Pukekohe, New Zealand.

2.1	Abstract	28
2.2	Introduction	29
2.3	Method and materials	30
2.4	Results	32
	2.4.1 Lepidopterous pest composition and general	
	observations	32

	2.4.2	1988-19	89 season	33
		2.4.2.1	Diamondback moth	33
		2.4.2.2	White butterfly	34
		2.4.2.3	Soybean looper	34
	2.4.3	1989-19	90 season	35
		2.4.3.1	Diamondback moth	35
		2.4.3.2	White butterfly	35
		2.4.3.3	Soybean looper	36
		2.4.3.4	Other lepidopterous pests	36
	2.4.4	Parasitis	sm of DBM	36
		2.4.4.1	Diadegma semiclausum	37
		2.4.4.2	Diadromus collaris	38
		2.4.4.3	Trichomalopsis sp	38
	2.4.5	Parasitis	sm of WB	38
		2.4.5.1	Apanteles glomeratus	38
		2.4.5.2	Pteromalus puparum	39
		2.4.5.3	Baryscapus galactopus	40
	2.4.6	Other le	pidopterous pests	40
2.5	Discussi	on		40
2.6	Acknow	ledgeme	nts	45
2.7	Table an	nd Figure	es	46
2.8	Referen	ces		54

Chapter Three. Developing an action threshold for lepidopterous pests of cabbage.

3.1	Abstrac	t	57
3.2	Introdue	ction	57
3.3	Method	and materials	58
	3.3.1	Sampling	58
	3.3.2	Damage assessment at harvest	59
3.4	Results		59
	3.4.1	FDE counts	59
E.	3.4.2	Damage assessment at harvest	60
3.5	Discussi	ion	61

3.6	Acknowledgements	62
3.7	Tables and Figure	63
3.8	References	68

Chapter Four. Development of a reduced spray programme for cabbages in Pukekohe, New Zealand.

4.1	Abstract	69
4.2	Introduction	69
4.3	Method and materials	71
	4.3.1 General methods	71
	4.3.2 Comparison of scouting systems	72
	4.3.3 Refinement of percent infested threshold	73
	4.3.4 Confirmation of percent infested threshold	73
	4.3.5 Commercial implementation	74
4.4	Results and discussion	74
	4.4.1 Comparison of scouting systems	74
	4.4.1.1 Pest infestation levels	74
	4.4.1.2 Relative worth of scouting systems	76
	4.4.1.3 Harvest assessment	77
	4.4.2 Refinement of percent infested threshold	78
	4.4.2.1 Pest infestation levels	78
	4.4.2.2 Harvest assessment	79
	4.4.3 Confirmation of percent infested threshold	80
	4.4.3.1 Pest infestation levels	80
	4.4.3.2 Harvest assessment	81
	4.4.4 Commercial implementation	81
4.5	Conclusions	82
4.6	Acknowledgements	82
4.7	Tables and Figures	83
4.8	References	88

broccoli, a	and cauliflower: two reduced spray management options.	
5.1	Abstract	90
5.2	Introduction	91
5.3	Method and materials	93
	5.3.1 Field population studies	93
	5.3.2 DBM Laboratory trials	94
	5.3.3 Reduced spray trial	96
	5.3.3.1 Sampling	96
	5.3.3.2 Damage and harvest assessment	96
5.4	Results	97
	5.4.1 Field population studies	97
	5.4.1.1 DBM	98
	5.4.1.2 WB	98
	5.4.1.3 SBL	98
	5.4.2 DBM Laboratory trials	99
	5.4.2.1 Oviposition preference trial	99
	5.4.2.2 Food quality comparison	99
	5.4.3 Reduced spray trial	99
5.5	Discussion	100
	5.5.1 Host preference, survival, and parasitism	100
	5.5.2 Reduced spray programme	103
5.6	Acknowledgements	104
5.7	Tables and Figures	105
5.8	References	112

Chapter Five. Host plant effects on lepidopteran infestations in cabbage, broccoli, and cauliflower: two reduced spray management options.

Chapter Six. Summary of findings, conclusions, and recommendations of the thesis.

6.1	Introdu	ction	114
6.2	Summa	ry of findings	114
	6.2.1	Seasonality	114
	6.2.2	Reduced spray programme for cabbage	115
	6.2.3	Vegetable brassica comparison	116
6.3	Conclus	sions	117

į	6.4 Recommendations of the thesis	118
	dix A Developing a reduced spray programme for brassicas in New Zealar	121 nd.

List of Tables

Table 2.1 Relative seasonal density of diamondback moth (DBM), white butterfly (WB), soybean looper (SBL) and tomato fruitworm (TFW), over seven crops.	46
Table 3.1 Comparison of non-destructive (field) and destructive (laboratory) observations of lepidopterous larvae.	63
Table 3.2	64
Table 3.3 Cabbage damage assessment at harvest of outer (horizontal), inner (vertical), and head components.	65
Table 3.4 The percentage of cabbages within each treatment scored as "Premium" and "Acceptable".	66
Table 4.1	83
Table 4.2 Harvest information from the scouting and threshold trials.	84
Table 4.3 Implementation of field trials into commercial cabbage fields in Pukekohe.	85
Table 5.1 Comparison of lepidopteran locations in similar stages of cabbage, broccoli, and cauliflower.	105

Table 5.2	106
Mean number of diamondback moth (DBM), white butterfly (WB),	
and soybean looper (SBL) larvae per plant through the crop in	
three field trials.	
Table 5.3	107
Parasitism levels of lepidopterous larvae in cabbage, broccoli, and	
cauliflower.	
Table 5.4	108
Diamondback moth oviposition preference and food suitability.	
Table 5.5	109
Comparison of thresholds in cabbage, broccoli, and cauliflower.	
Table 5.6	110
Cauliflower harvest in reduced spray trial.	

List of Figures

Figure 2.1	47
Figure 2.2	48
Figure 2.3	49
Figure 2.4 Diamondback moth (DBM) larval parasitism by <i>Diadegma</i> <i>semiclausum</i> in three crops.	50
Figure 2.5 Diamondback moth (DBM) pupal parasitism in three crops.	51
Figure 2.6	52
Figure 2.6	53
Figure 3.1	67
Figure 4.1 Comparison of scouting techniques.	86
Figure 4.2	87

Voucher specimens of all parasitoid species reared have been deposited in the New Zealand arthropod collection, DSIR Plant Protection, Private Bag, Auckland, New Zealand.