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Abstract

This thesis is concerned with the generation of picosecond pulses and their propagation through both

resonant and non-resonant media. This was achieved by constructing a passively modelocked Erbium

doped fibre laser (EDF'L) which was used to study pulse propagation through sections of standard

communications grade optical fibre, dispersion shifted optical fibre, and also through an Erbium doped

fibre amplifier (EDFA) module.

The EDFL produced a train of - 2 psec pulses at 4 MHz, tunable over the erbium gain band ( 1520 -

1570 nm). The laser was constructed from commercially available components and had the property of

stability combined with low pump power requirements to produce -50 Watt peak power pulses. The laser

cavity geometry included a nonlinear optical loop mirror, which has the property of effrciently switching

high peak power pulses, and allowed pulsed operation without the aid of any high-speed electronics.

An EDFA module of identical geometry to that used in the laser was also constructed, and this was

probed using the pulses from the EDFL. The traditional temporal and spectral measurements were found

to be inadequate to allow a complete description of the pulse amplification process to be developed. To

overconte this problem the technique of frequency resolved optical gating (FROG) was applied for the

hrst time to optical fibre research, and allowed an indirect measurement of the electric field of the pulse.

This complete description of the pulse was used in a numerical model to describe pulse propagation in an

optical fibre. Fundamental propagation terms in the model were treated as free parameters in a

minimisation scheme, which could be determined for a fibre under examination. This technique was

shown to be accurate when used to examine pulse propagation through both standard and dispersion

shifted optical fibre.

A comprehensive numerical model was developed for the EDFA, and it was apparent from this

model that a pulse propagating through an optimised EDFA encounters an atomic inversion distribution

which is a strong function of distance along the amplifying fibre. It was also shown from the experimental

results that the EDFA exhibited resonant dispersion, which is characteristic for propagation through an

atomic rnedium on resonance.
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