

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

APPROACHES TO THE SYNTHESIS OF ANTHRACYCLINONES

A THESIS

PRESENTED TO THE UNIVERSITY OF AUCKLAND

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by

PETER JAMES BONIFACE

Department of Chemistry
University of Auckland

January 1985

TABLE OF CONTENTS

ABSTRACT		ii
INTRODUCTION		1
CHAPTER I	THE CLAISEN REARRANGEMENT	30
	REDUCTIVE CLAISEN REARRANGEMENTS OF 1,4-BIS(PROP-2'-ENYLOXY)ANTHRAQUINONE	34
	THE PARA-CLAISEN REARRANGEMENT OF 1-(PROP-2'-ENYLOXY)-2-(PROP-2'-ENYL)-ANTHRAQUINONE	47
CHAPTER II	DOUBLE BOND MIGRATION OF 1,4-DIHYDROXY2,3-BIS(PROP-2'-ENYL)ANTHRAQUINONE	54
CHAPTER III	ATTEMPTED USE OF 1,3-DIPOLAR CYCLO-ADDITIONS IN ANTHRACYCLINONE SYNTHESIS	68
CHAPTER IV	THE INTRODUCTION OF ALDEHYDE AND METHYL KETONE SIDE CHAINS ON TO ANTHRAQUINONES	80
	(a) INTRODUCTION OF FORMYL GROUPS (b) THE CONVERSION OF HYDROXYMETHYL	81
	ANTHRAQUINONES TO FURANS	92
	(c) THE INTRODUCTION OF BENZYL METHYL KETONES TO ANTHRAQUINONES	98
CHAPTER V	APPROACHES TO ANTHRACYCLINONES BASED ON ELABORATION OF HYDROXYMETHYL ANTHRAQUINONES	109
	A TOTAL SYNTHESIS OF 4-DEMETHOXY-DAUNOMYCINONE	129
CHAPTER VI	AN ALTERNATIVE APPROACH TO ANTHRACYCLINONES USING THE DOUBLE CLAISEN REARRANGEMENT AND	
	QUINIZARIN	156
EXPERIMENTAL		186
REFERENCES		223
STRUCTURES		235

ABSTRACT

The Claisen rearrangement of 1,4-bis(prop-2'-enyloxy)anthraquinone under reducing conditions is investigated. The elaboration of the product of double Claisen rearrangement towards an anthracyclinone skeleton is reported.

The insertion of methyl ketone and aldehyde functions into the C-2 and C-3 positions of the anthraquinone skeleton and the subsequent elaboration towards an anthracyclinone skeleton is investigated.

Methods for the conversion of hydroxymethylanthraquinones to side chains suitable for anthracyclinone syntheses are reported.

A total synthesis of 7,9-didesoxydaunomycinone from 1,4-dihydroxy-2-methylanthraquinone is described.