

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

BROMINATION OF CINNAMYL HALIDES, AND RELATED STUDIES

A thesis presented to I the University of Auckland I for the Degree of

DOCTOR OF PHILOSOPHY

bу

MARK TIMOTHY BRIMBLE

Department of Chemistry UNIVERSITY OF AUCKLAND

DECEMBER 1982

TABLE OF CONTENTS

LIST OF TABLES

R + 84 - 14

		Page		Page
ABSTRACT		i	Table 1.1	22
CHAPTER 1 :	Introduction, the bromination			
	of alkenes in polar solvents.	1	Table 1.2	25
CHAPTER 2 :	The rates and products of			
	bromination of the cinnamyl	35	Table 1.3	26
	halides in acetic acid.			
CHAPTER 3 :	Hydrogen deuterium kinetic		Table 1.4	26
	isotope effects on addition	110		
	reactions.		Table 2.1	40
CHAPTER 4 :	Secondary hydrogen deuterium			
	isotope effects during addition reactions of	139	Table 2.2	40
	cinnamyl derivatives.			
ABSTRACT			Table 2.3	41
CHAPTER 5 :	The products of addition of bromine to allylidene	168	Table 2.4	50
	diacetate and propenal in	100	J.	
	acetic acid.		Table 2.5	51
CHAPTER 6 :	Experimental	192		
REFERENCES :	,	300	Table 2.6	55
STRUCTURES				
ACKNOWLEDGEMEN			Table 2.7	56
ACKNOWLEDGEMEN	112			
			Table 2.8	59
			Table 2.9	60
			Table 2.10	61
			m.1.1. 0.44	(1
		1	Table 2.11	64

Table 2.12	Page
Table 3.1	129
Table 3.2	130
Table 3.3	133
Table 3.4	134
Table 4.1	143
Table 4.2	144
Table 4.3	150
Table 4.4	151
Table 4.5	155
Table 4.6	161
Table 5.1	169
Table 5.2	169

ABSTRACT

The rates of bromination of the (E)-cinnamyl halides in acetic acid have been measured so that the electronic effects of a halomethylene group on a π system might be better understood. The relative rates of bromination decrease in the order PhCH=CHCH₂F > PhCH=CHCH₂Cl > PhCH=CHCH₂Br. Rate constants could not be calculated from the kinetic data and reasons for this are discussed in great detail. The earlier literature proposal that this reactivity order was due to hyperconjugation of the C-H bonds of the -CH₂X group is shown to be incorrect, and new explanation is proposed in terms of modern molecular orbital theory.

A detailed study of the products of bromination of the (E)-cinnamyl halides in acetic acid under the conditions of kinetic measurement is also reported. Product precursors, consistent with the products observed, have been tentatively identified.

Several $[\alpha, \alpha - {}^2H_2]$ - cinnamyl derivatives, PhCH=CHCD₂X, have been prepared and the addition of several electrophiles to these alkenes has been studied.