http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
CENTRAL AUDITORY PROCESSING
IN CHILDREN WITH A HISTORY
OF NEONATAL JAUNDICE

K. Anne Greville

1990

A thesis submitted to the University of Auckland
in partial fulfilment of the requirements
for the degree Doctor of Philosophy
An experimental group (Group A) of 22 children around 7 years of age who had normal hearing for pure tones but who had experienced neonatal jaundice with peak bilirubin levels of at least 300 \(\mu \text{mol/l} \) was tested on a range of audiological tests selected to assess aspects of their central auditory processing. Children who had not been tested for bilirubin level were selected as control subjects (Group B); they were matched on the variables gender, race, gestational age, birthweight, Apgar scores and occurrence of respiratory problems. A smaller experimental group, Group C \((n=7)\), with peak bilirubin levels between 250 and 299 \(\mu \text{mol/l} \) but with perinatal complications was also studied. The experimental groups had higher mean acoustic reflex thresholds and lower mean reflex amplitudes than the control group. Acoustic reflex threshold patterns of abnormality consistent with central dysfunction occurred in two children from the main experimental group and two children in the control group. None of the children from Group C showed abnormal reflex thresholds. Acoustic reflex amplitude patterns of abnormality consistent with central dysfunction were present in six children from Group A and two children from Group C, compared with three children from the control group. Masking level differences were absent in five subjects from Group A and three children from Group C, compared with three control subjects. No group differences were evident for ABR latency or amplitude measures, but poor morphology or repeatability of wave V was observed in ten subjects from Group A and three children from Group C, compared with five children from the control group. A larger number of failures within the experimental groups was found for two of the four speech tests, that is, for interrupted and filtered speech tests, but not speech in noise or competing words tests. Five children from Group A (but none from Group C) performed poorly on the interrupted speech test, compared with two from
Group B. The filtered speech test was failed by six children from Group A and two children from Group C, compared with two from Group B. Parental reports of behavioural or learning disorders were distributed equally among the groups and were not associated with particular patterns of test failure. Overall, children in the experimental groups failed significantly more tests of central auditory functioning than did children in the control group ($F(2,48) = 5.5, p < .01$). The results were interpreted as implicating jaundice in long-term central auditory processing abnormalities.
ACKNOWLEDGMENTS

The support and advice of Professor John Irwin of the Psychology Department, Associate Professor Ross Howie at National Women’s Hospital, and Dr John Gribben of the Psychology Department is acknowledged with gratitude.

Dr Gabrielle Collison and her staff at National Women’s Hospital willingly handled large numbers of contact letters to ex-patients. The cooperation of staff in the paediatric department and the medical records section at National Women’s Hospital made the development of the database possible. Anne Jansen assisted with the tedious job of sorting files and typing information into the database.

Thanks are due to Dr Bill Keith and later Mrs Kaye Coddington of the National Audiology Centre, who allowed me to use the facilities of the National Audiology Centre, and supported me in my endeavours. Mrs Catherine Camp provided helpful liaison in planning audiological assessment sessions. Mrs Renee Williams and other members of the clerical staff assisted in making appointments.

The financial support of the Department of Health in the form of study leave for two years is acknowledged. The Deafness Research Foundation provided a grant for clerical assistance in the development of the database.

The support and forbearance of my husband, Tim, and children, Richard, Nicola and Christopher enabled me to complete this work.

Lastly, but by no means least, I wish to thank the children and their parents who participated in the research programme, for giving of their precious time.
CONTENTS

List of Figures vii
List of Tables viii
Introduction 1
Pathological effects of hyperbilirubinemia
 Early research 6
 Animal research 6
 Short-term effects 9
 Long-term effects 11
 Treatment of hyperbilirubinemia 14
 Gender differences 20
Central Auditory Nervous System
 Ascending pathways 21
 Descending pathways 21
Tests of Central Auditory Processing 26
 Acoustic reflexes 30
 Reflex measurement using immittance audiometry 30
 Function of the acoustic reflex 31
 Anatomy of reflex arc 34
 Acoustic reflex response parameters 37
 Acoustic reflex threshold 42
 Acoustic reflex amplitude 50
Auditory brainstem responses
 Neural generators of the ABR 53
 Effects of peripheral pathology 57
 Effects of CANS disorders 59
 ABRs in children with learning difficulties 61
Middle latency responses
 Neural generators of the MLR 65
 Effects of peripheral hearing loss 67
 Effects of CAP disorders 67
 MLRs in children 67
Masking Level Differences
 Stimulus parameters 71
 Effects of peripheral hearing loss 72
 Effects of CANS disorders 73
 MLDs in children 73
Speech tests of CAP
 Effects of peripheral hearing loss 76
 Effects of CANS pathology 77
 CAP speech test batteries 78
 Interrupted speech 79
 Filtered speech 81
 Speech in noise 84
 Competing words 85
 The SCAN test 89
Study Objectives 91
Method
 Development of database 93
 Subject selection 95
 Audiological test battery 99
 Equipment 100
 Test procedures 101
Data analysis 105
Results
1. Pure tone audiometry 106
2. Tympanometry 106
3. Acoustic reflex thresholds 107
4. Acoustic reflex amplitude 108
5. Auditory brainstem responses 114
6. Middle latency responses 134
7. Masking level differences 140
8. Speech tests 141
9. Inter-test relationships 144
 Behaviour problems 151
 Effects of degree and duration of jaundice 151
Discussion
 Subject selection 152
 Effects of neonatal jaundice 153
 Theoretical issues 156
 Audiological test results 157
 Acoustic reflexes 157
 Auditory brainstem responses 161
 Middle latency responses 162
 Masking level differences 163
 Speech tests 164
 Relationships between test results 164
Conclusion 166
References 167
Appendices
 A Analysis of perinatal database. 183
 B Subject information sheet. 195
 C NAC Interrupted Speech Test. 196
 D Subject details. 197
 E Results of analysis of variance. 215
 F Relative amplitude data. 221
List of Figures

1. Tonotopicity of the cochlear nuclei. 8
2. Ascending auditory pathways. 22
3. Descending auditory pathways. 27
4. Ipsilateral and contralateral acoustic reflex pathways. 35
5. The influence of AR amplitude on ART. 39
6. Effect of sensorineural hearing loss on AR amplitude. 41
7. Effects of eighth nerve and brainstem disorders on the acoustic reflex. 46
8. Description of five AR patterns. 47
9. Neural basis of ABR. ... 55
10. Correlation of neural centres with ABR waveform. 58
11. Example of MLR waveform. 66
12. Varieties of MLR waveforms in normals. 69
13. Detectability of MLR waves as a function of age. 70
14. Effect of interruption rate on speech intelligibility. 80
15. Effect of filtering on speech intelligibility. 83
16. Ear advantage in dichotic speech tests. 87
17. Distribution of PBLs among infants tested Feb 1982-Jan 1983. 94
18. Mean ARTs to stimuli presented contralaterally. 111
19. Mean ARTs to stimuli presented ipsilaterally. 112
20. Mean AR amplitude for contralateral stimuli. 116
21. Mean AR amplitude for ipsilateral stimuli. 117
22. Means for average AR amplitude (for stimuli 90, 100 and 110 dB HL). 120
23. Correlation between middle ear compliance and average AR amplitude. 121
24. Mean relative AR amplitude (in dB re compliance) for contralateral stimuli. 125
25. Mean relative AR amplitude (in dB re compliance) for ipsilateral stimuli. 126
26. Number of children with AR amplitudes below 1 dB. 128
 Presentation = contralateral. 128
27. Number of children with AR amplitudes below 1 dB. 129
 Presentation = ipsilateral. 129
28. Examples of AR amplitude for four subjects within Group A. 130
29. Examples of AR amplitude for three subjects within Group B. 131
30. Examples of two peripheral patterns of AR amplitude. 132
31. Percentage of children in each group with ABR morphological abnormalities on one or both sides. 137
32. Sample ABR traces from Group A. 138
33. Sample ABR traces from Groups B and C. 139
34. Mean number of test types failed for each group. 145
35. Percentage of each group failing different tests. 146
36. Mean number of test types failed by boys and girls in each group. 148

Appendices:
A-1. Percentage of children with PBLs exceeding 250 μmol/l as a function of gestational age. 186
A-2. Risk of deafness per 1000 births for various factors. 194
D-9. Sample MLR traces. ... 209
List of Tables

1. Mean MLDs for 500 Hz tones.
2. Site of lesion and speech test performance.
3. Mean pure tone thresholds at audiometric frequencies.
4. Number of children with various tympanogram types.
5. Mean ear canal volume and compliance.
6. Mean ARTs for pulsed stimuli presented contralaterally.
7. Mean ARTs for pulsed stimuli presented ipsilaterally.
8. Number of children with absent ARs at 4000 Hz.
9. Number of children with various patterns of ART abnormality.
10. Mean AR amplitude (in ml/100) for contralateral stimulation.
11. Mean AR amplitude (in ml/100) for ipsilateral stimulation.
12. Mean average reflex amplitude.
13. Mean relative AR amplitude for contralateral stimulation.
14. Mean relative AR amplitude for ipsilateral stimulation.
15. Number of children with various AR amplitude patterns.
16. Mean ABR data.
17. Mean MLDs.
18. Mean interrupted speech scores.
19. Mean raw scores on SCAN subtests.
20. Mean standard scores on SCAN subtests.
21. Number of children showing abnormal ear advantages in the competing words test.
22. Factors contributing significantly to "prediction" of group.
23. Inter-test correlations for right ear data.
24. Inter-test correlations for left ear data.

A-3. Incidence of jaundice in various Pacific Island groups.
A-6. Percentage of each racial group with various maternal-infant blood-type combinations.
A-7. Percentage of positive Coombs test in children of different races.

D-1. Details of all children identified from the database with PBLs of at least 300 μmol/l.
D-2. Personal and perinatal details of subjects.
D-4. Summary of abnormal AR amplitude indices for each subject.
D-5. Summary of AR and MLD data for each subject.
D-6. Summary of ABR data for each subject.
D-7. Summary of ABR morphology for each subject.
D-8. Number of peaks and troughs recorded for each subject during MLR testing.
D-9. Summary of speech test data for each subject.
D-10. Data summary for each subject.
D-11. Summary of test failures for each subject.
E-1. Analysis of variance results for pure tone threshold.
E-2. Analysis of variance results for middle ear compliance.
E-3. Analysis of variance results for ear canal volume.
E-4. Analysis of variance results for ART 216
E-5. Analysis of variance results for AR amplitude (ml) 217
E-6. Analysis of variance results for AR amplitude (dB) 218
E-7. Analysis of variance results for ABR I-III interval. 219
E-8. Analysis of variance results for ABR I-V interval. 219
E-9. Analysis of variance results for ABR relative amplitude 219
E-10. Analysis of variance results for MLD. 219
E-11. Analysis of variance results for interrupted speech. 220
E-12. Analysis of variance results for SCAN subtests. 220
F-1. Acoustic reflex amplitude (ml) to dB conversion table. 221