http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
ISOLATION AND CHARACTERISATION OF N-GLYCANS OF OVINE AND HUMAN LUTEINIZING HORMONES

Jun Hiyama

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry, University of Auckland, 1991
ACKNOWLEDGEMENTS

I thank my supervisor, Professor A.G.C. Renwick for his support, encouragement and advice throughout this study and I am grateful to the Medical Research Council of New Zealand for its support through the award of project grants to Professor Renwick.

Because of the approaches used, this study required the cooperation of many people, in particular, Dr Gerhard Weisshaar, who worked closely with me in performing the structural analyses by 1H-NMR spectroscopy. I thank him for teaching me how to interpret spectra and for helpful discussions. I also thank Dr David L. Christie and Mrs Rena Hill for carrying out amino acid and protein sequence analyses and Mr Andrzej Surus for technical assistance with crude hormone preparations and radioimmunoassay.

I acknowledge the assistance of Dr Ann Stockell Hartree of the AFRC Institute of Animal Physiology and Genetics Research, Cambridge, England, who provided partially purified hormone preparations. I also thank Professor D.S. Munro of the University of Sheffield for the biological assay of TSH, and Drs J. Powell and V. Stevens of Ohio State University for the LH bioassay.

I am very much indebted to Ms Susan Buglass and Mr Francis Tan for their assistance in the preparation of this thesis.

Finally, I thank my parents and family for their understanding and patience.
ABSTRACT

Gonadotrophic hormones are heterodimeric glycoproteins and their N-glycans attached to specific amino acid residues are currently thought to play important roles in hormonal biosynthesis, secretion and function. The studies reported in this thesis aimed at isolation and characterisation of structural properties of the N-glycans on ovine and human luteinizing hormones.

Initially, chromatographic methods were developed using reverse-phase HPLC for the analytical separation of the three human pituitary glycoprotein hormones and their subunits. Separation of intact oLH and its subunits was also effected by a single HPLC step.

A preparative procedure was developed for the efficient purification of hLH and hTSH from crude human pituitary extracts using hydrophobic chromatography which gave highly purified hormones in good yields and with high biological activities. This method did not significantly influence the hormones' extensive charge heterogeneity and it offered potential advantages in the characterisation of their carbohydrate structures.

A preparative scheme was developed for the isolation of the N-linked oligosaccharides from each glycosylation site of o- and hLH. Charge heterogeneity of oligosaccharides, which were released by hydrazinolysis from subunits and glycopeptides, was characterised by anion-exchange HPLC.

1H-NMR analysis showed that the structures of all three N-glycans on hLH were highly heterogeneous but mainly diantennary complex-type, with site-specific patterns of terminal sialylation and sulphation as well as core-fucosylation.
Sulphated/sialylated and/or disialylated oligosaccharides were the major components at each site. A set of new mono- and disialylated oligosaccharides with the terminal sequence NeuAcα2-6GalNAcβ1-4GlcNAcβ1-2Manα1-3 was identified. This finding suggested unique site-specific terminal sialylation of oligosaccharides at Asn 78 (hLHα) by an unknown α2-6 sialyltransferase(s) in the human pituitary gonadotroph cell.

Each glycosylation site in oLH had a distinct set of oligosaccharides ranging from mainly monosulphated hybrid-type at the two sites of oLHα to predominantly disulphated diantennary complex-type on oLHβ. Core-fucosylation also differed at each site. These results suggested that processing of the oligosaccharides of the α- and β-subunits by α-mannosidase II and α1-6 fucosyltransferase was differently regulated by protein structure in oLH.

Whereas hCG, hLH and oLH share similar biological activities, no apparent relationship between their N-glycan structures was found, which suggested that specific branching and peripheral structures of N-glycans on LH and hCG may not be essential for biological function, although the N-glycan nearer the N-terminus of the α-subunit of hCG has been implicated in hormonal activity.
TABLE OF CONTENTS

Acknowledgements ... i
Abstract ... ii
List of Tables .. viii
List of Figures .. ix
Abbreviations .. xiii

Chapter One. General Introduction 1
1.1 Heterogeneity of Human Gonadotrophins 2
1.2 Structure and Biosynthesis of Gonadotrophins 5
1.3 N-Glycan Structures of Gonadotrophins 9
1.4 Biosynthesis of N-Glycans on Pituitary Gonadotrophins 18
1.5 Functions of N-Glycans on Gonadotrophins 22
1.6 Aims of Present Study 27

Chapter Two. Separation of Human Pituitary Glycoprotein Hormones and their Subunits by Reverse-Phase HPLC
2.1 Introduction ... 28
2.2 Experimental Procedure
2.2.1 Materials ... 29
2.2.2 Reverse-Phase HPLC 29
2.2.3 Analytical Methods 30
2.3 Results and discussion 31

Chapter Three. Purification of Human Pituitary LH and TSH by Hydrophobic Chromatography
3.1 Introduction ... 37
3.2 Experimental Procedures
3.2.1 Materials ... 38
3.2.2 Hormone Extraction and Gel-Filtration Chromatography 39
3.2.3 Hydrophobic-Interaction Chromatography 39
3.2.4 Reverse-Phase HPLC 40
3.2.5 Analytical HPLC 41
3.2.6 SDS-Polyacrylamide Gel Electrophoresis 42
3.2.7 RIA 42
3.2.8 Biological Assay 43
3.2.9 Analysis of Asn-Linked Oligosaccharides on hLH and hTSH 44
3.3 Results
3.3.1 Purification of hLH and hTSH 46
3.3.2 Purity 48
3.3.3 Biological Activity 50
3.3.4 Charge Heterogeneity 50
3.4 Discussion 51

Chapter Four. Isolation and characterisation of N-Linked Glycans of Human LH
4.1 Introduction 56
4.2 Experimental Procedures
4.2.1 Materials 58
4.2.2 Purification of hLH and its Subunits 58
4.2.3 Separation of Glycopeptides of the α-Subunit of hLH 59
4.2.4 Liberation of N-Linked Oligosaccharides from hLHα Glycopeptides and hLHβ 60
4.2.5 Separation of Oligosaccharides by HPLC 61
4.2.6 Quantitative Analysis of Oligosaccharides 62
4.2.7 1H-NMR Spectroscopy 63
4.3 Results 64
4.3.1 Purification of hLH and its Subunits 64
4.3.2 Separation of glycopeptides of hLH α-Subunit 65
4.3.3 Characterisation of Charge Heterogeneity of N-Glycans of hLH ... 66
4.3.4 Preparative Separation of N-Linked Oligosaccharides . 68
4.3.5 Structural Analysis of hLH N-Glycans by 1H-NMR........ 69
4.4 Discussion .. 75

Chapter Five. Isolation and Characterisation of N-Glycans of Ovine LH

5.1 Introduction ... 84
5.2 Experimental Procedures
5.2.1 Materials ... 85
5.2.2 Isolation of Subunits of oLH ... 85
5.2.3 Tryptic Digestion and Separation of Glycopeptides of α-subunit of oLH ... 86
5.2.4 Liberation of N-linked Oligosaccharides from Glycopeptides of the α and β-subunits of oLH 87
5.2.5 Separation of Oligosaccharides by HPLC 87
5.2.6 Quantitative Analysis of Oligosaccharides 88
5.2.7 1H-NMR Spectroscopy .. 89
5.3 Results
5.3.1 Isolation of Subunits of oLH ... 89
5.3.2 Separation of Glycopeptides of oLH α-subunit 90
5.3.3 Characterisation of Charge Heterogeneity of N-Glycans of oLH ... 91
5.3.4 Preparative Separation of N-linked Oligosaccharides . 92
5.3.5 Structural Analysis of oLH N-Glycans by 1H-NMR 93
5.4 Discussion .. 98
Chapter Six. Structure and Function of N-Glycans in Gonadotrophic Action

6.1 Structure-Function Relationships of N-Glycans of hCG and LH ... 107
6.2 Mechanism(s) of N-Glycan Functions 112

Bibliography ... 121

Publications ... 153
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Ref. page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Purification of human LH and TSH</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Content of sialic acid and sulphate in hLH and hTSH</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Yields of hLH and hTSH isolated from frozen human pituitary glands and acetone-dried powder</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Proton chemical shifts of oligosaccharide alditols isolated from hLH</td>
<td>71</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Oligosaccharide structures of the N-glycans of hLH</td>
<td>75</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Amino acid compositions of the α and β subunits of oLH</td>
<td>89</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Proton chemical shifts of oligosaccharide alditols isolated from oLH</td>
<td>94</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Oligosaccharide structures of the N-glycans of oLH</td>
<td>98</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Structures of the oligosaccharide components and their relative abundances at the four N-glycosylation sites of hCG</td>
<td>108</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Branching structures of N-glycans present at the potentially functional glycosylation sites of hCG, hLH and oLH</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Fig.1.1</td>
<td>Amino acid sequence of human α subunit deduced from nucleotide sequences................. 5</td>
<td></td>
</tr>
<tr>
<td>Fig.1.2</td>
<td>Amino acid sequence of hLHβ subunit deduced from nucleotide sequences...................... 5</td>
<td></td>
</tr>
<tr>
<td>Fig.1.3</td>
<td>Structures of human pituitary and placental gonadotrophins..................................... 6</td>
<td></td>
</tr>
<tr>
<td>Fig.1.4</td>
<td>Proposed structures of the Asn-linked oligosaccharides of urinary hCG.......................... 9</td>
<td></td>
</tr>
<tr>
<td>Fig.1.5</td>
<td>Proposed structures of the Asn-linked oligosaccharides (asialo-forms) of hFSH................ 11</td>
<td></td>
</tr>
<tr>
<td>Fig.1.6</td>
<td>Proposed structures of the Asn-linked oligosaccharides of hLH.................................. 15</td>
<td></td>
</tr>
<tr>
<td>Fig.1.7</td>
<td>Proposed pathway for synthesis of sulphated and sialylated oligosaccharides on the pituitary glycoprotein hormones................................. 20</td>
<td></td>
</tr>
<tr>
<td>Fig.2.1</td>
<td>Reverse-phase HPLC of hFSH, hLH and hTSH and their subunits on a Vydac C₄ (0.46 x 15 cm) column 32</td>
<td></td>
</tr>
<tr>
<td>Fig.2.2</td>
<td>Elution profiles of hFSH on C₁ and C₄ columns in series.. 33</td>
<td></td>
</tr>
<tr>
<td>Fig.2.3</td>
<td>Separation of hFSH, hLH and hTSH on analytical C₁ and C₄ columns in series 33</td>
<td></td>
</tr>
<tr>
<td>Fig.2.4</td>
<td>Preparative separation of hFSH, hLH and hTSH on C₁ and C₄ columns in series 34</td>
<td></td>
</tr>
<tr>
<td>Fig.2.5</td>
<td>Separation of the subunits of hTSH under modified elution conditions.......................... 35</td>
<td></td>
</tr>
<tr>
<td>Fig.3.1</td>
<td>Analytical reverse-phase HPLC profile of the glycoprotein hormone fraction obtained by Sephadex G-100 chromatography................................. 46</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3.2 Hydrophobic-interaction chromatography of the glycoprotein hormone fraction obtained from Sephadex G-100 chromatography of human pituitary glands ... 47

Fig. 3.3 Reverse-phase HPLC of fraction IV-2 obtained from phenyl-Sepharose chromatography of human pituitary glands .. 48

Fig. 3.4 Analytical reverse-phase HPLC of purified hLH and hTSH ... 49

Fig. 3.5 Analysis of purified hLH and hTSH by SDS-polyacrylamide gel electrophoresis and gel-filtration HPLC ... 49

Fig. 3.6 Anion-exchange HPLC of purified hLH and hTSH 50

Fig. 3.7 Anion-exchange HPLC of Asn-linked oligosaccharides from hLH .. 51

Fig. 3.8 Anion-exchange HPLC of Asn-linked oligosaccharides from hTSH .. 51

Fig. 3.9 Relative contents of neutral, sialylated, sulphated and sulphated/sialylated oligosaccharides in hLH and hTSH ... 51

Fig. 4.1 Scheme for the isolation and purification of N-glycans from each of the three glycosylation sites of hLH ... 64

Fig. 4.2 Preparative separation of hLHα and hLHβ by reverse-phase HPLC ... 65

Fig. 4.3 Preparative separation of tryptic glycopeptides from hLHα .. 65

Fig. 4.4 Anion-exchange HPLC of radiolabelled oligosaccharides obtained from each glycosylation site of hLH 67
Fig.4.5 Relative amounts of neutral, mono-, di-, and tri-charged oligosaccharides at each glycosylation site of hLH

Fig.4.6 Distribution of anionic charges derived from the three N-glycans on hLH

Fig.4.7 Preparative anion-exchange HPLC of oligosaccharide alditols from each glycosylation site of hLH

Fig.4.8 Preparative ion-suppression amine-adsorption HPLC of major anion-exchange fractions

Fig.4.9 400 MHz 1H-NMR spectrum of SN type oligosaccharides derived from Asn 52 of hLH

Fig.4.10 400 MHz 1H-NMR spectrum of N2 type oligosaccharides derived from Asn 78 of hLH

Fig.4.11 Biosynthetic pathway of N-linked oligosaccharides on hLH

Fig.5.1 Preparative separation of oLHα and oLHβ by reverse-phase HPLC

Fig.5.2 Analytical reverse-phase HPLC of purified oLHα and oLHβ

Fig.5.3 Preparative separation of tryptic glycopeptides from oLHα by reverse-phase HPLC

Fig.5.4 Anion-exchange HPLC of radiolabelled oligosaccharides from each glycosylation site of oLH

Fig.5.5 Relative amounts of neutral, mono- and di-charged oligosaccharides at each glycosylation site of oLH

Fig.5.6 Distribution of anionic charges derived from the three N-glycans on oLH

Fig.5.7 Preparative anion-exchange HPLC of oligosaccharide alditols from each glycosylation site of oLH
Fig. 5.8 Preparative ion-suppression amine-adsorption HPLC of major anion-exchange fractions 93

Fig. 5.9 400 MHz 1H-NMR spectrum of S2 type oligosaccharides derived from Asn 13 of oLHβ 94

Fig. 5.10 400 MHz 1H-NMR spectrum of S1 hybrid-type oligosaccharides (S1-AB) derived from Asn 56 of oLHα ... 95

Fig. 5.11 Biosynthetic pathway of N-linked oligosaccharides on oLH ... 102
ABBREVIATIONS

Asn asparagine
BSA bovine serum albumin
cAMP adenosine 3',5'-cyclic monophosphate
CM carboxymethyl
cpm counts per minute
DEAE diethylaminoethyl
EDTA ethylenediaminetetraacetic acid
Fuc L-fucose
Gal D-galactose
GalNAc N-acetylgalactosamine (2-acetamido-2-deoxy-D-galactose)
Glc D-glucose
GlcNAc N-acetylgalcosamine (2-acetamido-2-deoxy-D-glucose)
GlcNAc-ol N-acetylglucosaminitol
GTP guanosine 5'-triphosphate
HF hydrogen fluoride
1H-NMR proton nuclear magnetic resonance
HPLC high-performance liquid chromatography
i.p. intraperitoneal
IU international units
kDa kilodalton
Man D-mannose
NeuAc N-acetylneuraminic acid (sialic acid)
NIADDK National Institutes of Arthritis, Diabetes and Digestive and Kidney Diseases
NIH National Institutes of Health, Bethesda, Maryland, U.S.A.
pI isoelectric point
RIA radioimmunoassay
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>reverse-phase</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecylsulphate</td>
</tr>
<tr>
<td>TPCK</td>
<td>L-1-tosylamido-2-phenylethyl chloromethyl ketone</td>
</tr>
<tr>
<td>Tris</td>
<td>tris (hydroxymethyl) aminomethane</td>
</tr>
</tbody>
</table>