Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
THE ORDER HADROMERIDA
(PORIFERA:DEMOSPONGIAE),
TAXONOMY AND RELATIONSHIPS OF THE
MAJOR FAMILIES

by
Michelle Kelly-Borges

A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Zoology at the University of Auckland, Auckland, New Zealand

University of Auckland, 1991
THE ORDER HADROMERIDA
(PORIFERA:DEMOSPONGIAE), TAXONOMY
AND RELATIONSHIPS OF THE MAJOR
FAMILIES

FRONTISPIECE: CLIONA CELATA (FAMILY CLIONIDAE)
TABLE OF CONTENTS
ACKNOWLEDGEMENTS
ABSTRACT
ABBREVIATIONS
FIGURES, TABLES AND PLATES

I GENERAL INTRODUCTION 1

II SYSTEMATICS 4

INTRODUCTION

MATERIALS AND METHODOLOGY

Collections 11
Specimen preparation 12
Taxonomic character definition and analysis 12
Terminology 13
Phylogenetic analysis 13

SYSTEMATICS

ORDER HADROMERIDA TOPSENT
FAMILY TETHYIDAE GRAY
GENUS TETHYA LAMARCK 18
Tethya aurantium (Pallas) 19
Tethya sp 1 22
Tethya sp 2 25
Tethya sp 3 27
Tethya sp 4 30
Tethya sp 5 33
Tethya sp 6 35
Tethya seychellensis (Wright) 37
Tethya sp 7 39
Tethya robusta Bowerbank 42
Tethya sp 8 45
Tethya sp 9 47
Tethya sp 10 49
Tethya sp 11 51

DISCUSSION 54
I

FAMILY SUBERITIDAE SCHMIDT
GENUS SUBERITES NARDO
Suberites sp nov
GENUS AAPTOS GRAY
Aaptos aaptos (Schmidt)
Aaptos sp 1
Aaptos sp 2
Aaptos sp 3
Aaptos sp 4
Aaptos sp 5

DISCUSSION

FAMILY POLYMASTIIDAE GRAY
GENUS POLYMASTIA BOWERBANK
Polymastia fusca Bergquist
Polymastia sp 1
Polymastia hirsuta Bergquist
Polymastia sp 2
Polymastia sp 3
Polymastia sp 4
Polymastia crassa Carter
Polymastia sp cf massilis Carter
Polymastia sp cf bicolor Carter
Polymastia sp 5

GENUS PROTELEIA DENDY AND RIDLEY
Proteleia sp 1
Proteleia sp 2

DISCUSSION

III MOLECULAR SYSTEMATICS

INTRODUCTION
Morphology and molecules
Which molecule?
Assumptions
Reconstructing evolutionary trees

MATERIALS AND METHODS

EXTRACTION OF TOTAL RIBOSOMAL RNA
Field Collections
Laboratory preparation of fresh specimens
Laboratory preparation of frozen specimens
Extraction of total rRNA
Electrophoresis of total rRNA
Storage and working use of rRNA
I8S rRNA SEQUENCING 172
18S rRNA sequencing 172
Oligonucleotides 174
Reverse transcriptase sequencing 174
Electrophoresis and autoradiography 175
Sequence data acquisition 176

PHYLOGENETIC ANALYSIS 177
Sequence alignment 177
Data preparation for analysis 178
Parsimony analysis 180
Distance methods 182

RESULTS 184

EXTRACTION OF TOTAL rRNA 184

18S rRNA SEQUENCING 185
RNA template contamination 185
Reverse transcriptase sequencing 186

PHYLOGENETIC ANALYSIS 187
18S rRNA sequence data 187
Variability of sequence data 187
Phylogenetic analysis 189

DISCUSSION 192

IV GENERAL DISCUSSION 195

V REFERENCES 198

VI APPENDICES
APPENDIX 1 Preparation of sponge tissues for taxonomy
APPENDIX 2 Precautions against ribonucleases.
APPENDIX 3 Solutions, chemicals and methodology
APPENDIX 4 Gel electrophoresis of nucleic acids and sequencing products.
APPENDIX 5 Problems with reverse transcriptase sequencing and autoradiograph interpretation.
APPENDIX 6 The Polymerase Chain Reaction
APPENDIX 7 Character data and change lists for phylogenetic analyses.

VII PUBLICATIONS
ACKNOWLEDGEMENTS

I thank my supervisors, Professors Patricia and Peter Bergquist who are a constant source of inspiration and motivation to me. It is difficult to express the depth of my gratitude to such people as Klaus Borges, my mother Lorraine, sisters Fiona and Therese, and Hannah Lobb, for the support and encouragement which was given freely throughout these years of research. Without the help of the University Grants Committee and DSIR in the form of scholarship funding, this period would have been more difficult than it was.

In the Zoology Department, I sincerely thank Allen Rodrigo and Roderick Page for their assistance with phylogenetic analyses. Iain MacDonald and Raewyn Eager contributed greatly to my work with their skills in photography and scanning electron microscopy. Thank you also David Todd, Beryl Davy, Victoria Williams and Laurel Walker, for your assistance and patience.

For guidance through the mysteries of nucleic acid extraction and sequencing, I thank in particular my colleagues in the Department of Cellular and Molecular Biology, Moreland Gibbs, Liam Williams, David Saul, Ellen Podivinsky, Ronnie McHale, Pat Stapleton and Judy McAnulty.
ABSTRACT

Despite advances of recent years no stable higher order classification of the Porifera has yet emerged. To address this problem, relationships at various taxonomic levels within the Order Hadromerida have been evaluated. Descriptions of new species of *Tethya*, *Aaptos* and *Polymastia* from northern New Zealand are given in conjunction with a review and redefinition of specific diagnostic characters for these genera. A range of species, genera and families within the Hadromerida have been subjected to 18S rRNA sequencing. Using morphological and molecular sequence data together in phylogenetic analysis, the existing familial groups of the Hadromerida are confirmed and some rearrangement of genera is indicated following sequence alignment and comparison. These data serve as a baseline for molecular approaches to resolving relationships between other sponge groups.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-MCE</td>
<td>B-mercaptoethanol</td>
</tr>
<tr>
<td>DEPC</td>
<td>diethylpyrocarbonate</td>
</tr>
<tr>
<td>DNase</td>
<td>deoxyribonuclease</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>A</td>
<td>adenosine</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CTAB</td>
<td>cetyltrimethylammoniumbromide</td>
</tr>
<tr>
<td>dA/T/G/C/TP</td>
<td>deoxy A/T/G/C/ triphosphate</td>
</tr>
<tr>
<td>ddA/T/G/C/TP</td>
<td>dideoxy A/T/G/C/ triphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine-tetra-acetic acid</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-morpholino)propane-sulphonic acid</td>
</tr>
<tr>
<td>PAUP</td>
<td>phylogenetic analysis using parsimony</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>Sarkosyl</td>
<td>N-lauroylsarcosine</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus DNA (polymerase)</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris/borate electrophoresis buffer</td>
</tr>
<tr>
<td>TE</td>
<td>Tris/EDTA (buffer)</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N,N-tetramethylethylenediamine</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>UWGCG</td>
<td>University of Wisconsin Genetics Computer Group</td>
</tr>
</tbody>
</table>
FIGURES, TABLES AND PLATES

PHOTOGRAPHIC PLATES

Figure 2. (Photographic Plate 1). Microscleres of *Tethya*: 1. long-rayed conical oxyspherasters; 2. short-rayed conical oxyspherasters; 3. concave oxyspherasters; 4. mammilate (convex) oxyspherasters; 5. unbranched oxyasters; 6. branched oxyasters.

Figure 3. (Photographic Plate 2). Microscleres of *Tethya*: 1. acanthotylasters; 2. acanthostrongylasters; 3. acanthochiasters; 4. acanthooxyspherasters; 5. microoxyspherasters; 6. microoxyasters.

Figure 4. (Photographic Plate 3). 1-2. Polyrhabds of *Tethya* sp 11; 3-4. *Tethya* sp 1; 5. *Tethya* sp 2; 6. *Tethya* sp 3.

Figure 17. (Photographic Plate 5). Preserved specimens and spicules of *Tethya*: 1. *Tethya* sp 9; 2. *Tethya* sp 9, spicules; 3. *Tethya* sp 10; 4. *Tethya* sp 11.

Figure 23. (Photographic plate 6) Preserved specimens of *Suberites* and *Aaptos*: 1. *Suberites* sp nov; 2. *Aaptos* sp 1; 3. *Aaptos* sp 2; 4. *Aaptos* sp 3; 5. *Aaptos* sp 4; 6. *Aaptos* sp 5.

Figure 39. (Photographic Plate 8). Preserved specimens of *Polymastia* sp cf *massilis* Carter; 3. *Polymastia* sp cf *bicolor* Carter; 4. Exotyles of *Proteleia*; 5. *Proteleia* sp 1; 6. *Proteleia* sp 2.

Figure 50. (Photographic Plate 9) 1. Sponge total rRNA; 2. Effects of concentration of contaminants on reverse transcriptase sequencing; 3. The quantity of rRNA eluted from QIAGEN-Tip20 after decontamination compared to the original volume. 4. The positive effect of QIAGEN on reverse transcriptase sequencing.

Figure 54. (Photographic plate 10). Autapomorphic and synapomorphic characters in sequence data: 1. Autapomorphic positions in Primer A; 2. Autapomorphic positions in Primer C; 3. Synapomorphic characters in Primer B; 4. Synapomorphic characters in Primer C.
COLOUR PLATES

Plate I a. *Tethya* sp 1, *in situ.*

 b. *Tethya* sp 9, *in situ.*

Plate III a. *Polymastia* sp 2, *in situ*

APPENDIX PLATE 1

Appendix 2 and 6.

1. Total ribosomal RNA from sponges.

2. Ribosomal RNA from *Tethya aurantium*; extraction by two methods.

3. Genomic DNA from sponges.

4. PCR amplification of sponge DNA samples.

APPENDIX PLATE 2

1. Crossbanding in sequencing gel autoradiographs.

2. Fading in sequencing gel autoradiographs.

3. Apparent insertions into sequencing gel autoradiographs.

TEXT FIGURES

Text Figure 1. Collection localities.

Text Figure 5. General skeletal arrangement of *Tethya aurantium.*

Text Figure 6. General skeletal arrangement of *Tethya sp 1.*

Text Figure 7. General skeletal arrangement of *Tethya sp 2.*

Text Figure 8. General skeletal arrangement of *Tethya sp 3.*

Text Figure 10. General skeletal arrangement of *Tethya sp 4.*

Text Figure 11. General skeletal arrangement of *Tethya sp 5.*

Text Figure 12. General skeletal arrangement of *Tethya sp 6.*
Text Figure 13. General skeletal arrangement of *Tethya seychellensis*
Text Figure 14. General skeletal arrangement of *Tethya* sp 7.
Text Figure 15. General skeletal arrangement of *Tethya robusta*.
Text Figure 16. General skeletal arrangement *Tethya* sp 8.
Text Figure 18. General skeletal arrangement of *Tethya* sp 9.
Text Figure 19. General skeletal arrangement of *Tethya* sp 10.
Text Figure 20. General skeletal arrangement of *Tethya* sp 11.
Text Figure 21. Characters and character states of *Tethya*.
Text Figure 22. Hypothesised relationships within the genus *Tethya*.
Text Figure 23. General skeletal arrangement of *Suberites* sp nov.
Text Figure 24. General skeletal arrangement of *Aaptos aaptos* (Schmidt).
Text Figure 25. General skeletal arrangement of *Aaptos* sp 1.
Text Figure 26. General skeletal arrangement of *Aaptos* sp 2.
Text Figure 27. General skeletal arrangement of *Aaptos* sp 3.
Text Figure 28. General skeletal arrangement of *Aaptos* sp 4.
Text Figure 29. General skeletal arrangement of *Aaptos* sp 5.
Text Figure 30. General skeletal arrangement of *Trachya pernucleata* Carter.
Text Figure 31. Hypothesised relationships between *Aaptos* and *Suberites*.
Text Figure 33. General Skeletal arrangement of *Polymastia fusca* Bergquist.
Text Figure 34. General skeletal arrangement of *Polymastia* sp 1.
Text Figure 35. General skeletal arrangement of *Polymastia hirsuta* Bergquist.
Text Figure 36. General skeletal arrangement of *Polymastia* sp 2.
Text Figure 37. General skeletal arrangement of *Polymastia* sp 3.
Text Figure 38. General skeletal arrangement of *Polymastia* sp 4.
Text Figure 40. General skeletal arrangement of *Polymastia crassa* Carter.
Text Figure 41. General skeletal arrangement of *Polymastia* sp cf. *massilis*
Text Figure 42. General skeletal arrangement of *Polymastia* sp cf *bicolor* Carter, and *Polymastia* sp 5.
Text Figure 43. General skeletal arrangement of *Proteleia* sp 1.

Text Figure 44. General skeletal arrangement of *Proteleia* sp 2.

Text Figure 45. Cortex architecture in *Polymastia* and *Proteleia*.

Text Figure 46. Hypothesised relationships within the genus *Polymastia* and *Proteleia*.

Text Figure 47. The position of sequencing primers on a secondary structure model for eukaryotic small subunit rRNA.

Text Figure 48. Ambiguous sequence alignment in Primer C sequence data.

Text Figure 49. Positions 1556-1558 in 18SrRNA sequences from various phyla.

Text Figure 51. Primer A partial 18S rRNA sequence data.

Text Figure 52. Primer B partial 18S rRNA sequence data.

Text Figure 53. Primer C partial 18S rRNA sequence data.

Text Figure 55. Parsimony analysis of partial 18S in rRNA sequence data.

Text Figure 56. Hypothesised phylogenetic relationships of sponges (Orders Hadromerida and Dictyoceratida) from rRNA sequence data.

Text Figure 57. Neighbour-joining analysis of partial ribosomal 18SrRNA sequence data

TABLES

Table 1. Classification of the Hadromerida.

Table 2. Megascleres of *Tethya robusta* Bowerbank.

Table 3. Character-taxon matrix for *Tethya*.

Table 4. Megascleres of *Aaptos* sp 1.

Table 5. Megascleres of *Aaptos* sp 3.

Table 6. Skeletal features of *Aaptos* and *Trachya*.

Table 7. Characters and character states for *Aaptos*.

Table 8. Character-taxon matrix for *Aaptos*.

Table 9. Character comparison between *Tethya*, *Suberites* and *Aaptos*.

Table 10. Megascleres of *Polymastia hirsuta* Bergquist.
Table 11. Megascleres of *Polymastia* sp 2.

Table 12. Megascleres of *Polymastia* Carter.

Table 13. Megascleres of *Polymastia* sp cf massilis Carter.

Table 14. Megascleres of *Polymastia* sp cf bicolor Carter.

Table 15. Megascleres of Polymastia sp 5.

Table 16. Character-taxon matrix for *Polymastia* and *Proteleia*.

Table 17. Sponges collected for rRNA sequencing.

Table 18. Oligonucleotide primer sequences for reverse transcriptase sequencing.

Table 19. A method of coding nucleotides from several gels to obtain a consensus sequence.

Table 20. Variation in sponge sequence data.

Table 21. Character - taxon matrix for rRNA sequence data.